201
|
Takada S, Fujimori S, Shinozuka T, Takada R, Mii Y. Differences in the secretion and transport of Wnt proteins. J Biochem 2017; 161:1-7. [PMID: 28053142 DOI: 10.1093/jb/mvw071] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/26/2016] [Indexed: 12/13/2022] Open
Abstract
During the last three decades, our understanding about Wnt signaling has progressed greatly, especially with regards to the molecular mechanism of intracellular transmission of this signaling, as well as its physiological roles. In parallel, the molecular nature of Wnt proteins has gradually but surely been clarified. Wnt proteins are post-translationaly modified with fatty acid and glycosaminoglycans, resulting in constraint of the 3D structure and behavior of the proteins. Specific binding proteins or extracellular vesicles, which appear to shield the lipid moiety from the aquatic environment, enable Wnt proteins to be transported in the extracellular space. Equally, Wnt-interacting proteins in the extracellular space, including heparan sulfate proteoglycan, are also involved in its spreading. Recent studies also show that intercellular transmission of Wnt proteins occurs by cell migration and extension of cell protrusions. Here, we will show the molecular and cellular bases of the trafficking of Wnt proteins and discuss questions that remain to be answered.
Collapse
Affiliation(s)
- Shinji Takada
- Okazaki Institute for Integrative Bioscience .,National Institute for Basic Biology, National Institutes of Natural Sciences.,The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan
| | - Sayumi Fujimori
- Okazaki Institute for Integrative Bioscience.,National Institute for Basic Biology, National Institutes of Natural Sciences
| | - Takuma Shinozuka
- Okazaki Institute for Integrative Bioscience.,National Institute for Basic Biology, National Institutes of Natural Sciences.,The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan
| | - Ritsuko Takada
- Okazaki Institute for Integrative Bioscience.,National Institute for Basic Biology, National Institutes of Natural Sciences
| | - Yusuke Mii
- Okazaki Institute for Integrative Bioscience.,National Institute for Basic Biology, National Institutes of Natural Sciences.,The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
202
|
Pakula H, Xiang D, Li Z. A Tale of Two Signals: AR and WNT in Development and Tumorigenesis of Prostate and Mammary Gland. Cancers (Basel) 2017; 9:E14. [PMID: 28134791 PMCID: PMC5332937 DOI: 10.3390/cancers9020014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/19/2017] [Accepted: 01/24/2017] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers and among the leading causes of cancer deaths for men in industrialized countries. It has long been recognized that the prostate is an androgen-dependent organ and PCa is an androgen-dependent disease. Androgen action is mediated by the androgen receptor (AR). Androgen deprivation therapy (ADT) is the standard treatment for metastatic PCa. However, almost all advanced PCa cases progress to castration-resistant prostate cancer (CRPC) after a period of ADT. A variety of mechanisms of progression from androgen-dependent PCa to CRPC under ADT have been postulated, but it remains largely unclear as to when and how castration resistance arises within prostate tumors. In addition, AR signaling may be modulated by extracellular factors among which are the cysteine-rich glycoproteins WNTs. The WNTs are capable of signaling through several pathways, the best-characterized being the canonical WNT/β-catenin/TCF-mediated canonical pathway. Recent studies from sequencing PCa genomes revealed that CRPC cells frequently harbor mutations in major components of the WNT/β-catenin pathway. Moreover, the finding of an interaction between β-catenin and AR suggests a possible mechanism of cross talk between WNT and androgen/AR signaling pathways. In this review, we discuss the current knowledge of both AR and WNT pathways in prostate development and tumorigenesis, and their interaction during development of CRPC. We also review the possible therapeutic application of drugs that target both AR and WNT/β-catenin pathways. Finally, we extend our review of AR and WNT signaling to the mammary gland system and breast cancer. We highlight that the role of AR signaling and its interaction with WNT signaling in these two hormone-related cancer types are highly context-dependent.
Collapse
Affiliation(s)
- Hubert Pakula
- Division of Genetics, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Room 466, Boston, MA 02115, USA.
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | - Dongxi Xiang
- Division of Genetics, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Room 466, Boston, MA 02115, USA.
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | - Zhe Li
- Division of Genetics, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Room 466, Boston, MA 02115, USA.
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
203
|
Kim BA, Jee HG, Yi JW, Kim SJ, Chai YJ, Choi JY, Lee KE. Expression Profiling of a Human Thyroid Cell Line Stably Expressing the BRAFV600E Mutation. Cancer Genomics Proteomics 2017; 14:53-67. [PMID: 28031237 DOI: 10.21873/cgp.20018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND/AIM The BRAFV600E mutation acts as an initiator of cancer development in papillary thyroid carcinoma (PTC). Gene expression changes caused by the BRAFV600E mutation may have an important role in thyroid cancer development. MATERIALS AND METHODS To study genomic alterations caused by the BRAFV600E mutation, we made human thyroid cell lines that harbor the wild-type BRAF gene (Nthy/WT) and the V600E mutant-type BRAF gene (Nthy/V600E). RESULTS Flow cytometry and western blotting showed stable transfection of the BRAF gene. In functional experiments, Nthy/V600E showed increased anchorage-independent growth and invasion through Matrigel, compared to Nthy/WT. Microarray analysis revealed that 2,441 genes were up-regulated in Nthy/V600E compared to Nthy/WT. Gene ontology analysis showed that the up-regulated genes were associated with cell adhesion, migration, and the ERK and MAPK cascade, and pathway analysis showed enrichment in cancer-related pathways. CONCLUSION Our Nthy/WT and Nthy/V600E cell line pair could be a suitable model to study the molecular characteristics of BRAFV600E PTC.
Collapse
Affiliation(s)
- Byoung-Ae Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyeon-Gun Jee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin Wook Yi
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Su-Jin Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Jun Chai
- Department of Surgery, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - June Young Choi
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Kyu Eun Lee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea .,Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
204
|
Maekawa T, Kulwattanaporn P, Hosur K, Domon H, Oda M, Terao Y, Maeda T, Hajishengallis G. Differential Expression and Roles of Secreted Frizzled-Related Protein 5 and the Wingless Homolog Wnt5a in Periodontitis. J Dent Res 2017; 96:571-577. [PMID: 28095260 DOI: 10.1177/0022034516687248] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Wingless/integrase-1 (Wnt) family of protein ligands and their functional antagonists, secreted frizzled-related proteins (sFRPs), regulate various biological processes ranging from embryonic development to immunity and inflammation. Wnt5a and sFRP5 comprise a typical ligand/antagonist pair, and the former molecule was recently detected at the messenger RNA (mRNA) level in human periodontitis. The main objective of this study was to investigate the interrelationship of expression of Wnt5a and sFRP5 in human periodontitis (as compared to health) and to determine their roles in inflammation and bone loss in an animal model. We detected both Wnt5a and sFRP5 mRNA in human gingiva, with Wnt5a dominating in diseased and sFRP5 in healthy tissue. Wnt5a and sFRP5 protein colocalized in the gingival epithelium, suggesting epithelial cell expression, which was confirmed in cultured human gingival epithelial cells (HGECs). The HGEC expression of Wnt5a and sFRP5 was differentially regulated by a proinflammatory stimulus (lipopolysaccharide [LPS] from Porphyromonas gingivalis) in a manner consistent with the clinical observations (i.e., LPS upregulated Wnt5a and downregulated sFRP5). In HGECs, exogenously added Wnt5a enhanced whereas sFRP5 inhibited LPS-induced inflammation, as monitored by interleukin 8 production. Consistent with this, local treatment with sFRP5 in mice subjected to ligature-induced periodontitis inhibited inflammation and bone loss, correlating with decreased numbers of osteoclasts in bone tissue sections. As in humans, mouse periodontitis was associated with high expression of Wnt5a and low expression of sFRP5, although this profile was reversed after treatment with sFRP5. In conclusion, we demonstrated a novel reciprocal relationship between sFRP5 and Wnt5a expression in periodontal health and disease, paving the way to clinical investigation of the possibility of using the Wnt5a/sFRP5 ratio as a periodontitis biomarker. Moreover, we showed that sFRP5 blocks experimental periodontal inflammation and bone loss, suggesting a promising platform for the development of a new host modulation therapy in periodontitis.
Collapse
Affiliation(s)
- T Maekawa
- 1 Graduate School of Medical and Dental Sciences, Research Center for Advanced Oral Science, Niigata University, Niigata, Japan
| | - P Kulwattanaporn
- 2 Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,3 Department of Operative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - K Hosur
- 2 Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - H Domon
- 4 Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - M Oda
- 4 Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,5 Departmant of Microbiology and Infection Control Science, Kyoto Pharmaceutical University, Yamashina, Kyoto, Japan
| | - Y Terao
- 4 Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - T Maeda
- 1 Graduate School of Medical and Dental Sciences, Research Center for Advanced Oral Science, Niigata University, Niigata, Japan
| | - G Hajishengallis
- 2 Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
205
|
Yousif NG, Hadi NR, Hassan AM. Indocyanine Green-001 (ICG-001) Attenuates Wnt/β-catenin-induces Myocardial Injury Following Sepsis. J Pharmacol Pharmacother 2017; 8:14-20. [PMID: 28405131 PMCID: PMC5370323 DOI: 10.4103/jpp.jpp_153_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Objective: To investigate the mechanistic pathway of both indocyanine green (ICG)-001 in attenuated endotoxemia-induced cardiac depression through downregulation cardiac Wnt/ β-catenin cell signaling. Materials and Methods: Adult (4–6 months) male Albino-Webster mice, their weights ranged from 25 to 30 g, were pretreated with ICG-001 i.p., following cecal ligation and puncture (CLP). Left ventricle (LV) function was assessed using a microcatheter system. Monocyte chemoattractant protein-1 (MCP-1) and cytokines mediators in plasma and myocardium were analyzed by enzyme-linked immunosorbent assay. Further, the cardiac Wnt protein measured by quantitative real-time polymerase chain reaction while β-catenin analysis through Western blotting procedure. The pathological changes and cells injury in the myocardium were examined using hematoxylin and eosin staining. Results: CLP mice displayed worse LV function. The exaggerated cardiac depression in CLP mice was associated with higher levels of MCP-1 and cytokines in plasma and myocardium together with greater cardiac levels of cardiac troponin-I and Wnt/β-catenin. Neutralization of sepsis by either ICG-001resulted in improved LV function and reductions in inflammatory mediators. Conclusion: Taken together, these data showed that ICG-001 improved LV function following sepsis through downregulation of Wnt/β-catenin and serve as a potential mechanistic pathway ICG-001 in therapeutic cardiac endotoxemia in animal model.
Collapse
Affiliation(s)
- Nasser Ghaly Yousif
- Department of Pharmacology and Therapeutics, College of Medicine, University of Kufa, Kufa, Iraq
| | - Najah R Hadi
- Department of Pharmacology and Therapeutics, College of Medicine, University of Kufa, Kufa, Iraq
| | - Alaa Manea Hassan
- Department of Pharmacology and Therapeutics, College of Medicine, University of Kufa, Kufa, Iraq
| |
Collapse
|
206
|
Liu Y, Sun Z, Xu D, Liu J, Li X, Wu X, Zhang Y, Wang Q, Huang C, Meng X, Li J. Hesperidin derivative-11 inhibits fibroblast-like synoviocytes proliferation by activating Secreted frizzled-related protein 2 in adjuvant arthritis rats. Eur J Pharmacol 2017; 794:173-183. [DOI: 10.1016/j.ejphar.2016.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 12/17/2022]
|
207
|
Mechanisms of immunomodulation by mammalian and viral decoy receptors: insights from structures. Nat Rev Immunol 2016; 17:112-129. [PMID: 28028310 DOI: 10.1038/nri.2016.134] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Immune responses are regulated by effector cytokines and chemokines that signal through cell surface receptors. Mammalian decoy receptors - which are typically soluble or inactive versions of cell surface receptors or soluble protein modules termed binding proteins - modulate and antagonize signalling by canonical effector-receptor complexes. Viruses have developed a diverse array of molecular decoys to evade host immune responses; these include viral homologues of host cytokines, chemokines and chemokine receptors; variants of host receptors with new functions; and novel decoy receptors that do not have host counterparts. Over the past decade, the number of known mammalian and viral decoy receptors has increased considerably, yet a comprehensive curation of the corresponding structure-mechanism relationships has not been carried out. In this Review, we provide a comprehensive resource on this topic with a view to better understanding the roles and evolutionary relationships of mammalian and viral decoy receptors, and the opportunities for leveraging their therapeutic potential.
Collapse
|
208
|
Abstract
Further elucidation of the molecular mechanisms underlying lung cancer (LC) is essential for the development of new effective therapeutic agents. Recently, involvement of Wnt antagonists in oncogenesis has been demonstrated in several cancers. The investigation of their contribution to lung carcinogenesis is still under investigation. We aimed to investigate whether there is a susceptibility or preventive effect of Wnt antagonist gene polymorphisms on the development and/or prognosis of LC. We investigated 110 LC patients and 160 controls. Single-nucleotide polymorphisms of Wnt antagonist genes including DKK2 (rs17037102), DKK3 (rs3206824), DKK3 intron4 G/C (rs7396187), DKK4 (rs2073664), and sFRP4 (rs1802074) were analyzed using nested polymerase chain reaction and restriction fragment length polymorphism. Results showed that patients with DKK3 AA compared with controls have a decreased risk of LC (adjusted for smoking habit, body mass index, and familial history) (P = 0.02; odds ratio [OR],0.08; 95% confidence interval [95% CI], 0.01-0.7). It was found that, for sFRP4 polymorphism, patients with GG and GA genotypes versus AA genotype controls showed a decreased risk for LC (P = 0.01; [OR, 0.19; 95% CI, 0.05-0.73 for GG genotype]; [OR = 0.18, 95% CI, 0.04-0.72 for GA genotype]). In addition, a decreased risk of LC was also found for the genotype combination of DKK3 (rs3206824) GG and sFRP4 AG + GG (P = 0.004; OR, 0.12; 95% CI, 0.02-0.58). We suggest that these 2 polymorphisms have a protective effect on LC in this study.
Collapse
|
209
|
Fujimura N. WNT/β-Catenin Signaling in Vertebrate Eye Development. Front Cell Dev Biol 2016; 4:138. [PMID: 27965955 PMCID: PMC5127792 DOI: 10.3389/fcell.2016.00138] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/09/2016] [Indexed: 01/04/2023] Open
Abstract
The vertebrate eye is a highly specialized sensory organ, which is derived from the anterior neural plate, head surface ectoderm, and neural crest-derived mesenchyme. The single central eye field, generated from the anterior neural plate, divides to give rise to the optic vesicle, which evaginates toward the head surface ectoderm. Subsequently, the surface ectoderm, in conjunction with the optic vesicle invaginates to form the lens vesicle and double-layered optic cup, respectively. This complex process is controlled by transcription factors and several intracellular and extracellular signaling pathways including WNT/β-catenin signaling. This signaling pathway plays an essential role in multiple developmental processes and has a profound effect on cell proliferation and cell fate determination. During eye development, the activity of WNT/β-catenin signaling is tightly controlled. Faulty regulation of WNT/β-catenin signaling results in multiple ocular malformations due to defects in the process of cell fate determination and differentiation. This mini-review summarizes recent findings on the role of WNT/β-catenin signaling in eye development. Whilst this mini-review focuses on loss-of-function and gain-of-function mutants of WNT/β-catenin signaling components, it also highlights some important aspects of β-catenin-independent WNT signaling in the eye development at later stages.
Collapse
Affiliation(s)
- Naoko Fujimura
- Laboratory of Eye Biology, BIOCEV Division, Institute of Molecular Genetics Prague, Czechia
| |
Collapse
|
210
|
Yu F, Lu Z, Huang K, Wang X, Xu Z, Chen B, Dong P, Zheng J. MicroRNA-17-5p-activated Wnt/β-catenin pathway contributes to the progression of liver fibrosis. Oncotarget 2016; 7:81-93. [PMID: 26637809 PMCID: PMC4807984 DOI: 10.18632/oncotarget.6447] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/22/2015] [Indexed: 01/02/2023] Open
Abstract
Aberrant Wnt/β-catenin pathway contributes to the development of liver fibrosis. MicroRNAs (MiRNAs) are found to act as regulators of the activation of hepatic stellate cell (HSC) in liver fibrosis. However, whether miRNAs activate Wnt/β-catenin pathway in activated HSCs during liver fibrosis is largely unknown. In this study, we found that Salvianolic acid B (Sal B) treatment significantly inhibited liver fibrosis in CCl4-treated rats, HSC-T6 cells and rat primary HSCs, resulting in the suppression of type I collagen and alpha-smooth muscle actin. Also, Sal B suppressed HSC activation and cell proliferation in vitro. Interestingly, Sal B treatment induced the inactivation of Wnt/β-catenin pathway, with an increase in P-β-catenin and Wnt inhibitory factor 1 (WIF1). We demonstrated that the anti-fibrotic effects caused by Sal B were, at least in part, via WIF1. Moreover, our study revealed that miR-17-5p was reduced in vivo and in vitro after Sal B treatment. As confirmed by luciferase activity assays, WIF1 was a direct target of miR-17-5p. Notably, the suppression of HSCs induced by Sal B was almost inhibited by miR-17-5p mimics. Collectively, we demonstrated that miR-17-5p activates Wnt/β-catenin pathway to result in HSC activation through inhibiting WIF1 expression.
Collapse
Affiliation(s)
- Fujun Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhongqiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kate Huang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ziqiang Xu
- Institute of Organ Transplantation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bicheng Chen
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peihong Dong
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianjian Zheng
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
211
|
Chen H, Cheng CY. Planar cell polarity (PCP) proteins and spermatogenesis. Semin Cell Dev Biol 2016; 59:99-109. [PMID: 27108805 PMCID: PMC5071175 DOI: 10.1016/j.semcdb.2016.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/18/2016] [Indexed: 11/24/2022]
Abstract
In adult mammalian testes, spermatogenesis is comprised of several discrete cellular events that work in tandem to support the transformation and differentiation of diploid spermatogonia to haploid spermatids in the seminiferous epithelium during the seminiferous epithelial cycle. These include: self-renewal of spermatogonial stem cells via mitosis and their transformation into differentiated spermatogonia, meiosis I/II, spermiogenesis and the release of sperms at spermiation. Studies have shown that these cellular events are under precise and coordinated controls of multiple proteins and signaling pathways. These events are also regulated by polarity proteins that are known to confer classical apico-basal (A/B) polarity in other epithelia. Furthermore, spermatid development is likely supported by planar cell polarity (PCP) proteins since polarized spermatids are aligned across the plane of seminiferous epithelium in an orderly fashion, analogous to hair cells in the cochlea of the inner ear. Thus, the maximal number of spermatids can be packed and supported by a fixed population of differentiated Sertoli cells in the limited space of the seminiferous epithelium in adult testes. In this review, we briefly summarize recent findings regarding the role of PCP proteins in the testis. This information should be helpful in future studies to better understand the role of PCP proteins in spermatogenesis.
Collapse
Affiliation(s)
- Haiqi Chen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States.
| |
Collapse
|
212
|
Gonzalez-Fernandez C, Arevalo-Martin A, Paniagua-Torija B, Ferrer I, Rodriguez FJ, Garcia-Ovejero D. Wnts Are Expressed in the Ependymal Region of the Adult Spinal Cord. Mol Neurobiol 2016; 54:6342-6355. [PMID: 27722925 DOI: 10.1007/s12035-016-0132-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/14/2016] [Indexed: 12/21/2022]
Abstract
The Wnt family of proteins plays key roles during central nervous system development and in several physiological processes during adulthood. Recently, experimental evidence has linked Wnt-related genes to regulation and maintenance of stem cells in the adult neurogenic niches. In the spinal cord, the ependymal cells surrounding the central canal form one of those niches, but little is known about their Wnt expression patterns. Using microdissection followed by TaqMan® low-density arrays, we show here that the ependymal regions of young, mature rats and adult humans express several Wnt-related genes, including ligands, conventional and non-conventional receptors, co-receptors, and soluble inhibitors. We found 13 genes shared between rats and humans, 4 exclusively expressed in rats and 9 expressed only in humans. Also, we observed a reduction with age on spontaneous proliferation of ependymal cells in rats paralleled by a decrease in the expression of Fzd1, Fzd8, and Fzd9. Our results suggest a role for Wnts in the regulation of the adult spinal cord neurogenic niche and provide new data on the specific differences in this region between humans and rodents.
Collapse
Affiliation(s)
- Carlos Gonzalez-Fernandez
- Laboratory of Molecular Neurology, Hospital Nacional de Paraplejicos (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain
| | - Angel Arevalo-Martin
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain
| | - Beatriz Paniagua-Torija
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain
| | - Isidro Ferrer
- Institut de Neuropatologia, Serveid'AnatomiaPatològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
| | - Francisco J Rodriguez
- Laboratory of Molecular Neurology, Hospital Nacional de Paraplejicos (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain.
| | - Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain.
| |
Collapse
|
213
|
Yang Q, Huang T, Ye G, Wang B, Zhang X. Methylation of SFRP2 gene as a promising noninvasive biomarker using feces in colorectal cancer diagnosis: a systematic meta-analysis. Sci Rep 2016; 6:33339. [PMID: 27659069 PMCID: PMC5034263 DOI: 10.1038/srep33339] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/23/2016] [Indexed: 01/22/2023] Open
Abstract
Methylation of secreted frizzled-related protein genes (SFRP) associated with the Wnt signaling pathway has previously been reported. However, the diagnostic role of SFRP methylation in colorectal cancer (CRC) remains unclear. A systematic search was performed to identify eligible articles for analysis. The pooled OR showed that SFRP1, SFRP2, SFRP4 and SFRP5 methylation was significantly higher in CRC and benign mucosal lesions than in normal colonic mucosa. When CRC was compared to benign mucosal lesions, SFRP1 and SFRP2 methylation had a significantly higher OR, but methylated SFRP4 and SFRP5 had a similar OR. Moreover, the pooled sensitivity, specificity and AUC (area under the curve) of methylated SFRP2 in feces of patients with CRC vs. healthy subjects was 0.71, 0.94 and 0.94, respectively. Therefore, methylation of SFRP1 and SFRP2 may be significantly correlated with CRC. However, in a study with small sample size, methylated SFRP4 and SFRP5 were not shown to be closely associated with CRC. Additionally, detection of SFRP2 methylation in feces presents a potential noninvasive biomarker for CRC diagnosis.
Collapse
Affiliation(s)
- Qihua Yang
- The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, China
| | - Tao Huang
- The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, China
| | - Guoliang Ye
- The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, China
| | - Bojun Wang
- The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, China
| | - Xinjun Zhang
- The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, China
| |
Collapse
|
214
|
García-Tobilla P, Solórzano SR, Salido-Guadarrama I, González-Covarrubias V, Morales-Montor G, Díaz-Otañez CE, Rodríguez-Dorantes M. SFRP1 repression in prostate cancer is triggered by two different epigenetic mechanisms. Gene 2016; 593:292-301. [PMID: 27570179 DOI: 10.1016/j.gene.2016.08.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/03/2016] [Accepted: 08/18/2016] [Indexed: 12/21/2022]
Abstract
Worldwide, prostate cancer (PCa) is the second cause of death from malignant tumors among men. Establishment of aberrant epigenetic modifications, such as histone post-translational modifications (PTMs) and DNA methylation (DNAme) produce alterations of gene expression that are common in PCa. Genes of the SFRP family are tumor suppressor genes that are frequently silenced by DNA hypermethylation in many cancer types. The SFRP family is composed of 5 members (SFRP1-5) that modulate the WNT pathway, which is aberrantly activated in PCa. The expression of SFRP genes in PCa and their regulation by DNAme has been controversial. Our objective was to determine the gene expression pattern of the SFRP family in prostatic cell lines and fresh frozen tissues from normal prostates (NP), benign prostatic hyperplasia (BPH) and prostate cancer (PCa), by qRT-PCR, and their DNAme status by MSP and bisulfite sequencing. In prostatic cancer cell lines, the 5 SFRPs showed significantly decreased expression levels compared to a control normal prostatic cell line (p<0.0001). In agreement, SFRP1 and SFRP5 genes showed decreased expression levels in CaP fresh frozen tissues compared to NP (p<0.01), while a similar trend was observed for SFRP2. Conversely, increased levels of SFRP4 expression were found in PCa compared to BPH (p<0.01). Moreover, SFRP2, SFRP3, and SFRP5 showed DNA hypermethylation in PCa cell lines. Interestingly, we observed DNA hypermethylation at the promoter of SFRP1 in the PC3 cell line, but not in LNCaP. However, in the LNCaP cell line we found an aberrant gain of the repressive histone posttranslational modification Histone H3 lysine 27 trimethylation (H3K27me3). In conclusion, decreased expression by DNA hypermethylation of SFRP5 is a common feature of PCa, while decreased expression of SFRP1 can be due to DNA hypermethylation, but sometimes an aberrant gain of the histone mark H3K27me3 is observed instead.
Collapse
Affiliation(s)
- Pilar García-Tobilla
- Oncogenomics Laboratory, The National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Susana R Solórzano
- Oncogenomics Laboratory, The National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Iván Salido-Guadarrama
- Oncogenomics Laboratory, The National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | | | | | | | | |
Collapse
|
215
|
Désert R, Mebarki S, Desille M, Sicard M, Lavergne E, Renaud S, Bergeat D, Sulpice L, Perret C, Turlin B, Clément B, Musso O. "Fibrous nests" in human hepatocellular carcinoma express a Wnt-induced gene signature associated with poor clinical outcome. Int J Biochem Cell Biol 2016; 81:195-207. [PMID: 27545991 DOI: 10.1016/j.biocel.2016.08.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 08/01/2016] [Accepted: 08/17/2016] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is the 3rd cause of cancer-related death worldwide. Most cases arise in a background of chronic inflammation, extracellular matrix (ECM) remodeling, severe fibrosis and stem/progenitor cell amplification. Although HCCs are soft cellular tumors, they may contain fibrous nests within the tumor mass. Thus, the aim of this study was to explore cancer cell phenotypes in fibrous nests. Combined anatomic pathology, tissue microarray and real-time PCR analyses revealed that HCCs (n=82) containing fibrous nests were poorly differentiated, expressed Wnt pathway components and target genes, as well as markers of stem/progenitor cells, such as CD44, LGR5 and SOX9. Consistently, in severe liver fibroses (n=66) and in HCCs containing fibrous nests, weighted correlation analysis revealed a gene network including the myofibroblast marker ACTA2, the basement membrane components COL4A1 and LAMC1, the Wnt pathway members FZD1; FZD7; WNT2; LEF1; DKK1 and the Secreted Frizzled Related Proteins (SFRPs) 1; 2 and 5. Moreover, unbiased random survival forest analysis of a transcriptomic dataset of 247 HCC patients revealed high DKK1, COL4A1, SFRP1 and LAMC1 to be associated with advanced tumor staging as well as with bad overall and disease-free survival. In vitro, these genes were upregulated in liver cancer stem/progenitor cells upon Wnt-induced mesenchymal commitment and myofibroblast differentiation. In conclusion, fibrous nests express Wnt target genes, as well as markers of cancer stem cells and mesenchymal commitment. Fibrous nests embody the specific microenvironment of the cancer stem cell niche and can be detected by routine anatomic pathology analyses.
Collapse
Affiliation(s)
- Romain Désert
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France; Université de Rennes 1, F-35043 Rennes, France.
| | - Sihem Mebarki
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France; Université de Rennes 1, F-35043 Rennes, France.
| | - Mireille Desille
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France; Université de Rennes 1, F-35043 Rennes, France; CHU Rennes, Centre de Ressources Biologiques Santé BB-0033-00056, Rennes, France.
| | - Marie Sicard
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France; Université de Rennes 1, F-35043 Rennes, France.
| | - Elise Lavergne
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France; Université de Rennes 1, F-35043 Rennes, France.
| | - Stéphanie Renaud
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France; Université de Rennes 1, F-35043 Rennes, France.
| | - Damien Bergeat
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France; Université de Rennes 1, F-35043 Rennes, France; CHU de Rennes, Dept. of Gastrointestinal and Hepatobiliary Surgery, Rennes, France.
| | - Laurent Sulpice
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France; Université de Rennes 1, F-35043 Rennes, France; CHU de Rennes, Dept. of Gastrointestinal and Hepatobiliary Surgery, Rennes, France.
| | - Christine Perret
- Inserm, U1016, Institut Cochin, Paris, France; Cnrs, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Bruno Turlin
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France; Université de Rennes 1, F-35043 Rennes, France; CHU Rennes, Centre de Ressources Biologiques Santé BB-0033-00056, Rennes, France.
| | - Bruno Clément
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France; Université de Rennes 1, F-35043 Rennes, France.
| | - Orlando Musso
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France; Université de Rennes 1, F-35043 Rennes, France.
| |
Collapse
|
216
|
Cross-talk of SFRP4, integrin α1β1, and Notch1 inhibits cardiac differentiation of P19CL6 cells. Cell Signal 2016; 28:1806-15. [PMID: 27542621 DOI: 10.1016/j.cellsig.2016.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/05/2016] [Accepted: 08/15/2016] [Indexed: 12/31/2022]
Abstract
Signaling pathways play an important role in cardiogenesis. Secreted frizzled-related protein 4 (SFRP4), a member of the Wnt family, contributes to adipogenesis and tumorigenesis. However, how SFRP4 participates in cardiogenesis and the detailed molecular mechanisms involved have not been elucidated. The aim of this work was to determine cross-talk between SFRP4, integrin α1β1, and Notch1 during cardiac differentiation of P19CL6 cells. Using a well-established in vitro P19CL6 cell cardiomyocyte differentiation system, we found that SFRP4 inhibited P19CL6 cell cardiac differentiation via SFRP4 overexpression or knockdown. In addition, the SFRP4 overexpression augmented Notch1 and HES1 production. Further investigation demonstrated that SFRP4 bound to integrin α1β1 to activate the focal adhesion kinase (FAK) pathway and that phosphorylated FAK Y397 (p-FAK Y397) aided Notch intracellular domain 1 (NICD1) nuclear translocation to form a p-FAK Y397-NICD1 complex that activated the Hes1 promoter. Taken together, the cross-talk between SFRP4, integrin α1β1, and Notch1 suppresses the cardiac differentiation of P19CL6 cells.
Collapse
|
217
|
Van Camp JK, Beckers S, Zegers D, Verhulst SL, Van Hoorenbeeck K, Massa G, Verrijken A, Desager KN, Van Gaal LF, Van Hul W. Nucleotide variation of sFRP5 gene is not associated with obesity in children and adolescents. Mol Biol Rep 2016; 43:1041-7. [PMID: 27497818 DOI: 10.1007/s11033-016-4050-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 07/29/2016] [Indexed: 12/12/2022]
Abstract
Because sFRP5 was shown to be an important extracellular modulator of the Wnt pathway, regulating adipogenesis, we wanted to investigate the role of sFRP5 variants in human, monogenic obesity by performing mutation analysis. We screened the complete sFRP5 coding region in 622 obese children and adolescents and 503 lean control individuals by high-resolution melting curve analysis and direct sequencing. We found a total of 15 sequence variants in sFRP5, 10 of which resulted in a non-synonymous amino acid change. Five of these variants were, to our knowledge, not previously reported. For one of the variants (c.-3G>A), we identified a trend towards association between the variant frequency and the obese phenotype. We argue that, when looking at conservation and location inside known protein domains, several of the identified variants (D103N, A113V, K212N and H317L), may affect sFRP5 protein function. In addition, we found c.-3G>A, residing in the Kozak sequence, with a lower frequency in cases compared to controls. However, functional studies investigating the effect of sFRP5 variants on protein function are necessary to determine the true role of sFRP5 genetic variation in human, monogenic obesity.
Collapse
Affiliation(s)
- Jasmijn K Van Camp
- Department of Medical Genetics, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Sigri Beckers
- Department of Medical Genetics, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Doreen Zegers
- Department of Medical Genetics, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Stijn L Verhulst
- Department of Paediatrics, Antwerp University Hospital, Wilrijkstraat 10, 2650, Antwerp, Belgium
| | - Kim Van Hoorenbeeck
- Department of Paediatrics, Antwerp University Hospital, Wilrijkstraat 10, 2650, Antwerp, Belgium
| | - Guy Massa
- Department of Paediatrics, Jessa Hospital, Stadsomvaart 11, 3500, Hasselt, Belgium
| | - An Verrijken
- Department of Endocrinology, Diabetology and Metabolic Diseases, Antwerp University Hospital, Wilrijkstraat 10, 2650, Antwerp, Belgium
| | - Kristine N Desager
- Department of Paediatrics, Antwerp University Hospital, Wilrijkstraat 10, 2650, Antwerp, Belgium
| | - Luc F Van Gaal
- Department of Endocrinology, Diabetology and Metabolic Diseases, Antwerp University Hospital, Wilrijkstraat 10, 2650, Antwerp, Belgium
| | - Wim Van Hul
- Department of Medical Genetics, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
| |
Collapse
|
218
|
The atypical cadherin Celsr1 functions non-cell autonomously to block rostral migration of facial branchiomotor neurons in mice. Dev Biol 2016; 417:40-9. [PMID: 27395006 DOI: 10.1016/j.ydbio.2016.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 11/23/2022]
Abstract
The caudal migration of facial branchiomotor (FBM) neurons from rhombomere (r) 4 to r6 in the hindbrain is an excellent model to study neuronal migration mechanisms. Although several Wnt/Planar Cell Polarity (PCP) components are required for FBM neuron migration, only Celsr1, an atypical cadherin, regulates the direction of migration in mice. In Celsr1 mutants, a subset of FBM neurons migrates rostrally instead of caudally. Interestingly, Celsr1 is not expressed in the migrating FBM neurons, but rather in the adjacent floor plate and adjoining ventricular zone. To evaluate the contribution of different expression domains to neuronal migration, we conditionally inactivated Celsr1 in specific cell types. Intriguingly, inactivation of Celsr1 in the ventricular zone of r3-r5, but not in the floor plate, leads to rostral migration of FBM neurons, greatly resembling the migration defect of Celsr1 mutants. Dye fill experiments indicate that the rostrally-migrated FBM neurons in Celsr1 mutants originate from the anterior margin of r4. These data suggest strongly that Celsr1 ensures that FBM neurons migrate caudally by suppressing molecular cues in the rostral hindbrain that can attract FBM neurons.
Collapse
|
219
|
Rolandsson Enes S, Andersson Sjöland A, Skog I, Hansson L, Larsson H, Le Blanc K, Eriksson L, Bjermer L, Scheding S, Westergren-Thorsson G. MSC from fetal and adult lungs possess lung-specific properties compared to bone marrow-derived MSC. Sci Rep 2016; 6:29160. [PMID: 27381039 PMCID: PMC4933903 DOI: 10.1038/srep29160] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 06/16/2016] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stromal cells (MSC) are multipotent cells with regenerative and immune-modulatory properties. Therefore, MSC have been proposed as a potential cell-therapy for bronchiolitis obliterans syndrome (BOS). On the other hand, there are publications demonstrating that MSC might be involved in the development of BOS. Despite limited knowledge regarding the functional role of tissue-resident lung-MSC, several clinical trials have been performed using MSC, particularly bone marrow (BM)-derived MSC, for various lung diseases. We aimed to compare lung-MSC with the well-characterized BM-MSC. Furthermore, MSC isolated from lung-transplanted patients with BOS were compared to patients without BOS. Our study show that lung-MSCs are smaller, possess a higher colony-forming capacity and have a different cytokine profile compared to BM-MSC. Utilizing gene expression profiling, 89 genes including lung-specific FOXF1 and HOXB5 were found to be significantly different between BM-MSC and lung-MSC. No significant differences in cytokine secretion or gene expression were found between MSC isolated from BOS patients compared recipients without BOS. These data demonstrate that lung-resident MSC possess lung-specific properties. Furthermore, these results show that MSC isolated from lung-transplanted patients with BOS do not have an altered phenotype compared to MSC isolated from good outcome recipients.
Collapse
Affiliation(s)
- Sara Rolandsson Enes
- Department of Experimental Medical Science, Lung Biology Unit, Lund University, Lund, Sweden
| | | | - Ingrid Skog
- Department of Respiratory Medicine and Allergology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Lennart Hansson
- Department of Respiratory Medicine and Allergology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Hillevi Larsson
- Department of Respiratory Medicine and Allergology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Katarina Le Blanc
- Division of Clinical Immunology; Centre for Allogeneic Stem Cell Transplantation, Karolinska Institutet, Huddinge University Hospital, Stockholm, Sweden
| | - Leif Eriksson
- Department of Experimental Medical Science, Lung Biology Unit, Lund University, Lund, Sweden
| | - Leif Bjermer
- Department of Respiratory Medicine and Allergology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Stefan Scheding
- Lund Stem Cell Center, Lund University, Lund, Sweden.,Department of Hematology, Skåne University Hospital, Lund, Sweden
| | | |
Collapse
|
220
|
Deng D, Diao Z, Han X, Liu W. Secreted Frizzled-Related Protein 5 Attenuates High Phosphate-Induced Calcification in Vascular Smooth Muscle Cells by Inhibiting the Wnt/ß-Catenin Pathway. Calcif Tissue Int 2016; 99:66-75. [PMID: 26895007 DOI: 10.1007/s00223-016-0117-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/09/2016] [Indexed: 11/28/2022]
Abstract
Vascular calcification (VC) is highly prevalent and represents a major cardiovascular risk factor in chronic kidney disease (CKD) patients. High phosphate (HP) levels are strongly associated with VC in this population. Secreted frizzled-related protein 5 (SFRP5), one of the inhibitors of the Wnt pathway, is a known anti-inflammatory adipokine with a positive effect on metabolic and cardiovascular diseases, in addition to its anticancer potency. However, the role of SFRP5 in the pathophysiology of VC is unclear. This work aimed to study the mechanism of action of SFRP5 on the progression of HP-induced VC, which resembles the CKD-related VC, through its direct effect on vascular smooth muscle cells (VSMCs) in vitro. Addition of SFRP5 significantly inhibited HP-induced calcification of VSMCs as determined by Alizarin red staining and calcium content. The inhibitory effect of SFRP5 on calcification of VSMCs was due to the suppression of HP-induced expression of calcification and osteoblastic markers. In addition, SFRP5 abrogated HP-induced activation of the Wnt/ß-catenin pathway, which plays a key role in the pathogenesis of VC. The specificity of SFRP5 for the inhibition of calcification of VSMCs was confirmed by using a neutralizing antibody to SFRP5. Our results suggest that SFRP5 inhibits HP-induced calcification of VSMCs by inhibiting the expression of calcification and osteoblastic markers, as well as the Wnt/ß-catenin pathway. Our study may indicate that SFRP5 is a potential therapeutic agent in calcification of VSMCs.
Collapse
Affiliation(s)
- Dai Deng
- Department of Nephrology, Affiliated Beijing Friendship Hospital, Faculty of Kidney Diseases, Capital Medical University, Beijing, 100050, China
| | - Zongli Diao
- Department of Nephrology, Affiliated Beijing Friendship Hospital, Faculty of Kidney Diseases, Capital Medical University, Beijing, 100050, China
| | - Xue Han
- Department of Nephrology, Affiliated Beijing Friendship Hospital, Faculty of Kidney Diseases, Capital Medical University, Beijing, 100050, China
| | - Wenhu Liu
- Department of Nephrology, Affiliated Beijing Friendship Hospital, Faculty of Kidney Diseases, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
221
|
Libro R, Bramanti P, Mazzon E. The role of the Wnt canonical signaling in neurodegenerative diseases. Life Sci 2016; 158:78-88. [PMID: 27370940 DOI: 10.1016/j.lfs.2016.06.024] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/20/2016] [Accepted: 06/26/2016] [Indexed: 01/06/2023]
Abstract
The Wnt/β-catenin or Wnt canonical pathway controls multiple biological processes throughout development and adult life. Growing evidences have suggested that deregulation of the Wnt canonical pathway could be involved in the pathogenesis of neurodegenerative diseases. The Wnt canonical signaling is a pathway tightly regulated, which activation results in the inhibition of the Glycogen Synthase Kinase 3β (GSK-3β) function and in increased β-catenin activity, that migrates into the nucleus, activating the transcription of the Wnt target genes. Conversely, when the Wnt canonical pathway is turned off, increased levels of GSK-3β promote β-catenin degradation. Hence, GSK-3β could be considered as a key regulator of the Wnt canonical pathway. Of note, GSK-3β has also been involved in the modulation of inflammation and apoptosis, determining the delicate balance between immune tolerance/inflammation and neuronal survival/neurodegeneration. In this review, we have summarized the current acknowledgements about the role of the Wnt canonical pathway in the pathogenesis of some neurodegenerative diseases including Alzheimer's disease, cerebral ischemia, Parkinson's disease, Huntington's disease, multiple sclerosis and amyotrophic lateral sclerosis, with particular regard to the main in vitro and in vivo studies in this field, by reviewing 85 research articles about.
Collapse
Affiliation(s)
- Rosaliana Libro
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| |
Collapse
|
222
|
Colitti M, Stefanon B. Different anti-adipogenic effects of bio-compounds on primary visceral pre-adipocytes and adipocytes. EXCLI JOURNAL 2016; 15:362-77. [PMID: 27540349 PMCID: PMC4983867 DOI: 10.17179/excli2016-267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/08/2016] [Indexed: 01/03/2023]
Abstract
Several natural compounds exhibit strong capacity for decreasing triglyceride accumulation, enhancing lipolysis and inducing apoptosis. The present study reports the anti-adipogenic effects of Silybum marianum (SL), Citrus aurantium (CA), Taraxacum officinale (TO), resveratrol (RE), Curcuma longa (CU), caffeine (CF), oleuropein (OL) and docosahexaenoic acid (DHA) in reducing differentiation and increasing lipolysis and apoptosis. Analyses were performed on human primary visceral pre-adipocytes after 10 (P10) and 20 (P20) days of treatment during differentiation and on mature adipocytes after 7 days of treatment (A7). The percentage of apoptosis induced by TO extract in P10 and P20 cells was significantly higher than that induced by all other compounds and in CTRL cells. Triglyceride accumulation was significantly lower in cells treated with DHA, CF, RE in comparison to cells treated with OL and in CTRL cells. Treatments with CF, DHA and OL significantly incremented lipolysis in P20 cells in comparison to other compounds and in CTRL cells. On the contrary, the treatment of A7 cells with OL, CA and TO compounds significantly increased cell lipolysis. The addition of CF in differentiating P20 pre-adipocytes significantly increased the expression of genes involved in inhibition of adipogenesis, such as GATA2, GATA3, WNT1, WNT3A, SFRP5, and DLK1. Genes involved in promoting adipogenesis such as CCND1, CEBPB and SREBF1 were significantly down-regulated by the treatment. The screening of bioactive compounds for anti-adipogenic effects showed that in differentiating cells TO extract was the most effective in inducing apoptosis and CF and DHA extracts were more efficient in inhibition of differentiation and in induction of cell lipolysis.
Collapse
Affiliation(s)
- Monica Colitti
- Department of Scienze Agroalimentari, Ambientali e Animali, University of Udine, via delle Scienze, 206, 33100 Udine, Italy
| | - Bruno Stefanon
- Department of Scienze Agroalimentari, Ambientali e Animali, University of Udine, via delle Scienze, 206, 33100 Udine, Italy
| |
Collapse
|
223
|
sFRP-mediated Wnt sequestration as a potential therapeutic target for Alzheimer’s disease. Int J Biochem Cell Biol 2016; 75:104-11. [DOI: 10.1016/j.biocel.2016.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 01/28/2023]
|
224
|
Carstensen-Kirberg M, Hatziagelaki E, Tsiavou A, Chounta A, Nowotny P, Pacini G, Dimitriadis G, Roden M, Herder C. Sfrp5 associates with beta-cell function in humans. Eur J Clin Invest 2016; 46:535-43. [PMID: 27019073 DOI: 10.1111/eci.12629] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/27/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Secreted frizzled-related protein (Sfrp)5 improves insulin sensitivity, but impairs beta-cell function in rodents. However, the relationship between Sfrp5, insulin sensitivity and secretion in humans is currently unclear. Therefore, the aim of the study was to characterize the associations between serum Sfrp5 and indices of insulin sensitivity and beta-cell function from dynamic measurements using oral glucose tolerance tests (OGTT) in humans. MATERIAL AND METHODS This study enrolled 194 individuals with nonalcoholic fatty liver disease (NAFLD), who were diagnosed based on ultrasound and liver transaminases and underwent a frequent sampling 75-g OGTT. Fasting serum Sfrp5 was measured by ELISA. Associations were assessed with several indices of insulin sensitivity and beta-cell function derived from glucose, insulin and C-peptide concentrations during the OGTT. RESULTS Circulating Sfrp5 associated inversely with the insulinogenic index based on C-peptide (rs = -0·244, P = 0·001), but not with the insulinogenic index based on insulin levels (rs = -0·007, P = 0·926) after adjustment for age, sex and body mass index. Sfrp5 inversely correlated only with QUICKI as a marker of insulin sensitivity in the model adjusted for age and sex (rs = -0·149, P = 0·039). These associations were not influenced by the additional adjustment for hepatic steatosis index. CONCLUSIONS The inverse association of serum Sfrp5 with beta-cell function suggests a detrimental role of Sfrp5 for insulin secretion also in humans. The severity of NAFLD does not appear to affect this relationship. The weak association between serum Sfrp5 and insulin sensitivity was partially explained by body mass.
Collapse
Affiliation(s)
- Maren Carstensen-Kirberg
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Erifili Hatziagelaki
- 2nd Department of Internal Medicine, Research Institute and Diabetes Center, Athens University, 'Attikon' University General Hospital, Athens, Greece
| | - Anastasia Tsiavou
- 2nd Department of Internal Medicine, Research Institute and Diabetes Center, Athens University, 'Attikon' University General Hospital, Athens, Greece
| | - Athina Chounta
- 4th Department of Internal Medicine, 'Attikon' University General Hospital, Athens, Greece
| | - Peter Nowotny
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Giovanni Pacini
- Metabolic Unit, CNR Neuroscience Institute, National Research Council, Padova, Italy
| | - George Dimitriadis
- 2nd Department of Internal Medicine, Research Institute and Diabetes Center, Athens University, 'Attikon' University General Hospital, Athens, Greece
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
225
|
González-Fernández C, Mancuso R, del Valle J, Navarro X, Rodríguez FJ. Wnt Signaling Alteration in the Spinal Cord of Amyotrophic Lateral Sclerosis Transgenic Mice: Special Focus on Frizzled-5 Cellular Expression Pattern. PLoS One 2016; 11:e0155867. [PMID: 27192435 PMCID: PMC4871528 DOI: 10.1371/journal.pone.0155867] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/05/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis is a chronic neurodegenerative disease characterized by progressive paralysis due to degeneration of motor neurons by unknown causes. Recent evidence shows that Wnt signaling is involved in neurodegenerative processes, including Amyotrophic Lateral Sclerosis. However, to date, little is known regarding the expression of Wnt signaling components in this fatal condition. In the present study we used transgenic SOD1G93A mice to evaluate the expression of several Wnt signaling components, with special focus on Frizzled-5 cellular expression alteration along disease progression. FINDINGS Based on previous studies demonstrating the expression of Wnts and their transcriptional regulation during Amyotrophic lateral sclerosis development, we have analyzed the mRNA expression of several Wnt signaling components in the spinal cord of SOD1G93A transgenic mice at different stages of the disease by using real time quantitative PCR analysis. Strikingly, one of the molecules that seemed not to be altered at mRNA level, Frizzled-5, showed a clear up-regulation at late stages in neurons, as evidenced by immunofluorescence assays. Moreover, increased Frizzled-5 appears to correlate with a decrease in NeuN signal in these cells, suggesting a correlation between neuronal affectation and the increased expression of this receptor. CONCLUSIONS Our data suggest the involvement of Wnt signaling pathways in the pathophysiology of Amyotrophic Lateral Sclerosis and, more specifically, the implication of Frizzled-5 receptor in the response of neuronal cells against neurodegeneration. Nevertheless, further experimental studies are needed to shed light on the specific role of Frizzled-5 and the emerging but increasing Wnt family of proteins research field as a potential target for this neuropathology.
Collapse
Affiliation(s)
| | - Renzo Mancuso
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Jaume del Valle
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Xavier Navarro
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | | |
Collapse
|
226
|
Frizzled7: A Promising Achilles' Heel for Targeting the Wnt Receptor Complex to Treat Cancer. Cancers (Basel) 2016; 8:cancers8050050. [PMID: 27196929 PMCID: PMC4880867 DOI: 10.3390/cancers8050050] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/03/2016] [Accepted: 05/09/2016] [Indexed: 02/07/2023] Open
Abstract
Frizzled7 is arguably the most studied member of the Frizzled family, which are the cognate Wnt receptors. Frizzled7 is highly conserved through evolution, from Hydra through to humans, and is expressed in diverse organisms, tissues and human disease contexts. Frizzled receptors can homo- or hetero-polymerise and associate with several co-receptors to transmit Wnt signalling. Notably, Frizzled7 can transmit signalling via multiple Wnt transduction pathways and bind to several different Wnt ligands, Frizzled receptors and co-receptors. These promiscuous binding and functional properties are thought to underlie the pivotal role Frizzled7 plays in embryonic developmental and stem cell function. Recent studies have identified that Frizzled7 is upregulated in diverse human cancers, and promotes proliferation, progression and invasion, and orchestrates cellular transitions that underscore cancer metastasis. Importantly, Frizzled7 is able to regulate Wnt signalling activity even in cancer cells which have mutations to down-stream signal transducers. In this review we discuss the various aspects of Frizzled7 signalling and function, and the implications these have for therapeutic targeting of Frizzled7 in cancer.
Collapse
|
227
|
Tamura M, Nemoto E. Role of the Wnt signaling molecules in the tooth. JAPANESE DENTAL SCIENCE REVIEW 2016; 52:75-83. [PMID: 28408959 PMCID: PMC5390339 DOI: 10.1016/j.jdsr.2016.04.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/29/2016] [Accepted: 04/01/2016] [Indexed: 02/07/2023] Open
Abstract
Wnt signaling plays a central role in many processes during embryonic development and adult homeostasis. At least 19 types of Wnt ligands, receptors, transducers, transcription factors, and antagonists have been identified in mammals. Two distinct Wnt signaling pathways, the canonical signaling pathway and the noncanonical signaling pathway, have been described. Some Wnt signaling pathway components are expressed in the dental epithelium and mesenchyme during tooth development in humans and mice. Functional studies and experimental analysis of relevant animal models confirm the effects of Wnt signaling pathway on the regulation of developing tooth formation and adult tooth homeostasis. Mutations in some Wnt signaling pathway components have been identified in syndromic and non-syndromic tooth agenesis. This review provides an overview of progress in elucidating the role of Wnt signaling pathway components in the tooth and the resulting possibilities for therapeutic development.
Collapse
Affiliation(s)
- Masato Tamura
- Department of Biochemistry and Molecular Biology, Graduate School of Dental Medicine, Hokkaido University, N13, W7, Sapporo, Japan
| | - Eiji Nemoto
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba, Sendai, Japan
| |
Collapse
|
228
|
Osteogenesis induced by frizzled-related protein (FRZB) is linked to the netrin-like domain. J Transl Med 2016; 96:570-80. [PMID: 26927515 DOI: 10.1038/labinvest.2016.38] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/05/2016] [Accepted: 01/25/2016] [Indexed: 12/17/2022] Open
Abstract
Abnormal Wnt signaling is associated with bone mass disorders. Frizzled-related protein (FRZB, also known as secreted frizzled-related protein-3 (SFRP3)) is a Wnt modulator that contains an amino-terminal cysteine-rich domain (CRD) and a carboxy-terminal Netrin-like (NTN) motif. Frzb(-/-) mice show increased cortical thickness. However, the direct effect of FRZB on osteogenic differentiation and the involvement of the structural domains herein are not fully understood. In this study, we observed that stable overexpression of Frzb in MC3T3-E1 cells increased calcium deposition and osteoblast markers compared with control. Western blot analysis showed that the increased osteogenesis was associated with reduced canonical, but increased non-canonical Wnt signaling. On the contrary, loss of Frzb induced the opposite effects on osteogenesis and Wnt signaling. To translationally validate the positive effects of FRZB on primary human cells, we treated human periosteal and human bone marrow stromal cells with conditioned medium from MC3T3-E1 cells overexpressing Frzb and observed an increase in Alizarin red staining. We further studied the effect of the domains. FrzbNTN overexpression induced similar effects on osteogenesis as full-length Frzb, whereas FrzbCRD overexpressing cells mimicked loss of Frzb experiments. The CRD is considered as the Wnt binding domain, but the NTN domain also has important effects on bone biology. FRZB and other SFRPs or their specific domains may hold surprising potential as therapeutics for bone and joint disorders considering that excess of SFRPs has effects that are not expected under physiological, endogenous expression conditions.
Collapse
|
229
|
Range RC, Wei Z. An anterior signaling center patterns and sizes the anterior neuroectoderm of the sea urchin embryo. Development 2016; 143:1523-33. [PMID: 26952978 PMCID: PMC4909856 DOI: 10.1242/dev.128165] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 02/23/2016] [Indexed: 01/17/2023]
Abstract
Anterior signaling centers help specify and pattern the early anterior neuroectoderm (ANE) in many deuterostomes. In sea urchin the ANE is restricted to the anterior of the late blastula stage embryo, where it forms a simple neural territory comprising several types of neurons as well as the apical tuft. Here, we show that during early development, the sea urchin ANE territory separates into inner and outer regulatory domains that express the cardinal ANE transcriptional regulators FoxQ2 and Six3, respectively. FoxQ2 drives this patterning process, which is required to eliminate six3 expression from the inner domain and activate the expression of Dkk3 and sFRP1/5, two secreted Wnt modulators. Dkk3 and low expression levels of sFRP1/5 act additively to potentiate the Wnt/JNK signaling pathway governing the positioning of the ANE territory around the anterior pole, whereas high expression levels of sFRP1/5 antagonize Wnt/JNK signaling. sFRP1/5 and Dkk3 levels are rigidly maintained via autorepressive and cross-repressive interactions with Wnt signaling components and additional ANE transcription factors. Together, these data support a model in which FoxQ2 initiates an anterior patterning center that implements correct size and positions of ANE structures. Comparisons of functional and expression studies in sea urchin, hemichordate and chordate embryos reveal striking similarities among deuterostome ANE regulatory networks and the molecular mechanism that positions and defines ANE borders. These data strongly support the idea that the sea urchin embryo uses an ancient anterior patterning system that was present in the common ambulacrarian/chordate ancestor.
Collapse
Affiliation(s)
- Ryan C Range
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zheng Wei
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
230
|
sFRP4-dependent Wnt signal modulation is critical for bone remodeling during postnatal development and age-related bone loss. Sci Rep 2016; 6:25198. [PMID: 27117872 PMCID: PMC4846872 DOI: 10.1038/srep25198] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 04/13/2016] [Indexed: 01/24/2023] Open
Abstract
sFRP4 is an extracellular Wnt antagonist that fine-tunes its signal activity by direct binding to Wnts. Bone fragility under oxidative stress by diabetes and aging is partly related to the suppression of the Wnt signal through upregulated sFRP4. Here, to explore the functions of sFRP4 as a balancer molecule in bone development and remodeling, we analyzed the sFRP4 knock-in mouse strain. X-gal and immunohistochemically stained signals in sFRP4-LacZ heterozygous mice were detectable in restricted areas, mostly in osteoblasts and osteoclasts, of the femoral diaphysis after neonatal and postnatal stages. Histological and μCT analyses showed increased trabecular bone mass with alteration of the Wnt signal and osteogenic activity in sFRP4 mutants; this augmented the effect of the buildup of trabecular bone during the ageing period. Our results indicate that sFRP4 plays a critical role in bone development and remodeling by regulating osteoblasts and osteoclasts, and that its functional loss prevents age-related bone loss in the trabecular bone area. These findings imply that sFRP4 functions as a key potential endogenous balancer of the Wnt signaling pathway by efficiently having direct influence on both bone formation and bone absorption during skeletal bone development and maintenance through remodeling.
Collapse
|
231
|
Kwack MH, Ahn JS, Jang JH, Kim JC, Sung YK, Kim MK. SFRP2 augments Wnt/β-catenin signalling in cultured dermal papilla cells. Exp Dermatol 2016; 25:813-5. [PMID: 26914690 DOI: 10.1111/exd.12993] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Mi Hee Kwack
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Ji Sup Ahn
- Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea
| | - Jeong Hyun Jang
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jung Chul Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Korea.,Dr. Ahn Medical Hair Clinic, Seoul, Korea
| | - Young Kwan Sung
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Moon Kyu Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Korea.
| |
Collapse
|
232
|
Hasebe T, Fujimoto K, Kajita M, Ishizuya-Oka A. Thyroid hormone activates Wnt/β-catenin signaling involved in adult epithelial development during intestinal remodeling in Xenopus laevis. Cell Tissue Res 2016; 365:309-18. [PMID: 27068920 DOI: 10.1007/s00441-016-2396-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/09/2016] [Indexed: 02/08/2023]
Abstract
During amphibian intestinal remodeling, thyroid hormone (TH) induces some larval epithelial cells to dedifferentiate into adult stem cells, which newly generate the absorptive epithelium analogous to the mammalian epithelium. To clarify molecular mechanisms underlying adult epithelial development, we here focus on TH response genes that are associated with the canonical Wnt pathway. Our quantitative reverse transcription plus polymerase chain reaction and immunohistochemical analyses indicate that all of the genes examined, including β-catenin, c-Myc and secreted frizzle-related protein 2 (SFRP2), are up-regulated in Xenopus laevis intestine during both natural and TH-induced metamorphosis. Moreover, immunoreactivity for nuclear β-catenin becomes detectable in adult stem cells from the start of their appearance and then increases in intensity in adult epithelial primordia derived from the stem cells, which actively proliferate and coexpress Wnt target genes c-Myc and LGR5. These expression profiles strongly suggest the involvement of the canonical Wnt pathway in the maintenance and/or proliferation of adult stem/progenitor cells. More importantly, by using organ cultures of the tadpole intestine, we have experimentally shown that the addition of exogenous SFRP2 protein to the culture medium promotes cell proliferation of the adult epithelial primordia, whereas inhibition of endogenous SFRP2 by its antibody suppresses their proliferation. The inhibition of SFRP2 suppresses larval epithelial changes in shape from simple columnar to stem-cell-like roundish cells, resulting in the failure of epithelial dedifferentiation. Thus, TH-up-regulated SFRP2 in the postembryonic intestine promotes adult stem cell development, possibly by acting as an agonist of both canonical and non-canonical Wnt signaling.
Collapse
Affiliation(s)
- Takashi Hasebe
- Department of Biology, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo, 180-0023, Japan
| | - Kenta Fujimoto
- Department of Biology, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo, 180-0023, Japan
| | - Mitsuko Kajita
- Department of Molecular Biology, Institute for Advanced Medical Sciences, Nippon Medical School, Kawasaki, Kanagawa, Japan
| | - Atsuko Ishizuya-Oka
- Department of Biology, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo, 180-0023, Japan.
| |
Collapse
|
233
|
Pećina-Šlaus N, Kafka A, Varošanec AM, Marković L, Krsnik Ž, Njirić N, Mrak G. Expression patterns of Wnt signaling component, secreted frizzled‑related protein 3 in astrocytoma and glioblastoma. Mol Med Rep 2016; 13:4245-51. [PMID: 27035837 PMCID: PMC4838070 DOI: 10.3892/mmr.2016.5061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/16/2016] [Indexed: 02/06/2023] Open
Abstract
Secreted frizzled-related protein 3 (SFRP3) is a member of the family of soluble proteins, which modulate the Wnt signaling cascade. Novel research has identified aberrant expression of SFRPs in different types of cancer. In the present study the expression intensities and localizations of the SFRP3 protein across different histopathological grades of astrocytic brain tumors were investigated by immunohistochemistry, digital scanning and image analysis. The results demonstrated that the differences between expression levels and malignancy grades were statistically significant. Tumors were classified into four malignancy grades according to the World Health Organization guidelines. Moderate (P=0.014) and strong (P=0.028) nuclear expression levels were significantly different in pilocytic (grade I) and diffuse (grade II) astrocytomas demonstrating higher expression values, as compared with anaplastic astrocytoma (grade III) and glioblastoma (grade IV). When the sample was divided into two groups, the moderate and high cytoplasmic expression levels were observed to be significantly higher in glioblastomas than in the group comprising astrocytoma II and III. Furthermore, the results indicated that high grade tumors were associated with lower values of moderate (P=0.002) and strong (P=0.018) nuclear expression in comparison to low grade tumors. Analysis of cytoplasmic staining demonstrated that strong cytoplasmic expression was significantly higher in the astrocytoma III and IV group than in the astrocytoma I and II group (P=0.048). Furthermore, lower grade astrocytomas exhibited reduced membranous SFRP3 staining when compared with higher grade astrocytomas and this difference was statistically significant (P=0.036). The present results demonstrated that SFRP3 protein expression levels were decreased in the nucleus in higher grade astrocytoma (indicating the expected behavior of an antagonist of Wnt signaling), whereas when the SFRP3 was located in the cytoplasm an increased expression level of SFRP3 was identified in the high grade astrocytomas when compared with those of a low grade. This may suggest that SFRP3 acts as an agonist of Wnt signaling and promotes invasive behavior.
Collapse
Affiliation(s)
- Nives Pećina-Šlaus
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb HR‑10000, Croatia
| | - Anja Kafka
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb HR‑10000, Croatia
| | - Ana Maria Varošanec
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb HR‑10000, Croatia
| | - Leon Marković
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb HR‑10000, Croatia
| | - Željka Krsnik
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb HR‑10000, Croatia
| | - Niko Njirić
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb HR‑10000, Croatia
| | - Goran Mrak
- Department of Neurosurgery, University Hospital Center Zagreb, School of Medicine, University of Zagreb, Zagreb HR‑10000, Croatia
| |
Collapse
|
234
|
Olfactomedin 4 deletion induces colon adenocarcinoma in Apc Min/+ mice. Oncogene 2016; 35:5237-5247. [PMID: 26973250 PMCID: PMC5057043 DOI: 10.1038/onc.2016.58] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 01/27/2016] [Accepted: 02/02/2016] [Indexed: 12/13/2022]
Abstract
Colon carcinogenesis is a multiple-step process involving the accumulation of a series of genetic and epigenetic alterations. The most commonly initiating event of intestinal carcinogenesis is mutation of the adenomatous polyposis coli (APC) gene, which leads to activation of the Wnt/β-catenin pathway. Olfactomedin 4 (OLFM4) has emerged as an intestinal stem-cell marker, but its biological function in the intestine remains to be determined. Here we show that Olfm4 deletion induced colon adenocarcinoma in the distal colon of ApcMin/+ mice. Mechanistically, we found that OLFM4 is a target gene of the Wnt/β-catenin pathway and can downregulate β-catenin signaling by competing with Wnt ligands for binding to Frizzled receptors, as well as by inhibition of the Akt-GSK-3β (Akt-glycogen synthase kinase-3β) pathway. We have shown that both Wnt and nuclear factor-κB (NF-κB) signaling were boosted in tumor tissues of Apc Olfm4 double-mutant mice. These data establish OLFM4 as a critical negative regulator of the Wnt/β-catenin and NF-κB pathways that inhibits colon-cancer development initiated by APC mutation. In addition, Olfm4 deletion significantly enhanced intestinal-crypt proliferation and inflammation induced by azoxymethane/dextran sodium sulfate. Thus, OLFM4 has an important role in the regulation of intestinal inflammation and tumorigenesis, and could be a potential therapeutic target for intestinal malignant tumors. Unlike the human colonic epithelium, the mouse colonic epithelium does not express OLFM4, but nevertheless, systemic OLFM4 deletion promotes colon tumorigenesis and that loss from mucosal neutrophils may have a role to play.
Collapse
|
235
|
Rahimi S, Kenward S, Glaysher S, Marani C, Brennan PA. Immunohistochemical expression of secreted frizzled receptor protein 1 in the invasive front of tongue squamous cell carcinoma. Eur J Oral Sci 2016; 124:158-63. [DOI: 10.1111/eos.12252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Siavash Rahimi
- Pathology Centre-Histopathology; Queen Alexandra Hospital; Portsmouth UK
| | - Susan Kenward
- Pathology Centre-Histopathology; Queen Alexandra Hospital; Portsmouth UK
| | - Sharon Glaysher
- Research and Innovation; Queen Alexandra Hospital; Portsmouth UK
| | - Carla Marani
- Division of Histopathology; Ospedale San Carlo di Nancy; Rome Italy
| | - Peter A. Brennan
- Department of Oral and Maxillofacial Surgery; Queen Alexandra Hospital; Portsmouth UK
| |
Collapse
|
236
|
Wnt/β-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance. Genes Dis 2016; 3:11-40. [PMID: 27077077 PMCID: PMC4827448 DOI: 10.1016/j.gendis.2015.12.004] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Wnt signaling transduces evolutionarily conserved pathways which play important roles in initiating and regulating a diverse range of cellular activities, including cell proliferation, calcium homeostasis, and cell polarity. The role of Wnt signaling in controlling cell proliferation and stem cell self-renewal is primarily carried out through the canonical pathway, which is the best-characterized the multiple Wnt signaling branches. The past 10 years has seen a rapid expansion in our understanding of the complexity of this pathway, as many new components of Wnt signaling have been identified and linked to signaling regulation, stem cell functions, and adult tissue homeostasis. Additionally, a substantial body of evidence links Wnt signaling to tumorigenesis of cancer types and implicates it in the development of cancer drug resistance. Thus, a better understanding of the mechanisms by which dysregulation of Wnt signaling precedes the development and progression of human cancer may hasten the development of pathway inhibitors to augment current therapy. This review summarizes and synthesizes our current knowledge of the canonical Wnt pathway in development and disease. We begin with an overview of the components of the canonical Wnt signaling pathway and delve into the role this pathway has been shown to play in stemness, tumorigenesis, and cancer drug resistance. Ultimately, we hope to present an organized collection of evidence implicating Wnt signaling in tumorigenesis and chemoresistance to facilitate the pursuit of Wnt pathway modulators that may improve outcomes of cancers in which Wnt signaling contributes to aggressive disease and/or treatment resistance.
Collapse
|
237
|
Milanesi A, Lee JW, Kim NH, Liu YY, Yang A, Sedrakyan S, Kahng A, Cervantes V, Tripuraneni N, Cheng SY, Perin L, Brent GA. Thyroid Hormone Receptor α Plays an Essential Role in Male Skeletal Muscle Myoblast Proliferation, Differentiation, and Response to Injury. Endocrinology 2016; 157:4-15. [PMID: 26451739 PMCID: PMC4701883 DOI: 10.1210/en.2015-1443] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Thyroid hormone plays an essential role in myogenesis, the process required for skeletal muscle development and repair, although the mechanisms have not been established. Skeletal muscle develops from the fusion of precursor myoblasts into myofibers. We have used the C2C12 skeletal muscle myoblast cell line, primary myoblasts, and mouse models of resistance to thyroid hormone (RTH) α and β, to determine the role of thyroid hormone in the regulation of myoblast differentiation. T3, which activates thyroid hormone receptor (TR) α and β, increased myoblast differentiation whereas GC1, a selective TRβ agonist, was minimally effective. Genetic approaches confirmed that TRα plays an important role in normal myoblast proliferation and differentiation and acts through the Wnt/β-catenin signaling pathway. Myoblasts with TRα knockdown, or derived from RTH-TRα PV (a frame-shift mutation) mice, displayed reduced proliferation and myogenic differentiation. Moreover, skeletal muscle from the TRα1PV mutant mouse had impaired in vivo regeneration after injury. RTH-TRβ PV mutant mouse model skeletal muscle and derived primary myoblasts did not have altered proliferation, myogenic differentiation, or response to injury when compared with control. In conclusion, TRα plays an essential role in myoblast homeostasis and provides a potential therapeutic target to enhance skeletal muscle regeneration.
Collapse
Affiliation(s)
- Anna Milanesi
- Department of Medicine (A.M., Y.-Y.L., A.Y., G.A.B.), Veterans Affairs Greater Los Angeles Healthcare System, and Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90073; Department of Neurosurgery (J.-W.L., N.-H.K., A.K., V.C.), Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Urology (S.S., N.T., L.P.), Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027; and National Cancer Institute (S.C.), Bethesda, Maryland 20892
| | - Jang-Won Lee
- Department of Medicine (A.M., Y.-Y.L., A.Y., G.A.B.), Veterans Affairs Greater Los Angeles Healthcare System, and Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90073; Department of Neurosurgery (J.-W.L., N.-H.K., A.K., V.C.), Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Urology (S.S., N.T., L.P.), Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027; and National Cancer Institute (S.C.), Bethesda, Maryland 20892
| | - Nam-Ho Kim
- Department of Medicine (A.M., Y.-Y.L., A.Y., G.A.B.), Veterans Affairs Greater Los Angeles Healthcare System, and Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90073; Department of Neurosurgery (J.-W.L., N.-H.K., A.K., V.C.), Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Urology (S.S., N.T., L.P.), Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027; and National Cancer Institute (S.C.), Bethesda, Maryland 20892
| | - Yan-Yun Liu
- Department of Medicine (A.M., Y.-Y.L., A.Y., G.A.B.), Veterans Affairs Greater Los Angeles Healthcare System, and Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90073; Department of Neurosurgery (J.-W.L., N.-H.K., A.K., V.C.), Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Urology (S.S., N.T., L.P.), Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027; and National Cancer Institute (S.C.), Bethesda, Maryland 20892
| | - An Yang
- Department of Medicine (A.M., Y.-Y.L., A.Y., G.A.B.), Veterans Affairs Greater Los Angeles Healthcare System, and Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90073; Department of Neurosurgery (J.-W.L., N.-H.K., A.K., V.C.), Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Urology (S.S., N.T., L.P.), Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027; and National Cancer Institute (S.C.), Bethesda, Maryland 20892
| | - Sargis Sedrakyan
- Department of Medicine (A.M., Y.-Y.L., A.Y., G.A.B.), Veterans Affairs Greater Los Angeles Healthcare System, and Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90073; Department of Neurosurgery (J.-W.L., N.-H.K., A.K., V.C.), Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Urology (S.S., N.T., L.P.), Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027; and National Cancer Institute (S.C.), Bethesda, Maryland 20892
| | - Andrew Kahng
- Department of Medicine (A.M., Y.-Y.L., A.Y., G.A.B.), Veterans Affairs Greater Los Angeles Healthcare System, and Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90073; Department of Neurosurgery (J.-W.L., N.-H.K., A.K., V.C.), Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Urology (S.S., N.T., L.P.), Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027; and National Cancer Institute (S.C.), Bethesda, Maryland 20892
| | - Vanessa Cervantes
- Department of Medicine (A.M., Y.-Y.L., A.Y., G.A.B.), Veterans Affairs Greater Los Angeles Healthcare System, and Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90073; Department of Neurosurgery (J.-W.L., N.-H.K., A.K., V.C.), Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Urology (S.S., N.T., L.P.), Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027; and National Cancer Institute (S.C.), Bethesda, Maryland 20892
| | - Nikita Tripuraneni
- Department of Medicine (A.M., Y.-Y.L., A.Y., G.A.B.), Veterans Affairs Greater Los Angeles Healthcare System, and Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90073; Department of Neurosurgery (J.-W.L., N.-H.K., A.K., V.C.), Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Urology (S.S., N.T., L.P.), Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027; and National Cancer Institute (S.C.), Bethesda, Maryland 20892
| | - Sheue-yann Cheng
- Department of Medicine (A.M., Y.-Y.L., A.Y., G.A.B.), Veterans Affairs Greater Los Angeles Healthcare System, and Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90073; Department of Neurosurgery (J.-W.L., N.-H.K., A.K., V.C.), Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Urology (S.S., N.T., L.P.), Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027; and National Cancer Institute (S.C.), Bethesda, Maryland 20892
| | - Laura Perin
- Department of Medicine (A.M., Y.-Y.L., A.Y., G.A.B.), Veterans Affairs Greater Los Angeles Healthcare System, and Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90073; Department of Neurosurgery (J.-W.L., N.-H.K., A.K., V.C.), Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Urology (S.S., N.T., L.P.), Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027; and National Cancer Institute (S.C.), Bethesda, Maryland 20892
| | - Gregory A Brent
- Department of Medicine (A.M., Y.-Y.L., A.Y., G.A.B.), Veterans Affairs Greater Los Angeles Healthcare System, and Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90073; Department of Neurosurgery (J.-W.L., N.-H.K., A.K., V.C.), Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Urology (S.S., N.T., L.P.), Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027; and National Cancer Institute (S.C.), Bethesda, Maryland 20892
| |
Collapse
|
238
|
Bischoff DS, Zhu JH, Makhijani NS, Yamaguchi DT. Induction of CXC chemokines in human mesenchymal stem cells by stimulation with secreted frizzled-related proteins through non-canonical Wnt signaling. World J Stem Cells 2015; 7:1262-1273. [PMID: 26730270 PMCID: PMC4691694 DOI: 10.4252/wjsc.v7.i11.1262] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/03/2015] [Accepted: 11/25/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of secreted frizzled-related proteins (sFRPs) on CXC chemokine expression in human mesenchymal stem cells (hMSCs).
METHODS: CXC chemokines such as CXCL5 and CXCL8 are induced in hMSCs during differentiation with osteogenic differentiation medium (OGM) and may be involved in angiogenic stimulation during bone repair. hMSCs were treated with conditioned medium (CM) from L-cells expressing non-canonical Wnt5a protein, or with control CM from wild type L-cells, or directly with sFRPs for up to 10 d in culture. mRNA expression levels of both CXCL5 and CXCL8 were quantitated by real-time reverse transcriptase-polymerase chain reaction and secreted protein levels of these proteins determined by ELISA. Dose- (0-500 ng/mL) and time-response curves were generated for treatment with sFRP1. Signal transduction pathways were explored by western blot analysis with pan- or phosphorylation-specific antibodies, through use of specific pathway inhibitors, and through use of siRNAs targeting specific frizzled receptors (Fzd)-2 and 5 or the receptor tyrosine kinase-like orphan receptor-2 (RoR2) prior to treatment with sFRPs.
RESULTS: CM from L-cells expressing Wnt5a, a non-canonical Wnt, stimulated an increase in CXCL5 mRNA expression and protein secretion in comparison to control L-cell CM. sFRP1, which should inhibit both canonical and non-canonical Wnt signaling, surprisingly enhanced the expression of CXCL5 at 7 and 10 d. Dickkopf1, an inhibitor of canonical Wnt signaling prevented the sFRP-stimulated induction of CXCL5 and actually inhibited basal levels of CXCL5 expression at 7 but not at 10 d post treatment. In addition, all four sFRPs isoforms induced CXCL8 expression in a dose- and time-dependent manner with maximum expression at 7 d with treatment at 150 ng/mL. The largest increases in CXCL5 expression were seen from stimulation with sFRP1 or sFRP2. Analysis of mitogen-activated protein kinase signaling pathways in the presence of OGM showed sFRP1-induced phosphorylation of extracellular signal-regulated kinase (ERK) (p44/42) maximally at 5 min after sFRP1 addition, earlier than that found in OGM alone. Addition of a phospholipase C (PLC) inhibitor also prevented sFRP-stimulated increases in CXCL8 mRNA. siRNA technology targeting the Fzd-2 and 5 and the non-canonical Fzd co-receptor RoR2 also significantly decreased sFRP1/2-stimulated CXCL8 mRNA levels.
CONCLUSION: CXC chemokine expression in hMSCs is controlled in part by sFRPs signaling through non-canonical Wnt involving Fzd2/5 and the ERK and PLC pathways.
Collapse
|
239
|
Wnt inhibition is dysregulated in gliomas and its re-establishment inhibits proliferation and tumor sphere formation. Exp Cell Res 2015; 340:53-61. [PMID: 26712519 DOI: 10.1016/j.yexcr.2015.12.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/19/2015] [Accepted: 12/16/2015] [Indexed: 02/06/2023]
Abstract
Evidence indicates that the growth of glioblastoma (GBM), the most common and malignant primary brain cancer, is driven by glioma stem cells (GSCs) resistant to current treatment. As Wnt-signaling is pivotal in stem cell maintenance, we wanted to explore its role in GSCs with the objective of finding distinct signaling mechanisms that could serve as potential therapeutic targets. We compared gene expression in GSCs (n=9) and neural stem cells from the adult human brain (ahNSC; n=3) to identify dysregulated genes in the Wnt signaling pathway. This identified a six-gene Wnt signature present in all nine primary GSC cultures, and the combined expression of three of these genes (SFRP1, SFRP4 and FZD7) reduced median survival of glioma patients from 38 to 17 months. Treatment with recombinant SFRP1 protein in primary cell cultures downregulated nuclear β-catenin and decreased in vitro proliferation and sphere formation in a dose-dependent manner. Furthermore, expressional and functional analysis of SFRP1-treated GSCs revealed that SFRP1 halts cell cycling and induces apoptosis. These observations demonstrate that Wnt signaling is dysregulated in GSC, and that inhibition of the Wnt pathway could serve as a therapeutic strategy in the treatment of GBM.
Collapse
|
240
|
Nakamura K, Sano S, Fuster JJ, Kikuchi R, Shimizu I, Ohshima K, Katanasaka Y, Ouchi N, Walsh K. Secreted Frizzled-related Protein 5 Diminishes Cardiac Inflammation and Protects the Heart from Ischemia/Reperfusion Injury. J Biol Chem 2015; 291:2566-75. [PMID: 26631720 DOI: 10.1074/jbc.m115.693937] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Indexed: 01/01/2023] Open
Abstract
Wnt signaling has diverse actions in cardiovascular development and disease processes. Secreted frizzled-related protein 5 (Sfrp5) has been shown to function as an extracellular inhibitor of non-canonical Wnt signaling that is expressed at relatively high levels in white adipose tissue. The aim of this study was to investigate the role of Sfrp5 in the heart under ischemic stress. Sfrp5 KO and WT mice were subjected to ischemia/reperfusion (I/R). Although Sfrp5-KO mice exhibited no detectable phenotype when compared with WT control at baseline, they displayed larger infarct sizes, enhanced cardiac myocyte apoptosis, and diminished cardiac function following I/R. The ischemic lesions of Sfrp5-KO mice had greater infiltration of Wnt5a-positive macrophages and greater inflammatory cytokine and chemokine gene expression when compared with WT mice. In bone marrow-derived macrophages, Wnt5a promoted JNK activation and increased inflammatory gene expression, whereas treatment with Sfrp5 blocked these effects. These results indicate that Sfrp5 functions to antagonize inflammatory responses after I/R in the heart, possibly through a mechanism involving non-canonical Wnt5a/JNK signaling.
Collapse
Affiliation(s)
- Kazuto Nakamura
- From the Whitaker Cardiovascular Institute, Boston University Medical Campus, Boston, Massachusetts 02118 and
| | - Soichi Sano
- From the Whitaker Cardiovascular Institute, Boston University Medical Campus, Boston, Massachusetts 02118 and
| | - José J Fuster
- From the Whitaker Cardiovascular Institute, Boston University Medical Campus, Boston, Massachusetts 02118 and
| | - Ryosuke Kikuchi
- From the Whitaker Cardiovascular Institute, Boston University Medical Campus, Boston, Massachusetts 02118 and
| | - Ippei Shimizu
- From the Whitaker Cardiovascular Institute, Boston University Medical Campus, Boston, Massachusetts 02118 and
| | - Kousei Ohshima
- From the Whitaker Cardiovascular Institute, Boston University Medical Campus, Boston, Massachusetts 02118 and
| | - Yasufumi Katanasaka
- From the Whitaker Cardiovascular Institute, Boston University Medical Campus, Boston, Massachusetts 02118 and
| | - Noriyuki Ouchi
- From the Whitaker Cardiovascular Institute, Boston University Medical Campus, Boston, Massachusetts 02118 and the Department of Molecular Cardiovascular Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Kenneth Walsh
- From the Whitaker Cardiovascular Institute, Boston University Medical Campus, Boston, Massachusetts 02118 and
| |
Collapse
|
241
|
SFRP1 variations influence susceptibility and immune response to Mycobacterium tuberculosis in a Chinese Han population. INFECTION GENETICS AND EVOLUTION 2015; 37:259-65. [PMID: 26643984 DOI: 10.1016/j.meegid.2015.11.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/15/2015] [Accepted: 11/27/2015] [Indexed: 02/05/2023]
Abstract
OBJECTIVES SFRP1 acts as a well-established inhibitory regulator of the Wnt signaling pathway, whose polymorphisms have been demonstrated to be associated with the risk of inflammation, infection as well as cancer. We verified the hypothesis that single nucleotide polymorphisms (SNPs) within SFRP1 gene are associated with susceptibility and clinical characteristics of tuberculosis disease in a Chinese Han population. METHODS Six candidate SNPs were genotyped using MassARRAY method in a case-control design (260 tuberculosis patients and 252 healthy controls). A comprehensive analysis of single locus including the genotypic, allelic frequencies and the genetic models, haplotypic construction as well as gene-gene interaction was conducted to investigate the relationships between SNPs and TB. Significant SNPs were further interrogated in relation to TB clinical features and host inflammatory status. RESULTS Genotype frequencies of rs4736958 and rs7832767 within SFRP1 gene were significantly different (p=0.011, p=0.008, respectively) between tuberculosis group and control group. Subjects carrying C allele for rs4736958 showed a decreased tuberculosis risk (OR=0.66, 95% CI=0.51-0.87, p=0.003), whereas individuals carrying rs7832767 T allele had a significant increased risk in tuberculosis susceptibility (OR=1.32, 95% CI=1.01-1.74, p=0.046). Genetic model analysis revealed that dominant, co-dominant and recessive models of rs4736958 were associated with decreased susceptibility to tuberculosis (p all <0.05), while the recessive and co-dominant models of rs7832767 were related to significantly increased risk for tuberculosis (p all <0.05). There was a reduced tuberculosis risk in association with the haplotype CC (representing rs3242 and rs4736958) of SFRP1 (OR=0.73, 95% CI=0.56-0.96, p=0.026). Further stratification analysis indicated that TB patients with genotype CT for rs4736958 were associated with higher CRP concentrations, and heterozygous patients (CT genotype) of rs7832767 trended towards greater ESR levels. CONCLUSION SNPs rs4736958 and rs7832767 of SFRP1 gene were significantly associated with tuberculosis susceptibility and might influence the expression levels of inflammatory markers of tuberculosis patients in a Chinese Han population.
Collapse
|
242
|
Prognostic Significance of Secreted Frizzled-Related Protein 2 Expression in Cytogenetically Normal Primary Acute Myeloid Leukemia. Am J Med Sci 2015; 350:369-73. [DOI: 10.1097/maj.0000000000000567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
243
|
van der Werf CS, Halim D, Verheij JB, Alves MM, Hofstra RM. Congenital Short Bowel Syndrome: from clinical and genetic diagnosis to the molecular mechanisms involved in intestinal elongation. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2352-61. [DOI: 10.1016/j.bbadis.2015.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 12/16/2022]
|
244
|
The Wnt inhibitor dickkopf-1: a link between breast cancer and bone metastases. Clin Exp Metastasis 2015; 32:857-66. [DOI: 10.1007/s10585-015-9750-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/18/2015] [Indexed: 12/17/2022]
|
245
|
Wang A, Zsengellér ZK, Hecht JL, Buccafusca R, Burke SD, Rajakumar A, Weingart E, Yu PB, Salahuddin S, Karumanchi SA. Excess placental secreted frizzled-related protein 1 in maternal smokers impairs fetal growth. J Clin Invest 2015; 125:4021-5. [PMID: 26413870 DOI: 10.1172/jci80457] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 08/17/2015] [Indexed: 12/18/2022] Open
Abstract
Maternal cigarette smoking during pregnancy remains one of the most common and preventable causes of fetal growth restriction (FGR), a condition in which a fetus is unable to achieve its genetically determined potential size. Even though epidemiologic evidence clearly links maternal cigarette smoking with FGR, insight into the molecular mechanisms of cigarette smoke-induced FGR is lacking. Here, we performed transcriptional profiling of placentas obtained from smoking mothers who delivered growth-restricted infants and identified secreted frizzled-related protein 1 (sFRP1), an extracellular antagonist of endogenous WNT signaling, as a candidate molecule. sFRP1 mRNA and protein levels were markedly upregulated (~10-fold) in placentas from smoking mothers compared with those from nonsmokers. In pregnant mice, adenovirus-mediated overexpression of sFRP1 led to FGR, increased karyorrhexis in the junctional zone, and decreased proliferation of labyrinthine trophoblasts. Consistent with our hypothesis that placental WNT signaling is suppressed in maternal smokers, we found that exposure to carbon monoxide analogs led to reduced WNT signaling, increased SFRP1 mRNA expression, and decreased cellular proliferation in a trophoblast cell line. Moreover, administration of carbon monoxide analogs to pregnant mice in late gestation led to FGR. In summary, our results indicate that the increased placental expression of sFRP1 seen in smokers impairs fetal growth by inhibiting WNT signaling and trophoblast proliferation.
Collapse
|
246
|
Lu H, Li X, Mu P, Qian B, Jiang W, Zeng L. Dickkopf-1 promotes the differentiation and adipocytokines secretion via canonical Wnt signaling pathway in primary cultured human preadipocytes. Obes Res Clin Pract 2015; 10:454-64. [PMID: 26383960 DOI: 10.1016/j.orcp.2015.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 08/24/2015] [Accepted: 08/29/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Dickkopf-1, a newly recognized antagonist for canonical Wnt signaling, is secreted in the early stage of human adipose-derived stem cells (ASCs) adipogenic differentiation. This study was aimed to investigate whether human recombinant DKK-1 (rhDKK-1) could affect the differentiation and metabolism as well as adipocytokines secretion in primary cultured human ASCs. METHODS Human ASCs were isolated from omental adipose tissue and induced to adipogenic differentiation in the absence or presence of Wnt signaling antagonist rhDKK-1 and agonist SB216763, respectively. mRNA and protein expression profiles of adipogenic factors during the differentiation process were analyzed using quantitative RT-PCR and Western blotting. Adipocytokines secretion levels in the culture medium were measured by ELISA method. RESULTS Our results showed that DKK-1 was already expressed during the early stage of adipogenesis and reached the peak on the 9th day. Exogenous rhDKK-1 exposure accelerated the differentiation by up-regulating PPAR-γ and C/EBP-α, down-regulating Wnt3a, Wnt10b and β-catenin, without affecting non-canonical Wnt signaling marker (Wnt5a). In addition, rhDKK-1 treatment increased the secretion of leptin, RBP4, TNF-α and adiponectin during differentiation. rhDKK-1 treatment also significantly increased the intracellular accumulation of lipids and lipolysis. Thus, Wnt signal pathway agonist SB216763 down-regulated DKK-1 transcriptional and secretion levels during adipogenic process. CONCLUSIONS Our results suggest that rhDKK-1 could promote ASCs differentiation and increase adipocytokines secretion via canonical Wnt signaling pathway.
Collapse
Affiliation(s)
- Hongyun Lu
- Department of Endocrinology & Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangdong, Guangzhou 510630, China; Department of Endocrinology & Metabolism, the Fifth Affiliated Hospital of Sun Yat-sen University, Guangdong, Zhuhai 519000, China
| | - Xiaofeng Li
- Department of Endocrinology & Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangdong, Guangzhou 510630, China
| | - Panwei Mu
- Department of Endocrinology & Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangdong, Guangzhou 510630, China
| | - Baiying Qian
- Department of Nephrology, the Fifth Affiliated Hospital of Sun Yat-sen University, Guangdong, Zhuhai 519000, China
| | - Wei Jiang
- Department of Endocrinology & Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangdong, Guangzhou 510630, China
| | - Longyi Zeng
- Department of Endocrinology & Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangdong, Guangzhou 510630, China.
| |
Collapse
|
247
|
Song YJ, Li G, He JH, Guo Y, Yang L. Bioinformatics-Based Identification of MicroRNA-Regulated and Rheumatoid Arthritis-Associated Genes. PLoS One 2015; 10:e0137551. [PMID: 26359667 PMCID: PMC4567271 DOI: 10.1371/journal.pone.0137551] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 08/19/2015] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRNAs) act as epigenetic markers and regulate the expression of their target genes, including those characterized as regulators in autoimmune diseases. Rheumatoid arthritis (RA) is one of the most common autoimmune diseases. The potential roles of miRNA-regulated genes in RA pathogenesis have greatly aroused the interest of clinicians and researchers in recent years. In the current study, RA-related miRNAs records were obtained from PubMed through conditional literature retrieval. After analyzing the selected records, miRNA targeted genes were predicted. We identified 14 RA-associated miRNAs, and their sub-analysis in 5 microarray or RNA sequencing (RNA-seq) datasets was performed. The microarray and RNA-seq data of RA were also downloaded from NCBI Gene Expression Omnibus (GEO) and Sequence Read Archive (SRA), analyzed, and annotated. Using a bioinformatics approach, we identified a series of differentially expressed genes (DEGs) by comparing studies on RA and the controls. The RA-related gene expression profile was thus obtained and the expression of miRNA-regulated genes was analyzed. After functional annotation analysis, we found GO molecular function (MF) terms significantly enriched in calcium ion binding (GO: 0005509). Moreover, some novel dysregulated target genes were identified in RA through integrated analysis of miRNA/mRNA expression. The result revealed that the expression of a number of genes, including ROR2, ABI3BP, SMOC2, etc., was not only affected by dysregulated miRNAs, but also altered in RA. Our findings indicate that there is a close association between negatively correlated mRNA/miRNA pairs and RA. These findings may be applied to identify genetic markers for RA diagnosis and treatment in the future.
Collapse
Affiliation(s)
- Yi-Jiang Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Guiling Li
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jian-Hua He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Yao Guo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
- * E-mail:
| |
Collapse
|
248
|
Novellasdemunt L, Antas P, Li VSW. Targeting Wnt signaling in colorectal cancer. A Review in the Theme: Cell Signaling: Proteins, Pathways and Mechanisms. Am J Physiol Cell Physiol 2015; 309:C511-21. [PMID: 26289750 PMCID: PMC4609654 DOI: 10.1152/ajpcell.00117.2015] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/14/2015] [Indexed: 02/06/2023]
Abstract
The evolutionarily conserved Wnt signaling pathway plays essential roles during embryonic development and tissue homeostasis. Notably, comprehensive genetic studies in Drosophila and mice in the past decades have demonstrated the crucial role of Wnt signaling in intestinal stem cell maintenance by regulating proliferation, differentiation, and cell-fate decisions. Wnt signaling has also been implicated in a variety of cancers and other diseases. Loss of the Wnt pathway negative regulator adenomatous polyposis coli (APC) is the hallmark of human colorectal cancers (CRC). Recent advances in high-throughput sequencing further reveal many novel recurrent Wnt pathway mutations in addition to the well-characterized APC and β-catenin mutations in CRC. Despite attractive strategies to develop drugs for Wnt signaling, major hurdles in therapeutic intervention of the pathway persist. Here we discuss the Wnt-activating mechanisms in CRC and review the current advances and challenges in drug discovery.
Collapse
Affiliation(s)
| | - Pedro Antas
- The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Vivian S W Li
- The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| |
Collapse
|
249
|
Secreted Frizzled Related Protein 3 in Chronic Heart Failure: Analysis from the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA). PLoS One 2015; 10:e0133970. [PMID: 26288364 PMCID: PMC4545831 DOI: 10.1371/journal.pone.0133970] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/03/2015] [Indexed: 01/14/2023] Open
Abstract
Background We have previously demonstrated an association between increased sFRP3 expression and adverse outcome in a population of HF irrespective of cause and left ventricular ejection fraction. In this study we evaluated the prognostic value of sFRP3 in older patients with chronic systolic HF of ischemic origin. Methods We evaluated sFRP3, by tertiles, as a risk factor for the primary endpoint (cardiovascular [CV] mortality, nonfatal myocardial infarction, nonfatal stroke), all-cause mortality, CV mortality, death from worsening HF (WHF), any coronary event, including sudden death, as well as hospitalizations for CV causes and WHF in 1444 patients from the CORONA population, randomly assigned to 10 mg rosuvastatin or placebo. Results Kaplan-Meier curves for the primary endpoint, as well as all-cause- and CV mortality revealed a markedly better survival for patients with sFRP3 levels in the middle tertile of compared to the 1st and 3rd tertile. In multivariable Cox-regression, after full adjustment including high-sensitive CRP and NT-proBNP, a lower event rate for the primary end point, all cause and CV mortality was observed for patients with tertile 2 sFRP3 levels (HR 0.57 [0.44–0.74], 0.55 [0.44–0.74] and 0.52 [0.39–0.69]; p<0.001), as well as for the number of coronary events (HR 0.62 [0.47–0.82], p = 0.001) and sudden death (HR 0.55 [0.37–0.82], p = 0.002). Applying sFRP3 values to the fully adjusted regression model resulted in highly significant continuous net reclassification improvements for the primary endpoint, all cause and CV mortality, coronary events and sudden death (range 0.24–0.31; p≤0.002 for all). Conclusions Intermediate serum sFRP3 levels are associated with better survival and fewer CV events than low or high sFRP3 levels, independently of conventional risk factors, in older patients with chronic systolic HF of ischemic origin. Our study suggests that balanced Wnt activity might confer protective effects in a clinical HF setting. Trial Registration http://www.clinicaltrials.govNCT00206310
Collapse
|
250
|
Verhamme FM, Bracke KR, Joos GF, Brusselle GG. Transforming growth factor-β superfamily in obstructive lung diseases. more suspects than TGF-β alone. Am J Respir Cell Mol Biol 2015; 52:653-62. [PMID: 25396302 DOI: 10.1165/rcmb.2014-0282rt] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Asthma and chronic obstructive pulmonary disease are respiratory disorders and a major global health problem with increasing incidence and severity. Genes originally associated with lung development could be relevant in the pathogenesis of chronic obstructive pulmonary disease/asthma, owing to either an early-life origin of adult complex diseases or their dysregulation in adulthood upon exposure to environmental stressors (e.g., smoking). The transforming growth factor (TGF)-β superfamily is conserved through evolution and is involved in a range of biological processes, both during development and in adult tissue homeostasis. TGF-β1 has emerged as an important regulator of lung and immune system development. However, considerable evidence has been presented for a role of many of the other ligands of the TGF-β superfamily in lung pathology, including activins, bone morphogenetic proteins, and growth differentiation factors. In this review, we summarize the current knowledge on the mechanisms by which activin, bone morphogenetic protein, and growth differentiation factor signaling contribute to the pathogenesis of obstructive airway diseases.
Collapse
Affiliation(s)
- Fien M Verhamme
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | | | | | | |
Collapse
|