201
|
Comparative Genomic Analysis of Vibrio cincinnatiensis Provides Insights into Genetic Diversity, Evolutionary Dynamics, and Pathogenic Traits of the Species. Int J Mol Sci 2022; 23:ijms23094520. [PMID: 35562911 PMCID: PMC9101195 DOI: 10.3390/ijms23094520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 01/22/2023] Open
Abstract
Vibrio cincinnatiensis is a poorly understood pathogenic Vibrio species, and the underlying mechanisms of its genetic diversity, genomic plasticity, evolutionary dynamics, and pathogenicity have not yet been comprehensively investigated. Here, a comparative genomic analysis of V. cincinnatiensis was constructed. The open pan-genome with a flexible gene repertoire exhibited genetic diversity. The genomic plasticity and stability were characterized by the determinations of diverse mobile genetic elements (MGEs) and barriers to horizontal gene transfer (HGT), respectively. Evolutionary divergences were exhibited by the difference in functional enrichment and selective pressure between the different components of the pan-genome. The evolution on the Chr I and Chr II core genomes was mainly driven by purifying selection. Predicted essential genes in V. cincinnatiensis were mainly found in the core gene families on Chr I and were subject to stronger evolutionary constraints. We identified diverse virulence-related elements, including the gene clusters involved in encoding flagella, secretion systems, several pili, and scattered virulence genes. Our results indicated the pathogenic potential of V. cincinnatiensis and highlighted that HGT events from other Vibrio species promoted pathogenicity. This pan-genome study provides comprehensive insights into this poorly understood species from the genomic perspective.
Collapse
|
202
|
Ledda A, Cummins M, Shaw LP, Jauneikaite E, Cole K, Lasalle F, Barry D, Turton J, Rosmarin C, Anaraki S, Wareham D, Stoesser N, Paul J, Manuel R, Cherian BP, Didelot X. Hospital outbreak of carbapenem-resistant Enterobacterales associated with a blaOXA-48 plasmid carried mostly by Escherichia coli ST399. Microb Genom 2022; 8:000675. [PMID: 35442183 PMCID: PMC9453065 DOI: 10.1099/mgen.0.000675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A hospital outbreak of carbapenem-resistant Enterobacterales was detected by routine surveillance. Whole genome sequencing and subsequent analysis revealed a conserved promiscuous blaOXA-48 carrying plasmid as the defining factor within this outbreak. Four different species of Enterobacterales were involved in the outbreak. Escherichia coli ST399 accounted for 35 of all the 55 isolates. Comparative genomics analysis using publicly available E. coli ST399 genomes showed that the outbreak E. coli ST399 isolates formed a unique clade. We developed a mathematical model of pOXA-48-like plasmid transmission between host lineages and used it to estimate its conjugation rate, giving a lower bound of 0.23 conjugation events per lineage per year. Our analysis suggests that co-evolution between the pOXA-48-like plasmid and E. coli ST399 could have played a role in the outbreak. This is the first study to report carbapenem-resistant E. coli ST399 carrying blaOXA-48 as the main cause of a plasmid-borne outbreak within a hospital setting. Our findings suggest complementary roles for both plasmid conjugation and clonal expansion in the emergence of this outbreak.
Collapse
Affiliation(s)
- Alice Ledda
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, UK
- Healthcare Associated Infections and Antimicrobial Resistance Division, National Infection Service, Public Health England, London, UK
- *Correspondence: Alice Ledda,
| | - Martina Cummins
- Department of Microbiology and Infection Control, Barts Health NHS Trust, London, UK
| | - Liam P. Shaw
- Department of Zoology, University of Oxford, Oxford, UK
| | - Elita Jauneikaite
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, UK
- NHIR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious disease, Imperial College London, Hammersmith Campus, London, UK
| | | | - Florent Lasalle
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, UK
- Microbes and Pathogens Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Deborah Barry
- Department of Microbiology and Infection Control, Barts Health NHS Trust, London, UK
| | - Jane Turton
- Healthcare Associated Infections and Antimicrobial Resistance Division, National Infection Service, Public Health England, London, UK
| | - Caryn Rosmarin
- Department of Microbiology and Infection Control, Barts Health NHS Trust, London, UK
| | - Sudy Anaraki
- North East and North Central London Health Protection Team, Public Health England, London, UK
| | - David Wareham
- Department of Microbiology and Infection Control, Barts Health NHS Trust, London, UK
| | - Nicole Stoesser
- Modernising Medical Microbiology, Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - John Paul
- Brighton and Sussex Medical school, Department of Global health and Infection, University of Sussex, Falmer, Brighton, UK
| | - Rohini Manuel
- Public Health Laboratory London, National Infection Service, Public Health England, London, UK
| | - Benny P. Cherian
- Department of Microbiology and Infection Control, Barts Health NHS Trust, London, UK
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry, UK
| |
Collapse
|
203
|
Salamzade R, Manson AL, Walker BJ, Brennan-Krohn T, Worby CJ, Ma P, He LL, Shea TP, Qu J, Chapman SB, Howe W, Young SK, Wurster JI, Delaney ML, Kanjilal S, Onderdonk AB, Bittencourt CE, Gussin GM, Kim D, Peterson EM, Ferraro MJ, Hooper DC, Shenoy ES, Cuomo CA, Cosimi LA, Huang SS, Kirby JE, Pierce VM, Bhattacharyya RP, Earl AM. Inter-species geographic signatures for tracing horizontal gene transfer and long-term persistence of carbapenem resistance. Genome Med 2022; 14:37. [PMID: 35379360 PMCID: PMC8981930 DOI: 10.1186/s13073-022-01040-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 03/22/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Carbapenem-resistant Enterobacterales (CRE) are an urgent global health threat. Inferring the dynamics of local CRE dissemination is currently limited by our inability to confidently trace the spread of resistance determinants to unrelated bacterial hosts. Whole-genome sequence comparison is useful for identifying CRE clonal transmission and outbreaks, but high-frequency horizontal gene transfer (HGT) of carbapenem resistance genes and subsequent genome rearrangement complicate tracing the local persistence and mobilization of these genes across organisms. METHODS To overcome this limitation, we developed a new approach to identify recent HGT of large, near-identical plasmid segments across species boundaries, which also allowed us to overcome technical challenges with genome assembly. We applied this to complete and near-complete genome assemblies to examine the local spread of CRE in a systematic, prospective collection of all CRE, as well as time- and species-matched carbapenem-susceptible Enterobacterales, isolated from patients from four US hospitals over nearly 5 years. RESULTS Our CRE collection comprised a diverse range of species, lineages, and carbapenem resistance mechanisms, many of which were encoded on a variety of promiscuous plasmid types. We found and quantified rearrangement, persistence, and repeated transfer of plasmid segments, including those harboring carbapenemases, between organisms over multiple years. Some plasmid segments were found to be strongly associated with specific locales, thus representing geographic signatures that make it possible to trace recent and localized HGT events. Functional analysis of these signatures revealed genes commonly found in plasmids of nosocomial pathogens, such as functions required for plasmid retention and spread, as well survival against a variety of antibiotic and antiseptics common to the hospital environment. CONCLUSIONS Collectively, the framework we developed provides a clearer, high-resolution picture of the epidemiology of antibiotic resistance importation, spread, and persistence in patients and healthcare networks.
Collapse
Affiliation(s)
- Rauf Salamzade
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,grid.14003.360000 0001 2167 3675Present Address: Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Abigail L. Manson
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Bruce J. Walker
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,Applied Invention, Cambridge, MA 02139 USA
| | - Thea Brennan-Krohn
- grid.239395.70000 0000 9011 8547Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 USA
| | - Colin J. Worby
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Peijun Ma
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Lorrie L. He
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Terrance P. Shea
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - James Qu
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Sinéad B. Chapman
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Whitney Howe
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Sarah K. Young
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Jenna I. Wurster
- grid.38142.3c000000041936754XDepartment of Ophthalmology, Department of Microbiology, Harvard Medical School and Massachusetts Eye and Ear Infirmary, 240 Charles St., Boston, MA 02114 USA
| | - Mary L. Delaney
- grid.38142.3c000000041936754XDivision of Infectious Disease, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Sanjat Kanjilal
- grid.38142.3c000000041936754XDivision of Infectious Disease, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDepartment of Population Medicine, Harvard Medical School and Harvard Pilgrim Healthcare Institute, Boston, MA 02215 USA
| | - Andrew B. Onderdonk
- grid.38142.3c000000041936754XDivision of Infectious Disease, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Cassiana E. Bittencourt
- grid.266093.80000 0001 0668 7243Department of Pathology and Laboratory Medicine, University of California Irvine School of Medicine, Orange, CA 92868 USA
| | - Gabrielle M. Gussin
- grid.266093.80000 0001 0668 7243Division of Infectious Diseases, University of California Irvine School of Medicine, Irvine, CA 92617 USA
| | - Diane Kim
- grid.266093.80000 0001 0668 7243Division of Infectious Diseases, University of California Irvine School of Medicine, Irvine, CA 92617 USA
| | - Ellena M. Peterson
- grid.266093.80000 0001 0668 7243Department of Pathology and Laboratory Medicine, University of California Irvine School of Medicine, Orange, CA 92868 USA
| | - Mary Jane Ferraro
- grid.32224.350000 0004 0386 9924Massachusetts General Hospital, Boston, MA 02114 USA
| | - David C. Hooper
- grid.32224.350000 0004 0386 9924Massachusetts General Hospital, Boston, MA 02114 USA
| | - Erica S. Shenoy
- grid.32224.350000 0004 0386 9924Massachusetts General Hospital, Boston, MA 02114 USA
| | - Christina A. Cuomo
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Lisa A. Cosimi
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,grid.38142.3c000000041936754XDivision of Infectious Disease, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Susan S. Huang
- grid.266093.80000 0001 0668 7243Division of Infectious Diseases, University of California Irvine School of Medicine, Irvine, CA 92617 USA
| | - James E. Kirby
- grid.239395.70000 0000 9011 8547Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 USA
| | - Virginia M. Pierce
- grid.32224.350000 0004 0386 9924Massachusetts General Hospital, Boston, MA 02114 USA
| | - Roby P. Bhattacharyya
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,grid.32224.350000 0004 0386 9924Massachusetts General Hospital, Boston, MA 02114 USA
| | - Ashlee M. Earl
- grid.66859.340000 0004 0546 1623Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| |
Collapse
|
204
|
Abstract
Horizontal gene transfer (HGT) is arguably the most conspicuous feature of bacterial evolution. Evidence for HGT is found in most bacterial genomes. Although HGT can considerably alter bacterial genomes, not all transfer events may be biologically significant and may instead represent the outcome of an incessant evolutionary process that only occasionally has a beneficial purpose. When adaptive transfers occur, HGT and positive selection may result in specific, detectable signatures in genomes, such as gene-specific sweeps or increased transfer rates for genes that are ecologically relevant. In this Review, we first discuss the various mechanisms whereby HGT occurs, how the genetic signatures shape patterns of genomic variation and the distinct bioinformatic algorithms developed to detect these patterns. We then discuss the evolutionary theory behind HGT and positive selection in bacteria, and discuss the approaches developed over the past decade to detect transferred DNA that may be involved in adaptation to new environments.
Collapse
|
205
|
Phylogenetics of Historical Host Switches in a Bacterial Plant Pathogen. Appl Environ Microbiol 2022; 88:e0235621. [PMID: 35311514 DOI: 10.1128/aem.02356-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Xylella fastidiosa is an insect-transmitted bacterial plant pathogen found across the Americas and, more recently, worldwide. X. fastidiosa infects plants of at least 563 species belonging to 82 botanical families. While the species X. fastidiosa infects many plants, particular strains have increased plant specificity. Understanding the molecular underpinnings of plant host specificity in X. fastidiosa is vital for predicting host shifts and epidemics. While there may exist multiple genetic determinants of host range in X. fastidiosa, the drivers of the unique relationships between X. fastidiosa and its hosts should be elucidated. Our objective with this study was to predict the ancestral plant hosts of this pathogen using phylogenetic and genomic methods based on a large data set of pathogen whole-genome data from agricultural hosts. We used genomic data to construct maximum-likelihood (ML) phylogenetic trees of subsets of the core and pan-genomes. With those trees, we ran ML ancestral state reconstructions of plant host at two taxonomic scales (genus and multiorder clades). Both the core and pan-genomes were informative in terms of predicting ancestral host state, giving new insight into the history of the plant hosts of X. fastidiosa. Subsequently, gene gain and loss in the pan-genome were found to be significantly correlated with plant host through genes that had statistically significant associations with particular hosts. IMPORTANCE Xylella fastidiosa is a globally important bacterial plant pathogen with many hosts; however, the underpinnings of host specificity are not known. This paper contains important findings about the usage of phylogenetics to understand the history of host specificity in this bacterial species, as well as convergent evolution in the pan-genome. There are strong signals of historical host range that give us insights into the history of this pathogen and its various invasions. The data from this paper are relevant in making decisions for quarantine and eradication, as they show the historical trends of host switching, which can help us predict likely future host shifts. We also demonstrate that using multilocus sequence type (MLST) genes in this system, which is still a commonly used process for policymaking, does not reconstruct the same phylogenetic topology as whole-genome data.
Collapse
|
206
|
Cherchame E, Guillier L, Lailler R, Vignaud ML, Jourdan-Da Silva N, Le Hello S, Weill FX, Cadel-Six S. Salmonella enterica subsp. enterica Welikade: guideline for phylogenetic analysis of serovars rarely involved in foodborne outbreaks. BMC Genomics 2022; 23:217. [PMID: 35303794 PMCID: PMC8933937 DOI: 10.1186/s12864-022-08439-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 02/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Salmonella spp. is a major foodborne pathogen with a wide variety of serovars associated with human cases and food sources. Nevertheless, in Europe a panel of ten serovars is responsible for up to 80% of confirmed human cases. Clustering studies by single nucleotide polymorphism (SNP) core-genome phylogenetic analysis of outbreaks due to these major serovars are simplified by the availability of many complete genomes in the free access databases. This is not the case for outbreaks due to less common serovars, such as Welikade, for which no reference genomes are available. In this study, we propose a method to solve this problem. We propose to perform a core genome MLST (cgMLST) analysis based on hierarchical clustering using the free-access EnteroBase to select the most suitable genome to use as a reference for SNP phylogenetic analysis. In this study, we applied this protocol to a retrospective analysis of a Salmonella enterica serovar Welikade (S. Welikade) foodborne outbreak that occurred in France in 2016. Finally, we compared the cgMLST and SNP analyses. SNP phylogenetic reconstruction was carried out considering the effect of recombination events identified by the ClonalFrameML tool. The accessory genome was also explored by phage content and virulome analyses. RESULTS Our findings revealed high clustering concordance using cgMLST and SNP analyses. Nevertheless, SNP analysis allowed for better assessment of the genetic distance among strains. The results revealed epidemic clones of S. Welikade circulating within the poultry and dairy sectors in France, responsible for sporadic and non-sporadic human cases between 2012 and 2019. CONCLUSIONS This study increases knowledge on this poorly described serovar and enriches public genome databases with 42 genomes from human and non-human S. Welikade strains, including the isolate collected in 1956 in Sri Lanka, which gave the name to this serovar. This is the first genomic analysis of an outbreak due to S. Welikade described to date.
Collapse
Affiliation(s)
- Emeline Cherchame
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94700, Maisons-Alfort, France. .,Present address: Data Analysis Core, Paris Brain Institute, ICM, Paris, France.
| | - Laurent Guillier
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94700, Maisons-Alfort, France
| | - Renaud Lailler
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94700, Maisons-Alfort, France
| | - Marie-Leone Vignaud
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94700, Maisons-Alfort, France
| | | | - Simon Le Hello
- Centre National de Référence Des Escherichia Coli, Institut Pasteur, Unité Des Bactéries Pathogènes Entériques, Shigella et Salmonella, 75015, Paris, France.,Present address: Groupe de Recherche Sur L'Adaptation Microbienne (GRAM 2.0), Normandie Univ, UNICAEN, Caen, France
| | - François-Xavier Weill
- Centre National de Référence Des Escherichia Coli, Institut Pasteur, Unité Des Bactéries Pathogènes Entériques, Shigella et Salmonella, 75015, Paris, France
| | - Sabrina Cadel-Six
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94700, Maisons-Alfort, France
| |
Collapse
|
207
|
Li C, Jiang X, Yang T, Ju Y, Yin Z, Yue L, Ma G, Wang X, Jing Y, Luo X, Li S, Yang X, Chen F, Zhou D. Genomic epidemiology of carbapenemase-producing Klebsiella pneumoniae in china. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:1154-1167. [PMID: 35307590 DOI: 10.1016/j.gpb.2022.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 11/26/2022]
Abstract
The rapid spread of carbapenemase-producing Klebsiella pneumoniae (cpKP) poses serious threats to public health, however, the underlying genetic basis for its dissemination is still unknown. We conducted a comprehensive genomic epidemiology analysis on 420 cpKP isolates collected from 70 hospitals in 24 provinces of China during 2009-2017 by short-/long-read sequencing. The results showed that most cpKP isolates were categorized into clonal group 258 (CG258), in which ST11 was the dominant clone. Phylogenetic analysis revealed three major clades including the top one of Clade 3 for CG258 cpKP isolates. Additionally, carbapenemase gene analysis indicated that blaKPC was dominant in the cpKP isolates, and most blaKPC genes were located in five major incompatibility (Inc) groups of blaKPC-harboring plasmids. Importantly, three advantageous combinations of host-blaKPC-carrying plasmids (Clade 3.1 + 3.2-IncFIIpHN7A8, Clade 3.1 + 3.2-IncFIIpHN7A8:IncR, and Clade 3.3-IncFIIpHN7A8:IncpA1763-KPC) were identified to confer cpKP isolates the advantages in both genotypes (strong correlation/co-evolution) and phenotypes (resistance/growth/competition) to facilitate the nationwide spread of ST11/CG258 cpKP. Intriguingly, Bayesian skyline analysis illustrated that the three advantageous combinations might be directly associated with the strong population expansion during 2007-2008 and subsequent maintenance of the population of ST11/CG258 cpKP after 2008. We then examined drug resistance profiles of these cpKP isolates and proposed combination treatment regimens for CG258/non-CG258 cpKP infections. Thus, the findings of our systematical analysis shed light on the molecular epidemiology and genetic basis for the dissemination of ST11/CG258 cpKP in China, and much emphasis should be given to the close monitoring of advantageous cpKP-plasmid combinations.
Collapse
Affiliation(s)
- Cuidan Li
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China
| | - Xiaoyuan Jiang
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Tingting Yang
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingjiao Ju
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Liya Yue
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China
| | - Guannan Ma
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China
| | - Xuebing Wang
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China
| | - Ying Jing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xinhua Luo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Shuangshuang Li
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Yang
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Chen
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi 830011, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China.
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| |
Collapse
|
208
|
Metabacillus dongyingensis sp. nov. Is Represented by the Plant Growth-Promoting Bacterium BY2G20 Isolated from Saline-Alkaline Soil and Enhances the Growth of Zea mays L. under Salt Stress. mSystems 2022; 7:e0142621. [PMID: 35229649 PMCID: PMC9040632 DOI: 10.1128/msystems.01426-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A novel plant growth-promoting rhizobacterium (PGPR), which was designated strain BY2G20, was isolated from saline-alkaline soil in Dongying, China. Strain BY2G20 can grow at a NaCl range from 0 to 7% and a pH range from 7 to 9 and can prevent the growth of the phytopathogen Ralstonia solanacearum. Based on its phenotypic and genomic characteristics and phylogenetic analysis, strain BY2G20 represents a novel species of the genus Metabacillus, for which the name Metabacillus dongyingensis sp. nov. is proposed. Comparative genomic analysis of strain BY2G20 with its closely related species exhibited a high level of evolutionary plasticity derived by horizontal gene transfer, which facilitated adaptative evolution. Different evolutionary constraints have operated on the diverse functions of BY2G20, with the gene adapted to saline-alkaline ecosystems experiencing functional constraints. We determined the genetic properties of saline-alkaline tolerance and plant growth promotion, such as cation-proton antiporters, cation transporters, osmoprotectant synthesis and transport, H+-transporting F1F0-ATPase, indole-3-acetic acid production, and secondary metabolite synthesis. We also evaluated the effects of strain BY2G20 on the growth of Zea mays L. (maize) under salt stress. The physiological parameters of maize such as plant height, stem diameter, dry biomass, and fresh biomass were significantly higher after inoculating strain BY2G20 under salt stress, indicating that inoculation with BY2G20 enhanced the growth of maize in saline areas. This study demonstrates that M. dongyingensis sp. nov. BY2G20 is a potential candidate for organic agriculture biofertilizers in saline-alkaline areas. IMPORTANCE Plant growth and yield are adversely affected by soil salinity. PGPRs can promote plant growth and enhance plant tolerance to salt stress. In this study, a saline-alkaline tolerant PGPR strain BY2G20 was isolated from the rhizosphere of Ulmus pumila in Dongying, China. Strain BY2G20 represents a novel species within the genus Metabacillus based on phenotypic, genomic, and phylogenetic analysis. Genomic components have undergone different functional constraints, and the disparity in the evolutionary rate may be associated with the adaptation to a specific niche. Genomic analysis revealed numerous adaptive features of strain BY2G20 to a saline-alkaline environment and rhizosphere, especially genes related to salt tolerance, pH adaptability, and plant growth promotion. Our work also exhibited that inoculation of strain BY2G20 enhanced the growth of maize under salt stress. This study demonstrates that PGPRs play an important role in stimulating salt tolerance in plants and can be used as biofertilizers to enhance the growth of crops in saline-alkaline areas.
Collapse
|
209
|
Sharma P, Johnson MA, Mazloom R, Allen C, Heath LS, Lowe-Power TM, Vinatzer BA. Meta-analysis of the Ralstonia solanacearum species complex (RSSC) based on comparative evolutionary genomics and reverse ecology. Microb Genom 2022; 8:000791. [PMID: 35297758 PMCID: PMC9176288 DOI: 10.1099/mgen.0.000791] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Ralstonia solanacearum species complex (RSSC) strains are bacteria that colonize plant xylem tissue and cause vascular wilt diseases. However, individual strains vary in host range, optimal disease temperatures and physiological traits. To increase our understanding of the evolution, diversity and biology of the RSSC, we performed a meta-analysis of 100 representative RSSC genomes. These 100 RSSC genomes contain 4940 genes on average, and a pangenome analysis found that there are 3262 genes in the core genome (~60 % of the mean RSSC genome) with 13 128 genes in the extensive flexible genome. A core genome phylogenetic tree and a whole-genome similarity matrix aligned with the previously named species (R. solanacearum, R. pseudosolanacearum, R. syzygii) and phylotypes (I–IV). These analyses also highlighted a third unrecognized sub-clade of phylotype II. Additionally, we identified differences between phylotypes with respect to gene content and recombination rate, and we delineated population clusters based on the extent of horizontal gene transfer. Multiple analyses indicate that phylotype II is the most diverse phylotype, and it may thus represent the ancestral group of the RSSC. We also used our genome-based framework to test whether the RSSC sequence variant (sequevar) taxonomy is a robust method to define within-species relationships of strains. The sequevar taxonomy is based on alignments of a single conserved gene (egl). Although sequevars in phylotype II describe monophyletic groups, the sequevar system breaks down in the highly recombinogenic phylotype I, which highlights the need for an improved, cost-effective method for genotyping strains in phylotype I. Finally, we enabled quick and precise genome-based identification of newly sequenced RSSC strains by assigning Life Identification Numbers (LINs) to the 100 strains and by circumscribing the RSSC and its sub-groups in the LINbase Web service.
Collapse
Affiliation(s)
- Parul Sharma
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
- Graduate Program in Genetics, Bioinformatics and Computational Biology, Virginia Tech, Blacksburg, VA, USA
| | - Marcela A. Johnson
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
- Graduate Program in Genetics, Bioinformatics and Computational Biology, Virginia Tech, Blacksburg, VA, USA
| | - Reza Mazloom
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Lenwood S. Heath
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
| | - Tiffany M. Lowe-Power
- Department of Plant Pathology, University of California Davis, Davis, CA, USA
- *Correspondence: Tiffany M. Lowe-Power,
| | - Boris A. Vinatzer
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
- *Correspondence: Boris A. Vinatzer,
| |
Collapse
|
210
|
Pan-Genome Analysis of Delftia tsuruhatensis Reveals Important Traits Concerning the Genetic Diversity, Pathogenicity, and Biotechnological Properties of the Species. Microbiol Spectr 2022; 10:e0207221. [PMID: 35230132 PMCID: PMC9045143 DOI: 10.1128/spectrum.02072-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Delftia tsuruhatensis strains have long been known to promote plant growth and biological control. Recently, it has become an emerging opportunistic pathogen in humans. However, the genomic characteristics of the genetic diversity, pathogenicity, and biotechnological properties have not yet been comprehensively investigated. Here, a comparative pan-genome analysis was constructed. The open pan-genome with a large and flexible gene repertoire exhibited a high degree of genetic diversity. The purifying selection was the main force to drive pan-genome evolution. Significant differences were observed in the evolutionary relationship, functional enrichment, and degree of selective pressure between the different components of the pan-genome. A high degree of genetic plasticity was characterized by the determinations of diverse mobile genetic elements (MGEs), massive genomic rearrangement, and horizontal genes. Horizontal gene transfer (HGT) plays an important role in the genetic diversity of this bacterium and the formation of genomic traits. Our results revealed the occurrence of diverse virulence-related elements associated with macromolecular secretion systems, virulence factors associated with multiple nosocomial infections, and antimicrobial resistance, indicating the pathogenic potential. Lateral flagellum, T1SS, T2SS, T6SS, Tad pilus, type IV pilus, and a part of virulence-related genes exhibited general properties, whereas polar flagellum, T4SS, a part of virulence-related genes, and resistance genes presented heterogeneous properties. The pan-genome also harbors abundant genetic traits related to secondary metabolism, carbohydrate active enzymes (CAZymes), and phosphate transporter, indicating rhizosphere adaptation, plant growth promotion, and great potential uses in agriculture and biological control. This study provides comprehensive insights into this uncommon species from the genomic perspective. IMPORTANCED. tsuruhatensis is considered a plant growth-promoting rhizobacterium (PGPR), an organic pollutant degradation strain, and an emerging opportunistic pathogen to the human. However, the genetic diversity, the evolutionary dynamics, and the genetic basis of these remarkable traits are still little known. We constructed a pan-genome analysis for D. tsuruhatensis and revealed extensive genetic diversity and genetic plasticity exhibited by open pan-genome, diverse mobile genetic elements (MGEs), genomic rearrangement, and horizontal genes. Our results highlight that horizontal gene transfer (HGT) and purifying selection are important forces in D. tsuruhatensis genetic evolution. The abundant virulence-related elements associated with macromolecular secretion systems, virulence factors, and antimicrobial resistance could contribute to the pathogenicity of this bacterium. Therefore, clinical microbiologists need to be aware of D. tsuruhatensis as an opportunistic pathogen. The genetic profiles of secondary metabolism, carbohydrate active enzymes (CAZymes), and phosphate transporter could provide insight into the genetic armory of potential applications for agriculture and biological control of D. tsuruhatensis in general.
Collapse
|
211
|
Nasimiyu C, Matoke-Muhia D, Rono GK, Osoro E, Obado DO, Mwangi JM, Mwikwabe N, Thiong’o K, Dawa J, Ngere I, Gachohi J, Kariuki S, Amukoye E, Mureithi M, Ngere P, Amoth P, Were I, Makayotto L, Nene V, Abworo EO, Njenga MK, Seifert SN, Oyola SO. Imported SARS-COV-2 Variants of Concern Drove Spread of Infections Across Kenya During the Second Year of the Pandemic. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.02.28.22271467. [PMID: 35262086 PMCID: PMC8902869 DOI: 10.1101/2022.02.28.22271467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background Using classical and genomic epidemiology, we tracked the COVID-19 pandemic in Kenya over 23 months to determine the impact of SARS-CoV-2 variants on its progression. Methods SARS-CoV-2 surveillance and testing data were obtained from the Kenya Ministry of Health, collected daily from 306 health facilities. COVID-19-associated fatality data were also obtained from these health facilities and communities. Whole SARS-CoV-2 genome sequencing were carried out on 1241 specimens. Results Over the pandemic duration (March 2020 - January 2022) Kenya experienced five waves characterized by attack rates (AR) of between 65.4 and 137.6 per 100,000 persons, and intra-wave case fatality ratios (CFR) averaging 3.5%, two-fold higher than the national average COVID-19 associated CFR. The first two waves that occurred before emergence of global variants of concerns (VoC) had lower AR (65.4 and 118.2 per 100,000). Waves 3, 4, and 5 that occurred during the second year were each dominated by multiple introductions each, of Alpha (74.9% genomes), Delta (98.7%), and Omicron (87.8%) VoCs, respectively. During this phase, government-imposed restrictions failed to alleviate pandemic progression, resulting in higher attack rates spread across the country. Conclusions The emergence of Alpha, Delta, and Omicron variants was a turning point that resulted in widespread and higher SARS-CoV-2 infections across the country.
Collapse
Affiliation(s)
- Carolyne Nasimiyu
- Washington State Global Health Program-Kenya, Washington State University, Nairobi, Kenya
- Paul G. Allen School for Global Health, Washington State University, Pullman, USA
| | | | | | - Eric Osoro
- Washington State Global Health Program-Kenya, Washington State University, Nairobi, Kenya
- Paul G. Allen School for Global Health, Washington State University, Pullman, USA
| | | | | | | | | | - Jeanette Dawa
- Washington State Global Health Program-Kenya, Washington State University, Nairobi, Kenya
| | - Isaac Ngere
- Washington State Global Health Program-Kenya, Washington State University, Nairobi, Kenya
| | - John Gachohi
- Washington State Global Health Program-Kenya, Washington State University, Nairobi, Kenya
| | | | | | - Marianne Mureithi
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | | | | | - Ian Were
- Kenya Ministry of Health, Nairobi, Kenya
| | | | | | | | - M. Kariuki Njenga
- Washington State Global Health Program-Kenya, Washington State University, Nairobi, Kenya
- Paul G. Allen School for Global Health, Washington State University, Pullman, USA
| | - Stephanie N. Seifert
- Paul G. Allen School for Global Health, Washington State University, Pullman, USA
| | | |
Collapse
|
212
|
Jing Y, Yin Z, Wang P, Guan J, Chen F, Wang L, Li X, Mu X, Zhou D. A Genomic and Bioinformatics View of the Classification and Evolution of Morganella Species and Their Chromosomal Accessory Genetic Elements Harboring Antimicrobial Resistance Genes. Microbiol Spectr 2022; 10:e0265021. [PMID: 35196820 PMCID: PMC8865565 DOI: 10.1128/spectrum.02650-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/01/2022] [Indexed: 11/20/2022] Open
Abstract
In this study, draft-genome sequencing was conducted for 60 Chinese Morganella isolates, and furthermore, 12 of them were fully sequenced. Then, a total of 166 global sequenced Morganella isolates, including the above 60, were collected to perform average nucleotide identity-based genomic classification and core single nucleotide polymorphism-based phylogenomic analysis. A genome sequence-based species classification scheme for Morganella was established, and accordingly, the two conventional Morganella species were redefined as two complexes and further divided into four and two genospecies, respectively. At least 88 acquired antimicrobial resistance genes (ARGs) were disseminated in these 166 isolates and were prevalent mostly in the isolates from hospital settings. IS26/IS15DI, IS10 and IS1R, and Tn3-, Tn21-, and Tn7-subfamily unit transposons were frequently presented in these 166 isolates. Furthermore, a detailed sequence comparison was applied to 18 Morganella chromosomal accessory genetic elements (AGEs) from the fully sequenced 12 isolates, together with 5 prototype AGEs from GenBank. These 23 AGEs were divided into eight different groups belonging to composite/unit transposons, transposable prophages, integrative and mobilizable elements, and integrative and conjugative elements, and they harbored at least 52 ARGs involved in resistance to 15 categories of antimicrobials. Eleven of these 23 AGEs acquired large accessory modules, which exhibited complex mosaic structures and contained many antimicrobial resistance loci and associated ARGs. Integration of ARG-containing AGEs into Morganella chromosomes would contribute to the accumulation and dissemination of ARGs in Morganella and enhance the adaption and survival of Morganella under complex and diverse antimicrobial selection pressures. IMPORTANCE This study presents a comprehensive genomic epidemiology analysis on global sequenced Morganella isolates. First, a genome sequence-based species classification scheme for Morganella is established with a higher resolution and accuracy than those of the conventional scheme. Second, the prevalence of accessory genetic elements (AGEs) and associated antimicrobial resistance genes (ARGs) among Morganella isolates is disclosed based on genome sequences. Finally, a detailed sequence comparison of eight groups of 23 AGEs (including 19 Morganella chromosomal AGEs) reveals that Morganella chromosomes have evolved to acquire diverse AGEs harboring different profiles of ARGs and that some of these AGEs harbor large accessory modules that exhibit complex mosaic structures and contain a large number of ARGs. Data presented here provide a deeper understanding of the classification and evolution of Morganella species and also those of ARG-containing AGEs in Morganella at the genomic scale.
Collapse
Affiliation(s)
- Ying Jing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Peng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jiayao Guan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Fangzhou Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lingling Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xinyue Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaofei Mu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
213
|
Integrative Reverse Genetic Analysis Identifies Polymorphisms Contributing to Decreased Antimicrobial Agent Susceptibility in Streptococcus pyogenes. mBio 2022; 13:e0361821. [PMID: 35038921 PMCID: PMC8764543 DOI: 10.1128/mbio.03618-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Identification of genetic polymorphisms causing increased antibiotic resistance in bacterial pathogens traditionally has proceeded from observed phenotype to defined mutant genotype. The availability of large collections of microbial genome sequences that lack antibiotic susceptibility metadata provides an important resource and opportunity to obtain new information about increased antimicrobial resistance by a reverse genotype-to-phenotype bioinformatic and experimental workflow. We analyzed 26,465 genome sequences of Streptococcus pyogenes, a human pathogen causing 700 million infections annually. The population genomic data identified amino acid changes in penicillin-binding proteins 1A, 1B, 2A, and 2X with signatures of evolution under positive selection as potential candidates for causing decreased susceptibility to β-lactam antibiotics. Construction and analysis of isogenic mutant strains containing individual amino acid replacements in penicillin-binding protein 2X (PBP2X) confirmed that the identified residues produced decreased susceptibility to penicillin. We also discovered the first chimeric PBP2X in S. pyogenes and show that strains containing it have significantly decreased β-lactam susceptibility. The novel integrative reverse genotype-to-phenotype strategy presented is broadly applicable to other pathogens and likely will lead to new knowledge about antimicrobial agent resistance, a massive public health problem worldwide. IMPORTANCE The recent demonstration that naturally occurring amino acid substitutions in Streptococcus pyogenes PBP2X are sufficient to cause severalfold reduced susceptibility to multiple β-lactam antibiotics in vitro raises the concern that these therapeutic agents may become compromised. Substitutions in PBP2X are common first-step mutations that, with the incremental accumulation of additional adaptive mutations within the PBPs, can result in high-level resistance. Because β-lactam susceptibility testing is not routinely performed, the nature and extent of such substitutions within the PBPs of S. pyogenes are poorly characterized. To address this knowledge deficit, polymorphisms in the PBPs were identified among the most comprehensive cohort of S. pyogenes genome sequences investigated to date. The mutational processes and selective forces acting on the PBPs were assessed to identify specific substitutions likely to influence β-lactam susceptibility and to evaluate factors posited to be impediments to resistance emergence.
Collapse
|
214
|
Mourkas E, Yahara K, Bayliss SC, Calland JK, Johansson H, Mageiros L, Muñoz-Ramirez ZY, Futcher G, Méric G, Hitchings MD, Sandoval-Motta S, Torres J, Jolley KA, Maiden MCJ, Ellström P, Waldenström J, Pascoe B, Sheppard SK. Host ecology regulates interspecies recombination in bacteria of the genus Campylobacter. eLife 2022; 11:e73552. [PMID: 35191377 PMCID: PMC8912921 DOI: 10.7554/elife.73552] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/20/2022] [Indexed: 01/16/2023] Open
Abstract
Horizontal gene transfer (HGT) can allow traits that have evolved in one bacterial species to transfer to another. This has potential to rapidly promote new adaptive trajectories such as zoonotic transfer or antimicrobial resistance. However, for this to occur requires gaps to align in barriers to recombination within a given time frame. Chief among these barriers is the physical separation of species with distinct ecologies in separate niches. Within the genus Campylobacter, there are species with divergent ecologies, from rarely isolated single-host specialists to multihost generalist species that are among the most common global causes of human bacterial gastroenteritis. Here, by characterizing these contrasting ecologies, we can quantify HGT among sympatric and allopatric species in natural populations. Analyzing recipient and donor population ancestry among genomes from 30 Campylobacter species, we show that cohabitation in the same host can lead to a six-fold increase in HGT between species. This accounts for up to 30% of all SNPs within a given species and identifies highly recombinogenic genes with functions including host adaptation and antimicrobial resistance. As described in some animal and plant species, ecological factors are a major evolutionary force for speciation in bacteria and changes to the host landscape can promote partial convergence of distinct species through HGT.
Collapse
Affiliation(s)
- Evangelos Mourkas
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious DiseasesTokyoJapan
| | - Sion C Bayliss
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Jessica K Calland
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Håkan Johansson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus UniversityKalmarSweden
| | - Leonardos Mageiros
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Zilia Y Muñoz-Ramirez
- Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, Instituto Mexicano del Seguro SocialMexico CityMexico
| | - Grant Futcher
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Guillaume Méric
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | | | - Santiago Sandoval-Motta
- Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, Instituto Mexicano del Seguro SocialMexico CityMexico
| | - Javier Torres
- Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, Instituto Mexicano del Seguro SocialMexico CityMexico
| | - Keith A Jolley
- Department of Zoology, University of OxfordOxfordUnited Kingdom
| | | | - Patrik Ellström
- Department of Medical Sciences, Zoonosis Science Centre, Uppsala UniversityUppsalaSweden
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus UniversityKalmarSweden
| | - Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
- Faculty of Veterinary Medicine, Chiang Mai UniversityChiang MaiThailand
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
- Department of Zoology, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
215
|
Mallawaarachchi S, Tonkin-Hill G, Croucher NJ, Turner P, Speed D, Corander J, Balding D. Genome-wide association, prediction and heritability in bacteria with application to Streptococcus pneumoniae. NAR Genom Bioinform 2022; 4:lqac011. [PMID: 35211669 PMCID: PMC8862724 DOI: 10.1093/nargab/lqac011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/06/2022] [Accepted: 02/01/2022] [Indexed: 11/14/2022] Open
Abstract
Whole-genome sequencing has facilitated genome-wide analyses of association, prediction and heritability in many organisms. However, such analyses in bacteria are still in their infancy, being limited by difficulties including genome plasticity and strong population structure. Here we propose a suite of methods including linear mixed models, elastic net and LD-score regression, adapted to bacterial traits using innovations such as frequency-based allele coding, both insertion/deletion and nucleotide testing and heritability partitioning. We compare and validate our methods against the current state-of-art using simulations, and analyse three phenotypes of the major human pathogen Streptococcus pneumoniae, including the first analyses of minimum inhibitory concentrations (MIC) for penicillin and ceftriaxone. We show that the MIC traits are highly heritable with high prediction accuracy, explained by many genetic associations under good population structure control. In ceftriaxone MIC, this is surprising because none of the isolates are resistant as per the inhibition zone criteria. We estimate that half of the heritability of penicillin MIC is explained by a known drug-resistance region, which also contributes a quarter of the ceftriaxone MIC heritability. For the within-host carriage duration phenotype, no associations were observed, but the moderate heritability and prediction accuracy indicate a moderately polygenic trait.
Collapse
Affiliation(s)
| | - Gerry Tonkin-Hill
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Nicholas J Croucher
- Faculty of Medicine, School of Public Health, Imperial College, London SW7 2AZ, UK
| | - Paul Turner
- Cambodia-Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap 1710, Cambodia,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Doug Speed
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, 8000 Aarhus, Denmark,Bioinformatics Research Centre, Aarhus University, 8000 Aarhus, Denmark,UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
| | - Jukka Corander
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge CB10 1SA, UK,Department of Biostatistics, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway,Helsinki Institute of Information Technology, Department of Mathematics and Statistics, University of Helsinki, Helsinki 00014, Finland
| | - David Balding
- Correspondence may also be addressed to David Balding.
| |
Collapse
|
216
|
Habitat Adaptation Drives Speciation of a Streptomyces Species with Distinct Habitats and Disparate Geographic Origins. mBio 2022; 13:e0278121. [PMID: 35012331 PMCID: PMC8749437 DOI: 10.1128/mbio.02781-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Microbial diversification is driven by geographic and ecological factors, but how the relative importance of these factors varies among species, geographic scales, and habitats remains unclear. Streptomyces, a genus of antibiotic-producing, spore-forming, and widespread bacteria, offers a robust model for identifying the processes underlying population differentiation. We examined the population structure of 37 Streptomyces olivaceus strains isolated from various sources, showing that they diverged into two habitat-associated (free-living and insect-associated) and geographically disparate lineages. More frequent gene flow within than between the lineages confirmed genetic isolation in S. olivaceus. Geographic isolation could not explain the genetic isolation; instead, habitat type was a strong predictor of genetic distance when controlling for geographic distance. The identification of habitat-specific genetic variations, including genes involved in regulation, resource use, and secondary metabolism, suggested a significant role of habitat adaptation in the diversification process. Physiological assays revealed fitness trade-offs under different environmental conditions in the two lineages. Notably, insect-associated isolates could outcompete free-living isolates in a free-iron-deficient environment. Furthermore, substrate (e.g., sialic acid and glycogen) utilization but not thermal traits differentiated the two lineages. Overall, our results argue that adaptive processes drove ecological divergence among closely related streptomycetes, eventually leading to dispersal limitation and gene flow barriers between the lineages. S. olivaceus may best be considered a species complex consisting of two cryptic species. IMPORTANCE Both isolation by distance and isolation by environment occur in bacteria, and different diversification patterns may apply to different species. Streptomyces species, typified by producing useful natural products, are widespread in nature and possess high genetic diversity. However, the ecological processes and evolutionary mechanisms that shape their distribution are not well understood. Here, we show that the population structure of a ubiquitous Streptomyces species complex matches its habitat distribution and can be defined by gene flow discontinuities. Using comparative genomics and physiological assays, we reveal that gains and losses of specific genomic traits play a significant role in the transition between free-living and host-associated lifestyles, driving speciation of the species. These results provide new insights into the evolutionary trajectory of Streptomyces and the notion of species.
Collapse
|
217
|
Larsen J, Raisen CL, Ba X, Sadgrove NJ, Padilla-González GF, Simmonds MSJ, Loncaric I, Kerschner H, Apfalter P, Hartl R, Deplano A, Vandendriessche S, Černá Bolfíková B, Hulva P, Arendrup MC, Hare RK, Barnadas C, Stegger M, Sieber RN, Skov RL, Petersen A, Angen Ø, Rasmussen SL, Espinosa-Gongora C, Aarestrup FM, Lindholm LJ, Nykäsenoja SM, Laurent F, Becker K, Walther B, Kehrenberg C, Cuny C, Layer F, Werner G, Witte W, Stamm I, Moroni P, Jørgensen HJ, de Lencastre H, Cercenado E, García-Garrote F, Börjesson S, Hæggman S, Perreten V, Teale CJ, Waller AS, Pichon B, Curran MD, Ellington MJ, Welch JJ, Peacock SJ, Seilly DJ, Morgan FJE, Parkhill J, Hadjirin NF, Lindsay JA, Holden MTG, Edwards GF, Foster G, Paterson GK, Didelot X, Holmes MA, Harrison EM, Larsen AR. Emergence of methicillin resistance predates the clinical use of antibiotics. Nature 2022; 602:135-141. [PMID: 34987223 PMCID: PMC8810379 DOI: 10.1038/s41586-021-04265-w] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022]
Abstract
The discovery of antibiotics more than 80 years ago has led to considerable improvements in human and animal health. Although antibiotic resistance in environmental bacteria is ancient, resistance in human pathogens is thought to be a modern phenomenon that is driven by the clinical use of antibiotics1. Here we show that particular lineages of methicillin-resistant Staphylococcus aureus-a notorious human pathogen-appeared in European hedgehogs in the pre-antibiotic era. Subsequently, these lineages spread within the local hedgehog populations and between hedgehogs and secondary hosts, including livestock and humans. We also demonstrate that the hedgehog dermatophyte Trichophyton erinacei produces two β-lactam antibiotics that provide a natural selective environment in which methicillin-resistant S. aureus isolates have an advantage over susceptible isolates. Together, these results suggest that methicillin resistance emerged in the pre-antibiotic era as a co-evolutionary adaptation of S. aureus to the colonization of dermatophyte-infected hedgehogs. The evolution of clinically relevant antibiotic-resistance genes in wild animals and the connectivity of natural, agricultural and human ecosystems demonstrate that the use of a One Health approach is critical for our understanding and management of antibiotic resistance, which is one of the biggest threats to global health, food security and development.
Collapse
Affiliation(s)
- Jesper Larsen
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark.
| | - Claire L Raisen
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Xiaoliang Ba
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | | | | | - Igor Loncaric
- Institute of Microbiology, University of Veterinary Medicine, Vienna, Austria
| | - Heidrun Kerschner
- National Reference Center for Antimicrobial Resistance and Nosocomial Infections, Institute for Hygiene, Microbiology and Tropical Medicine, Ordensklinikum Linz Elisabethinen, Linz, Austria
| | - Petra Apfalter
- National Reference Center for Antimicrobial Resistance and Nosocomial Infections, Institute for Hygiene, Microbiology and Tropical Medicine, Ordensklinikum Linz Elisabethinen, Linz, Austria
| | - Rainer Hartl
- National Reference Center for Antimicrobial Resistance and Nosocomial Infections, Institute for Hygiene, Microbiology and Tropical Medicine, Ordensklinikum Linz Elisabethinen, Linz, Austria
| | - Ariane Deplano
- National Reference Centre-Staphylococcus aureus, Department of Microbiology, Hôpital Erasme, Université libre de Bruxelles, Brussels, Belgium
| | - Stien Vandendriessche
- National Reference Centre-Staphylococcus aureus, Department of Microbiology, Hôpital Erasme, Université libre de Bruxelles, Brussels, Belgium
- Laboratory for Medical Microbiology, Ghent University Hospital, Ghent, Belgium
| | - Barbora Černá Bolfíková
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Pavel Hulva
- Department of Zoology, Charles University, Prague, Czech Republic
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czech Republic
| | - Maiken C Arendrup
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Rasmus K Hare
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Céline Barnadas
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
- European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Marc Stegger
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Raphael N Sieber
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Robert L Skov
- Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - Andreas Petersen
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Øystein Angen
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Sophie L Rasmussen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- Wildlife Conservation Research Unit (WildCRU), Department of Zoology, University of Oxford, Tubney, UK
| | - Carmen Espinosa-Gongora
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Frank M Aarestrup
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Laura J Lindholm
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Frederic Laurent
- Bacteriology Department and French National Reference Center for Staphylococci, Hospices Civils de Lyon, University of Lyon, Lyon, France
| | - Karsten Becker
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Birgit Walther
- Institute of Microbiology and Epizootics, Veterinary Faculty, Freie Universität Berlin, Berlin, Germany
- Advanced Light and Electron Microscopy (ZBS-4), Robert Koch Institute, Berlin, Germany
| | - Corinna Kehrenberg
- Institute for Veterinary Food Science, Justus-Liebig University Giessen, Giessen, Germany
| | - Christiane Cuny
- National Reference Centre for Staphylococci and Enterococci, Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | - Franziska Layer
- National Reference Centre for Staphylococci and Enterococci, Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | - Guido Werner
- National Reference Centre for Staphylococci and Enterococci, Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | - Wolfgang Witte
- National Reference Centre for Staphylococci and Enterococci, Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | | | - Paolo Moroni
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Lodi, Italy
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, Ithaca, NY, USA
| | | | - Hermínia de Lencastre
- Laboratory of Molecular Genetics, ITQB NOVA, Oeiras, Portugal
- Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, NY, USA
| | - Emilia Cercenado
- Servicio de Microbiología, Hospital Universitario Lucus Augusti, Lugo, Spain
| | - Fernando García-Garrote
- Servicio de Microbiología, Hospital Universitario Lucus Augusti, Lugo, Spain
- Servicio de Microbiología, Complejo Asistencial Universitario de Salamanca, Salamanca, Spain
| | - Stefan Börjesson
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute (SVA), Uppsala, Sweden
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Sara Hæggman
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Vincent Perreten
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | | | - Andrew S Waller
- Animal Health Trust, Newmarket, UK
- Intervacc AB, Stockholm, Stockholm, Sweden
- Department of Biomedical Science and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Bruno Pichon
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, UK Health Security Agency, London, UK
| | - Martin D Curran
- Clinical Microbiology and Public Health Laboratory, UK Health Security Agency, Addenbrooke's Hospital, Cambridge, UK
| | - Matthew J Ellington
- Clinical Microbiology and Public Health Laboratory, UK Health Security Agency, Addenbrooke's Hospital, Cambridge, UK
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, UK Health Security Agency, London, UK
| | - John J Welch
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | - David J Seilly
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Fiona J E Morgan
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Nazreen F Hadjirin
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jodi A Lindsay
- Institute of Infection and Immunity, St George's, University of London, London, UK
| | | | - Giles F Edwards
- Scottish MRSA Reference Laboratory, NHS Greater Glasgow and Clyde, Stobhill Hospital, Glasgow, UK
| | | | - Gavin K Paterson
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, UK
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Warwick, UK
| | - Mark A Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Ewan M Harrison
- Department of Medicine, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Anders R Larsen
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
218
|
Klein-Gordon JM, Timilsina S, Xing Y, Abrahamian P, Garrett KA, Jones JB, Vallad GE, Goss EM. Whole genome sequences reveal the Xanthomonas perforans population is shaped by the tomato production system. THE ISME JOURNAL 2022; 16:591-601. [PMID: 34489540 PMCID: PMC8776747 DOI: 10.1038/s41396-021-01104-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023]
Abstract
Modern agricultural practices increase the potential for plant pathogen spread, while the advent of affordable whole genome sequencing enables in-depth studies of pathogen movement. Population genomic studies may decipher pathogen movement and population structure as a result of complex agricultural production systems. We used whole genome sequences of 281 Xanthomonas perforans strains collected within one tomato production season across Florida and southern Georgia fields to test for population genetic structure associated with tomato production system variables. We identified six clusters of X. perforans from core gene SNPs that corresponded with phylogenetic lineages. Using whole genome SNPs, we found genetic structure among farms, transplant facilities, cultivars, seed producers, grower operations, regions, and counties. Overall, grower operations that produced their own transplants were associated with genetically distinct and less diverse populations of strains compared to grower operations that received transplants from multiple sources. The degree of genetic differentiation among components of Florida's tomato production system varied between clusters, suggesting differential dispersal of the strains, such as through seed or contaminated transplants versus local movement within farms. Overall, we showed that the genetic variation of a bacterial plant pathogen is shaped by the structure of the plant production system.
Collapse
Affiliation(s)
- Jeannie M Klein-Gordon
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Sujan Timilsina
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, FL, USA
| | - Yanru Xing
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Food Systems Institute, University of Florida, Gainesville, FL, USA
| | - Peter Abrahamian
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, FL, USA
- Gulf Coast Research and Education Center, IFAS, University of Florida, Balm, FL, USA
- USDA-ARS, Beltsville Agricultural Research Center, Molecular Plant Pathology Laboratory, Beltsville, MD, USA
| | - Karen A Garrett
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Food Systems Institute, University of Florida, Gainesville, FL, USA
| | - Jeffrey B Jones
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, FL, USA
| | - Gary E Vallad
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, FL, USA.
- Gulf Coast Research and Education Center, IFAS, University of Florida, Balm, FL, USA.
| | - Erica M Goss
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, FL, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
219
|
Chen Z, Wang X, Song Y, Zeng Q, Zhang Y, Luo H. Prochlorococcus have low global mutation rate and small effective population size. Nat Ecol Evol 2022; 6:183-194. [PMID: 34949817 DOI: 10.1038/s41559-021-01591-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 10/14/2021] [Indexed: 12/27/2022]
Abstract
Prochlorococcus are the most abundant free-living photosynthetic carbon-fixing organisms in the ocean. Prochlorococcus show small genome sizes, low genomic G+C content, reduced DNA repair gene pool and fast evolutionary rates, which are typical features of endosymbiotic bacteria. Nevertheless, their evolutionary mechanisms are believed to be different. Evolution of endosymbiotic bacteria is dominated by genetic drift owing to repeated population bottlenecks, whereas Prochlorococcus are postulated to have extremely large effective population sizes (Ne) and thus drift has rarely been considered. However, accurately extrapolating Ne requires measuring an unbiased global mutation rate through mutation accumulation, which is challenging for Prochlorococcus. Here, we managed this experiment over 1,065 days using Prochlorococcus marinus AS9601, sequenced genomes of 141 mutant lines and determined its mutation rate to be 3.50 × 10-10 per site per generation. Extrapolating Ne additionally requires identifying population boundaries, which we defined using PopCOGenT and over 400 genomes related to AS9601. Accordingly, we calculated its Ne to be 1.68 × 107, which is only reasonably greater than that of endosymbiotic bacteria but surprisingly smaller than that of many free-living bacteria extrapolated using the same approach. Our results therefore suggest that genetic drift is a key driver of Prochlorococcus evolution.
Collapse
Affiliation(s)
- Zhuoyu Chen
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xiaojun Wang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yu Song
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR.,Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Clear Water Bay, Hong Kong SAR
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China. .,Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Clear Water Bay, Hong Kong SAR.
| |
Collapse
|
220
|
van Hal SJ, Willems RJL, Gouliouris T, Ballard SA, Coque TM, Hammerum AM, Hegstad K, Pinholt M, Howden BP, Malhotra-Kumar S, Werner G, Yanagihara K, Earl AM, Raven KE, Corander J, Bowden R. The interplay between community and hospital Enterococcus faecium clones within health-care settings: a genomic analysis. THE LANCET. MICROBE 2022; 3:e133-e141. [PMID: 35146465 PMCID: PMC8810393 DOI: 10.1016/s2666-5247(21)00236-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND The genomic relationships among Enterococcus faecium isolates are the subject of ongoing research that seeks to clarify the origins of observed lineages and the extent of horizontal gene transfer between them, and to robustly identify links between genotypes and phenotypes. E faecium is considered to form distinct groups-A and B-corresponding to isolates derived from patients who were hospitalised (A) and isolates from humans in the community (B). The additional separation of A into the so-called clades A1 and A2 remains an area of uncertainty. We aimed to investigate the relationships between A1 and non-A1 groups and explore the potential role of non-A1 isolates in shaping the population structure of hospital E faecium. METHODS We collected short-read sequence data from invited groups that had previously published E faecium genome data. This hospital-based isolate collection could be separated into three groups (or clades, A1, A2, and B) by augmenting the study genomes with published sequences derived from human samples representing the previously defined genomic clusters. We performed phylogenetic analyses, by constructing maximum-likelihood phylogenetic trees, and identified historical recombination events. We assessed the pan-genome, did resistome analysis, and examined the genomic data to identify mobile genetic elements. Each genome underwent chromosome painting by use of ChromoPainter within FineSTRUCTURE software to assess ancestry and identify hybrid groups. We further assessed highly admixed regions to infer recombination directionality. FINDINGS We assembled a collection of 1095 hospital E faecium sequences from 34 countries, further augmented by 33 published sequences. 997 (88%) of 1128 genomes clustered as A1, 92 (8%) as A2, and 39 (4%) as B. We showed that A1 probably emerged as a clone from within A2 and that, because of ongoing gene flow, hospital isolates currently identified as A2 represent a genetic continuum between A1 and community E faecium. This interchange of genetic material between isolates from different groups results in the emergence of hybrid genomes between clusters. Of the 1128 genomes, 49 (4%) hybrid genomes were identified: 33 previously labelled as A2 and 16 previously labelled as A1. These interactions were fuelled by a directional pattern of recombination mediated by mobile genetic elements. By contrast, the contribution of B group genetic material to A1 was limited to a few small regions of the genome and appeared to be driven by genomic sweep events. INTERPRETATION A2 and B isolates coming into the hospital form an important reservoir for ongoing A1 adaptation, suggesting that effective long-term control of the effect of E faecium could benefit from strategies to reduce these genomic interactions, such as a focus on reducing the acquisition of hospital A1 strains by patients entering the hospital. FUNDING Wellcome Trust.
Collapse
Affiliation(s)
- Sebastiaan J van Hal
- Department of Infectious Diseases and Microbiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia,Central Clinical School, University of Sydney, Sydney, NSW, Australia,Correspondence to: Sebastiaan J van Hal, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Susan A Ballard
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Teresa M Coque
- Department of Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Health Research Institute, Madrid, Spain,Network Research Centre for Epidemiology and Public Health, Madrid, Spain
| | | | - Kristin Hegstad
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, University Hospital of North-Norway, Department of Microbiology and Infection Control, Tromsø, Norway
| | - Mette Pinholt
- Department of Clinical Microbiology, Hvidovre University Hospital, Hvidovre, Denmark
| | - Benjamin P Howden
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, Universiteit Antwerpen, Wilrijk, Belgium
| | - Guido Werner
- National Reference Centre for Staphylococci and Enterococci, Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Wernigerode, Germany
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ashlee M Earl
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA, USA
| | | | - Jukka Corander
- Department of Biostatistics, University of Oslo, Oslo, Norway,Parasites and Microbes, Wellcome Sanger Institute, Saffron Walden, UK
| | - Rory Bowden
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia,Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | |
Collapse
|
221
|
Quino W, Caro-Castro J, Hurtado V, Flores-León D, Gonzalez-Escalona N, Gavilan RG. Genomic Analysis and Antimicrobial Resistance of Campylobacter jejuni and Campylobacter coli in Peru. Front Microbiol 2022; 12:802404. [PMID: 35087501 PMCID: PMC8787162 DOI: 10.3389/fmicb.2021.802404] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/14/2021] [Indexed: 01/22/2023] Open
Abstract
Campylobacter is the leading cause of human bacterial gastroenteritis worldwide and has a major impact on global public health. Whole Genome Sequencing (WGS) is a powerful tool applied in the study of foodborne pathogens. The objective of the present study was to apply WGS to determine the genetic diversity, virulence factors and determinants of antimicrobial resistance of the populations of C. jejuni and C. coli in Peru. A total of 129 Campylobacter strains (108 C. jejuni and 21 C. coli) were sequenced using Illumina Miseq platform. In silico MLST analysis identified a high genetic diversity among those strains with 30 sequence types (STs), several of them within 11 clonal complexes (CC) for C. jejuni, while the strains of C. coli belonged to a single CC with 8 different STs. Phylogeny analysis showed that Peruvian C. jejuni strains were divided into 2 clades with 5 populations, while C. coli formed a single clade with 4 populations. Furthermore, in silico analyses showed the presence of several genes associated with adherence, colonization and invasion among both species: cadF (83.7%), jlpA (81.4%), racR (100%), dnaJ (83.7%), pebA (83.7%), pldA (82.1%), porA (84.5%), ceuE (82.9%), ciaB (78.3%), iamB (86.8%), and flaC (100%). The majority (82.9%) of the Campylobacter strains carried the cdtABC operon which code for cytolethal distending toxin (CDT). Half of them (50.4%) carried genes associated with the presence of T6SS, while the frequency of genes associated with T4SS were relatively low (11.6%). Genetic markers associated with resistance to quinolones, tetracycline (tetO, tetW/N/W), beta-lactamases (blaoxa–61), macrolides (A2075G in 23S rRNA) were found in 94.5, 21.7, 66.7, 6.2, 69.8, and 18.6% of strains, respectively. The cmeABC multidrug efflux operon was present in 78.3% of strains. This study highlights the importance of using WGS in the surveillance of emerging pathogens associated with foodborne diseases, providing genomic information on genetic diversity, virulence mechanisms and determinants of antimicrobial resistance. The description of several Campylobacter genotypes having many virulence factors and resistance to quinolones and tetracyclines circulating in Peru provides important information which helps in the monitoring, control and prevention strategies of this emerging pathogen in our country.
Collapse
Affiliation(s)
- Willi Quino
- Laboratorio de Referencia Nacional de Enteropatógenos, Instituto Nacional de Salud, Lima, Peru
| | - Junior Caro-Castro
- Laboratorio de Referencia Nacional de Enteropatógenos, Instituto Nacional de Salud, Lima, Peru
| | - Verónica Hurtado
- Laboratorio de Referencia Nacional de Enteropatógenos, Instituto Nacional de Salud, Lima, Peru
| | - Diana Flores-León
- Laboratorio de Referencia Nacional de Enteropatógenos, Instituto Nacional de Salud, Lima, Peru.,Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru
| | - Narjol Gonzalez-Escalona
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - Ronnie G Gavilan
- Laboratorio de Referencia Nacional de Enteropatógenos, Instituto Nacional de Salud, Lima, Peru.,Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru
| |
Collapse
|
222
|
Leyton-Carcaman B, Abanto M. Beyond to the Stable: Role of the Insertion Sequences as Epidemiological Descriptors in Corynebacterium striatum. Front Microbiol 2022; 13:806576. [PMID: 35126341 PMCID: PMC8811144 DOI: 10.3389/fmicb.2022.806576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/04/2022] [Indexed: 11/20/2022] Open
Abstract
In recent years, epidemiological studies of infectious agents have focused mainly on the pathogen and stable components of its genome. The use of these stable components makes it possible to know the evolutionary or epidemiological relationships of the isolates of a particular pathogen. Under this approach, focused on the pathogen, the identification of resistance genes is a complementary stage of a bacterial characterization process or an appendix of its epidemiological characterization, neglecting its genetic components’ acquisition or dispersal mechanisms. Today we know that a large part of antibiotic resistance is associated with mobile elements. Corynebacterium striatum, a bacterium from the normal skin microbiota, is also an opportunistic pathogen. In recent years, reports of infections and nosocomial outbreaks caused by antimicrobial multidrug-resistant C. striatum strains have been increasing worldwide. Despite the different existing mobile genomic elements, there is evidence that acquired resistance genes are coupled to insertion sequences in C. striatum. This perspective article reviews the insertion sequences linked to resistance genes, their relationship to evolutionary lineages, epidemiological characteristics, and the niches the strains inhabit. Finally, we evaluate the potential of the insertion sequences for their application as a descriptor of epidemiological scenarios, allowing us to anticipate the emergence of multidrug-resistant lineages.
Collapse
|
223
|
Evaluation of Bacterial Diversity and Evolutionary Dynamics of Gut Bifidobacterium longum Isolates Obtained from Older Individuals in Hubei Province, China. Microbiol Spectr 2022; 10:e0144221. [PMID: 35044201 PMCID: PMC8768838 DOI: 10.1128/spectrum.01442-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bifidobacterium longum predominates in the human gut throughout the life span, from birth to old age, and could alter the intestinal microbial population and immune function in the elderly. We investigated the intestinal bacterial diversity in the elderly, and further evaluated the genetic diversity and population structure of B. longum. The results revealed a distinct difference in gut bacterial populations between the elderly from Xiangyang and its neighboring region, Enshi city. A total of 62 bifidobacterial strains were isolated, 30 of which were found to be B. longum. The multilocus sequence typing (MLST) analysis also revealed that 437 B. longum isolates from diverse regions worldwide, including the 30 isolated in this study, could be classified into 341 sequence types (STs). They could be further clustered into 10 clonal complexes and 127 singleton STs, indicating a highly genetic diversity among B. longum isolates. Two putative clone complexes (CCs) containing the isolates from Xiangyang were found to be geographically specific, and a 213-bp recombination fragment was detected. Phylogenetic trees divided these 437 isolates into three lineages, corresponding to the three subspecies of B. longum. It is noteworthy that two isolates from the elderly were identified to be B. longum subsp. suis, while the others were B. longum subsp. longum. Together, our study characterized the intestinal bacterial diversity and evolution of B. longum in the elderly, and it could contribute to further studies on the genotyping and discrimination of B. longum. IMPORTANCEBifidobacterium longum are common inhabitants of the human gut throughout the life span, and have been associated with health-promoting effects, yet little is known about the genotype profile and evolution of these isolates. Our study showed that there was significant difference in gut bacterial community and abundance of B. longum between the elderly from two neighboring cities. Furthermore, the possible geographically specific STs, CCs, and intraspecies recombination fragment were found among the B. longum isolates from elderly.
Collapse
|
224
|
Kauffman KM, Chang WK, Brown JM, Hussain FA, Yang J, Polz MF, Kelly L. Resolving the structure of phage-bacteria interactions in the context of natural diversity. Nat Commun 2022; 13:372. [PMID: 35042853 PMCID: PMC8766483 DOI: 10.1038/s41467-021-27583-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
Microbial communities are shaped by viral predators. Yet, resolving which viruses (phages) and bacteria are interacting is a major challenge in the context of natural levels of microbial diversity. Thus, fundamental features of how phage-bacteria interactions are structured and evolve in the wild remain poorly resolved. Here we use large-scale isolation of environmental marine Vibrio bacteria and their phages to obtain estimates of strain-level phage predator loads, and use all-by-all host range assays to discover how phage and host genomic diversity shape interactions. We show that lytic interactions in environmental interaction networks (as observed in agar overlay) are sparse-with phage predator loads being low for most bacterial strains, and phages being host-strain-specific. Paradoxically, we also find that although overlap in killing is generally rare between tailed phages, recombination is common. Together, these results suggest that recombination during cryptic co-infections is an important mode of phage evolution in microbial communities. In the development of phages for bioengineering and therapeutics it is important to consider that nucleic acids of introduced phages may spread into local phage populations through recombination, and that the likelihood of transfer is not predictable based on lytic host range.
Collapse
Affiliation(s)
- Kathryn M Kauffman
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Oral Biology, The University at Buffalo, Buffalo, NY, 14214, USA
| | - William K Chang
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Julia M Brown
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, 04544, USA
| | - Fatima A Hussain
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Joy Yang
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Martin F Polz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| | - Libusha Kelly
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
225
|
Li K, Wang S, Liu W, Kwok LY, Bilige M, Zhang W. Comparative genomic analysis of 455 Lactiplantibacillus plantarum isolates: Habitat-specific genomes shaped by frequent recombination. Food Microbiol 2022; 104:103989. [DOI: 10.1016/j.fm.2022.103989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 11/30/2022]
|
226
|
Manoj RRS, Latrofa MS, Bezerra-Santos MA, Sgroi G, Samarelli R, Mendoza-Roldan JA, Otranto D. Molecular detection and characterization of the endosymbiont Wolbachia in the European hedgehog flea, Archaeopsylla erinacei. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 97:105161. [PMID: 34843992 DOI: 10.1016/j.meegid.2021.105161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Wolbachia, the endosymbiont of arthropods and onchocercid nematodes is present in many medically important insect species, being also considered for the indirect control of parasitic ones. Archaeopsylla erinacei is a flea species infesting hedgehogs acting as vector of Rickettsia felis, Bartonella henselae, and Rickettsia helvetica, thus having public health relevance. The Wolbachia surface protein (wsp) and 16S rRNA genes were used to determine the presence, prevalence and molecular typing of Wolbachia in this flea species collected in two regions of southern Italy. Of the 45 fleas tested (n = 16 males, 35.6%; n = 29 females, 64.4%), 43 (95.6%; 95% CI: 84.8-99.2) scored positive for Wolbachia, of which 15 (33.3%) and 28 (62.2%) were males and females, respectively. The sex-wise prevalence of this endosymbiont was almost equal in both sexes (males 93.8%; 95% CI: 69.5-99.7; females 96.7%; 95% CI: 83.1-99.8). Single locus sequence analysis (SLST) of Wolbachia revealed two sequence types for 16S rRNA gene, named as wAr_15227 and wAr_15234, which came from two different areas, equally distributed in male and female fleas, whilst only one sequence type was identified for wsp gene. The phylogenetic analysis placed the two 16S rRNA sequence types in paraphyletic clades belonging to the supergroup A and B, respectively. Whilst, the tree of wsp gene clustered the corresponding sequence in the same clade including those of Wolbachia supergroup A. In MLST analyses, both Wolbachia sequence types clustered in a monophyletic clade with Drosophila nikananu (wNik) and Drosophila sturtevanti (wStv) from supergroup A. ClonalFrame analysis revealed a recombination event in the wAr_15234 strain which came from Apulia region. Scientific knowledge of the presence/prevalence of Wolbachia among medically important fleas, may contribute to develop an alternative biological method for the vector control.
Collapse
Affiliation(s)
| | | | | | - Giovanni Sgroi
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | | | | | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy; Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
227
|
Sugita K, Aoki K, Komori K, Nagasawa T, Ishii Y, Iwata S, Tateda K. Molecular Analysis of blaKPC-2-Harboring Plasmids: Tn 4401a Interplasmid Transposition and Tn 4401a-Carrying ColRNAI Plasmid Mobilization from Klebsiella pneumoniae to Citrobacter europaeus and Morganella morganii in a Single Patient. mSphere 2021; 6:e0085021. [PMID: 34730375 PMCID: PMC8565517 DOI: 10.1128/msphere.00850-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 11/20/2022] Open
Abstract
The spread of Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacterales is a public health concern. KPC-encoding blaKPC is predominantly spread by strains of a particular phylogenetic lineage, clonal group 258, but can also be spread by horizontal transfer of blaKPC-carrying plasmids. Here, we report the transfer of a blaKPC-2-harboring plasmid via mobilization from K. pneumoniae to Citrobacter freundii complex and Morganella morganii strains in a single patient. We performed draft whole-genome sequencing to analyze 20 carbapenemase-producing Enterobacterales strains (15 of K. pneumoniae, two of C. freundii complex, and three of M. morganii) and all K. pneumoniae strains using MiSeq and/or MinION isolated from a patient who was hospitalized in New York and Montreal before returning to Japan. All strains harbored blaKPC-2-containing Tn4401a. The 15 K. pneumoniae strains each belonged to sequence type 258 and harbored a Tn4401a-carrying multireplicon-type plasmid, IncN and IncR (IncN+R). Three of these K. pneumoniae strains also possessed a Tn4401a-carrying ColRNAI plasmid, suggesting that Tn4401a underwent interplasmid transposition. Of these three ColRNAI plasmids, two and one were identical to plasmids harbored by two Citrobacter europaeus and three M. morganii strains, respectively. The Tn4401a-carrying ColRNAI plasmids were each 23,753 bp long and incapable of conjugal transfer via their own genes alone, but they mobilized during the conjugal transfer of Tn4401a-carrying IncN+R plasmids in K. pneumoniae. Interplasmid transposition of Tn4401a from an IncN+R plasmid to a ColRNAI plasmid in K. pneumoniae and mobilization of Tn4401a-carrying ColRNAI plasmids contributed to the acquisition of blaKPC-2 in C. europaeus and M. morganii. IMPORTANCE Plasmid transfer plays an important role in the interspecies spread of carbapenemase genes, including the Klebsiella pneumoniae carbapenemase (KPC)-coding gene, blaKPC. We conducted whole-genome sequencing (WGS) analysis and transmission experiments to analyze blaKPC-2-carrying mobile genetic elements (MGEs) between the blaKPC-2-harboring K. pneumoniae, Citrobacter europaeus, and Morganella morganii strains isolated from a single patient. blaKPC-2 was contained within an MGE, Tn4401a. WGS of blaKPC-2-carrying K. pneumoniae, C. europaeus, and M. morganii strains isolated from one patient revealed that Tn4401a-carrying ColRNAI plasmids were generated by plasmid-to-plasmid transfer of Tn4401a from a multireplicon-type IncN and IncR (IncN+R) plasmid in K. pneumoniae strains. Tn4401a-carrying ColRNAI plasmids were incapable of conjugal transfer in C. europaeus and M. morganii but mobilized from K. pneumoniae to a recipient Escherichia coli strain during the conjugal transfer of Tn4401a-carrying IncN+R plasmid. Therefore, Tn4401a-carrying ColRNAI plasmids contributed to the acquisition of blaKPC-2 in C. europaeus and M. morganii.
Collapse
Affiliation(s)
- Kayoko Sugita
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Kotaro Aoki
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Kohji Komori
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Tatsuya Nagasawa
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Satoshi Iwata
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
- Department of Infectious Diseases, National Cancer Center Hospital, Tokyo, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| |
Collapse
|
228
|
Vertical Inheritance Facilitates Interspecies Diversification in Biosynthetic Gene Clusters and Specialized Metabolites. mBio 2021; 12:e0270021. [PMID: 34809466 PMCID: PMC8609351 DOI: 10.1128/mbio.02700-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
While specialized metabolites are thought to mediate ecological interactions, the evolutionary processes driving chemical diversification, particularly among closely related lineages, remain poorly understood. Here, we examine the evolutionary dynamics governing the distribution of natural product biosynthetic gene clusters (BGCs) among 118 strains representing all nine currently named species of the marine actinobacterial genus Salinispora. While much attention has been given to the role of horizontal gene transfer (HGT) in structuring BGC distributions, we find that vertical descent facilitates interspecies BGC diversification over evolutionary timescales. Moreover, we identified a distinct phylogenetic signal among Salinispora species at both the BGC and metabolite level, indicating that specialized metabolism represents a conserved phylogenetic trait. Using a combination of genomic analyses and liquid chromatography–high-resolution tandem mass spectrometry (LC-MS/MS) targeting nine experimentally characterized BGCs and their small molecule products, we identified gene gain/loss events, constrained interspecies recombination, and other evolutionary processes associated with vertical inheritance as major contributors to BGC diversification. These evolutionary dynamics had direct consequences for the compounds produced, as exemplified by species-level differences in salinosporamide production. Together, our results support the concept that specialized metabolites, and their cognate BGCs, can represent phylogenetically conserved functional traits with chemical diversification proceeding in species-specific patterns over evolutionary time frames.
Collapse
|
229
|
Evolutionary Processes Driving the Rise and Fall of Staphylococcus aureus ST239, a Dominant Hybrid Pathogen. mBio 2021; 12:e0216821. [PMID: 34903061 PMCID: PMC8669471 DOI: 10.1128/mbio.02168-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Selection plays a key role in the spread of antibiotic resistance, but the evolutionary drivers of clinically important resistant strains remain poorly understood. Here, we use genomic analyses and competition experiments to study Staphylococcus aureus ST239, a prominent MRSA strain that is thought to have been formed by large-scale recombination between ST8 and ST30. Genomic analyses allowed us to refine the hybrid model for the origin of ST239 and to date the origin of ST239 to 1920 to 1945, which predates the clinical introduction of methicillin in 1959. Although purifying selection has dominated the evolution of ST239, parallel evolution has occurred in genes involved in antibiotic resistance and virulence, suggesting that ST239 has evolved toward an increasingly pathogenic lifestyle. Crucially, ST239 isolates have low competitive fitness relative to both ST8 and ST30 isolates, supporting the idea that fitness costs have driven the demise of this once-dominant pathogen strain.
Collapse
|
230
|
Decano AG, Pettigrew K, Sabiiti W, Sloan DJ, Neema S, Bazira J, Kiiru J, Onyango H, Asiimwe B, Holden MTG. Pan-Resistome Characterization of Uropathogenic Escherichia coli and Klebsiella pneumoniae Strains Circulating in Uganda and Kenya, Isolated from 2017-2018. Antibiotics (Basel) 2021; 10:1547. [PMID: 34943759 PMCID: PMC8698711 DOI: 10.3390/antibiotics10121547] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 01/24/2023] Open
Abstract
Urinary tract infection (UTI) develops after a pathogen adheres to the inner lining of the urinary tract. Cases of UTIs are predominantly caused by several Gram-negative bacteria and account for high morbidity in the clinical and community settings. Of greater concern are the strains carrying antimicrobial resistance (AMR)-conferring genes. The gravity of a UTI is also determined by a spectrum of other virulence factors. This study represents a pilot project to investigate the burden of AMR among uropathogens in East Africa. We examined bacterial samples isolated in 2017-2018 from in- and out-patients in Kenya (KY) and Uganda (UG) that presented with clinical symptoms of UTI. We reconstructed the evolutionary history of the strains, investigated their population structure, and performed comparative analysis their pangenome contents. We found 55 Escherichia coli and 19 Klebsiella pneumoniae strains confirmed uropathogenic following screening for the prevalence of UTI virulence genes including fimH, iutA, feoA/B/C, mrkD, and foc. We identified 18 different sequence types in E. coli population while all K. pneumoniae strains belong to ST11. The most prevalent E. coli sequence types were ST131 (26%), ST335/1193 (10%), and ST10 (6%). Diverse plasmid types were observed in both collections such as Incompatibility (IncF/IncH/IncQ1/IncX4) and Col groups. Pangenome analysis of each set revealed a total of 2862 and 3464 genes comprised the core genome of E. coli and K. pneumoniae population, respectively. Among these are acquired AMR determinants including fluoroquinolone resistance-conferring genes aac(3)-Ib-cr and other significant genes: aad, tet, sul1, sul2, and cat, which are associated with aminoglycoside, tetracycline, sulfonamide, and chloramphenicol resistance, respectively. Accessory genomes of both species collections were detected several β-lactamase genes, blaCTX-M, blaTEM and blaOXA, or blaNDM. Overall, 93% are multi-drug resistant in the E. coli collection while 100% of the K. pneumoniae strains contained genes that are associated with resistance to three or more antibiotic classes. Our findings illustrate the abundant acquired resistome and virulome repertoire in uropathogenic E. coli and K. pneumoniae, which are mainly disseminated via clonal and horizontal transfer, circulating in the East African region. We further demonstrate here that routine genomic surveillance is necessary for high-resolution bacterial epidemiology of these important AMR pathogens.
Collapse
Affiliation(s)
- Arun Gonzales Decano
- School of Medicine, University of St Andrews, St Andrews KY16 8BQ, UK; (K.P.); (W.S.); (D.J.S.); (M.T.G.H.)
| | - Kerry Pettigrew
- School of Medicine, University of St Andrews, St Andrews KY16 8BQ, UK; (K.P.); (W.S.); (D.J.S.); (M.T.G.H.)
| | - Wilber Sabiiti
- School of Medicine, University of St Andrews, St Andrews KY16 8BQ, UK; (K.P.); (W.S.); (D.J.S.); (M.T.G.H.)
| | - Derek J. Sloan
- School of Medicine, University of St Andrews, St Andrews KY16 8BQ, UK; (K.P.); (W.S.); (D.J.S.); (M.T.G.H.)
| | - Stella Neema
- Department of Sociology and Anthropology, Makerere University, Kampala P.O. Box 7062, Uganda;
| | - Joel Bazira
- Faculty of Medicine, Mbarara University of Science and Technology, Mbarara P.O. Box 410, Uganda;
| | - John Kiiru
- Centre of Microbiology Research, Kenya Medical Research Institute, Off Raila Odinga Way, Nairobi P.O. Box 54840 00200, Kenya;
| | - Hellen Onyango
- Department of Medical Microbiology, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62 000, Kenya;
| | - Benon Asiimwe
- Department of Medical Microbiology, Makerere University College of Health Sciences, Kampala P.O. Box 7062, Uganda;
| | - Matthew T. G. Holden
- School of Medicine, University of St Andrews, St Andrews KY16 8BQ, UK; (K.P.); (W.S.); (D.J.S.); (M.T.G.H.)
| |
Collapse
|
231
|
Sicard A, Saponari M, Vanhove M, Castillo AI, Giampetruzzi A, Loconsole G, Saldarelli P, Boscia D, Neema C, Almeida RPP. Introduction and adaptation of an emerging pathogen to olive trees in Italy. Microb Genom 2021; 7. [PMID: 34904938 PMCID: PMC8767334 DOI: 10.1099/mgen.0.000735] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The invasive plant pathogen Xylella fastidiosa currently threatens European flora through the loss of economically and culturally important host plants. This emerging vector-borne bacterium, native to the Americas, causes several important diseases in a wide range of plants including crops, ornamentals, and trees. Previously absent from Europe, and considered a quarantine pathogen, X. fastidiosa was first detected in Apulia, Italy in 2013 associated with a devastating disease of olive trees (Olive Quick Decline Syndrome, OQDS). OQDS has led to significant economic, environmental, cultural, as well as political crises. Although the biology of X. fastidiosa diseases have been studied for over a century, there is still no information on the determinants of specificity between bacterial genotypes and host plant species, which is particularly relevant today as X. fastidiosa is expanding in the naive European landscape. We analysed the genomes of 79 X. fastidiosa samples from diseased olive trees across the affected area in Italy as well as genomes of the most genetically closely related strains from Central America. We provided insights into the ecological and evolutionary emergence of this pathogen in Italy. We first showed that the outbreak in Apulia is due to a single introduction from Central America that we estimated to have occurred in 2008 [95 % HPD: 1930–2016]. By using a combination of population genomic approaches and evolutionary genomics methods, we further identified a short list of genes that could play a major role in the adaptation of X. fastidiosa to this new environment. We finally provided experimental evidence for the adaptation of the strain to this new environment.
Collapse
Affiliation(s)
- Anne Sicard
- UC Berkeley, Department of Environmental Science, Policy, and Management, Berkeley, CA 94720, U.S.A.,PHIM Plant Health Institute, Univ Montpellier, INRAE, Institut Agro, CIRAD, IRD, Montpellier, France
| | - Maria Saponari
- National Research Council (CNR), Institute for Sustainable Plant Protection, Via Amendola 122/D, 70126 Bari, Italy
| | - Mathieu Vanhove
- UC Berkeley, Department of Environmental Science, Policy, and Management, Berkeley, CA 94720, U.S.A
| | - Andreina I Castillo
- UC Berkeley, Department of Environmental Science, Policy, and Management, Berkeley, CA 94720, U.S.A
| | - Annalisa Giampetruzzi
- University of Bari Aldo Moro, Department of Soil, Plant and Food Sciences, Piazza Umberto I, 70121 Bari, Italy
| | - Giuliana Loconsole
- National Research Council (CNR), Institute for Sustainable Plant Protection, Via Amendola 122/D, 70126 Bari, Italy
| | - Pasquale Saldarelli
- National Research Council (CNR), Institute for Sustainable Plant Protection, Via Amendola 122/D, 70126 Bari, Italy
| | - Donato Boscia
- National Research Council (CNR), Institute for Sustainable Plant Protection, Via Amendola 122/D, 70126 Bari, Italy
| | - Claire Neema
- PHIM Plant Health Institute, Univ Montpellier, INRAE, Institut Agro, CIRAD, IRD, Montpellier, France
| | - Rodrigo P P Almeida
- UC Berkeley, Department of Environmental Science, Policy, and Management, Berkeley, CA 94720, U.S.A
| |
Collapse
|
232
|
White AE, de-Dios T, Carrión P, Bonora GL, Llovera L, Cilli E, Lizano E, Khabdulina MK, Tleugabulov DT, Olalde I, Marquès-Bonet T, Balloux F, Pettener D, van Dorp L, Luiselli D, Lalueza-Fox C. Genomic Analysis of 18th-Century Kazakh Individuals and Their Oral Microbiome. BIOLOGY 2021; 10:biology10121324. [PMID: 34943238 PMCID: PMC8698332 DOI: 10.3390/biology10121324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 11/16/2022]
Abstract
The Asian Central Steppe, consisting of current-day Kazakhstan and Russia, has acted as a highway for major migrations throughout history. Therefore, describing the genetic composition of past populations in Central Asia holds value to understanding human mobility in this pivotal region. In this study, we analyse paleogenomic data generated from five humans from Kuygenzhar, Kazakhstan. These individuals date to the early to mid-18th century, shortly after the Kazakh Khanate was founded, a union of nomadic tribes of Mongol Golden Horde and Turkic origins. Genomic analysis identifies that these individuals are admixed with varying proportions of East Asian ancestry, indicating a recent admixture event from East Asia. The high amounts of DNA from the anaerobic Gram-negative bacteria Tannerella forsythia, a periodontal pathogen, recovered from their teeth suggest they may have suffered from periodontitis disease. Genomic analysis of this bacterium identified recently evolved virulence and glycosylation genes including the presence of antibiotic resistance genes predating the antibiotic era. This study provides an integrated analysis of individuals with a diet mostly based on meat (mainly horse and lamb), milk, and dairy products and their oral microbiome.
Collapse
Affiliation(s)
- Anna E. White
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.E.W.); (T.d.-D.); (P.C.); (L.L.); (E.L.); (I.O.); (T.M.-B.)
| | - Toni de-Dios
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.E.W.); (T.d.-D.); (P.C.); (L.L.); (E.L.); (I.O.); (T.M.-B.)
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Pablo Carrión
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.E.W.); (T.d.-D.); (P.C.); (L.L.); (E.L.); (I.O.); (T.M.-B.)
| | - Gian Luca Bonora
- ISMEO—International Association for Mediterranean and East Studies, 00186 Rome, Italy;
| | - Laia Llovera
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.E.W.); (T.d.-D.); (P.C.); (L.L.); (E.L.); (I.O.); (T.M.-B.)
| | - Elisabetta Cilli
- Department of Cultural Heritage, University of Bologna, 48121 Ravenna, Italy;
| | - Esther Lizano
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.E.W.); (T.d.-D.); (P.C.); (L.L.); (E.L.); (I.O.); (T.M.-B.)
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Maral K. Khabdulina
- K.A. Akishev Institute of Archaeology, L.N. Gumilev Eurasian National University, Nur-Sultan 010000, Kazakhstan; (M.K.K.); (D.T.T.)
| | - Daniyar T. Tleugabulov
- K.A. Akishev Institute of Archaeology, L.N. Gumilev Eurasian National University, Nur-Sultan 010000, Kazakhstan; (M.K.K.); (D.T.T.)
| | - Iñigo Olalde
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.E.W.); (T.d.-D.); (P.C.); (L.L.); (E.L.); (I.O.); (T.M.-B.)
- Centro de Investigación “Lascaray” Ikergunea, BIOMICs Research Group, Universidad del País Vasco, 01006 Vitoria-Gasteiz, Spain
| | - Tomàs Marquès-Bonet
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.E.W.); (T.d.-D.); (P.C.); (L.L.); (E.L.); (I.O.); (T.M.-B.)
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08036 Barcelona, Spain
| | - François Balloux
- UCL Genetics Institute, Department of Genetics Evolution & Environment, University College London, London WC1E 6BT, UK;
| | - Davide Pettener
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Lucy van Dorp
- UCL Genetics Institute, Department of Genetics Evolution & Environment, University College London, London WC1E 6BT, UK;
- Correspondence: (L.v.D.); (D.L.); (C.L.-F.); Tel.: +34-617-277-935 (C.L.-F.)
| | - Donata Luiselli
- Department of Cultural Heritage, University of Bologna, 48121 Ravenna, Italy;
- Correspondence: (L.v.D.); (D.L.); (C.L.-F.); Tel.: +34-617-277-935 (C.L.-F.)
| | - Carles Lalueza-Fox
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.E.W.); (T.d.-D.); (P.C.); (L.L.); (E.L.); (I.O.); (T.M.-B.)
- Correspondence: (L.v.D.); (D.L.); (C.L.-F.); Tel.: +34-617-277-935 (C.L.-F.)
| |
Collapse
|
233
|
Lee T, Pang S, Daley DA, Pearson JC, Abraham S, Coombs GW. The changing molecular epidemiology of Enterococcus faecium harbouring the van operon at a teaching hospital in Western Australia: A fifteen-year retrospective study. Int J Med Microbiol 2021; 312:151546. [PMID: 34922099 DOI: 10.1016/j.ijmm.2021.151546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/22/2021] [Accepted: 12/12/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Enterococcus faecium is an opportunistic pathogen that has become one of the leading causes of hospital acquired infection that are resistant to multiple critically important antimicrobials. AIM The objective of the study was to describe the molecular characteristics and relationship between major strains of E. faecium harbouring the van operon and to determine if the strains had increasing virulence and antimicrobial resistance determinants over time. METHODS E. faecium harbouring the van operon detected using PCR from surveillance rectal swabs of patients that were admitted to high-risk units at a Perth teaching hospital from 2001 to 2015 were retrospectively analysed using a whole genome sequencing and bioinformatics approach. RESULTS ST18, ST78, ST80, ST173, ST203 and ST555 were identified as the major STs accounting for 93.7% of E. faecium isolates. Except for ST173, major STs identified at Royal Perth Hospital (RPH) have been reported across Australia and internationally. Isolates from each ST formed independently branched phylogenetic clusters with each harbouring unique virulence and antimicrobial resistance profiles. Depending on the ST, different genes conferring resistance to similar antimicrobial classes were identified. Except for ST80 which harboured the vanA type operon, all major strains harboured the vanB operon conferring only vancomycin resistance. CONCLUSION Major strains of E. faecium isolated over 15-years showed unique virulome and resistome profiles with no indication of increasing virulence or antimicrobial resistance determinants. Strains were distantly related and the acquisition of different genes encoding similar antimicrobial resistances suggest the independent evolution of each strain. DATA SUMMARY The whole genome sequences of all isolates from this study are accessible from the NCBI-SRA database under project number PRJNA575940 and PRJNA524213. Published reference sequence Aus0004 was obtained from NCBI-SRA under project number PRJNA86649 DOI:10.1128/JB.00259-12.
Collapse
Affiliation(s)
- Terence Lee
- Antimicrobial Resistance and Infectious Diseases Research Laboratory, Murdoch University, Western Australia, Australia
| | - Stanley Pang
- Antimicrobial Resistance and Infectious Diseases Research Laboratory, Murdoch University, Western Australia, Australia; PathWest Laboratory Medicine-WA, Fiona Stanley Hospital, Western Australia, Australia
| | - Denise A Daley
- PathWest Laboratory Medicine-WA, Fiona Stanley Hospital, Western Australia, Australia
| | - Julie C Pearson
- PathWest Laboratory Medicine-WA, Fiona Stanley Hospital, Western Australia, Australia
| | - Sam Abraham
- Antimicrobial Resistance and Infectious Diseases Research Laboratory, Murdoch University, Western Australia, Australia
| | - Geoffrey W Coombs
- Antimicrobial Resistance and Infectious Diseases Research Laboratory, Murdoch University, Western Australia, Australia; PathWest Laboratory Medicine-WA, Fiona Stanley Hospital, Western Australia, Australia.
| |
Collapse
|
234
|
Edwards DJ, Duchene S, Pope B, Holt KE. SNPPar: identifying convergent evolution and other homoplasies from microbial whole-genome alignments. Microb Genom 2021; 7:000694. [PMID: 34874243 PMCID: PMC8767352 DOI: 10.1099/mgen.0.000694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Homoplasic SNPs are considered important signatures of strong (positive) selective pressure, and hence of adaptive evolution for clinically relevant traits such as antibiotic resistance and virulence. Here we present a new tool, SNPPar, for efficient detection and analysis of homoplasic SNPs from large whole genome sequencing datasets (>1000 isolates and/or >100 000 SNPs). SNPPar takes as input an SNP alignment, tree and annotated reference genome, and uses a combination of simple monophyly tests and ancestral state reconstruction (ASR, via TreeTime) to assign mutation events to branches and identify homoplasies. Mutations are annotated at the level of codon and gene, to facilitate analysis of convergent evolution. Testing on simulated data (120 Mycobacterium tuberculosis alignments representing local and global samples) showed SNPPar can detect homoplasic SNPs with very high specificity (zero false-positives in all tests) and high sensitivity (zero false-negatives in 89 % of tests). SNPPar analysis of three empirically sampled datasets (Elizabethkingia anophelis, Burkholderia dolosa and M. tuberculosis) produced results that were in concordance with previous studies, in terms of both individual homoplasies and evidence of convergence at the codon and gene levels. SNPPar analysis of a simulated alignment of ~64 000 genome-wide SNPs from 2000 M. tuberculosis genomes took ~23 min and ~2.6 GB of RAM to generate complete annotated results on a laptop. This analysis required ASR be conducted for only 1.25 % of SNPs, and the ASR step took ~23 s and 0.4 GB of RAM. SNPPar automates the detection and annotation of homoplasic SNPs efficiently and accurately from large SNP alignments. As demonstrated by the examples included here, this information can be readily used to explore the role of homoplasy in parallel and/or convergent evolution at the level of nucleotide, codon and/or gene.
Collapse
Affiliation(s)
- David J. Edwards
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Sebastián Duchene
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, Victoria, Australia
| | - Bernard Pope
- Melbourne Bioinformatics, The University of Melbourne, 187 Grattan Street, Carlton, Victoria, Australia,Department of Clinical Pathology, The University of Melbourne, Victorian Comprehensive Cancer Centre, 305 Grattan Street, Melbourne, Victoria, Australia,Department of Medicine, Central Clinical School, Monash University, Clayton, Victoria, Australia,Department of Surgery (Royal Melbourne Hospital), Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Victoria, Australia
| | - Kathryn E. Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia,Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK,*Correspondence: Kathryn E. Holt,
| |
Collapse
|
235
|
Zhao J, Wu L, Li W, Wang Y, Zheng H, Sun T, Zhang H, Xi R, Liu W, Sun Z. Genomics landscape of 185 Streptococcus thermophilus and identification of fermentation biomarkers. Food Res Int 2021; 150:110711. [PMID: 34865746 DOI: 10.1016/j.foodres.2021.110711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/14/2021] [Accepted: 09/07/2021] [Indexed: 01/21/2023]
Abstract
Streptococcus (S.) thermophilus, an indispensable dairy starter, has been used in autochthonous as well as industrial milk fermentation. However, the genetic architecture underlying S. thermophilus traits and phenotypes is largely unknown. Here, we sequenced 185 S. thermophilus strains, isolated from natural fermented dairy products of China and Mongolia and used comparative genomic and genome wide association study to provide novel point for genetic architecture underlying its traits and phenotypes. Genome analysis of S. thermophilus showed association of phylogeny with environmental and phenotypic features and revealed clades with high acid production potential or with substantial genome decay. A few S. thermophilus isolated from areas with high chloramphenicol emissions had a chloramphenicol-resistant gene CatB8. Most importantly, we defined a growth score and identified a missense mutation G1118698T located at the gene AcnA that were both predictive of acidification capability of S. thermophilus. Our findings provide novel insight in S. thermophilus genetic traits, antibiotic resistant and predictive of acidification capability which both may had huge help in culture starter screening.
Collapse
Affiliation(s)
- Jie Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Linjie Wu
- School of Mathematical Sciences and Center for Statistical Science, Peking University, Beijing 100871, China
| | - Weicheng Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yu Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Huijuan Zheng
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Tiansong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ruibin Xi
- School of Mathematical Sciences and Center for Statistical Science, Peking University, Beijing 100871, China
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
236
|
Chaguza C, Tonkin-Hill G, Lo SW, Hadfield J, Croucher NJ, Harris SR, Bentley SD. RCandy: an R package for visualizing homologous recombinations in bacterial genomes. Bioinformatics 2021; 38:1450-1451. [PMID: 34864895 PMCID: PMC8826011 DOI: 10.1093/bioinformatics/btab814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 01/05/2023] Open
Abstract
SUMMARY Homologous recombination is an important evolutionary process in bacteria and other prokaryotes, which increases genomic sequence diversity and can facilitate adaptation. Several methods and tools have been developed to detect genomic regions recently affected by recombination. Exploration and visualization of such recombination events can reveal valuable biological insights, but it remains challenging. Here, we present RCandy, a platform-independent R package for rapid, simple and flexible visualization of recombination events in bacterial genomes. AVAILABILITY AND IMPLEMENTATION RCandy is an R package freely available for use under the MIT license. It is platform-independent and has been tested on Windows, Linux and MacOSX. The source code comes together with a detailed vignette available on GitHub at https://github.com/ChrispinChaguza/RCandy. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Gerry Tonkin-Hill
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Stephanie W Lo
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - James Hadfield
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Nicholas J Croucher
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Simon R Harris
- Microbiotica Ltd, Biodata Innovation Centre, Wellcome Genome Campus, Hinxton, UK
| | - Stephen D Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
237
|
Barber AE, Sae-Ong T, Kang K, Seelbinder B, Li J, Walther G, Panagiotou G, Kurzai O. Aspergillus fumigatus pan-genome analysis identifies genetic variants associated with human infection. Nat Microbiol 2021; 6:1526-1536. [PMID: 34819642 DOI: 10.1038/s41564-021-00993-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 10/08/2021] [Indexed: 12/25/2022]
Abstract
Aspergillus fumigatus is an environmental saprobe and opportunistic human fungal pathogen. Despite an estimated annual occurrence of more than 300,000 cases of invasive disease worldwide, a comprehensive survey of the genomic diversity present in A. fumigatus-including the relationship between clinical and environmental isolates and how this genetic diversity contributes to virulence and antifungal drug resistance-has been lacking. In this study we define the pan-genome of A. fumigatus using a collection of 300 globally sampled genomes (83 clinical and 217 environmental isolates). We found that 7,563 of the 10,907 unique orthogroups (69%) are core and present in all isolates and the remaining 3,344 show presence/absence of variation, representing 16-22% of the genome of each isolate. Using this large genomic dataset of environmental and clinical samples, we found an enrichment for clinical isolates in a genetic cluster whose genomes also contain more accessory genes, including genes coding for transmembrane transporters and proteins with iron-binding activity, and genes involved in both carbohydrate and amino-acid metabolism. Finally, we leverage the power of genome-wide association studies to identify genomic variation associated with clinical isolates and triazole resistance as well as characterize genetic variation in known virulence factors. This characterization of the genomic diversity of A. fumigatus allows us to move away from a single reference genome that does not necessarily represent the species as a whole and better understand its pathogenic versatility, ultimately leading to better management of these infections.
Collapse
Affiliation(s)
- Amelia E Barber
- Research Group Fungal Septomics, Leibniz Institute of Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany.,Junior Research Group Fungal Informatics, Leibniz Institute of Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Tongta Sae-Ong
- Research Group Systems Biology and Bioinformatics, Leibniz Institute of Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Kang Kang
- Research Group Systems Biology and Bioinformatics, Leibniz Institute of Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Bastian Seelbinder
- Research Group Systems Biology and Bioinformatics, Leibniz Institute of Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China.,School of Data Science, City University of Hong Kong, Hong Kong, China
| | - Grit Walther
- National Reference Center for Invasive Fungal Infections (NRZMyk), Leibniz Institute of Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Gianni Panagiotou
- Research Group Systems Biology and Bioinformatics, Leibniz Institute of Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany. .,Department of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China.
| | - Oliver Kurzai
- Research Group Fungal Septomics, Leibniz Institute of Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany. .,National Reference Center for Invasive Fungal Infections (NRZMyk), Leibniz Institute of Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany. .,Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
238
|
Guglielmini J, Hennart M, Badell E, Toubiana J, Criscuolo A, Brisse S. Genomic Epidemiology and Strain Taxonomy of Corynebacterium diphtheriae. J Clin Microbiol 2021; 59:e0158121. [PMID: 34524891 PMCID: PMC8601238 DOI: 10.1128/jcm.01581-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022] Open
Abstract
Corynebacterium diphtheriae is highly transmissible and can cause large diphtheria outbreaks where vaccination coverage is insufficient. Sporadic cases or small clusters are observed in high-vaccination settings. The phylogeography and short timescale evolution of C. diphtheriae are not well understood, in part due to a lack of harmonized analytical approaches of genomic surveillance and strain tracking. We combined 1,305 genes with highly reproducible allele calls into a core genome multilocus sequence typing (cgMLST) scheme. We analyzed cgMLST gene diversity among 602 isolates from sporadic clinical cases, small clusters, or large outbreaks. We defined sublineages based on the phylogenetic structure within C. diphtheriae and strains based on the highest number of cgMLST mismatches within documented outbreaks. We performed time-scaled phylogenetic analyses of major sublineages. The cgMLST scheme showed high allele call rate in C. diphtheriae and the closely related species C. belfantii and C. rouxii. We demonstrate its utility to delineate epidemiological case clusters and outbreaks using a 25 mismatches threshold and reveal a number of cryptic transmission chains, most of which are geographically restricted to one or a few adjacent countries. Subcultures of the vaccine strain PW8 differed by up to 20 cgMLST mismatches. Phylogenetic analyses revealed a short-timescale evolutionary gain or loss of the diphtheria toxin and biovar-associated genes. We devised a genomic taxonomy of strains and deeper sublineages (defined using a 500-cgMLST-mismatch threshold), currently comprising 151 sublineages, only a few of which are geographically widespread based on current sampling. The cgMLST genotyping tool and nomenclature was made publicly accessible (https://bigsdb.pasteur.fr/diphtheria). Standardized genome-scale strain genotyping will help tracing transmission and geographic spread of C. diphtheriae. The unified genomic taxonomy of C. diphtheriae strains provides a common language for studies of ecology, evolution, and virulence heterogeneity among C. diphtheriae sublineages.
Collapse
Affiliation(s)
- Julien Guglielmini
- Institut Pasteur, Université de Paris, Bioinformatics and Biostatistics Hub, Department of Computational Biology, Paris, France
| | - Melanie Hennart
- Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Edgar Badell
- Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- National Reference Center for the Corynebacteria of the Diphtheriae Complex, Paris, France
| | - Julie Toubiana
- Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- National Reference Center for the Corynebacteria of the Diphtheriae Complex, Paris, France
- Université de Paris, Service de Pédiatrie Générale et Maladies Infectieuses, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexis Criscuolo
- Institut Pasteur, Université de Paris, Bioinformatics and Biostatistics Hub, Department of Computational Biology, Paris, France
| | - Sylvain Brisse
- Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- National Reference Center for the Corynebacteria of the Diphtheriae Complex, Paris, France
| |
Collapse
|
239
|
Pla-Díaz M, Sánchez-Busó L, Giacani L, Šmajs D, Bosshard PP, Bagheri HC, Schuenemann VJ, Nieselt K, Arora N, González-Candelas F. Evolutionary processes in the emergence and recent spread of the syphilis agent, Treponema pallidum. Mol Biol Evol 2021; 39:6427636. [PMID: 34791386 PMCID: PMC8789261 DOI: 10.1093/molbev/msab318] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The incidence of syphilis has risen worldwide in the last decade in spite of being an easily treated infection. The causative agent of this sexually transmitted disease is the bacterium Treponema pallidum subspecies pallidum (TPA), very closely related to subsp. pertenue (TPE) and endemicum (TEN), responsible for the human treponematoses yaws and bejel, respectively. Although much focus has been placed on the question of the spatial and temporary origins of TPA, the processes driving the evolution and epidemiological spread of TPA since its divergence from TPE and TEN are not well understood. Here, we investigate the effects of recombination and selection as forces of genetic diversity and differentiation acting during the evolution of T. pallidum subspecies. Using a custom-tailored procedure, named phylogenetic incongruence method, with 75 complete genome sequences, we found strong evidence for recombination among the T. pallidum subspecies, involving 12 genes and 21 events. In most cases, only one recombination event per gene was detected and all but one event corresponded to intersubspecies transfers, from TPE/TEN to TPA. We found a clear signal of natural selection acting on the recombinant genes, which is more intense in their recombinant regions. The phylogenetic location of the recombination events detected and the functional role of the genes with signals of positive selection suggest that these evolutionary processes had a key role in the evolution and recent expansion of the syphilis bacteria and significant implications for the selection of vaccine candidates and the design of a broadly protective syphilis vaccine.
Collapse
Affiliation(s)
- Marta Pla-Díaz
- Unidad Mixta Infección y Salud Pública FISABIO/Universidad de Valencia-I2SysBio, Spain.,CIBER in Epidemiology and Public Health, Spain
| | - Leonor Sánchez-Busó
- Genomics and Health Area, Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO-Public Health), Valencia, Spain
| | - Lorenzo Giacani
- Department of Medicine, Division of Allergy and Infectious Diseases, and Department of Global Health, University of Washington, Seattle, WA, USA
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Czech Republic
| | - Philipp P Bosshard
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | | | - Kay Nieselt
- Center for Bioinformatics, University of Tübingen, Germany
| | - Natasha Arora
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Switzerland.,Zurich Institute of Forensic Medicine, University of Zurich, Switzerland
| | - Fernando González-Candelas
- Unidad Mixta Infección y Salud Pública FISABIO/Universidad de Valencia-I2SysBio, Spain.,CIBER in Epidemiology and Public Health, Spain.,Genomics and Health Area, Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO-Public Health), Valencia, Spain
| |
Collapse
|
240
|
Luo D, Wang X, Feng X, Tian M, Wang S, Tang SL, Ang P, Yan A, Luo H. Population differentiation of Rhodobacteraceae along with coral compartments. THE ISME JOURNAL 2021; 15:3286-3302. [PMID: 34017056 PMCID: PMC8528864 DOI: 10.1038/s41396-021-01009-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 02/04/2023]
Abstract
Coral mucus, tissue, and skeleton harbor compositionally different microbiota, but how these coral compartments shape the microbial evolution remains unexplored. Here, we sampled bacteria inhabiting a prevalent coral species Platygyra acuta and sequenced genomes of 234 isolates comprising two populations in Rhodobacteraceae, an alphaproteobacterial lineage representing a significant but variable proportion (5-50%) of the coral microbiota. The Ruegeria population (20 genomes) contains three clades represented by eight, six, and six isolates predominantly sampled from the skeleton (outgroup), mucus (clade-M), and skeleton (clade-S), respectively. The clade-M possesses functions involved in the utilization of coral osmolytes abundant in the mucus (e.g., methylamines, DMSP, taurine, and L-proline), whereas the clade-S uniquely harbors traits that may promote adaptation to the low-energy and diurnally anoxic skeleton (e.g., sulfur oxidation and swimming motility). These between-clade genetic differences were largely supported by physiological assays. Expanded analyses by including genomes of 24 related isolates (including seven new genomes) from other marine environments suggest that clade-M and clade-S may have diversified in non-coral habitats, but they also consolidated a key role of distinct coral compartments in diversifying many of the above-mentioned traits. The unassigned Rhodobacteraceae population (214 genomes) varies only at a few dozen nucleotide sites across the whole genomes, but the number of between-compartment migration events predicted by the Slatkin-Maddison test supported that dispersal limitation between coral compartments is another key mechanism diversifying microbial populations. Collectively, our results suggest that different coral compartments represent ecologically distinct and microgeographically separate habitats that drive the evolution of the coral microbiota.
Collapse
Affiliation(s)
- Danli Luo
- grid.10784.3a0000 0004 1937 0482Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR ,grid.10784.3a0000 0004 1937 0482Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Xiaojun Wang
- grid.10784.3a0000 0004 1937 0482Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR ,grid.10784.3a0000 0004 1937 0482Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Xiaoyuan Feng
- grid.10784.3a0000 0004 1937 0482Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR ,grid.10784.3a0000 0004 1937 0482Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Mengdan Tian
- grid.194645.b0000000121742757School of Biological Sciences, The University of Hong Kong, Shatin, Hong Kong SAR
| | - Sishuo Wang
- grid.10784.3a0000 0004 1937 0482Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Sen-Lin Tang
- grid.506939.0Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Put Ang
- grid.10784.3a0000 0004 1937 0482Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Aixin Yan
- grid.194645.b0000000121742757School of Biological Sciences, The University of Hong Kong, Shatin, Hong Kong SAR
| | - Haiwei Luo
- grid.10784.3a0000 0004 1937 0482Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR ,grid.10784.3a0000 0004 1937 0482Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
241
|
Young BC, Wu CH, Charlesworth J, Earle S, Price JR, Gordon NC, Cole K, Dunn L, Liu E, Oakley S, Godwin H, Fung R, Miller R, Knox K, Votintseva A, Quan TP, Tilley R, Scarborough M, Crook DW, Peto TE, Walker AS, Llewelyn MJ, Wilson DJ. Antimicrobial resistance determinants are associated with Staphylococcus aureus bacteraemia and adaptation to the healthcare environment: a bacterial genome-wide association study. Microb Genom 2021; 7:000700. [PMID: 34812717 PMCID: PMC8743558 DOI: 10.1099/mgen.0.000700] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/30/2021] [Indexed: 12/30/2022] Open
Abstract
Staphylococcus aureus is a major bacterial pathogen in humans, and a dominant cause of severe bloodstream infections. Globally, antimicrobial resistance (AMR) in S. aureus remains challenging. While human risk factors for infection have been defined, contradictory evidence exists for the role of bacterial genomic variation in S. aureus disease. To investigate the contribution of bacterial lineage and genomic variation to the development of bloodstream infection, we undertook a genome-wide association study comparing bacteria from 1017 individuals with bacteraemia to 984 adults with asymptomatic S. aureus nasal carriage. Within 984 carriage isolates, we also compared healthcare-associated (HA) carriage with community-associated (CA) carriage. All major global lineages were represented in both bacteraemia and carriage, with no evidence for different infection rates. However, kmers tagging trimethoprim resistance-conferring mutation F99Y in dfrB were significantly associated with bacteraemia-vs-carriage (P=10-8.9-10-9.3). Pooling variation within genes, bacteraemia-vs-carriage was associated with the presence of mecA (HMP=10-5.3) as well as the presence of SCCmec (HMP=10-4.4). Among S. aureus carriers, no lineages were associated with HA-vs-CA carriage. However, we found a novel signal of HA-vs-CA carriage in the foldase protein prsA, where kmers representing conserved sequence allele were associated with CA carriage (P=10-7.1-10-19.4), while in gyrA, a ciprofloxacin resistance-conferring mutation, L84S, was associated with HA carriage (P=10-7.2). In an extensive study of S. aureus bacteraemia and nasal carriage in the UK, we found strong evidence that all S. aureus lineages are equally capable of causing bloodstream infection, and of being carried in the healthcare environment. Genomic variation in the foldase protein prsA is a novel genomic marker of healthcare origin in S. aureus but was not associated with bacteraemia. AMR determinants were associated with both bacteraemia and healthcare-associated carriage, suggesting that AMR increases the propensity not only to survive in healthcare environments, but also to cause invasive disease.
Collapse
Affiliation(s)
- Bernadette C. Young
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Microbiology and Infectious Diseases Department, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Chieh-Hsi Wu
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Jane Charlesworth
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Sarah Earle
- Big Data Institute, Nuffield Department of Population Health, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
| | - James R. Price
- Department of Infectious Diseases and Microbiology, Royal Sussex County Hospital, Brighton BN2 5BE, UK
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9PS, UK
| | - N. Claire Gordon
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Microbiology and Infectious Diseases Department, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Kevin Cole
- Department of Infectious Diseases and Microbiology, Royal Sussex County Hospital, Brighton BN2 5BE, UK
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9PS, UK
| | - Laura Dunn
- Microbiology and Infectious Diseases Department, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Elian Liu
- Microbiology and Infectious Diseases Department, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Sarah Oakley
- Microbiology and Infectious Diseases Department, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Heather Godwin
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Rowena Fung
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Ruth Miller
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Kyle Knox
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Antonina Votintseva
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - T. Phuong Quan
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, UK
- NIHR Health Protection Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
| | - Robert Tilley
- Department of Microbiology, University Hospitals Plymouth NHS Trust, Derriford Hospital, Plymouth PL6 8DH, UK
| | - Matthew Scarborough
- Microbiology and Infectious Diseases Department, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Derrick W. Crook
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Microbiology and Infectious Diseases Department, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
- National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, UK
- NIHR Health Protection Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
| | - Timothy E. Peto
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Microbiology and Infectious Diseases Department, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
- National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, UK
- NIHR Health Protection Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
| | - A. Sarah Walker
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, UK
- NIHR Health Protection Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
| | - Martin J. Llewelyn
- Department of Infectious Diseases and Microbiology, Royal Sussex County Hospital, Brighton BN2 5BE, UK
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9PS, UK
| | - Daniel J. Wilson
- Big Data Institute, Nuffield Department of Population Health, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
| |
Collapse
|
242
|
Chung The H, Nguyen Ngoc Minh C, Tran Thi Hong C, Nguyen Thi Nguyen T, Pike LJ, Zellmer C, Pham Duc T, Tran TA, Ha Thanh T, Van MP, Thwaites GE, Rabaa MA, Hall LJ, Baker S. Exploring the Genomic Diversity and Antimicrobial Susceptibility of Bifidobacterium pseudocatenulatum in a Vietnamese Population. Microbiol Spectr 2021; 9:e0052621. [PMID: 34523984 PMCID: PMC8557894 DOI: 10.1128/spectrum.00526-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/13/2021] [Indexed: 01/29/2023] Open
Abstract
Bifidobacterium pseudocatenulatum is a member of the human gut microbiota, and specific variants of B. pseudocatenulatum have been associated with health benefits such as improving gut integrity and reducing inflammatory responses. Here, we aimed to assess the genomic diversity and predicted metabolic profiles of B. pseudocatenulatum cells found colonizing the gut of healthy Vietnamese adults and children. We found that the population of B. pseudocatenulatum from each individual was distinct and highly diverse, with intraclonal variation attributed largely to a gain or loss of carbohydrate-utilizing enzymes. The B. pseudocatenulatum genomes were enriched with glycosyl hydrolases predicted to target plant-based nondigestible carbohydrates (GH13, GH43) but not host-derived glycans. Notably, the exopolysaccharide biosynthesis region from organisms isolated from healthy children showed extensive genetic diversity and was subject to a high degree of genetic modification. Antimicrobial susceptibility profiling revealed that the Vietnamese B. pseudocatenulatum cells were uniformly susceptible to beta-lactams but exhibited variable resistance to azithromycin, tetracycline, ciprofloxacin, and metronidazole. The genomic presence of ermX and tet variants conferred resistance against azithromycin and tetracycline, respectively; ciprofloxacin resistance was associated with a mutation(s) in the quinolone resistance-determining region (GyrA, S115, and/or D119). Our work provides the first detailed genomic and antimicrobial resistance characterization of B. pseudocatenulatum found in the Vietnamese population, which can be exploited for the rational design of probiotics. IMPORTANCE Bifidobacterium pseudocatenulatum is a beneficial member of the human gut microbiota. The organism can modulate inflammation and has probiotic potential, but its characteristics are largely strain dependent and associated with distinct genomic and biochemical features. Population-specific beneficial microbes represent a promising avenue for the development of potential probiotics, as they may exhibit a more suitable profile in the target population. This study investigates the underexplored diversity of B. pseudocatenulatum in Vietnam and provides more understanding of its genomic diversity, metabolic potential, and antimicrobial susceptibility. Such data from indigenous populations are essential for selecting probiotic candidates that can be accelerated into further preclinical and clinical investigations.
Collapse
Affiliation(s)
- Hao Chung The
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | | | | | - Lindsay J. Pike
- The Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Caroline Zellmer
- University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Trung Pham Duc
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tuan-Anh Tran
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tuyen Ha Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Minh Pham Van
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Guy E. Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
| | - Maia A. Rabaa
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
| | - Lindsay J. Hall
- Quadram Institute Biosciences, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
- Intestinal Microbiome, School of Life Sciences, ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Stephen Baker
- The Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
- University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
243
|
Emergence of Tigecycline Nonsusceptible and IMP-4 Carbapenemase-Producing K2-ST65 Hypervirulent Klebsiella pneumoniae in China. Microbiol Spectr 2021; 9:e0130521. [PMID: 34704778 PMCID: PMC8549734 DOI: 10.1128/spectrum.01305-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) poses a significant public health challenge worldwide, but research on IMP-producing CR-hvKP and its tigecycline resistance is extremely scarce. We report herein the recovery of two IMP-4–producing, capsular serotype K2, sequence type 65 (K2-ST65), hypervirulent K. pneumoniae isolates (C1672 and C2051), which caused severe and fatal infections in ICU patients, after retrospectively screening 3,285 carbapenem-resistant K. pneumoniae isolates from 26 provinces in China. Notably, C2051 also demonstrated tigecycline nonsusceptibility, mediated by a frameshift mutation in the TetR/AcrR family transcriptional regulator. Both strains harbored blaIMP-4 and critical plasmid-borne virulence genes (rmpA/rmpA2, iucA, and iroN) and demonstrated high virulence in Galleria mellonella, indicating CR-hvKP. The blaIMP-4 gene was located on the IncU- and IncN-type plasmids, which showed high stability in C1672 and C2051 after serial passage for 5 days, with retention rates of 87% and 93.7%, respectively. No significant differences in growth rates were observed among the parental strains and the corresponding resistance plasmid-cured mutants (P = 0.5273), suggesting that strains carrying the blaIMP and virulence plasmids have the potential to exist for a long time without compromising fitness. The genetic environments of the blaIMP-4 gene in both strains were similar, and it has been inferred that the genetic regions of blaIMP-4 were inserted into different backbones. Several conjugal transfer genes, such as traO, traE, traN, and traBCD, were identified in the blaIMP-4-bearing plasmid of C2051, suggesting a higher ability for plasmid transmission. The convergence of IMP carbapenemase and tigecycline nonsusceptibility in a classic hypervirulent K. pneumoniae lineage highlights the need to enhance clinical awareness and epidemiologic surveillance. IMPORTANCE To date, research on IMP-producing CR-hvKP is extremely scarce. Only one case of urinary tract infection caused by an IMP-6–producing K1-ST23 hypervirulent K. pneumoniae isolate in Japan was recorded, with a limited description of clinical information and genomic features. None of the published studies examined the virulence of the reported strains or the stability and fitness of resistance plasmids or presented a phylogenetic analysis. This dearth of data is notable because CR-hvKP infections are increasingly identified, but critical characteristics of the emerging resistance mediated by IMP carbapenemases in CR-hvKP remain unknown. Here, we report the emergence of two IMP-4 carbapenemase-producing K2-ST65 hypervirulent K. pneumoniae isolates that caused severe and fatal infections in clinical settings in China. Notably, one of them also demonstrated tigecycline nonsusceptibility. These strains carrying blaIMP and virulence plasmids had the potential to exist for a long time without compromising their fitness, highlighting the urgent need to enhance clinical awareness and epidemiologic surveillance to prevent their dissemination.
Collapse
|
244
|
Chen H, Yin Y, van Dorp L, Shaw LP, Gao H, Acman M, Yuan J, Chen F, Sun S, Wang X, Li S, Zhang Y, Farrer RA, Wang H, Balloux F. Drivers of methicillin-resistant Staphylococcus aureus (MRSA) lineage replacement in China. Genome Med 2021; 13:171. [PMID: 34711267 PMCID: PMC8555231 DOI: 10.1186/s13073-021-00992-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 10/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) is a major nosocomial pathogen subdivided into lineages termed sequence types (STs). Since the 1950s, successive waves of STs have appeared and replaced previously dominant lineages. One such event has been occurring in China since 2013, with community-associated (CA-MRSA) strains including ST59 largely replacing the previously dominant healthcare-associated (HA-MRSA) ST239. We previously showed that ST59 isolates tend to have a competitive advantage in growth experiments against ST239. However, the underlying genomic and phenotypic drivers of this replacement event are unclear. METHODS Here, we investigated the replacement of ST239 using whole-genome sequencing data from 204 ST239 and ST59 isolates collected in Chinese hospitals between 1994 and 2016. We reconstructed the evolutionary history of each ST and considered two non-mutually exclusive hypotheses for ST59 replacing ST239: antimicrobial resistance (AMR) profile and/or ability to colonise and persist in the environment through biofilm formation. We also investigated the differences in cytolytic activity, linked to higher virulence, between STs. We performed an association study using the presence and absence of accessory virulence genes. RESULTS ST59 isolates carried fewer AMR genes than ST239 and showed no evidence of evolving towards higher AMR. Biofilm production was marginally higher in ST59 overall, though this effect was not consistent across sub-lineages so is unlikely to be a sole driver of replacement. Consistent with previous observations of higher virulence in CA-MRSA STs, we observed that ST59 isolates exhibit significantly higher cytolytic activity than ST239 isolates, despite carrying on average fewer putative virulence genes. Our association study identified the chemotaxis inhibitory protein (chp) as a strong candidate for involvement in the increased virulence potential of ST59. We experimentally validated the role of chp in increasing the virulence potential of ST59 by creating Δchp knockout mutants, confirming that ST59 can carry chp without a measurable impact on fitness. CONCLUSIONS Our results suggest that the ongoing replacement of ST239 by ST59 in China is not associated to higher AMR carriage or biofilm production. However, the increase in ST59 prevalence is concerning since it is linked to a higher potential for virulence, aided by the carriage of the chp gene.
Collapse
Affiliation(s)
- Hongbin Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
- UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK
| | - Yuyao Yin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Liam P Shaw
- UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Hua Gao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Mislav Acman
- UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jizhen Yuan
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
- The No. 971 Hospital of People's Liberation Army Navy, Qingdao, 266000, Shandong, China
| | - Fengning Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Shijun Sun
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Xiaojuan Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Shuguang Li
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Yawei Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Rhys A Farrer
- UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK
- Medical Research Council Centre for Medical Mycology at the University of Exeter, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China.
| | - Francois Balloux
- UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
245
|
Earle SG, Lobanovska M, Lavender H, Tang C, Exley RM, Ramos-Sevillano E, Browning DF, Kostiou V, Harrison OB, Bratcher HB, Varani G, Tang CM, Wilson DJ, Maiden MCJ. Genome-wide association studies reveal the role of polymorphisms affecting factor H binding protein expression in host invasion by Neisseria meningitidis. PLoS Pathog 2021; 17:e1009992. [PMID: 34662348 PMCID: PMC8553145 DOI: 10.1371/journal.ppat.1009992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/28/2021] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
Many invasive bacterial diseases are caused by organisms that are ordinarily harmless components of the human microbiome. Effective interventions against these microbes require an understanding of the processes whereby symbiotic or commensal relationships transition into pathology. Here, we describe bacterial genome-wide association studies (GWAS) of Neisseria meningitidis, a common commensal of the human respiratory tract that is nevertheless a leading cause of meningitis and sepsis. An initial GWAS discovered bacterial genetic variants, including single nucleotide polymorphisms (SNPs), associated with invasive meningococcal disease (IMD) versus carriage in several loci across the meningococcal genome, encoding antigens and other extracellular components, confirming the polygenic nature of the invasive phenotype. In particular, there was a significant peak of association around the fHbp locus, encoding factor H binding protein (fHbp), which promotes bacterial immune evasion of human complement by recruiting complement factor H (CFH) to the meningococcal surface. The association around fHbp with IMD was confirmed by a validation GWAS, and we found that the SNPs identified in the validation affected the 5' region of fHbp mRNA, altering secondary RNA structures, thereby increasing fHbp expression and enhancing bacterial escape from complement-mediated killing. This finding is consistent with the known link between complement deficiencies and CFH variation with human susceptibility to IMD. These observations demonstrate the importance of human and bacterial genetic variation across the fHbp:CFH interface in determining IMD susceptibility, the transition from carriage to disease.
Collapse
Affiliation(s)
- Sarah G. Earle
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
| | - Mariya Lobanovska
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Hayley Lavender
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Changyan Tang
- Department of Chemistry, University of Washington, Seattle, Washington United States of America
| | - Rachel M. Exley
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | - Douglas F. Browning
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Vasiliki Kostiou
- Nuffield Department of Clinical Medicine, Experimental Medicine Division, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, Washington United States of America
- * E-mail: (GV); (CMT); (DJW); (MCJM)
| | - Christoph M. Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail: (GV); (CMT); (DJW); (MCJM)
| | - Daniel J. Wilson
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
- Department for Continuing Education, University of Oxford, Oxford, United Kingdom
- * E-mail: (GV); (CMT); (DJW); (MCJM)
| | - Martin C. J. Maiden
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail: (GV); (CMT); (DJW); (MCJM)
| |
Collapse
|
246
|
Population genomics reveals distinct temporal association with the emergence of ST1 serotype V Group B Streptococcus and macrolide resistance in North America. Antimicrob Agents Chemother 2021; 66:e0071421. [PMID: 34633844 DOI: 10.1128/aac.00714-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Identified in the 1970s as the leading cause of invasive bacterial disease in neonates and young infants, Group B Streptococcus (GBS) is now also recognized as a significant cause of morbidity and mortality among adults with underlying medical conditions and the elderly. Concomitant with the increasing incidence of GBS invasive disease in adults is the rise of resistance among GBS isolates to second line antibiotics. Previous research shows that among serotype V GBS - one of the most common capsular types causing adult invasive disease - sequence type 1 (ST1) - accounts for an overwhelming majority of adult invasive disease isolates and frequently harbors macrolide resistance. In this study, using whole genome sequencing data from strains isolated in the USA and Canada over a 45-year period, we examined the association of antimicrobial resistance with the emergence of invasive serotype V ST1 GBS. Our findings show a strong temporal association between increased macrolide resistance and the emergence of serotype V ST1 GBS subpopulations that currently co-circulate to cause adult as well as young infant invasive disease. ST1 GBS subpopulations are defined, in part, by the presence of macrolide resistance genes in mobile genetic elements. Increased frequency of macrolide resistance-encoding mobile genetic elements among invasive GBS ST1 strains suggests the presence of such elements contributes to GBS virulence. Our work provides a foundation for the investigation of genetic features contributing to the increasing prevalence and pathogenesis of serotype V GBS in adult invasive disease.
Collapse
|
247
|
Colombi E, Perry BJ, Sullivan JT, Bekuma AA, Terpolilli JJ, Ronson CW, Ramsay JP. Comparative analysis of integrative and conjugative mobile genetic elements in the genus Mesorhizobium. Microb Genom 2021; 7. [PMID: 34605762 PMCID: PMC8627217 DOI: 10.1099/mgen.0.000657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Members of the Mesorhizobium genus are soil bacteria that often form nitrogen-fixing symbioses with legumes. Most characterised Mesorhizobium spp. genomes are ~8 Mb in size and harbour extensive pangenomes including large integrative and conjugative elements (ICEs) carrying genes required for symbiosis (ICESyms). Here, we document and compare the conjugative mobilome of 41 complete Mesorhizobium genomes. We delineated 56 ICEs and 24 integrative and mobilizable elements (IMEs) collectively occupying 16 distinct integration sites, along with 24 plasmids. We also demonstrated horizontal transfer of the largest (853,775 bp) documented ICE, the tripartite ICEMspSymAA22. The conjugation systems of all identified ICEs and several plasmids were related to those of the paradigm ICESym ICEMlSymR7A, with each carrying conserved genes for conjugative pilus formation (trb), excision (rdfS), DNA transfer (rlxS) and regulation (fseA). ICESyms have likely evolved from a common ancestor, despite occupying a variety of distinct integration sites and specifying symbiosis with diverse legumes. We found extensive evidence for recombination between ICEs and particularly ICESyms, which all uniquely lack the conjugation entry-exclusion factor gene trbK. Frequent duplication, replacement and pseudogenization of genes for quorum-sensing-mediated activation and antiactivation of ICE transfer suggests ICE transfer regulation is constantly evolving. Pangenome-wide association analysis of the ICE identified genes potentially involved in symbiosis, rhizosphere colonisation and/or adaptation to distinct legume hosts. In summary, the Mesorhizobium genus has accumulated a large and dynamic pangenome that evolves through ongoing horizontal gene transfer of large conjugative elements related to ICEMlSymR7A.
Collapse
Affiliation(s)
- Elena Colombi
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Benjamin J Perry
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - John T Sullivan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Amanuel A Bekuma
- Centre for Rhizobium Studies, Food Futures Institute, Murdoch University, Perth, WA, Australia, Murdoch University, Perth, WA, Australia.,Present address: Western Australian Department of Primary Industries and Regional Development, Research and Industry Innovation, South Perth, WA, Australia
| | - Jason J Terpolilli
- Centre for Rhizobium Studies, Food Futures Institute, Murdoch University, Perth, WA, Australia, Murdoch University, Perth, WA, Australia
| | - Clive W Ronson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Joshua P Ramsay
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,Curtin Medical School, Curtin University, Perth, WA, Australia
| |
Collapse
|
248
|
Lipworth S, Hough N, Weston N, Muller-Pebody B, Phin N, Myers R, Chapman S, Flight W, Alexander E, Smith EG, Robinson E, Peto TEA, Crook DW, Walker AS, Hopkins S, Eyre DW, Walker TM. Epidemiology of Mycobacterium abscessus in England: an observational study. THE LANCET. MICROBE 2021; 2:e498-e507. [PMID: 34632432 PMCID: PMC8481905 DOI: 10.1016/s2666-5247(21)00128-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Mycobacterium abscessus has emerged as a significant clinical concern following reports that it is readily transmissible in health-care settings between patients with cystic fibrosis. We linked routinely collected whole-genome sequencing and health-care usage data with the aim of investigating the extent to which such transmission explains acquisition in patients with and without cystic fibrosis in England. METHODS In this retrospective observational study, we analysed consecutive M abscessus whole-genome sequencing data from England (beginning of February, 2015, to Nov 14, 2019) to identify genomically similar isolates. Linkage to a national health-care usage database was used to investigate possible contacts between patients. Multivariable regression analysis was done to investigate factors associated with acquisition of a genomically clustered strain (genomic distance <25 single nucleotide polymorphisms [SNPs]). FINDINGS 2297 isolates from 906 patients underwent whole-genome sequencing as part of the routine Public Health England diagnostic service. Of 14 genomic clusters containing isolates from ten or more patients, all but one contained patients with cystic fibrosis and patients without cystic fibrosis. Patients with cystic fibrosis were equally likely to have clustered isolates (258 [60%] of 431 patients) as those without cystic fibrosis (322 [63%] of 513 patients; p=0·38). High-density phylogenetic clusters were randomly distributed over a wide geographical area. Most isolates with a closest genetic neighbour consistent with potential transmission had no identifiable relevant epidemiological contacts. Having a clustered isolate was independently associated with increasing age (adjusted odds ratio 1·14 per 10 years, 95% CI 1·04-1·26), but not time spent as an hospital inpatient or outpatient. We identified two sibling pairs with cystic fibrosis with genetically highly divergent isolates and one pair with closely related isolates, and 25 uninfected presumed household contacts with cystic fibrosis. INTERPRETATION Previously identified widely disseminated dominant clones of M abscessus are not restricted to patients with cystic fibrosis and occur in other chronic respiratory diseases. Although our analysis showed a small number of cases where person-to-person transmission could not be excluded, it did not support this being a major mechanism for M abscessus dissemination at a national level in England. Overall, these data should reassure patients and clinicians that the risk of acquisition from other patients in health-care settings is relatively low and motivate future research efforts to focus on identifying routes of acquisition outside of the cystic fibrosis health-care-associated niche. FUNDING The National Institute for Health Research, Health Data Research UK, The Wellcome Trust, The Medical Research Council, and Public Health England.
Collapse
Affiliation(s)
- Samuel Lipworth
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Natasha Hough
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Natasha Weston
- National Mycobacterial Reference Service-Central and North, Public Health England, Public Health Laboratory, Birmingham, UK
| | - Berit Muller-Pebody
- Tuberculosis, Acute Respiratory, Gastrointestinal, Emerging and Zoonotic Infections and Travel Migrant Health Division, National Infection Service, Public Health England, London, UK
| | - Nick Phin
- Tuberculosis, Acute Respiratory, Gastrointestinal, Emerging and Zoonotic Infections and Travel Migrant Health Division, National Infection Service, Public Health England, London, UK
| | - Richard Myers
- Tuberculosis, Acute Respiratory, Gastrointestinal, Emerging and Zoonotic Infections and Travel Migrant Health Division, National Infection Service, Public Health England, London, UK
| | - Stephen Chapman
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - William Flight
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Eliza Alexander
- National Mycobacterial Reference Service-South, Public Health England, London, UK
| | - E Grace Smith
- National Mycobacterial Reference Service-Central and North, Public Health England, Public Health Laboratory, Birmingham, UK
| | - Esther Robinson
- National Mycobacterial Reference Service-Central and North, Public Health England, Public Health Laboratory, Birmingham, UK
| | - Tim E A Peto
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Derrick W Crook
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - A Sarah Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Susan Hopkins
- Tuberculosis, Acute Respiratory, Gastrointestinal, Emerging and Zoonotic Infections and Travel Migrant Health Division, National Infection Service, Public Health England, London, UK
| | - David W Eyre
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Timothy M Walker
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| |
Collapse
|
249
|
Granehäll L, Huang KD, Tett A, Manghi P, Paladin A, O’Sullivan N, Rota-Stabelli O, Segata N, Zink A, Maixner F. Metagenomic analysis of ancient dental calculus reveals unexplored diversity of oral archaeal Methanobrevibacter. MICROBIOME 2021; 9:197. [PMID: 34593021 PMCID: PMC8485483 DOI: 10.1186/s40168-021-01132-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/01/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND Dental calculus (mineralised dental plaque) preserves many types of microfossils and biomolecules, including microbial and host DNA, and ancient calculus are thus an important source of information regarding our ancestral human oral microbiome. In this study, we taxonomically characterised the dental calculus microbiome from 20 ancient human skeletal remains originating from Trentino-South Tyrol, Italy, dating from the Neolithic (6000-3500 BCE) to the Early Middle Ages (400-1000 CE). RESULTS We found a high abundance of the archaeal genus Methanobrevibacter in the calculus. However, only a fraction of the sequences showed high similarity to Methanobrevibacter oralis, the only described Methanobrevibacter species in the human oral microbiome so far. To further investigate the diversity of this genus, we used de novo metagenome assembly to reconstruct 11 Methanobrevibacter genomes from the ancient calculus samples. Besides the presence of M. oralis in one of the samples, our phylogenetic analysis revealed two hitherto uncharacterised and unnamed oral Methanobrevibacter species that are prevalent in ancient calculus samples sampled from a broad range of geographical locations and time periods. CONCLUSIONS We have shown the potential of using de novo metagenomic assembly on ancient samples to explore microbial diversity and evolution. Our study suggests that there has been a possible shift in the human oral microbiome member Methanobrevibacter over the last millennia. Video abstract.
Collapse
Affiliation(s)
- Lena Granehäll
- Institute for Mummy Studies, Eurac Research, 39100 Bolzano, Italy
- Faculty of Biology, Department of Biology II, Anthropology and Human Genomics, Ludwig-Maximilians-University of Munich, 82152 Planegg-Martinsried, Germany
| | - Kun D. Huang
- CIBIO Department, University of Trento, 38123 Trento, Italy
- Department of Sustainable Agro-Ecosystems and Bioresources, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy
| | - Adrian Tett
- CIBIO Department, University of Trento, 38123 Trento, Italy
- CUBE - Division of Computational Systems Biology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Paolo Manghi
- CIBIO Department, University of Trento, 38123 Trento, Italy
| | - Alice Paladin
- Institute for Mummy Studies, Eurac Research, 39100 Bolzano, Italy
| | - Niall O’Sullivan
- Institute for Mummy Studies, Eurac Research, 39100 Bolzano, Italy
| | - Omar Rota-Stabelli
- Department of Sustainable Agro-Ecosystems and Bioresources, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy
- Center Agriculture Food Environment, University of Trento, 38123 Trento, Italy
| | - Nicola Segata
- CIBIO Department, University of Trento, 38123 Trento, Italy
| | - Albert Zink
- Institute for Mummy Studies, Eurac Research, 39100 Bolzano, Italy
| | - Frank Maixner
- Institute for Mummy Studies, Eurac Research, 39100 Bolzano, Italy
| |
Collapse
|
250
|
Shi Q, Zhang J, Wang J, Du L, Shi Z, Xu M, Luo Y. Homologous Escherichia coli Identified in Cerebrospinal Fluid and Bloodstream. Front Cell Infect Microbiol 2021; 11:674235. [PMID: 34568083 PMCID: PMC8461209 DOI: 10.3389/fcimb.2021.674235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/11/2021] [Indexed: 11/29/2022] Open
Abstract
Background Escherichia coli is an opportunistic bacterium that causes a wide range of diseases, such as bloodstream infection and central nervous system infection. The traditional culture-based method to detect E. coli usually takes more than 2 days. The object of this study is to explore the value of metagenomic next-generation sequencing (mNGS) in identifying E. coli from human cerebrospinal fluid. In addition, we investigated the infection source of E. coli through whole genome sequencing and phylogenetic analysis. Methods We combined a clinical example to analyze the function of mNGS in pathogen detection from cerebrospinal fluid. NextSeq 550Dx platform was applied for mNGS. Next, whole genome sequencing was performed to obtain the genomic characterization of E. coli. Furthermore, we screened 20 E. coli strains from the National Center for Biotechnology Information and conducted a phylogenetic analysis. Results A middle-aged patient who attended our hospital was diagnosed with craniopharyngioma and received surgery. The patient had recurrent fever and persistent lethargy after surgery. Cerebrospinal fluid culture firstly failed to grow the bacteria. Next the cerebrospinal fluid sample was detected by mNGS and the sequence readings of E. coli were identified. Later, E. coli was reported via the second cerebrospinal fluid culture, certifying the result of mNGS. Moreover, we also cultured carbapenem-resistant E. coli from the patient’s bloodstream. Through whole genome sequencing and phylogenetic analysis, we found that the E. coli isolated from cerebrospinal fluid and the bloodstream was 100% homologous, indicating the E. coli central nervous system infection was originated from the bloodstream. Conclusion Metagenomic next-generation sequencing is a valuable tool to identify the pathogens from cerebrospinal fluid, and seeking the infection source is of great significance in clinical diagnosis and treatment. Furthermore, carbapenem-resistant E. coli is a serious problem as the cause of bloodstream infection and central nervous system infection, and effective and adequate measures to prevent and control the present circumstance are urgent.
Collapse
Affiliation(s)
- Qingmiao Shi
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinghui Wang
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lijuan Du
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhaoyang Shi
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Min Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yonggang Luo
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|