201
|
Marazioti A, Papadia K, Kannavou M, Spella M, Basta A, de Lastic AL, Rodi M, Mouzaki A, Samiotaki M, Panayotou G, Stathopoulos GT, Antimisiaris SG. Cellular Vesicles: New Insights in Engineering Methods, Interaction with Cells and Potential for Brain Targeting. J Pharmacol Exp Ther 2019; 370:772-785. [PMID: 31061141 DOI: 10.1124/jpet.119.257097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/30/2019] [Indexed: 12/31/2022] Open
Abstract
Cellular vesicles (CVs) have been proposed as alternatives to exosomes for targeted drug delivery. CVs, prepared from human embryonic kidney 293 cells (HEK-293), C57BL/6 mouse B16F10 skin melanoma cells (B16F10), and immortalized human cerebral microvascular endothelial cells (hCMEC/D3) by liposome technology methods, were characterized for morphology, cytotoxicity, and cell uptake properties. CV brain-targeting potential was evaluated in vitro on the hCMEC/D3 blood-brain barrier (BBB) model, and in vivo/ex vivo. CV sizes were between 135 and 285 nm, and the ζ-potential was negative. The dehydration-rehydration method conferred highest calcein loading and latency to CVs compared with other methods. The increased calcein leakage from CVs when compared with liposomes indicated their poor integrity, which was increased by pegylation. The in vivo results confirmed lower liver uptake by PEG-CVs (compared with nonpegylated) proving that the calcein integrity test is useful for prediction of CV biodistribution, as used for liposomes. The cell uptake of homologous origin CVs was not always higher compared with that of non-homologous. Nevertheless, CVs from hCMEC/D3 demonstrated the highest BBB permeability (in vitro) compared with OX-26 targeted liposomes, and brain localization (in vivo). CVs from hCMEC/D3 cells grown in different media demonstrated decreased interaction with brain cells and brain localization. Significant differences in proteome of the two latter CV types were identified by proteomics, suggesting a potential methodology for identification of organotropism-determining CV components.
Collapse
Affiliation(s)
- A Marazioti
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, Rio, Greece (A.M., M.K., A.B., S.G.A.); Laboratory of Pharmaceutical Technology, Department of Pharmacy (K.P., M.K., A.B., S.G.A.) and Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine (M.Sp., G.T.S.), University of Patras, Rio, Greece; Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece (A.-L.d.L., M.R., A.M.); B.S.R.C. Alexander Fleming, Vari, Attica, Greece (M.Sa., G.P.); and Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University and Helmholtz Center Munich, Member of the German Center for Lung Research, Munich, Bavaria, Germany (G.T.S.)
| | - K Papadia
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, Rio, Greece (A.M., M.K., A.B., S.G.A.); Laboratory of Pharmaceutical Technology, Department of Pharmacy (K.P., M.K., A.B., S.G.A.) and Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine (M.Sp., G.T.S.), University of Patras, Rio, Greece; Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece (A.-L.d.L., M.R., A.M.); B.S.R.C. Alexander Fleming, Vari, Attica, Greece (M.Sa., G.P.); and Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University and Helmholtz Center Munich, Member of the German Center for Lung Research, Munich, Bavaria, Germany (G.T.S.)
| | - M Kannavou
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, Rio, Greece (A.M., M.K., A.B., S.G.A.); Laboratory of Pharmaceutical Technology, Department of Pharmacy (K.P., M.K., A.B., S.G.A.) and Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine (M.Sp., G.T.S.), University of Patras, Rio, Greece; Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece (A.-L.d.L., M.R., A.M.); B.S.R.C. Alexander Fleming, Vari, Attica, Greece (M.Sa., G.P.); and Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University and Helmholtz Center Munich, Member of the German Center for Lung Research, Munich, Bavaria, Germany (G.T.S.)
| | - M Spella
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, Rio, Greece (A.M., M.K., A.B., S.G.A.); Laboratory of Pharmaceutical Technology, Department of Pharmacy (K.P., M.K., A.B., S.G.A.) and Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine (M.Sp., G.T.S.), University of Patras, Rio, Greece; Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece (A.-L.d.L., M.R., A.M.); B.S.R.C. Alexander Fleming, Vari, Attica, Greece (M.Sa., G.P.); and Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University and Helmholtz Center Munich, Member of the German Center for Lung Research, Munich, Bavaria, Germany (G.T.S.)
| | - A Basta
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, Rio, Greece (A.M., M.K., A.B., S.G.A.); Laboratory of Pharmaceutical Technology, Department of Pharmacy (K.P., M.K., A.B., S.G.A.) and Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine (M.Sp., G.T.S.), University of Patras, Rio, Greece; Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece (A.-L.d.L., M.R., A.M.); B.S.R.C. Alexander Fleming, Vari, Attica, Greece (M.Sa., G.P.); and Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University and Helmholtz Center Munich, Member of the German Center for Lung Research, Munich, Bavaria, Germany (G.T.S.)
| | - A-L de Lastic
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, Rio, Greece (A.M., M.K., A.B., S.G.A.); Laboratory of Pharmaceutical Technology, Department of Pharmacy (K.P., M.K., A.B., S.G.A.) and Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine (M.Sp., G.T.S.), University of Patras, Rio, Greece; Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece (A.-L.d.L., M.R., A.M.); B.S.R.C. Alexander Fleming, Vari, Attica, Greece (M.Sa., G.P.); and Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University and Helmholtz Center Munich, Member of the German Center for Lung Research, Munich, Bavaria, Germany (G.T.S.)
| | - M Rodi
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, Rio, Greece (A.M., M.K., A.B., S.G.A.); Laboratory of Pharmaceutical Technology, Department of Pharmacy (K.P., M.K., A.B., S.G.A.) and Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine (M.Sp., G.T.S.), University of Patras, Rio, Greece; Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece (A.-L.d.L., M.R., A.M.); B.S.R.C. Alexander Fleming, Vari, Attica, Greece (M.Sa., G.P.); and Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University and Helmholtz Center Munich, Member of the German Center for Lung Research, Munich, Bavaria, Germany (G.T.S.)
| | - A Mouzaki
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, Rio, Greece (A.M., M.K., A.B., S.G.A.); Laboratory of Pharmaceutical Technology, Department of Pharmacy (K.P., M.K., A.B., S.G.A.) and Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine (M.Sp., G.T.S.), University of Patras, Rio, Greece; Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece (A.-L.d.L., M.R., A.M.); B.S.R.C. Alexander Fleming, Vari, Attica, Greece (M.Sa., G.P.); and Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University and Helmholtz Center Munich, Member of the German Center for Lung Research, Munich, Bavaria, Germany (G.T.S.)
| | - M Samiotaki
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, Rio, Greece (A.M., M.K., A.B., S.G.A.); Laboratory of Pharmaceutical Technology, Department of Pharmacy (K.P., M.K., A.B., S.G.A.) and Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine (M.Sp., G.T.S.), University of Patras, Rio, Greece; Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece (A.-L.d.L., M.R., A.M.); B.S.R.C. Alexander Fleming, Vari, Attica, Greece (M.Sa., G.P.); and Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University and Helmholtz Center Munich, Member of the German Center for Lung Research, Munich, Bavaria, Germany (G.T.S.)
| | - G Panayotou
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, Rio, Greece (A.M., M.K., A.B., S.G.A.); Laboratory of Pharmaceutical Technology, Department of Pharmacy (K.P., M.K., A.B., S.G.A.) and Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine (M.Sp., G.T.S.), University of Patras, Rio, Greece; Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece (A.-L.d.L., M.R., A.M.); B.S.R.C. Alexander Fleming, Vari, Attica, Greece (M.Sa., G.P.); and Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University and Helmholtz Center Munich, Member of the German Center for Lung Research, Munich, Bavaria, Germany (G.T.S.)
| | - G T Stathopoulos
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, Rio, Greece (A.M., M.K., A.B., S.G.A.); Laboratory of Pharmaceutical Technology, Department of Pharmacy (K.P., M.K., A.B., S.G.A.) and Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine (M.Sp., G.T.S.), University of Patras, Rio, Greece; Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece (A.-L.d.L., M.R., A.M.); B.S.R.C. Alexander Fleming, Vari, Attica, Greece (M.Sa., G.P.); and Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University and Helmholtz Center Munich, Member of the German Center for Lung Research, Munich, Bavaria, Germany (G.T.S.)
| | - S G Antimisiaris
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, Rio, Greece (A.M., M.K., A.B., S.G.A.); Laboratory of Pharmaceutical Technology, Department of Pharmacy (K.P., M.K., A.B., S.G.A.) and Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine (M.Sp., G.T.S.), University of Patras, Rio, Greece; Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece (A.-L.d.L., M.R., A.M.); B.S.R.C. Alexander Fleming, Vari, Attica, Greece (M.Sa., G.P.); and Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University and Helmholtz Center Munich, Member of the German Center for Lung Research, Munich, Bavaria, Germany (G.T.S.)
| |
Collapse
|
202
|
D'Anca M, Fenoglio C, Serpente M, Arosio B, Cesari M, Scarpini EA, Galimberti D. Exosome Determinants of Physiological Aging and Age-Related Neurodegenerative Diseases. Front Aging Neurosci 2019; 11:232. [PMID: 31555123 PMCID: PMC6722391 DOI: 10.3389/fnagi.2019.00232] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/13/2019] [Indexed: 01/08/2023] Open
Abstract
Aging is consistently reported as the most important independent risk factor for neurodegenerative diseases. As life expectancy has significantly increased during the last decades, neurodegenerative diseases became one of the most critical public health problem in our society. The most investigated neurodegenerative diseases during aging are Alzheimer disease (AD), Frontotemporal Dementia (FTD) and Parkinson disease (PD). The search for biomarkers has been focused so far on cerebrospinal fluid (CSF) and blood. Recently, exosomes emerged as novel biological source with increasing interest for age-related neurodegenerative disease biomarkers. Exosomes are tiny Extracellular vesicles (EVs; 30-100 nm in size) released by all cell types which originate from the endosomal compartment. They constitute important vesicles for the release and transfer of multiple (signaling, toxic, and regulatory) molecules among cells. Initially considered with merely waste disposal function, instead exosomes have been recently recognized as fundamental mediators of intercellular communication. They can move from the site of release by diffusion and be retrieved in several body fluids, where they may dynamically reflect pathological changes of cells present in inaccessible sites such as the brain. Multiple evidence has implicated exosomes in age-associated neurodegenerative processes, which lead to cognitive impairment in later life. Critically, consolidated evidence indicates that pathological protein aggregates, including Aβ, tau, and α-synuclein are released from brain cells in association with exosomes. Importantly, exosomes act as vehicles between cells not only of proteins but also of nucleic acids [DNA, mRNA transcripts, miRNA, and non-coding RNAs (ncRNAs)] thus potentially influencing gene expression in target cells. In this framework, exosomes could contribute to elucidate the molecular mechanisms underneath neurodegenerative diseases and could represent a promising source of biomarkers. Despite the involvement of exosomes in age-associated neurodegeneration, the study of exosomes and their genetic cargo in physiological aging and in neurodegenerative diseases is still in its infancy. Here, we review, the current knowledge on protein and ncRNAs cargo of exosomes in normal aging and in age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Marianna D'Anca
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Chiara Fenoglio
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Maria Serpente
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| | - Matteo Cesari
- Department of Clinical Sciences and Community Health, Faculty of Medicine and Surgery, University of Milan, Milan, Italy.,Geriatrics Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Elio Angelo Scarpini
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Faculty of Medicine and Surgery, University of Milan, Milan, Italy.,Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Galimberti
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, Dino Ferrari Center, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| |
Collapse
|
203
|
Zhao JH, Guo HS. Trans-kingdom RNA interactions drive the evolutionary arms race between hosts and pathogens. Curr Opin Genet Dev 2019; 58-59:62-69. [PMID: 31472442 DOI: 10.1016/j.gde.2019.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022]
Abstract
Trans-kingdom RNA plays a key role in host-parasite interactions. Hosts export specific endogenous microRNAs (miRNAs) into pathogens to target pathogen virulence genes and inhibit their invasion. In addition, trans-kingdom sRNAs produced by parasites may function as RNA effectors to suppress host immunity. Here, we summarize recent, important findings regarding trans-kingdom RNA and focus on the roles of trans-kingdom RNA in driving an evolutionary arms race between host and pathogen. We suggest that trans-kingdom RNA is a new platform for such arms races. Furthermore, we conjecture that trans-kingdom RNA contributes to horizontal gene transfer (HGT) involved in host-pathogen interactions. In addition, we propose that trans-kingdom RNA exchange and RNA driven HGT can have a great impact on the evolutionary ecology of interacting species.
Collapse
Affiliation(s)
- Jian-Hua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China; CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, 100049 Beijing, China.
| |
Collapse
|
204
|
Vignoles R, Lentini C, d'Orange M, Heinrich C. Direct Lineage Reprogramming for Brain Repair: Breakthroughs and Challenges. Trends Mol Med 2019; 25:897-914. [PMID: 31371156 DOI: 10.1016/j.molmed.2019.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 01/10/2023]
Abstract
Injury to the human central nervous system (CNS) is devastating because our adult mammalian brain lacks intrinsic regenerative capacity to replace lost neurons and induce functional recovery. An emerging approach towards brain repair is to instruct fate conversion of brain-resident non-neuronal cells into induced neurons (iNs) by direct lineage reprogramming. Considerable progress has been made in converting various source cell types of mouse and human origin into clinically relevant iNs. Recent achievements using transcriptomics and epigenetics have shed light on the molecular mechanisms underpinning neuronal reprogramming, while the potential capability of iNs in promoting functional recovery in pathological contexts has started to be evaluated. Although future challenges need to be overcome before clinical translation, lineage reprogramming holds promise for effective cell-replacement therapy in regenerative medicine.
Collapse
Affiliation(s)
- Rory Vignoles
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, F-69500 Bron, France
| | - Célia Lentini
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, F-69500 Bron, France
| | - Marie d'Orange
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, F-69500 Bron, France
| | - Christophe Heinrich
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, F-69500 Bron, France.
| |
Collapse
|
205
|
Castillo X, Castro-Obregón S, Gutiérrez-Becker B, Gutiérrez-Ospina G, Karalis N, Khalil AA, Lopez-Noguerola JS, Rodríguez LL, Martínez-Martínez E, Perez-Cruz C, Pérez-Velázquez J, Piña AL, Rubio K, García HPS, Syeda T, Vanoye-Carlo A, Villringer A, Winek K, Zille M. Re-thinking the Etiological Framework of Neurodegeneration. Front Neurosci 2019; 13:728. [PMID: 31396030 PMCID: PMC6667555 DOI: 10.3389/fnins.2019.00728] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are among the leading causes of disability and death worldwide. The disease-related socioeconomic burden is expected to increase with the steadily increasing life expectancy. In spite of decades of clinical and basic research, most strategies designed to manage degenerative brain diseases are palliative. This is not surprising as neurodegeneration progresses "silently" for decades before symptoms are noticed. Importantly, conceptual models with heuristic value used to study neurodegeneration have been constructed retrospectively, based on signs and symptoms already present in affected patients; a circumstance that may confound causes and consequences. Hence, innovative, paradigm-shifting views of the etiology of these diseases are necessary to enable their timely prevention and treatment. Here, we outline four alternative views, not mutually exclusive, on different etiological paths toward neurodegeneration. First, we propose neurodegeneration as being a secondary outcome of a primary cardiovascular cause with vascular pathology disrupting the vital homeostatic interactions between the vasculature and the brain, resulting in cognitive impairment, dementia, and cerebrovascular events such as stroke. Second, we suggest that the persistence of senescent cells in neuronal circuits may favor, together with systemic metabolic diseases, neurodegeneration to occur. Third, we argue that neurodegeneration may start in response to altered body and brain trophic interactions established via the hardwire that connects peripheral targets with central neuronal structures or by means of extracellular vesicle (EV)-mediated communication. Lastly, we elaborate on how lifespan body dysbiosis may be linked to the origin of neurodegeneration. We highlight the existence of bacterial products that modulate the gut-brain axis causing neuroinflammation and neuronal dysfunction. As a concluding section, we end by recommending research avenues to investigate these etiological paths in the future. We think that this requires an integrated, interdisciplinary conceptual research approach based on the investigation of the multimodal aspects of physiology and pathophysiology. It involves utilizing proper conceptual models, experimental animal units, and identifying currently unused opportunities derived from human data. Overall, the proposed etiological paths and experimental recommendations will be important guidelines for future cross-discipline research to overcome the translational roadblock and to develop causative treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ximena Castillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Institute of Neurobiology, University of Puerto Rico, San Juan, PR, United States
| | - Susana Castro-Obregón
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Benjamin Gutiérrez-Becker
- Artificial Intelligence in Medical Imaging KJP, Ludwig Maximilian University of Munich, Munich, Germany
| | - Gabriel Gutiérrez-Ospina
- Laboratorio de Biología de Sistemas, Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas y Coordinación de Psicobiología y Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Nikolaos Karalis
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ahmed A. Khalil
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Liliana Lozano Rodríguez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eduardo Martínez-Martínez
- Cell Communication & Extracellular Vesicles Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Claudia Perez-Cruz
- National Polytechnic Institute, Center of Research in Advanced Studies, Mexico City, Mexico
| | - Judith Pérez-Velázquez
- Departamento de Matemáticas y Mecánica, Instituto de Investigaciones en Matemáticas Aplicadas y Sistemas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Mathematische Modellierung Biologischer Systeme, Fakultät für Mathematik, Technische Universität München, Munich, Germany
| | - Ana Luisa Piña
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Karla Rubio
- Lung Cancer Epigenetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | - Tauqeerunnisa Syeda
- National Polytechnic Institute, Center of Research in Advanced Studies, Mexico City, Mexico
| | - America Vanoye-Carlo
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | - Arno Villringer
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Katarzyna Winek
- The Shimon Peres Postdoctoral Fellow at the Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marietta Zille
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck, Germany
- Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Lübeck, Germany
| |
Collapse
|
206
|
Margolis L, Sadovsky Y. The biology of extracellular vesicles: The known unknowns. PLoS Biol 2019; 17:e3000363. [PMID: 31318874 PMCID: PMC6667152 DOI: 10.1371/journal.pbio.3000363] [Citation(s) in RCA: 344] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/30/2019] [Indexed: 12/14/2022] Open
Abstract
For many years, double-layer phospholipid membrane vesicles, released by most cells, were not considered to be of biological significance. This stance has dramatically changed with the recognition of extracellular vesicles (EVs) as carriers of biologically active molecules that can traffic to local or distant targets and execute defined biological functions. The dimensionality of the field has expanded with the appreciation of diverse types of EVs and the complexity of vesicle biogenesis, cargo loading, release pathways, targeting mechanisms, and vesicle processing. With the expanded interest in the field and the accelerated rate of publications on EV structure and function in diverse biomedical fields, it has become difficult to distinguish between well-established biological features of EV and the untested hypotheses or speculative assumptions that await experimental proof. With the growing interest despite the limited evidence, we sought in this essay to formulate a set of unsolved mysteries in the field, sort out established data from fascinating hypotheses, and formulate several challenging questions that must be answered for the field to advance.
Collapse
Affiliation(s)
- Leonid Margolis
- Section for Intercellular Interactions, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, United States of America
| | - Yoel Sadovsky
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.,Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
207
|
Losada-Barragán M, Umaña-Pérez A, Durães J, Cuervo-Escobar S, Rodríguez-Vega A, Ribeiro-Gomes FL, Berbert LR, Morgado F, Porrozzi R, Mendes-da-Cruz DA, Aquino P, Carvalho PC, Savino W, Sánchez-Gómez M, Padrón G, Cuervo P. Thymic Microenvironment Is Modified by Malnutrition and Leishmania infantum Infection. Front Cell Infect Microbiol 2019; 9:252. [PMID: 31355153 PMCID: PMC6639785 DOI: 10.3389/fcimb.2019.00252] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/28/2019] [Indexed: 01/23/2023] Open
Abstract
Detrimental effects of malnutrition on immune responses to pathogens have long been recognized and it is considered a main risk factor for various infectious diseases, including visceral leishmaniasis (VL). Thymus is a target of both malnutrition and infection, but its role in the immune response to Leishmania infantum in malnourished individuals is barely studied. Because we previously observed thymic atrophy and significant reduction in cellularity and chemokine levels in malnourished mice infected with L. infantum, we postulated that the thymic microenvironment is severely compromised in those animals. To test this, we analyzed the microarchitecture of the organ and measured the protein abundance in its interstitial space in malnourished BALB/c mice infected or not with L. infantum. Malnourished-infected animals exhibited a significant reduction of the thymic cortex:medulla ratio and altered abundance of proteins secreted in the thymic interstitial fluid. Eighty-one percent of identified proteins are secreted by exosomes and malnourished-infected mice showed significant decrease in exosomal proteins, suggesting that exosomal carrier system, and therefore intrathymic communication, is dysregulated in those animals. Malnourished-infected mice also exhibited a significant increase in the abundance of proteins involved in lipid metabolism and tricarboxylic acid cycle, suggestive of a non-proliferative microenvironment. Accordingly, flow cytometry analysis revealed decreased proliferation of single positive and double positive T cells in those animals. Together, the reduced cortical area, decreased proliferation, and altered protein abundance suggest a dysfunctional thymic microenvironment where T cell migration, proliferation, and maturation are compromised, contributing for the thymic atrophy observed in malnourished animals. All these alterations could affect the control of the local and systemic infection, resulting in an impaired response to L. infantum infection.
Collapse
Affiliation(s)
- Monica Losada-Barragán
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.,Grupo de Investigación en Biología Celular y Funcional e Ingeniería de Biomoléculas, Departamento de Biologia, Universidad Antonio Nariño, Bogotá, Colombia
| | - Adriana Umaña-Pérez
- Grupo de Investigación en Hormonas, Departamento de Química, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Jonathan Durães
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Sergio Cuervo-Escobar
- Facultad de Ciencias, Universidad de Ciencias Aplicadas y Ambientales, Bogotá, Colombia
| | - Andrés Rodríguez-Vega
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Flávia L Ribeiro-Gomes
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Luiz R Berbert
- Laboratório de Pesquisas sobre o Timo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Fernanda Morgado
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Renato Porrozzi
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Daniella Arêas Mendes-da-Cruz
- Laboratório de Pesquisas sobre o Timo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação, Fiocruz, Rio de Janeiro, Brazil
| | | | - Paulo C Carvalho
- Computational Mass Spectrometry and Proteomics Group, Fiocruz, Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratório de Pesquisas sobre o Timo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação, Fiocruz, Rio de Janeiro, Brazil
| | - Myriam Sánchez-Gómez
- Grupo de Investigación en Hormonas, Departamento de Química, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Gabriel Padrón
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Patricia Cuervo
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
208
|
Ressel S, Rosca A, Gordon K, Buck AH. Extracellular RNA in viral-host interactions: Thinking outside the cell. WILEY INTERDISCIPLINARY REVIEWS. RNA 2019; 10:e1535. [PMID: 30963709 PMCID: PMC6617787 DOI: 10.1002/wrna.1535] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/15/2022]
Abstract
Small RNAs and their associated RNA interference (RNAi) pathways underpin diverse mechanisms of gene regulation and genome defense across all three kingdoms of life and are integral to virus-host interactions. In plants, fungi and many animals, an ancestral RNAi pathway exists as a host defense mechanism whereby viral double-stranded RNA is processed to small RNAs that enable recognition and degradation of the virus. While this antiviral RNAi pathway is not generally thought to be present in mammals, other RNAi mechanisms can influence infection through both viral- and host-derived small RNAs. Furthermore, a burgeoning body of data suggests that small RNAs in mammals can function in a non-cell autonomous manner to play various roles in cell-to-cell communication and disease through their transport in extracellular vesicles. While vesicular small RNAs have not been proposed as an antiviral defense pathway per se, there is increasing evidence that the export of host- or viral-derived RNAs from infected cells can influence various aspects of the infection process. This review discusses the current knowledge of extracellular RNA functions in viral infection and the technical challenges surrounding this field of research. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action.
Collapse
Affiliation(s)
- Sarah Ressel
- Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Adelina Rosca
- Department of VirologyCarol Davila University of Medicine and PharmacyBucharestRomania
| | - Katrina Gordon
- Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Amy H. Buck
- Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
209
|
Pretreatment Cancer-Related Cognitive Impairment-Mechanisms and Outlook. Cancers (Basel) 2019; 11:cancers11050687. [PMID: 31100985 PMCID: PMC6562730 DOI: 10.3390/cancers11050687] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/06/2019] [Accepted: 05/14/2019] [Indexed: 12/25/2022] Open
Abstract
Cognitive changes are common in patients with active cancer and during its remission. This has largely been blamed on therapy-related toxicities and diagnosis-related stress, with little attention paid to the biological impact of cancer itself. A plethora of clinical studies demonstrates that cancer patients experience cognitive impairment during and after treatment. However, recent studies show that a significant portion of patients with non-central nervous system (CNS) tumors experience cognitive decline prior to treatment, suggesting a role for tumor-derived factors in modulating cognition and behavior. Cancer-related cognitive impairment (CRCI) negatively impacts a patient’s quality of life, reduces occupational and social functioning, and increases morbidity and mortality. Furthermore, patients with cancer cachexia frequently experience a stark neurocognitive decline, suggesting peripheral tumors exert an enduring toll on the brain during this chronic paraneoplastic syndrome. However, the scarcity of research on cognitive impairment in non-CNS cancers makes it difficult to isolate psychosocial, genetic, behavioral, and pathophysiological factors in CRCI. Furthermore, clinical models of CRCI are frequently confounded by complicated drug regimens that inherently affect neurocognitive processes. The severity of CRCI varies considerably amongst patients and highlights its multifactorial nature. Untangling the biological aspects of CRCI from genetic, psychosocial, and behavioral factors is non-trivial, yet vital in understanding the pathogenesis of CRCI and discovering means for therapeutic intervention. Recent evidence demonstrating the ability of peripheral tumors to alter CNS pathways in murine models is compelling, and it allows researchers to isolate the underlying biological mechanisms from the confounding psychosocial stressors found in the clinic. This review summarizes the state of the science of CRCI independent of treatment and focuses on biological mechanisms in which peripheral cancers modulate the CNS.
Collapse
|
210
|
Nicotine Acts on Cholinergic Signaling Mechanisms to Directly Modulate Choroid Plexus Function. eNeuro 2019; 6:eN-NWR-0051-19. [PMID: 31119189 PMCID: PMC6529591 DOI: 10.1523/eneuro.0051-19.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/23/2022] Open
Abstract
Neuronal cholinergic circuits have been implicated in cognitive function and neurological disease, but the role of cholinergic signaling in other cellular populations within the brain has not been as fully defined. Here, we show that cholinergic signaling mechanisms are involved in mediating the function of the choroid plexus, the brain structure responsible for generating CSF and releasing various factors into the brain. The choroid plexus was found to express markers of endogenous cholinergic signaling, including multiple nicotinic acetylcholine receptor (nAChR) subtypes in a region-specific manner, and application of nicotine was found to induce cellular activation, as evidenced by calcium influx in primary tissue. During intravenous nicotine self-administration in male rats, nicotine increased expression of transthyretin, a protein selectively produced and released by the choroid plexus, and microRNA-204 (mir-204), a transcript found in high levels in the choroid plexus and CSF. Finally, human choroid plexus tissue from both sexes was found to exhibit similar nAChR, transthyretin and mir-204 expression profiles, supporting the translational relevance of the findings. Together, these studies demonstrate functionally active cholinergic signaling mechanisms in the choroid plexus, the resulting effects on transthyretin and mir-204 expression, and reveal the direct mechanism by which nicotine modulates function of this tissue.
Collapse
|
211
|
Molecular Mechanisms Underpinning Microparticle-Mediated Cellular Injury in Cardiovascular Complications Associated with Diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6475187. [PMID: 30915196 PMCID: PMC6399542 DOI: 10.1155/2019/6475187] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/13/2019] [Indexed: 12/15/2022]
Abstract
Microparticles (MPs) are small vesicles shed from the cytoplasmic membrane of healthy, activated, or apoptotic cells. MPs are very heterogeneous in size (100–1,000 nm), and they harbor proteins and surface antigens specific to cells they originate from. Virtually, all cells can shed MPs, and therefore, they can be found in all body fluids, but also entrapped in tissues. Of interest and because of their easy detection using a variety of techniques, circulating MPs were recognized as biomarkers for cell activation. MPs were also found to mediate critical actions in intercellular communication and transmitting biological messages by acting as paracrine vehicles. High plasma numbers of MPs were reported in many cardiovascular and metabolic disturbances that are closely associated with insulin resistance and low-grade inflammation and have been linked to adverse actions on cardiovascular function. This review highlights the involvement of MPs in cardiovascular complications associated with diabetes and discusses the molecular mechanisms that underpin the pathophysiological role of MPs in the onset and progression of cellular injury in diabetes.
Collapse
|
212
|
Guay C, Kruit JK, Rome S, Menoud V, Mulder NL, Jurdzinski A, Mancarella F, Sebastiani G, Donda A, Gonzalez BJ, Jandus C, Bouzakri K, Pinget M, Boitard C, Romero P, Dotta F, Regazzi R. Lymphocyte-Derived Exosomal MicroRNAs Promote Pancreatic β Cell Death and May Contribute to Type 1 Diabetes Development. Cell Metab 2019; 29:348-361.e6. [PMID: 30318337 DOI: 10.1016/j.cmet.2018.09.011] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 07/20/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022]
Abstract
Type 1 diabetes is an autoimmune disease initiated by the invasion of pancreatic islets by immune cells that selectively kill the β cells. We found that rodent and human T lymphocytes release exosomes containing the microRNAs (miRNAs) miR-142-3p, miR-142-5p, and miR-155, which can be transferred in active form to β cells favoring apoptosis. Inactivation of these miRNAs in recipient β cells prevents exosome-mediated apoptosis and protects non-obese diabetic (NOD) mice from diabetes development. Islets from protected NOD mice display higher insulin levels, lower insulitis scores, and reduced inflammation. Looking at the mechanisms underlying exosome action, we found that T lymphocyte exosomes trigger apoptosis and the expression of genes involved in chemokine signaling, including Ccl2, Ccl7, and Cxcl10, exclusively in β cells. The induction of these genes may promote the recruitment of immune cells and exacerbate β cell death during the autoimmune attack. Our data point to exosomal-miRNA transfer as a communication mode between immune and insulin-secreting cells.
Collapse
Affiliation(s)
- Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - Janine K Kruit
- Department of Pediatrics, Section Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sophie Rome
- CarMeN Laboratory (INSERM 1060, INRA 1362, INSA), University of Lyon, Faculté de Médecine de Lyon Sud, Lyon, France
| | - Véronique Menoud
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - Niels L Mulder
- Department of Pediatrics, Section Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Angelika Jurdzinski
- Department of Pediatrics, Section Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Francesca Mancarella
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Umberto Di Mario ONLUS Foundation - Toscana Life Science Park, Siena, Italy
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Umberto Di Mario ONLUS Foundation - Toscana Life Science Park, Siena, Italy
| | - Alena Donda
- Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Bryan J Gonzalez
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - Camilla Jandus
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Karim Bouzakri
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Michel Pinget
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Christian Boitard
- Institut National de Santé et de Recherche Médicale U1016, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Pedro Romero
- Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Umberto Di Mario ONLUS Foundation - Toscana Life Science Park, Siena, Italy
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland.
| |
Collapse
|
213
|
Javeed N. Shedding Perspective on Extracellular Vesicle Biology in Diabetes and Associated Metabolic Syndromes. Endocrinology 2019; 160:399-408. [PMID: 30624638 PMCID: PMC6349001 DOI: 10.1210/en.2018-01010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022]
Abstract
The etiology of diabetes and associated metabolic derailments is a complex process that relies on crosstalk between metabolically active tissues. Dysregulation of secreted factors and metabolites from islets, adipose tissue, liver, and skeletal muscle contributes to the overall progression of diabetes and metabolic syndrome. Extracellular vesicles (EVs) are circulating nanovesicles secreted by most cell types and are comprised of bioactive cargoes that are horizontally transferred to targeted cells/tissues. Accumulating evidence from the past decade implicates the role of EVs as mediators of islet cell dysfunction, inflammation, insulin resistance, and other metabolic consequences associated with diabetes. This review covers a broad spectrum of basic EV biology (i.e., biogenesis, secretion, and uptake), including a comprehensive investigation of the emerging role of EVs in β-cell autocrine/paracrine interactions and the multidirectional crosstalk in metabolically active tissues. Understanding the utility of this novel means of intercellular communication could impart insight into the development of new treatment regimens and biomarker detection to treat diabetes.
Collapse
Affiliation(s)
- Naureen Javeed
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Correspondence: Naureen Javeed, PhD, Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905. E-mail:
| |
Collapse
|
214
|
Shi M, Sheng L, Stewart T, Zabetian CP, Zhang J. New windows into the brain: Central nervous system-derived extracellular vesicles in blood. Prog Neurobiol 2019; 175:96-106. [PMID: 30685501 DOI: 10.1016/j.pneurobio.2019.01.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/18/2018] [Accepted: 01/23/2019] [Indexed: 12/28/2022]
Abstract
Extracellular vesicles (EVs), including exosomes and (shedding) microvesicles, are released by nearly all cell types and carry a cargo of proteins and nucleic acids that varies by the cell of origin. They are thought to play critical roles in normal central nervous system (CNS) function and neurological disorders. A recently revealed key characteristic of EVs is that they may travel between the CNS and peripheral circulation. This property has led to intense interest in how EVs might serve as a vehicle for toxic protein clearance and as a readily accessible source of biomarkers for CNS disorders. Furthermore, by bypassing the blood-brain barrier, modified EVs could serve as a unique drug delivery system that targets specific neuronal populations. Further work is necessary to develop and optimize techniques that enable high-yield capture of relevant EV populations, analyze individual EVs and their cargos, and validate preliminary results of EV-derived biomarkers in independent cohorts.
Collapse
Affiliation(s)
- Min Shi
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Lifu Sheng
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Tessandra Stewart
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Cyrus P Zabetian
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; Parkinson's Disease Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jing Zhang
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98104, USA; Beijing Key Laboratory of Research and Transformation on Neurodegenerative Diseases Biomarkers, Department of Pathology, Peking University Third Hospital/Institute of Basic Science, Peking University Health Science Center, Beijing 100083, China.
| |
Collapse
|
215
|
Royo F, Cossío U, Ruiz de Angulo A, Llop J, Falcon-Perez JM. Modification of the glycosylation of extracellular vesicles alters their biodistribution in mice. NANOSCALE 2019; 11:1531-1537. [PMID: 30623961 DOI: 10.1039/c8nr03900c] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Extracellular vesicles (EVs) are considered sophisticated vehicles for cell-to-cell communication, thanks to the possibility of handling a variable cargo in a shell with multiple types of decoders. Surface glycosylation of EVs is a method that could be used to control their interaction with different cells and, consequently, the biodistribution of the vesicles in the body. Herein, we produced EVs derived from mouse liver proliferative cells, and we treated them with neuraminidase, an enzyme that digests the terminal sialic acid residues from glycoproteins. Afterwards, we labeled the EVs directly with [124I]Na and injected them in mice intravenously or into the hock. The amount of radioactivity in major organs was measured at different time points after administration both in vivo using positron emission tomography and ex vivo (after animal sacrifice) using dissection and gamma counting. The results showed that intravenous injection leads to the rapid accumulation of EVs in the liver. Moreover, after some hours the distribution led to the presence of EVs in different organs including the brain. Glycosidase treatment induced an accumulation in the lungs, compared with the intact EVs. Furthermore, when the EVs were injected through the hock, the neuraminidase-treated vesicles distributed better at the axillary lymph nodes than the untreated EVs. This result shows that modification of the glycosylated complexes on the EV surface can affect the distribution of these vesicles, and specifically removing the sialic acid residues allows more EVs to reach and accumulate at the lungs.
Collapse
Affiliation(s)
- Felix Royo
- Exosomes Laboratory, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, Derio, 48160, Bizkaia, Spain.
| | | | | | | | | |
Collapse
|
216
|
Driedonks TAP, Nolte-'t Hoen ENM. Circulating Y-RNAs in Extracellular Vesicles and Ribonucleoprotein Complexes; Implications for the Immune System. Front Immunol 2019; 9:3164. [PMID: 30697216 PMCID: PMC6340977 DOI: 10.3389/fimmu.2018.03164] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/21/2018] [Indexed: 12/25/2022] Open
Abstract
The exchange of extracellular vesicles (EV) between immune cells plays a role in various immune regulatory processes. EV are nano-sized lipid bilayer-enclosed structures that contain a multitude of proteins and small non-coding RNA molecules. Of the various RNA classes present in EV, miRNAs have been most intensively studied because of their known gene-regulatory functions. These miRNAs constitute only a minor part of all EV-enclosed RNA, whereas other 20–200 nt sized non-coding RNAs were shown to be abundantly present in EV. Several of these mid-sized RNAs perform basic functions in cells, but their function in EV remains elusive. One prominent class of mid-sized extracellular RNAs associated with EV are the Y-RNAs. This family of highly conserved non-coding RNAs was initially discovered as RNA component of circulating ribonucleoprotein autoantigens in serum from Systemic Lupus Erythematosus and Sjögren's Syndrome patients. Y-RNA has been implicated in cellular processes such as DNA replication and RNA quality control. In recent years, Y-RNA has been abundantly detected in EV from multiple different cell lines and biofluids, and also in murine and human retroviruses. Accumulating evidence suggests that EV-associated Y-RNA may be involved in a range of immune-related processes, including inflammation, immune suppression, and establishment of the tumor microenvironment. Moreover, changes in plasma levels of extracellular Y-RNA have been associated with various diseases. Recent studies have aimed to address the mechanisms underlying their release and function. We for example showed that the levels of EV-associated Y-RNA released by immune cells can be regulated by Toll-like receptor (TLR) signaling. Combined, these data have triggered increased interest in extracellular Y-RNAs. In this review, we provide an overview of studies reporting the occurrence of extracellular Y-RNAs, as well as signaling properties and immune-related functions attributed to these RNAs. We list RNA-binding proteins currently known to interact with Y-RNAs and evaluate their occurrence in EV. In parallel, we discuss technical challenges in assessing whether extracellular Y-RNAs are contained in ribonucleoprotein complexes or EV. By integrating the current knowledge on extracellular Y-RNA we further reflect on the biomarker potential of Y-RNA and their role in immune cell communication and immunopathology.
Collapse
Affiliation(s)
- Tom A P Driedonks
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Esther N M Nolte-'t Hoen
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
217
|
Pascua-Maestro R, González E, Lillo C, Ganfornina MD, Falcón-Pérez JM, Sanchez D. Extracellular Vesicles Secreted by Astroglial Cells Transport Apolipoprotein D to Neurons and Mediate Neuronal Survival Upon Oxidative Stress. Front Cell Neurosci 2019; 12:526. [PMID: 30687015 PMCID: PMC6335244 DOI: 10.3389/fncel.2018.00526] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/18/2018] [Indexed: 12/31/2022] Open
Abstract
Extracellular vesicle (EV)-mediated glia-to-neuron communication has been recognized in a growing number of physiological and pathological situations. They transport complex sets of molecules that can be beneficial or detrimental for the receiving cell. As in other areas of biology, their analysis is revolutionizing the field of neuroscience, since fundamental signaling processes are being re-evaluated, and applications for neurodegenerative disease therapies have emerged. Using human astrocytic and differentiated neuronal cell lines, we demonstrate that a classical neuroprotective protein, Apolipoprotein D (ApoD), expressed by glial cells and known to promote functional integrity and survival of neurons, is exclusively transported by EVs from astrocytes to neurons, where it gets internalized. Indeed, we demonstrate that conditioned media derived from ApoD-knock-out (KO) astrocytes exert only a partial autocrine protection from oxidative stress (OS) challenges, and that EVs are required for ApoD-positive astrocytic cell line derived medium to exert full neuroprotection. When subfractionation of EVs is performed, ApoD is revealed as a very specific marker of the exosome-containing fractions. These discoveries help us reframe our understanding of the neuroprotective role of this lipid binding protein and open up new research avenues to explore the use of systemically administered ApoD-loaded exosomes that can cross the blood-brain barrier to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Raquel Pascua-Maestro
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Esperanza González
- Exosomes Group, Metabolomics Unit and Platform, CIC bioGUNE, CIBERehd, Technology Park of Bizkaia, Derio, Spain
| | - Concepción Lillo
- Instituto de Neurociencias de Castilla y León, IBSAL, Universidad de Salamanca, Salamanca, Spain
| | - Maria D Ganfornina
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Juan Manuel Falcón-Pérez
- Exosomes Group, Metabolomics Unit and Platform, CIC bioGUNE, CIBERehd, Technology Park of Bizkaia, Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Diego Sanchez
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, Valladolid, Spain
| |
Collapse
|
218
|
Abstract
Extracellular vesicles (EVs) have gained increasing attention as underexplored intercellular communication mechanisms in basic science and as potential diagnostic tools in translational studies, particularly those related to cancers and neurological disorders. This article summarizes accumulated findings in the basic biology of EVs, EV research methodology, and the roles of EVs in brain cell function and dysfunction, as well as emerging EV studies in human brain disorders. Further research on EVs in neurobiology and psychiatry may open the door to a better understanding of intercellular communications in healthy and diseased brains, and the discovery of novel biomarkers and new therapeutic strategies in psychiatric disorders.
Collapse
Affiliation(s)
- Shin-ichi Kano
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD,To whom correspondence should be addressed; Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, US; tel: 410-955-6871, e-mail:
| | - Eisuke Dohi
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Indigo V L Rose
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
219
|
Dendritic cell extracellular vesicles. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:213-249. [DOI: 10.1016/bs.ircmb.2019.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
220
|
Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV. Blood-Brain Barrier: From Physiology to Disease and Back. Physiol Rev 2019; 99:21-78. [PMID: 30280653 PMCID: PMC6335099 DOI: 10.1152/physrev.00050.2017] [Citation(s) in RCA: 1397] [Impact Index Per Article: 232.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB) prevents neurotoxic plasma components, blood cells, and pathogens from entering the brain. At the same time, the BBB regulates transport of molecules into and out of the central nervous system (CNS), which maintains tightly controlled chemical composition of the neuronal milieu that is required for proper neuronal functioning. In this review, we first examine molecular and cellular mechanisms underlying the establishment of the BBB. Then, we focus on BBB transport physiology, endothelial and pericyte transporters, and perivascular and paravascular transport. Next, we discuss rare human monogenic neurological disorders with the primary genetic defect in BBB-associated cells demonstrating the link between BBB breakdown and neurodegeneration. Then, we review the effects of genes underlying inheritance and/or increased susceptibility for Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, and amyotrophic lateral sclerosis (ALS) on BBB in relation to other pathologies and neurological deficits. We next examine how BBB dysfunction relates to neurological deficits and other pathologies in the majority of sporadic AD, PD, and ALS cases, multiple sclerosis, other neurodegenerative disorders, and acute CNS disorders such as stroke, traumatic brain injury, spinal cord injury, and epilepsy. Lastly, we discuss BBB-based therapeutic opportunities. We conclude with lessons learned and future directions, with emphasis on technological advances to investigate the BBB functions in the living human brain, and at the molecular and cellular level, and address key unanswered questions.
Collapse
Affiliation(s)
- Melanie D Sweeney
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California , Los Angeles, California ; and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Zhen Zhao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California , Los Angeles, California ; and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Axel Montagne
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California , Los Angeles, California ; and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Amy R Nelson
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California , Los Angeles, California ; and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California , Los Angeles, California ; and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California , Los Angeles, California
| |
Collapse
|
221
|
Beuzelin D, Kaeffer B. Exosomes and miRNA-Loaded Biomimetic Nanovehicles, a Focus on Their Potentials Preventing Type-2 Diabetes Linked to Metabolic Syndrome. Front Immunol 2018; 9:2711. [PMID: 30519245 PMCID: PMC6258775 DOI: 10.3389/fimmu.2018.02711] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/02/2018] [Indexed: 12/16/2022] Open
Abstract
Exosomes are small membrane vesicles of 30–150 nm, members of the extracellular vesicle family and secreted by various cell types. Different studies describe specific microRNA (miRNA) with altered expression in serum and/or plasma of patients suffering from diabetes or metabolic syndrome. Diabetic cardiomyocyte-derived exosomes loaded with miRNAs like miR-320-3p (or 320a) have been shown regulating angiogenesis on endothelial cell cultures. Insufficient myocardial angiogenesis is the major manifestation of diabetes-caused ischemic cardiovascular disease. Studies on transfer of functional microRNAs between mouse dendritic cells via exosomes have shown that some miRNAs (miR-320-3p, 29b-3p, 7a-5p) are distributed in immature and mature exosomes. Among these miRNAs, miR-320-3p is better known in epigenetics for silencing polr3d gene by binding to its promoter in Human Embryonic Kidney-293 cells. Moreover, quantitative and stoichiometric analysis of the microRNA content of exosomes highlights the lack of reliable natural source of such particles loaded with miRNA opening the need for tailoring exosomes or nanoparticles delivering efficiently miRNA intimately linked to immunity, metabolism and epigenetics in target cells. However, loading of extracellular mature miRNA into recipient cells comes with a cost by at least impeding dynamic localization of miRNAs in nucleoli or inefficient miRNA delivery due to rapid recycling by exonucleases. All these works are calling for the design of new biomimetic vehicles and in vivo assessment of miRNA functionality when delivered by natural or biomimetic nanoparticles in order to control metabolic diseases from infancy to adulthood.
Collapse
|
222
|
Morozov AV, Karpov VL. Biological consequences of structural and functional proteasome diversity. Heliyon 2018; 4:e00894. [PMID: 30417153 PMCID: PMC6218844 DOI: 10.1016/j.heliyon.2018.e00894] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/25/2018] [Accepted: 10/24/2018] [Indexed: 12/21/2022] Open
Abstract
Cell homeostasis and regulation of metabolic pathways are ensured by synthesis, proper folding and efficient degradation of a vast amount of proteins. Ubiquitin-proteasome system (UPS) degrades most intracellular proteins and thus, participates in regulation of cellular metabolism. Within the UPS, proteasomes are the elements that perform substrate cleavage. However, the proteasomes in the organism are diverse. Structurally different proteasomes are present not only in different types of cells, but also in a single cell. The reason for proteasome heterogeneity is not fully understood. This review briefly encompasses mammalian proteasome structure and function, and discusses biological relevance of proteasome diversity for a range of important cellular functions including internal and external signaling.
Collapse
Affiliation(s)
- Alexey V Morozov
- W.A. Engelhardt Institute of Molecular Biology, RAS, 119991, Moscow, Russia
| | - Vadim L Karpov
- W.A. Engelhardt Institute of Molecular Biology, RAS, 119991, Moscow, Russia
| |
Collapse
|
223
|
Liu H, Li B. The functional role of exosome in hepatocellular carcinoma. J Cancer Res Clin Oncol 2018; 144:2085-2095. [PMID: 30062486 DOI: 10.1007/s00432-018-2712-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 07/16/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide with limited therapeutic options. Exosome is a member of extracellular vesicles that can be released by different cells in liver to communicate with other cells. HCC development has been characterized by a dysfunction of exosome regulation through many molecular mechanisms. The aim of the present review is to summarize the literature on exosomes in HCC, their roles in hepatocarcinogenesis from liver disease, molecules exchange between tumor cells and neighboring cells, metastasis, chemoresistant, immunosuppression, early diagnose and therapy application. METHODS Literatures about HCC and exosomes from PubMed databases were reviewed in this article. RESULTS As our review described, exosomes can induce malignant transformation of liver disease via promoting viral diffusion and inflammation, exchange oncogenic factors between tumor cells, sustain tumor growth by neighboring stromal cells, play a important role in metastasis, trigger chemoresistance through transmitting long noncoding RNAs, stimulate immune activation as well as immune evasion, be utilized in biomarkers discovery and therapeutic options. CONCLUSIONS Available data suggested that exosomes may play an important role in HCC development. More studies on the way that exosomes mediated the HCC progression are needed to promote the clinical utilization of exosomes.
Collapse
Affiliation(s)
- Hongyu Liu
- R&D Department of Guanglian Biomedical Technology (Tianjin) Co., Ltd., Tianjin, 300000, China
| | - Baoguo Li
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
224
|
Narayanan K, Kumar S, Padmanabhan P, Gulyas B, Wan ACA, Rajendran VM. Lineage-specific exosomes could override extracellular matrix mediated human mesenchymal stem cell differentiation. Biomaterials 2018; 182:312-322. [PMID: 30153612 PMCID: PMC6371403 DOI: 10.1016/j.biomaterials.2018.08.027] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 12/13/2022]
Abstract
Lineage specification is an essential process in stem cell fate, tissue homeostasis and development. Microenvironmental cues provide direct and selective extrinsic signals to regulate lineage specification of stem cells. Microenvironmental milieu consists of two essential components, one being extracellular matrix (ECM) as the substratum, while the other being cell secreted exosomes and growth factors. ECM of differentiated cells modulates phenotypic expression of stem cells, while their exosomes contain phenotype specific instructive factors (miRNA, RNA and proteins) that control stem cell differentiation. This study demonstrates that osteoblasts-derived (Os-Exo) and adipocytes-derived (Ad-Exo) exosomes contain instructive factors that regulate the lineage specification of human mesenchymal stem cells (hMSCs). Analyses of exosomes revealed the presence of transcription factors in the form of RNA and protein for osteoblasts (RUNX2 and OSX) and adipocytes (C/EBPα and PPARγ). In addition, several miRNAs reported to have osteogenic and adipogenic differentiation potentials are also identified in these exosomes. Kinetic and differentiation analyses indicate that both osteoblast and adipocyte exosomes augment ECM-mediated differentiation of hMSCs into the respective lineage. The combination of osteoblast/adipocyte ECM and exosomes turned-on the lineage specific gene expressions at earlier time points of differentiation compared to the respective ECM or exosomes administered individually. Interestingly, the hMSCs differentiated on osteoblast ECM with adipogenic exosomes showed expression of adipogenic lineage genes, while hMSCs differentiated on adipocyte ECM with osteoblast exosomes showed osteogenic lineage genes. Based on these observations, we conclude that exosomes might override the ECM mediated instructive signals during lineage specification of hMSC.
Collapse
Affiliation(s)
- Karthikeyan Narayanan
- Department of Biochemistry and Molecular Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA; Institute of Bioengineering and Nanotechnology, 138669, Singapore.
| | - Sundramurthy Kumar
- Centre for Neuroimaging Research at NTU (CeNReN), Lee Kong Chian School of Medicine, Nanyang Technological University, 636921, Singapore
| | - Parasuraman Padmanabhan
- Centre for Neuroimaging Research at NTU (CeNReN), Lee Kong Chian School of Medicine, Nanyang Technological University, 636921, Singapore.
| | - Balazs Gulyas
- Centre for Neuroimaging Research at NTU (CeNReN), Lee Kong Chian School of Medicine, Nanyang Technological University, 636921, Singapore
| | - Andrew C A Wan
- Institute of Bioengineering and Nanotechnology, 138669, Singapore
| | - Vazhaikkurichi M Rajendran
- Department of Biochemistry and Molecular Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| |
Collapse
|
225
|
Hinger SA, Cha DJ, Franklin JL, Higginbotham JN, Dou Y, Ping J, Shu L, Prasad N, Levy S, Zhang B, Liu Q, Weaver AM, Coffey RJ, Patton JG. Diverse Long RNAs Are Differentially Sorted into Extracellular Vesicles Secreted by Colorectal Cancer Cells. Cell Rep 2018; 25:715-725.e4. [PMID: 30332650 PMCID: PMC6248336 DOI: 10.1016/j.celrep.2018.09.054] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/04/2018] [Accepted: 09/14/2018] [Indexed: 01/29/2023] Open
Abstract
The regulation and functional roles of secreted coding and long noncoding RNAs (lncRNAs; >200 nt) are largely unknown. We previously showed that mutant KRAS colorectal cancer (CRC) cells release extracellular vesicles (EVs) containing distinct proteomes, microRNAs (miRNAs), and circular RNAs. Here, we comprehensively identify diverse classes of CRC extracellular long RNAs secreted in EVs and demonstrate differential export of specific RNAs. Distinct noncoding RNAs, including antisense transcripts and transcripts derived from pseudogenes, are enriched in EVs compared to cellular profiles. We detected strong enrichment of Rab13 in mutant KRAS EVs and demonstrate functional delivery of Rab13 mRNA to recipient cells. To assay functional transfer of lncRNAs, we implemented a CRISPR/Cas9-based RNA-tracking system to monitor delivery to recipient cells. We show that gRNAs containing export signals from secreted RNAs can be transferred from donor to recipient cells. Our data support the existence of cellular mechanisms to selectively export diverse classes of RNA.
Collapse
Affiliation(s)
- Scott A Hinger
- Department of Biological Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Diana J Cha
- Department of Biological Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Jeffrey L Franklin
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37235, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37235, USA; Veterans Affairs Medical Center, Nashville, TN 37235, USA
| | - James N Higginbotham
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37235, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37235, USA; Veterans Affairs Medical Center, Nashville, TN 37235, USA
| | - Yongchao Dou
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Jie Ping
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Lihua Shu
- Department of Biological Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | | | | | - Bing Zhang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Robert J Coffey
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37235, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37235, USA; Veterans Affairs Medical Center, Nashville, TN 37235, USA
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA.
| |
Collapse
|
226
|
Kawahara H, Hanayama R. The Role of Exosomes/Extracellular Vesicles in Neural Signal Transduction. Biol Pharm Bull 2018; 41:1119-1125. [PMID: 30068858 DOI: 10.1248/bpb.b18-00167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exosomes, in a broad sense extracellular vesicles (EVs), are secreted from several cells and also exist in cerebrospinal fluid (CSF); they contribute to signal transduction not only between neural cells but also among hematopoietic cells. In addition to the peripheral nervous system, the association of regeneration and EVs has also been reported in the central nervous system, for example, following a spinal cord injury. Furthermore, it has become clear that major causative factors of neurodegenerative diseases are transmitted by EVs; thus, EVs are involved in the pathogenesis of neurodegenerative diseases. In particular, we would like to outline the relationship between neurophysiology and neurological disorders centered on EV-mediated communication between neural and glial cells.
Collapse
Affiliation(s)
- Hironori Kawahara
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University.,Nano Life Science Institute (WPI-NanoLSI), Kanazawa University
| | - Rikinari Hanayama
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University.,Nano Life Science Institute (WPI-NanoLSI), Kanazawa University
| |
Collapse
|
227
|
Piffoux M, Silva AKA, Wilhelm C, Gazeau F, Tareste D. Modification of Extracellular Vesicles by Fusion with Liposomes for the Design of Personalized Biogenic Drug Delivery Systems. ACS NANO 2018; 12:6830-6842. [PMID: 29975503 DOI: 10.1021/acsnano.8b02053] [Citation(s) in RCA: 302] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Extracellular vesicles (EVs) are recognized as nature's own carriers to transport macromolecules throughout the body. Hijacking this endogenous communication system represents an attractive strategy for advanced drug delivery. However, efficient and reproducible loading of EVs with therapeutic or imaging agents still represents a bottleneck for their use as a drug delivery system. Here, we developed a method for modifying cell-derived EVs through their fusion with liposomes containing both membrane and soluble cargoes. The fusion of EVs with functionalized liposomes was triggered by polyethylene glycol (PEG) to create smart biosynthetic hybrid vectors. This versatile method proved to be efficient to enrich EVs with exogenous lipophilic or hydrophilic compounds, while preserving their intrinsic content and biological properties. Hybrid EVs improved cellular delivery efficiency of a chemotherapeutic compound by a factor of 3-4, as compared to the free drug or the drug-loaded liposome precursor. On one side, this method allows the biocamouflage of liposomes by enriching their lipid bilayer and inner compartment with biogenic molecules. On the other side, the proposed fusion strategy enables efficient EV loading, and the pharmaceutical development of EVs with adaptable activity and drug delivery property.
Collapse
Affiliation(s)
- Max Piffoux
- Laboratoire Matière et Systèmes Complexes , Université Paris Diderot, Sorbonne Paris Cité , CNRS UMR 7057, F-75013 Paris , France
| | - Amanda K A Silva
- Laboratoire Matière et Systèmes Complexes , Université Paris Diderot, Sorbonne Paris Cité , CNRS UMR 7057, F-75013 Paris , France
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes , Université Paris Diderot, Sorbonne Paris Cité , CNRS UMR 7057, F-75013 Paris , France
| | - Florence Gazeau
- Laboratoire Matière et Systèmes Complexes , Université Paris Diderot, Sorbonne Paris Cité , CNRS UMR 7057, F-75013 Paris , France
| | - David Tareste
- Institut Jacques Monod , Université Paris Diderot, Sorbonne Paris Cité , CNRS UMR 7592, F-75013 Paris , France
- Centre de Psychiatrie et Neurosciences , Université Paris Descartes, Sorbonne Paris Cité , INSERM UMR 894, F-75014 Paris , France
- Membrane Traffic in Health and Disease , Université Paris Descartes, Sorbonne Paris Cité , INSERM ERL U950, F-75014 Paris , France
| |
Collapse
|
228
|
Casella G, Colombo F, Finardi A, Descamps H, Ill-Raga G, Spinelli A, Podini P, Bastoni M, Martino G, Muzio L, Furlan R. Extracellular Vesicles Containing IL-4 Modulate Neuroinflammation in a Mouse Model of Multiple Sclerosis. Mol Ther 2018; 26:2107-2118. [PMID: 30017878 DOI: 10.1016/j.ymthe.2018.06.024] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 12/31/2022] Open
Abstract
Extracellular vesicles (EVs) play a major role in cell-to-cell communication in physiological and pathological conditions, and their manipulation may represent a promising therapeutic strategy. Microglia, the parenchymal mononuclear phagocytes of the brain, modulate neighboring cells also through the release of EVs. The production of custom EVs filled with desired molecules, possibly targeted to make their uptake cell specific, and their administration in biological fluids may represent a valid approach for drug delivery. We engineered a murine microglia cell line, BV-2, to release EVs overexpressing the endogenous "eat me" signal Lactadherin (Mfg-e8) on the surface to target phagocytes and containing the anti-inflammatory cytokine IL-4. A single injection of 107 IL-4+Mfg-e8+ EVs into the cisterna magna modulated established neuroinflammation and significantly reduced clinical signs in the mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). Injected IL-4+Mfg-e8+ EVs target mainly phagocytes (i.e., macrophages and microglia) surrounding liquoral spaces, and their cargo promote the upregulation of anti-inflammatory markers chitinase 3-like 3 (ym1) and arginase-1 (arg1), significantly reducing tissue damage. Engineered EVs may represent a biological drug delivery tool able to deliver multiple functional molecules simultaneously to treat neuroinflammatory diseases.
Collapse
Affiliation(s)
- Giacomo Casella
- Clinical Neuroimmunology Unit, Department of Neuroscience, Institute of Experimental Neurology (InSpe), San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Federico Colombo
- Clinical Neuroimmunology Unit, Department of Neuroscience, Institute of Experimental Neurology (InSpe), San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Department of Neuroscience, Institute of Experimental Neurology (InSpe), San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Hélène Descamps
- Neuroimmunology Unit, Department of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gerard Ill-Raga
- Clinical Neuroimmunology Unit, Department of Neuroscience, Institute of Experimental Neurology (InSpe), San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Antonello Spinelli
- Experimental Imaging Centre, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Paola Podini
- Department of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Mattia Bastoni
- Clinical Neuroimmunology Unit, Department of Neuroscience, Institute of Experimental Neurology (InSpe), San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gianvito Martino
- Neuroimmunology Unit, Department of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Luca Muzio
- Neuroimmunology Unit, Department of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Department of Neuroscience, Institute of Experimental Neurology (InSpe), San Raffaele Scientific Institute, 20132 Milan, Italy.
| |
Collapse
|
229
|
Vilette D, Courte J, Peyrin JM, Coudert L, Schaeffer L, Andréoletti O, Leblanc P. Cellular mechanisms responsible for cell-to-cell spreading of prions. Cell Mol Life Sci 2018; 75:2557-2574. [PMID: 29761205 PMCID: PMC11105574 DOI: 10.1007/s00018-018-2823-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/04/2018] [Accepted: 04/23/2018] [Indexed: 01/01/2023]
Abstract
Prions are infectious agents that cause fatal neurodegenerative diseases. Current evidence indicates that they are essentially composed of an abnormally folded protein (PrPSc). These abnormal aggregated PrPSc species multiply in infected cells by recruiting and converting the host PrPC protein into new PrPSc. How prions move from cell to cell and progressively spread across the infected tissue is of crucial importance and may provide experimental opportunity to delay the progression of the disease. In infected cells, different mechanisms have been identified, including release of infectious extracellular vesicles and intercellular transfer of PrPSc-containing organelles through tunneling nanotubes. These findings should allow manipulation of the intracellular trafficking events targeting PrPSc in these particular subcellular compartments to experimentally address the relative contribution of these mechanisms to in vivo prion pathogenesis. In addition, such information may prompt further experimental strategies to decipher the causal roles of protein misfolding and aggregation in other human neurodegenerative diseases.
Collapse
Affiliation(s)
- Didier Vilette
- UMR1225, INRA, ENVT, Ecole Nationale Vétérinaire, 23 Chemin des Capelles, Toulouse, France.
| | - Josquin Courte
- Neurosciences Paris Seine, UMR8246, Inserm U1130, IBPS, UPMC, Sorbonne Universités, 4 Place Jussieu, 75005, Paris, France
- Laboratoire Physico Chimie Curie, UMR168, UPMC, IPGG, Sorbonne Universités, 6 Rue Jean Calvin, 75005, Paris, France
| | - Jean Michel Peyrin
- Neurosciences Paris Seine, UMR8246, Inserm U1130, IBPS, UPMC, Sorbonne Universités, 4 Place Jussieu, 75005, Paris, France.
| | - Laurent Coudert
- Insitut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France
| | - Laurent Schaeffer
- Insitut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France
| | - Olivier Andréoletti
- UMR1225, INRA, ENVT, Ecole Nationale Vétérinaire, 23 Chemin des Capelles, Toulouse, France
| | - Pascal Leblanc
- Insitut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France.
| |
Collapse
|
230
|
Simon C, Greening DW, Bolumar D, Balaguer N, Salamonsen LA, Vilella F. Extracellular Vesicles in Human Reproduction in Health and Disease. Endocr Rev 2018; 39:292-332. [PMID: 29390102 DOI: 10.1210/er.2017-00229] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/25/2018] [Indexed: 02/07/2023]
Abstract
Extensive evidence suggests that the release of membrane-enclosed compartments, more commonly known as extracellular vesicles (EVs), is a potent newly identified mechanism of cell-to-cell communication both in normal physiology and in pathological conditions. This review presents evidence about the formation and release of different EVs, their definitive markers and cargo content in reproductive physiological processes, and their capacity to convey information between cells through the transfer of functional protein and genetic information to alter phenotype and function of recipient cells associated with reproductive biology. In the male reproductive tract, epididymosomes and prostasomes participate in regulating sperm motility activation, capacitation, and acrosome reaction. In the female reproductive tract, follicular fluid, oviduct/tube, and uterine cavity EVs are considered as vehicles to carry information during oocyte maturation, fertilization, and embryo-maternal crosstalk. EVs via their cargo might be also involved in the triggering, maintenance, and progression of reproductive- and obstetric-related pathologies such as endometriosis, polycystic ovarian syndrome, preeclampsia, gestational diabetes, and erectile dysfunction. In this review, we provide current knowledge on the present and future use of EVs not only as biomarkers, but also as therapeutic targeting agents, mainly as vectors for drug or compound delivery into target cells and tissues.
Collapse
Affiliation(s)
- Carlos Simon
- Igenomix Foundation, Valencia, Spain.,Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain.,Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, Valencia University, Valencia, Spain.,Department of Obstetrics and Gynecology, Stanford University, Palo Alto, California
| | - David W Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - David Bolumar
- Igenomix Foundation, Valencia, Spain.,Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
| | - Nuria Balaguer
- Igenomix Foundation, Valencia, Spain.,Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
| | - Lois A Salamonsen
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Felipe Vilella
- Igenomix Foundation, Valencia, Spain.,Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain.,Department of Obstetrics and Gynecology, Stanford University, Palo Alto, California
| |
Collapse
|
231
|
RNA from Trained Aplysia Can Induce an Epigenetic Engram for Long-Term Sensitization in Untrained Aplysia. eNeuro 2018; 5:eN-NWR-0038-18. [PMID: 29789810 PMCID: PMC5962046 DOI: 10.1523/eneuro.0038-18.2018] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/25/2018] [Accepted: 04/27/2018] [Indexed: 02/07/2023] Open
Abstract
The precise nature of the engram, the physical substrate of memory, remains uncertain. Here, it is reported that RNA extracted from the central nervous system of Aplysia given long-term sensitization (LTS) training induced sensitization when injected into untrained animals; furthermore, the RNA-induced sensitization, like training-induced sensitization, required DNA methylation. In cellular experiments, treatment with RNA extracted from trained animals was found to increase excitability in sensory neurons, but not in motor neurons, dissociated from naïve animals. Thus, the behavioral, and a subset of the cellular, modifications characteristic of a form of nonassociative long-term memory (LTM) in Aplysia can be transferred by RNA. These results indicate that RNA is sufficient to generate an engram for LTS in Aplysia and are consistent with the hypothesis that RNA-induced epigenetic changes underlie memory storage in Aplysia.
Collapse
|
232
|
Fed-EXosome: extracellular vesicles and cell-cell communication in metabolic regulation. Essays Biochem 2018; 62:165-175. [PMID: 29717059 DOI: 10.1042/ebc20170087] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 12/16/2022]
Abstract
Extracellular vesicles (EVs) have emerged as a novel messaging system of the organism, mediating cell-cell and interorgan communication. Through their content of proteins and nucleic acids, as well as membrane proteins and lipid species, EVs can interact with and modulate the function of their target cells. The regulation of whole-body metabolism requires cross-talk between key metabolic tissues including adipose tissue (AT), the liver and skeletal muscle. Furthermore, the regulation of nutrient/energy allocation during pregnancy requires co-ordinated communication between the foetus and metabolic organs of the mother. A growing body of evidence is suggesting that EVs play a role in communication between and within key metabolic organs, both physiologically during metabolic homoeostasis but also contributing to pathophysiology during metabolic dysregulation observed in metabolic diseases such as obesity and diabetes. As obesity and its associated metabolic complications are reaching epidemic proportions, characterization of EV-mediated communication between key metabolic tissues may offer important insights into the regulation of metabolic functions during disease and offer global therapeutic opportunities. Here, we focus on the role of EVs in metabolic regulation and, in particular, EV-mediated cross-talk between cells of the AT.
Collapse
|
233
|
Paolicelli RC, Bergamini G, Rajendran L. Cell-to-cell Communication by Extracellular Vesicles: Focus on Microglia. Neuroscience 2018; 405:148-157. [PMID: 29660443 DOI: 10.1016/j.neuroscience.2018.04.003] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/30/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles, including exosomes and microvesicles, are small, nano-to-micrometer vesicles that are released from cells. While initially observed in immune cells and reticulocytes as vesicles meant to remove archaic proteins, now they have been observed in almost all cell types of multicellular organisms. Growing evidence indicates that extracellular vesicles, containing lipids, proteins and RNAs, represent an efficient way to transfer functional cargoes from one cell to another. In the central nervous system, the extensive cross-talk ongoing between neurons and glia, including microglia, the immune cells of the brain, takes advantage of secreted vesicles, which mediate intercellular communication over long range distance. Recent literature supports a critical role for extracellular vesicles in mediating complex and coordinated communication among neurons, astrocytes and microglia, both in the healthy and in the diseased brain. In this review, we focus on the biogenesis and function of microglia-related extracellular vesicles and focus on their putative role in Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Rosa C Paolicelli
- Systems and Cell Biology of Neurodegeneration, IREM - Institute for Regenerative Medicine, University of Zurich, Switzerland.
| | - Giorgio Bergamini
- Preclinical Laboratory for Translational Research into Affective Disorders (PLaTRAD), Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Switzerland
| | - Lawrence Rajendran
- Systems and Cell Biology of Neurodegeneration, IREM - Institute for Regenerative Medicine, University of Zurich, Switzerland
| |
Collapse
|
234
|
Karasu E, Eisenhardt SU, Harant J, Huber-Lang M. Extracellular Vesicles: Packages Sent With Complement. Front Immunol 2018; 9:721. [PMID: 29696020 PMCID: PMC5904200 DOI: 10.3389/fimmu.2018.00721] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/23/2018] [Indexed: 12/20/2022] Open
Abstract
Cells communicate with other cells in their microenvironment by transferring lipids, peptides, RNA, and sugars in extracellular vesicles (EVs), thereby also influencing recipient cell functions. Several studies indicate that these vesicles are involved in a variety of critical cellular processes including immune, metabolic, and coagulatory responses and are thereby associated with several inflammatory diseases. Furthermore, EVs also possess anti-inflammatory properties and contribute to immune regulation, thus encouraging an emerging interest in investigating and clarifying mechanistic links between EVs and innate immunity. Current studies indicate complex interactions of the complement system with EVs, with a dramatic influence on local and systemic inflammation. During inflammatory conditions with highly activated complement, including after severe tissue trauma and during sepsis, elevated numbers of EVs were found in the circulation of patients. There is increasing evidence that these shed vesicles contain key complement factors as well as complement regulators on their surface, affecting inflammation and the course of disease. Taken together, interaction of EVs regulates complement activity and contributes to the pro- and anti-inflammatory immune balance. However, the molecular mechanisms behind this interaction remain elusive and require further investigation. The aim of this review is to summarize the limited current knowledge on the crosstalk between complement and EVs. A further aspect is the clinical relevance of EVs with an emphasis on their capacity as potential therapeutic vehicles in the field of translational medicine.
Collapse
Affiliation(s)
- Ebru Karasu
- Institute of Clinical and Experimental Trauma-Immunology, Universitätsklinikum Ulm, Ulm, Germany
| | - Steffen U Eisenhardt
- Division of Reconstructive Microsurgery, Department of Plastic and Hand Surgery, University of Freiburg Faculty of Medicine, University of Freiburg Medical Centre, Freiburg, Germany
| | - Julia Harant
- Institute of Clinical and Experimental Trauma-Immunology, Universitätsklinikum Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, Universitätsklinikum Ulm, Ulm, Germany
| |
Collapse
|
235
|
Li K, Rodosthenous RS, Kashanchi F, Gingeras T, Gould SJ, Kuo LS, Kurre P, Lee H, Leonard JN, Liu H, Lombo TB, Momma S, Nolan JP, Ochocinska MJ, Pegtel DM, Sadovsky Y, Sánchez-Madrid F, Valdes KM, Vickers KC, Weaver AM, Witwer KW, Zeng Y, Das S, Raffai RL, Howcroft TK. Advances, challenges, and opportunities in extracellular RNA biology: insights from the NIH exRNA Strategic Workshop. JCI Insight 2018; 3:98942. [PMID: 29618663 DOI: 10.1172/jci.insight.98942] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Extracellular RNA (exRNA) has emerged as an important transducer of intercellular communication. Advancing exRNA research promises to revolutionize biology and transform clinical practice. Recent efforts have led to cutting-edge research and expanded knowledge of this new paradigm in cell-to-cell crosstalk; however, gaps in our understanding of EV heterogeneity and exRNA diversity pose significant challenges for continued development of exRNA diagnostics and therapeutics. To unravel this complexity, the NIH convened expert teams to discuss the current state of the science, define the significant bottlenecks, and brainstorm potential solutions across the entire exRNA research field. The NIH Strategic Workshop on Extracellular RNA Transport helped identify mechanistic and clinical research opportunities for exRNA biology and provided recommendations on high priority areas of research that will advance the exRNA field.
Collapse
Affiliation(s)
- Kang Li
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of California, San Francisco, and Veterans Affairs Medical Center, San Francisco, California, USA
| | | | - Fatah Kashanchi
- Laboratory of Molecular Virology, National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia, USA
| | - Thomas Gingeras
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Stephen J Gould
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lillian S Kuo
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Peter Kurre
- Doernbecher Children's Hospital, Department of Pediatrics and Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Joshua N Leonard
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Huiping Liu
- Departments of Pharmacology and Medicine (Hematology and Oncology), Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tania B Lombo
- NIH, Office of the Director, Environmental Influences on Child Health Outcomes Program, Bethesda, Maryland, USA
| | - Stefan Momma
- Institute of Neurology (Edinger Institute), Frankfurt University Medical School, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Frankfurt, Heidelberg, Germany
| | - John P Nolan
- Scintillon Institute, San Diego, California, USA
| | | | - D Michiel Pegtel
- Department of Pathology, Cancer Center Amsterdam, Vrije Universiteit (VU) University Medical Center, Amsterdam, The Netherlands
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Department of Microbiology and Molecular Genetics, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Francisco Sánchez-Madrid
- Instituto de Investigación Sanitaria Princesa, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Kayla M Valdes
- National Center for Advancing Translational Science, Bethesda, Maryland, USA
| | - Kasey C Vickers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Department of Neurology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Yong Zeng
- Department of Chemistry, University of Kansas Cancer Center, Lawrence, Kansas, USA
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Robert L Raffai
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of California, San Francisco, and Veterans Affairs Medical Center, San Francisco, California, USA
| | - T Kevin Howcroft
- Cancer Immunology, Hematology, and Etiology Branch, Division of Cancer Biology, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
236
|
Holm MM, Kaiser J, Schwab ME. Extracellular Vesicles: Multimodal Envoys in Neural Maintenance and Repair. Trends Neurosci 2018; 41:360-372. [PMID: 29605090 DOI: 10.1016/j.tins.2018.03.006] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/23/2018] [Accepted: 03/07/2018] [Indexed: 12/16/2022]
Abstract
The physiology of the central nervous system (CNS) is built on a foundation of connection, integration, and the exchange of complex information among brain cells. Emerging evidence indicates that extracellular vesicles (EVs) are key players in the intercellular communication that underlies physiological processes such as synaptic plasticity and the maintenance of myelination. Furthermore, upon injury to the CNS, EVs may propagate inflammation across the blood-brain barrier and beyond, and also appear to mediate neuroprotection and modulate regenerative processes. In neurodegenerative diseases, EVs may play roles in the formation, spreading, and clearance of toxic protein aggregates. Here, we discuss the physiological roles of EVs in the healthy and the diseased CNS, with a focus on recent findings and emerging concepts.
Collapse
Affiliation(s)
- Mea M Holm
- Brain Research Institute, University of Zurich, Zurich, Switzerland; Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | - Julia Kaiser
- Brain Research Institute, University of Zurich, Zurich, Switzerland; Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Martin E Schwab
- Brain Research Institute, University of Zurich, Zurich, Switzerland; Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
237
|
Correction: Extracellular Vesicle-Mediated Transfer of Genetic Information between the Hematopoietic System and the Brain in Response to Inflammation. PLoS Biol 2018. [PMID: 29529027 PMCID: PMC5846718 DOI: 10.1371/journal.pbio.1002623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
238
|
Butler JT, Abdelhamed S, Kurre P. Extracellular vesicles in the hematopoietic microenvironment. Haematologica 2018; 103:382-394. [PMID: 29439185 PMCID: PMC5830368 DOI: 10.3324/haematol.2017.183335] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/18/2018] [Indexed: 12/21/2022] Open
Abstract
Self-renewal and differentiation are defining characteristics of hematopoietic stem and progenitor cells, and their balanced regulation is central to lifelong function of both blood and immune systems. In addition to cell-intrinsic programs, hematopoietic stem and progenitor cell fate decisions are subject to extrinsic cues from within the bone marrow microenvironment and systemically. Yet, many of the paracrine and endocrine mediators that shape hematopoietic function remain to be discovered. Extracellular vesicles serve as evolutionarily conserved, constitutive regulators of cell and tissue homeostasis, with several recent reports supporting a role for extracellular vesicles in the regulation of hematopoiesis. We review the physiological and pathophysiological effects that extracellular vesicles have on bone marrow compartmental function while highlighting progress in understanding vesicle biogenesis, cargo incorporation, differential uptake, and downstream effects of vesicle internalization. This review also touches on the role of extracellular vesicles in hematopoietic stem and progenitor cell fate regulation and recent advances in therapeutic and diagnostic applications of extracellular vesicles in hematologic disorders.
Collapse
Affiliation(s)
- John T Butler
- Department of Pediatrics, Papé Family Pediatric Research Institute, Pediatric Blood & Cancer Biology Program, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Sherif Abdelhamed
- Department of Pediatrics, Papé Family Pediatric Research Institute, Pediatric Blood & Cancer Biology Program, Oregon Health & Science University, Portland, OR, USA
| | - Peter Kurre
- Department of Pediatrics, Papé Family Pediatric Research Institute, Pediatric Blood & Cancer Biology Program, Oregon Health & Science University, Portland, OR, USA
- OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
239
|
Bebelman MP, Smit MJ, Pegtel DM, Baglio SR. Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther 2018; 188:1-11. [PMID: 29476772 DOI: 10.1016/j.pharmthera.2018.02.013] [Citation(s) in RCA: 580] [Impact Index Per Article: 82.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) are heterogeneous multi-signal messengers that support cancer growth and dissemination by mediating the tumor-stroma crosstalk. Exosomes are a subtype of EVs that originate from the limiting membrane of late endosomes, and as such contain information linked to both the intrinsic cell "state" and the extracellular signals cells received from their environment. Resolving the signals affecting exosome biogenesis, cargo sorting and release will increase our understanding of tumorigenesis. In this review we highlight key cell biological processes that couple exosome biogenesis to cargo sorting in cancer cells. Moreover, we discuss how the bidirectional communication between tumor and non-malignant cells affect cancer growth and metastatic behavior.
Collapse
Affiliation(s)
- Maarten P Bebelman
- Department of Pathology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, VU University, Amsterdam, The Netherlands
| | - Martine J Smit
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, VU University, Amsterdam, The Netherlands
| | - D Michiel Pegtel
- Department of Pathology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - S Rubina Baglio
- Department of Pathology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
240
|
Hua C, Zhao JH, Guo HS. Trans-Kingdom RNA Silencing in Plant-Fungal Pathogen Interactions. MOLECULAR PLANT 2018; 11:235-244. [PMID: 29229568 DOI: 10.1016/j.molp.2017.12.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/31/2017] [Accepted: 12/01/2017] [Indexed: 05/02/2023]
Abstract
Fungal pathogens represent a major group of plant invaders that are the causative agents of many notorious plant diseases. Large quantities of RNAs, especially small RNAs involved in gene silencing, have been found to transmit bidirectionally between fungal pathogens and their hosts. Although host-induced gene silencing (HIGS) technology has been developed and applied to protect crops from fungal infections, the mechanisms of RNA transmission, especially small RNAs regulating trans-kingdom RNA silencing in plant immunity, are largely unknown. In this review, we summarize and discuss recent important findings regarding trans-kingdom sRNAs and RNA silencing in plant-fungal pathogen interactions compared with the well-known RNAi mechanisms in plants and fungi. We focus on the interactions between plant and fungal pathogens with broad hosts, represented by the vascular pathogen Verticillium dahliae and non-vascular pathogen Botrytis cinerea, and discuss the known instances of natural RNAi transmission between fungal pathogens and host plants. Given that HIGS has been developed and recently applied in controlling Verticillium wilt diseases, we propose an ideal research system exploiting plant vasculature-Verticillium interaction to further study trans-kingdom RNA silencing.
Collapse
Affiliation(s)
- Chenlei Hua
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Jian-Hua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China; College of Life Science, University of the Chinese Academy of Sciences, 100049 Beijing, China.
| |
Collapse
|
241
|
Tao S, Guo S, Zhang C. Modularized Extracellular Vesicles: The Dawn of Prospective Personalized and Precision Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700449. [PMID: 29619297 PMCID: PMC5827100 DOI: 10.1002/advs.201700449] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/18/2017] [Indexed: 05/20/2023]
Abstract
Extracellular vesicles (EVs) are ubiquitous nanosized membrane vesicles consisting of a lipid bilayer enclosing proteins and nucleic acids, which are active in intercellular communications. EVs are increasingly seen as a vital component of many biological functions that were once considered to require the direct participation of stem cells. Consequently, transplantation of EVs is gradually becoming considered an alternative to stem cell transplantation due to their significant advantages, including their relatively low probability of neoplastic transformation and abnormal differentiation. However, as research has progressed, it is realized that EVs derived from native-source cells may have various shortcomings, which can be corrected by modification and optimization. To date, attempts are made to modify or improve almost all the components of EVs, including the lipid bilayer, proteins, and nucleic acids, launching a new era of modularized EV therapy through the "modular design" of EV components. One high-yield technique, generating EV mimetic nanovesicles, will help to make industrial production of modularized EVs a reality. These modularized EVs have highly customized "modular design" components related to biological function and targeted delivery and are proposed as a promising approach to achieve personalized and precision medicine.
Collapse
Affiliation(s)
- Shi‐Cong Tao
- Department of Orthopaedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
| | - Shang‐Chun Guo
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
| | - Chang‐Qing Zhang
- Department of Orthopaedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
| |
Collapse
|
242
|
Rao PSS, O'Connell K, Finnerty TK. Potential Role of Extracellular Vesicles in the Pathophysiology of Drug Addiction. Mol Neurobiol 2018; 55:6906-6913. [PMID: 29363042 DOI: 10.1007/s12035-018-0912-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/15/2018] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles (EVs) are small vesicles secreted by cells and are known to carry sub-cellular components including microRNA, proteins, and lipids. Due to their ability to transport cargo between cells, EVs have been identified as important regulators of various pathophysiological conditions and can therefore influence treatment outcomes. In particular, the significance of microRNAs in EV-mediated cell-cell communication is well-documented. While the influence of EVs and the cargo delivered by EVs has been extensively reviewed in other neurological disorders, the available literature on the potential role of EVs in the pathophysiology of drug addiction has not been reviewed. Hence, in this article, the known effects of commonly abused drugs (ethanol, nicotine, opiates, cocaine, and cannabinoids) on EV secretion have been reviewed. In addition, the potential role of drugs of abuse in affecting the delivery of EV-packaged microRNAs, and the subsequent impact on neuronal health and continued drug dependence, has been discussed.
Collapse
Affiliation(s)
- P S S Rao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Findlay, 1000 N. Main Street, Findlay, OH, 45840, USA.
| | - Kelly O'Connell
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Findlay, 1000 N. Main Street, Findlay, OH, 45840, USA
| | - Thomas Kyle Finnerty
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Findlay, 1000 N. Main Street, Findlay, OH, 45840, USA
| |
Collapse
|
243
|
Pomatto MAC, Gai C, Deregibus MC, Tetta C, Camussi G. Noncoding RNAs Carried by Extracellular Vesicles in Endocrine Diseases. Int J Endocrinol 2018; 2018:4302096. [PMID: 29808089 PMCID: PMC5902008 DOI: 10.1155/2018/4302096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/16/2018] [Indexed: 02/06/2023] Open
Abstract
RNA molecules are essential and fine regulators of important biological processes. Their role is well documented also in the endocrine system, both in physiological and pathological conditions. Increasing interest is arising about the function and the importance of noncoding RNAs shuttled by extracellular vesicles (EVs). In fact, EV membrane protects nucleic acids from enzyme degradation. Nowadays, the research on EVs and their cargoes, as well as their biological functions, faces the lack of standardization in EV purification. Here, the main techniques for EV isolation are discussed and compared for their advantages and vulnerabilities. Despite the possible discrepancy due to methodological variability, EVs and their RNA content are reported to be key mediators of intercellular communication in pathologies of main endocrine organs, including the pancreas, thyroid, and reproductive system. In particular, the present work describes the role of RNAs contained in EVs in pathogenesis and progression of several metabolic dysfunctions, including obesity and diabetes, and their related manifestations. Their importance in the establishment and progression of thyroid autoimmunity disorders and complicated pregnancy is also discussed. Preliminary studies highlight the attractive possibility to use RNAs contained in EVs as biomarkers suggesting their exploitation for new diagnostic approaches in endocrinology.
Collapse
Affiliation(s)
| | - Chiara Gai
- Stem Cell Laboratory, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Maria Chiara Deregibus
- Stem Cell Laboratory, Department of Medical Sciences, University of Turin, Turin, Italy
- 2i3T Scarl, Univerity of Turin, Turin, Italy
| | - Ciro Tetta
- Unicyte AG, Oberdorf, Nidwalden, Switzerland
| | - Giovanni Camussi
- Stem Cell Laboratory, Department of Medical Sciences, University of Turin, Turin, Italy
- 2i3T Scarl, Univerity of Turin, Turin, Italy
| |
Collapse
|
244
|
Carpintero-Fernández P, Fafián-Labora J, O'Loghlen A. Technical Advances to Study Extracellular Vesicles. Front Mol Biosci 2017; 4:79. [PMID: 29234666 PMCID: PMC5712308 DOI: 10.3389/fmolb.2017.00079] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/13/2017] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles are a heterogeneous and dynamic group of lipid bilayer membrane nanoparticles that can be classified into three different groups depending on their cellular origin: exosomes, microvesicles, and apoptotic bodies. They are produced by different cell types and can be isolated from almost all body fluids. EVs contain a variety of proteins, lipids, nucleic acids, and metabolites which regulate a number of biological and pathological scenarios both locally and systemically. Different techniques have been described in order to determine EV isolation, release, uptake, and cargo. Although standard techniques such as immunoblotting, fluorescent microscopy, and electron microscopy are still being used to characterize and visualize EVs, in the last years, more fine-tuned techniques are emerging. For example, EV uptake can be specifically determined at a single cell level using the Cre reporter methodology and bioluminescence based-methods reports have been employed to determine both EV release and uptake. In addition, techniques for cargo identification have also enormously evolved during these years. Classical mass spectrometry and next generation sequencing have been used in the past, but nowadays, advances in these tools have facilitated a more in depth characterization of the EV content. In this review, we aim to assess the standard and latest technical advances for studying EV biology in different biological systems.
Collapse
Affiliation(s)
- Paula Carpintero-Fernández
- Epigenetics and Cellular Senescence Group, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Juan Fafián-Labora
- Epigenetics and Cellular Senescence Group, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Ana O'Loghlen
- Epigenetics and Cellular Senescence Group, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
245
|
Regente M, Pinedo M, San Clemente H, Balliau T, Jamet E, de la Canal L. Plant extracellular vesicles are incorporated by a fungal pathogen and inhibit its growth. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5485-5495. [PMID: 29145622 DOI: 10.1093/jxb/erx355] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Extracellular vesicles (EV) are membrane particles released by cells into their environment and are considered to be key players in intercellular communication. EV are produced by all domains of life but limited knowledge about EV in plants is available, although their implication in plant defense has been suggested. We have characterized sunflower EV and tested whether they could interact with fungal cells. EV were isolated from extracellular fluids of seedlings and characterized by transmission electron microscopy and proteomic analysis. These nanovesicles appeared to be enriched in cell wall remodeling enzymes and defense proteins. Membrane-labeled EV were prepared and their uptake by the phytopathogenic fungus Sclerotinia sclerotiorum was verified. Functional tests further evaluated the ability of EV to affect fungal growth. Spores treated with plant EV showed growth inhibition, morphological changes, and cell death. Conclusive evidence on the existence of plant EV is presented and we demonstrate their ability to interact with and kill fungal cells. Our results introduce the concept of cell-to-cell communication through EV in plants.
Collapse
Affiliation(s)
- Mariana Regente
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata - CONICET, Funes 3250, 7600 Mar del Plata, Argentina
| | - Marcela Pinedo
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata - CONICET, Funes 3250, 7600 Mar del Plata, Argentina
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP 42617, 31326 Castanet-Tolosan, France
| | - Thierry Balliau
- PAPPSO, GQE - Le Moulon, INRA, Université de Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP 42617, 31326 Castanet-Tolosan, France
| | - Laura de la Canal
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata - CONICET, Funes 3250, 7600 Mar del Plata, Argentina
| |
Collapse
|
246
|
Extracellular microRNAs as messengers in the central and peripheral nervous system. Neuronal Signal 2017; 1:NS20170112. [PMID: 32714581 PMCID: PMC7373247 DOI: 10.1042/ns20170112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/29/2017] [Accepted: 10/01/2017] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs are small post-transcriptional regulators that play an important role in nervous system development, function and disease. More recently, microRNAs have been detected extracellularly and circulating in blood and other body fluids, where they are protected from degradation by encapsulation in vesicles, such as exosomes, or by association with proteins. These microRNAs are thought to be released from cells selectively through active processes and taken up by specific target cells within the same or in remote tissues where they are able to exert their repressive function. These characteristics make extracellular microRNAs ideal candidates for intercellular communication over short and long distances. This review aims to explore the potential mechanisms underlying microRNA communication within the nervous system and between the nervous system and other tissues. The suggested roles of extracellular microRNAs in the healthy and the diseased nervous system will be reviewed.
Collapse
|
247
|
Rocca CJ, Goodman SM, Dulin JN, Haquang JH, Gertsman I, Blondelle J, Smith JLM, Heyser CJ, Cherqui S. Transplantation of wild-type mouse hematopoietic stem and progenitor cells ameliorates deficits in a mouse model of Friedreich's ataxia. Sci Transl Med 2017; 9:eaaj2347. [PMID: 29070698 PMCID: PMC5735830 DOI: 10.1126/scitranslmed.aaj2347] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/31/2017] [Accepted: 06/13/2017] [Indexed: 12/14/2022]
Abstract
Friedreich's ataxia (FRDA) is an incurable autosomal recessive neurodegenerative disease caused by reduced expression of the mitochondrial protein frataxin due to an intronic GAA-repeat expansion in the FXN gene. We report the therapeutic efficacy of transplanting wild-type mouse hematopoietic stem and progenitor cells (HSPCs) into the YG8R mouse model of FRDA. In the HSPC-transplanted YG8R mice, development of muscle weakness and locomotor deficits was abrogated as was degeneration of large sensory neurons in the dorsal root ganglia (DRGs) and mitochondrial capacity was improved in brain, skeletal muscle, and heart. Transplanted HSPCs engrafted and then differentiated into microglia in the brain and spinal cord and into macrophages in the DRGs, heart, and muscle of YG8R FRDA mice. We observed the transfer of wild-type frataxin and Cox8 mitochondrial proteins from HSPC-derived microglia/macrophages to FRDA mouse neurons and muscle myocytes in vivo. Our results show the HSPC-mediated phenotypic rescue of FRDA in YG8R mice and suggest that this approach should be investigated further as a strategy for treating FRDA.
Collapse
Affiliation(s)
- Celine J Rocca
- Division of Genetics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Spencer M Goodman
- Division of Genetics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jennifer N Dulin
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joseph H Haquang
- Division of Genetics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ilya Gertsman
- Division of Genetics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jordan Blondelle
- Division of Cardiovascular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Janell L M Smith
- Division of Genetics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Charles J Heyser
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephanie Cherqui
- Division of Genetics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
248
|
Murphy C, Withrow J, Hunter M, Liu Y, Tang YL, Fulzele S, Hamrick MW. Emerging role of extracellular vesicles in musculoskeletal diseases. Mol Aspects Med 2017; 60:123-128. [PMID: 28965750 DOI: 10.1016/j.mam.2017.09.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/13/2017] [Accepted: 09/27/2017] [Indexed: 12/28/2022]
Abstract
Research into the biology of extracellular vesicles (EVs), including exosomes and microvesicles, has expanded significantly with advances in EV isolation techniques, a better understanding of the surface markers that characterize exosomes and microvesicles, and greater information derived from -omics approaches on the proteins, lipids, mRNAs, and microRNAs (miRNAs) transported by EVs. We have recently discovered a role for exosome-derived miRNAs in age-related bone loss and osteoarthritis, two conditions that impose a significant public health burden on the aging global population. Previous work has also revealed multiple roles for EVs and their miRNAs in muscle regeneration and congenital myopathies. Thus, EVs appear to be involved in a number of degenerative conditions that impact the musculoskeletal system, indicating that the musculoskeletal system is an excellent model for investigating the role of EVs in tissue maintenance and repair. This review highlights the role of EVs in bone, skeletal muscle, and joint health, including both normal tissue metabolism as well as tissue injury repair and regeneration. A consistent theme that emerges from study of musculoskeletal EVs is that various miRNAs appear to mediate a number of key pathological processes. These findings point to a potential therapeutic opportunity to target EV-derived miRNAs as a strategy for improving musculoskeletal function.
Collapse
Affiliation(s)
- Cameron Murphy
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Joseph Withrow
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Monte Hunter
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yutao Liu
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yao Liang Tang
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Sadanand Fulzele
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mark W Hamrick
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
249
|
Abstract
Cells release vesicles containing selectively packaged cargo, including RNA, into the extracellular environment. Prior studies have identified RNA inside extracellular vesicles (EVs), but due to limitations of conventional sequencing methods, highly structured and posttranscriptionally modified RNA species were not effectively captured. Using an alternative sequencing approach (thermostable group II intron reverse transcriptase sequencing, TGIRT-seq), we found that EVs contain abundant small noncoding RNA species, including full-length transfer RNAs and Y RNAs. Using a knockout cell line, we obtained evidence that the RNA-binding protein YBX1 plays a role in sorting small noncoding RNAs into a subpopulation of EVs termed exosomes. These experiments expand our understanding of EV–RNA composition and provide insights into how RNA is sorted into EVs for cellular export. RNA is secreted from cells enclosed within extracellular vesicles (EVs). Defining the RNA composition of EVs is challenging due to their coisolation with contaminants, lack of knowledge of the mechanisms of RNA sorting into EVs, and limitations of conventional RNA-sequencing methods. Here we present our observations using thermostable group II intron reverse transcriptase sequencing (TGIRT-seq) to characterize the RNA extracted from HEK293T cell EVs isolated by flotation gradient ultracentrifugation and from exosomes containing the tetraspanin CD63 further purified from the gradient fractions by immunoisolation. We found that EV-associated transcripts are dominated by full-length, mature transfer RNAs (tRNAs) and other small noncoding RNAs (ncRNAs) encapsulated within vesicles. A substantial proportion of the reads mapping to protein-coding genes, long ncRNAs, and antisense RNAs were due to DNA contamination on the surface of vesicles. Nevertheless, sequences mapping to spliced mRNAs were identified within HEK293T cell EVs and exosomes, among the most abundant being transcripts containing a 5′ terminal oligopyrimidine (5′ TOP) motif. Our results indicate that the RNA-binding protein YBX1, which is required for the sorting of selected miRNAs into exosomes, plays a role in the sorting of highly abundant small ncRNA species, including tRNAs, Y RNAs, and Vault RNAs. Finally, we obtained evidence for an EV-specific tRNA modification, perhaps indicating a role for posttranscriptional modification in the sorting of some RNA species into EVs. Our results suggest that EVs and exosomes could play a role in the purging and intercellular transfer of excess free RNAs, including full-length tRNAs and other small ncRNAs.
Collapse
|
250
|
Di Liegro CM, Schiera G, Di Liegro I. Extracellular Vesicle-Associated RNA as a Carrier of Epigenetic Information. Genes (Basel) 2017; 8:genes8100240. [PMID: 28937658 PMCID: PMC5664090 DOI: 10.3390/genes8100240] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/08/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022] Open
Abstract
Post-transcriptional regulation of messenger RNA (mRNA) metabolism and subcellular localization is of the utmost importance both during development and in cell differentiation. Besides carrying genetic information, mRNAs contain cis-acting signals (zip codes), usually present in their 5'- and 3'-untranslated regions (UTRs). By binding to these signals, trans-acting factors, such as RNA-binding proteins (RBPs), and/or non-coding RNAs (ncRNAs), control mRNA localization, translation and stability. RBPs can also form complexes with non-coding RNAs of different sizes. The release of extracellular vesicles (EVs) is a conserved process that allows both normal and cancer cells to horizontally transfer molecules, and hence properties, to neighboring cells. By interacting with proteins that are specifically sorted to EVs, mRNAs as well as ncRNAs can be transferred from cell to cell. In this review, we discuss the mechanisms underlying the sorting to EVs of different classes of molecules, as well as the role of extracellular RNAs and the associated proteins in altering gene expression in the recipient cells. Importantly, if, on the one hand, RBPs play a critical role in transferring RNAs through EVs, RNA itself could, on the other hand, function as a carrier to transfer proteins (i.e., chromatin modifiers, and transcription factors) that, once transferred, can alter the cell's epigenome.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo (UNIPA), I-90128 Palermo, Italy.
| | - Gabriella Schiera
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo (UNIPA), I-90128 Palermo, Italy.
| | - Italia Di Liegro
- Department of Experimental Biomedicine and Clinical Neurosciences (BIONEC), University of Palermo,I-90127 Palermo,Italy.
| |
Collapse
|