201
|
Hu Y, Li X, Huang G, Wang J, Lu W. Fasudil may induce the differentiation of bone marrow mesenchymal stem cells into neuron‑like cells via the Wnt/β‑catenin pathway. Mol Med Rep 2019; 19:3095-3104. [PMID: 30816472 PMCID: PMC6423592 DOI: 10.3892/mmr.2019.9978] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 02/18/2019] [Indexed: 01/27/2023] Open
Abstract
Bone mesenchymal stem cells (MSCs) are an excellent donor graft source due to their potential for self-renewal and multidirectional differentiation. However, it is difficult to obtain high quality MSCs and to induce them to differentiate into neuron-like cells. Fasudil, a Rho kinase inhibitor, exhibits therapeutic potential in spinal cord injuries and stroke. The present study investigated the effect of fasudil on the differentiation of MSCs into neuron-like cells. MSCs were obtained from rat femur marrow, expanded in culture medium, and used at the third passage for subsequent experiments. MSCs were pre-induced with 10 ng/ml basic fibroblast growth factor (bFGF) for 24 h, which was followed by induction with fasudil. A control untreated group and a group treated with fasudil + XAV939, a Wnt/β-catenin pathway inhibitor, were also used in the present study. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot analysis and immunofluorescence staining were performed in order to detect neuron-specific markers, including neuron-specific enolase (NSE), nestin and neurofilament-M (NF-M). Following induction with fasudil, neuron-like cell morphology was observed. In the fasudil + XAV939 and control groups, no obvious changes in cell shape were observed. The results of RT-qPCR, western blot analysis and immunofluorescence staining indicated that expression of the neuron-specific markers NSE, nestin and NF-M was detected in the fasudil group. The differentiation of MSCs into neuron-like cells induced by fasudil was eliminated when the Wnt/β-catenin pathway was inhibited. The present study demonstrated that fasudil may induce MSCs to differentiate into neuron-like cells, however further studies are required to determine the specific mechanisms involved in the effect of fasudil on the Wnt/β-catenin pathway. In addition, further research is required to examine the functional characteristics of the induced neuron-like cells, in order to establish their suitability for clinical treatments in the future.
Collapse
Affiliation(s)
- Yahui Hu
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Xin Li
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Guowei Huang
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Jizuo Wang
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Wei Lu
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
202
|
Simvastatin promotes restoration of chondrocyte morphology and phenotype. Arch Biochem Biophys 2019; 665:1-11. [PMID: 30776329 DOI: 10.1016/j.abb.2019.01.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/14/2019] [Accepted: 01/31/2019] [Indexed: 02/08/2023]
Abstract
In this study we examined whether the action of simvastatin affects re-differentiation of passaged chondrocytes and if so, whether this was mediated via changes in cholesterol or cholesterol intermediates. Bovine articular chondrocytes, of varying passage number, human knee chondrocytes and rat chondrosarcoma chondrocytes were treated with simvastatin and examined for changes in mRNA and protein expression of markers of the chondrocyte phenotype as well as changes in cell shape, proliferation and proteoglycan production. In all three models, while still in monolayer culture, simvastatin treatment alone promoted changes in phenotype and morphology indicative of re-differentiation most prominent being an increase in SOX9 mRNA and protein expression. In passaged bovine chondrocytes, simvastatin stimulated the expression of SOX9, ACAN, BMP2 and inhibited the expression of COL1 and α-smooth muscle actin. Co-treatment of chondrocytes with simvastatin plus exogenous cholesterol-conditions that had previously reversed the inhibition on CD44 shedding, did not alter the effects of simvastatin on re-differentiation. However, the co-treatment of chondrocytes with simvastatin together with other pathway intermediates, mevalonate, geranylgeranylpyrophosphate and to a lesser extent, farnesylpyrophosphate, blocked the pro-differentiation effects of simvastatin. Treatment with simvastatin stimulated expression of SOX9 and COL2a and enhanced SOX9 protein in human OA chondrocytes. The co-treatment of OA chondrocytes with mevalonate or geranylgeranylpyrophosphate, but not cholesterol, blocked the simvastatin effects. These results lead us to conclude that the blocking of critical protein prenylation events is required for the positive effects of simvastatin on the re-differentiation of chondrocytes.
Collapse
|
203
|
Nimmagadda SC, Frey S, Müller P, Wolleschak D, Weinert S, Keller U, Edelmann B, Fischer T. SDF1α-induced chemotaxis of JAK2-V617F-positive cells is dependent on Bruton tyrosine kinase and its downstream targets PI3K/AKT, PLCγ1 and RhoA. Haematologica 2019; 104:e288-e292. [PMID: 30765477 DOI: 10.3324/haematol.2018.201921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Subbaiah Chary Nimmagadda
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, Magdeburg.,Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg.,Medical Clinic and Polyclinic III, Klinikum rechts der Isar, Technical University Munich
| | - Stephanie Frey
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, Magdeburg.,Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg
| | - Peter Müller
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, Magdeburg.,Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg
| | - Denise Wolleschak
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, Magdeburg.,Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg
| | - Sönke Weinert
- Department of Cardiology and Angiology, Medical Center, Otto-von-Guericke University, Magdeburg
| | - Ulrich Keller
- Medical Clinic and Polyclinic III, Klinikum rechts der Isar, Technical University Munich.,Department of Hematology, Oncology and Tumor Immunology, Campus Benjamin Franklin, Charité -Universitätsmedizin, Berlin.,German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Bärbel Edelmann
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, Magdeburg.,Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg
| | - Thomas Fischer
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, Magdeburg .,Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg
| |
Collapse
|
204
|
Manoli S, Coppola S, Duranti C, Lulli M, Magni L, Kuppalu N, Nielsen N, Schmidt T, Schwab A, Becchetti A, Arcangeli A. The Activity of Kv 11.1 Potassium Channel Modulates F-Actin Organization During Cell Migration of Pancreatic Ductal Adenocarcinoma Cells. Cancers (Basel) 2019; 11:cancers11020135. [PMID: 30678127 PMCID: PMC6406627 DOI: 10.3390/cancers11020135] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/13/2022] Open
Abstract
Cell migration exerts a pivotal role in tumor progression, underlying cell invasion and metastatic spread. The cell migratory program requires f-actin re-organization, generally coordinated with the assembly of focal adhesions. Ion channels are emerging actors in regulating cell migration, through different mechanisms. We studied the role of the voltage dependent potassium channel KV 11.1 on cell migration of pancreatic ductal adenocarcinoma (PDAC) cells, focusing on its effects on f-actin organization and dynamics. Cells were cultured either on fibronectin (FN) or on a desmoplastic matrix (DM) with the addition of a conditioned medium produced by pancreatic stellate cells (PSC) maintained in hypoxia (Hypo-PSC-CM), to better mimic the PDAC microenvironment. KV11.1 was essential to maintain stress fibers in a less organized arrangement in cells cultured on FN. When PDAC cells were cultured on DM plus Hypo-PSC-CM, KV11.1 activity determined the organization of cortical f-actin into sparse and long filopodia, and allowed f-actin polymerization at a high speed. In both conditions, blocking KV11.1 impaired PDAC cell migration, and, on cells cultured onto FN, the effect was accompanied by a decrease of basal intracellular Ca2+ concentration. We conclude that KV11.1 is implicated in sustaining pro-metastatic signals in pancreatic cancer, through a reorganization of f-actin in stress fibers and a modulation of filopodia formation and dynamics.
Collapse
Affiliation(s)
- Sagar Manoli
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy.
| | - Stefano Coppola
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy.
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands.
| | - Claudia Duranti
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy.
| | - Matteo Lulli
- Department of Experimental Biochemical and Clinical Sciences, University of Firenze, Viale GB Morgagni 50, 50134 Firenze, Italy.
| | - Lara Magni
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy.
| | - Nirmala Kuppalu
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy.
| | - Nikolaj Nielsen
- Institut für Physiologie II, Robert-Koch-Str. 27b, D-48149 Münster, Germany.
| | - Thomas Schmidt
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands.
| | - Albrecht Schwab
- Institut für Physiologie II, Robert-Koch-Str. 27b, D-48149 Münster, Germany.
| | - Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 50, 50134 Florence, Italy.
| |
Collapse
|
205
|
Abstract
Review series that provides a state-of-the-art overview of the role of small GTPases in megakaryocyte and platelet biology. While the focus of the reviews is on recent advances in the area of basic science, the clinical relevance of alterations in small GTPase signaling for platelet count and function is also discussed.
Collapse
Affiliation(s)
- Lucia Stefanini
- a Department of Internal Medicine and Medical Specialties , Sapienza University of Rome , Rome , Italy
| | - Wolfgang Bergmeier
- b Department of Biochemistry and Biophysics , University of North Carolina , Chapel Hill , NC , USA.,c McAllister Heart Institute , University of North Carolina , Chapel Hill , NC , USA
| |
Collapse
|
206
|
Bedi S, Ono A. Friend or Foe: The Role of the Cytoskeleton in Influenza A Virus Assembly. Viruses 2019; 11:v11010046. [PMID: 30634554 PMCID: PMC6356976 DOI: 10.3390/v11010046] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/02/2019] [Accepted: 01/08/2019] [Indexed: 12/12/2022] Open
Abstract
Influenza A Virus (IAV) is a respiratory virus that causes seasonal outbreaks annually and pandemics occasionally. The main targets of the virus are epithelial cells in the respiratory tract. Like many other viruses, IAV employs the host cell’s machinery to enter cells, synthesize new genomes and viral proteins, and assemble new virus particles. The cytoskeletal system is a major cellular machinery, which IAV exploits for its entry to and exit from the cell. However, in some cases, the cytoskeleton has a negative impact on efficient IAV growth. In this review, we highlight the role of cytoskeletal elements in cellular processes that are utilized by IAV in the host cell. We further provide an in-depth summary of the current literature on the roles the cytoskeleton plays in regulating specific steps during the assembly of progeny IAV particles.
Collapse
Affiliation(s)
- Sukhmani Bedi
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
207
|
Koledova Z, Sumbal J. FGF signaling in mammary gland fibroblasts regulates multiple fibroblast functions and mammary epithelial morphogenesis. Development 2019; 146:dev.185306. [DOI: 10.1242/dev.185306] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022]
Abstract
Fibroblast growth factor (FGF) signaling is crucial for mammary gland development. While multiple roles for FGF signaling in the epithelium were described, the function of FGF signaling in mammary stroma has not been elucidated. In this study, we investigated FGF signaling in mammary fibroblasts. We found that mammary fibroblasts express FGF receptors FGFR1 and FGFR2 and respond to FGF ligands. In particular, FGF2 and FGF9 induce sustained ERK1/2 signaling and promote fibroblast proliferation and migration in 2D. Intriguingly, only FGF2 induces fibroblast migration in 3D extracellular matrix (ECM) through regulation of actomyosin cytoskeleton and promotes force-mediated collagen remodeling by mammary fibroblasts. Moreover, FGF2 regulates production of ECM proteins by mammary fibroblasts, including collagens, fibronectin, osteopontin, and matrix metalloproteinases. Finally, using organotypic 3D co-cultures we show that FGF2 and FGF9 signaling in mammary fibroblasts enhances fibroblast-induced branching of mammary epithelium by modulating paracrine signaling and that knockdown of Fgfr1 and Fgfr2 in mammary fibroblasts reduces branching of mammary epithelium. Our results demonstrate a pleiotropic role for FGF signaling in mammary fibroblasts with implications for regulation of mammary stromal functions and epithelial branching morphogenesis.
Collapse
Affiliation(s)
- Zuzana Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, Brno, 625 00, Czech Republic
| | - Jakub Sumbal
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, Brno, 625 00, Czech Republic
| |
Collapse
|
208
|
Lin D, Huang Q, Wu R, Dai S, Huang Z, Ren L, Huang S, Chen Q. Long non-coding RNA AFAP1-AS1 promoting epithelial-mesenchymal transition of endometriosis is correlated with transcription factor ZEB1. Am J Reprod Immunol 2018; 81:e13074. [PMID: 30506548 DOI: 10.1111/aji.13074] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/12/2018] [Accepted: 11/26/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Dianchao Lin
- First Affiliated Hospital of Xiamen University; Xiamen China
| | - Qiansheng Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment; Chinese Academy of Sciences; Xiamen China
| | - Rongfeng Wu
- First Affiliated Hospital of Xiamen University; Xiamen China
| | - Songjuan Dai
- First Affiliated Hospital of Xiamen University; Xiamen China
| | - Zhixiong Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences; Xiamen University; Xiamen China
| | - Lulu Ren
- First Affiliated Hospital of Xiamen University; Xiamen China
| | - Sijing Huang
- First Affiliated Hospital of Xiamen University; Xiamen China
| | - Qionghua Chen
- First Affiliated Hospital of Xiamen University; Xiamen China
| |
Collapse
|
209
|
Suwakulsiri W, Rai A, Xu R, Chen M, Greening DW, Simpson RJ. Proteomic profiling reveals key cancer progression modulators in shed microvesicles released from isogenic human primary and metastatic colorectal cancer cell lines. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:140171. [PMID: 30502510 DOI: 10.1016/j.bbapap.2018.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/05/2018] [Accepted: 11/23/2018] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles comprise two main classes - exosomes and shed microvesicles (sMVs). Whilst much is known about exosome cargo content and functionality, sMVs are poorly understood. Here, we describe the large-scale purification of sMVs released from primary (SW480) and metastatic (SW620) human isogenic colorectal cancer (CRC) cell lines using a combination of differential ultracentrifugation and isopycnic iodixanol density centrifugation. The yield of SW480-sMVs and SW620-sMVs was 0.75 mg and 0.80 mg, respectively. Both SW480-/SW620-sMVs are heterogeneous in size (100-600 nm diameter) and exhibit identical buoyant densities (1.10 g/mL). In contrast to exosomes, sMVs are ALIX-, TSG101-, CD63- and CD9-. Quantitative mass spectrometry identified 1295 and 1300 proteins in SW480-sMVs and SW620-sMVs, respectively. Gene Ontology enrichment analysis identified 'cell adhesion' (CDH1, OCLN, CTN families), 'signalling pathway' (KRAS, NRAS, MAPK1, MAP2K1), and 'translation/RNA related' processes (EIF, RPL, HNRNP families) in both sMV types. Strikingly, SW480- and SW620-sMVs exhibit distinct protein signatures - SW480-sMVs being enriched in ITGA/B, ANXA1, CLDN7, CD44 and EGFR/NOTCH signalling networks, while SW620-sMVs are enriched in PRKCA, MACC1, FGFR4 and MTOR/MARCKS signalling networks. Both SW480- and SW620-sMVs are taken up by NIH3T3 fibroblasts resulting in similar cell invasion capability. This study provides, for the first time, molecular insights into sMVs and CRC biology.
Collapse
Affiliation(s)
- Wittaya Suwakulsiri
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Alin Rai
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Rong Xu
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Maoshan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - David W Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Richard J Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
210
|
Chang B, Svoboda KKH, Liu X. Cell polarization: From epithelial cells to odontoblasts. Eur J Cell Biol 2018; 98:1-11. [PMID: 30473389 DOI: 10.1016/j.ejcb.2018.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/04/2018] [Accepted: 11/16/2018] [Indexed: 12/29/2022] Open
Abstract
Cell polarity identifies the asymmetry of a cell. Various types of cells, including odontoblasts and epithelial cells, polarize to fulfil their destined functions. Odontoblast polarization is a prerequisite and fundamental step for tooth development and tubular dentin formation. Current knowledge of odontoblast polarization, however, is very limited, which greatly impedes the development of novel approaches for regenerative endodontics. Compared to odontoblasts, epithelial cell polarization has been extensively studied over the last several decades. The knowledge obtained from epithelia polarization has been found applicable to other cell types, which is particularly useful considering the remarkable similarities of the morphological and compositional features between polarized odontoblasts and epithelia. In this review, we first discuss the characteristics, the key regulatory factors, and the process of epithelial polarity. Next, we compare the known facts of odontoblast polarization with epithelial cells. Lastly, we clarify knowledge gaps in odontoblast polarization and propose the directions for future research to fill the gaps, leading to the advancement of regenerative endodontics.
Collapse
Affiliation(s)
- Bei Chang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Kathy K H Svoboda
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA.
| |
Collapse
|
211
|
Verma K, Srivastava VK, Datta S. Rab GTPases take centre stage in understanding Entamoeba histolytica biology. Small GTPases 2018; 11:320-333. [PMID: 30273093 DOI: 10.1080/21541248.2018.1528840] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rab GTPases constitute the largest subgroup in the Ras superfamily of GTPases. It is well established that different Rab GTPases are localized in discrete subcellular localization and regulate the membrane trafficking in nearly all eukaryotic cells. Rab GTPase diversity is often regarded as an expression of vesicular trafficking complexity. The pathogenic amoeba Entamoeba histolytica harbours 91 Rab GTPases which is the highest among the currently available genome sequences from the eukaryotic kingdom. Here, we review the current status of amoebic Rab GTPases diversity, unique biochemical and structural features and summarise their predicted regulators. We discuss how amoebic Rab GTPases are involved in cellular processes such as endocytosis, phagocytosis, and invasion of host cellular components, which are essential for parasite survival and virulence.
Collapse
Affiliation(s)
- Kuldeep Verma
- Institute of Science, Nirma University , Ahmedabad, Gujarat, India.,Regional Centre for Biotechnology, NCR Biotech Science Cluster , Faridabad, India
| | | | - Sunando Datta
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal , Bhauri, India
| |
Collapse
|
212
|
Dubois F, Jean-Jacques B, Roberge H, Bénard M, Galas L, Schapman D, Elie N, Goux D, Keller M, Maille E, Bergot E, Zalcman G, Levallet G. A role for RASSF1A in tunneling nanotube formation between cells through GEFH1/Rab11 pathway control. Cell Commun Signal 2018; 16:66. [PMID: 30305100 PMCID: PMC6180646 DOI: 10.1186/s12964-018-0276-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/24/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND By allowing intercellular communication between cells, tunneling nanotubes (TNTs) could play critical role in cancer progression. If TNT formation is known to require cytoskeleton remodeling, key mechanism controlling their formation remains poorly understood. METHODS The cells of human bronchial (HBEC-3, A549) or mesothelial (H2452, H28) lines are transfected with different siRNAs (inactive, anti-RASSF1A, anti-GEFH1 and / or anti-Rab11). At 48 h post-transfection, i) the number and length of the nanotubes per cell are quantified, ii) the organelles, previously labeled with specific tracers, exchanged via these structures are monitored in real time between cells cultured in 2D or 3D and in normoxia, hypoxia or in serum deprivation condition. RESULTS We report that RASSF1A, a key-regulator of cytoskeleton encoded by a tumor-suppressor gene on 3p chromosome, is involved in TNTs formation in bronchial and pleural cells since controlling proper activity of RhoB guanine nucleotide exchange factor, GEF-H1. Indeed, the GEF-H1 inactivation induced by RASSF1A silencing, leads to Rab11 accumulation and subsequent exosome releasing, which in turn contribute to TNTs formation. Finally, we provide evidence involving TNT formation in bronchial carcinogenesis, by reporting that hypoxia or nutriment privation, two almost universal conditions in human cancers, fail to prevent TNTs induced by the oncogenic RASSF1A loss of expression. CONCLUSIONS This finding suggests for the first time that loss of RASSF1A expression could be a potential biomarker for TNTs formation, such TNTs facilitating intercellular communication favoring multistep progression of bronchial epithelial cells toward overt malignancy.
Collapse
Affiliation(s)
- Fatéméh Dubois
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, F-14000, Caen, France.,Service d'Anatomie et Cytologie Pathologique, CHU de Caen, F-14033, Caen, France
| | - Bastien Jean-Jacques
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, F-14000, Caen, France.,Service d'Anatomie et Cytologie Pathologique, CHU de Caen, F-14033, Caen, France
| | - Hélène Roberge
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, F-14000, Caen, France
| | - Magalie Bénard
- Normandie Université, Rouen, SFR IRIB, Plateau PRIMACEN, F-76821, Mont-Saint-Aignan, France
| | - Ludovic Galas
- Normandie Université, Rouen, SFR IRIB, Plateau PRIMACEN, F-76821, Mont-Saint-Aignan, France
| | - Damien Schapman
- Normandie Université, Rouen, SFR IRIB, Plateau PRIMACEN, F-76821, Mont-Saint-Aignan, France
| | - Nicolas Elie
- Normandie Université, UNICAEN, SFR ICORE, Plateau CMABio3, F-14032, Caen, France
| | - Didier Goux
- Normandie Université, UNICAEN, SFR ICORE, Plateau CMABio3, F-14032, Caen, France
| | - Maureen Keller
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, F-14000, Caen, France.,Normandie Université, UNICAEN, UPRES-EA-2608, F-14032, Caen, France
| | - Elodie Maille
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, F-14000, Caen, France.,Normandie Université, UNICAEN, UMR 1086 INSERM, F-14032, Caen, France
| | - Emmanuel Bergot
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, F-14000, Caen, France.,Service de Pneumologie, CHU de Caen, F-14033, Caen, France
| | - Gérard Zalcman
- U830 INSERM, "Génétique et Biologie des cancers" Centre de Recherche, Institut Curie, Paris, France.,Service d'oncologie thoracique, Hôpital Bichat-Claude Bernard, AP-HP, Université Paris-Diderot, Paris, France
| | - Guénaëlle Levallet
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, F-14000, Caen, France. .,Service d'Anatomie et Cytologie Pathologique, CHU de Caen, F-14033, Caen, France. .,Service D'Anatomie et Cytologie Pathologique, Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, CHU de Caen, Avenue de la côte de Nacre, 14032, Caen, France.
| |
Collapse
|
213
|
Saponara E, Visentin M, Baschieri F, Seleznik G, Martinelli P, Esposito I, Buschmann J, Chen R, Parrotta R, Borgeaud N, Bombardo M, Malagola E, Caflisch A, Farhan H, Graf R, Sonda S. Serotonin uptake is required for Rac1 activation in Kras-induced acinar-to-ductal metaplasia in the pancreas. J Pathol 2018; 246:352-365. [PMID: 30058725 DOI: 10.1002/path.5147] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 07/03/2018] [Accepted: 07/26/2018] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), which is the primary cause of pancreatic cancer mortality, is poorly responsive to currently available interventions. Identifying new targets that drive PDAC formation and progression is critical for developing alternative therapeutic strategies to treat this lethal malignancy. Using genetic and pharmacological approaches, we investigated in vivo and in vitro whether uptake of the monoamine serotonin [5-hydroxytryptamine (5-HT)] is required for PDAC development. We demonstrated that pancreatic acinar cells have the ability to readily take up 5-HT in a transport-mediated manner. 5-HT uptake promoted activation of the small GTPase Ras-related C3 botulinum toxin substrate 1 (Rac1), which is required for transdifferentiation of acinar cells into acinar-to-ductal metaplasia (ADM), a key determinant in PDAC development. Consistent with the central role played by Rac1 in ADM formation, inhibition of the 5-HT transporter Sert (Slc6a4) with fluoxetine reduced ADM formation both in vitro and in vivo in a cell-autonomous manner. In addition, fluoxetine treatment profoundly compromised the stromal reaction and affected the proliferation and lipid metabolism of malignant PDAC cells. We propose that Sert is a promising therapeutic target to counteract the early event of ADM, with the potential to stall the initiation and progression of pancreatic carcinogenesis. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Enrica Saponara
- Department of Visceral and Transplant Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Michele Visentin
- Department of Clinical Pharmacology and Toxicology, University Hospital of Zurich, Zurich, Switzerland
| | - Francesco Baschieri
- Institute Gustave Roussy, Institut National de la Santé et de la Recherche Médicale (INSERM), Villejuif, France
| | - Gitta Seleznik
- Department of Visceral and Transplant Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Paola Martinelli
- Institute for Cancer Research, Medical University, Wien, Austria
| | - Irene Esposito
- Institut für Pathologie, University Hospital of Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| | - Johanna Buschmann
- Division of Plastic and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Rong Chen
- Department of Visceral and Transplant Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Rossella Parrotta
- Laboratory of Molecular Oncology, Thorax und Lungen Tumor Zentrum, University Hospital of Zurich, Zurich, Switzerland
| | - Nathalie Borgeaud
- Department of Visceral and Transplant Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Marta Bombardo
- Department of Visceral and Transplant Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Ermanno Malagola
- Department of Visceral and Transplant Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Hesso Farhan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Rolf Graf
- Department of Visceral and Transplant Surgery, University Hospital of Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Sabrina Sonda
- Department of Visceral and Transplant Surgery, University Hospital of Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
214
|
Nakamura M, Dominguez ANM, Decker JR, Hull AJ, Verboon JM, Parkhurst SM. Into the breach: how cells cope with wounds. Open Biol 2018; 8:rsob.180135. [PMID: 30282661 PMCID: PMC6223217 DOI: 10.1098/rsob.180135] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/03/2018] [Indexed: 12/17/2022] Open
Abstract
Repair of wounds to individual cells is crucial for organisms to survive daily physiological or environmental stresses, as well as pathogen assaults, which disrupt the plasma membrane. Sensing wounds, resealing membranes, closing wounds and remodelling plasma membrane/cortical cytoskeleton are four major steps that are essential to return cells to their pre-wounded states. This process relies on dynamic changes of the membrane/cytoskeleton that are indispensable for carrying out the repairs within tens of minutes. Studies from different cell wound repair models over the last two decades have revealed that the molecular mechanisms of single cell wound repair are very diverse and dependent on wound type, size, and/or species. Interestingly, different repair models have been shown to use similar proteins to achieve the same end result, albeit sometimes by distinctive mechanisms. Recent studies using cutting edge microscopy and molecular techniques are shedding new light on the molecular mechanisms during cellular wound repair. Here, we describe what is currently known about the mechanisms underlying this repair process. In addition, we discuss how the study of cellular wound repair—a powerful and inducible model—can contribute to our understanding of other fundamental biological processes such as cytokinesis, cell migration, cancer metastasis and human diseases.
Collapse
Affiliation(s)
- Mitsutoshi Nakamura
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Andrew N M Dominguez
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jacob R Decker
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Alexander J Hull
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jeffrey M Verboon
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Susan M Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
215
|
Zou Y, Xu S, Xiao Y, Qiu Q, Shi M, Wang J, Liang L, Zhan Z, Yang X, Olsen N, Zheng SG, Xu H. Long noncoding RNA LERFS negatively regulates rheumatoid synovial aggression and proliferation. J Clin Invest 2018; 128:4510-4524. [PMID: 30198906 DOI: 10.1172/jci97965] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 07/26/2018] [Indexed: 12/27/2022] Open
Abstract
Fibroblast-like synoviocytes (FLSs) are critical to synovial aggression and joint destruction in rheumatoid arthritis (RA). The role of long noncoding RNAs (lncRNAs) in RA is largely unknown. Here, we identified a lncRNA, LERFS (lowly expressed in rheumatoid fibroblast-like synoviocytes), that negatively regulates the migration, invasion, and proliferation of FLSs through interaction with heterogeneous nuclear ribonucleoprotein Q (hnRNP Q). Under healthy conditions, by binding to the mRNA of RhoA, Rac1, and CDC42 - the small GTPase proteins that control the motility and proliferation of FLSs - the LERFS-hnRNP Q complex decreased the stability or translation of target mRNAs and downregulated their protein levels. But in RA FLSs, decreased LERFS levels induced a reduction of the LERFS-hnRNP Q complex, which reduced the binding of hnRNP Q to target mRNA and therefore increased the stability or translation of target mRNA. These findings suggest that a decrease in synovial LERFS may contribute to synovial aggression and joint destruction in RA and that targeting the lncRNA LERFS may have therapeutic potential in patients with RA.
Collapse
Affiliation(s)
- Yaoyao Zou
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Siqi Xu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Youjun Xiao
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qian Qiu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Maohua Shi
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jingnan Wang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liuqin Liang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhongping Zhan
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiuyan Yang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Nancy Olsen
- Department of Medicine, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Song Guo Zheng
- Department of Medicine, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Hanshi Xu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
216
|
Abstract
The Hippo signaling pathway controls nuclear accumulation and stability of the transcriptional coregulator YAP and its paralog TAZ. The activity of Hippo-YAP signaling is influenced not only by biochemical signals, but also by cell shape and mechanical tension transmitted through cell-cell junctions and cell-matrix adhesions. Data accumulated thus far indicates that the actin cytoskeleton is a key mediator of the regulation of Hippo-YAP signaling by means of a variety of biochemical and mechanical cues. In this review, we have outlined the role of actin dynamics and actin-associated proteins in the regulation of Hippo-YAP signaling. In addition, we discuss actinmediated regulation of YAP/TAZ activity independent of the core Hippo kinases MST and LATS. Although our understanding of the link between Hippo-YAP signaling and the actin cytoskeleton is progressing rapidly, many open questions remain. [BMB Reports 2018; 51(3): 151-156].
Collapse
Affiliation(s)
- Jimyung Seo
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| |
Collapse
|
217
|
Willems E, Dedobbeleer M, Digregorio M, Lombard A, Goffart N, Lumapat PN, Lambert J, Van den Ackerveken P, Szpakowska M, Chevigné A, Scholtes F, Rogister B. Aurora A plays a dual role in migration and survival of human glioblastoma cells according to the CXCL12 concentration. Oncogene 2018; 38:73-87. [PMID: 30082913 PMCID: PMC6755987 DOI: 10.1038/s41388-018-0437-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 12/13/2022]
Abstract
Primary glioblastoma is the most frequent human brain tumor in adults and is generally fatal due to tumor recurrence. We previously demonstrated that glioblastoma-initiating cells invade the subventricular zones and promote their radio-resistance in response to the local release of the CXCL12 chemokine. In this work, we show that the mitotic Aurora A kinase (AurA) is activated through the CXCL12–CXCR4 pathway in an ERK1/2-dependent manner. Moreover, the CXCL12–ERK1/2 signaling induces the expression of Ajuba, the main cofactor of AurA, which allows the auto-phosphorylation of AurA. We show that AurA contributes to glioblastoma cell survival, radio-resistance, self-renewal, and proliferation regardless of the exogenous stimulation with CXCL12. On the other hand, AurA triggers the CXCL12-mediated migration of glioblastoma cells in vitro as well as the invasion of the subventricular zone in xenograft experiments. Moreover, AurA regulates cytoskeletal proteins (i.e., Actin and Vimentin) and favors the pro-migratory activity of the Rho-GTPase CDC42 in response to CXCL12. Altogether, these results show that AurA, a well-known kinase of the mitotic machinery, may play alternative roles in human glioblastoma according to the CXCL12 concentration.
Collapse
Affiliation(s)
- Estelle Willems
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium
| | - Matthias Dedobbeleer
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium
| | - Marina Digregorio
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium
| | - Arnaud Lombard
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium.,Department of Neurosurgery, CHU of Liège, Liège, Belgium
| | - Nicolas Goffart
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium
| | - Paul Noel Lumapat
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium
| | - Jeremy Lambert
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium.,Department of Neurosurgery, CHU of Liège, Liège, Belgium
| | | | - Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Andy Chevigné
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Felix Scholtes
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium.,Department of Neurosurgery, CHU of Liège, Liège, Belgium
| | - Bernard Rogister
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium. .,Department of Neurology, CHU of Liège, Liège, Belgium.
| |
Collapse
|
218
|
Li W, Yu X, Ma X, Xie L, Xia Z, Liu L, Yu X, Wang J, Zhou H, Zhou X, Yang Y, Liu H. Deguelin attenuates non-small cell lung cancer cell metastasis through inhibiting the CtsZ/FAK signaling pathway. Cell Signal 2018; 50:131-141. [PMID: 30018008 DOI: 10.1016/j.cellsig.2018.07.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/09/2018] [Accepted: 07/05/2018] [Indexed: 01/13/2023]
Abstract
Lung cancer is the leading cause of cancer-related death among both men and women every year, mainly due to metastasis. Although natural compound deguelin has been reported to inhibited cell migration and invasion in various cancer cells, the details of this regulation progress remain to be fully elucidated. In this study, we investigated the underlying mechanism of deguelin-suppressed metastasis of non-small cell lung cancer (NSCLC) cells. Our results demonstrate that deguelin inhibits NSCLC cell migration, invasion, and metastasis both in vitro and in vivo. These inhibitory effects of deguelin were mediated by suppressing of Cathepsin Z (CtsZ) expression and interrupting the interaction of CtsZ with integrin β3. Moreover, deguelin inhibits the activation of CtsZ downstream FAK/Src/Paxillin signaling. Knockdown of CtsZ mimicked the effect of deguelin on NSCLC cells migration and invasion. Our study reveals that deguelin exerts its anti-metastatic effect both in vitro and in vivo is partly dependent on the suppression of CtsZ signaling. Deguelin would be a potential anti-metastasis agent against NSCLC.
Collapse
Affiliation(s)
- Wei Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Xinfang Yu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Xiaolong Ma
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Li Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhenkun Xia
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Lijun Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xinyou Yu
- Shangdong Lvdu Bio-Industry Co., Ltd., Binzhou, Shangdong 256600, China
| | - Jian Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Huiling Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xinmin Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yifeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
219
|
Wang J, Li H, Yao Y, Ren Y, Lin J, Hu J, Zheng M, Song X, Zhao T, Chen YY, Shen Y, Zhu YJ, Wang LL. β-Elemene Enhances GAP-43 Expression and Neurite Outgrowth by Inhibiting RhoA Kinase Activation in Rats with Spinal Cord Injury. Neuroscience 2018; 383:12-21. [DOI: 10.1016/j.neuroscience.2018.04.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 04/03/2018] [Accepted: 04/28/2018] [Indexed: 12/21/2022]
|
220
|
Fabbri A, Travaglione S, Maroccia Z, Guidotti M, Pierri CL, Primiano G, Servidei S, Loizzo S, Fiorentini C. The Bacterial Protein CNF1 as a Potential Therapeutic Strategy against Mitochondrial Diseases: A Pilot Study. Int J Mol Sci 2018; 19:E1825. [PMID: 29933571 PMCID: PMC6073533 DOI: 10.3390/ijms19071825] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 02/07/2023] Open
Abstract
The Escherichia coli protein toxin cytotoxic necrotizing factor 1 (CNF1), which acts on the Rho GTPases that are key regulators of the actin cytoskeleton, is emerging as a potential therapeutic tool against certain neurological diseases characterized by cellular energy homeostasis impairment. In this brief communication, we show explorative results on the toxin’s effect on fibroblasts derived from a patient affected by myoclonic epilepsy with ragged-red fibers (MERRF) that carries a mutation in the m.8344A>G gene of mitochondrial DNA. We found that, in the patient’s cells, besides rescuing the wild-type-like mitochondrial morphology, CNF1 administration is able to trigger a significant increase in cellular content of ATP and of the mitochondrial outer membrane marker Tom20. These results were accompanied by a profound F-actin reorganization in MERRF fibroblasts, which is a typical CNF1-induced effect on cell cytoskeleton. These results point at a possible role of the actin organization in preventing or limiting the cell damage due to mitochondrial impairment and at CNF1 treatment as a possible novel strategy against mitochondrial diseases still without cure.
Collapse
Affiliation(s)
- Alessia Fabbri
- Italian Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| | - Sara Travaglione
- Italian Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| | - Zaira Maroccia
- Italian Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| | - Marco Guidotti
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| | - Ciro Leonardo Pierri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona, 4, 70124 Bari, Italy.
| | - Guido Primiano
- Unità di Neurofisiopatologia, Area Neuroscienze, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy.
| | - Serenella Servidei
- Unità di Neurofisiopatologia, Area Neuroscienze, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy.
| | - Stefano Loizzo
- Italian Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| | - Carla Fiorentini
- Italian Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| |
Collapse
|
221
|
fMLP-dependent activation of Akt and ERK1/2 through ROS/Rho A pathways is mediated through restricted activation of the FPRL1 (FPR2) receptor. Inflamm Res 2018; 67:711-722. [PMID: 29922854 DOI: 10.1007/s00011-018-1163-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 05/02/2018] [Accepted: 06/12/2018] [Indexed: 10/28/2022] Open
Abstract
OBJECTIVE AND DESIGN The objective of this study is to uncover the signal transduction pathways of N-formyl methionyl-leucyl-phenylalanine (fMLP) in monocyte. MATERIALS OR SUBJECTS Freshly isolated human peripheral blood monocytes (PBMC) were used for in vitro assessment of signal transduction pathways activated by fMLP. TREATMENT Time-course and dose-response experiments were used to evaluate the effect of fMLP along with the specific inhibitors/stimulators on the activation of downstream signaling kinases. METHODS Freshly isolated human PBMC were stimulated with fMLP for the desired time. Western blot and siRNA analysis were used to evaluate the activated intracellular signaling kinases, and flow analysis was performed to assess the levels of CD11b. Furthermore, luminescence spectrometry was performed to measure the levels of released hydrogen peroxide in the media. RESULTS fMLP strongly stimulated the activation of AKT and ERK1/2 through a RhoA-GTPase-dependent manner and also induced H2O2 release by monocytes. Furthermore, fMLP mediated its effects through restricted activation of formylpeptide receptor-like 1 (FPRL1/FPR2), but independently of either EGFR transactivation or intracellular calcium release. In addition, NAC reversed fMLP- and H2O2-induced activation of Akt and RhoA-GTPase. CONCLUSION Collectively, these data suggested that fMLP-activated ERK1/2 and Akt pathways through specific activation of the FPRL1/ROS/RoA-GTPase pathway.
Collapse
|
222
|
Combined Rho-kinase inhibition and immunogenic cell death triggers and propagates immunity against cancer. Nat Commun 2018; 9:2165. [PMID: 29867097 PMCID: PMC5986820 DOI: 10.1038/s41467-018-04607-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/11/2018] [Indexed: 01/12/2023] Open
Abstract
Activation of T cell immune response is critical for the therapeutic efficacy of cancer immunotherapy. Current immunotherapies have shown remarkable clinical success against several cancers; however, significant responses remain restricted to a minority of patients. Here, we show a therapeutic strategy that combines enhancing the phagocytic activity of antigen-presenting cells with immunogenic cell death to trigger efficient antitumour immunity. Rho-kinase (ROCK) blockade increases cancer cell phagocytosis and induces antitumour immunity through enhancement of T cell priming by dendritic cells (DCs), leading to suppression of tumour growth in syngeneic tumour models. Combining ROCK blockade with immunogenic chemotherapy leads to increased DC maturation and synergistic CD8+ cytotoxic T cell priming and infiltration into tumours. This therapeutic strategy effectively suppresses tumour growth and improves overall survival in a genetic mouse mammary tumour virus/Neu tumour model. Collectively, these results suggest that boosting intrinsic cancer immunity using immunogenic killing and enhanced phagocytosis is a promising therapeutic strategy for cancer immunotherapy. Activation of an immune response is critical for the efficacy of cancer therapies. Here, the authors show that combination of ROCK inhibitor with chemotherapeutics that induce immunogenic cell death of cancer cells leads to increased dendritic cells’ maturation and synergistic CD8+ cytotoxic T cell priming and infiltration into the tumours, leading to suppressed tumour growth and improved overall survival in syngeneic and genetically engineered tumour models.
Collapse
|
223
|
Woroniuk A, Porter A, White G, Newman DT, Diamantopoulou Z, Waring T, Rooney C, Strathdee D, Marston DJ, Hahn KM, Sansom OJ, Zech T, Malliri A. STEF/TIAM2-mediated Rac1 activity at the nuclear envelope regulates the perinuclear actin cap. Nat Commun 2018; 9:2124. [PMID: 29844364 PMCID: PMC5974301 DOI: 10.1038/s41467-018-04404-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 04/11/2018] [Indexed: 11/09/2022] Open
Abstract
The perinuclear actin cap is an important cytoskeletal structure that regulates nuclear morphology and re-orientation during front-rear polarisation. The mechanisms regulating the actin cap are currently poorly understood. Here, we demonstrate that STEF/TIAM2, a Rac1 selective guanine nucleotide exchange factor, localises at the nuclear envelope, co-localising with the key perinuclear proteins Nesprin-2G and Non-muscle myosin IIB (NMMIIB), where it regulates perinuclear Rac1 activity. We show that STEF depletion reduces apical perinuclear actin cables (a phenotype rescued by targeting active Rac1 to the nuclear envelope), increases nuclear height and impairs nuclear re-orientation. STEF down-regulation also reduces perinuclear pMLC and decreases myosin-generated tension at the nuclear envelope, suggesting that STEF-mediated Rac1 activity regulates NMMIIB activity to promote stabilisation of the perinuclear actin cap. Finally, STEF depletion decreases nuclear stiffness and reduces expression of TAZ-regulated genes, indicating an alteration in mechanosensing pathways as a consequence of disruption of the actin cap.
Collapse
Affiliation(s)
- Anna Woroniuk
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG, UK
| | - Andrew Porter
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG, UK
| | - Gavin White
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG, UK
| | - Daniel T Newman
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, UK
| | - Zoi Diamantopoulou
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG, UK
| | - Thomas Waring
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, UK
| | - Claire Rooney
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG, UK
| | - Douglas Strathdee
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Daniel J Marston
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599-7365, USA
| | - Klaus M Hahn
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599-7365, USA
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Tobias Zech
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, UK
| | - Angeliki Malliri
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG, UK.
| |
Collapse
|
224
|
Bharadwaj R, Sharma S, Arya R, Bhattacharya S, Bhattacharya A. EhRho1 regulates phagocytosis by modulating actin dynamics through EhFormin1 and EhProfilin1 inEntamoeba histolytica. Cell Microbiol 2018; 20:e12851. [DOI: 10.1111/cmi.12851] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/12/2018] [Accepted: 03/25/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Ravi Bharadwaj
- School of Life Sciences; Jawaharlal Nehru University; New Delhi India
| | - Shalini Sharma
- School of Life Sciences; Jawaharlal Nehru University; New Delhi India
| | - Ranjana Arya
- School of Biotechnology; Jawaharlal Nehru University; New Delhi India
| | - Sudha Bhattacharya
- School of Environmental Sciences; Jawaharlal Nehru University; New Delhi India
| | - Alok Bhattacharya
- School of Life Sciences; Jawaharlal Nehru University; New Delhi India
| | | |
Collapse
|
225
|
Prashar A, Ortiz ME, Lucarelli S, Barker E, Tabatabeiyazdi Z, Shamoun F, Raju D, Antonescu C, Guyard C, Terebiznik MR. Small Rho GTPases and the Effector VipA Mediate the Invasion of Epithelial Cells by Filamentous Legionella pneumophila. Front Cell Infect Microbiol 2018; 8:133. [PMID: 29774203 PMCID: PMC5943596 DOI: 10.3389/fcimb.2018.00133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/17/2018] [Indexed: 12/13/2022] Open
Abstract
Legionella pneumophila (Lp) exhibits different morphologies with varying degrees of virulence. Despite their detection in environmental sources of outbreaks and in respiratory tract secretions and lung autopsies from patients, the filamentous morphotype of Lp remains poorly studied. We previously demonstrated that filamentous Lp invades lung epithelial cells (LECs) and replicates intracellularly in a Legionella containing vacuole. Filamentous Lp activates β1integrin and E-cadherin receptors at the surface of LECs leading to the formation of actin-rich cell membrane structures we termed hooks and membrane wraps. These structures entrap segments of an Lp filament on host cell surface and mediate bacterial internalization. Here we investigated the molecular mechanisms responsible for the actin rearrangements needed for the formation and elongation of these membrane wraps and bacterial internalization. We combined genetic and pharmacological approaches to assess the contribution of signaling downstream of β1integrin and E-cadherin receptors, and Lp Dot/Icm secretion system- translocated effectors toward the invasion process. Our studies demonstrate a multi-stage mechanism of LEC invasion by filamentous Lp. Bacterial attachment to host cells depends on signaling downstream of β1integrin and E-cadherin activation, leading to Rho GTPases-dependent activation of cellular actin nucleating proteins, Arp2/3 and mDia. This mediates the formation of primordial membrane wraps that entrap the filamentous bacteria on the cell surface. Following this, in a second phase of the invasion process the Dot/Icm translocated effector VipA mediates rapid membrane wrap elongation, leading to the engulfment of the filamentous bacteria by the LECs. Our findings provide the first description of Rho GTPases and a Dot/Icm effector VipA regulating the actin dynamics needed for the invasion of epithelial cells by Lp.
Collapse
Affiliation(s)
- Akriti Prashar
- Department of Biological Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - María Eugenia Ortiz
- Department of Biological Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada
| | - Stefanie Lucarelli
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Elizabeth Barker
- Department of Biological Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Zohreh Tabatabeiyazdi
- Department of Biological Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Feras Shamoun
- Department of Biological Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada
| | - Deepa Raju
- Department of Biological Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada
| | - Costin Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Cyril Guyard
- Bioaster, Lyon, France.,Molecular Microbiology, Public Health Ontario, Toronto, ON, Canada
| | - Mauricio R Terebiznik
- Department of Biological Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
226
|
Kim HJ, Lee WH, Kim MJ, Shin S, Jang B, Park JB, Wasco W, Buxbaum JD, Kim YS, Choi EK. Calsenilin, a Presenilin Interactor, Regulates RhoA Signaling and Neurite Outgrowth. Int J Mol Sci 2018; 19:ijms19041196. [PMID: 29652865 PMCID: PMC5979497 DOI: 10.3390/ijms19041196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 11/24/2022] Open
Abstract
Calsenilin modulates A-type potassium channels, regulates presenilin-mediated γ-secretase activity, and represses prodynorphin and c-fos genes expression. RhoA is involved in various cellular functions including proliferation, differentiation, migration, transcription, and regulation of the actin cytoskeleton. Although recent studies demonstrate that calsenilin can directly interact with RhoA and that RhoA inactivation is essential for neuritogenesis, it is uncertain whether there is a link between calsenilin and RhoA-regulated neuritogenesis. Here, we investigated the role of calsenilin in RhoA-regulated neuritogenesis using in vitro and in vivo systems. We found that calsenilin induced RhoA inactivation, which accompanied RhoA phosphorylation and the reduced phosphorylation levels of LIM kinase (LIMK) and cofilin. Interestingly, PC12 cells overexpressing either full-length (FL) or the caspase 3-derived C-terminal fragment (CTF) of calsenilin significantly inactivated RhoA through its interaction with RhoA and p190 Rho GTPase-activating protein (p190RhoGAP). In addition, cells expressing FL and the CTF of calsenilin had increased neurite outgrowth compared to cells expressing the N-terminal fragment (NTF) of calsenilin or vector alone. Moreover, Tat-C3 and Y27632 treatment significantly increased the percentage of neurite-bearing cells, neurite length, and the number of neurites in cells. Finally, calsenilin deficiency in the brains of calsenilin-knockout mice significantly interfered with RhoA inactivation. These findings suggest that calsenilin contributes to neuritogenesis through RhoA inactivation.
Collapse
Affiliation(s)
- Hee-Jun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Korea.
| | - Won-Haeng Lee
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Korea.
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Gangwon-do 24252, Korea.
| | - Mo-Jong Kim
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Korea.
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Gangwon-do 24252, Korea.
| | - Sunmee Shin
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Korea.
| | - Byungki Jang
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Korea.
| | - Jae-Bong Park
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Korea.
| | - Wilma Wasco
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| | - Joseph D Buxbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Korea.
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Korea.
| | - Eun-Kyoung Choi
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Korea.
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Gangwon-do 24252, Korea.
| |
Collapse
|
227
|
IP 3R3 silencing induced actin cytoskeletal reorganization through ARHGAP18/RhoA/mDia1/FAK pathway in breast cancer cell lines. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:945-958. [PMID: 29630900 DOI: 10.1016/j.bbamcr.2018.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/31/2018] [Accepted: 04/03/2018] [Indexed: 01/02/2023]
Abstract
Cell morphology is altered in the migration process, and the underlying cytoskeleton remodeling is highly dependent of intracellular Ca2+ concentration. Many calcium channels are known to be involved in migration. Inositol 1,4,5-trisphosphate receptor (IP3R) was demonstrated to be implicated in breast cancer cells migration, but its involvement in morphological changes during the migration process remains unclear. In the present work, we showed that IP3R3 expression was correlated to cell morphology. IP3R3 silencing induced rounding shape and decreased adhesion in invasive breast cancer cell lines. Moreover, IP3R3 silencing decreased ARHGAP18 expression, RhoA activity, Cdc42 expression and Y861FAK phosphorylation. Interestingly, IP3R3 was able to regulate profilin remodeling, without inducing any myosin II reorganization. IP3R3 silencing revealed an oscillatory calcium signature, with a predominant oscillating profile occurring in early wound repair. To summarize, we demonstrated that IP3R3 is able to modulate intracellular Ca2+ availability and to coordinate the remodeling of profilin cytoskeleton organization through the ARHGAP18/RhoA/mDia1/FAK pathway.
Collapse
|
228
|
Dang Y, Waxman S, Wang C, Loewen RT, Sun M, Loewen NA. A porcine ex vivo model of pigmentary glaucoma. Sci Rep 2018; 8:5468. [PMID: 29615741 PMCID: PMC5882895 DOI: 10.1038/s41598-018-23861-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 03/16/2018] [Indexed: 11/11/2022] Open
Abstract
Pigment dispersion can lead to pigmentary glaucoma, a poorly understood condition of younger myopic eyes with fluctuating high intraocular pressure. It has been difficult to investigate its pathogenesis without a model similar to human eyes in size and behavior. Here we present a porcine ex vivo model that recreates several features of pigmentary glaucoma, including intraocular hypertension, accumulation of pigment in the trabecular meshwork, and declining phagocytosis. We found that trabecular meshwork cells regulate outflow, form actin stress fibers, and have a decreased phagocytic activity. Gene expression microarrays and a pathway analysis of TM monolayers as well as ex vivo anterior segment perfusion cultures indicated that RhoA plays a central role in regulating the cytoskeleton, motility, and phagocytosis in the trabecular meshwork, providing new insights and targets to investigate in pigmentary glaucoma.
Collapse
Affiliation(s)
- Yalong Dang
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, United States of America
| | - Susannah Waxman
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, United States of America
| | - Chao Wang
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, United States of America
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Ralitsa T Loewen
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, United States of America
| | - Ming Sun
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, United States of America
| | - Nils A Loewen
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, United States of America.
| |
Collapse
|
229
|
Xu B, Santos SAA, Hinton BT. Protein tyrosine kinase 7 regulates extracellular matrix integrity and mesenchymal intracellular RAC1 and myosin II activities during Wolffian duct morphogenesis. Dev Biol 2018; 438:33-43. [PMID: 29580943 DOI: 10.1016/j.ydbio.2018.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/21/2018] [Accepted: 03/13/2018] [Indexed: 01/15/2023]
Abstract
Wolffian duct morphogenesis must be highly coordinated with its specialized function of providing an optimal microenvironment for sperm maturation. Without normal Wolffian duct morphogenesis, male infertility will result. Our previous study showed that mediolateral and radial intercalation of epithelial and mesenchymal cells respectively, were major drivers of ductal elongation and were regulated by protein tyrosine kinase 7 (PTK7), a member of the planar cell polarity (PCP) non-canonical Wnt pathway. To understand the mechanism by which PTK7 regulates cell rearrangement/intercalation, we investigated the integrity of the extracellular matrix (ECM) and the activity of intracellular cytoskeleton mediators following loss of Ptk7. Abnormal assembly of nephronectin, laminin, and collagen IV at the basement membrane and fibrosis-like deposition of fibrilla collagen in the interstitium were observed in Ptk7 knockout Wolffian ducts. Further, the activity levels of RAC1 and myosin II, two cytoskeleton mediators, decreased in the Ptk7 knockout mesenchyme compared to controls. In addition, in-vitro experiments suggested that alterations of ECM and cytoskeleton mediators resulted in changes in Wolffian duct morphogenesis. When in-vitro-cultured Wolffian ducts were treated with collagenase IV, the degree of cross-linked fibrilla collagen was reduced, Wolffian duct elongation and coiling were significantly reduced, and an expanded cyst-like duct was observed. When Wolffian ducts were treated with RAC1 inhibitor NSC23766, mesenchymal fibrilla collagen was disassembled, and Wolffian duct elongation was significantly reduced. Our findings provide evidence that PTK7 regulates ECM integrity and the activity levels of RAC1 and myosin II, which in turn regulates Wolffian duct morphogenesis and therefore, epididymal function.
Collapse
Affiliation(s)
- Bingfang Xu
- Department of Cell Biology, University of Virginia Health System, PO Box 800732, Charlottesville, VA 22908, USA
| | - Sérgio A A Santos
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Barry T Hinton
- Department of Cell Biology, University of Virginia Health System, PO Box 800732, Charlottesville, VA 22908, USA.
| |
Collapse
|
230
|
Bryan AM, Del Poeta M. Sphingosine-1-phosphate receptors and innate immunity. Cell Microbiol 2018; 20:e12836. [PMID: 29498184 DOI: 10.1111/cmi.12836] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/04/2018] [Accepted: 02/15/2018] [Indexed: 12/24/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a signalling lipid that regulates many cellular processes in mammals. One well-studied role of S1P signalling is to modulate T-cell trafficking, which has a major impact on adaptive immunity. Compounds that target S1P signalling pathways are of interest for immune system modulation. Recent studies suggest that S1P signalling regulates many more cell types and processes than previously appreciated. This review will summarise current understanding of S1P signalling, focusing on recent novel findings in the roles of S1P receptors in innate immunity.
Collapse
Affiliation(s)
- Arielle M Bryan
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA.,Veterans Administration Medical Center, Northport, NY, USA.,Division of Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
231
|
Chinese herb medicine matrine induce apoptosis in human esophageal squamous cancer KYSE-150 cells through increasing reactive oxygen species and inhibiting mitochondrial function. Pathol Res Pract 2018; 214:691-699. [PMID: 29567333 DOI: 10.1016/j.prp.2018.03.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/01/2018] [Accepted: 03/13/2018] [Indexed: 02/07/2023]
Abstract
Matrine, as a natural alkaloid isolated from the traditional herb medicine sophora flavescens, has been proved to possess excellent biological activities, including anticancer effects. Now, this research aims to assess the anticancer activities and the mechanism of matrine against esophageal cancer cells, we investigated the proliferative inhibition, apoptosis induction, as well as the underlying mechanism of matrine on esophageal cancer KYSE-150 cells. It was found that matrine could suppress KYSE-150 cell proliferation and significantly mediate cell apoptosis in a dose-dependent relation by increasing intracellular reactive oxygen species level and triggering mitochondrial membrane potential disruption. More precise mechanism studies demonstrated that matrine could up-regulate the expression of Bax proteins and down-regulate the expression of Bcl-2 proteins, as well as the activation about caspase-3, 8 and 9 in KYSE-150 cells. The morphological analysis of KYSE-150 cells exhibited that matrine could destroy the F-actin and nuclei structures and induce morphological damage with increased surface height distribution and roughness of cell membrane. These results not only demonstrated the potential anticancer activity mechanism of matrine at nanoscale, but also provide preliminary guidance for the treatment of esophageal cancer using matrine.
Collapse
|
232
|
Moodley S, Derouet M, Bai XH, Xu F, Kapus A, Yang BB, Liu M. Stimulus-dependent dissociation between XB130 and Tks5 scaffold proteins promotes airway epithelial cell migration. Oncotarget 2018; 7:76437-76452. [PMID: 27835612 PMCID: PMC5363521 DOI: 10.18632/oncotarget.13261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/02/2016] [Indexed: 02/07/2023] Open
Abstract
Repair of airway epithelium after injury requires migration of neighboring epithelial cells to injured areas. However, the molecular mechanisms regulating airway epithelial cell migration is not well defined. We have previously shown that XB130, a scaffold protein, is required for airway epithelial repair and regeneration in vivo, and interaction between XB130 and another scaffold protein, Tks5, regulates cell proliferation and survival in human bronchial epithelial cells. The objective of the present study was to determine the role of XB130 and Tks5 interaction in airway epithelial cell migration. Interestingly, we found that XB130 only promotes lateral cell migration, whereas, Tks5 promotes cell migration/invasion via proteolysis of extracellular matrix. Upon stimulation with EGF, PKC activator phorbol 12, 13-dibutyrate or a nicotinic acetylcholine receptor ligand, XB130 and Tks5 translocated to the cell membrane in a stimulus-dependent manner. The translocation and distribution of XB130 is similar to lamellipodial marker, WAVE2; whereas Tks5 is similar to podosome marker, N-WASP. Over-expression of XB130 or Tks5 alone enhances cell migration, whereas co-expression of both XB130 and Tks5 inhibits cell migration processes and signaling. Furthermore, XB130 interacts with Rac1 whereas Tks5 interacts with Cdc42 to promote Rho GTPase activity. Our results suggest that dissociation between XB130 and Tks5 may facilitate lateral cell migration via XB130/Rac1, and vertical cell migration via Tks5/Cdc42. These molecular mechanisms will help our understanding of airway epithelial repair and regeneration.
Collapse
Affiliation(s)
- Serisha Moodley
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Canada
| | - Mathieu Derouet
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Canada
| | - Xiao Hui Bai
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Canada
| | - Feng Xu
- Advanced Optical Microscopy Facility, UHN, Toronto, Canada
| | - Andras Kapus
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Burton B Yang
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Mingyao Liu
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Canada
| |
Collapse
|
233
|
MDA-9/Syntenin (SDCBP) modulates small GTPases RhoA and Cdc42 via transforming growth factor β1 to enhance epithelial-mesenchymal transition in breast cancer. Oncotarget 2018; 7:80175-80189. [PMID: 27863394 PMCID: PMC5348312 DOI: 10.18632/oncotarget.13373] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/01/2016] [Indexed: 12/31/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is one of the decisive steps regulating cancer invasion and metastasis. However, the molecular mechanisms underlying this transition require further clarification. MDA-9/syntenin (SDCBP) expression is elevated in breast cancer patient samples as well as cultured breast cancer cells. Silencing expression of MDA-9 in mesenchymal metastatic breast cancer cells triggered a change in cell morphology in both 2D- and 3D-cultures to a more epithelial-like phenotype, along with changes in EMT markers, cytoskeletal rearrangement and decreased invasion. Conversely, over expressing MDA-9 in epithelial non-metastatic breast cancer cells instigated a change in morphology to a more mesenchymal phenotype with corresponding changes in EMT markers, cytoskeletal rearrangement and an increase in invasion. We also found that MDA-9 upregulated active levels of known modulators of EMT, the small GTPases RhoA and Cdc42, via TGFβ1. Reintroducing TGFβ1 in MDA-9 silenced cells restored active RhoA and cdc42 levels, modulated cytoskeletal rearrangement and increased invasion. We further determined that MDA-9 interacts with TGFβ1 via its PDZ1 domain. Finally, in vivo studies demonstrated that silencing the expression of MDA-9 resulted in decreased lung metastasis and TGFβ1 re-expression partially restored lung metastases. Our findings provide evidence for the relevance of MDA-9 in mediating EMT in breast cancer and support the potential of MDA-9 as a therapeutic target against metastatic disease.
Collapse
|
234
|
Upadhyay M, Kuna M, Tudor S, Martino Cortez Y, Rangan P. A switch in the mode of Wnt signaling orchestrates the formation of germline stem cell differentiation niche in Drosophila. PLoS Genet 2018; 14:e1007154. [PMID: 29370168 PMCID: PMC5811049 DOI: 10.1371/journal.pgen.1007154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 02/13/2018] [Accepted: 12/13/2017] [Indexed: 01/12/2023] Open
Abstract
Germline stem cell (GSC) self-renewal and differentiation into gametes is regulated by both intrinsic factors in the germ line as well as extrinsic factors from the surrounding somatic niche. dWnt4, in the escort cells of the adult somatic niche promotes GSC differentiation using the canonical β-catenin-dependent transcriptional pathway to regulate escort cell survival, adhesion to the germ line and downregulation of self-renewal signaling. Here, we show that in addition to the β-catenin-dependent canonical pathway, dWnt4 also uses downstream components of the Wnt non-canonical pathway to promote escort cell function earlier in development. We find that the downstream non-canonical components, RhoA, Rac1 and cdc42, are expressed at high levels and are active in escort cell precursors of the female larval gonad compared to the adult somatic niche. Consistent with this expression pattern, we find that the non-canonical pathway components function in the larval stages but not in adults to regulate GSC differentiation. In the larval gonad, dWnt4, RhoA, Rac1 and cdc42 are required to promote intermingling of escort cell precursors, a function that then promotes proper escort cell function in the adults. We find that dWnt4 acts by modulating the activity of RhoA, Rac1 and cdc42, but not their protein levels. Together, our results indicate that at different points of development, dWnt4 switches from using the non-canonical pathway components to using a β-catenin-dependent canonical pathway in the escort cells to facilitate the proper differentiation of GSCs. Germ line association with the somatic cells is critical for various aspects of germ cell biology, including migration, self-renewal and differentiation. In Drosophila females, soma–germ line association begins during embryogenesis and continues until the mature egg is formed. In the adult, the somatic escort cells promote differentiation of the germline stem cell daughter using Wnt signaling. dWnt4, a Wnt ligand, acts in an autocrine manner in these escort cells, using the canonical pathway to regulate survival, division and encapsulation of the stem cell daughter, a function critical for differentiation. Here, we show at an earlier stage, in the larvae, the same ligand uses components of Wnt non-canonical pathway, RhoA, Rac1 and cdc42, to regulate proper mingling of escort cell precursors between the germ cells. Thus, dWnt4 uses different modules of signaling at different points in development to promote cell movement and control cytoplasmic protrusions. As Wnts have been associated with cancers, understanding how Wnts modulate cell movement by switching on and off different modules may lead to insights into the etiology and progression of cancers.
Collapse
Affiliation(s)
- Maitreyi Upadhyay
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, New York, United States of America
| | - Michael Kuna
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, New York, United States of America
- Albany Medical College, Albany, New York, United States of America
| | - Sara Tudor
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, New York, United States of America
- Albany Medical College, Albany, New York, United States of America
| | - Yesenia Martino Cortez
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, New York, United States of America
- Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Prashanth Rangan
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
235
|
Wu N, Ren D, Li S, Ma W, Hu S, Jin Y, Xiao S. RCC2 over-expression in tumor cells alters apoptosis and drug sensitivity by regulating Rac1 activation. BMC Cancer 2018; 18:67. [PMID: 29321004 PMCID: PMC5763756 DOI: 10.1186/s12885-017-3908-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 12/13/2017] [Indexed: 12/31/2022] Open
Abstract
Background Small GTP binding protein Rac1 is a component of NADPH oxidases and is essential for superoxide-induced cell death. Rac1 is activated by guanine nucleotide exchange factors (GEFs), and this activation can be blocked by regulator of chromosome condensation 2 (RCC2), which binds the switch regions of Rac1 to prevent access from GEFs. Methods Three cancer cell lines with up- or down-regulation of RCC2 were used to evaluate cell proliferation, apoptosis, Rac1 signaling and sensitivity to a group of nine chemotherapeutic drugs. RCC2 expression in lung cancer and ovarian cancer were studied using immunochemistry stain of tumor tissue arrays. Results Forced RCC2 expression in tumor cells blocked spontaneous- or Staurosporine (STS)-induced apoptosis. In contrast, RCC2 knock down in these cells resulted in increased apoptosis to STS treatment. The protective activity of RCC2 on apoptosis was revoked by a constitutively activated Rac1, confirming a role of RCC2 in apoptosis by regulating Rac1. In an immunohistochemistry evaluation of tissue microarray, RCC2 was over-expressed in 88.3% of primary lung cancer and 65.2% of ovarian cancer as compared to non-neoplastic lung and ovarian tissues, respectively. Because chemotherapeutic drugs can kill tumor cells by activating Rac1/JNK pathway, we suspect that tumors with RCC2 overexpression would be more resistant to these drugs. Tumor cells with forced RCC2 expression indeed had significant difference in drug sensitivity compared to parental cells using a panel of common chemotherapeutic drugs. Conclusions RCC2 regulates apoptosis by blocking Rac1 signaling. RCC2 expression in tumor can be a useful marker for predicting chemotherapeutic response.
Collapse
Affiliation(s)
- Nan Wu
- Department of Medical Genetics, Harbin Medical University, Harbin, China
| | - Dong Ren
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Su Li
- Department of Medical Genetics, Harbin Medical University, Harbin, China
| | - Wenli Ma
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Shaoyan Hu
- Children's Hospital of Soochow University, Suzhou, China
| | - Yan Jin
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| | - Sheng Xiao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
236
|
Lu Y, Hsiang F, Chang JH, Yao XQ, Zhao H, Zou HY, Wang L, Zhang QX. Houshiheisan and its components promote axon regeneration after ischemic brain injury. Neural Regen Res 2018; 13:1195-1203. [PMID: 30028327 PMCID: PMC6065233 DOI: 10.4103/1673-5374.235031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Houshiheisan, a classic prescription in traditional Chinese medicine, contains Flos Chrysanthemi, Radix Saposhnikoviae, Ramulus Cinnamomi, Rhizoma Chuanxiong, Radix et Rhizoma Asari, Radix Platycodonis, Rhizoma Atractylodis macrocephalae, Poria, Rhizoma Zingiberis, Radix Angelicae sinensis, Radix et Rhizoma Ginseng, Radix Scutellariae and Concha Ostreae. According to traditional Chinese medicine theory, Flos Chrysanthemi, Radix Saposhnikoviae, Ramulus Cinnamomi, Rhizoma Chuanxiong, Radix et Rhizoma Asari and Radix Platycodonis are wind-dispelling drugs; Rhizoma Atractylodis macrocephalae, Poria, Rhizoma Zingiberis, Radix Angelicae sinensis and Radix et Rhizoma Ginseng are deficiency-nourishing drugs. A large number of randomized controlled trials have shown that Houshiheisan is effective in treating stroke, but its mechanism of action is unknown. Axonal remodeling is an important mechanism in neural protection and regeneration. Therefore, this study explored the effect and mechanism of action of Houshiheisan on the repair of axons after cerebral ischemia. Rat models of focal cerebral ischemia were established by ligating the right middle cerebral artery. At 6 hours after model establishment, rats were intragastrically administered 10.5 g/kg Houshiheisan or 7.7 g/kg wind-dispelling drug or 2.59 g/kg deficiency-nourishing drug. These medicines were intragastrically administered as above every 24 hours for 7 consecutive days. Houshiheisan, and its wind-dispelling and deficiency-nourishing components reduced the neurological deficit score and ameliorated axon and neuron lesions after cerebral ischemia. Furthermore, Houshiheisan, and its wind-dispelling and deficiency-nourishing components decreased the expression of proteins that inhibit axonal remodeling: amyloid precursor protein, neurite outgrowth inhibitor protein A (Nogo-A), Rho family small GTPase A (RhoA) and Rho-associated kinase 2 (Rock2), and increased the expression of growth associated protein-43, microtubule-associated protein-2, netrin-1, Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division cycle 42 (Cdc42). The effect of Houshiheisan was stronger than wind-dispelling drugs or deficiency-nourishing drugs alone. In conclusion, Houshiheisan, and wind-dispelling and deficiency-nourishing drugs promote the repair of axons and nerve regeneration after cerebral ischemia through Nogo-A/RhoA/Rock2 and Netrin-1/Rac1/Cdc42 signaling pathways. These effects are strongest with Houshiheisan.
Collapse
Affiliation(s)
- Yue Lu
- School of Traditional Chinese Medicine, Capital Medical University; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Flora Hsiang
- School of Traditional Chinese Medicine, Capital Medical University; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Jia-Hui Chang
- School of Traditional Chinese Medicine, Capital Medical University; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Xiao-Quan Yao
- School of Traditional Chinese Medicine, Capital Medical University; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Capital Medical University; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Hai-Yan Zou
- School of Traditional Chinese Medicine, Capital Medical University; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Lei Wang
- School of Traditional Chinese Medicine, Capital Medical University; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Qiu-Xia Zhang
- School of Traditional Chinese Medicine, Capital Medical University; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| |
Collapse
|
237
|
Lam JGT, Vadia S, Pathak-Sharma S, McLaughlin E, Zhang X, Swanson J, Seveau S. Host cell perforation by listeriolysin O (LLO) activates a Ca 2+-dependent cPKC/Rac1/Arp2/3 signaling pathway that promotes Listeria monocytogenes internalization independently of membrane resealing. Mol Biol Cell 2017; 29:270-284. [PMID: 29187576 PMCID: PMC5996962 DOI: 10.1091/mbc.e17-09-0561] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/14/2017] [Accepted: 11/20/2017] [Indexed: 01/20/2023] Open
Abstract
Host cell invasion is an indispensable step for a successful infection by intracellular pathogens. Recent studies identified pathogen-induced host cell plasma membrane perforation as a novel mechanism used by diverse pathogens (Trypanosoma cruzi, Listeria monocytogenes, and adenovirus) to promote their internalization into target cells. It was concluded that T. cruzi and adenovirus damage the host cell plasma membrane to hijack the endocytic-dependent membrane resealing machinery, thereby invading the host cell. We studied L. monocytogenes and its secreted pore-forming toxin listeriolysin O (LLO) to identify key signaling events activated upon plasma membrane perforation that lead to bacterial internalization. Using various approaches, including fluorescence resonance energy transfer imaging, we found that the influx of extracellular Ca2+ subsequent to LLO-mediated plasma membrane perforation is required for the activation of a conventional protein kinase C (cPKC). cPKC is positioned upstream of Rac1 and the Arp2/3 complex, which activation leads to F-actin--dependent bacterial internalization. Inhibition of this pathway did not prevent membrane resealing, revealing that perforation-dependent L. monocytogenes endocytosis is distinct from the resealing machinery. These studies identified the LLO-dependent endocytic pathway of L. monocytogenes and support a novel model for pathogen uptake promoted by plasma membrane injury that is independent of membrane resealing.
Collapse
Affiliation(s)
- Jonathan G T Lam
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210.,Department of Microbiology, The Ohio State University, Columbus, OH 43210
| | - Stephen Vadia
- Department of Microbiology, The Ohio State University, Columbus, OH 43210
| | - Sarika Pathak-Sharma
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210
| | - Eric McLaughlin
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210
| | - Xiaoli Zhang
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210
| | - Joel Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5624
| | - Stephanie Seveau
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210 .,Department of Microbiology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
238
|
Herbert LM, Resta TC, Jernigan NL. RhoA increases ASIC1a plasma membrane localization and calcium influx in pulmonary arterial smooth muscle cells following chronic hypoxia. Am J Physiol Cell Physiol 2017; 314:C166-C176. [PMID: 29070491 DOI: 10.1152/ajpcell.00159.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Increases in pulmonary arterial smooth muscle cell (PASMC) intracellular Ca2+ levels and enhanced RhoA/Rho kinase-dependent Ca2+ sensitization are key determinants of PASMC contraction, migration, and proliferation accompanying the development of hypoxic pulmonary hypertension. We previously showed that acid-sensing ion channel 1a (ASIC1a)-mediated Ca2+ entry in PASMC is an important constituent of the active vasoconstriction, vascular remodeling, and right ventricular hypertrophy associated with hypoxic pulmonary hypertension. However, the enhanced ASIC1a-mediated store-operated Ca2+ entry in PASMC from pulmonary hypertensive animals is not dependent on an increase in ASIC1a protein expression, suggesting that chronic hypoxia (CH) stimulates ASIC1a function through other regulatory mechanism(s). RhoA is involved in ion channel trafficking, and levels of activated RhoA are increased following CH. Therefore, we hypothesize that activation of RhoA following CH increases ASIC1a-mediated Ca2+ entry by promoting ASIC1a plasma membrane localization. Consistent with our hypothesis, we found greater plasma membrane localization of ASIC1a following CH. Inhibition of RhoA decreased ASIC1a plasma membrane expression and largely diminished ASIC1a-mediated Ca2+ influx, whereas activation of RhoA had the opposite effect. A proximity ligation assay revealed that ASIC1a and RhoA colocalize in PASMC and that the activation state of RhoA modulates this interaction. Together, our findings show a novel interaction between RhoA and ASIC1a, such that activation of RhoA in PASMC, both pharmacologically and via CH, promotes ASIC1a plasma membrane localization and Ca2+ entry. In addition to enhanced RhoA-mediated Ca2+ sensitization following CH, RhoA can also activate a Ca2+ signal by facilitating ASIC1a plasma membrane localization and Ca2+ influx in pulmonary hypertension.
Collapse
Affiliation(s)
- Lindsay M Herbert
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| |
Collapse
|
239
|
Al-Haidari AA, Syk I, Thorlacius H. MiR-155-5p positively regulates CCL17-induced colon cancer cell migration by targeting RhoA. Oncotarget 2017; 8:14887-14896. [PMID: 28146427 PMCID: PMC5362452 DOI: 10.18632/oncotarget.14841] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/16/2017] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer is the second most common cause of cancer-related death, which is due to migration of tumor cells to distant sites of metastasis. Accumulating data indicate that mciroRNAs play an important role in several aspects of colon cancer cell biology. Herein, we examined the role of miR-155-5p in colon cancer cell migration induced by the CCL17-CCR4 axis in HT-29 colon cancer cells. We found that miR-155-5p knockdown in serum starved colon cancer cells decreased CCL17-induced cell chemotaxis. Moreover, knocking down miR-155-5p markedly decreased CCL17-provoked activation of RhoA in colon cancer cells. Bioinformatics analysis predicted two putative binding sites in the AU-rich element at the 3'-UTR of RhoA mRNA. MiR-155-5p binding to RhoA mRNA was verified using a target site blocker and functionally validated by RNA immunoprecipitation assays, showing that miR-155-5p-dependent regulation of RhoA mRNA is mediated by AU-rich elements present in the 3'-UTR region. Taken together, these results show that miR-155-5p positively regulates RhoA mRNA levels and translation as well as cell migration in serum starved colon cancer cells and indicate that targeting miR-155-5p might be a useful strategy to antagonize colon cancer metastasis.
Collapse
Affiliation(s)
- Amr A Al-Haidari
- Department of Clinical Sciences, Section of Surgery, Lund University, 20502 Malmö, Sweden
| | - Ingvar Syk
- Department of Clinical Sciences, Section of Surgery, Lund University, 20502 Malmö, Sweden
| | - Henrik Thorlacius
- Department of Clinical Sciences, Section of Surgery, Lund University, 20502 Malmö, Sweden
| |
Collapse
|
240
|
Dräger NM, Nachman E, Winterhoff M, Brühmann S, Shah P, Katsinelos T, Boulant S, Teleman AA, Faix J, Jahn TR. Bin1 directly remodels actin dynamics through its BAR domain. EMBO Rep 2017; 18:2051-2066. [PMID: 28893863 DOI: 10.15252/embr.201744137] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 11/09/2022] Open
Abstract
Endocytic processes are facilitated by both curvature-generating BAR-domain proteins and the coordinated polymerization of actin filaments. Under physiological conditions, the N-BAR protein Bin1 has been shown to sense and curve membranes in a variety of cellular processes. Recent studies have identified Bin1 as a risk factor for Alzheimer's disease, although its possible pathological function in neurodegeneration is currently unknown. Here, we report that Bin1 not only shapes membranes, but is also directly involved in actin binding through its BAR domain. We observed a moderate actin bundling activity by human Bin1 and describe its ability to stabilize actin filaments against depolymerization. Moreover, Bin1 is also involved in stabilizing tau-induced actin bundles, which are neuropathological hallmarks of Alzheimer's disease. We also provide evidence for this effect in vivo, where we observed that downregulation of Bin1 in a Drosophila model of tauopathy significantly reduces the appearance of tau-induced actin inclusions. Together, these findings reveal the ability of Bin1 to modify actin dynamics and provide a possible mechanistic connection between Bin1 and tau-induced pathobiological changes of the actin cytoskeleton.
Collapse
Affiliation(s)
- Nina M Dräger
- Proteostasis in Neurodegenerative Disease (B180), Schaller Research Group at the University of Heidelberg and DKFZ, Heidelberg, Germany
| | - Eliana Nachman
- Proteostasis in Neurodegenerative Disease (B180), Schaller Research Group at the University of Heidelberg and DKFZ, Heidelberg, Germany.,German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Moritz Winterhoff
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Stefan Brühmann
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Pranav Shah
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany.,Cellular polarity and viral infection (F140), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Taxiarchis Katsinelos
- Proteostasis in Neurodegenerative Disease (B180), Schaller Research Group at the University of Heidelberg and DKFZ, Heidelberg, Germany
| | - Steeve Boulant
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany.,Cellular polarity and viral infection (F140), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aurelio A Teleman
- Signal Transduction in Cancer and Metabolism (B140), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Thomas R Jahn
- Proteostasis in Neurodegenerative Disease (B180), Schaller Research Group at the University of Heidelberg and DKFZ, Heidelberg, Germany
| |
Collapse
|
241
|
Pagano PC, Tran LM, Bendris N, O'Byrne S, Tse HT, Sharma S, Hoech JW, Park SJ, Liclican EL, Jing Z, Li R, Krysan K, Paul MK, Fontebasso Y, Larsen JE, Hakimi S, Seki A, Fishbein MC, Gimzewski JK, Carlo DD, Minna JD, Walser TC, Dubinett SM. Identification of a Human Airway Epithelial Cell Subpopulation with Altered Biophysical, Molecular, and Metastatic Properties. Cancer Prev Res (Phila) 2017; 10:514-524. [PMID: 28754664 PMCID: PMC5584580 DOI: 10.1158/1940-6207.capr-16-0335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/12/2017] [Accepted: 07/12/2017] [Indexed: 12/20/2022]
Abstract
Lung cancers are documented to have remarkable intratumoral genetic heterogeneity. However, little is known about the heterogeneity of biophysical properties, such as cell motility, and its relationship to early disease pathogenesis and micrometastatic dissemination. In this study, we identified and selected a subpopulation of highly migratory premalignant airway epithelial cells that were observed to migrate through microscale constrictions at up to 100-fold the rate of the unselected immortalized epithelial cell lines. This enhanced migratory capacity was found to be Rac1-dependent and heritable, as evidenced by maintenance of the phenotype through multiple cell divisions continuing more than 8 weeks after selection. The morphology of this lung epithelial subpopulation was characterized by increased cell protrusion intensity. In a murine model of micrometastatic seeding and pulmonary colonization, the motility-selected premalignant cells exhibit both enhanced survival in short-term assays and enhanced outgrowth of premalignant lesions in longer-term assays, thus overcoming important aspects of "metastatic inefficiency." Overall, our findings indicate that among immortalized premalignant airway epithelial cell lines, subpopulations with heritable motility-related biophysical properties exist, and these may explain micrometastatic seeding occurring early in the pathogenesis of lung cancer. Understanding, targeting, and preventing these critical biophysical traits and their underlying molecular mechanisms may provide a new approach to prevent metastatic behavior. Cancer Prev Res; 10(9); 514-24. ©2017 AACRSee related editorial by Hynds and Janes, p. 491.
Collapse
Affiliation(s)
- Paul C Pagano
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Linh M Tran
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Nawal Bendris
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas
| | - Sean O'Byrne
- Department of Bioengineering, UCLA, Los Angeles, California
| | - Henry T Tse
- Department of Bioengineering, UCLA, Los Angeles, California
| | - Shivani Sharma
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California
- California NanoSystems Institute, Los Angeles, California
| | - Jonathan W Hoech
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Stacy J Park
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Elvira L Liclican
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Zhe Jing
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Rui Li
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Kostyantyn Krysan
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Manash K Paul
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Yari Fontebasso
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jill E Larsen
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Shaina Hakimi
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Atsuko Seki
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Michael C Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - James K Gimzewski
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California
- California NanoSystems Institute, Los Angeles, California
| | - Dino Di Carlo
- Department of Bioengineering, UCLA, Los Angeles, California
- California NanoSystems Institute, Los Angeles, California
- Jonsson Comprehensive Cancer Center, Los Angeles, California
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research and Departments of Medicine and Pharmacology, UT Southwestern Medical Center, Dallas, Texas
| | - Tonya C Walser
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Steven M Dubinett
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California.
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- California NanoSystems Institute, Los Angeles, California
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- Jonsson Comprehensive Cancer Center, Los Angeles, California
- VA Greater Los Angeles Health Care System, Los Angeles, California
| |
Collapse
|
242
|
Alvarado J, Sheinman M, Sharma A, MacKintosh FC, Koenderink GH. Force percolation of contractile active gels. SOFT MATTER 2017; 13:5624-5644. [PMID: 28812094 DOI: 10.1039/c7sm00834a] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Living systems provide a paradigmatic example of active soft matter. Cells and tissues comprise viscoelastic materials that exert forces and can actively change shape. This strikingly autonomous behavior is powered by the cytoskeleton, an active gel of semiflexible filaments, crosslinks, and molecular motors inside cells. Although individual motors are only a few nm in size and exert minute forces of a few pN, cells spatially integrate the activity of an ensemble of motors to produce larger contractile forces (∼nN and greater) on cellular, tissue, and organismal length scales. Here we review experimental and theoretical studies on contractile active gels composed of actin filaments and myosin motors. Unlike other active soft matter systems, which tend to form ordered patterns, actin-myosin systems exhibit a generic tendency to contract. Experimental studies of reconstituted actin-myosin model systems have long suggested that a mechanical interplay between motor activity and the network's connectivity governs this contractile behavior. Recent theoretical models indicate that this interplay can be understood in terms of percolation models, extended to include effects of motor activity on the network connectivity. Based on concepts from percolation theory, we propose a state diagram that unites a large body of experimental observations. This framework provides valuable insights into the mechanisms that drive cellular shape changes and also provides design principles for synthetic active materials.
Collapse
Affiliation(s)
- José Alvarado
- Systems Biophysics Department, AMOLF, 1098 XG Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
243
|
Kumar A, Bhattacharyya J, Jaganathan BG. Adhesion to stromal cells mediates imatinib resistance in chronic myeloid leukemia through ERK and BMP signaling pathways. Sci Rep 2017; 7:9535. [PMID: 28842696 PMCID: PMC5572702 DOI: 10.1038/s41598-017-10373-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/09/2017] [Indexed: 12/22/2022] Open
Abstract
Chronic myeloid leukemia (CML) is characterized by abnormal proliferation of myeloid cells which when untreated leads to bone marrow failure. Imatinib mesylate (IM) is the first line of therapy for treatment of CML and results in remission in most cases. However, a significant percentage of patients develop chemoresistance to IM, which might be due to the presence of chemoresistant cells in the bone marrow. In the current study, we explored the role of cell-cell interaction of CML cells with the bone marrow stromal cells in the development of chemoresistance in CML. We found that the stromal cells offered long-term chemoprotection to the CML cells from the apoptotic effect of IM. These stroma interacting CML cells were maintained in a non-proliferative stage and had increased ERK1/2 and SMAD1/8 phosphorylation levels. Prolonged interaction of CML cells with the stromal cells in the presence of IM resulted in the acquisition of stroma-free chemoresistance to IM treatment. However, inhibition of actin cytoskeleton, ERK1/2 and SMAD signaling abrogated the chemoresistance acquisition and sensitized the chemoresistant CML cells to IM induced apoptosis.
Collapse
MESH Headings
- Bone Morphogenetic Proteins/metabolism
- Cell Adhesion
- Cell Communication
- Cell Line, Tumor
- Coculture Techniques
- Drug Resistance, Neoplasm
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Humans
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Signal Transduction
- Stromal Cells/metabolism
- Tumor Cells, Cultured
- Tumor Microenvironment
Collapse
Affiliation(s)
- Atul Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | | | - Bithiah Grace Jaganathan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
244
|
Johnson CA, Wright CE, Ghashghaei HT. Regulation of cytokinesis during corticogenesis: focus on the midbody. FEBS Lett 2017; 591:4009-4026. [PMID: 28493553 DOI: 10.1002/1873-3468.12676] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/23/2017] [Accepted: 05/07/2017] [Indexed: 12/21/2022]
Abstract
Development of the cerebral cortices depends on tight regulation of cell divisions. In this system, stem and progenitor cells undergo symmetric and asymmetric divisions to ultimately produce neurons that establish the layers of the cortex. Cell division culminates with the formation of the midbody, a transient organelle that establishes the site of abscission between nascent daughter cells. During cytokinetic abscission, the final stage of cell division, one daughter cell will inherit the midbody remnant, which can then maintain or expel the remnant, but mechanisms and circumstances influencing this decision are unclear. This review describes the midbody and its constituent proteins, as well as the known consequences of their manipulation during cortical development. The potential functional relevance of midbody mechanisms is discussed.
Collapse
Affiliation(s)
- Caroline A Johnson
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Comparative Biomedical Sciences Graduate Program, Neurosciences Concentration Area, North Carolina State University, Raleigh, NC, USA
| | - Catherine E Wright
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - H Troy Ghashghaei
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Comparative Biomedical Sciences Graduate Program, Neurosciences Concentration Area, North Carolina State University, Raleigh, NC, USA.,Program in Genetics, North Carolina State University, Raleigh, NC, USA.,Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
245
|
Tang Y, Pan B, Zhou X, Xiong K, Gao Q, Huang L, Xia Y, Shen M, Yang S, Liu H, Tan T, Ma J, Xu X, Mu Y, Li K. Wip1-dependent modulation of macrophage migration and phagocytosis. Redox Biol 2017; 13:665-673. [PMID: 28822916 PMCID: PMC5562178 DOI: 10.1016/j.redox.2017.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/05/2017] [Accepted: 08/08/2017] [Indexed: 01/22/2023] Open
Abstract
Macrophage accumulation within the vascular wall is a hallmark of atherosclerosis. Controlling macrophage conversion into foam cells remains a major challenge for treatment of atherosclerotic diseases. Here, we show that Wip1, a member of the PP2C family of Ser/Thr protein phosphatases, modulates macrophage migration and phagocytosis associated with atherosclerotic plaque formation. Wip1 deficiency increases migratory and phagocytic activities of the macrophage under stress conditions. Enhanced migration of Wip1-/- macrophages is mediated by Rac1-GTPase and PI3K/AKT signalling pathways. Elevated phagocytic ability of Wip1-/- macrophages is linked to CD36 plasma membrane recruitment that is regulated by AMPK activity. Our study identifies Wip1 as an intrinsic negative regulator of macrophage chemotaxis. We propose that Wip1-dependent control of macrophage function may provide avenues for preventing or eliminating plaque formation in atherosclerosis.
Collapse
Affiliation(s)
- Yiting Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bing Pan
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Xin Zhou
- Cell Genetics and Developmental Biology, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Kai Xiong
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870 Frederiksberg C, Denmark
| | - Qian Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lei Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ying Xia
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ming Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shulin Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, United States
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, United States
| | - Xuehong Xu
- Cell Genetics and Developmental Biology, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yulian Mu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Kui Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
246
|
Beyond Immune Cell Migration: The Emerging Role of the Sphingosine-1-phosphate Receptor S1PR4 as a Modulator of Innate Immune Cell Activation. Mediators Inflamm 2017; 2017:6059203. [PMID: 28848247 PMCID: PMC5564090 DOI: 10.1155/2017/6059203] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/19/2017] [Accepted: 06/28/2017] [Indexed: 12/11/2022] Open
Abstract
The sphingolipid sphingosine-1-phosphate (S1P) emerges as an important regulator of immunity, mainly by signaling through a family of five specific G protein-coupled receptors (S1PR1–5). While S1P signaling generally has the potential to affect not only trafficking but also differentiation, activation, and survival of a diverse range of immune cells, the specific outcome depends on the S1P receptor repertoire expressed on a given cell. Among the S1PRs, S1PR4 is specifically abundant in immune cells, suggesting a major role of the S1P/S1PR4 axis in immunity. Recent studies indeed highlight its role in activation of immune cells, differentiation, and, potentially, trafficking. In this review, we summarize the emerging data that support a major role of S1PR4 in modulating immunity in humans and mice and discuss therapeutic implications.
Collapse
|
247
|
Role of G Protein-Coupled Receptors in the Regulation of Structural Plasticity and Cognitive Function. Molecules 2017; 22:molecules22071239. [PMID: 28737723 PMCID: PMC6152405 DOI: 10.3390/molecules22071239] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 07/14/2017] [Indexed: 12/26/2022] Open
Abstract
Cognition and other higher brain functions are known to be intricately associated with the capacity of neural circuits to undergo structural reorganization. Structural remodelling of neural circuits, or structural plasticity, in the hippocampus plays a major role in learning and memory. Dynamic modifications of neuronal connectivity in the form of dendritic spine morphology alteration, as well as synapse formation and elimination, often result in the strengthening or weakening of specific neural circuits that determine synaptic plasticity. Changes in dendritic complexity and synapse number are mediated by cellular processes that are regulated by extracellular signals such as neurotransmitters and neurotrophic factors. As many neurotransmitters act on G protein-coupled receptors (GPCRs), it has become increasingly apparent that GPCRs can regulate structural plasticity through a myriad of G protein-dependent pathways and non-canonical signals. A thorough understanding of how GPCRs exert their regulatory influence on dendritic spine morphogenesis may provide new insights for treating cognitive impairment and decline in various age-related diseases. In this article, we review the evidence of GPCR-mediated regulation of structural plasticity, with a special emphasis on the involvement of common as well as distinct signalling pathways that are regulated by major neurotransmitters.
Collapse
|
248
|
Gerwert K, Mann D, Kötting C. Common mechanisms of catalysis in small and heterotrimeric GTPases and their respective GAPs. Biol Chem 2017; 398:523-533. [PMID: 28245182 DOI: 10.1515/hsz-2016-0314] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/15/2017] [Indexed: 01/15/2023]
Abstract
GTPases are central switches in cells. Their dysfunctions are involved in severe diseases. The small GTPase Ras regulates cell growth, differentiation and apoptosis by transmitting external signals to the nucleus. In one group of oncogenic mutations, the 'switch-off' reaction is inhibited, leading to persistent activation of the signaling pathway. The switch reaction is regulated by GTPase-activating proteins (GAPs), which catalyze GTP hydrolysis in Ras, and by guanine nucleotide exchange factors, which catalyze the exchange of GDP for GTP. Heterotrimeric G-proteins are activated by G-protein coupled receptors and are inactivated by GTP hydrolysis in the Gα subunit. Their GAPs are called regulators of G-protein signaling. In the same way that Ras serves as a prototype for small GTPases, Gαi1 is the most well-studied Gα subunit. By utilizing X-ray structural models, time-resolved infrared-difference spectroscopy, and biomolecular simulations, we elucidated the detailed molecular reaction mechanism of the GTP hydrolysis in Ras and Gαi1. In both proteins, the charge distribution of GTP is driven towards the transition state, and an arginine is precisely positioned to facilitate nucleophilic attack of water. In addition to these mechanistic details of GTP hydrolysis, Ras dimerization as an emerging factor in signal transduction is discussed in this review.
Collapse
Affiliation(s)
- Klaus Gerwert
- Department of Biophysics, Ruhr-University Bochum, Universitätsstrasse 150, D-44801 Bochum
| | - Daniel Mann
- Department of Biophysics, Ruhr-University Bochum, Universitätsstrasse 150, D-44801 Bochum
| | - Carsten Kötting
- Department of Biophysics, Ruhr-University Bochum, Universitätsstrasse 150, D-44801 Bochum
| |
Collapse
|
249
|
Mina SG, Huang P, Murray BT, Mahler GJ. The role of shear stress and altered tissue properties on endothelial to mesenchymal transformation and tumor-endothelial cell interaction. BIOMICROFLUIDICS 2017; 11:044104. [PMID: 28798857 PMCID: PMC5533495 DOI: 10.1063/1.4991738] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/22/2017] [Indexed: 05/03/2023]
Abstract
Tumor development is influenced by stromal cells in aspects including invasion, growth, angiogenesis, and metastasis. Activated fibroblasts are one group of stromal cells involved in cancer metastasis, and one source of activated fibroblasts is endothelial to mesenchymal transformation (EndMT). EndMT begins when the endothelial cells delaminate from the cell monolayer, lose cell-cell contacts, lose endothelial markers such as vascular endothelial-cadherin (VE-cadherin), gain mesenchymal markers like alpha-smooth muscle actin (α-SMA), and acquire mesenchymal cell-like properties. A three-dimensional (3D) culture microfluidic device was developed for investigating the role of steady low shear stress (1 dyne/cm2) and altered extracellular matrix (ECM) composition and stiffness on EndMT. Shear stresses resulting from fluid flow within tumor tissue are relevant to both cancer metastasis and treatment effectiveness. Low and oscillatory shear stress rates have been shown to enhance the invasion of metastatic cancer cells through specific changes in actin and tubulin remodeling. The 3D ECM within the device was composed of type I collagen and glycosaminoglycans (GAGs), hyaluronic acid and chondroitin sulfate. An increase in collagen and GAGs has been observed in the solid tumor microenvironment and has been correlated with poor prognosis in many different cancer types. In this study, it was found that ECM composition and low shear stress upregulated EndMT, including upregulation of mesenchymal-like markers (α-SMA and Snail) and downregulated endothelial marker protein and gene expression (VE-cadherin). Furthermore, this novel model was utilized to investigate the role of EndMT in breast cancer cell proliferation and migration. Cancer cell spheroids were embedded within the 3D ECM of the microfluidic device. The results using this device show for the first time that the breast cancer spheroid size is dependent on shear stress and that the cancer cell migration rate, distance, and proliferation are induced by EndMT-derived activated fibroblasts. This model can be used to explore new therapeutics in a tumor microenvironment.
Collapse
Affiliation(s)
- Sara G Mina
- Department of Biomedical Engineering, Binghamton University, P.O. Box 6000, Binghamton, New York 13902, USA
| | - Peter Huang
- Department of Mechanical Engineering, Binghamton University, P.O. Box 6000, Binghamton, New York 13902, USA
| | - Bruce T Murray
- Department of Mechanical Engineering, Binghamton University, P.O. Box 6000, Binghamton, New York 13902, USA
| | - Gretchen J Mahler
- Department of Biomedical Engineering, Binghamton University, P.O. Box 6000, Binghamton, New York 13902, USA
| |
Collapse
|
250
|
Ding Y, Lu L, Xuan C, Han J, Ye S, Cao T, Chen W, Li A, Zhang X. Di- n -butyl phthalate exposure negatively influences structural and functional neuroplasticity via Rho-GTPase signaling pathways. Food Chem Toxicol 2017; 105:34-43. [DOI: 10.1016/j.fct.2017.03.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 01/15/2023]
|