201
|
Machnik M, Oleksiewicz U. Dynamic Signatures of the Epigenome: Friend or Foe? Cells 2020; 9:cells9030653. [PMID: 32156057 PMCID: PMC7140607 DOI: 10.3390/cells9030653] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 12/12/2022] Open
Abstract
Highly dynamic epigenetic signaling is influenced mainly by (micro)environmental stimuli and genetic factors. The exact mechanisms affecting particular epigenomic patterns differ dependently on the context. In the current review, we focus on the causes and effects of the dynamic signatures of the human epigenome as evaluated with the high-throughput profiling data and single-gene approaches. We will discuss three different aspects of phenotypic outcomes occurring as a consequence of epigenetics interplaying with genotype and environment. The first issue is related to the cases of environmental impacts on epigenetic profile, and its adverse and advantageous effects related to human health and evolutionary adaptation. The next topic will present a model of the interwoven co-evolution of genetic and epigenetic patterns exemplified with transposable elements (TEs) and their epigenetic repressors Krüppel-associated box zinc finger proteins (KRAB–ZNFs). The third aspect concentrates on the mitosis-based microevolution that takes place during carcinogenesis, leading to clonal diversity and expansion of tumor cells. The whole picture of epigenome plasticity and its role in distinct biological processes is still incomplete. However, accumulating data define epigenomic dynamics as an essential co-factor driving adaptation at the cellular and inter-species levels with a benefit or disadvantage to the host.
Collapse
Affiliation(s)
- Marta Machnik
- Department of Cancer Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland;
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Urszula Oleksiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland;
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
- Correspondence:
| |
Collapse
|
202
|
Abstract
Retroviruses infect a broad range of vertebrate hosts that includes amphibians, reptiles, fish, birds and mammals. In addition, a typical vertebrate genome contains thousands of loci composed of ancient retroviral sequences known as endogenous retroviruses (ERVs). ERVs are molecular remnants of ancient retroviruses and proof that the ongoing relationship between retroviruses and their vertebrate hosts began hundreds of millions of years ago. The long-term impact of retroviruses on vertebrate evolution is twofold: first, as with other viruses, retroviruses act as agents of selection, driving the evolution of host genes that block viral infection or that mitigate pathogenesis, and second, through the phenomenon of endogenization, retroviruses contribute an abundance of genetic novelty to host genomes, including unique protein-coding genes and cis-acting regulatory elements. This Review describes ERV origins, their diversity and their relationships to retroviruses and discusses the potential for ERVs to reveal virus-host interactions on evolutionary timescales. It also describes some of the many examples of cellular functions, including protein-coding genes and regulatory elements, that have evolved from ERVs.
Collapse
|
203
|
O'Neill RJ. Seq'ing identity and function in a repeat-derived noncoding RNA world. Chromosome Res 2020; 28:111-127. [PMID: 32146545 PMCID: PMC7393779 DOI: 10.1007/s10577-020-09628-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 01/06/2023]
Abstract
Innovations in high-throughout sequencing approaches are being marshaled to both reveal the composition of the abundant and heterogeneous noncoding RNAs that populate cell nuclei and lend insight to the mechanisms by which noncoding RNAs influence chromosome biology and gene expression. This review focuses on some of the recent technological developments that have enabled the isolation of nascent transcripts and chromatin-associated and DNA-interacting RNAs. Coupled with emerging genome assembly and analytical approaches, the field is poised to achieve a comprehensive catalog of nuclear noncoding RNAs, including those derived from repetitive regions within eukaryotic genomes. Herein, particular attention is paid to the challenges and advances in the sequence analyses of repeat and transposable element-derived noncoding RNAs and in ascribing specific function(s) to such RNAs.
Collapse
Affiliation(s)
- Rachel J O'Neill
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA.
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA.
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| |
Collapse
|
204
|
Bogdan L, Barreiro L, Bourque G. Transposable elements have contributed human regulatory regions that are activated upon bacterial infection. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190332. [PMID: 32075553 DOI: 10.1098/rstb.2019.0332] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Transposable elements (TEs) are increasingly recognized as important contributors to mammalian regulatory systems. For instance, they have been shown to play a role in the human interferon response, but their involvement in other mechanisms of immune cell activation remains poorly understood. Here, we investigated the profile of accessible chromatin enhanced in stimulated human macrophages using ATAC-seq to assess the role of different TE subfamilies in regulating gene expression following an immune response. We found that both previously identified and new repeats belonging to the MER44, THE1, Tigger3 and MLT1 families provide 14 subfamilies that are enriched in differentially accessible chromatin and found near differentially expressed genes. These TEs also harbour binding motifs for several candidate transcription factors, including important immune regulators AP-1 and NF-κB, present in 96% of accessible MER44B and 83% of THE1C instances, respectively. To more directly assess their regulatory potential, we evaluated the presence of these TEs in regions putatively affecting gene expression, as defined by quantitative trait locus (QTL) analysis, and found that repeats are also contributing to accessible elements near QTLs. Together, these results suggest that a number of TE families have contributed to the regulation of gene expression in the context of the immune response to infection in humans. This article is part of a discussion meeting issue 'Crossroads between transposons and gene regulation'.
Collapse
Affiliation(s)
- Lucia Bogdan
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Luis Barreiro
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Canadian Center for Computational Genomics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
205
|
Darbellay F, Necsulea A. Comparative Transcriptomics Analyses across Species, Organs, and Developmental Stages Reveal Functionally Constrained lncRNAs. Mol Biol Evol 2020; 37:240-259. [PMID: 31539080 PMCID: PMC6984365 DOI: 10.1093/molbev/msz212] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The functionality of long noncoding RNAs (lncRNAs) is disputed. In general, lncRNAs are under weak selective pressures, suggesting that the majority of lncRNAs may be nonfunctional. However, although some surveys showed negligible phenotypic effects upon lncRNA perturbation, key biological roles were demonstrated for individual lncRNAs. Most lncRNAs with proven functions were implicated in gene expression regulation, in pathways related to cellular pluripotency, differentiation, and organ morphogenesis, suggesting that functional lncRNAs may be more abundant in embryonic development, rather than in adult organs. To test this hypothesis, we perform a multidimensional comparative transcriptomics analysis, across five developmental time points (two embryonic stages, newborn, adult, and aged individuals), four organs (brain, kidney, liver, and testes), and three species (mouse, rat, and chicken). We find that, overwhelmingly, lncRNAs are preferentially expressed in adult and aged testes, consistent with the presence of permissive transcription during spermatogenesis. LncRNAs are often differentially expressed among developmental stages and are less abundant in embryos and newborns compared with adult individuals, in agreement with a requirement for tighter expression control and less tolerance for noisy transcription early in development. For differentially expressed lncRNAs, we find that the patterns of expression variation among developmental stages are generally conserved between mouse and rat. Moreover, lncRNAs expressed above noise levels in somatic organs and during development show higher evolutionary conservation, in particular, at their promoter regions. Thus, we show that functionally constrained lncRNA loci are enriched in developing organs, and we suggest that many of these loci may function in an RNA-independent manner.
Collapse
Affiliation(s)
- Fabrice Darbellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anamaria Necsulea
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Laboratoire de Biométrie et Biologie Évolutive, CNRS UMR 5558, Université de Lyon, Université Lyon 1, Villeurbanne, France
| |
Collapse
|
206
|
Casanova EL, Konkel MK. The Developmental Gene Hypothesis for Punctuated Equilibrium: Combined Roles of Developmental Regulatory Genes and Transposable Elements. Bioessays 2020; 42:e1900173. [PMID: 31943266 PMCID: PMC7029956 DOI: 10.1002/bies.201900173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/30/2019] [Indexed: 12/13/2022]
Abstract
Theories of the genetics underlying punctuated equilibrium (PE) have been vague to date. Here the developmental gene hypothesis is proposed, which states that: 1) developmental regulatory (DevReg) genes are responsible for the orchestration of metazoan morphogenesis and their extreme conservation and mutation intolerance generates the equilibrium or stasis present throughout much of the fossil record and 2) the accumulation of regulatory elements and recombination within these same genes-often derived from transposable elements-drives punctuated bursts of morphological divergence and speciation across metazoa. This two-part hypothesis helps to explain the features that characterize PE, providing a theoretical genetic basis for the once-controversial theory. Also see the video abstract here https://youtu.be/C-fu-ks5yDs.
Collapse
Affiliation(s)
- Emily L. Casanova
- Department of Biomedical Sciences, University of South Carolina School of Medicine at Greenville, Greenville, South Carolina, USA
| | - Miriam K. Konkel
- Department of Genetics and Biochemistry, Clemson Center for Human Genetics, Biomedical Data Science and Informatics Program, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
207
|
Tellier M, Chalmers R. Compensating for over-production inhibition of the Hsmar1 transposon in Escherichia coli using a series of constitutive promoters. Mob DNA 2020; 11:5. [PMID: 31938044 PMCID: PMC6954556 DOI: 10.1186/s13100-020-0200-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/01/2020] [Indexed: 01/03/2023] Open
Abstract
Background Transposable elements (TEs) are a diverse group of self-mobilizing DNA elements. Transposition has been exploited as a powerful tool for molecular biology and genomics. However, transposition is sometimes limited because of auto-regulatory mechanisms that presumably allow them to cohabit within their hosts without causing excessive genomic damage. The papillation assay provides a powerful visual screen for hyperactive transposases. Transposition is revealed by the activation of a promoter-less lacZ gene when the transposon integrates into a non-essential gene on the host chromosome. Transposition events are detected as small blue speckles, or papillae, on the white background of the main Escherichia coli colony. Results We analysed the parameters of the papillation assay including the strength of the transposase transcriptional and translational signals. To overcome certain limitations of inducible promoters, we constructed a set of vectors based on constitutive promoters of different strengths to widen the range of transposase expression. We characterized and validated our expression vectors with Hsmar1, a member of the mariner transposon family. The highest rate of transposition was observed with the weakest promoters. We then took advantage of our approach to investigate how the level of transposition responds to selected point mutations and the effect of joining the transposase monomers into a single-chain dimer. Conclusions We generated a set of vectors to provide a wide range of transposase expression which will be useful for screening libraries of transposase mutants. The use of weak promoters should allow screening for truly hyperactive transposases rather than those that are simply resistant to auto-regulatory mechanisms, such as overproduction inhibition (OPI). We also found that mutations in the Hsmar1 dimer interface provide resistance to OPI in bacteria, which could be valuable for improving bacterial transposon mutagenesis techniques.
Collapse
Affiliation(s)
- Michael Tellier
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH UK.,2Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE UK
| | - Ronald Chalmers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH UK
| |
Collapse
|
208
|
Della Valle F, Thimma MP, Caiazzo M, Pulcrano S, Celii M, Adroub SA, Liu P, Alanis-Lobato G, Broccoli V, Orlando V. Transdifferentiation of Mouse Embryonic Fibroblasts into Dopaminergic Neurons Reactivates LINE-1 Repetitive Elements. Stem Cell Reports 2020; 14:60-74. [PMID: 31902705 PMCID: PMC6962658 DOI: 10.1016/j.stemcr.2019.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022] Open
Abstract
In mammals, LINE-1 (L1) retrotransposons constitute between 15% and 20% of the genome. Although only a few copies have retained the ability to retrotranspose, evidence in brain and differentiating pluripotent cells indicates that L1 retrotransposition occurs and creates mosaics in normal somatic tissues. The function of de novo insertions remains to be understood. The transdifferentiation of mouse embryonic fibroblasts to dopaminergic neuronal fate provides a suitable model for studying L1 dynamics in a defined genomic and unaltered epigenomic background. We found that L1 elements are specifically re-expressed and mobilized during the initial stages of reprogramming and that their insertions into specific acceptor loci coincides with higher chromatin accessibility and creation of new transcribed units. Those events accompany the maturation of neuronal committed cells. We conclude that L1 retrotransposition is a non-random process correlating with chromatin opening and lncRNA production that accompanies direct somatic cell reprogramming. L1 activation accompanies induced dopaminergic neuron maturation L1 inhibition impairs the transdifferentiation potential of MEFs L1 retrotransposition creates a lineage-specific genetic mosaicism L1 insertions correlates with open chromatin and lncRNA transcription
Collapse
Affiliation(s)
- Francesco Della Valle
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, KAUST Environmental Epigenetics Program, Bld 2, Level 3, Room 3234, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Manjula P Thimma
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, KAUST Environmental Epigenetics Program, Bld 2, Level 3, Room 3234, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Massimiliano Caiazzo
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), 3584 Utrecht, the Netherlands; Institute of Genetics and Biophysics, "A. Buzzati-Traverso", C.N.R., 80131 Naples, Italy; Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Salvatore Pulcrano
- Institute of Genetics and Biophysics, "A. Buzzati-Traverso", C.N.R., 80131 Naples, Italy
| | - Mirko Celii
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, KAUST Environmental Epigenetics Program, Bld 2, Level 3, Room 3234, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Sabir A Adroub
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, KAUST Environmental Epigenetics Program, Bld 2, Level 3, Room 3234, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Peng Liu
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, KAUST Environmental Epigenetics Program, Bld 2, Level 3, Room 3234, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Gregorio Alanis-Lobato
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, KAUST Environmental Epigenetics Program, Bld 2, Level 3, Room 3234, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Institute of Molecular Biology, Computational Biology and Data Mining Unit, 55128 Mainz, Germany
| | - Vania Broccoli
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Valerio Orlando
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, KAUST Environmental Epigenetics Program, Bld 2, Level 3, Room 3234, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
209
|
Pimpinelli S, Piacentini L. Environmental change and the evolution of genomes: Transposable elements as translators of phenotypic plasticity into genotypic variability. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13497] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sergio Pimpinelli
- Istituto Pasteur Italia Fondazione Cenci‐Bolognetti and Department of Biology and Biotechnology ‘C. Darwin’ Sapienza University of Rome Rome Italy
| | - Lucia Piacentini
- Istituto Pasteur Italia Fondazione Cenci‐Bolognetti and Department of Biology and Biotechnology ‘C. Darwin’ Sapienza University of Rome Rome Italy
| |
Collapse
|
210
|
Awwad DA. Beyond classic editing: innovative CRISPR approaches for functional studies of long non-coding RNA. Biol Methods Protoc 2019; 4:bpz017. [PMID: 32161809 PMCID: PMC6994087 DOI: 10.1093/biomethods/bpz017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 09/06/2019] [Accepted: 11/19/2019] [Indexed: 12/26/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) makeup a considerable part of the non-coding human genome and had been well-established as crucial players in an array of biological processes. In spite of their abundance and versatile roles, their functional characteristics remain largely undiscovered mainly due to the lack of suitable genetic manipulation tools. The emerging CRISPR/Cas9 technology has been widely adapted in several studies that aim to screen and identify novel lncRNAs as well as interrogate the functional properties of specific lncRNAs. However, the complexity of lncRNAs genes and the regulatory mechanisms that govern their transcription, as well as their unique functionality pose several limitations the utilization of classic CRISPR methods in lncRNAs functional studies. Here, we overview the unique characteristics of lncRNAs transcription and function and the suitability of the CRISPR toolbox for applications in functional characterization of lncRNAs. We discuss some of the novel variations to the classic CRISPR/Cas9 system that have been tailored and applied previously to study several aspects of lncRNAs functionality. Finally, we share perspectives on the potential applications of various CRISPR systems, including RNA-targeting, in the direct editing and manipulation of lncRNAs.
Collapse
Affiliation(s)
- Dahlia A Awwad
- Center of X-Ray Determination of Structure of Matter (CXDS), Helmi Institute of Biomedical Research, Zewail City of Science and Technology, Giza, Cairo, Egypt
| |
Collapse
|
211
|
Casanova M, Moscatelli M, Chauvière LÉ, Huret C, Samson J, Liyakat Ali TM, Rosspopoff O, Rougeulle C. A primate-specific retroviral enhancer wires the XACT lncRNA into the core pluripotency network in humans. Nat Commun 2019; 10:5652. [PMID: 31827084 PMCID: PMC6906429 DOI: 10.1038/s41467-019-13551-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022] Open
Abstract
Transposable elements (TEs) have been proposed to play an important role in driving the expansion of gene regulatory networks during mammalian evolution, notably by contributing to the evolution and function of long non-coding RNAs (lncRNAs). XACT is a primate-specific TE-derived lncRNA that coats active X chromosomes in pluripotent cells and may contribute to species-specific regulation of X-chromosome inactivation. Here we explore how different families of TEs have contributed to shaping the XACT locus and coupling its expression to pluripotency. Through a combination of sequence analysis across primates, transcriptional interference, and genome editing, we identify a critical enhancer for the regulation of the XACT locus that evolved from an ancestral group of mammalian endogenous retroviruses (ERVs), prior to the emergence of XACT. This ERV was hijacked by younger hominoid-specific ERVs that gave rise to the promoter of XACT, thus wiring its expression to the pluripotency network. This work illustrates how retroviral-derived sequences may intervene in species-specific regulatory pathways.
Collapse
Affiliation(s)
- Miguel Casanova
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France.
| | | | | | - Christophe Huret
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France
| | - Julia Samson
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France
| | | | - Olga Rosspopoff
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France
| | - Claire Rougeulle
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France.
| |
Collapse
|
212
|
Lv Y, Hu F, Zhou Y, Wu F, Gaut BS. Maize transposable elements contribute to long non-coding RNAs that are regulatory hubs for abiotic stress response. BMC Genomics 2019; 20:864. [PMID: 31729949 PMCID: PMC6858665 DOI: 10.1186/s12864-019-6245-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023] Open
Abstract
Background Several studies have mined short-read RNA sequencing datasets to identify long non-coding RNAs (lncRNAs), and others have focused on the function of individual lncRNAs in abiotic stress response. However, our understanding of the complement, function and origin of lncRNAs – and especially transposon derived lncRNAs (TE-lncRNAs) - in response to abiotic stress is still in its infancy. Results We utilized a dataset of 127 RNA sequencing samples that included total RNA datasets and PacBio fl-cDNA data to discover lncRNAs in maize. Overall, we identified 23,309 candidate lncRNAs from polyA+ and total RNA samples, with a strong discovery bias within total RNA. The majority (65%) of the 23,309 lncRNAs had sequence similarity to transposable elements (TEs). Most had similarity to long-terminal-repeat retrotransposons from the Copia and Gypsy superfamilies, reflecting a high proportion of these elements in the genome. However, DNA transposons were enriched for lncRNAs relative to their genomic representation by ~ 2-fold. By assessing the fraction of lncRNAs that respond to abiotic stresses like heat, cold, salt and drought, we identified 1077 differentially expressed lncRNA transcripts, including 509 TE-lncRNAs. In general, the expression of these lncRNAs was significantly correlated with their nearest gene. By inferring co-expression networks across our large dataset, we found that 39 lncRNAs are as major hubs in co-expression networks that respond to abiotic stress, and 18 appear to be derived from TEs. Conclusions Our results show that lncRNAs are enriched in total RNA samples, that most (65%) are derived from TEs, that at least 1077 are differentially expressed during abiotic stress, and that 39 are hubs in co-expression networks, including a small number that are evolutionary conserved. These results suggest that lncRNAs, including TE-lncRNAs, may play key regulatory roles in moderating abiotic responses.
Collapse
Affiliation(s)
- Yuanda Lv
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Department of Ecology and Evolutionary, Biology, UC Irvine, Irvine, CA, USA
| | - Fengqin Hu
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yongfeng Zhou
- Department of Ecology and Evolutionary, Biology, UC Irvine, Irvine, CA, USA
| | - Feilong Wu
- Department of Civil and Environmental, Engineering, UC Irvine, Irvine, CA, USA
| | - Brandon S Gaut
- Department of Ecology and Evolutionary, Biology, UC Irvine, Irvine, CA, USA.
| |
Collapse
|
213
|
Lemos AEG, Matos ADR, Ferreira LB, Gimba ERP. The long non-coding RNA PCA3: an update of its functions and clinical applications as a biomarker in prostate cancer. Oncotarget 2019; 10:6589-6603. [PMID: 31762940 PMCID: PMC6859920 DOI: 10.18632/oncotarget.27284] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer antigen 3 (PCA3) is an overexpressed prostate long non-coding RNA (lncRNA), transcribed from an intronic region at the long arm of human chromosome 9q21–22. It has been described that PCA3 modulates prostate cancer (PCa) cell survival through modulating androgen receptor (AR) signaling, besides controlling the expression of several androgen responsive and cancer-related genes, including epithelial–mesenchymal transition (EMT) markers and those regulating gene expression and cell signaling. Also, PCA3 urine levels have been successfully used as a PCa diagnostic biomarker. In this review, we have highlighted recent findings regarding PCA3, addressing its gene structure, putative applications as a biomarker, a proposed origin of this lncRNA, roles in PCa biology and expression patterns. We also updated data regarding PCA3 interactions with cancer-related miRNAs and expression in other tissues and diseases beyond the prostate. Altogether, literature data indicate aberrant expression and dysregulated activity of PCA3, suggesting PCA3 as a promising relevant target that should be even further evaluated on its applicability for PCa detection and management.
Collapse
Affiliation(s)
- Ana Emília Goulart Lemos
- Departamento de Epidemiologia e Métodos Quantitativos em Saúde, Escola Nacional de Saúde Pública/Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Ciências Biomédicas - Fisiologia e Farmacologia, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Aline da Rocha Matos
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | | - Etel Rodrigues Pereira Gimba
- Programa de Pós-Graduação em Ciências Biomédicas - Fisiologia e Farmacologia, Universidade Federal Fluminense, Rio de Janeiro, Brazil.,Coordenação de Pesquisa, Instituto Nacional do Câncer, Rio de Janeiro, Brazil.,Departamento de Ciências da Natureza (RCN), Instituto de Humanidades e Saúde, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| |
Collapse
|
214
|
High-Quality Genome Assemblies Reveal Long Non-coding RNAs Expressed in Ant Brains. Cell Rep 2019; 23:3078-3090. [PMID: 29874592 PMCID: PMC6023404 DOI: 10.1016/j.celrep.2018.05.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 04/04/2018] [Accepted: 05/03/2018] [Indexed: 12/31/2022] Open
Abstract
Ants are an emerging model system for neuroepigenetics, as embryos with virtually identical genomes develop into different adult castes that display diverse physiology, morphology, and behavior. Although a number of ant genomes have been sequenced to date, their draft quality is an obstacle to sophisticated analyses of epigenetic gene regulation. We reassembled de novo high-quality genomes for two ant species, Camponotus floridanus and Harpegnathos saltator. Using long reads enabled us to span large repetitive regions and improve genome contiguity, leading to comprehensive and accurate protein-coding annotations that facilitated the identification of a Gp-9-like gene as differentially expressed in Harpegnathos castes. The new assemblies also enabled us to annotate long non-coding RNAs in ants, revealing caste-, brain-, and developmental-stage-specific long non-coding RNAs (lncRNAs) in Harpegnathos. These upgraded genomes, along with the new gene annotations, will aid future efforts to identify epigenetic mechanisms of phenotypic and behavioral plasticity in ants.
Collapse
|
215
|
Lee H, Zhang Z, Krause HM. Long Noncoding RNAs and Repetitive Elements: Junk or Intimate Evolutionary Partners? Trends Genet 2019; 35:892-902. [PMID: 31662190 DOI: 10.1016/j.tig.2019.09.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/22/2019] [Accepted: 09/13/2019] [Indexed: 12/27/2022]
Abstract
Our recent ability to sequence entire genomes, along with all of their transcribed RNAs, has led to the surprising finding that only ∼1% of the human genome is used to encode proteins. This finding has led to vigorous debate over the functional importance of the transcribed but untranslated portions of the genome. Currently, scientists tend to assume coding genes are functional until proven not to be, while the opposite is true for noncoding genes. This review takes a new look at the evidence for and against widespread noncoding gene functionality. We focus in particular on long noncoding RNA (noncoding RNAs longer than 200 nucleotides) genes and their 'junk' associates, transposable elements, and satellite repeats. Taken together, the suggestion put forward is that more of this junk DNA may be functional than nonfunctional and that noncoding RNAs and transposable elements act symbiotically to drive evolution.
Collapse
Affiliation(s)
- Hyunmin Lee
- Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Zhaolei Zhang
- Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Henry M Krause
- Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Computer Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
216
|
Fasolo F, Patrucco L, Volpe M, Bon C, Peano C, Mignone F, Carninci P, Persichetti F, Santoro C, Zucchelli S, Sblattero D, Sanges R, Cotella D, Gustincich S. The RNA-binding protein ILF3 binds to transposable element sequences in SINEUP lncRNAs. FASEB J 2019; 33:13572-13589. [PMID: 31570000 PMCID: PMC6894054 DOI: 10.1096/fj.201901618rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transposable elements (TEs) compose about half of the mammalian genome and, as embedded sequences, up to 40% of long noncoding RNA (lncRNA) transcripts. Embedded TEs may represent functional domains within lncRNAs, providing a structured RNA platform for protein interaction. Here we show the interactome profile of the mouse inverted short interspersed nuclear element (SINE) of subfamily B2 (invSINEB2) alone and embedded in antisense (AS) ubiquitin C-terminal hydrolase L1 (Uchl1), an lncRNA that is AS to Uchl1 gene. AS Uchl1 is the representative member of a functional class of AS lncRNAs, named SINEUPs, in which the invSINEB2 acts as effector domain (ED)-enhancing translation of sense protein-coding mRNAs. By using RNA-interacting domainome technology, we identify the IL enhancer-binding factor 3 (ILF3) as a protein partner of AS Uchl1 RNA. We determine that this interaction is mediated by the RNA-binding motif 2 of ILF3 and the invSINEB2. Furthermore, we show that ILF3 is able to bind a free right Arthrobacter luteus (Alu) monomer sequence, the embedded TE acting as ED in human SINEUPs. Bioinformatic analysis of Encyclopedia of DNA Elements-enhanced cross-linking immunoprecipitation data reveals that ILF3 binds transcribed human SINE sequences at transcriptome-wide levels. We then demonstrate that the embedded TEs modulate AS Uchl1 RNA nuclear localization to an extent moderately influenced by ILF3. This work unveils the existence of a specific interaction between embedded TEs and an RNA-binding protein, strengthening the model of TEs as functional modules in lncRNAs.-Fasolo, F., Patrucco, L., Volpe, M., Bon, C., Peano, C., Mignone, F., Carninci, P., Persichetti, F., Santoro, C., Zucchelli, S., Sblattero, D., Sanges, R., Cotella, D., Gustincich, S. The RNA-binding protein ILF3 binds to transposable element sequences in SINEUP lncRNAs.
Collapse
Affiliation(s)
- Francesca Fasolo
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Laura Patrucco
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Massimiliano Volpe
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Carlotta Bon
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.,Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Clelia Peano
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Flavio Mignone
- Department of Sciences and Innovation, Università del Piemonte Orientale, Alessandria, Italy
| | - Piero Carninci
- Division of Genomic Technologies, Riken Center for Life Science Technologies, Yokohama, Japan
| | | | - Claudio Santoro
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Silvia Zucchelli
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.,Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | | | - Remo Sanges
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.,Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Diego Cotella
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Stefano Gustincich
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.,Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| |
Collapse
|
217
|
Mustafin RN. The Role of Transposable Elements in the Differentiation of Stem Cells. MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2019. [DOI: 10.3103/s0891416819020071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
218
|
Chen R, Li M, Zhang H, Duan L, Sun X, Jiang Q, Zhang H, Hu Z. Continuous salt stress-induced long non-coding RNAs and DNA methylation patterns in soybean roots. BMC Genomics 2019; 20:730. [PMID: 31606033 PMCID: PMC6790039 DOI: 10.1186/s12864-019-6101-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/12/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Environmental stimuli can activate a series of physiological and biochemical responses in plants accompanied by extensive transcriptional reprogramming. Long non-coding RNAs (lncRNAs), as versatile regulators, control gene expression in multiple ways and participate in the adaptation to biotic and abiotic stresses. RESULTS In this study, soybean seedlings were continuously cultured for 15 days with high salinity solutions started from seed germination. Strand-specific whole transcriptome sequencing and stringent bioinformatic analysis led to the identification of 3030 long intergenic non-coding RNAs (lincRNAs) and 275 natural antisense transcripts (lncNATs) in soybean roots. In contrast to mRNAs, newly identified lncRNAs exhibited less exons, similar AU content to UTRs, even distribution across the genome and low evolutionary conservation. Remarkably, more than 75% of discovered lncRNAs that were activated or up-regulated by continuous salt stress mainly targeted proteins with binding and catalytic activities. Furthermore, two DNA methylation maps with single-base resolution were generated by using reduced representation bisulfite sequencing, offering a genome-wide perspective and important clues for epigenetic regulation of stress-associated lncRNAs and protein-coding genes. CONCLUSIONS Taken together, our findings systematically demonstrated the characteristics of continuous salt stress-induced lncRNAs and extended the knowledge of corresponding methylation profiling, providing valuable evidence for a better understanding of how plants cope with long-term salt stress circumstances.
Collapse
Affiliation(s)
- Rui Chen
- Tianjin Institute of Agricultural Quality Standard and Testing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.
| | - Ming Li
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Huiyuan Zhang
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lijin Duan
- Tianjin Institute of Agricultural Quality Standard and Testing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Xianjun Sun
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiyan Jiang
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hui Zhang
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zheng Hu
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
219
|
Zhang X, Xue C, Lin J, Ferguson JF, Weiner A, Liu W, Han Y, Hinkle C, Li W, Jiang H, Gosai S, Hachet M, Garcia BA, Gregory BD, Soccio RE, Hogenesch JB, Seale P, Li M, Reilly MP. Interrogation of nonconserved human adipose lincRNAs identifies a regulatory role of linc-ADAL in adipocyte metabolism. Sci Transl Med 2019; 10:10/446/eaar5987. [PMID: 29925637 DOI: 10.1126/scitranslmed.aar5987] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 11/27/2017] [Accepted: 05/04/2018] [Indexed: 12/16/2022]
Abstract
Long intergenic noncoding RNAs (lincRNAs) have emerged as important modulators of cellular functions. Most lincRNAs are not conserved among mammals, raising the fundamental question of whether nonconserved adipose-expressed lincRNAs are functional. To address this, we performed deep RNA sequencing of gluteal subcutaneous adipose tissue from 25 healthy humans. We identified 1001 putative lincRNAs expressed in all samples through de novo reconstruction of noncoding transcriptomes and integration with existing lincRNA annotations. One hundred twenty lincRNAs had adipose-enriched expression, and 54 of these exhibited peroxisome proliferator-activated receptor γ (PPARγ) or CCAAT/enhancer binding protein α (C/EBPα) binding at their loci. Most of these adipose-enriched lincRNAs (~85%) were not conserved in mice, yet on average, they showed degrees of expression and binding of PPARγ and C/EBPα similar to those displayed by conserved lincRNAs. Most adipose lincRNAs differentially expressed (n = 53) in patients after bariatric surgery were nonconserved. The most abundant adipose-enriched lincRNA in our subcutaneous adipose data set, linc-ADAL, was nonconserved, up-regulated in adipose depots of obese individuals, and markedly induced during in vitro human adipocyte differentiation. We demonstrated that linc-ADAL interacts with heterogeneous nuclear ribonucleoprotein U (hnRNPU) and insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) at distinct subcellular locations to regulate adipocyte differentiation and lipogenesis.
Collapse
Affiliation(s)
- Xuan Zhang
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Chenyi Xue
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Jennie Lin
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jane F Ferguson
- Division of Cardiovascular Medicine, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Amber Weiner
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wen Liu
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Yumiao Han
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christine Hinkle
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenjun Li
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongfeng Jiang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, China
| | - Sager Gosai
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Melanie Hachet
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raymond E Soccio
- The Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John B Hogenesch
- Divisions of Human Genetics and Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45267, USA
| | - Patrick Seale
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mingyao Li
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Muredach P Reilly
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA. .,Irving Institute for Clinical and Translational Research, Columbia University, New York, NY 10032, USA
| |
Collapse
|
220
|
Mustafin RN, Kazantseva AV, Enikeeva RF, Davydova YD, Karunas AS, Malykh SB, Khusnutdinova EK. Epigenetics of Aggressive Behavior. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419090096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
221
|
Ninova M, Fejes Tóth K, Aravin AA. The control of gene expression and cell identity by H3K9 trimethylation. Development 2019; 146:dev181180. [PMID: 31540910 PMCID: PMC6803365 DOI: 10.1242/dev.181180] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Histone 3 lysine 9 trimethylation (H3K9me3) is a conserved histone modification that is best known for its role in constitutive heterochromatin formation and the repression of repetitive DNA elements. More recently, it has become evident that H3K9me3 is also deposited at certain loci in a tissue-specific manner and plays important roles in regulating cell identity. Notably, H3K9me3 can repress genes encoding silencing factors, pointing to a fundamental principle of repressive chromatin auto-regulation. Interestingly, recent studies have shown that H3K9me3 deposition requires protein SUMOylation in different contexts, suggesting that the SUMO pathway functions as an important module in gene silencing and heterochromatin formation. In this Review, we discuss the role of H3K9me3 in gene regulation in various systems and the molecular mechanisms that guide the silencing machinery to target loci.
Collapse
Affiliation(s)
- Maria Ninova
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Katalin Fejes Tóth
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Alexei A Aravin
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, 1200 East California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
222
|
|
223
|
Chung N, Jonaid GM, Quinton S, Ross A, Sexton CE, Alberto A, Clymer C, Churchill D, Navarro Leija O, Han MV. Transcriptome analyses of tumor-adjacent somatic tissues reveal genes co-expressed with transposable elements. Mob DNA 2019; 10:39. [PMID: 31497073 PMCID: PMC6720085 DOI: 10.1186/s13100-019-0180-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 08/14/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite the long-held assumption that transposons are normally only expressed in the germ-line, recent evidence shows that transcripts of transposable element (TE) sequences are frequently found in the somatic cells. However, the extent of variation in TE transcript levels across different tissues and different individuals are unknown, and the co-expression between TEs and host gene mRNAs have not been examined. RESULTS Here we report the variation in TE derived transcript levels across tissues and between individuals observed in the non-tumorous tissues collected for The Cancer Genome Atlas. We found core TE co-expression modules consisting mainly of transposons, showing correlated expression across broad classes of TEs. Despite this co-expression within tissues, there are individual TE loci that exhibit tissue-specific expression patterns, when compared across tissues. The core TE modules were negatively correlated with other gene modules that consisted of immune response genes in interferon signaling. KRAB Zinc Finger Proteins (KZFPs) were over-represented gene members of the TE modules, showing positive correlation across multiple tissues. But we did not find overlap between TE-KZFP pairs that are co-expressed and TE-KZFP pairs that are bound in published ChIP-seq studies. CONCLUSIONS We find unexpected variation in TE derived transcripts, within and across non-tumorous tissues. We describe a broad view of the RNA state for non-tumorous tissues exhibiting higher level of TE transcripts. Tissues with higher level of TE transcripts have a broad range of TEs co-expressed, with high expression of a large number of KZFPs, and lower RNA levels of immune genes.
Collapse
Affiliation(s)
- Nicky Chung
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154 USA
| | - G. M. Jonaid
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154 USA
| | - Sophia Quinton
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154 USA
| | - Austin Ross
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154 USA
| | - Corinne E. Sexton
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154 USA
| | - Adrian Alberto
- Department of Computer Science, University of Nevada, Las Vegas, NV 89154 USA
| | - Cody Clymer
- Department of Computer Science, University of Nevada, Las Vegas, NV 89154 USA
| | - Daphnie Churchill
- Department of Computer Science, University of Nevada, Las Vegas, NV 89154 USA
| | - Omar Navarro Leija
- Department of Computer Science, University of Nevada, Las Vegas, NV 89154 USA
| | - Mira V. Han
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154 USA
- Nevada Institute of Personalized Medicine, Las Vegas, NV 89154 USA
| |
Collapse
|
224
|
Abstract
Transposable elements (TEs) are mobile DNA sequences that colonize genomes and threaten genome integrity. As a result, several mechanisms appear to have emerged during eukaryotic evolution to suppress TE activity. However, TEs are ubiquitous and account for a prominent fraction of most eukaryotic genomes. We argue that the evolutionary success of TEs cannot be explained solely by evasion from host control mechanisms. Rather, some TEs have evolved commensal and even mutualistic strategies that mitigate the cost of their propagation. These coevolutionary processes promote the emergence of complex cellular activities, which in turn pave the way for cooption of TE sequences for organismal function.
Collapse
Affiliation(s)
- Rachel L Cosby
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Ni-Chen Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
225
|
Schemberger MO, Nascimento VD, Coan R, Ramos É, Nogaroto V, Ziemniczak K, Valente GT, Moreira-Filho O, Martins C, Vicari MR. DNA transposon invasion and microsatellite accumulation guide W chromosome differentiation in a Neotropical fish genome. Chromosoma 2019; 128:547-560. [DOI: 10.1007/s00412-019-00721-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/25/2019] [Accepted: 08/06/2019] [Indexed: 11/28/2022]
|
226
|
Tellier M, Chalmers R. Human SETMAR is a DNA sequence-specific histone-methylase with a broad effect on the transcriptome. Nucleic Acids Res 2019; 47:122-133. [PMID: 30329085 PMCID: PMC6326780 DOI: 10.1093/nar/gky937] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/12/2018] [Indexed: 12/26/2022] Open
Abstract
Transposons impart dynamism to the genomes they inhabit and their movements frequently rewire the control of nearby genes. Occasionally, their proteins are domesticated when they evolve a new function. SETMAR is a protein methylase with a sequence-specific DNA binding domain. It began to evolve about 50 million years ago when an Hsmar1 transposon integrated downstream of a SET-domain methylase gene. Here we show that the DNA-binding domain of the transposase targets the enzyme to transposon-end remnants and that this is capable of regulating gene expression, dependent on the methylase activity. When SETMAR was modestly overexpressed in human cells, almost 1500 genes changed expression by more than 2-fold (65% up- and 35% down-regulated). These genes were enriched for the KEGG Pathways in Cancer and include several transcription factors important for development and differentiation. Expression of a similar level of a methylase-deficient SETMAR changed the expression of many fewer genes, 77% of which were down-regulated with no significant enrichment of KEGG Pathways. Our data is consistent with a model in which SETMAR is part of an anthropoid primate-specific regulatory network centered on the subset of genes containing a transposon end.
Collapse
Affiliation(s)
- Michael Tellier
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Ronald Chalmers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
227
|
Rasmussen TP. Parallels between artificial reprogramming and the biogenesis of cancer stem cells: Involvement of lncRNAs. Semin Cancer Biol 2019; 57:36-44. [PMID: 30273656 DOI: 10.1016/j.semcancer.2018.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/12/2018] [Accepted: 09/26/2018] [Indexed: 02/08/2023]
Abstract
Cellular identity is established and maintained by the interplay of cell type-specific transcription factors and epigenetic regulation of the genome. During development in vivo and differentiation in vitro, transitions from one cell type to the next are triggered by cell signaling events culminating in modifications of chromatin that render genes accessible or inaccessible to the transcriptional apparatus. In recent years it has become apparent that cellular identity is plastic, and technological reprogramming methods such as somatic cell nuclear transfer and induced pluripotency can yield reprogrammed cells that have been restored to a state of developmental potency. Long noncoding RNAs (lncRNAs) are untranslated functional RNA molecules that are intimately involved in the regulation of the chromatin of protein-coding genes. In fact, recent evidence shows that there are more lncRNA species in the cell than mRNA species and that most protein-coding genes are likely to be under epigenetic regulation mediated by lncRNAs. This review examines lncRNA function in reprogrammed pluripotent cells and cancer stem cells. Because cancer stem cells arise from normal cells, their biogenesis can be viewed as a reprogramming process that occurs in vivo, and parallels between artificial reprogramming and cancer stem cell biogenesis are discussed.
Collapse
Affiliation(s)
- Theodore P Rasmussen
- University of Connecticut, Department of Pharmaceutical Sciences, 69 North Eagleville Road, Storrs, CT 06269, USA; University of Connecticut, Department of Molecular and Cell Biology, 91 North Eagleville Road, Storrs, CT 06269, USA; University of Connecticut, Institute for Systems Genomics, 181 Auditorium Road, Storrs, CT 06269, USA; University of Connecticut, UConn Stem Cell Institute, 400 Farmington Avenue Farmington, CT 06033, USA.
| |
Collapse
|
228
|
Deforges J, Reis RS, Jacquet P, Vuarambon DJ, Poirier Y. Prediction of regulatory long intergenic non-coding RNAs acting in trans through base-pairing interactions. BMC Genomics 2019; 20:601. [PMID: 31331261 PMCID: PMC6647327 DOI: 10.1186/s12864-019-5946-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/30/2019] [Indexed: 12/13/2022] Open
Abstract
Background Long intergenic non-coding RNAs (lincRNAs) can act as regulators of expression of protein-coding genes. Trans-natural antisense transcripts (trans-NATs) are a type of lincRNAs that contain sequence complementary to mRNA from other loci. The regulatory potential of trans-NATs has been poorly studied in eukaryotes and no example of trans-NATs regulating gene expression in plants are reported. The goal of this study was to identify lincRNAs, and particularly trans-NATs, in Arabidopsis thaliana that have a potential to regulate expression of target genes in trans at the transcriptional or translational level. Results We identified 1001 lincRNAs using an RNAseq dataset from total polyA+ and polysome-associated RNA of seedlings grown under high and low phosphate, or shoots and roots treated with different phytohormones, of which 550 were differentially regulated. Approximately 30% of lincRNAs showed conservation amongst Brassicaceae and 25% harbored transposon element (TE) sequences. Gene co-expression network analysis highlighted a group of lincRNAs associated with the response of roots to low phosphate. A total of 129 trans-NATs were predicted, of which 88 were significantly differentially expressed under at least one pairwise comparison. Five trans-NATs showed a positive correlation between their expression and target mRNA steady-state levels, and three showed a negative correlation. Expression of four trans-NATs positively correlated with a change in target mRNA polysome association. The regulatory potential of these trans-NATs did not implicate miRNA mimics nor siRNAs. We also looked for lincRNAs that could regulate gene expression in trans by Watson-Crick DNA:RNA base pairing with target protein-encoding loci. We identified 100 and 81 with a positive or negative correlation, respectively, with steady-state level of their predicted target. The regulatory potential of one such candidate lincRNA harboring a SINE TE sequence was validated in a protoplast assay on three distinct genes containing homologous TE sequence in their promoters. Construction of networks highlighted other putative lincRNAs with multiple predicted target loci for which expression was positively correlated with target gene expression. Conclusions This study identified lincRNAs in Arabidopsis with potential in regulating target gene expression in trans by both RNA:RNA and RNA:DNA base pairing and highlights lincRNAs harboring TE sequences in such activity. Electronic supplementary material The online version of this article (10.1186/s12864-019-5946-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jules Deforges
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Rodrigo S Reis
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Philippe Jacquet
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Dominique Jacques Vuarambon
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Yves Poirier
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
229
|
Mustafin RN, Khusnutdinova EK. The role of transposable elements in the ecological morphogenesis under the influence of stress. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In natural selection, insertional mutagenesis is an important source of genome variability. Transposons are sensors of environmental stress effects, which contribute to adaptation and speciation. These effects are due to changes in the mechanisms of morphogenesis, since transposons contain regulatory sequences that have cis and trans effects on specific protein-coding genes. In variability of genomes, the horizontal transfer of transposons plays an important role, because it contributes to changing the composition of transposons and the acquisition of new properties. Transposons are capable of site-specific transpositions, which lead to the activation of stress response genes. Transposons are sources of non-coding RNA, transcription factors binding sites and protein-coding genes due to domestication, exonization, and duplication. These genes contain nucleotide sequences that interact with non-coding RNAs processed from transposons transcripts, and therefore they are under the control of epigenetic regulatory networks involving transposons. Therefore, inherited features of the location and composition of transposons, along with a change in the phenotype, play an important role in the characteristics of responding to a variety of environmental stressors. This is the basis for the selection and survival of organisms with a specific composition and arrangement of transposons that contribute to adaptation under certain environmental conditions. In evolution, the capability to transpose into specific genome sites, regulate gene expression, and interact with transcription factors, along with the ability to respond to stressors, is the basis for rapid variability and speciation by altering the regulation of ontogenesis. The review presents evidence of tissue-specific and stage-specific features of transposon activation and their role in the regulation of cell differentiation to confirm their role in ecological morphogenesis.
Collapse
Affiliation(s)
| | - E. K. Khusnutdinova
- Bashkir State Medical University;
Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of RAS
| |
Collapse
|
230
|
Jiang F, Zhang J, Liu Q, Liu X, Wang H, He J, Kang L. Long-read direct RNA sequencing by 5'-Cap capturing reveals the impact of Piwi on the widespread exonization of transposable elements in locusts. RNA Biol 2019; 16:950-959. [PMID: 30982421 PMCID: PMC6546357 DOI: 10.1080/15476286.2019.1602437] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
The large genome of the migratory locust (Locusta migratoria) genome accumulates massive amount of accumulated transposable elements (TEs), which show intrinsic transcriptional activities. Hampering the ability to precisely determine full-length RNA transcript sequences are exonized TEs, which produce numerous highly similar fragments that are difficult to resolve using short-read sequencing technology. Here, we applied a 5'-Cap capturing method using Nanopore long-read direct RNA sequencing to characterize full-length transcripts in their native RNA form and to analyze the TE exonization pattern in the locust transcriptome. Our results revealed the widespread establishment of TE exonization and a substantial contribution of TEs to RNA splicing in the locust transcriptome. The results of the transcriptomic spectrum influenced by Piwi expression indicated that TE-derived sequences were the main targets of Piwi-mediated repression. Furthermore, our study showed that Piwi expression regulates the length of RNA transcripts containing TE-derived sequences, creating an alternative UTR usage. Overall, our results reveal the transcriptomic characteristics of TE exonization in the species characterized by large and repetitive genomes.
Collapse
Affiliation(s)
- Feng Jiang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Qing Liu
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Xiang Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huimin Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Jing He
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Le Kang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
231
|
Carlevaro-Fita J, Johnson R. Global Positioning System: Understanding Long Noncoding RNAs through Subcellular Localization. Mol Cell 2019; 73:869-883. [PMID: 30849394 DOI: 10.1016/j.molcel.2019.02.008] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/30/2019] [Accepted: 02/05/2019] [Indexed: 02/09/2023]
Abstract
The localization of long noncoding RNAs (lncRNAs) within the cell is the primary determinant of their molecular functions. LncRNAs are often thought of as chromatin-restricted regulators of gene transcription and chromatin structure. However, a rich population of cytoplasmic lncRNAs has come to light, with diverse roles including translational regulation, signaling, and respiration. RNA maps of increasing resolution and scope are revealing a subcellular world of highly specific localization patterns and hint at sequence-based address codes specifying lncRNA fates. We propose a new framework for analyzing sequencing-based data, which suggests that numbers of cytoplasmic lncRNA molecules rival those in the nucleus. New techniques promise to create high-resolution, transcriptome-wide maps associated with all organelles of the mammalian cell. Given its intimate link to molecular roles, subcellular localization provides a means of unlocking the mystery of lncRNA functions.
Collapse
Affiliation(s)
- Joana Carlevaro-Fita
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Rory Johnson
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
232
|
Guffanti G, Bartlett A, Klengel T, Klengel C, Hunter R, Glinsky G, Macciardi F. Novel Bioinformatics Approach Identifies Transcriptional Profiles of Lineage-Specific Transposable Elements at Distinct Loci in the Human Dorsolateral Prefrontal Cortex. Mol Biol Evol 2019; 35:2435-2453. [PMID: 30053206 PMCID: PMC6188555 DOI: 10.1093/molbev/msy143] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Expression of transposable elements (TE) is transiently activated during human preimplantation embryogenesis in a developmental stage- and cell type-specific manner and TE-mediated epigenetic regulation is intrinsically wired in developmental genetic networks in human embryos and embryonic stem cells. However, there are no systematic studies devoted to a comprehensive analysis of the TE transcriptome in human adult organs and tissues, including human neural tissues. To investigate TE expression in the human Dorsolateral Prefrontal Cortex (DLPFC), we developed and validated a straightforward analytical approach to chart quantitative genome-wide expression profiles of all annotated TE loci based on unambiguous mapping of discrete TE-encoded transcripts using a de novo assembly strategy. To initially evaluate the potential regulatory impact of DLPFC-expressed TE, we adopted a comparative evolutionary genomics approach across humans, primates, and rodents to document conservation patterns, lineage-specificity, and colocalizations with transcription factor binding sites mapped within primate- and human-specific TE. We identified 654,665 transcripts expressed from 477,507 distinct loci of different TE classes and families, the majority of which appear to have originated from primate-specific sequences. We discovered 4,687 human-specific and transcriptionally active TEs in DLPFC, of which the prominent majority (80.2%) appears spliced. Our analyses revealed significant associations of DLPFC-expressed TE with primate- and human-specific transcription factor binding sites, suggesting potential cross-talks of concordant regulatory functions. We identified 1,689 TEs differentially expressed in the DLPFC of Schizophrenia patients, a majority of which is located within introns of 1,137 protein-coding genes. Our findings imply that identified DLPFC-expressed TEs may affect human brain structures and functions following different evolutionary trajectories. On one side, hundreds of thousands of TEs maintained a remarkably high conservation for ∼8 My of primates’ evolution, suggesting that they are likely conveying evolutionary-constrained primate-specific regulatory functions. In parallel, thousands of transcriptionally active human-specific TE loci emerged more recently, suggesting that they could be relevant for human-specific behavioral or cognitive functions.
Collapse
Affiliation(s)
- Guia Guffanti
- Department of Psychiatry, Harvard Medical School, Cambridge, MA.,Division of Depression and Anxiety, McLean Hospital, Belmont, MA
| | - Andrew Bartlett
- Department of Psychology, University of Massachusetts, Boston, MA
| | - Torsten Klengel
- Department of Psychiatry, Harvard Medical School, Cambridge, MA.,Division of Depression and Anxiety, McLean Hospital, Belmont, MA.,Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Goettingen, Germany
| | - Claudia Klengel
- Department of Psychiatry, Harvard Medical School, Cambridge, MA.,Division of Depression and Anxiety, McLean Hospital, Belmont, MA
| | - Richard Hunter
- Department of Psychology, University of Massachusetts, Boston, MA
| | - Gennadi Glinsky
- Translational & Functional Genomics, Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA
| | - Fabio Macciardi
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA
| |
Collapse
|
233
|
Memon D, Bi J, Miller CJ. In silico prediction of housekeeping long intergenic non-coding RNAs reveals HKlincR1 as an essential player in lung cancer cell survival. Sci Rep 2019; 9:7372. [PMID: 31089191 PMCID: PMC6517443 DOI: 10.1038/s41598-019-43758-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/29/2019] [Indexed: 12/27/2022] Open
Abstract
Prioritising long intergenic noncoding RNAs (lincRNAs) for functional characterisation is a significant challenge. Here we applied computational approaches to discover lincRNAs expected to play a critical housekeeping (HK) role within the cell. Using the Illumina Human BodyMap RNA sequencing dataset as a starting point, we first identified lincRNAs ubiquitously expressed across a panel of human tissues. This list was then further refined by reference to conservation score, secondary structure and promoter DNA methylation status. Finally, we used tumour expression and copy number data to identify lincRNAs rarely downregulated or deleted in multiple tumour types. The resulting list of candidate essential lincRNAs was then subjected to co-expression analyses using independent data from ENCODE and The Cancer Genome Atlas (TCGA). This identified a substantial subset with a predicted role in DNA replication and cell cycle regulation. One of these, HKlincR1, was selected for further characterisation. Depletion of HKlincR1 affected cell growth in multiple lung cancer cell lines, and led to disruption of genes involved in cell growth and viability. In addition, HKlincR1 expression was correlated with overall survival in lung adenocarcinoma patients. Our in silico studies therefore reveal a set of housekeeping noncoding RNAs of interest both in terms of their role in normal homeostasis, and their relevance in tumour growth and maintenance.
Collapse
Affiliation(s)
- Danish Memon
- RNA Biology Group, CRUK Manchester Institute, The University of Manchester, Alderley Park, Manchester, SK10 4TG, UK
- European Bioinformatics Institute (EMBL-EBI)/Cancer Research UK Cambridge Institute, The University of Cambridge, Cambridge, UK
| | - Jing Bi
- RNA Biology Group, CRUK Manchester Institute, The University of Manchester, Alderley Park, Manchester, SK10 4TG, UK
| | - Crispin J Miller
- RNA Biology Group, CRUK Manchester Institute, The University of Manchester, Alderley Park, Manchester, SK10 4TG, UK.
| |
Collapse
|
234
|
Chen C, Wang W, Wang X, Shen D, Wang S, Wang Y, Gao B, Wimmers K, Mao J, Li K, Song C. Retrotransposons evolution and impact on lncRNA and protein coding genes in pigs. Mob DNA 2019; 10:19. [PMID: 31080521 PMCID: PMC6501411 DOI: 10.1186/s13100-019-0161-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/11/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Retrotransposons are the major determinants of genome sizes and they have shaped both genes and genomes in mammalian organisms, but their overall activity, diversity, and evolution dynamics, particularly their impact on protein coding and lncRNA genes in pigs remain largely unknown. RESULTS In the present study, we performed de novo detection of retrotransposons in pigs by using multiple pipelines, four distinct families of pig-specific L1 s classified into 51 distinct subfamilies and representing four evolution models and three expansion waves of pig-specific SINEs represented by three distinct families were identified. ERVs were classified into 18 families and found two most "modern" subfamilies in the pig genome. The transposition activity of pig L1 was verified by experiment, the sense and antisense promoter activities of young L1 5'UTRs and ERV LTRs and expression profiles of young retrotransposons in multiple tissues and cell lines were also validated. Furthermore, retrotransposons had an extensive impact on lncRNA and protein coding genes at both the genomic and transcriptomic levels. Most protein coding and lncRNA (> 80%) genes contained retrotransposon insertions, and about half of protein coding genes (44.30%) and one-fourth (24.13%) of lncRNA genes contained the youngest retrotransposon insertions. Nearly half of protein coding genes (43.78%) could generate chimeric transcripts with retrotransposons. Significant distribution bias of retrotransposon composition, location, and orientation in lncRNA and protein coding genes, and their transcripts, were observed. CONCLUSIONS In the current study, we characterized the classification and evolution profile of retrotransposons in pigs, experimentally proved the transposition activity of the young pig L1 subfamily, characterized the sense and antisense expression profiles and promoter activities of young retrotransposons, and investigated their impact on lncRNA and protein coding genes by defining the mobilome landscapes at the genomic and transcriptomic levels. These findings help provide a better understanding of retrotransposon evolution in mammal and their impact on the genome and transcriptome.
Collapse
Affiliation(s)
- Cai Chen
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Wei Wang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Xiaoyan Wang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Dan Shen
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Saisai Wang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Yali Wang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Bo Gao
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Jiude Mao
- Life Science Center, University of Missouri, Columbia, MO 65211 USA
| | - Kui Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengyi Song
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| |
Collapse
|
235
|
Distribution, Characteristics, and Regulatory Potential of Long Noncoding RNAs in Brown-Rot Fungi. Int J Genomics 2019; 2019:9702342. [PMID: 31192251 PMCID: PMC6525899 DOI: 10.1155/2019/9702342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/07/2019] [Indexed: 12/22/2022] Open
Abstract
Long noncoding RNAs have been thoroughly studied in plants, animals, and yeasts, where they play important roles as regulators of transcription. Nevertheless, almost nothing is known about their presence and characteristics in filamentous fungi, especially in basidiomycetes. In the present study, we have carried out an exhaustive annotation and characterization of lncRNAs in two lignin degrader basidiomycetes, Coniophora puteana and Serpula lacrymans. We identified 2,712 putative lncRNAs in the former and 2,242 in the latter, mainly originating from intergenic locations of transposon-sparse genomic regions. The lncRNA length, GC content, expression levels, and stability of the secondary structure differ from coding transcripts but are similar in these two species and resemble that of other eukaryotes. Nevertheless, they lack sequence conservation. Also, we found that lncRNAs are transcriptionally regulated in the same proportion as genes when the fungus actively decomposes soil organic matter. Finally, up to 7% of the upstream gene regions of Coniophora puteana and Serpula lacrymans are transcribed and produce lncRNAs. The study of expression trends in these gene-lncRNA pairs uncovered groups with similar and opposite transcriptional profiles which may be the result of cis-transcriptional regulation.
Collapse
|
236
|
Han L, Mu Z, Luo Z, Pan Q, Li L. New lncRNA annotation reveals extensive functional divergence of the transcriptome in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:394-405. [PMID: 30117291 DOI: 10.1111/jipb.12708] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
Long non-coding RNAs (lncRNAs), whose sequences are approximately 200 bp or longer and unlikely to encode proteins, may play an important role in eukaryotic gene regulation. Although the latest maize (Zea mays L.) reference genome provides an essential genomic resource, genome-wide annotations of maize lncRNAs have not been updated. Here, we report on a large transcriptomic dataset collected from 749 RNA sequencing experiments across different tissues and stages of the maize reference inbred B73 line and 60 from its wild relative teosinte. We identified 18,165 high-confidence lncRNAs in maize, of which 6,873 are conserved between maize and teosinte. We uncovered distinct genomic characteristics of conserved lncRNAs, non-conserved lncRNAs, and protein-coding transcripts. Intriguingly, Shannon entropy analysis showed that conserved lncRNAs are likely to be expressed similarly to protein-coding transcripts. Co-expression network analysis revealed significant variation in the degree of co-expression. Furthermore, selection analysis indicated that conserved lncRNAs are more likely than non-conserved lncRNAs to be located in regions subject to recent selection, indicating evolutionary differentiation. Our results provide the latest genome-wide annotation and analysis of maize lncRNAs and uncover potential functional divergence between protein-coding, conserved lncRNA, and non-conserved lncRNA genes, demonstrating the high complexity of the maize transcriptome.
Collapse
Affiliation(s)
- Linqian Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenna Mu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zi Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingchun Pan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
237
|
Barrera-Redondo J, Ibarra-Laclette E, Vázquez-Lobo A, Gutiérrez-Guerrero YT, Sánchez de la Vega G, Piñero D, Montes-Hernández S, Lira-Saade R, Eguiarte LE. The Genome of Cucurbita argyrosperma (Silver-Seed Gourd) Reveals Faster Rates of Protein-Coding Gene and Long Noncoding RNA Turnover and Neofunctionalization within Cucurbita. MOLECULAR PLANT 2019; 12:506-520. [PMID: 30630074 DOI: 10.1016/j.molp.2018.12.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/12/2018] [Accepted: 12/28/2018] [Indexed: 05/19/2023]
Abstract
Whole-genome duplications are an important source of evolutionary novelties that change the mode and tempo at which genetic elements evolve within a genome. The Cucurbita genus experienced a whole-genome duplication around 30 million years ago, although the evolutionary dynamics of the coding and noncoding genes in this genus have not yet been scrutinized. Here, we analyzed the genomes of four Cucurbita species, including a newly assembled genome of Cucurbita argyrosperma, and compared the gene contents of these species with those of five other members of the Cucurbitaceae family to assess the evolutionary dynamics of protein-coding and long intergenic noncoding RNA (lincRNA) genes after the genome duplication. We report that Cucurbita genomes have a higher protein-coding gene birth-death rate compared with the genomes of the other members of the Cucurbitaceae family. C. argyrosperma gene families associated with pollination and transmembrane transport had significantly faster evolutionary rates. lincRNA families showed high levels of gene turnover throughout the phylogeny, and 67.7% of the lincRNA families in Cucurbita showed evidence of birth from the neofunctionalization of previously existing protein-coding genes. Collectively, our results suggest that the whole-genome duplication in Cucurbita resulted in faster rates of gene family evolution through the neofunctionalization of duplicated genes.
Collapse
Affiliation(s)
- Josué Barrera-Redondo
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior s/n Anexo al Jardín Botánico, 04510 Ciudad de México, Mexico
| | - Enrique Ibarra-Laclette
- Departamento de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Carretera Antigua a Coatepec No. 351, Col. El Haya. C.P., Xalapa, Veracruz 91070, Mexico
| | - Alejandra Vázquez-Lobo
- Centro de Investigaciones en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos 62209, Mexico
| | - Yocelyn T Gutiérrez-Guerrero
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior s/n Anexo al Jardín Botánico, 04510 Ciudad de México, Mexico
| | - Guillermo Sánchez de la Vega
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior s/n Anexo al Jardín Botánico, 04510 Ciudad de México, Mexico
| | - Daniel Piñero
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior s/n Anexo al Jardín Botánico, 04510 Ciudad de México, Mexico
| | - Salvador Montes-Hernández
- Campo Experimental Bajío, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Km 6.5 Carretera Celaya-San Miguel de Allende, Celaya, Guanajuato 38110, Mexico
| | - Rafael Lira-Saade
- UBIPRO, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios #1, Col. Los Reyes Iztacala, Tlanepantla, Edo. de Mex 54090, Mexico.
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior s/n Anexo al Jardín Botánico, 04510 Ciudad de México, Mexico.
| |
Collapse
|
238
|
Mustafin RN, Khusnutdinova EK. Prospects in the Search for Peptides for Specific Regulation of Aging. ADVANCES IN GERONTOLOGY 2019. [DOI: 10.1134/s2079057019020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
239
|
Villarreal LP, Witzany G. That is life: communicating RNA networks from viruses and cells in continuous interaction. Ann N Y Acad Sci 2019; 1447:5-20. [PMID: 30865312 DOI: 10.1111/nyas.14040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/13/2019] [Accepted: 01/31/2019] [Indexed: 02/06/2023]
Abstract
All the conserved detailed results of evolution stored in DNA must be read, transcribed, and translated via an RNA-mediated process. This is required for the development and growth of each individual cell. Thus, all known living organisms fundamentally depend on these RNA-mediated processes. In most cases, they are interconnected with other RNAs and their associated protein complexes and function in a strictly coordinated hierarchy of temporal and spatial steps (i.e., an RNA network). Clearly, all cellular life as we know it could not function without these key agents of DNA replication, namely rRNA, tRNA, and mRNA. Thus, any definition of life that lacks RNA functions and their networks misses an essential requirement for RNA agents that inherently regulate and coordinate (communicate to) cells, tissues, organs, and organisms. The precellular evolution of RNAs occurred at the core of the emergence of cellular life and the question remained of how both precellular and cellular levels are interconnected historically and functionally. RNA networks and RNA communication can interconnect these levels. With the reemergence of virology in evolution, it became clear that communicating viruses and subviral infectious genetic parasites are bridging these two levels by invading, integrating, coadapting, exapting, and recombining constituent parts in host genomes for cellular requirements in gene regulation and coordination aims. Therefore, a 21st century understanding of life is of an inherently social process based on communicating RNA networks, in which viruses and cells continuously interact.
Collapse
Affiliation(s)
- Luis P Villarreal
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | | |
Collapse
|
240
|
Xie J, Li Y, Liu X, Zhao Y, Li B, Ingvarsson PK, Zhang D. Evolutionary Origins of Pseudogenes and Their Association with Regulatory Sequences in Plants. THE PLANT CELL 2019; 31:563-578. [PMID: 30760562 PMCID: PMC6482637 DOI: 10.1105/tpc.18.00601] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/03/2018] [Accepted: 02/12/2019] [Indexed: 05/06/2023]
Abstract
Pseudogenes (Ψs), nonfunctional relatives of functional genes, form by duplication or retrotransposition, and loss of gene function by disabling mutations. Evolutionary analysis provides clues to Ψ origins and effects on gene regulation. However, few systematic studies of plant Ψs have been conducted, hampering comparative analyses. Here, we examined the origin, evolution, and expression patterns of Ψs and their relationships with noncoding sequences in seven angiosperm plants. We identified ∼250,000 Ψs, most of which are more lineage specific than protein-coding genes. The distribution of Ψs on the chromosome indicates that genome recombination may contribute to Ψ elimination. Most Ψs evolve rapidly in terms of sequence and expression levels, showing tissue- or stage-specific expression patterns. We found that a surprisingly large fraction of nontransposable element regulatory noncoding RNAs (microRNAs and long noncoding RNAs) originate from transcription of Ψ proximal upstream regions. We also found that transcription factor binding sites preferentially occur in putative Ψ proximal upstream regions compared with random intergenic regions, suggesting that Ψs have conditioned genome evolution by providing transcription factor binding sites that serve as promoters and enhancers. We therefore propose that rapid rewiring of Ψ transcriptional regulatory regions is a major mechanism driving the origin of novel regulatory modules.
Collapse
Affiliation(s)
- Jianbo Xie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China
| | - Ying Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China
| | - Xiaomin Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China
| | - Yiyang Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China
| | - Bailian Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China
- Department of Forestry, North Carolina State University, Raleigh, North Carolina 27695-8203
| | - Pär K Ingvarsson
- Linnean Center for Plant Biology, Department of Plant Biology, Swedish University of Agricultural Sciences, Box 7080, SE-750 07 Uppsala, Sweden
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China
| |
Collapse
|
241
|
Zhao X, Xiong J, Mao F, Sheng Y, Chen X, Feng L, Dui W, Yang W, Kapusta A, Feschotte C, Coyne RS, Miao W, Gao S, Liu Y. RNAi-dependent Polycomb repression controls transposable elements in Tetrahymena. Genes Dev 2019; 33:348-364. [PMID: 30808657 PMCID: PMC6411011 DOI: 10.1101/gad.320796.118] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/02/2019] [Indexed: 12/30/2022]
Abstract
RNAi and Polycomb repression play evolutionarily conserved and often coordinated roles in transcriptional silencing. Here, we show that, in the protozoan Tetrahymena thermophila, germline-specific internally eliminated sequences (IESs)-many related to transposable elements (TEs)-become transcriptionally activated in mutants deficient in the RNAi-dependent Polycomb repression pathway. Germline TE mobilization also dramatically increases in these mutants. The transition from noncoding RNA (ncRNA) to mRNA production accompanies transcriptional activation of TE-related sequences and vice versa for transcriptional silencing. The balance between ncRNA and mRNA production is potentially affected by cotranscriptional processing as well as RNAi and Polycomb repression. We posit that interplay between RNAi and Polycomb repression is a widely conserved phenomenon, whose ancestral role is epigenetic silencing of TEs.
Collapse
Affiliation(s)
- Xiaolu Zhao
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Fengbiao Mao
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yalan Sheng
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Xiao Chen
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Lifang Feng
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Wen Dui
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Wentao Yang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Aurélie Kapusta
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Robert S Coyne
- J. Craig Venter Institute, Rockville, Maryland 20850, USA
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shan Gao
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Yifan Liu
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
242
|
Babaian A, Thompson IR, Lever J, Gagnier L, Karimi MM, Mager DL. LIONS: analysis suite for detecting and quantifying transposable element initiated transcription from RNA-seq. Bioinformatics 2019; 35:3839-3841. [DOI: 10.1093/bioinformatics/btz130] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/14/2019] [Accepted: 02/19/2019] [Indexed: 12/28/2022] Open
Abstract
Abstract
Summary
Transposable elements (TEs) influence the evolution of novel transcriptional networks yet the specific and meaningful interpretation of how TE-derived transcriptional initiation contributes to the transcriptome has been marred by computational and methodological deficiencies. We developed LIONS for the analysis of RNA-seq data to specifically detect and quantify TE-initiated transcripts.
Availability and implementation
Source code, container, test data and instruction manual are freely available at www.github.com/ababaian/LIONS.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Artem Babaian
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada
- University of British Columbia, Vancouver, BC, Canada
| | - I Richard Thompson
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Jake Lever
- University of British Columbia, Vancouver, BC, Canada
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Liane Gagnier
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada
| | - Mohammad M Karimi
- MRC London Institute of Medical Sciences, Imperial College, London, UK
| | - Dixie L Mager
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada
- University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
243
|
Carlevaro-Fita J, Polidori T, Das M, Navarro C, Zoller TI, Johnson R. Ancient exapted transposable elements promote nuclear enrichment of human long noncoding RNAs. Genome Res 2019. [PMID: 30587508 DOI: 10.1101/gr.229922.117.freely] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Abstract
The sequence domains underlying long noncoding RNA (lncRNA) activities, including their characteristic nuclear enrichment, remain largely unknown. It has been proposed that these domains can originate from neofunctionalized fragments of transposable elements (TEs), otherwise known as RIDLs (repeat insertion domains of lncRNA), although just a handful have been identified. It is challenging to distinguish functional RIDL instances against a numerous genomic background of neutrally evolving TEs. We here show evidence that a subset of TE types experience evolutionary selection in the context of lncRNA exons. Together these comprise an enrichment group of 5374 TE fragments in 3566 loci. Their host lncRNAs tend to be functionally validated and associated with disease. This RIDL group was used to explore the relationship between TEs and lncRNA subcellular localization. By using global localization data from 10 human cell lines, we uncover a dose-dependent relationship between nuclear/cytoplasmic distribution and evolutionarily conserved L2b, MIRb, and MIRc elements. This is observed in multiple cell types and is unaffected by confounders of transcript length or expression. Experimental validation with engineered transgenes shows that these TEs drive nuclear enrichment in a natural sequence context. Together these data reveal a role for TEs in regulating the subcellular localization of lncRNAs.
Collapse
Affiliation(s)
- Joana Carlevaro-Fita
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010 Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Taisia Polidori
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010 Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Monalisa Das
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010 Bern, Switzerland
| | - Carmen Navarro
- Department of Computer Science and Artificial Intelligence, University of Granada, 18071 Granada, Spain
| | - Tatjana I Zoller
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010 Bern, Switzerland
| | - Rory Johnson
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
244
|
Zhang J, Wang H, Niu G, Liu Y, Wang Y, Zhang L, Pei Y, Zhu H, Dai P, Chen C. Deciphering DMET genetic data: comprehensive assessment of Northwestern Han, Tibetan, Uyghur populations and their comparison to eleven 1000 genome populations. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 46:S1176-S1185. [PMID: 30688101 DOI: 10.1080/21691401.2018.1533849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We investigated the allele frequencies of drug absorption, distribution, metabolism and elimination (ADME)-related drug-metabolizing enzymes and transporters (DMET) genes in the Northwestern Han, Tibetan and Uyghur populations and compared the related genes in these three populations with those in eleven 1000 Genome populations. We examined 1936 single nucleotide polymorphisms of 225 DMET genes involved in ADME processes and found 732, 679 and 804 sites were polymorphic in Han, Tibetan and Uyghur. Tibetan differed from Han in only four sites (p < .05), whereas Uyghur differed from Han and Tibetan in 24 and 21 sites, respectively (p < .05). The distributions of 1058 genotyping data of 245 individuals from Han, Tibetan and Uyghur were compared with 1207 other individuals from the eleven 1000 Genomes populations. The top four populations in Han that exhibited the smallest pairwise Fst values were CHB, Tibetan, CHD and JPT; those in Tibetan were Han, CHB, Uyghur and CHD; and those in Uyghur were Han, Tibetan, GIH and CEU. MEGA results revealed that CHB, CHD, JPT, Han, Tibetan and Uyghur were grouped in cluster 1. GIH, MEX, CEU and TSI were grouped in cluster 2. MKK, ASW, LWK and YRI were grouped in cluster 3.
Collapse
Affiliation(s)
- Jiayi Zhang
- a College of Life Science , Northwest University , Xi'an , China
| | - Huijuan Wang
- a College of Life Science , Northwest University , Xi'an , China
| | - Geng Niu
- a College of Life Science , Northwest University , Xi'an , China
| | - Yongkang Liu
- a College of Life Science , Northwest University , Xi'an , China
| | - Yanxia Wang
- a College of Life Science , Northwest University , Xi'an , China
| | - Lirong Zhang
- a College of Life Science , Northwest University , Xi'an , China
| | - Yanrui Pei
- a College of Life Science , Northwest University , Xi'an , China
| | - Hongli Zhu
- a College of Life Science , Northwest University , Xi'an , China.,b National Engineering Research Center for Miniaturized Detection Systems , Northwest University , Xi'an , China
| | - Penggao Dai
- a College of Life Science , Northwest University , Xi'an , China.,b National Engineering Research Center for Miniaturized Detection Systems , Northwest University , Xi'an , China
| | - Chao Chen
- a College of Life Science , Northwest University , Xi'an , China.,b National Engineering Research Center for Miniaturized Detection Systems , Northwest University , Xi'an , China
| |
Collapse
|
245
|
Song Y, Li L, Yang Z, Zhao G, Zhang X, Wang L, Zheng L, Zhuo F, Yin H, Ge X, Zhang C, Yang Z, Ren M, Li F. Target of Rapamycin (TOR) Regulates the Expression of lncRNAs in Response to Abiotic Stresses in Cotton. Front Genet 2019; 9:690. [PMID: 30671083 PMCID: PMC6332313 DOI: 10.3389/fgene.2018.00690] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022] Open
Abstract
TOR (Target of Rapamycin) kinase is an evolutionarily conserved protein kinase, which integrates stress-related cues with growth and metabolic outputs. Long non-coding RNAs (lncRNAs) play a vital role in the regulation of eukaryotic genes. However, little is known about TOR's function in regulating the expression of lncRNAs in plants. In this study, four putative homologous genes encoding the TOR protein were identified by utilizing the recently completed cotton genome. Pharmacological experiments with TOR inhibitor AZD8055 and on silencing GhTOR genes resulted in obvious cotton growth retardation, indicating the conserved role of TOR in plant growth. The expression pattern analyses in different tissues reveal that TOR may play a role in root development, and the transcript levels of TOR genes were changed under different stress conditions. Importantly, we found TOR may be a key player in regulating the expression of long non-coding RNAs (lncRNAs). A total of 10,315 lncRNAs were discovered in cotton seedlings, 90.7% of which were long intergenic ncRNAs. Moreover, we identified the differentially expressed lncRNAs, of which 296 were significantly upregulated and 105 were downregulated in TOR inactivated plants. GO and KEGG analyses of differentially expressed lncRNA neighboring genes reveal that these differentially expressed lncRNA-targeted genes are involved in many life processes, including stress response, glutathione, and ribosomes in cotton. A series of differentially expressed lncRNAs potentially involved in plant stress response was identified under TOR inhibition. Collectively, these results suggest that cotton TOR proteins may directly modulate the expression of putative stress-related lncRNAs and eventually play a potential role in the cotton stress response.
Collapse
Affiliation(s)
- Yun Song
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.,Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Linxuan Li
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Zhaoen Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.,Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ge Zhao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.,Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xueyan Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.,Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Lingling Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.,Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Lei Zheng
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.,Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fengping Zhuo
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Huan Yin
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xiaoyang Ge
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.,Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Chaojun Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.,Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zuoren Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.,Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Maozhi Ren
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.,Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
246
|
Hennessy EJ, van Solingen C, Scacalossi KR, Ouimet M, Afonso MS, Prins J, Koelwyn GJ, Sharma M, Ramkhelawon B, Carpenter S, Busch A, Chernogubova E, Matic LP, Hedin U, Maegdefessel L, Caffrey BE, Hussein MA, Ricci EP, Temel RE, Garabedian MJ, Berger JS, Vickers KC, Kanke M, Sethupathy P, Teupser D, Holdt LM, Moore KJ. The long noncoding RNA CHROME regulates cholesterol homeostasis in primate. Nat Metab 2019; 1:98-110. [PMID: 31410392 PMCID: PMC6691505 DOI: 10.1038/s42255-018-0004-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The human genome encodes thousands of long non-coding RNAs (lncRNAs), the majority of which are poorly conserved and uncharacterized. Here we identify a primate-specific lncRNA (CHROME), elevated in the plasma and atherosclerotic plaques of individuals with coronary artery disease, that regulates cellular and systemic cholesterol homeostasis. LncRNA CHROME expression is influenced by dietary and cellular cholesterol via the sterol-activated liver X receptor transcription factors, which control genes mediating responses to cholesterol overload. Using gain- and loss-of-function approaches, we show that CHROME promotes cholesterol efflux and HDL biogenesis by curbing the actions of a set of functionally related microRNAs that repress genes in those pathways. CHROME knockdown in human hepatocytes and macrophages increases levels of miR-27b, miR-33a, miR-33b and miR-128, thereby reducing expression of their overlapping target gene networks and associated biologic functions. In particular, cells lacking CHROME show reduced expression of ABCA1, which regulates cholesterol efflux and nascent HDL particle formation. Collectively, our findings identify CHROME as a central component of the non-coding RNA circuitry controlling cholesterol homeostasis in humans.
Collapse
Affiliation(s)
- Elizabeth J. Hennessy
- Department of Medicine, Leon H. Charney Division of
Cardiology, New York University School of Medicine, New York, New York, USA
| | - Coen van Solingen
- Department of Medicine, Leon H. Charney Division of
Cardiology, New York University School of Medicine, New York, New York, USA
| | - Kaitlyn R. Scacalossi
- Department of Medicine, Leon H. Charney Division of
Cardiology, New York University School of Medicine, New York, New York, USA
| | - Mireille Ouimet
- Department of Medicine, Leon H. Charney Division of
Cardiology, New York University School of Medicine, New York, New York, USA
| | - Milessa S. Afonso
- Department of Medicine, Leon H. Charney Division of
Cardiology, New York University School of Medicine, New York, New York, USA
| | - Jurrien Prins
- Department of Internal Medicine (Nephrology), Einthoven
Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center,
Leiden, The Netherlands
| | - Graeme J. Koelwyn
- Department of Medicine, Leon H. Charney Division of
Cardiology, New York University School of Medicine, New York, New York, USA
| | - Monika Sharma
- Department of Medicine, Leon H. Charney Division of
Cardiology, New York University School of Medicine, New York, New York, USA
| | - Bhama Ramkhelawon
- Department of Medicine, Leon H. Charney Division of
Cardiology, New York University School of Medicine, New York, New York, USA
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology,
University of California, Santa Cruz, California, USA
| | - Albert Busch
- Department of Molecular Medicine and Surgery, Karolinska
Institute, Stockholm, Sweden
- Department of Vascular and Endovascular Surgery, Klinikum
Rechts der Isar, Technical University Munich, Munich, Germany
| | | | - Ljubica Perisic Matic
- Department of Molecular Medicine and Surgery, Karolinska
Institute, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska
Institute, Stockholm, Sweden
| | - Lars Maegdefessel
- Department of Molecular Medicine and Surgery, Karolinska
Institute, Stockholm, Sweden
- Department of Vascular and Endovascular Surgery, Klinikum
Rechts der Isar, Technical University Munich, Munich, Germany
| | | | - Maryem A. Hussein
- Department of Microbiology, New York University School of
Medicine, New York, New York, USA
| | - Emiliano P. Ricci
- INSERM U1111, Centre International de Recherche en
Infectiologie, Ecole Normale Supérieure de Lyon, Université de Lyon,
Lyon, France
| | - Ryan E. Temel
- Saha Cardiovascular Research Center, University of
Kentucky, Lexington, Kentucky, USA
| | - Michael J. Garabedian
- Department of Microbiology, New York University School of
Medicine, New York, New York, USA
| | - Jeffrey S. Berger
- Department of Medicine, Leon H. Charney Division of
Cardiology, New York University School of Medicine, New York, New York, USA
| | - Kasey C. Vickers
- Department of Medicine, Vanderbilt University Medical
Center, Nashville, Tenessee, USA
| | - Matthew Kanke
- Department of Biomedical Sciences, College of Veterinary
Medicine, Cornell University Ithaca, New York, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary
Medicine, Cornell University Ithaca, New York, USA
| | - Daniel Teupser
- Institute of Laboratory Medicine,
Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lesca M. Holdt
- Institute of Laboratory Medicine,
Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kathryn J. Moore
- Department of Medicine, Leon H. Charney Division of
Cardiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
247
|
Sauvageau M. Diverging RNPs: Toward Understanding lncRNA-Protein Interactions and Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:285-312. [PMID: 31811638 DOI: 10.1007/978-3-030-31434-7_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RNA-protein interactions are essential to a variety of biological processes. The realization that mammalian genomes are pervasively transcribed brought a tidal wave of tens of thousands of newly identified long noncoding RNAs (lncRNAs) and raised questions about their purpose in cells. The vast majority of lncRNAs have yet to be studied, and it remains to be determined to how many of these transcripts a function can be ascribed. However, results gleaned from studying a handful of these macromolecules have started to reveal common themes of biological function and mechanism of action involving intricate RNA-protein interactions. Some lncRNAs were shown to regulate the chromatin and transcription of distant and neighboring genes in the nucleus, while others regulate the translation or localization of proteins in the cytoplasm. Some lncRNAs were found to be crucial during development, while mutations and aberrant expression of others have been associated with several types of cancer and a plethora of diseases. Over the last few years, the establishment of new technologies has been key in providing the tools to decode the rules governing lncRNA-protein interactions and functions. This chapter will highlight the general characteristics of lncRNAs, their function, and their mode of action, with a special focus on protein interactions. It will also describe the methods at the disposition of scientists to help them cross this next frontier in our understanding of lncRNA biology.
Collapse
Affiliation(s)
- Martin Sauvageau
- Montreal Clinical Research Institute (IRCM), Montréal, QC, Canada. .,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
248
|
Tiwari P, Gupta S, Kumar A, Sharma M, Sundararajan VS, Kothari SL, Mathur SK, Medicherla KM, Suravajhala P, Malik B. Characterizing and Functional Assignment of Noncoding RNAs. ENCYCLOPEDIA OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY 2019:47-59. [DOI: 10.1016/b978-0-12-809633-8.20077-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
249
|
Zhang X, Wang J, Li J, Chen W, Liu C. CRlncRC: a machine learning-based method for cancer-related long noncoding RNA identification using integrated features. BMC Med Genomics 2018; 11:120. [PMID: 30598114 PMCID: PMC6311943 DOI: 10.1186/s12920-018-0436-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are widely involved in the initiation and development of cancer. Although some computational methods have been proposed to identify cancer-related lncRNAs, there is still a demanding to improve the prediction accuracy and efficiency. In addition, the quick-update data of cancer, as well as the discovery of new mechanism, also underlay the possibility of improvement of cancer-related lncRNA prediction algorithm. In this study, we introduced CRlncRC, a novel Cancer-Related lncRNA Classifier by integrating manifold features with five machine-learning techniques. RESULTS CRlncRC was built on the integration of genomic, expression, epigenetic and network, totally in four categories of features. Five learning techniques were exploited to develop the effective classification model including Random Forest (RF), Naïve bayes (NB), Support Vector Machine (SVM), Logistic Regression (LR) and K-Nearest Neighbors (KNN). Using ten-fold cross-validation, we showed that RF is the best model for classifying cancer-related lncRNAs (AUC = 0.82). The feature importance analysis indicated that epigenetic and network features play key roles in the classification. In addition, compared with other existing classifiers, CRlncRC exhibited a better performance both in sensitivity and specificity. We further applied CRlncRC to lncRNAs from the TANRIC (The Atlas of non-coding RNA in Cancer) dataset, and identified 121 cancer-related lncRNA candidates. These potential cancer-related lncRNAs showed a certain kind of cancer-related indications, and many of them could find convincing literature supports. CONCLUSIONS Our results indicate that CRlncRC is a powerful method for identifying cancer-related lncRNAs. Machine-learning-based integration of multiple features, especially epigenetic and network features, had a great contribution to the cancer-related lncRNA prediction. RF outperforms other learning techniques on measurement of model sensitivity and specificity. In addition, using CRlncRC method, we predicted a set of cancer-related lncRNAs, all of which displayed a strong relevance to cancer as a valuable conception for the further cancer-related lncRNA function studies.
Collapse
Affiliation(s)
- Xuan Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, Yunnan, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jun Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, Yunnan, People's Republic of China.,Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Jing Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, Yunnan, People's Republic of China
| | - Wen Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, Yunnan, People's Republic of China
| | - Changning Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, Yunnan, People's Republic of China.
| |
Collapse
|
250
|
Carlevaro-Fita J, Polidori T, Das M, Navarro C, Zoller TI, Johnson R. Ancient exapted transposable elements promote nuclear enrichment of human long noncoding RNAs. Genome Res 2018; 29:208-222. [PMID: 30587508 PMCID: PMC6360812 DOI: 10.1101/gr.229922.117] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 12/18/2018] [Indexed: 01/02/2023]
Abstract
The sequence domains underlying long noncoding RNA (lncRNA) activities, including their characteristic nuclear enrichment, remain largely unknown. It has been proposed that these domains can originate from neofunctionalized fragments of transposable elements (TEs), otherwise known as RIDLs (repeat insertion domains of lncRNA), although just a handful have been identified. It is challenging to distinguish functional RIDL instances against a numerous genomic background of neutrally evolving TEs. We here show evidence that a subset of TE types experience evolutionary selection in the context of lncRNA exons. Together these comprise an enrichment group of 5374 TE fragments in 3566 loci. Their host lncRNAs tend to be functionally validated and associated with disease. This RIDL group was used to explore the relationship between TEs and lncRNA subcellular localization. By using global localization data from 10 human cell lines, we uncover a dose-dependent relationship between nuclear/cytoplasmic distribution and evolutionarily conserved L2b, MIRb, and MIRc elements. This is observed in multiple cell types and is unaffected by confounders of transcript length or expression. Experimental validation with engineered transgenes shows that these TEs drive nuclear enrichment in a natural sequence context. Together these data reveal a role for TEs in regulating the subcellular localization of lncRNAs.
Collapse
Affiliation(s)
- Joana Carlevaro-Fita
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland.,Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010 Bern, Switzerland.,Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Taisia Polidori
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland.,Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010 Bern, Switzerland.,Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Monalisa Das
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland.,Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010 Bern, Switzerland
| | - Carmen Navarro
- Department of Computer Science and Artificial Intelligence, University of Granada, 18071 Granada, Spain
| | - Tatjana I Zoller
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland.,Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010 Bern, Switzerland
| | - Rory Johnson
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland.,Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010 Bern, Switzerland
| |
Collapse
|