201
|
Lennon JC, Bright SA, Carroll E, Butini S, Campiani G, O'Meara A, Williams DC, Zisterer DM. The novel pyrrolo-1,5-benzoxazepine, PBOX-6, synergistically enhances the apoptotic effects of carboplatin in drug sensitive and multidrug resistant neuroblastoma cells. Biochem Pharmacol 2014; 87:611-24. [PMID: 24406249 DOI: 10.1016/j.bcp.2013.12.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 01/22/2023]
Abstract
Neuroblastoma, a malignancy of neuroectoderrmal origin, accounts for 15% of childhood cancer deaths. Despite advances in understanding the biology, it remains one of the most difficult paediatric cancers to treat. A major obstacle in the effective treatment of neuroblastoma is the development of multidrug resistance (MDR). There is thus a compelling demand for new treatment strategies for this cancer that can bypass such resistance mechanisms. The pyrrolo-1,5-benzoxazepine (PBOX) compounds are a series of novel microtubule-targeting agents that potently induce apoptosis in various cancer cell lines, ex vivo patient samples and in vivo cancer models. In this study we examined the ability of two members, PBOX-6 and -15, to exhibit anti-cancer effects in a panel of drug sensitive and MDR neuroblastoma cell lines. The PBOX compounds potently reduced the viability of all neuroblastoma cells examined and exhibited a lower fold resistance in MDR cells when compared to standard chemotherapeutics. In addition, the PBOX compounds synergistically enhanced apoptosis induced by etoposide, carboplatin and doxorubicin. Exposure of drug sensitive and resistant cell lines to PBOX-6/carboplatin induced cleavage of Bcl-2, a downregulation of Mcl-1 and a concomitant increase in Bak. Furthermore, activation of caspase-3, -8 and -9 was demonstrated. Finally, gene silencing of Mcl-1 by siRNA was shown to sensitise both drug sensitive and multidrug resistant cells to carboplatin-induced apoptosis demonstrating the importance of Mcl-1 downregulation in the apoptotic pathway mediated by the PBOX compounds in neuroblastoma. In conclusion, our findings indicate the potential of the PBOX compounds in enhancing chemosensitivity in neuroblastoma.
Collapse
Affiliation(s)
- Jennifer C Lennon
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland; The National Children's Research Centre, Crumlin, Dublin, Ireland.
| | - Sandra A Bright
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Eilis Carroll
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Stefania Butini
- European Research Centre for Drug Discovery & Development, University of Siena, Siena, Italy.
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery & Development, University of Siena, Siena, Italy.
| | - Anne O'Meara
- Our Lady's Childrens Hospital, Crumlin, Dublin, Ireland.
| | - D Clive Williams
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Daniela M Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
202
|
Talwar S, House R, Sundaramurthy S, Balasubramanian S, Yu H, Palanisamy V. Inhibition of caspases protects mice from radiation-induced oral mucositis and abolishes the cleavage of RNA-binding protein HuR. J Biol Chem 2013; 289:3487-500. [PMID: 24362034 DOI: 10.1074/jbc.m113.504951] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The oral mucosal epithelium is typically insulted during chemotherapy and ionizing radiation (IR) therapy and disposed to mucositis, which creates painful inflammation and ulceration in the oral cavity. Oral mucositis alters gene expression patterns, inhibits cellular growth, and initiates cell death in the oral epithelial compartments. Such alterations are governed by several different factors, including transcription factors, RNA-binding proteins, and microRNAs. IR-induced post-transcriptional regulation of RNA-binding proteins exists but is poorly studied in clinically relevant settings. We herein report that the RNA-binding protein human antigen R (HuR) undergoes cleavage modification by caspase-3 following IR-induced oral mucositis and subsequently promotes the expression of the pro-apoptotic factor BAX (Bcl-2-associated X protein), as well as cell death. Further analyses revealed that the HuR cleavage product-1 (HuR-CP1) directly associates and stabilizes the BAX mRNA and concurrently activates the apoptotic pathway. On the other hand, a noncleavable isoform of HuR promotes the clonogenic capacity of primary oral keratinocytes and decreases the effect of IR-induced cell death. Additionally, specific inhibition of caspase-3 by a compound, NSC321205, increases the clonogenic capacity of primary oral keratinocytes and causes increased basal layer cellularity, thickened mucosa, and elevated epithelial cell growth in the tongues of mice with oral mucositis. This protective effect of NSC321205 is mediated by a decrease in caspase-3 activity and the consequent inhibition of HuR cleavage, which reduces the expression of BAX in mice with IR-induced oral mucositis. Thus, we have identified a new molecular mechanism of HuR in the regulation of mRNA turnover and apoptosis in oral mucositis, and our data suggest that blocking the cleavage of HuR enhances cellular growth in the oral epithelial compartment.
Collapse
Affiliation(s)
- Sudha Talwar
- From the Department of Craniofacial Biology and Center for Oral Health Research, College of Dental Medicine, and
| | | | | | | | | | | |
Collapse
|
203
|
Aluvila S, Mandal T, Hustedt E, Fajer P, Choe JY, Oh KJ. Organization of the mitochondrial apoptotic BAK pore: oligomerization of the BAK homodimers. J Biol Chem 2013; 289:2537-51. [PMID: 24337568 DOI: 10.1074/jbc.m113.526806] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The multidomain pro-apoptotic Bcl-2 family proteins BAK and BAX are believed to form large oligomeric pores in the mitochondrial outer membrane during apoptosis. Formation of these pores results in the release of apoptotic factors including cytochrome c from the intermembrane space into the cytoplasm, where they initiate the cascade of events that lead to cell death. Using the site-directed spin labeling method of electron paramagnetic resonance (EPR) spectroscopy, we have determined the conformational changes that occur in BAK when the protein targets to the membrane and forms pores. The data showed that helices α1 and α6 disengage from the rest of the domain, leaving helices α2-α5 as a folded unit. Helices α2-α5 were shown to form a dimeric structure, which is structurally homologous to the recently reported BAX "BH3-in-groove homodimer." Furthermore, the EPR data and a chemical cross-linking study demonstrated the existence of a hitherto unknown interface between BAK BH3-in-groove homodimers in the oligomeric BAK. This novel interface involves the C termini of α3 and α5 helices. The results provide further insights into the organization of the BAK oligomeric pores by the BAK homodimers during mitochondrial apoptosis, enabling the proposal of a BAK-induced lipidic pore with the topography of a "worm hole."
Collapse
Affiliation(s)
- Sreevidya Aluvila
- From the Department of Biochemistry and Molecular Biology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | | | | | | | | | | |
Collapse
|
204
|
Wang J, Yuan L, Xiao H, Xiao C, Wang Y, Liu X. Momordin Ic induces HepG2 cell apoptosis through MAPK and PI3K/Akt-mediated mitochondrial pathways. Apoptosis 2013; 18:751-65. [PMID: 23417763 DOI: 10.1007/s10495-013-0820-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Momordin Ic is a natural triterpenoid saponin enriched in various Chinese and Japanese natural medicines such as the fruit of Kochia scoparia (L.) Schrad. So far, there is little scientific evidence for momordin Ic with regard to the anti-tumor activities. The aim of this work was to elucidate the anti-tumor effect of momordin Ic and the signal transduction pathways involved. We found that momordin Ic induced apoptosis in human hepatocellular carcinoma HepG2 cells, which were supported by DNA fragmentation, caspase-3 activation and PARP cleavage. Meanwhile, momordin Ic triggered reactive oxygen species (ROS) production together with collapse of mitochondrial membrane potential, cytochrome c release, down-regulation of Bcl-2 and up-regulation of Bax expression. The activation of p38 and JNK, inactivation of Erk1/2 and Akt were also demonstrated. Although ROS production rather than NO was stimulated, the expression of iNOS and HO-1 were altered after momordin Ic treatment for 4 h. Furthermore, the cytochrome c release, caspase-3 activation, Bax/Bcl-2 expression and PARP cleavage were promoted with LY294002 and U0126 intervention but were blocked by SB203580, SP600125, PI3K activator, NAC and 1,400 W pretreatment, demonstrating the mitochondrial disruption. Furthermore, momordin Ic combination with NAC influenced MAPK, PI3K/Akt and HO-1, iNOS pathways, MAPK and PI3K/Akt pathways also regulated the expression of HO-1 and iNOS. These results indicated that momordin Ic induced apoptosis through oxidative stress-regulated mitochondrial dysfunction involving the MAPK and PI3K-mediated iNOS and HO-1 pathways. Thus, momordin Ic might represent a potential source of anticancer candidate.
Collapse
Affiliation(s)
- Jing Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | | | | | | | | | | |
Collapse
|
205
|
Structural biology of the Bcl-2 family and its mimicry by viral proteins. Cell Death Dis 2013; 4:e909. [PMID: 24201808 PMCID: PMC3847314 DOI: 10.1038/cddis.2013.436] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/09/2013] [Accepted: 10/02/2013] [Indexed: 12/16/2022]
Abstract
Intrinsic apoptosis in mammals is regulated by protein–protein interactions among the B-cell lymphoma-2 (Bcl-2) family. The sequences, structures and binding specificity between pro-survival Bcl-2 proteins and their pro-apoptotic Bcl-2 homology 3 motif only (BH3-only) protein antagonists are now well understood. In contrast, our understanding of the mode of action of Bax and Bak, the two necessary proteins for apoptosis is incomplete. Bax and Bak are isostructural with pro-survival Bcl-2 proteins and also interact with BH3-only proteins, albeit weakly. Two sites have been identified; the in-groove interaction analogous to the pro-survival BH3-only interaction and a site on the opposite molecular face. Interaction of Bax or Bak with activator BH3-only proteins and mitochondrial membranes triggers a series of ill-defined conformational changes initiating their oligomerization and mitochondrial outer membrane permeabilization. Many actions of the mammalian pro-survival Bcl-2 family are mimicked by viruses. By expressing proteins mimicking mammalian pro-survival Bcl-2 family proteins, viruses neutralize death-inducing members of the Bcl-2 family and evade host cell apoptosis during replication. Remarkably, structural elements are preserved in viral Bcl-2 proteins even though there is in many cases little discernible sequence conservation with their mammalian counterparts. Some viral Bcl-2 proteins are dimeric, but they have distinct structures to those observed for mammalian Bcl-2 proteins. Furthermore, viral Bcl-2 proteins modulate innate immune responses regulated by NF-κB through an interface separate from the canonical BH3-binding groove. Our increasing structural understanding of the viral Bcl-2 proteins is leading to new insights in the cellular Bcl-2 network by exploring potential alternate functional modes in the cellular context. We compare the cellular and viral Bcl-2 proteins and discuss how alterations in their structure, sequence and binding specificity lead to differences in behavior, and together with the intrinsic structural plasticity in the Bcl-2 fold enable exquisite control over critical cellular signaling pathways.
Collapse
|
206
|
Lee CL, Blum JM, Kirsch DG. Role of p53 in regulating tissue response to radiation by mechanisms independent of apoptosis. Transl Cancer Res 2013; 2:412-421. [PMID: 24466508 PMCID: PMC3898670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Radiation exposure leads to diverse outcomes in vivo across different tissues and even within the same cell lineage. The diversity of radiation response in vivo is at least partially attributable to the status of the tumor suppressor p53, a master regulator of cellular response to stress, and activation of its transcriptional targets. In certain cells, such as hematopoietic progenitors and transit amplifying cells in the gastrointestinal epithelium, activation of p53 by radiation triggers the intrinsic pathway of apoptosis. However, in many other cells, activation of p53 by radiation does not result in apoptosis, which underscores the importance of understanding the role of p53 in regulating radiation response through alternative mechanisms. In this review, we summarize recent studies using genetically engineered mice to dissect the role of p53 in 1) cells where its activation is dissociated from the intrinsic pathway of apoptosis, such as hematopoietic stem cells and vascular endothelial cells and 2) tissues where activation of the intrinsic pathway of apoptosis does not promote the acute radiation syndrome, such as the gastrointestinal epithelium. We highlight findings showing that the apoptosis-independent response of p53 to radiation in vivo can contribute to death or survival in a cell-type dependent manner, which underscores the complexity by which p53 regulates the cellular and tissue response to radiation.
Collapse
Affiliation(s)
- Chang-Lung Lee
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Jordan M. Blum
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - David G. Kirsch
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
207
|
Molecular dynamic simulation: a powerful method for prediction of apoptotic pore formation. Cell Biochem Biophys 2013; 68:637-8. [PMID: 24062128 DOI: 10.1007/s12013-013-9747-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
208
|
Terfenadine induces anti-proliferative and apoptotic activities in human hormone-refractory prostate cancer through histamine receptor-independent Mcl-1 cleavage and Bak up-regulation. Naunyn Schmiedebergs Arch Pharmacol 2013; 387:33-45. [PMID: 24048439 DOI: 10.1007/s00210-013-0912-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 08/28/2013] [Indexed: 12/27/2022]
Abstract
Although the results of several studies have underscored the regulatory effect of H1-histamine receptors in cell proliferation of some cancer cell types, its effect in prostate cancers remains unclear. We have therefore studied the effect of terfenadine (an H1-histamine receptor antagonist) in prostate cancer cell lines. Our data demonstrate that terfenadine was effective against PC-3 and DU-145 cells (two prostate cancer cell lines). In contrast, based on the sulforhodamine B assay, loratadine had less potency while fexofenadine and diphenhydramine had little effect. Terfenadine induced the cleavage of Mcl-1 cleavage into a pro-apoptotic 28-kDa fragment and up-regulation of Bak, resulting in the loss of mitochondrial membrane potential (ΔΨm) and the release of cytochrome c and apoptosis-inducing factor into the cytosol. The activation of caspase cascades was detected to be linked to terfenadine action. Bak up-regulation was also examined at both the transcriptional and translational levels, and Bak activation was validated based on conformational change to expose the N terminus. Terfenadine also induced an indirect-but not direct-DNA damage response through the cleavage and activation of caspase-2, phosphorylation and activation of Chk1 and Chk2 kinases, phosphorylation of RPA32 and acetylation of Histone H3; these processes were highly correlated to severe mitochondrial dysfunction and the activation of caspase cascades. In conclusion, terfenadine induced apoptotic signaling cascades against HRPCs in a sequential manner. The exposure of cells to terfenadine caused the up-regulation and activation of Bak and the cleavage of Mcl-1, leading to the loss of ΔΨm and activation of caspase cascades which further resulted in DNA damage response and cell apoptosis.
Collapse
|
209
|
Dabrowska MJ, Ejegod D, Lassen LB, Johnsen HE, Wabl M, Pedersen FS, Dybkær K. Gene expression profiling of murine T-cell lymphoblastic lymphoma identifies deregulation of S-phase initiating genes. Leuk Res 2013; 37:1383-90. [PMID: 23896059 DOI: 10.1016/j.leukres.2013.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 03/24/2013] [Accepted: 04/08/2013] [Indexed: 12/11/2022]
Abstract
In a search for genes and pathways implicated in T-cell lymphoblastic lymphoma (T-LBL) development, we used a murine lymphoma model, where mice of the NMRI-inbred strain were inoculated with murine leukemia virus mutants. The resulting tumors were analyzed by integration analysis and global gene expression profiling to determine the effect of the retroviral integrations on the nearby genes, and the deregulated pathways in the tumors. Gene expression profiling identified increased expression of genes involved in the minichromosome maintenance and origin of recognition pathway as well as downregulation in negative regulators of G1/S transition, indicating increased S-phase initiation in murine T-LBLs.
Collapse
|
210
|
Kong D, Zheng T, Zhang M, Wang D, Du S, Li X, Fang J, Cao X. Static mechanical stress induces apoptosis in rat endplate chondrocytes through MAPK and mitochondria-dependent caspase activation signaling pathways. PLoS One 2013; 8:e69403. [PMID: 23894471 PMCID: PMC3716647 DOI: 10.1371/journal.pone.0069403] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 06/07/2013] [Indexed: 11/18/2022] Open
Abstract
Mechanical stress has detrimental effects on cartilaginous endplate chondrocytes due to apoptosis in vivo and in vitro. In this study, we investigated the possible apoptosis signaling pathways induced by mechanical stress in cultured rat cervical endplate chondrocytes. Static mechanical load significantly reduced cell viability in a time- and load-dependent manner, as demonstrated by the Cell Counting Kit-8 (CCK-8) assay. Chondrocyte apoptosis induced by mechanical stress was confirmed by annexin V/propidium iodide (PI) staining and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Western blot analysis revealed that static load-induced chondrocyte apoptosis was accompanied by increased phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK1/2), and p38 mitogen-activated protein kinase (MAPK). The loss of mitochondrial membrane potential (ΔΨm), increased Cytochrome c release, and activated Caspase-9 and Caspase-3, indicating that the mitochondrial pathway is involved in mechanical stress-induced chondrocyte apoptosis. Treatment with inhibitors of JNK (SP600125), p38 MAPK (SB203580), and ERK (PD98059) prior to mechanical stimulation reversed both the static load-induced chondrocyte apoptosis and the activation of JNK, p38 MAPK, and ERK. Taken together, the data presented in this study demonstrate that mechanical stress induces apoptosis in rat cervical endplate chondrocytes through the MAPK-mediated mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Dechao Kong
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tiansheng Zheng
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Daode Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shihao Du
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiahu Fang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- * E-mail: (JF); (XC)
| | - Xiaojian Cao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- * E-mail: (JF); (XC)
| |
Collapse
|
211
|
Christensen ME, Jansen ES, Sanchez W, Waterhouse NJ. Flow cytometry based assays for the measurement of apoptosis-associated mitochondrial membrane depolarisation and cytochrome c release. Methods 2013; 61:138-45. [DOI: 10.1016/j.ymeth.2013.03.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/25/2013] [Accepted: 03/18/2013] [Indexed: 10/27/2022] Open
|
212
|
Shirshikov FV, Cherepnev GV, Ilinskaya ON, Kalacheva NV. A hydrophobic segment of some cytotoxic ribonucleases. Med Hypotheses 2013; 81:328-34. [PMID: 23679997 DOI: 10.1016/j.mehy.2013.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 03/23/2013] [Accepted: 04/04/2013] [Indexed: 12/20/2022]
Abstract
The exact mechanism by which cytotoxic ribonucleases reach the cytosol of tumor cells remains unclear. The interaction of ribonucleases with a lipid bilayer is involved in the translocation of ribonucleases across the endosomal membrane. Here, we aimed to study the hydropathy character of toxic antitumor ribonucleases (bovine seminal ribonuclease and binase) and two non-toxic ribonucleases (bovine pancreatic ribonuclease and human pancreatic ribonuclease) by sliding-window hydrophobicity analysis. Comparative hydropathy plot analysis of the non-toxic pancreatic ribonucleases and their toxic variants was also performed. The data obtained indicate that some cytotoxic ribonucleases have a hydrophobic segment, which is sterically available for the hydrophobic interaction with a tumor cell membrane and endosomal membrane. After dissociation, subunits of dimeric ribonucleases are probably capable of thermodynamically favorable interaction with the interfacial region of a lipid bilayer. Remarkably the hydrophobic segment is not identified in the amino acid sequences of non-toxic ribonucleases. The paper describes the hydrophobic properties of toxic RNases that are essential for both the model of a lipid-protein interaction and the cytotoxicity mechanism unraveling.
Collapse
Affiliation(s)
- Fedor V Shirshikov
- Department of Microbiology, Kazan Volga Region Federal University, Kazan, Tatarstan, Russia.
| | | | | | | |
Collapse
|
213
|
Bhat V, Olenick MB, Schuchardt BJ, Mikles DC, Deegan BJ, McDonald CB, Seldeen KL, Kurouski D, Faridi MH, Shareef MM, Gupta V, Lednev IK, Farooq A. Heat-induced fibrillation of BclXL apoptotic repressor. Biophys Chem 2013; 179:12-25. [PMID: 23714425 DOI: 10.1016/j.bpc.2013.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/24/2013] [Accepted: 04/30/2013] [Indexed: 12/18/2022]
Abstract
The BclXL apoptotic repressor bears the propensity to associate into megadalton oligomers in solution, particularly under acidic pH. Herein, using various biophysical methods, we analyze the effect of temperature on the oligomerization of BclXL. Our data show that BclXL undergoes irreversible aggregation and assembles into highly-ordered rope-like homogeneous fibrils with length in the order of mm and a diameter in the μm-range under elevated temperatures. Remarkably, the formation of such fibrils correlates with the decay of a largely α-helical fold into a predominantly β-sheet architecture of BclXL in a manner akin to the formation of amyloid fibrils. Further interrogation reveals that while BclXL fibrils formed under elevated temperatures show no observable affinity toward BH3 ligands, they appear to be optimally primed for insertion into cardiolipin bicelles. This salient observation strongly argues that BclXL fibrils likely represent an on-pathway intermediate for insertion into mitochondrial outer membrane during the onset of apoptosis. Collectively, our study sheds light on the propensity of BclXL to form amyloid-like fibrils with important consequences on its mechanism of action in gauging the apoptotic fate of cells in health and disease.
Collapse
Affiliation(s)
- Vikas Bhat
- Department of Biochemistry & Molecular Biology, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Zhou D, Wei A, Cao C, Ruan J. DICO, a novel nonaromatic B-ring flavonoid, induces G2/M cell cycle arrest and apoptosis in human hepatoma cells. Food Chem Toxicol 2013; 57:322-9. [PMID: 23567243 DOI: 10.1016/j.fct.2013.03.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/05/2013] [Accepted: 03/20/2013] [Indexed: 11/26/2022]
Abstract
DICO was a novel nonaromatic B-ring flavonoid obtained from Macrothelypteris torresiana. In the present work, we investigated the antitumor activity and the antineoplastic mechanism of DICO. Our study showed that DICO inhibited the growth of HepG2 cells in dose and time-dependent manners. As well as DICO induced G2/M cell cycle arrest and apoptosis via a ROS-mediated mitochondrial pathway. Western blot assay demonstrated that DICO decreased Bcl-2 level and induced Bax translocation to cause cytochrome c release. Subsequently, caspase-9 and caspase-3 were activated. Meanwhile, the alterations of cyclin A and B1, p-CDK1 and p-cdc25c levels were also observed in response to DICO treatment. Taken together, DICO displayed a significant antitumor effect through G2/M cell cycle arrest and apoptosis induction, which suggested DICO might have therapeutic potential against tumors.
Collapse
Affiliation(s)
- Daonian Zhou
- Beijing Institute of Biotechnology, Beijing 100000, China
| | | | | | | |
Collapse
|
215
|
Targeting Bax interaction sites reveals that only homo-oligomerization sites are essential for its activation. Cell Death Differ 2013; 20:744-54. [PMID: 23392123 DOI: 10.1038/cdd.2013.4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bax is a proapoptotic Bcl-2 family member that has a central role in the initiation of mitochondria-dependent apoptosis. However, the mechanism of Bax activation during apoptosis remains unsettled. It is believed that the activation of Bax is mediated by either dissociation from prosurvival Bcl-2 family members, or direct association with BH3-only members. Several interaction sites on Bax that mediate its interactions with other Bcl-2 family members, as well as its proapoptotic activity, have been identified in previous studies by other groups. To rigorously investigate the functional role of these interaction sites, we knocked in their respective mutants using HCT116 colon cancer cells, in which apoptosis induced by several stimuli is strictly Bax-dependent. Bax-mediated apoptosis was intact upon knock-in (KI) of K21E and D33A, which were shown to block the interaction of Bax with BH3-only activators. Apoptosis was partially reduced by KI of D68R, which impairs the interaction of Bax with prosurvival members, and S184V, a constitutively mitochondria-targeting mutant. In contrast, apoptosis was largely suppressed by KI of L70A/D71A, which blocks homo-oligomerization of Bax and its binding to prosurvival Bcl-2 family proteins. Collectively, our results suggest that the activation of endogenous Bax in HCT116 cells is dependent on its homo-oligomerization sites, but not those previously shown to interact with BH3-only activators or prosurvival proteins only. We therefore postulate that critical interaction sites yet to be identified, or mechanisms other than protein-protein interactions, need to be pursued to delineate the mechanism of Bax activation during apoptosis.
Collapse
|
216
|
Abstract
The description of apoptosis and the identification of the genes that regulate it have proved pivotal to our understanding of how cancer cells accumulate and ultimately cause morbidity and mortality. It has become increasingly clear that in CLL the balance between the pro- and anti-apoptotic members of the BCL2 family of apoptotic regulatory proteins is critical in the development and clinical progression of CLL. Furthermore, the apoptotic potential of the CLL cell determines chemotherapy sensitivity and ultimately progression-free and overall survival. The unravelling of the BCL2 story in CLL has led to the development of a whole new class of therapeutic agents-the BH3 mimetics-which are significantly more targeted than conventional chemo-immunotherapy and therefore promise potent clinical activity coupled with reduced toxicity.
Collapse
|
217
|
Sahu SK, Choudhuri T. Lack of association between Bax promoter (-248G>A) single nucleotide polymorphism and susceptibility towards cancer: evidence from a meta-analysis. PLoS One 2013; 8:e77534. [PMID: 24147019 PMCID: PMC3798304 DOI: 10.1371/journal.pone.0077534] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 09/04/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The Bcl-2-associated X protein (Bax) is a proapoptotic member of the Bcl-2 family known to be activated and upregulated during apoptosis. Single nucleotide polymorphisms (SNPs) in Bax promoter may participate in the process of carcinogenesis by altering its own expression and the cancer related genes. Bax-248G>A polymorphism has been implicated to alter the risk of cancer, but the listed results are inconsistent and inconclusive. In the present study, we performed a meta-analysis to systematically summarize the possible association of this polymorphism with the risk of cancer. METHODOLOGY We conducted a search of case-control studies on the associations of Bax-248G>A polymorphism with susceptibility to cancer in Pub Med, Science Direct, Wiley Online Library and hand search. Data from all eligible studies based on some key search terms, inclusion and exclusion criteria were extracted for this meta-analysis. Hardy-Weinberg equilibrium (HWE) in controls, power calculation, heterogeneity analysis, Begg's funnel plot, Egger's linear regression test, forest plot and sensitivity analysis were performed in the present study. RESULTS Cancer risk associated with Bax-248G>A polymorphism was estimated by pooled odds ratios (ORs) and 95% confidence intervals (95% CIs). The pooled ORs were calculated in allele contrast, homozygous comparison, heterozygous comparison, dominant and recessive model. Statistical significance was checked through Z and p-value in forest plot. A total of seven independent studies including 1772 cases and 1708 controls were included in our meta-analysis. Our results showed that neither allele frequency nor genotype distributions of this polymorphism were associated with risk for cancer in any of the genetic model. Furthermore, Egger's test did not show any substantial evidence of publication bias. CONCLUSIONS/SIGNIFICANCE This meta-analysis suggests that the Bax-248G>A polymorphism is not an important cancer risk factor. Nevertheless, additional well-designed studies with larger sample size focusing on different ethnicities and cancer types are required to further validate the results.
Collapse
Affiliation(s)
- Sushil Kumar Sahu
- Division of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Tathagata Choudhuri
- Division of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Department of Biotechnology, Siksha Vhabana, Visva Bharati, Santiniketan, Bolpur, India
- * E-mail:
| |
Collapse
|
218
|
Ginsenoside Rh2 induces human hepatoma cell apoptosisvia bax/bak triggered cytochrome C release and caspase-9/caspase-8 activation. Int J Mol Sci 2012; 13:15523-35. [PMID: 23443079 PMCID: PMC3546647 DOI: 10.3390/ijms131215523] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/13/2012] [Accepted: 11/15/2012] [Indexed: 01/11/2023] Open
Abstract
Ginsenoside Rh2 (G-Rh2) has been shown to induce apoptotic cell death in a variety of cancer cells. However, the details of the signal transduction cascade involved in G-Rh2-induced cell death is unclear. In this manuscript we elucidate the molecular mechanism of G-Rh2-induced apoptosis in human hepatoma SK-HEP-1 cells by demonstrating that G-Rh2 causes rapid and dramatic translocation of both Bak and Bax, which subsequently triggers mitochondrial cytochrome c release and consequent caspase activation. Interestingly, siRNA-based gene inactivation of caspase-8 effectively delays caspase-9 activation and apoptosis induced by G-Rh2, indicating that caspase-8 also plays an important role in the G-Rh2-induced apoptosis program. Taken together, our results indicate that G-Rh2 employs a multi pro-apoptotic pathway to execute cancer cell death, suggesting a potential role for G-Rh2 as a powerful chemotherapeutic agent.
Collapse
|
219
|
Affiliation(s)
- Lina Happo
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052, Australia
| | | | | |
Collapse
|
220
|
PUMA, a critical mediator of cell death--one decade on from its discovery. Cell Mol Biol Lett 2012; 17:646-69. [PMID: 23001513 PMCID: PMC6275950 DOI: 10.2478/s11658-012-0032-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 09/07/2012] [Indexed: 01/31/2023] Open
Abstract
PUMA (p53 upregulated modulator of apoptosis) is a pro-apoptotic member of the BH3-only subgroup of the Bcl-2 family. It is a key mediator of p53-dependent and p53-independent apoptosis and was identified 10 years ago. The PUMA gene is mapped to the long arm of chromosome 19, a region that is frequently deleted in a large number of human cancers. PUMA mediates apoptosis thanks to its ability to directly bind known anti-apoptotic members of the Bcl-2 family. It mainly localizes to the mitochondria. The binding of PUMA to the inhibitory members of the Bcl-2 family (Bcl-2-like proteins) via its BH3 domain seems to be a critical regulatory step in the induction of apoptosis. It results in the displacement of the proteins Bax and/or Bak. This is followed by their activation and the formation of pore-like structures on the mitochondrial membrane, which permeabilizes the outer mitochondrial membrane, leading to mitochondrial dysfunction and caspase activation. PUMA is involved in a large number of physiological and pathological processes, including the immune response, cancer, neurodegenerative diseases and bacterial and viral infections.
Collapse
|
221
|
Antony H, Wiegmans AP, Wei MQ, Chernoff YO, Khanna KK, Munn AL. Potential roles for prions and protein-only inheritance in cancer. Cancer Metastasis Rev 2012; 31:1-19. [PMID: 22138778 DOI: 10.1007/s10555-011-9325-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inherited mutations are known to cause familial cancers. However, the cause of sporadic cancers, which likely represent the majority of cancers, is yet to be elucidated. Sporadic cancers contain somatic mutations (including oncogenic mutations); however, the origin of these mutations is unclear. An intriguing possibility is that a stable alteration occurs in somatic cells prior to oncogenic mutations and promotes the subsequent accumulation of oncogenic mutations. This review explores the possible role of prions and protein-only inheritance in cancer. Genetic studies using lower eukaryotes, primarily yeast, have identified a large number of proteins as prions that confer dominant phenotypes with cytoplasmic (non-Mendelian) inheritance. Many of these have mammalian functional homologs. The human prion protein (PrP) is known to cause neurodegenerative diseases and has now been found to be upregulated in multiple cancers. PrP expression in cancer cells contributes to cancer progression and resistance to various cancer therapies. Epigenetic changes in the gene expression and hyperactivation of MAP kinase signaling, processes that in lower eukaryotes are affected by prions, play important roles in oncogenesis in humans. Prion phenomena in yeast appear to be influenced by stresses, and there is considerable evidence of the association of some amyloids with biologically positive functions. This suggests that if protein-only somatic inheritance exists in mammalian cells, it might contribute to cancer phenotypes. Here, we highlight evidence in the literature for an involvement of prion or prion-like mechanisms in cancer and how they may in the future be viewed as diagnostic markers and potential therapeutic targets.
Collapse
Affiliation(s)
- H Antony
- Griffith Health Institute, Griffith University, Southport, Queensland, Australia.
| | | | | | | | | | | |
Collapse
|
222
|
Gray DHD, Kupresanin F, Berzins SP, Herold MJ, O'Reilly LA, Bouillet P, Strasser A. The BH3-only proteins Bim and Puma cooperate to impose deletional tolerance of organ-specific antigens. Immunity 2012; 37:451-62. [PMID: 22960223 DOI: 10.1016/j.immuni.2012.05.030] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/14/2012] [Accepted: 05/31/2012] [Indexed: 11/25/2022]
Abstract
Although the proapoptotic BH3-only protein, Bim, is required for deletion of autoreactive thymocytes, Bim-deficient mice do not succumb to extensive organ-specific autoimmune disease. To determine whether other BH3-only proteins safeguard tolerance in the absence of Bim, we screened mice lacking Bim as well as other BH3-only proteins. Most strains showed no additional defects; however, mice deficient for both Puma and Bim spontaneously developed autoimmunity in multiple organs, and their T cells could transfer organ-specific autoimmunity. Puma- and Bim-double-deficient mice had a striking accumulation of mature, single-positive thymocytes, suggesting an additional defect in thymic deletion was the basis for disease. Transgenic mouse models of thymocyte deletion by peripheral neoantigens confirmed that the loss of Bim and Puma allowed increased numbers of autoreactive thymocytes to escape deletion. Our data show that Puma cooperates with Bim to impose a thymic-deletion checkpoint to peripheral self-antigens and cement the notion that defects in apoptosis alone are sufficient to cause autoimmune disease.
Collapse
Affiliation(s)
- Daniel H D Gray
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.
| | | | | | | | | | | | | |
Collapse
|
223
|
Bhat V, Kurouski D, Olenick MB, McDonald CB, Mikles DC, Deegan BJ, Seldeen KL, Lednev IK, Farooq A. Acidic pH promotes oligomerization and membrane insertion of the BclXL apoptotic repressor. Arch Biochem Biophys 2012; 528:32-44. [PMID: 22960132 DOI: 10.1016/j.abb.2012.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/19/2012] [Accepted: 08/20/2012] [Indexed: 01/03/2023]
Abstract
Solution pH is believed to serve as an intricate regulatory switch in the induction of apoptosis central to embryonic development and cellular homeostasis. Herein, using an array of biophysical techniques, we provide evidence that acidic pH promotes the assembly of BclXL apoptotic repressor into a megadalton oligomer with a plume-like appearance and harboring structural features characteristic of a molten globule. Strikingly, our data reveal that pH tightly modulates not only oligomerization but also ligand binding and membrane insertion of BclXL in a highly subtle manner. Thus, while oligomerization and the accompanying molten globular content of BclXL is least favorable at pH 6, both of these structural features become more pronounced under acidic and alkaline conditions. However, membrane insertion of BclXL appears to be predominantly favored under acidic conditions. In a remarkable contrast, while ligand binding to BclXL optimally occurs at pH 6, it is diminished by an order of magnitude at lower and higher pH. This reciprocal relationship between BclXL oligomerization and ligand binding lends new insights into how pH modulates functional versatility of a key apoptotic regulator and strongly argues that the molten globule may serve as an intermediate primed for membrane insertion in response to apoptotic cues.
Collapse
Affiliation(s)
- Vikas Bhat
- Department of Biochemistry and Molecular Biology, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Choi ES, Kim JS, Kwon KH, Kim HS, Cho NP, Cho SD. Methanol extract of Sanguisorba officinalis L. with cytotoxic activity against PC3 human prostate cancer cells. Mol Med Rep 2012; 6:670-4. [PMID: 22710351 DOI: 10.3892/mmr.2012.949] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 06/12/2012] [Indexed: 11/06/2022] Open
Abstract
Sanguisorba officinalis is a natural plant that has been traditionally used for the treatment of inflammatory and metabolic diseases. Several studies have reported that its extracts exhibit anticancer, antioxidative and anti-lipid peroxidation activities. However, the effects of this plant on human prostate cancer cells have not yet been investigated. In the present study, we investigated the inhibitory effects and underlying mechanisms of a methanol extract of Sanguisorba officinalis (MESO) in PC3 human prostate cancer cells. MESO significantly decreased cell growth and induced apoptosis through the intrinsic apoptosis pathway. MESO decreased the expression levels of myeloid cell leukemia-1 (Mcl-1), a Bcl‑2‑like anti-apoptotic protein that is highly expressed in various cancer cell lines. Expression levels of the pro-apoptotic protein Bax were increased by MESO whereas those of Bak and Bcl-xL were unchanged. In addition, MESO induced the oligomerization of Bax in the mitochondrial outer membrane. These results suggest that MESO inhibits the growth of prostate cancer cells and induces apoptotic cell death by the downregulation of Mcl-1 protein expression and the oligomerization of Bax. Therefore, MESO has potential as a drug candidate for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Eun-Sun Choi
- Department of Oral Pathology, School of Dentistry, Institute of Oral Bioscience, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | | | | | | | | | | |
Collapse
|
225
|
Abdel-Fattah AM, Gamal-Eldeen AM, Helmy WA, Esawy MA. Antitumor and antioxidant activities of levan and its derivative from the isolate Bacillus subtilis NRC1aza. Carbohydr Polym 2012; 89:314-22. [DOI: 10.1016/j.carbpol.2012.02.041] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/04/2012] [Accepted: 02/19/2012] [Indexed: 11/29/2022]
|
226
|
Kim YC, Day RM. Angiotensin II regulates activation of Bim via Rb/E2F1 during apoptosis: involvement of interaction between AMPKβ1/2 and Cdk4. Am J Physiol Lung Cell Mol Physiol 2012; 303:L228-38. [PMID: 22659879 DOI: 10.1152/ajplung.00087.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Apoptotic cell death is essential for mammalian development and tissue homeostasis. Dysregulation of apoptosis has been identified in pathologies including in pulmonary fibrotic remodeling. We previously reported that a key proapoptotic factor in fibrosis, angiotensin II (Ang II), mediates apoptosis in primary pulmonary artery endothelial cells (PAEC) via the AT(2) receptor and requires activation of AMP-regulated protein kinase (AMPK). We now demonstrate that Ang II induces E2F1 transcription factor binding to and activation of the promoter for the Bcl-2 homology 3 (BH3)-only protein Bim. In PAEC, Ang II treatment induced cyclin-dependent kinase 4 (Cdk4)-mediated hyperphosphorylation of retinoblastoma protein (Rb) and its disassociation from E2F1, a key step in facilitating E2F1-directed transcriptional activity. Indeed, ectopic expression of a dominant negative Cdk4 mutant inhibited Ang II-mediated hyperphosphorylation of Rb and Bim promoter activation. Our data also show that the β-subunit of AMPK was constitutively associated with Cdk4 in PAEC and that Ang II treatment induced AMPKβ phosphorylation and subsequent disassociation of this complex. Both Ang II-induced Rb hyperphosphorylation and Cdk4-AMPK disassociation were blocked by the AMPK inhibitor compound C. Together these findings illuminate a novel proapoptotic signaling pathway in endothelial cells, whereby Ang II triggers E2F1-mediated transcriptional upregulation of Bim via activation of AMPKβ1/2 and Cdk4.
Collapse
Affiliation(s)
- Yong-Chul Kim
- Department of Pharmacology, Uniformed Services University of Health Sciences, Bethesda, Maryland 20814-4799, USA
| | | |
Collapse
|
227
|
Human embryonic stem cells have constitutively active Bax at the Golgi and are primed to undergo rapid apoptosis. Mol Cell 2012; 46:573-83. [PMID: 22560721 DOI: 10.1016/j.molcel.2012.04.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 12/05/2011] [Accepted: 04/02/2012] [Indexed: 12/21/2022]
Abstract
Human embryonic stem (hES) cells activate a rapid apoptotic response after DNA damage but the underlying mechanisms are unknown. A critical mediator of apoptosis is Bax, which is reported to become active and translocate to the mitochondria only after apoptotic stimuli. Here we show that undifferentiated hES cells constitutively maintain Bax in its active conformation. Surprisingly, active Bax was maintained at the Golgi rather than at the mitochondria, thus allowing hES cells to effectively minimize the risks associated with having preactivated Bax. After DNA damage, active Bax rapidly translocated to the mitochondria by a p53-dependent mechanism. Interestingly, upon differentiation, Bax was no longer active, and cells were not acutely sensitive to DNA damage. Thus, maintenance of Bax in its active form is a unique mechanism that can prime hES cells for rapid death, likely to prevent the propagation of mutations during the early critical stages of embryonic development.
Collapse
|
228
|
Song JS, Lim KM, Kang S, Noh JY, Kim K, Bae ON, Chung JH. Procoagulant and prothrombotic effects of the herbal medicine, Dipsacus asper and its active ingredient, dipsacus saponin C, on human platelets. J Thromb Haemost 2012; 10:895-906. [PMID: 22405282 DOI: 10.1111/j.1538-7836.2012.04685.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND In spite of the growing popularity of herbal medicines and natural food supplements, their effects on cardiovascular homeostasis remain largely unknown, especially regarding pro-thrombotic risks. OBJECTIVE In the present study, 21 herbal tea extracts were screened for the procoagulant activities on platelets, an important promoter of thrombosis to examine if herbal medicines or natural products may have prothrombotic risks. We discovered that Dipsacus asper (DA), known to have analgesic and anti-inflammatory effects, potently induced procoagulant activities in platelets. We tried to identify the active ingredient and elucidate the underlying mechanism. RESULTS Among 10 major ingredients of DA, dipsacus saponin C (DSC) was identified as a key active ingredient in DA-induced procoagulant activities. DSC-induced procoagulant activities were achieved by the exposure of phosphatidylserine (PS) and PS-bearing microparticle generation that were caused by the alteration in the activities of phospholipid translocases: scramblase and flippase. These events were initiated by increased intracellular calcium and ATP depletion. Notably, DSC induced a series of apoptotic events including the disruption of mitochondrial membrane potential, translocation of Bax and Bak, cytochrome c release and caspase-3 activation. The key roles of apoptotic pathway and caspase activation were demonstrated by the reversal of DSC-induced PS exposure and procoagulant activities with the pretreatment of caspase inhibitors. Interestingly, EGTA reversed DSC-induced procoagulant activities and apoptotic events suggesting that an intracellular calcium increase may play a central role. These results were also confirmed in vivo where platelets of the rats exposed to DSC or DA exhibited PS exposure. Most importantly, DSC or DA administration led to increased thrombus formation. CONCLUSION These results demonstrate that herbal medicines or natural products such as DA or DSC might have prothrombotic risks through procoagulant activation of platelets.
Collapse
Affiliation(s)
- J-S Song
- College of Pharmacy, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
229
|
Ferrer PE, Frederick P, Gulbis JM, Dewson G, Kluck RM. Translocation of a Bak C-terminus mutant from cytosol to mitochondria to mediate cytochrome C release: implications for Bak and Bax apoptotic function. PLoS One 2012; 7:e31510. [PMID: 22442658 PMCID: PMC3307716 DOI: 10.1371/journal.pone.0031510] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 01/11/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND One of two proapoptotic Bcl-2 proteins, Bak or Bax, is required to permeabilize the mitochondrial outer membrane during apoptosis. While Bax is mostly cytosolic and translocates to mitochondria following an apoptotic stimulus, Bak is constitutively integrated within the outer membrane. Membrane anchorage occurs via a C-terminal transmembrane domain that has been studied in Bax but not in Bak, therefore what governs their distinct subcellular distribution is uncertain. In addition, whether the distinct subcellular distributions of Bak and Bax contributes to their differential regulation during apoptosis remains unclear. METHODOLOGY/PRINCIPAL FINDINGS To gain insight into Bak and Bax targeting to mitochondria, elements of the Bak C-terminus were mutated, or swapped with those of Bax. Truncation of the C-terminal six residues (C-segment) or substitution of three basic residues within the C-segment destabilized Bak. Replacing the Bak C-segment with that from Bax rescued stability and function, but unexpectedly resulted in a semi-cytosolic protein, termed Bak/BaxCS. When in the cytosol, both Bax and Bak/BaxCS sequestered their hydrophobic transmembrane domains in their hydrophobic surface groove. Upon apoptotic signalling, Bak/BaxCS translocated to the mitochondrial outer membrane, inserted its transmembrane domain, oligomerized, and released cytochrome c. Despite this Bax-like subcellular distribution, Bak/BaxCS retained Bak-like regulation following targeting of Mcl-1. CONCLUSIONS/SIGNIFICANCE Residues in the C-segment of Bak and of Bax contribute to their distinct subcellular localizations. That a semi-cytosolic form of Bak, Bak/BaxCS, could translocate to mitochondria and release cytochrome c indicates that Bak and Bax share a conserved mode of activation. In addition, the differential regulation of Bak and Bax by Mcl-1 is predominantly independent of the initial subcellular localizations of Bak and Bax.
Collapse
Affiliation(s)
- Pedro Eitz Ferrer
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Paul Frederick
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Jacqueline M. Gulbis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Grant Dewson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ruth M. Kluck
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
230
|
Kahraman A, Fingas CD, Syn WK, Gerken G, Canbay A. Role of stress-induced NKG2D ligands in liver diseases. Liver Int 2012; 32:370-82. [PMID: 22097967 DOI: 10.1111/j.1478-3231.2011.02608.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 06/15/2011] [Indexed: 12/24/2022]
Abstract
Cell death by apoptosis is a prominent feature in a variety of liver diseases. It is likely that apoptosis is the initial cellular response to hepatocyte and biliary injury, which then leads to the initiation of cellular and cytokine cascades culminating in hepatocyte death with subsequent fibrosis and cirrhosis. This sequence of events is of paramount clinical importance. Recently, soluble forms of the major histocompatibility complex class I-related chains A and closely related B (MIC A and B) were reported to be increased in patients with a variety of liver diseases. MIC A and B are cell surface glycoproteins that function as indicators for cellular stress and thus activate circulating cytotoxic natural killer (NK) cells. The interaction between MIC A and B with their cognate receptor natural killer group 2 member D (NKG2D) culminates in enhanced liver cell death, which is mediated in part by apoptotic mechanisms. The present overview focuses on the role of the stress-induced NKG2D ligands MIC A and B in diverse liver diseases. Critical insights into these complex relations may help to promote rationally based therapies in liver diseases. Importantly, we hope that this overview will help to stimulate further studies into mechanisms by which stress ligands mediate cell death and its sequale.
Collapse
Affiliation(s)
- Alisan Kahraman
- University Clinic Essen, University of Duisburg-Essen, Essen, Germany
| | | | | | | | | |
Collapse
|
231
|
|
232
|
Wilfling F, Weber A, Potthoff S, Vögtle FN, Meisinger C, Paschen SA, Häcker G. BH3-only proteins are tail-anchored in the outer mitochondrial membrane and can initiate the activation of Bax. Cell Death Differ 2012; 19:1328-36. [PMID: 22343714 DOI: 10.1038/cdd.2012.9] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
During mitochondrial apoptosis, pro-apoptotic BH3-only proteins cause the translocation of cytosolic Bcl-2-associated X protein (Bax) to the outer mitochondrial membrane (OMM) where it is activated to release cytochrome c from the mitochondrial intermembrane space, but the mechanism is under dispute. We show that most BH3-only proteins are mitochondrial proteins that are imported into the OMM via a C-terminal tail-anchor domain in isolated yeast mitochondria, independently of binding to anti-apoptotic Bcl-2 proteins. This C-terminal domain acted as a classical mitochondrial targeting signal and was sufficient to direct green fluorescent protein to mitochondria in human cells. When expressed in mouse fibroblasts, these BH3-only proteins localised to mitochondria and were inserted in the OMM. The BH3-only proteins Bcl-2-interacting mediator of cell death (Bim), tBid and p53-upregulated modulator of apoptosis sensitised isolated mitochondria from Bax/Bcl-2 homologous antagonist/killer-deficient fibroblasts to cytochrome c-release by recombinant, extramitochondrial Bax. For Bim, this activity is shown to require the C-terminal-targeting signal and to be independent of binding capacity to and presence of anti-apoptotic Bcl-2 proteins. Bim further enhanced Bax-dependent killing in yeast. A model is proposed where OMM-tail-anchored BH3-only proteins permit passive 'recruitment' and catalysis-like activation of extra-mitochondrial Bax. The recognition of C-terminal membrane-insertion of BH3-only proteins will permit the development of a more detailed concept of the initiation of mitochondrial apoptosis.
Collapse
Affiliation(s)
- F Wilfling
- Institute of Medical Microbiology, Technische Universität München, Germany
| | | | | | | | | | | | | |
Collapse
|
233
|
|
234
|
Wang P, Zhang K, Zhang Q, Mei J, Chen CJ, Feng ZZ, Yu DH. Effects of quercetin on the apoptosis of the human gastric carcinoma cells. Toxicol In Vitro 2011; 26:221-8. [PMID: 22222411 DOI: 10.1016/j.tiv.2011.11.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 10/23/2011] [Accepted: 11/24/2011] [Indexed: 01/12/2023]
Abstract
Quercetin, a natural constituent abundantly present in grapes, red wine, and other food products, is known to possess potent antiproliferative effects against various malignant cells. The present study aims to investigate the effect of quercetin on the apoptosis and morphology of gastric carcinoma BGC-823 cells, as well as the probable mechanism, in an effort to identify an effective drug as a potential candidate for gastric cancer. Gastric carcinoma BGC-823 cells were treated with quercetin, and cell morphology was determined by light microscopy and transmission electron microscopy. Apoptosis and cell cycle were measured by flow cytometry, using propidium iodide staining. The apoptotic protein expression of caspase-3, Bcl-2 and Bax was detected by Western blot. Quercetin induced apoptosis in BGC-823 cell. Some morphologic features of apoptosis were found, such as cell shrinkage or even apoptosis body. Quercetin changed the apoptotic protein expression. These results indicate that quercetin can induce apoptosis of the BGC-823 cells. A decrease in Bcl-2/Bax ratio with the increased expression of caspase-3 provides evidence that quercetin-induced apoptosis may be mediated via the mitochondrial pathway.
Collapse
Affiliation(s)
- Ping Wang
- Department of Pathology, Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaojv Road, Shanghai 200011, China.
| | | | | | | | | | | | | |
Collapse
|
235
|
Bhat V, McDonald CB, Mikles DC, Deegan BJ, Seldeen KL, Bates ML, Farooq A. Ligand binding and membrane insertion compete with oligomerization of the BclXL apoptotic repressor. J Mol Biol 2011; 416:57-77. [PMID: 22197371 DOI: 10.1016/j.jmb.2011.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 12/05/2011] [Accepted: 12/07/2011] [Indexed: 01/19/2023]
Abstract
B-cell lymphoma extra large (BclXL) apoptotic repressor plays a central role in determining the fate of cells to live or die during physiological processes such as embryonic development and tissue homeostasis. Herein, using a myriad of biophysical techniques, we provide evidence that ligand binding and membrane insertion compete with oligomerization of BclXL in solution. Of particular importance is the observation that such oligomerization is driven by the intermolecular binding of its C-terminal transmembrane (TM) domain to the canonical hydrophobic groove in a domain-swapped trans fashion, whereby the TM domain of one monomer occupies the canonical hydrophobic groove within the other monomer and vice versa. Binding of BH3 ligands to the canonical hydrophobic groove displaces the TM domain in a competitive manner, allowing BclXL to dissociate into monomers upon hetero-association. Remarkably, spontaneous insertion of BclXL into DMPC/DHPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dihexanoyl-sn-glycero-3-phosphocholine) bicelles results in a dramatic conformational change such that it can no longer recognize the BH3 ligands in what has come to be known as the "hit-and-run" mechanism. Collectively, our data suggest that oligomerization of a key apoptotic repressor serves as an allosteric switch that fine-tunes its ligand binding and membrane insertion pertinent to the regulation of apoptotic machinery.
Collapse
Affiliation(s)
- Vikas Bhat
- Department of Biochemistry and Molecular Biology and USylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | | | |
Collapse
|
236
|
Wang J, Beauchemin M, Bertrand R. Bcl-xL phosphorylation at Ser49 by polo kinase 3 during cell cycle progression and checkpoints. Cell Signal 2011; 23:2030-8. [PMID: 21840391 PMCID: PMC3708862 DOI: 10.1016/j.cellsig.2011.07.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/14/2011] [Accepted: 07/27/2011] [Indexed: 11/20/2022]
Abstract
Functional analysis of a Bcl-xL phosphorylation mutant series has revealed that cells expressing Bcl-xL(Ser49Ala) mutant are less stable at G2 checkpoint after DNA damage and enter cytokinesis more slowly after microtubule poisoning, than cells expressing wild-type Bcl-xL. These effects of Bcl-xL(Ser49Ala) mutant seem to be separable from Bcl-xL function in apoptosis. Bcl-xL(Ser49) phosphorylation is cell cycle-dependent. In synchronized cells, phospho-Bcl-xL(Ser49) appears during the S phase and G2, whereas it disappears rapidly in early mitosis during prometaphase, metaphase and early anaphase, and re-appears during telophase and cytokinesis. During DNA damage-induced G2 arrest, an important pool of phospho-Bcl-xL(Ser49) accumulates in centrosomes which act as essential decision centers for progression from G2 to mitosis. During telophase/cytokinesis, phospho-Bcl-xL(Ser49) is found with dynein motor protein. In a series of in vitro kinase assays, specific small interfering RNA and pharmacological inhibition experiments, polo kinase 3 (PLK3) was implicated in Bcl-xL(Ser49) phosphorylation. These data indicate that, during G2 checkpoint, phospho-Bcl-xL(Ser49) is another downstream target of PLK3, acting to stabilize G2 arrest. Bcl-xL phosphorylation at Ser49 also correlates with essential PLK3 activity and function, enabling cytokinesis and mitotic exit.
Collapse
Affiliation(s)
- Jianfang Wang
- Centre de recherche, Centre hospitalier de l’Université de Montréal (CRCHUM), Hôpital Notre-Dame and Institut du cancer de Montréal, Montréal, Québec, Canada
| | - Myriam Beauchemin
- Centre de recherche, Centre hospitalier de l’Université de Montréal (CRCHUM), Hôpital Notre-Dame and Institut du cancer de Montréal, Montréal, Québec, Canada
| | - Richard Bertrand
- Centre de recherche, Centre hospitalier de l’Université de Montréal (CRCHUM), Hôpital Notre-Dame and Institut du cancer de Montréal, Montréal, Québec, Canada
- Département de médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
237
|
Dewson G, Ma S, Frederick P, Hockings C, Tan I, Kratina T, Kluck RM. Bax dimerizes via a symmetric BH3:groove interface during apoptosis. Cell Death Differ 2011; 19:661-70. [PMID: 22015607 DOI: 10.1038/cdd.2011.138] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
During apoptotic cell death, Bax and Bak change conformation and homo-oligomerize to permeabilize mitochondria. We recently reported that Bak homodimerizes via an interaction between the BH3 domain and hydrophobic surface groove, that this BH3:groove interaction is symmetric, and that symmetric dimers can be linked via the α6-helices to form the high order oligomers thought responsible for pore formation. We now show that Bax also dimerizes via a BH3:groove interaction after apoptotic signaling in cells and in mitochondrial fractions. BH3:groove dimers of Bax were symmetric as dimers but not higher order oligomers could be linked by cysteine residues placed in both the BH3 and groove. The BH3:groove interaction was evident in the majority of mitochondrial Bax after apoptotic signaling, and correlated strongly with cytochrome c release, supporting its central role in Bax function. A second interface between the Bax α6-helices was implicated by cysteine linkage studies, and could link dimers to higher order oligomers. We also found that a population of Bax:Bak heterodimers generated during apoptosis formed via a BH3:groove interaction, further demonstrating that Bax and Bak oligomerize via similar mechanisms. These findings highlight the importance of BH3:groove interactions in apoptosis regulation by the Bcl-2 protein family.
Collapse
Affiliation(s)
- G Dewson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
238
|
Cell apoptosis induced by zinc deficiency in osteoblastic MC3T3-E1 cells via a mitochondrial-mediated pathway. Mol Cell Biochem 2011; 361:209-16. [PMID: 21997737 DOI: 10.1007/s11010-011-1105-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 09/28/2011] [Indexed: 10/16/2022]
Abstract
Deficiency of zinc plays an important role in the pathogenesis of osteoporosis; however, the underlying mechanism is not well understood. Apoptosis of osteoblast causing the loss of bone mass is an important event in the osteoporosis. In this article, we investigated whether zinc deficiency would induce cell apoptosis in MC3T3-E1 cells and ask if it is involved in mitochondrial-mediated pathway. Significant increased apoptosis were observed in zinc deficiency group (ZnD: 5 μM TPEN and 1 μM zinc) compared with untreated control or zinc adequacy group (ZnA: 5 μM TPEN and 15 μM zinc). The mitochondrial membrane potential was strikingly reduced in ZnD group. Furthermore, we observed that the levels of Bax in mitochondria fraction and cyto c, AIF, and cleaved caspase-3/-9 in cytosol fraction were increased in ZnD group. We proposed that zinc deficiency would induce the translocation of Bax into mitochondria, which could lead to the reduction in mitochondrial membrane potential as well as the increase in mitochondrial membrane permeability. In addition, cyto c and AIF were released from mitochondria into the cytosol, which finally activated caspase-dependent and caspase-independent apoptosis processes in MC3T3-E1 cells. Our findings suggested that zinc deficiency is capable of inducing apoptosis through a mitochondria-mediated pathway in osteoblastic cells.
Collapse
|
239
|
TMEM14A inhibits N-(4-hydroxyphenyl)retinamide-induced apoptosis through the stabilization of mitochondrial membrane potential. Cancer Lett 2011; 309:190-8. [DOI: 10.1016/j.canlet.2011.05.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/26/2011] [Accepted: 05/27/2011] [Indexed: 11/20/2022]
|
240
|
Crystal Structure of a BCL-W Domain-Swapped Dimer: Implications for the Function of BCL-2 Family Proteins. Structure 2011; 19:1467-76. [DOI: 10.1016/j.str.2011.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 07/08/2011] [Accepted: 07/24/2011] [Indexed: 11/20/2022]
|
241
|
Abstract
The best characterized examples of crosstalk between two or more different post-translational modifications (PTMs) occur with respect to histones. These examples demonstrate the critical roles that crosstalk plays in regulating cell signaling pathways. Recently, however, non-histone crosstalk has been observed between serine/threonine phosphorylation and the modification of arginine and lysine residues within kinase consensus sequences. Interestingly, many kinase consensus sequences contain critical arginine/lysine residues surrounding the substrate serine/threonine residue. Therefore, we hypothesize that non-histone crosstalk between serine/threonine phosphorylation and arginine/lysine modifications is a global mechanism for the modulation of cellular signaling. In this review, we discuss several recent examples of non-histone kinase consensus sequence crosstalk, as well as provide the biophysical basis for these observations. In addition, we predict likely examples of crosstalk between protein arginine methyltransferase 1 (PRMT1) and Akt and discuss the future implications of these findings.
Collapse
Affiliation(s)
- Heather L. Rust
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458
- Department of Chemistry & Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208
| | - Paul R. Thompson
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458
| |
Collapse
|
242
|
Dai H, Smith A, Meng XW, Schneider PA, Pang YP, Kaufmann SH. Transient binding of an activator BH3 domain to the Bak BH3-binding groove initiates Bak oligomerization. ACTA ACUST UNITED AC 2011; 194:39-48. [PMID: 21727192 PMCID: PMC3135403 DOI: 10.1083/jcb.201102027] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The mechanism by which the proapoptotic Bcl-2 family members Bax and Bak release cytochrome c from mitochondria is incompletely understood. In this paper, we show that activator BH3-only proteins bind tightly but transiently to the Bak hydrophobic BH3-binding groove to induce Bak oligomerization, liposome permeabilization, mitochondrial cytochrome c release, and cell death. Analysis by surface plasmon resonance indicated that the initial binding of BH3-only proteins to Bak occurred with similar kinetics with or without detergent or mitochondrial lipids, but these reagents increase the strength of the Bak-BH3-only protein interaction. Point mutations in Bak and reciprocal mutations in the BH3-only proteins not only confirmed the identity of the interacting residues at the Bak-BH3-only protein interface but also demonstrated specificity of complex formation in vitro and in a cellular context. These observations indicate that transient protein-protein interactions involving the Bak BH3-binding groove initiate Bak oligomerization and activation.
Collapse
Affiliation(s)
- Haiming Dai
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
243
|
A novel TNFR1-triggered apoptosis pathway mediated by class IA PI3Ks in neutrophils. Blood 2011; 117:5953-62. [PMID: 21478427 DOI: 10.1182/blood-2010-11-322206] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The most common form of neutrophil death is apoptosis. In the present study, we report surprising differences in the molecular mechanisms used for caspase activation between FAS/CD95-stimulated and TNF receptor 1 (TNFR1)-stimulated neutrophils. Whereas FAS-induced apoptosis was followed by caspase-8 activation and required Bid to initiate the mitochondrial amplification loop, TNF-α-induced apoptosis involved class IA PI3Ks, which were activated by MAPK p38. TNF-α-induced PI3K activation resulted in the generation of reactive oxygen species, which activated caspase-3, a mechanism that did not operate in neutrophils without active NADPH oxidase. We conclude that in neutrophils, proapoptotic pathways after TNFR1 stimulation are initiated by p38 and PI3K, but not by caspase-8, a finding that should be considered in anti-inflammatory drug-development strategies.
Collapse
|
244
|
Abstract
Apoptosis is a tightly regulated cell suicide program that plays an essential role in the development and maintenance of tissue homeostasis by eliminating unnecessary or harmful cells. Impairment of this native defense mechanism promotes aberrant cellular proliferation and the accumulation of genetic defects, ultimately resulting in tumorigenesis, and frequently confers drug resistance to cancer cells. The regulation of apoptosis at several levels is essential to maintain the delicate balance between cellular survival and death signaling that is required to prevent disease. Complex networks of signaling pathways act to promote or inhibit apoptosis in response to various cues. Apoptosis can be triggered by signals from within the cell, such as genotoxic stress, or by extrinsic signals, such as the binding of ligands to cell surface death receptors. Various upstream signaling pathways can modulate apoptosis by converging on, and thereby altering the activity of, common central control points within the apoptotic signaling pathways, which involve the BCL-2 family proteins, inhibitor of apoptosis (IAP) proteins, and FLICE-inhibitory protein (c-FLIP). This review highlights the role of these fundamental regulators of apoptosis in the context of both normal apoptotic signaling mechanisms and dysregulated apoptotic pathways that can render cancer cells resistant to cell death. In addition, therapeutic strategies aimed at modulating the activity of BCL-2 family proteins, IAPs, and c-FLIP for the targeted induction of apoptosis are briefly discussed.
Collapse
Affiliation(s)
- Jessica Plati
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215, USA
| | - Octavian Bucur
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215, USA
- Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Roya Khosravi-Far
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215, USA
| |
Collapse
|
245
|
Westphal D, Dewson G, Czabotar PE, Kluck RM. Molecular biology of Bax and Bak activation and action. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:521-31. [PMID: 21195116 DOI: 10.1016/j.bbamcr.2010.12.019] [Citation(s) in RCA: 395] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 12/17/2010] [Accepted: 12/19/2010] [Indexed: 12/26/2022]
Abstract
Bax and Bak are two nuclear-encoded proteins present in higher eukaryotes that are able to pierce the mitochondrial outer membrane to mediate cell death by apoptosis. Thus, organelles recruited by nucleated cells to supply energy can be recruited by Bax and Bak to kill cells. The two proteins lie in wait in healthy cells where they adopt a globular α-helical structure, seemingly as monomers. Following a variety of stress signals, they convert into pore-forming proteins by changing conformation and assembling into oligomeric complexes in the mitochondrial outer membrane. Proteins from the mitochondrial intermembrane space then empty into the cytosol to activate proteases that dismantle the cell. The arrangement of Bax and Bak in membrane-bound complexes, and how the complexes porate the membrane, is far from being understood. However, recent data indicate that they first form symmetric BH3:groove dimers which can be linked via an interface between the α6-helices to form high order oligomers. Here, we review how Bax and Bak change conformation and oligomerize, as well as how oligomers might form a pore. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.
Collapse
|
246
|
Landeta O, Landajuela A, Gil D, Taneva S, DiPrimo C, Sot B, Valle M, Frolov VA, Basañez G. Reconstitution of proapoptotic BAK function in liposomes reveals a dual role for mitochondrial lipids in the BAK-driven membrane permeabilization process. J Biol Chem 2011; 286:8213-8230. [PMID: 21196599 PMCID: PMC3048708 DOI: 10.1074/jbc.m110.165852] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 12/18/2010] [Indexed: 12/11/2022] Open
Abstract
BAK is a key effector of mitochondrial outer membrane permeabilization (MOMP) whose molecular mechanism of action remains to be fully dissected in intact cells, mainly due to the inherent complexity of the intracellular apoptotic machinery. Here we show that the core features of the BAK-driven MOMP pathway can be reproduced in a highly simplified in vitro system consisting of recombinant human BAK lacking the carboxyl-terminal 21 residues (BAKΔC) and tBID in combination with liposomes bearing an appropriate lipid environment. Using this minimalist reconstituted system we established that tBID suffices to trigger BAKΔC membrane insertion, oligomerization, and pore formation. Furthermore, we demonstrate that tBID-activated BAKΔC permeabilizes the membrane by forming structurally dynamic pores rather than a large proteinaceous channel of fixed size. We also identified two distinct roles played by mitochondrial lipids along the molecular pathway of BAKΔC-induced membrane permeabilization. First, using several independent approaches, we showed that cardiolipin directly interacts with BAKΔC, leading to a localized structural rearrangement in the protein that "primes" BAKΔC for interaction with tBID. Second, we provide evidence that selected curvature-inducing lipids present in mitochondrial membranes specifically modulate the energetic expenditure required to create the BAKΔC pore. Collectively, our results support the notion that BAK functions as a direct effector of MOMP akin to BAX and also adds significantly to the growing evidence indicating that mitochondrial membrane lipids are actively implicated in BCL-2 protein family function.
Collapse
Affiliation(s)
- Olatz Landeta
- From the Unidad de Biofísica (Centro Mixto Consejo Superior de Investigaciones Cientificas-Universidad del Pais Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Ane Landajuela
- From the Unidad de Biofísica (Centro Mixto Consejo Superior de Investigaciones Cientificas-Universidad del Pais Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - David Gil
- CIC-BIOGUNE Structural Biology Unit, Parque Tecnologico Zamudio, Bizkaia, 48160 Derio, Spain
| | - Stefka Taneva
- From the Unidad de Biofísica (Centro Mixto Consejo Superior de Investigaciones Cientificas-Universidad del Pais Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Carmelo DiPrimo
- Université de Bordeaux, INSERM U869, Institut Européen de Chimie et de Biologie, Pessac F-33607, France, and
| | - Begoña Sot
- the MRC Centre for Protein Engineering and MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
| | - Mikel Valle
- CIC-BIOGUNE Structural Biology Unit, Parque Tecnologico Zamudio, Bizkaia, 48160 Derio, Spain
| | - Vadim A Frolov
- From the Unidad de Biofísica (Centro Mixto Consejo Superior de Investigaciones Cientificas-Universidad del Pais Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain,; the Departamento de Bioquímica y Biología Molecular, UPV/EHU, Leioa 48940, Spain,; Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Gorka Basañez
- From the Unidad de Biofísica (Centro Mixto Consejo Superior de Investigaciones Cientificas-Universidad del Pais Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain,.
| |
Collapse
|
247
|
Fox J, Azad A, Ismail F, Storey A. "Licensed to kill": tyrosine dephosphorylation and Bak activation. Cell Cycle 2011; 10:598-603. [PMID: 21293187 PMCID: PMC3174003 DOI: 10.4161/cc.10.4.14793] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 01/07/2011] [Indexed: 01/04/2023] Open
Abstract
The genomes of multi-cellular organisms are under constant assault from a host of environmental agents. The efficient elimination of cells harbouring damage is essential to avoid the accumulation of deleterious changes that may promote tumorigenesis. Consequently, a complex and elaborate series of damage responses have evolved to either ensure that correct repair of the DNA has been carried out, or alternatively, to initiate programmes that result in the ablation of the damaged cell. Apoptosis is recognized as both a fast an efficient way of disposing of damaged or unwanted cells before they accumulate changes that may result in the acquisition of neoplastic autonomy. The mitochondrial apoptotic pathway relies upon two effector proteins of the Bcl2 family, Bax and Bak, that when activated form pores in the outer mitochondrial membrane that release cytochrome c and other apoptogenic factors. We have recently shown that the initiation of Bak activation is controlled by dephosphorylation. In particular, we found that a specific tyrosine dephosphorylation was required for Bak activation to proceed, and that tyrosine phosphatases may serve to integrate apoptotic signals that culminate in Bak dephosphorylation. Here, we discuss these findings and present additional data underlining the importance of dephosphorylation in the Bak activation process, and how the modulation of Bak phosphorylation status may be modified to enhance cell killing.
Collapse
Affiliation(s)
- Joanna Fox
- Department of Molecular Oncology; Weatherall Institute of Molecular Medicine; University of Oxford; John Radcliffe Hospital; Oxford, UK
| | - Abul Azad
- Department of Molecular Oncology; Weatherall Institute of Molecular Medicine; University of Oxford; John Radcliffe Hospital; Oxford, UK
| | - Ferina Ismail
- Cutaneous Research; Blizard Institute of Cell and Molecular Science; Queen Mary, University of London; London, UK
| | - Alan Storey
- Department of Molecular Oncology; Weatherall Institute of Molecular Medicine; University of Oxford; John Radcliffe Hospital; Oxford, UK
| |
Collapse
|
248
|
Small-molecule inhibitors reveal a new function for Bcl-2 as a proangiogenic signaling molecule. Curr Top Microbiol Immunol 2011; 348:115-37. [PMID: 20941592 PMCID: PMC3812667 DOI: 10.1007/82_2010_109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cancer has a complex etiology and displays a wide range of cellular escape pathways that allow it to circumvent treatment. Signaling molecules functionally downstream of the circumvented pathways, and particularly at checkpoints where several of these pathways intersect, provide valuable targets for the development of novel anti-cancer drugs. Bcl-2, a pro-survival signaling molecule, is one such protein. This review examines the efficacy, potency, and function of several small molecule inhibitor drugs targeted to the Bcl-2 family of proteins. The review focuses on the compounds with most available data within the literature and discusses both the anti-cancer and the recently unveiled anti-angiogenic potential of this new class of drugs.
Collapse
|
249
|
Abstract
DNA fragmentation is a hallmark of apoptosis that is induced by apoptotic stimuli in various cell types. Apoptotic signal pathways, which eventually cause DNA fragmentation, are largely mediated by the family of cysteinyl aspartate-specific protease caspases. Caspases mediate apoptotic signal transduction by cleavage of apoptosis-implicated proteins and the caspases themselves. In the process of caspase activation, reversible protein phosphorylation plays an important role. The activation of various proteins is regulated by phosphorylation and dephosphorylation, both upstream and downstream of caspase activation. Many kinases/phosphatases are involved in the control of cell survival and death, including the mitogen-activated protein kinase signal transduction pathways. Reversible protein phosphorylation is involved in the widespread regulation of cellular signal transduction and apoptotic processes. Therefore, phosphatase/kinase inhibitors are commonly used as apoptosis inducers/inhibitors. Whether protein phosphorylation induces apoptosis depends on many factors, such as the type of phosphorylated protein, the degree of activation and the influence of other proteins. Phosphorylation signaling pathways are intricately interrelated; it was previously shown that either induction or inhibition of phosphorylation causes cell death. Determination of the relationship between protein and phosphorylation helps to reveal how apoptosis is regulated. Here we discuss DNA fragmentation and protein phosphorylation, focusing on caspase and serine/threonine protein phosphatase activation.
Collapse
Affiliation(s)
- Ikuko Kitazumi
- Bio Process Research and Development Laboratories, Kyowa Hakko Kirin Co. Ltd, Takasaki, Gunma, Japan
| | | |
Collapse
|
250
|
Bogner C, Leber B, Andrews DW. Apoptosis: embedded in membranes. Curr Opin Cell Biol 2010; 22:845-51. [DOI: 10.1016/j.ceb.2010.08.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 08/01/2010] [Accepted: 08/05/2010] [Indexed: 01/03/2023]
|