201
|
Brandi G, De Lorenzo S, Candela M, Pantaleo MA, Bellentani S, Tovoli F, Saccoccio G, Biasco G. Microbiota, NASH, HCC and the potential role of probiotics. Carcinogenesis 2017; 38:231-240. [PMID: 28426878 DOI: 10.1093/carcin/bgx007] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/15/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for the majority of primary liver cancers. Clearly identifiable risk factors are lacking in up to 30% of HCC patients and most of these cases are attributed to non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Beyond the known risk factors for NAFLD, the intestinal microbiota, in particular dysbiosis (defined as any change in the composition of the microbiota commonly found in healthy conditions) is emerging as a new factor promoting the development of chronic liver diseases and HCC. Intestinal microbes produce a large array of bioactive molecules from mainly dietary compounds, establishing an intense microbiota-host transgenomic metabolism with a major impact on physiological and pathological conditions. A better knowledge of these 'new' pathways could help unravel the pathogenesis of HCC in NAFLD to devise new prevention strategies. Currently unsettled issues include the relative role of a 'negative microbiota' (in addition to the other known risk factors for NASH) and the putative prevention of NAFLD through modulation of the gut microbiota.
Collapse
Affiliation(s)
- Giovanni Brandi
- Department of Experimental, Diagnostic and Specialty Medicine, Sant'Orsola-Malpighi Hospital, Bologna University, 40138 Bologna, Italy
- "G. Prodi" Interdepartmental Center for Cancer Research (C.I.R.C.), Bologna University, via Massarenti 9, 40138 Bologna, Italy
| | - Stefania De Lorenzo
- Department of Experimental, Diagnostic and Specialty Medicine, Sant'Orsola-Malpighi Hospital, Bologna University, 40138 Bologna, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, Bologna University, via Belmeloro 6, 40126 Bologna, Italy
| | - Maria Abbondanza Pantaleo
- Department of Experimental, Diagnostic and Specialty Medicine, Sant'Orsola-Malpighi Hospital, Bologna University, 40138 Bologna, Italy
- "G. Prodi" Interdepartmental Center for Cancer Research (C.I.R.C.), Bologna University, via Massarenti 9, 40138 Bologna, Italy
| | - Stefano Bellentani
- Department of Gastroenterology and Hepatology, Centre Point Clinic, 24e Little Russell Street, Holborn, London WC1A 2HS, UK
| | - Francesco Tovoli
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | | | - Guido Biasco
- Department of Experimental, Diagnostic and Specialty Medicine, Sant'Orsola-Malpighi Hospital, Bologna University, 40138 Bologna, Italy
- "G. Prodi" Interdepartmental Center for Cancer Research (C.I.R.C.), Bologna University, via Massarenti 9, 40138 Bologna, Italy
| |
Collapse
|
202
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disorder in the world, yet the pathogenesis of the disease is not well elucidated. Due to the close anatomic and functional association between the intestinal lumen and the liver through the portal system, it is speculated that the gut microbiome may play a pivotal role in the pathogenesis of NAFLD. Furthermore, diet, which can modulate the gut microbiome and several metabolic pathways involved in NAFLD development, shows a potential tripartite relation between the gut, diet, and the liver. In this review, we summarize the current evidence that supports the association between NAFLD, the gut microbiome, and the role of diet.
Collapse
Affiliation(s)
- Zeinab Mokhtari
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Deanna L Gibson
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, British Columbia, Canada; and
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran;
- Department of Gastroenterology, Hepatology, and Nutrition, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
203
|
Klinder A, Shen Q, Heppel S, Lovegrove JA, Rowland I, Tuohy KM. Impact of increasing fruit and vegetables and flavonoid intake on the human gut microbiota. Food Funct 2017; 7:1788-96. [PMID: 26757793 DOI: 10.1039/c5fo01096a] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Epidemiological studies have shown protective effects of fruits and vegetables (F&V) in lowering the risk of developing cardiovascular diseases (CVD) and cancers. Plant-derived dietary fibre (non-digestible polysaccharides) and/or flavonoids may mediate the observed protective effects particularly through their interaction with the gut microbiota. The aim of this study was to assess the impact of fruit and vegetable (F&V) intake on gut microbiota, with an emphasis on the role of flavonoids, and further to explore relationships between microbiota and factors associated with CVD risk. In the study, a parallel design with 3 study groups, participants in the two intervention groups representing high-flavonoid (HF) and low flavonoid (LF) intakes were asked to increase their daily F&V intake by 2, 4 and 6 portions for a duration of 6 weeks each, while a third (control) group continued with their habitual diet. Faecal samples were collected at baseline and after each dose from 122 subjects. Faecal bacteria enumeration was performed by fluorescence in situ hybridisation (FISH). Correlations of dietary components, flavonoid intake and markers of CVD with bacterial numbers were also performed. A significant dose X treatment interaction was only found for Clostidium leptum-Ruminococcus bromii/flavefaciens with a significant increase after intake of 6 additional portions in the LF group. Correlation analysis of the data from all 122 subjects independent from dietary intervention indicated an inhibitory role of F&V intake, flavonoid content and sugars against the growth of potentially pathogenic clostridia. Additionally, we observed associations between certain bacterial populations and CVD risk factors including plasma TNF-α, plasma lipids and BMI/waist circumference.
Collapse
Affiliation(s)
- Annett Klinder
- Department of Food and Nutritional Sciences, University of Reading, Reading, Berkshire, UK. and Clinic of Orthopaedics, University Medicine Rostock, Rostock, Germany
| | - Qing Shen
- Department of Food and Nutritional Sciences, University of Reading, Reading, Berkshire, UK.
| | - Susanne Heppel
- Department of Food and Nutritional Sciences, University of Reading, Reading, Berkshire, UK.
| | - Julie A Lovegrove
- Department of Food and Nutritional Sciences, University of Reading, Reading, Berkshire, UK.
| | - Ian Rowland
- Department of Food and Nutritional Sciences, University of Reading, Reading, Berkshire, UK.
| | - Kieran M Tuohy
- Department of Food and Nutritional Sciences, University of Reading, Reading, Berkshire, UK. and Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| |
Collapse
|
204
|
Does Nutrition Matter in Liver Disease? LIVER PATHOPHYSIOLOGY 2017. [DOI: 10.1016/b978-0-12-804274-8.00053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
205
|
Wang Y, Wu Y, Wang Y, Fu A, Gong L, Li W, Li Y. Bacillus amyloliquefaciens SC06 alleviates the oxidative stress of IPEC-1 via modulating Nrf2/Keap1 signaling pathway and decreasing ROS production. Appl Microbiol Biotechnol 2016; 101:3015-3026. [PMID: 27957629 DOI: 10.1007/s00253-016-8032-4] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 11/23/2016] [Accepted: 11/26/2016] [Indexed: 12/20/2022]
Abstract
Oxidative stress (OS) plays a major role in the gastrointestinal disorders. Although probiotics were reported to repress OS, few researches compared the antioxidant ability of different Bacillus strains and deciphered the mechanisms. To select a Bacillus strain with higher antioxidant capacity, we used H2O2 to induce intestinal porcine epithelial cell 1 (IPEC-1) OS model. The most suitable H2O2 concentration and incubation time were determined by the half lethal dose and methyl thiazolyl tetrazolium. Correlation analysis was performed to choose a sensitive indicator for OS. As for the comparison of Bacillus, cells were divided into control, Bacillus treatment, H2O2 treatment, and Bacillus pre-protection + H2O2 treatment. Bacillus were co-cultured with IPEC-1 for 3 h in Bacillus and Bacillus pre-protection + H2O2 treatments. Then, based on OS model, 300 μmol/L H2O2 was added into medium of H2O2 and Bacillus pre-protection + H2O2 treatments for another 12 h. Antioxidant and apoptosis gene expressions were detected to screen the target strain. Nuclear factor erythroid-derived 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein1 (Keap1) pathway, reactive oxygen species (ROS) production, mitochondrial membrane potential (Δψm), apoptosis, and necrosis were analyzed. Results revealed that heme oxygenase-1 (HO-1) gene expression had a positive correlation with H2O2 induction. Moreover, Bacillus amyloliquefaciens SC06 (SC06)-meditated IPEC-1 showed the best antioxidant capacity though modulating Nrf2 phosphorylation. Δψm was elevated, while ROS generation was reduced with SC06 pre-protection, resulting in decreased apoptosis and necrosis. Altogether, HO-1 expression could be regarded as an OS indicator. The regulation of Nrf2/Keap1 pathway and ROS production by SC06 are involved in alleviating OS of IPEC-1.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanping Wu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yibing Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Aikun Fu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Li Gong
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yali Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
206
|
Bluemel S, Williams B, Knight R, Schnabl B. Precision medicine in alcoholic and nonalcoholic fatty liver disease via modulating the gut microbiota. Am J Physiol Gastrointest Liver Physiol 2016; 311:G1018-G1036. [PMID: 27686615 PMCID: PMC5206291 DOI: 10.1152/ajpgi.00245.2016] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/25/2016] [Indexed: 02/08/2023]
Abstract
Alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) represent a major health burden in industrialized countries. Although alcohol abuse and nutrition play a central role in disease pathogenesis, preclinical models support a contribution of the gut microbiota to ALD and NAFLD. This review describes changes in the intestinal microbiota compositions related to ALD and NAFLD. Findings from in vitro, animal, and human studies are used to explain how intestinal pathology contributes to disease progression. This review summarizes the effects of untargeted microbiome modifications using antibiotics and probiotics on liver disease in animals and humans. While both affect humoral inflammation, regression of advanced liver disease or mortality has not been demonstrated. This review further describes products secreted by Lactobacillus- and microbiota-derived metabolites, such as fatty acids and antioxidants, that could be used for precision medicine in the treatment of liver disease. A better understanding of host-microbial interactions is allowing discovery of novel therapeutic targets in the gut microbiota, enabling new treatment options that restore the intestinal ecosystem precisely and influence liver disease. The modulation options of the gut microbiota and precision medicine employing the gut microbiota presented in this review have excellent prospects to improve treatment of liver disease.
Collapse
Affiliation(s)
- Sena Bluemel
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Brandon Williams
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Rob Knight
- Departments of Pediatrics and Computer Science and Engineering, University of California San Diego, La Jolla, California; and
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California;
- Veterans Affairs San Diego Healthcare System, San Diego, California
| |
Collapse
|
207
|
Sodium butyrate protects mice from the development of the early signs of non-alcoholic fatty liver disease: role of melatonin and lipid peroxidation. Br J Nutr 2016; 116:1682-1693. [DOI: 10.1017/s0007114516004025] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractNon-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide with universally accepted treatments still lacking. Oral supplementation of sodium butyrate (SoB) has been suggested to attenuate liver damage of various aetiologies. Our study aimed to further delineate mechanisms involved in the SoB-dependent hepatic protection using a mouse model of fructose-induced NAFLD and in in vitro models. C57BL/6J mice were either pair-fed a fructose-enriched liquid diet ±0·6 g/kg body weight per d SoB or standard chow for 6 weeks. Markers of liver damage, intestinal barrier function, glucose metabolism, toll-like receptor-4 (TLR-4) and melatonin signalling were determined in mice. Differentiated human carcinoma colon-2 (Caco-2) and J774A.1 cells were used to determine molecular mechanisms involved in the effects of SoB. Despite having no effects on markers of intestinal barrier function and glucose metabolism or body weight gain, SoB supplementation significantly attenuated fructose-induced hepatic TAG accumulation and inflammation. The protective effects of SoB were associated with significantly lower expression of markers of the TLR-4-dependent signalling cascade, concentrations of inducible nitric oxide synthase (iNOS) protein and 4-hydroxynonenal protein adducts in liver. Treatment with SoB increased melatonin levels and expression of enzymes involved in melatonin synthesis in duodenal tissue and Caco-2 cells. Moreover, treatment with melatonin significantly attenuated lipopolysaccharide-induced expression of iNOS and nitrate levels in J774A.1 cells. Taken together, our results indicated that the protective effects of SoB on the development of fructose-induced NAFLD in mice are associated with an increased duodenal melatonin synthesis and attenuation of iNOS induction in liver.
Collapse
|
208
|
Gao X, Zhu Y, Wen Y, Liu G, Wan C. Efficacy of probiotics in non-alcoholic fatty liver disease in adult and children: A meta-analysis of randomized controlled trials. Hepatol Res 2016; 46:1226-1233. [PMID: 26866817 DOI: 10.1111/hepr.12671] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/27/2015] [Accepted: 02/08/2016] [Indexed: 01/30/2023]
Abstract
AIM To evaluate the efficacy of probiotics in the treatment of adult and childhood non-alcoholic fatty liver disease (NAFLD). METHODS Randomized controlled trials on the efficacy of probiotics in the treatment of adult and childhood NAFLD published before July 2015 were searched in multiple databases, including Cochrane Library, PubMed/MEDLINE, EBSCO, OVID, SCI, CNKI, and VIP. Article identification and data extraction were carried out by two reviewers based on the inclusion and exclusion criteria. RevMan 5.3 software was used for the meta-analysis. RESULTS Nine randomized controlled trials with a total of 535 cases of NAFLD were included. Statistical differences in homeostasis model assessment, total cholesterol, high density lipoprotein, triglyceride, and tumor necrosis factor-α were detected between the probiotics and control groups with variations in different patient populations. No significant differences in body mass index (BMI), glucose, or insulin were detected between the two groups. Statistical differences in low density lipoprotein, alanine aminotransferase, aspartate transaminase, and BMI were detected between the two childhood groups (P ≤ 0.05). CONCLUSION Probiotics provided improvements in the outcomes of homeostasis model assessment, total cholesterol, high density lipoprotein, and tumor necrosis factor-α in any NAFLD patients and triglyceride in Italian and Spanish patients, but no improvement in the outcomes of BMI, glucose, or insulin in adult NAFLD patients. The currently available data are not sufficient to compare the effects of probiotics between adult and childhood NAFLD patients.
Collapse
Affiliation(s)
- Xiaolin Gao
- Department of Pediatrics, West China Second Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yu Zhu
- Department of Pediatrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Yang Wen
- Department of Pediatrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Guanjian Liu
- Evidence-based Medicine and Epidemiology Center, West China Second Hospital, Sichuan University, Chengdu, China
| | - Chaomin Wan
- Department of Pediatrics, West China Second Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
209
|
Jones RM. The Influence of the Gut Microbiota on Host Physiology: In Pursuit of Mechanisms. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:285-297. [PMID: 27698613 PMCID: PMC5045138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The results generated from the NIH funded Human Microbiome Project (HMP) are necessarily tied to the overall mission of the agency, which is to foster scientific discoveries as a basis for protecting and improving health. The investment in the HMP phase 1 accomplished many of its goals including the preliminary characterization of the human microbiome and the identification of links between microbiome diversity and disease states. Going forward, the next step in these studies must involve the identification of the functional molecular elements that mediate the positive influence of a eubiotic microbiome on health and disease. This review will focus on recent advances describing mechanistic events in the intestine elicited by the microbiome. These include symbiotic bacteria-induced activation of redox-dependent cell signaling, the bacterial production of short chain fatty acids and ensuing cellular responses, and the secretion of bacteriocins by bacteria that have anti-microbial activities against potential pathogens.
Collapse
|
210
|
Pataky Z, Genton L, Spahr L, Lazarevic V, Terraz S, Gaïa N, Rubbia-Brandt L, Golay A, Schrenzel J, Pichard C. Impact of Hypocaloric Hyperproteic Diet on Gut Microbiota in Overweight or Obese Patients with Nonalcoholic Fatty Liver Disease: A Pilot Study. Dig Dis Sci 2016; 61:2721-31. [PMID: 27142672 DOI: 10.1007/s10620-016-4179-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/20/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND NAFLD is likely to become the most common cause of chronic liver disease. The first-line treatment includes weight loss. AIMS To analyze the impact of a hypocaloric hyperproteic diet (HHD) on gut microbiota in NAFLD patients. METHODS Fifteen overweight/obese patients with NAFLD were included. At baseline and after a 3-week HHD (Eurodiets(®), ~1000 kcal/day, ~125 g protein/day), we measured gut microbiota composition and function by shotgun metagenomics; body weight; body composition by bioelectrical impedance analysis; liver and visceral fat by magnetic resonance imaging; plasma C-reactive protein (CRP); and liver tests. Results between both time points, expressed as median (first and third quartile), were compared by Wilcoxon signed-rank tests. RESULTS At baseline, age was 50 (47-55) years and body mass index 34.6 (32.4, 36.7) kg/m(2). HDD decreased body weight by 3.6 % (p < 0.001), percent liver fat by 65 % (p < 0.001), and CRP by 19 % (p = 0.014). HDD was associated with a decrease in Lachnospira (p = 0.019), an increase in Blautia (p = 0.026), Butyricicoccus (p = 0.024), and changes in several operational taxonomic units (OTUs) of Bacteroidales and Clostridiales. The reduced liver fat was negatively correlated with bacteria belonging to the Firmicutes and Bacteroidetes phyla (a Ruminococcaceae OTU, r = -0.83; Bacteroides, r = -0.73). The associated metabolic changes concerned mostly enzymes involved in amino acid and carbohydrate metabolism. CONCLUSIONS In this pilot study, HHD changes gut microbiota composition and function in overweight/obese NAFLD patients, in parallel with decreased body weight, liver fat, and systemic inflammation. Future studies should aim to confirm these bacterial changes and understand their mode of action. TRAIL REGISTRATION Under clinicaltrials.gov: NCT01477307.
Collapse
Affiliation(s)
- Zoltan Pataky
- Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.
| | - Laurence Genton
- Clinical Nutrition, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Laurent Spahr
- Gastroenterology and Hepatology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Vladimir Lazarevic
- Genomic Research Lab, Infectious Diseases, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Sylvain Terraz
- Radiology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Nadia Gaïa
- Genomic Research Lab, Infectious Diseases, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Laura Rubbia-Brandt
- Clinical Pathology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Alain Golay
- Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Jacques Schrenzel
- Genomic Research Lab, Infectious Diseases, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Claude Pichard
- Clinical Nutrition, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| |
Collapse
|
211
|
Molecular mechanism of hepatic steatosis: pathophysiological role of autophagy. Expert Rev Mol Med 2016; 18:e14. [PMID: 27499351 DOI: 10.1017/erm.2016.14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
UNLABELLED Steatosis is an early characteristic in the pathogenesis of fatty liver disease (FLD). Mechanisms of hepatic steatosis are aetiology-dependent. Activation of autophagy in liver ameliorates hepatic steatosis. A modulation of hepatic autophagy affects the degree of hepatocyte steatosis and the progression of FLD as demonstrated by pre-clinical models and clinical trials. This review summarises recent advances on pathophysiological roles of autophagy in hepatic lipid metabolism. A comprehensive regulation of autophagic networks holds promise for the improvement of hepatic steatosis. Autophagic signalling pathway may be a novel therapeutic target against FLD. HIGHLIGHTS • Hepatic steatosis is a pathological condition wherein vacuoles of triglyceride (TG) fat are overaccumulated in liver because of abnormal metabolism of lipids. • Hepatic autophagy regulates lipid metabolism as demonstrated by macrolipophagy in response to starvation and hepatic overabundance of TG in obesity. • Autophagic signals are closely associated with apoptotic pathways. There is distinctive relationship between hepatic autophagy and apoptosis, which affects the progression of fatty liver. • Regulation of autophagic process can be a novel therapeutic strategy for fatty liver disease.
Collapse
|
212
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by fat deposition in hepatocytes, and a strong association with nutritional factors. Dietary fatty acids are classified according to their biochemical properties, which confer their bioactive roles. Monounsaturated fatty acids have a dual role in various human and murine models. In contrast, polyunsaturated fatty acids exhibit antiobesity, anti steatosic and anti-inflammatory effects. The combination of these forms of fatty acids—according to dietary type, daily intake and the proportion of n-6 to n-3 fats—can compromise hepatic lipid metabolism. A chemosensory rather than a nutritional role makes bioactive fatty acids possible biomarkers for NAFLD. Bioactive fatty acids provide health benefits through modification of fatty acid composition and modulating the activity of liver cells during liver fibrosis. More and better evidence is necessary to elucidate the role of bioactive fatty acids in nutritional and clinical treatment strategies for patients with NAFLD.
Collapse
|
213
|
Park MY, Kim S, Ko E, Ahn SH, Seo H, Sung MK. Gut microbiota-associated bile acid deconjugation accelerates hepatic steatosis in ob/ob mice. J Appl Microbiol 2016; 121:800-10. [DOI: 10.1111/jam.13158] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/14/2016] [Accepted: 04/21/2016] [Indexed: 12/19/2022]
Affiliation(s)
- M.-Y. Park
- Department of Food and Nutrition Education; Graduate School of Education; Soonchunhyang University; Asan Chungnam Korea
| | - S.J. Kim
- Department of Food and Nutrition; Sookmyung Women's University; Seoul Korea
| | - E.K. Ko
- Department of Food and Nutrition; Sookmyung Women's University; Seoul Korea
| | - S.-H. Ahn
- Collage of Pharmacy; Kangwon National University; Chuncheon Korea
| | - H. Seo
- Department of Drug Discovery Platform Technology; Korea Research Institute of Chemical Technology; Daejeon Korea
| | - M.-K. Sung
- Department of Food and Nutrition; Sookmyung Women's University; Seoul Korea
| |
Collapse
|
214
|
Betrapally NS, Gillevet PM, Bajaj JS. Changes in the Intestinal Microbiome and Alcoholic and Nonalcoholic Liver Diseases: Causes or Effects? Gastroenterology 2016; 150:1745-1755.e3. [PMID: 26948887 PMCID: PMC5026236 DOI: 10.1053/j.gastro.2016.02.073] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 02/07/2023]
Abstract
The prevalence of fatty liver diseases is increasing rapidly worldwide; after treatment of hepatitis C virus infection becomes more widespread, fatty liver diseases are likely to become the most prevalent liver disorders. Although fatty liver diseases are associated with alcohol, obesity, and the metabolic syndrome, their mechanisms of pathogenesis are not clear. The development and progression of fatty liver, alcoholic, and nonalcoholic liver disease (NAFLD) all appear to be influenced by the composition of the microbiota. The intestinal microbiota have been shown to affect precirrhotic and cirrhotic stages of liver diseases, which could lead to new strategies for their diagnosis, treatment, and study. We review differences and similarities in the cirrhotic and precirrhotic stages of NAFLD and alcoholic liver disease. Differences have been observed in these stages of alcohol-associated disease in patients who continue to drink compared with those who stop, with respect to the composition and function of the intestinal microbiota and intestinal integrity. NAFLD and the intestinal microbiota also differ between patients with and without diabetes. We also discuss the potential of microbial therapy for patients with NAFLD and ALD.
Collapse
Affiliation(s)
- Naga S Betrapally
- Microbiome Analysis Center, George Mason University, Manassas, Virginia
| | | | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia.
| |
Collapse
|
215
|
Eckel EF, Ametaj BN. Invited review: Role of bacterial endotoxins in the etiopathogenesis of periparturient diseases of transition dairy cows. J Dairy Sci 2016; 99:5967-5990. [PMID: 27209132 DOI: 10.3168/jds.2015-10727] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 04/02/2016] [Indexed: 12/19/2022]
Abstract
The dairy industry continues to suffer severe economic losses due to the increased disease incidence cows experience during the transition period. It has long been the classical view that the major contributing factor to the development of these periparturient diseases is the considerable increase in nutritional demands for milk production. This classical view, however, fails to account for the substantial correlation between both metabolic and infectious diseases and the detrimental effects that can occur with the provision of high-energy diets to support these nutritional demands. Currently, increasing evidence implicates bacterial endotoxins in the etiopathology of most periparturient diseases. Bacterial endotoxins are components of the outer cell wall of gram-negative and gram-positive bacteria that are highly immunostimulatory and can trigger proinflammatory immune responses. The ability of endotoxins to translocate from the mucosal tissues, including the gastrointestinal tract, mammary gland, and uterus, into the systemic circulation has been observed. Once they have entered the circulation, endotoxins potentially contribute to disease either directly, through eliciting an inflammatory response, or indirectly through other factors such as the overreaction of the natural protective mechanisms of the host. Although the evidence implicating a role of endotoxins in the pathogenesis of transition diseases continues to grow, our current knowledge of the host response to mucosal endotoxin exposure and pathogenic mechanisms remain largely unknown. Developing our understanding of the connection between endotoxemia and dairy cattle disease holds significant potential for the future development of preventative measures that could benefit the productivity of the dairy industry as well as animal welfare.
Collapse
Affiliation(s)
- Emily F Eckel
- Department of Agriculture, Food and Nutritional Science, University of Alberta Edmonton, AB T6G 2P5, Canada
| | - Burim N Ametaj
- Department of Agriculture, Food and Nutritional Science, University of Alberta Edmonton, AB T6G 2P5, Canada.
| |
Collapse
|
216
|
Machado MV, Cortez-Pinto H. Diet, Microbiota, Obesity, and NAFLD: A Dangerous Quartet. Int J Mol Sci 2016; 17:481. [PMID: 27043550 PMCID: PMC4848937 DOI: 10.3390/ijms17040481] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/21/2016] [Accepted: 03/28/2016] [Indexed: 02/07/2023] Open
Abstract
Recently, the importance of the gut-liver-adipose tissue axis has become evident. Nonalcoholic fatty liver disease (NAFLD) is the hepatic disease of a systemic metabolic disorder that radiates from energy-surplus induced adiposopathy. The gut microbiota has tremendous influences in our whole-body metabolism, and is crucial for our well-being and health. Microorganisms precede humans in more than 400 million years and our guest flora evolved with us in order to help us face aggressor microorganisms, to help us maximize the energy that can be extracted from nutrients, and to produce essential nutrients/vitamins that we are not equipped to produce. However, our gut microbiota can be disturbed, dysbiota, and become itself a source of stress and injury. Dysbiota may adversely impact metabolism and immune responses favoring obesity and obesity-related disorders such as insulin resistance/diabetes mellitus and NAFLD. In this review, we will summarize the latest evidence of the role of microbiota/dysbiota in diet-induced obesity and NAFLD, as well as the potential therapeutic role of targeting the microbiota in this set.
Collapse
Affiliation(s)
- Mariana Verdelho Machado
- Departamento de Gastrenterologia, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte (CHLN), 1649-035 Lisbon, Portugal.
- Laboratório de Nutrição, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Alameda da Universidade, 1649-004 Lisboa, Portugal.
| | - Helena Cortez-Pinto
- Departamento de Gastrenterologia, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte (CHLN), 1649-035 Lisbon, Portugal.
- Laboratório de Nutrição, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Alameda da Universidade, 1649-004 Lisboa, Portugal.
| |
Collapse
|
217
|
Parodi PW. Cooperative action of bioactive components in milk fat with PPARs may explain its anti-diabetogenic properties. Med Hypotheses 2016; 89:1-7. [DOI: 10.1016/j.mehy.2015.12.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 12/30/2015] [Indexed: 01/04/2023]
|
218
|
Lei K, Li YL, Wang Y, Wen J, Wu HZ, Yu DY, Li WF. Effect of dietary supplementation of Bacillus subtilis B10 on biochemical and molecular parameters in the serum and liver of high-fat diet-induced obese mice. J Zhejiang Univ Sci B 2016; 16:487-95. [PMID: 26055910 DOI: 10.1631/jzus.b1400342] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
While a high-fat diet (HFD) is assumed to be related to fat-mediated oxidative stress decreasing antioxidant enzyme activity, probiotics are believed to have positive effects on the regulation of HFD-induced obesity as well as lipid metabolism, energy homeostasis, and anti-oxidation. Because Bacillus subtilis B10 has beneficial effects on the abnormal lipid metabolism and the oxidative stress in HFD-induced obese mice, ICR mice were randomly assigned into an HFD group and the HFD was supplemented with 0.1% (w/w) Bacillus subtilis B10 (HFD+B10 group). Thereafter, 30-d treatments were run, and then hepatic lipid level and antioxidant status were measured. The expression of genes related to lipid metabolism and oxidative stress in the liver was determined by reverse-transcription quantitative polymerase chain reaction (RT-qPCR). We found that HFD-induced obese mice treated with B10 showed a decrease in weight gain, serum glucose activity as well as hepatic triglyceride (TG), glutamic oxaloacetic transaminase (GOT), and glutamic pyruvic transaminase (GPT) activities. In addition, the gene expressions of antioxidant genes, glutathione reductase (GR), xanthine oxidase (XO), heat-shock protein 90 (Hsp90), and lipid synthesis gene 3β-hydroxysteroid-∆24 reductase (DHCR24) in the HFD+B10 group were down-regulated, suggesting alleviation of oxidative stress, while the lipolysis gene 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), energy metabolism gene peroxisome proliferator-activated receptor α (PPARα) and the gene encoding tumor-suppressor protein p53 were up-regulated. The regulatory and positive effect of dietary supplementation of probiotic B10 suggests that it has a beneficial effect on the homeostasis of the lipid metabolism and on alleviating oxidative stress in HFD-induced obese mice.
Collapse
Affiliation(s)
- Kai Lei
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | |
Collapse
|
219
|
Dibb M, Soop M, Teubner A, Shaffer J, Abraham A, Carlson G, Lal S. Survival and nutritional dependence on home parenteral nutrition: Three decades of experience from a single referral centre. Clin Nutr 2016; 36:570-576. [PMID: 26972088 DOI: 10.1016/j.clnu.2016.01.028] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 01/14/2016] [Accepted: 01/30/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Home parenteral nutrition (HPN) is the mainstay of treatment for patients with Type 3 intestinal failure (IF), however long term data on mortality and nutritional outcomes are limited. OBJECTIVES To assess the long-term survival and requirements for ongoing HPN in patients receiving treatment at a UK national referral centre for intestinal failure. METHODS Patients with IF who received HPN for more than 3 months at this Intestinal Failure Unit between 1978 and 2011 had their clinical records reviewed. SPSS 20 was utilised to perform Cox regression analysis and generate Kaplan Meier curves, with the aim of identifying factors associated with death and the continued need for HPN. RESULTS Case notes from 545 patients were reviewed. Overall survival (OS) in patients without malignancy at commencement of IF was 93%, 71%, 59% and 28% at 1, 5, 10 and 20 years after starting treatment. Crohn's disease, mesenteric ischaemia and chronic intestinal pseudo-obstruction were associated with a better OS than scleroderma and radiation enteritis on multivariate analysis. Older age at onset of IF was associated with poor OS, while shorter small bowel length or central line sepsis was not. 15% (25/170) of deaths were due to complications of HPN (central line sepsis = 10, IF-associated liver disease = 15). Continued HPN dependence in survivors was 83%, 63%, 59% and 53% at 1, 5, 10 and 15 years, respectively. Among the 153 patients without malignancy who achieved nutritional independence from HPN, 77 (50.3%) did so after surgical reconstruction of the alimentary tract (HPN duration mean 19 months, range 3-126 months). 76 patients (49.7%) weaned from HPN without undergoing surgical reconstruction. CONCLUSION This is the largest reported data set on long-term survival and dependence on HPN and will inform the indications, benefits and risks of treatment in disease specific groups. A significant proportion of patients achieved nutritional autonomy without surgical intervention.
Collapse
Affiliation(s)
- Martyn Dibb
- Intestinal Failure Unit, Salford Royal NHS Foundation Trust, Stott Lane, Salford, M6 8HD, United Kingdom.
| | - Mattias Soop
- Intestinal Failure Unit, Salford Royal NHS Foundation Trust, Stott Lane, Salford, M6 8HD, United Kingdom
| | - Antje Teubner
- Intestinal Failure Unit, Salford Royal NHS Foundation Trust, Stott Lane, Salford, M6 8HD, United Kingdom
| | - Jon Shaffer
- Intestinal Failure Unit, Salford Royal NHS Foundation Trust, Stott Lane, Salford, M6 8HD, United Kingdom
| | - Arun Abraham
- Intestinal Failure Unit, Salford Royal NHS Foundation Trust, Stott Lane, Salford, M6 8HD, United Kingdom
| | - Gordon Carlson
- Intestinal Failure Unit, Salford Royal NHS Foundation Trust, Stott Lane, Salford, M6 8HD, United Kingdom
| | - Simon Lal
- Intestinal Failure Unit, Salford Royal NHS Foundation Trust, Stott Lane, Salford, M6 8HD, United Kingdom
| |
Collapse
|
220
|
Irwin MH, Moos WH, Faller DV, Steliou K, Pinkert CA. Epigenetic Treatment of Neurodegenerative Disorders: Alzheimer and Parkinson Diseases. Drug Dev Res 2016; 77:109-23. [PMID: 26899010 DOI: 10.1002/ddr.21294] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Preclinical Research In this review, we discuss epigenetic-driven methods for treating neurodegenerative disorders associated with mitochondrial dysfunction, focusing on carnitinoid antioxidant-histone deacetylase inhibitors that show an ability to reinvigorate synaptic plasticity and protect against neuromotor decline in vivo. Aging remains a major risk factor in patients who progress to dementia, a clinical syndrome typified by decreased mental capacity, including impairments in memory, language skills, and executive function. Energy metabolism and mitochondrial dysfunction are viewed as determinants in the aging process that may afford therapeutic targets for a host of disease conditions, the brain being primary in such thinking. Mitochondrial dysfunction is a core feature in the pathophysiology of both Alzheimer and Parkinson diseases and rare mitochondrial diseases. The potential of new therapies in this area extends to glaucoma and other ophthalmic disorders, migraine, Creutzfeldt-Jakob disease, post-traumatic stress disorder, systemic exertion intolerance disease, and chemotherapy-induced cognitive impairment. An emerging and hopefully more promising approach to addressing these hard-to-treat diseases leverages their sensitivity to activation of master regulators of antioxidant and cytoprotective genes, antioxidant response elements, and mitophagy. Drug Dev Res 77 : 109-123, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael H Irwin
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.,SRI Biosciences, A Division of SRI International, Menlo Park, CA, USA
| | - Douglas V Faller
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA.,PhenoMatriX, Inc., Boston, MA, USA
| | - Carl A Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Department of Biological Sciences, College of Arts and Sciences, The University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
221
|
Moos WH, Maneta E, Pinkert CA, Irwin MH, Hoffman ME, Faller DV, Steliou K. Epigenetic Treatment of Neuropsychiatric Disorders: Autism and Schizophrenia. Drug Dev Res 2016; 77:53-72. [PMID: 26899191 DOI: 10.1002/ddr.21295] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neuropsychiatric disorders are a heterogeneous group of conditions that often share underlying mitochondrial dysfunction and biological pathways implicated in their pathogenesis, progression, and treatment. To date, these disorders have proven notoriously resistant to molecular-targeted therapies, and clinical options are relegated to interventional types, which do not address the core symptoms of the disease. In this review, we discuss emerging epigenetic-driven approaches using novel acylcarnitine esters (carnitinoids) that act on master regulators of antioxidant and cytoprotective genes and mitophagic pathways. These carnitinoids are actively transported, mitochondria-localizing, biomimetic coenzyme A surrogates of short-chain fatty acids, which inhibit histone deacetylase and may reinvigorate synaptic plasticity and protect against neuronal damage. We outline these neuroprotective effects in the context of treatment of neuropsychiatric disorders such as autism spectrum disorder and schizophrenia.
Collapse
Affiliation(s)
- Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.,SRI Biosciences, A Division of SRI International, Menlo Park, CA, USA
| | - Eleni Maneta
- Department of Psychiatry, Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Carl A Pinkert
- Department of Biological Sciences, College of Arts and Sciences, The University of Alabama, Tuscaloosa, AL, USA.,Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Michael H Irwin
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Michelle E Hoffman
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Douglas V Faller
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA.,PhenoMatriX, Inc., Boston, MA, USA
| |
Collapse
|
222
|
Wang J, Chen H, Yang B, Gu Z, Zhang H, Chen W, Chen YQ. Lactobacillus plantarum ZS2058 produces CLA to ameliorate DSS-induced acute colitis in mice. RSC Adv 2016. [DOI: 10.1039/c5ra24491a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Lactobacillus plantarumZS2058 is an efficient producer of conjugated linoleic acid (CLA)in vitro.
Collapse
Affiliation(s)
- Juntong Wang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
| | - Yong Q. Chen
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
| |
Collapse
|
223
|
Effects of sodium butyrate supplementation on reproductive performance and colostrum composition in gilts. Animal 2016; 10:1722-7. [DOI: 10.1017/s1751731116000537] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
224
|
Qiu X, Li X, Wu Z, Zhang F, Wang N, Wu N, Yang X, Liu Y. Fungal–bacterial interactions in mice with dextran sulfate sodium (DSS)-induced acute and chronic colitis. RSC Adv 2016; 6:65995-66006. [DOI: 10.1039/c6ra03869g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025] Open
Abstract
The commensal intestinal microbiota plays critical roles in the initiation and development of inflammatory bowel diseases (IBD).
Collapse
Affiliation(s)
- Xinyun Qiu
- Department of Gastroenterology
- Peking University People's Hospital
- Beijing 100044
- China
- Department of Gastroenterology
| | - Xia Li
- Department of Gastroenterology
- Peking University People's Hospital
- Beijing 100044
- China
| | - Zhe Wu
- Department of Gastroenterology
- Peking University People's Hospital
- Beijing 100044
- China
| | - Feng Zhang
- Department of Gastroenterology
- Peking University People's Hospital
- Beijing 100044
- China
| | - Ning Wang
- Department of Gastroenterology
- Peking University People's Hospital
- Beijing 100044
- China
| | - Na Wu
- Institute of Clinical Molecular Biology & Central Laboratory
- Peking University People's Hospital
- Beijing
- China
| | - Xi Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology
- Institute of Micro-biology
- Chinese Academy of Sciences
- Beijing
- China
| | - Yulan Liu
- Department of Gastroenterology
- Peking University People's Hospital
- Beijing 100044
- China
| |
Collapse
|
225
|
Abstract
The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) is a major regulator of oxidative stress defence in the human body. As Nrf2 regulates the expression of a large battery of cytoprotective genes, it plays a crucial role in the prevention of degenerative disease in multiple organs. Thus it has been the focus of research as a pharmacological target that could be used for prevention and treatment of chronic diseases such as multiple sclerosis, chronic kidney disease or cardiovascular diseases. The present review summarizes promising findings from basic research and shows which Nrf2-targeting therapies are currently being investigated in clinical trials and which agents have already entered clinical practice.
Collapse
|
226
|
Qu LL, Yu B, Li Z, Jiang WX, Jiang JD, Kong WJ. Gastrodin Ameliorates Oxidative Stress and Proinflammatory Response in Nonalcoholic Fatty Liver Disease through the AMPK/Nrf2 Pathway. Phytother Res 2015; 30:402-11. [PMID: 26634892 DOI: 10.1002/ptr.5541] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 11/10/2015] [Accepted: 11/14/2015] [Indexed: 12/26/2022]
Abstract
This study was designed to investigate the antioxidative, antiinflammatory and metabolism-regulating effects of gastrodin (GSTD) in the treatment of nonalcoholic fatty liver disease (NAFLD). Oleic acid (OA) was used to induce steatosis in HL-7702 cells; a high-fat or high-fat and high-cholesterol diet was used to induce NAFLD in mice and rats. Our results showed that GSTD significantly increased hepatic superoxide dismutase (SOD) but decreased reactive oxygen species (ROS)/malondialdehyde (MDA) and reduced the mRNA levels of proinflammatory cytokines both in vitro and in vivo. GSTD promoted the phosphorylation of nuclear factor erythroid-2-related factor-2 (Nrf2) at serine (Ser) 40, stimulated its nuclear translocation and increased hepatic expression of heme oxygenase-1 (HO-1). GSTD activated AMP-activated protein kinase (AMPK), suppressed hepatic steatosis, lowered serum triglyceride (TG)/glucose and decreased body weight gain in animals with NAFLD. The stimulating effects of GSTD on the Nrf2 pathway as well as its antioxidative/antiinflammatory activities were abolished by compound C in OA-treated HL-7702 cells. In summary, our results demonstrate that GSTD activates the AMPK/Nrf2 pathway, ameliorates oxidative stress/proinflammatory response and improves lipid metabolism in NAFLD. Our findings may support the future clinical application of GSTD for the treatment of NAFLD to reduce hepatic steatosis, oxidative stress and proinflammatory response.
Collapse
Affiliation(s)
- Li-Li Qu
- State Key Laboratory of Bioactive Natural Products and Function, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Yu
- Department of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Li
- Department of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen-Xiao Jiang
- Department of Microbiology and Molecular Genetics, Emory University, Atlanta, GA, USA
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Natural Products and Function, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei-Jia Kong
- Department of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
227
|
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a common disorder with poorly understood pathogenesis. Beyond environmental and genetic factors, cumulative data support the causative role of gut microbiota in disease development and progression. DATA SOURCE We performed a PubMed literature search with the following key words: "non-alcoholic fatty liver disease", "non-alcoholic steatohepatitis", "fatty liver", "gut microbiota" and "microbiome", to review the data implicating gut microbiota in NAFLD development and progression. RESULTS Recent metagenomic studies revealed differences in the phylum and genus levels between patients with fatty liver and healthy controls. While bacteroidetes and firmicutes remain the dominant phyla among NAFLD patients, their proportional abundance and genera detection vary among different studies. New techniques indicate a correlation between the methanogenic archaeon (methanobrevibacter smithii) and obesity, while the bacterium akkermanshia municiphila protects against metabolic syndrome. Among NAFLD patients, small intestinal bacterial overgrowth detected by breath tests might induce gut microbiota and host interactions, facilitating disease development. CONCLUSIONS There is evidence that gut microbiota participates in NAFLD development through, among others, obesity induction, endogenous ethanol production, inflammatory response triggering and alterations in choline metabolism. Further studies with emerging techniques are needed to further elucidate the microbiome and host crosstalk in NAFLD pathogenesis.
Collapse
Affiliation(s)
- Paraskevas Gkolfakis
- Hepatogastroenterology Unit, Second Department of Internal Medicine and Research Institute, Attikon University General Hospital, Medical School, Athens University, 124 62 Athens, Greece.
| | | | | |
Collapse
|
228
|
Zhao HF, Feng L, Jiang WD, Liu Y, Jiang J, Wu P, Zhao J, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ. Flesh Shear Force, Cooking Loss, Muscle Antioxidant Status and Relative Expression of Signaling Molecules (Nrf2, Keap1, TOR, and CK2) and Their Target Genes in Young Grass Carp (Ctenopharyngodon idella) Muscle Fed with Graded Levels of Choline. PLoS One 2015; 10:e0142915. [PMID: 26600252 PMCID: PMC4657908 DOI: 10.1371/journal.pone.0142915] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 10/28/2015] [Indexed: 12/25/2022] Open
Abstract
Six groups of grass carp (average weight 266.9 ± 0.6 g) were fed diets containing 197, 385, 770, 1082, 1436 and 1795 mg choline/kg, for 8 weeks. Fish growth, and muscle nutrient (protein, fat and amino acid) content of young grass carp were significantly improved by appropriate dietary choline. Furthermore, muscle hydroxyproline concentration, lactate content and shear force were improved by optimum dietary choline supplementation. However, the muscle pH value, cooking loss and cathepsins activities showed an opposite trend. Additionally, optimum dietary choline supplementation attenuated muscle oxidative damage in grass carp. The muscle antioxidant enzyme (catalase and glutathione reductase did not change) activities and glutathione content were enhanced by optimum dietary choline supplementation. Muscle cooking loss was negatively correlated with antioxidant enzyme activities and glutathione content. At the gene level, these antioxidant enzymes, as well as the targets of rapamycin, casein kinase 2 and NF-E2-related factor 2 transcripts in fish muscle were always up-regulated by suitable choline. However, suitable choline significantly decreased Kelch-like ECH-associated protein 1 a (Keap1a) and Kelch-like ECH-associated protein 1 b (Keap1b) mRNA levels in muscle. In conclusion, suitable dietary choline enhanced fish flesh quality, and the decreased cooking loss was due to the elevated antioxidant status that may be regulated by Nrf2 signaling.
Collapse
Affiliation(s)
- Hua-Fu Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Juan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
229
|
Supplementation of sodium butyrate protects mice from the development of non-alcoholic steatohepatitis (NASH). Br J Nutr 2015; 114:1745-55. [PMID: 26450277 DOI: 10.1017/s0007114515003621] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Overnutrition, insulin resistance and an impaired intestinal barrier function are discussed as critical factors in the development of non-alcoholic fatty liver disease. Not only butyrate-producing probiotics as well as supplementation of sodium butyrate (SoB) have been suggested to bear protective effects on liver damage of various aetiologies. However, whether an oral consumption of SoB has a protective effect on Western-style diet (WSD)-induced non-alcoholic steatohepatitis (NASH) and if so molecular mechanism involved has not yet been determined. Eight-week-old C57BL/6J mice were pair-fed either a liquid control or WSD±0·6 g/kg body weight SoB. After 6 weeks, markers of liver damage, inflammation, toll-like receptor (TLR)-4 signalling, lipid peroxidation and glucose as well as lipid metabolism were determined in the liver tissue. Tight junction protein levels were determined in the duodenal tissue. SoB supplementation had no effects on the body weight gain or liver weight of WSD-fed mice, whereas liver steatosis and hepatic inflammation were significantly decreased (e.g. less inflammatory foci and neutrophils) when compared with mice fed only a WSD. Tight junction protein levels in duodenum, hepatic mRNA expression of TLR-4 and sterol regulatory element-binding protein 1c were altered similarly in both WSD groups when compared with controls, whereas protein levels of myeloid differentiation primary response gene 88, inducible nitric oxide synthase, 4-hydroxynonenal protein adducts and F4/80 macrophages were only significantly induced in livers of mice fed only the WSD. In summary, these data suggest that an oral supplementation of SoB protects mice from inflammation in the liver and thus from the development of WSD-induced NASH.
Collapse
|
230
|
Abstract
The connection between the gut microbiota and the aetiology of obesity and cardiometabolic disorders is increasingly being recognized by clinicians. Our gut microbiota might affect the cardiometabolic phenotype by fermenting indigestible dietary components and thereby producing short-chain fatty acids (SCFA). These SCFA are not only of importance in gut health and as signalling molecules, but might also enter the systemic circulation and directly affect metabolism or the function of peripheral tissues. In this Review, we discuss the effects of three SCFA (acetate, propionate and butyrate) on energy homeostasis and metabolism, as well as how these SCFA can beneficially modulate adipose tissue, skeletal muscle and liver tissue function. As a result, these SCFA contribute to improved glucose homeostasis and insulin sensitivity. Furthermore, we also summarize the increasing evidence for a potential role of SCFA as metabolic targets to prevent and counteract obesity and its associated disorders in glucose metabolism and insulin resistance. However, most data are derived from animal and in vitro studies, and consequently the importance of SCFA and differential SCFA availability in human energy and substrate metabolism remains to be fully established. Well-controlled human intervention studies investigating the role of SCFA on cardiometabolic health are, therefore, eagerly awaited.
Collapse
Affiliation(s)
- Emanuel E Canfora
- Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitssingel 50, 6229 ER, Maastricht, PO Box 616, 6200 MD, Maastricht, Netherlands
| | - Johan W Jocken
- Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitssingel 50, 6229 ER, Maastricht, PO Box 616, 6200 MD, Maastricht, Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitssingel 50, 6229 ER, Maastricht, PO Box 616, 6200 MD, Maastricht, Netherlands
| |
Collapse
|
231
|
Kanai T, Mikami Y, Hayashi A. A breakthrough in probiotics: Clostridium butyricum regulates gut homeostasis and anti-inflammatory response in inflammatory bowel disease. J Gastroenterol 2015; 50:928-39. [PMID: 25940150 DOI: 10.1007/s00535-015-1084-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 04/18/2015] [Indexed: 02/04/2023]
Abstract
Intestinal immune homeostasis is regulated by gut microbiota, including beneficial and pathogenic microorganisms. Imbalance in gut bacterial constituents provokes host proinflammatory responses causing diseases such as inflammatory bowel disease (IBD). The development of next-generation sequencing technology allows the identification of microbiota alterations in IBD. Several studies have shown reduced diversity in the gut microbiota of patients with IBD. Advances in gnotobiotic technology have made possible analysis of the role of specific bacterial strains in immune cells in the intestine. Using these techniques, we have shown that Clostridium butyricum as a probiotic induces interleukin-10-producing macrophages in inflamed mucosa via the Toll-like receptor 2/myeloid differentiation primary response gene 88 pathway to prevent acute experimental colitis. In this review, we focus on the new approaches for the role of specific bacterial strains in immunological responses, as well as the potential of bacterial therapy for IBD treatments.
Collapse
Affiliation(s)
- Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan,
| | | | | |
Collapse
|
232
|
Tsiaoussis GI, Assimakopoulos SF, Tsamandas AC, Triantos CK, Thomopoulos KC. Intestinal barrier dysfunction in cirrhosis: Current concepts in pathophysiology and clinical implications. World J Hepatol 2015; 7:2058-2068. [PMID: 26301048 PMCID: PMC4539399 DOI: 10.4254/wjh.v7.i17.2058] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/22/2015] [Accepted: 06/30/2015] [Indexed: 02/06/2023] Open
Abstract
The intestinal lumen is a host place for a wide range of microbiota and sets a unique interplay between local immune system, inflammatory cells and intestinal epithelium, forming a physical barrier against microbial invaders and toxins. Bacterial translocation is the migration of viable or nonviable microorganisms or their pathogen-associated molecular patterns, such as lipopolysaccharide, from the gut lumen to the mesenteric lymph nodes, systemic circulation and other normally sterile extraintestinal sites. A series of studies have shown that translocation of bacteria and their products across the intestinal barrier is a commonplace in patients with liver disease. The deterioration of intestinal barrier integrity and the consulting increased intestinal permeability in cirrhotic patients play a pivotal pathophysiological role in the development of severe complications as high rate of infections, spontaneous bacterial peritonitis, hepatic encephalopathy, hepatorenal syndrome, variceal bleeding, progression of liver injury and hepatocellular carcinoma. Nevertheless, the exact cellular and molecular mechanisms implicated in the phenomenon of microbial translocation in liver cirrhosis have not been fully elucidated yet.
Collapse
Affiliation(s)
- Georgios I Tsiaoussis
- Georgios I Tsiaoussis, Christos K Triantos, Konstantinos C Thomopoulos, Department of Gastroenterology and Hepatology, University Hospital of Patras, CP 26504 Patras, Greece
| | - Stelios F Assimakopoulos
- Georgios I Tsiaoussis, Christos K Triantos, Konstantinos C Thomopoulos, Department of Gastroenterology and Hepatology, University Hospital of Patras, CP 26504 Patras, Greece
| | - Athanassios C Tsamandas
- Georgios I Tsiaoussis, Christos K Triantos, Konstantinos C Thomopoulos, Department of Gastroenterology and Hepatology, University Hospital of Patras, CP 26504 Patras, Greece
| | - Christos K Triantos
- Georgios I Tsiaoussis, Christos K Triantos, Konstantinos C Thomopoulos, Department of Gastroenterology and Hepatology, University Hospital of Patras, CP 26504 Patras, Greece
| | - Konstantinos C Thomopoulos
- Georgios I Tsiaoussis, Christos K Triantos, Konstantinos C Thomopoulos, Department of Gastroenterology and Hepatology, University Hospital of Patras, CP 26504 Patras, Greece
| |
Collapse
|
233
|
Chávez-Tapia NC, González-Rodríguez L, Jeong M, López-Ramírez Y, Barbero-Becerra V, Juárez-Hernández E, Romero-Flores JL, Arrese M, Méndez-Sánchez N, Uribe M. Current evidence on the use of probiotics in liver diseases. J Funct Foods 2015; 17:137-151. [DOI: 10.1016/j.jff.2015.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
234
|
Le Barz M, Anhê FF, Varin TV, Desjardins Y, Levy E, Roy D, Urdaci MC, Marette A. Probiotics as Complementary Treatment for Metabolic Disorders. Diabetes Metab J 2015; 39:291-303. [PMID: 26301190 PMCID: PMC4543192 DOI: 10.4093/dmj.2015.39.4.291] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Over the past decade, growing evidence has established the gut microbiota as one of the most important determinants of metabolic disorders such as obesity and type 2 diabetes. Indeed, obesogenic diet can drastically alter bacterial populations (i.e., dysbiosis) leading to activation of pro-inflammatory mechanisms and metabolic endotoxemia, therefore promoting insulin resistance and cardiometabolic disorders. To counteract these deleterious effects, probiotic strains have been developed with the aim of reshaping the microbiome to improve gut health. In this review, we focus on benefits of widely used probiotics describing their potential mechanisms of action, especially their ability to decrease metabolic endotoxemia by restoring the disrupted intestinal mucosal barrier. We also discuss the perspective of using new bacterial strains such as butyrate-producing bacteria and the mucolytic Akkermansia muciniphila, as well as the use of prebiotics to enhance the functionality of probiotics. Finally, this review introduces the notion of genetically engineered bacterial strains specifically developed to deliver anti-inflammatory molecules to the gut.
Collapse
Affiliation(s)
- Mélanie Le Barz
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Québec, QC, Canada
- Institute of Nutrition and Functional Foods, Laval University, Québec, QC, Canada
- University of Bordeaux, UMR 5248, CBMN, Bordeaux, France
| | - Fernando F. Anhê
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Québec, QC, Canada
- Institute of Nutrition and Functional Foods, Laval University, Québec, QC, Canada
| | - Thibaut V. Varin
- Institute of Nutrition and Functional Foods, Laval University, Québec, QC, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods, Laval University, Québec, QC, Canada
| | - Emile Levy
- Institute of Nutrition and Functional Foods, Laval University, Québec, QC, Canada
- Research Centre, Sainte-Justine Hospital, Montreal, QC, Canada
- Department of Nutrition, University of Montreal Faculty of Medicine, Montreal, QC, Canada
| | - Denis Roy
- Institute of Nutrition and Functional Foods, Laval University, Québec, QC, Canada
| | | | - André Marette
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Québec, QC, Canada
- Institute of Nutrition and Functional Foods, Laval University, Québec, QC, Canada
| |
Collapse
|
235
|
Kirpich IA, Marsano LS, McClain CJ. Gut-liver axis, nutrition, and non-alcoholic fatty liver disease. Clin Biochem 2015; 48:923-30. [PMID: 26151226 DOI: 10.1016/j.clinbiochem.2015.06.023] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 06/22/2015] [Accepted: 06/27/2015] [Indexed: 02/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents a spectrum of diseases involving hepatic fat accumulation, inflammation with the potential progression to fibrosis and cirrhosis over time. NAFLD is often associated with obesity, insulin resistance, and diabetes. The interactions between the liver and the gut, the so-called "gut-liver axis", play a critical role in NAFLD onset and progression. Compelling evidence links the gut microbiome, intestinal barrier integrity, and NAFLD. The dietary factors may alter the gut microbiota and intestinal barrier function, favoring the occurrence of metabolic endotoxemia and low grade inflammation, thereby contributing to the development of obesity and obesity-associated fatty liver disease. Therapeutic manipulations with prebiotics and probiotics to modulate the gut microbiota and maintain intestinal barrier integrity are potential agents for NAFLD management. This review summarizes the current knowledge regarding the complex interplay between the gut microbiota, intestinal barrier, and dietary factors in NAFLD pathogenesis. The concepts addressed in this review have important clinical implications, although more work needs to be done to understand how dietary factors affect the gut barrier and microbiota, and to comprehend how microbe-derived components may interfere with the host's metabolism contributing to NAFLD development.
Collapse
Affiliation(s)
- Irina A Kirpich
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, 40202, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, 40202, Louisville, KY, USA.
| | - Luis S Marsano
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, 40202, Louisville, KY, USA.
| | - Craig J McClain
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, 40202, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, 40202, Louisville, KY, USA; Robley Rex Veterans Medical Center, 40202, Louisville, KY, USA.
| |
Collapse
|
236
|
Bioprotective Carnitinoids: Lipoic Acid, Butyrate, and Mitochondria-Targeting to Treat Radiation Injury: Mitochondrial Drugs Come of Age. Drug Dev Res 2015; 76:167-75. [DOI: 10.1002/ddr.21258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 05/28/2015] [Indexed: 12/16/2022]
|
237
|
Trinchese G, Cavaliere G, Canani RB, Matamoros S, Bergamo P, De Filippo C, Aceto S, Gaita M, Cerino P, Negri R, Greco L, Cani PD, Mollica MP. Human, donkey and cow milk differently affects energy efficiency and inflammatory state by modulating mitochondrial function and gut microbiota. J Nutr Biochem 2015; 26:1136-46. [PMID: 26118693 DOI: 10.1016/j.jnutbio.2015.05.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 05/07/2015] [Accepted: 05/07/2015] [Indexed: 02/07/2023]
Abstract
Different nutritional components are able, by modulating mitochondrial function and gut microbiota composition, to influence body composition, metabolic homeostasis and inflammatory state. In this study, we aimed to evaluate the effects produced by the supplementation of different milks on energy balance, inflammatory state, oxidative stress and antioxidant/detoxifying enzyme activities and to investigate the role of the mitochondrial efficiency and the gut microbiota in the regulation of metabolic functions in an animal model. We compared the intake of human milk, gold standard for infant nutrition, with equicaloric supplementation of donkey milk, the best substitute for newborns due to its nutritional properties, and cow milk, the primary marketed product. The results showed a hypolipidemic effect produced by donkey and human milk intake in parallel with enhanced mitochondrial activity/proton leakage. Reduced mitochondrial energy efficiency and proinflammatory signals (tumor necrosis factor α, interleukin-1 and lipopolysaccharide levels) were associated with a significant increase of antioxidants (total thiols) and detoxifying enzyme activities (glutathione-S-transferase, NADH quinone oxidoreductase) in donkey- and human milk-treated animals. The beneficial effects were attributable, at least in part, to the activation of the nuclear factor erythroid-2-related factor-2 pathway. Moreover, the metabolic benefits induced by human and donkey milk may be related to the modulation of gut microbiota. In fact, milk treatments uniquely affected the proportions of bacterial phyla and genera, and we hypothesized that the increased concentration of fecal butyrate in human and donkey milk-treated rats was related to the improved lipid and glucose metabolism and detoxifying activities.
Collapse
Affiliation(s)
- Giovanna Trinchese
- Department of Biology, University of Naples "Federico II", Napoli, Italy
| | - Gina Cavaliere
- Department of Biology, University of Naples "Federico II", Napoli, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Sciences, European Laboratory for Food Induced Diseases, Napoli, Italy
| | - Sebastien Matamoros
- Université catholique de Louvain, Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Metabolism and Nutrition research group, Brussels, Belgium
| | - Paolo Bergamo
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Chiara De Filippo
- Department of Biology, University of Naples "Federico II", Napoli, Italy
| | - Serena Aceto
- Department of Biology, University of Naples "Federico II", Napoli, Italy
| | - Marcello Gaita
- Department of Biology, University of Naples "Federico II", Napoli, Italy
| | - Pellegrino Cerino
- Department of Biology, University of Naples "Federico II", Napoli, Italy
| | - Rossella Negri
- Department of Translational Medical Sciences, European Laboratory for Food Induced Diseases, Napoli, Italy
| | - Luigi Greco
- Department of Translational Medical Sciences, European Laboratory for Food Induced Diseases, Napoli, Italy
| | - Patrice D Cani
- Université catholique de Louvain, Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Metabolism and Nutrition research group, Brussels, Belgium
| | - Maria Pina Mollica
- Department of Biology, University of Naples "Federico II", Napoli, Italy.
| |
Collapse
|
238
|
Khan S, Jena G. The role of butyrate, a histone deacetylase inhibitor in diabetes mellitus: experimental evidence for therapeutic intervention. Epigenomics 2015; 7:669-80. [DOI: 10.2217/epi.15.20] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The contribution of epigenetic mechanisms in diabetes mellitus (DM), β-cell reprogramming and its complications is an emerging concept. Recent evidence suggests that there is a link between DM and histone deacetylases (HDACs), because HDAC inhibitors promote β-cell differentiation, proliferation, function and improve insulin resistance. Moreover, gut microbes and diet-derived products can alter the host epigenome. Furthermore, butyrate and butyrate-producing microbes are decreased in DM. Butyrate is a short-chain fatty acid produced from the fermentation of dietary fibers by microbiota and has been proven as an HDAC inhibitor. The present review provides a pragmatic interpretation of chromatin-dependent and independent complex signaling/mechanisms of butyrate for the treatment of Type 1 and Type 2 DM, with an emphasis on the promising strategies for its drugability and therapeutic implication.
Collapse
Affiliation(s)
- Sabbir Khan
- Facility for Risk Assessment & Intervention Studies, Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Sector-67, S.A.S. Nagar, Punjab 60 062, India
| | - Gopabandhu Jena
- Facility for Risk Assessment & Intervention Studies, Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Sector-67, S.A.S. Nagar, Punjab 60 062, India
| |
Collapse
|
239
|
Liao X, Wu R, Ma G, Zhao L, Zheng Z, Zhang R. Effects of Clostridium butyricum on antioxidant properties, meat quality and fatty acid composition of broiler birds. Lipids Health Dis 2015; 14:36. [PMID: 25896790 PMCID: PMC4409984 DOI: 10.1186/s12944-015-0035-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 04/16/2015] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Consumers are becoming increasingly interested in food containing high concentration of polyunsaturated fatty acids (PUFA). PUFA are considered as functional ingredients to prevent cardiovascular disease. The present study aimed to evaluate the effects of Clostridium butyricum on antioxidant properties, meat quality and fatty acid composition of broilers. METHODS A total of 320 one-day-old Arbor Acres male chicks were randomly assigned to one of five treatments with eight replicates and fed a antibiotic-free basal corn-soybean meal diet (control) or the basal diet supplemented with either 2.5 × 10(8) (CB1), 5 × 10(8) (CB2) or 1 × 10(9) (CB3) cfu of C. butyricum/kg or 150 mg of aureomycin/kg (antibiotic) for 42 days. RESULTS The results showed that chicks fed diets supplemented with C. butyricum had higher (P < 0.05) superoxide dismutase activity and lower (P < 0.05) malondialdehyde concentration in liver compared with those in the control group. Broilers had lower (P < 0.05) cholesterol content of serum in either CB2 or CB3 treatment at day 21 and in the C. butyricum-supplemented groups at day 42 than those in the control group. Chicks fed CB3 diet had lower (P < 0.05) percentage of abdominal fat and higher (P < 0.05) breast muscle yield than those in the control and antibiotic groups. The supplementation of C. butyricum increased (P < 0.05) the concentrations of C20:1n-9, C20:2n-6, C20:3n-6, C20:3n-3, C20:4n-6, C20:5n-3, C22:6n-3 and total PUFA as well as ratio of PUFA to saturated fatty acids in breast muscle and the contents of C18:2 t-9, t-12, C20:3n-6, C20:3n-3 and C20:5n-3 in thigh muscle. CONCLUSIONS Supplementation of C. butyricum promotes hepatic antioxidant status, decreases cholesterol content of serum and percentage of abdominal fat, and improves meat quality and fatty acid composition of broiler birds. The results from the present study indicate that the increased PUFA concentrations in meat of broilers fed C. butyricum might be attributable to enhanced antioxidant activity.
Collapse
Affiliation(s)
- Xiudong Liao
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Rujuan Wu
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Guang Ma
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Longmei Zhao
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Zhaojun Zheng
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Rijun Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
240
|
Gong Y, Li Y, Sun Q. Probiotics improve efficacy and tolerability of triple therapy to eradicate Helicobacter pylori: a meta-analysis of randomized controlled trials. Int J Clin Exp Med 2015; 8:6530-6543. [PMID: 26131283 PMCID: PMC4483842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/02/2015] [Indexed: 06/04/2023]
Abstract
OBJECTIVE Gastric colonization by Helicobacter pylori is linked to a host of diseases, but eradication rates have declined in recent years. Some experimental studies suggest that probiotics may inhibit growth of H. pylori. This investigation was conducted to assess the impact of probiotics on both efficacy and tolerability of triple therapy to eradicate H. pylori. METHODS PubMed, Web of Science, and the Cochrane Collaboration were searched for relevant articles published through August 31, 2014. All analytics relied on commercially available software (Stata 11). RESULTS Twenty-three studies (N = 3900) qualified for meta-analysis. Pooled H. pylori eradication rates for triple therapy used alone and with added probiotics were 1464/2026 (72.26%; 95% CI, 67.66%-74.13) and 1513/1874 (80.74%; 95% CI, 74.68%-82.76%), respectively (odds ratio [OR] = 0.58; 95% CI, 0.50-0.68). Loss of appetite was similar in both groups (OR = 0.94; 95% CI, 0.61-1.45), but most adverse events (nausea, diarrhea, epigastric pain, vomiting, taste distortion, and skin rash) were mitigated through addition of probiotics. Publication bias was not evident, as indicated by Begg's and Egger's tests. CONCLUSIONS Probiotics may improve the efficacy of triple therapy in eradicating gastric H. pylori and alleviate most treatment-related adverse events.
Collapse
Affiliation(s)
- Yi Gong
- Department of Gastroenterology, Shengjing Hospital, China Medical University Shenyang, China
| | - Yan Li
- Department of Gastroenterology, Shengjing Hospital, China Medical University Shenyang, China
| | - Qian Sun
- Department of Gastroenterology, Shengjing Hospital, China Medical University Shenyang, China
| |
Collapse
|
241
|
Sanders FWB, Griffin JL. De novo lipogenesis in the liver in health and disease: more than just a shunting yard for glucose. Biol Rev Camb Philos Soc 2015; 91:452-68. [PMID: 25740151 PMCID: PMC4832395 DOI: 10.1111/brv.12178] [Citation(s) in RCA: 359] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 01/07/2015] [Accepted: 01/20/2015] [Indexed: 02/06/2023]
Abstract
Hepatic de novo lipogenesis (DNL) is the biochemical process of synthesising fatty acids from acetyl‐CoA subunits that are produced from a number of different pathways within the cell, most commonly carbohydrate catabolism. In addition to glucose which most commonly supplies carbon units for DNL, fructose is also a profoundly lipogenic substrate that can drive DNL, important when considering the increasing use of fructose in corn syrup as a sweetener. In the context of disease, DNL is thought to contribute to the pathogenesis of non‐alcoholic fatty liver disease, a common condition often associated with the metabolic syndrome and consequent insulin resistance. Whether DNL plays a significant role in the pathogenesis of insulin resistance is yet to be fully elucidated, but it may be that the prevalent products of this synthetic process induce some aspect of hepatic insulin resistance.
Collapse
Affiliation(s)
- Francis W B Sanders
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, U.K.,The Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Julian L Griffin
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, U.K.,The Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| |
Collapse
|
242
|
DOUHARA AKITOSHI, MORIYA KEI, YOSHIJI HITOSHI, NOGUCHI RYUICHI, NAMISAKI TADASHI, KITADE MITSUTERU, KAJI KOSUKE, AIHARA YOSUKE, NISHIMURA NORIHISA, TAKEDA KOSUKE, OKURA YASUSHI, KAWARATANI HIDETO, FUKUI HIROSHI. Reduction of endotoxin attenuates liver fibrosis through suppression of hepatic stellate cell activation and remission of intestinal permeability in a rat non-alcoholic steatohepatitis model. Mol Med Rep 2015; 11:1693-1700. [PMID: 25421042 PMCID: PMC4270343 DOI: 10.3892/mmr.2014.2995] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 11/05/2014] [Indexed: 02/07/2023] Open
Abstract
Previous clinical studies have demonstrated that endotoxin/toll‑like receptor 4 (TLR4) signaling is critical in the inflammatory pathways associated with non‑alcoholic steatohepatitis (NASH). In human and animal studies, NASH was associated with portal lipopolysaccharide (LPS) and the plasma LPS level was hypothesized to be associated with small intestinal bacterial overgrowth, change in composition of the microbiota and increased intestinal permeability. The aim of the present study was to investigate the roles of endogenous endotoxin and TLR4 in the pathogenesis of NASH. The effects of antibiotics were assessed in vivo using a choline deficiency amino acid (CDAA)‑induced experimental liver fibrosis model. Antibiotics, including polymyxins and neomycins, were orally administered in drinking water. Antibiotics attenuated hepatic stellate cell (HSC) activation and liver fibrosis via TGF‑β and collagen in an experimental hepatic fibrosis model. The mechanism by which antibiotics attenuated LPS‑TLR4 signaling and liver fibrosis was assessed. Notably, TLR4 mRNA level in the liver was elevated in the CDAA group and the CDAA‑induced increase was significantly reduced by antibiotics. However, no significant differences were observed in the intestine among all groups. Elevated mRNA levels of LPS binding protein, which was correlated with serum endotoxin levels, were recognized in the CDAA group and the CDAA‑induced increase was significantly reduced by antibiotics. The intestinal permeability of the CDAA group was increased compared with the choline‑supplemented amino acid group. The tight junction protein (TJP) in the intestine, determined by immunohistochemical analysis was inversely associated with intestinal permeability. Antibiotics improved the intestinal permeability and enhanced TJP expression. Inhibition of LPS‑TLR4 signaling with antibiotics attenuated liver fibrosis development associated with NASH via the inhibition of HSC activation. These results indicated that reduction of LPS and restoration of intestinal TJP may be a novel therapeutic strategy for treatment of liver fibrosis development in NASH.
Collapse
Affiliation(s)
- AKITOSHI DOUHARA
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - KEI MORIYA
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - HITOSHI YOSHIJI
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - RYUICHI NOGUCHI
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - TADASHI NAMISAKI
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - MITSUTERU KITADE
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - KOSUKE KAJI
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - YOSUKE AIHARA
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - NORIHISA NISHIMURA
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - KOSUKE TAKEDA
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - YASUSHI OKURA
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - HIDETO KAWARATANI
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - HIROSHI FUKUI
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
243
|
Weng H, Endo K, Li J, Kito N, Iwai N. Induction of peroxisomes by butyrate-producing probiotics. PLoS One 2015; 10:e0117851. [PMID: 25659146 PMCID: PMC4320100 DOI: 10.1371/journal.pone.0117851] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/05/2015] [Indexed: 01/04/2023] Open
Abstract
We previously found that peroxisomal biogenesis factor 11a (Pex11a) deficiency is associated with a reduction in peroxisome abundance and impaired fatty acid metabolism in hepatocytes, and results in steatosis. In the present study, we investigated whether butyrate induces Pex11a expression and peroxisome proliferation, and studied its effect on lipid metabolism. C57BL/6 mice fed standard chow or a high-fat diet (HFD) were treated with tributyrin, 4-phelybutyrate acid (4-PBA), or the butyrate-producing probiotics (Clostridium butyricum MIYAIRI 588 [CBM]) plus inulin (dietary fiber), and the body weight, white adipose tissue, serum triglycerides, mRNA expression, and peroxisome abundance were evaluated. Tributyrin or 4-PBA treatment significantly decreased body weight and increased hepatic mRNA expression of peroxisome proliferator-activated receptor-α (PPARα) and Pex11a. In addition, 4-PBA treatment increased peroxisome abundance and the expression of genes involved in peroxisomal fatty acid β-oxidation (acyl-coenzyme A oxidase 1 and hydroxysteroid [17-beta] dehydrogenase 4). CBM and inulin administration reduced adipose tissue mass and serum triglycerides, induced Pex11a, acyl-coenzyme A oxidase 1, and hydroxysteroid (17-beta) dehydrogenase 4 genes, and increased peroxisome abundance in mice fed standard chow or an HFD. In conclusion, elevation of butyrate availability (directly through administration of butyrate or indirectly via administration of butyrate-producing probiotics plus fiber) induces PPARα and Pex11a and the genes involved in peroxisomal fatty acid β-oxidation, increases peroxisome abundance, and improves lipid metabolism. These results may provide a new therapeutic strategy against hyperlipidemia and obesity.
Collapse
Affiliation(s)
- Huachun Weng
- Department of Genomic Medicine, Research Institute, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
- * E-mail: (HW); (NI)
| | - Kosuke Endo
- Department of Genomic Medicine, Research Institute, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Jiawei Li
- Department of Genomic Medicine, Research Institute, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Naoko Kito
- Department of Genomic Medicine, Research Institute, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Naoharu Iwai
- Department of Genomic Medicine, Research Institute, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
- * E-mail: (HW); (NI)
| |
Collapse
|
244
|
Jiang CM, Pu CW, Hou YH, Chen Z, Alanazy M, Hebbard L. Non alcoholic steatohepatitis a precursor for hepatocellular carcinoma development. World J Gastroenterol 2014; 20:16464-16473. [PMID: 25469014 PMCID: PMC4248189 DOI: 10.3748/wjg.v20.i44.16464] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/24/2014] [Accepted: 08/28/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is increasing in prevalence and is one of the most common cancers in the world. Chief amongst the risks of attaining HCC are hepatitis B and C infection, aflatoxin B1 ingestion, alcoholism and obesity. The later has been shown to promote non alcoholic fatty liver disease, which can lead to the inflammatory form non alcoholic steatohepatitis (NASH). NASH is a complex metabolic disorder that can impact greatly on hepatic function. The mechanisms by which NASH promotes HCC are only beginning to be characterized. Here in this review, we give an overview of the recent novel mechanisms published that have been associated with NASH and subsequent HCC progression. We will focus our discussion on inflammation and gut derived inflammation and how they contribute to NASH driven HCC.
Collapse
|
245
|
Paolella G, Mandato C, Pierri L, Poeta M, Di Stasi M, Vajro P. Gut-liver axis and probiotics: Their role in non-alcoholic fatty liver disease. World J Gastroenterol 2014; 20:15518-15531. [PMID: 25400436 PMCID: PMC4229517 DOI: 10.3748/wjg.v20.i42.15518] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 04/29/2014] [Accepted: 07/16/2014] [Indexed: 02/06/2023] Open
Abstract
The incidence of obesity and its related conditions, including non-alcoholic fatty liver disease (NAFLD), has dramatically increased in all age groups worldwide. Given the health consequences of these conditions, and the subsequent economic burden on healthcare systems, their prevention and treatment have become major priorities. Because standard dietary and lifestyle changes and pathogenically-oriented therapies (e.g., antioxidants, oral hypoglycemic agents, and lipid-lowering agents) often fail due to poor compliance and/or lack of efficacy, novel approaches directed toward other pathomechanisms are needed. Here we present several lines of evidence indicating that, by increasing energy extraction in some dysbiosis conditions or small intestinal bacterial overgrowth, specific gut microbiota and/or a “low bacterial richness” may play a role in obesity, metabolic syndrome, and fatty liver. Under conditions involving a damaged intestinal barrier (“leaky gut”), the gut-liver axis may enhance the natural interactions between intestinal bacteria/bacterial products and hepatic receptors (e.g., toll-like receptors), thus promoting the following cascade of events: oxidative stress, insulin-resistance, hepatic inflammation, and fibrosis. We also discuss the possible modulation of gut microbiota by probiotics, as attempted in NAFLD animal model studies and in several pilot pediatric and adult human studies. Globally, this approach appears to be a promising and innovative add-on therapeutic tool for NAFLD in the context of multi-target therapy.
Collapse
|
246
|
Disparate metabolic effects of blackcurrant seed oil in rats fed a basal and obesogenic diet. Eur J Nutr 2014; 54:991-9. [PMID: 25311060 PMCID: PMC4540767 DOI: 10.1007/s00394-014-0775-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 09/23/2014] [Indexed: 01/06/2023]
Abstract
PURPOSE It was hypothesised that blackcurrant seed oil beneficially modulates metabolic disorders related to obesity and its complications. The study also aimed to investigate the potentially adverse effects of an unbalanced diet on the distal intestine. METHODS Male Wistar rats were randomly assigned to four groups of eight animals each and were fed a basal or obesogenic (high in fat and low in fibre) diet that contained either rapeseed oil (Canola) or blackcurrant seed oil. A two-way analysis of variance was then applied to assess the effects of diet and oil and the interaction between them. RESULTS After 8 weeks, the obesogenic dietary regimen increased the body weight, altered the plasma lipid profile and increased the liver fat content and the plasma transaminase activities. In addition, the obesogenic diet decreased bacterial glycolytic activity and short-chain fatty acid formation in the distal intestine. Dietary blackcurrant seed oil improved the lipid metabolism by lowering liver fat accumulation and the plasma triglyceride concentration and atherogenicity as well by increasing the plasma HDL-cholesterol concentration. However, in rats fed an obesogenic diet containing blackcurrant seed oil, the plasma HDL-cholesterol concentration was comparable with both rapeseed oil-containing diets, and a significant elevation of the plasma transaminase activities was noted instead. CONCLUSIONS The obesogenic dietary regimen causes a number of metabolic disorders, including alterations in the hindgut microbial metabolism. Dietary blackcurrant seed oil ameliorates the lipid metabolism; however, the beneficial effect is restricted when it is provided together with the obesogenic diet, and a risk of liver injury may occur.
Collapse
|
247
|
Tang W, Jiang YF, Ponnusamy M, Diallo M. Role of Nrf2 in chronic liver disease. World J Gastroenterol 2014; 20:13079-13087. [PMID: 25278702 PMCID: PMC4177487 DOI: 10.3748/wjg.v20.i36.13079] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/08/2014] [Accepted: 05/26/2014] [Indexed: 02/06/2023] Open
Abstract
Nuclear erythroid 2-related factor 2 (Nrf2) is a central regulator of antioxidative response elements-mediated gene expression. It has a significant role in adaptive responses to oxidative stress by interacting with the antioxidant response element, which induces the expression of a variety of downstream targets aimed at cytoprotection. Previous studies suggested oxidative stress and associated damage could represent a common link between different forms of diseases. Oxidative stress has been implicated in various liver diseases, including viral hepatitis, nonalcoholic fatty liver disease/steatohepatitis, alcoholic liver disease and drug-induced liver injury. Nrf2 activation is initiated by oxidative or electrophilic stress, and aids in the detoxification and elimination of potentially harmful exogenous chemicals and their metabolites. The expression of Nrf2 has been observed throughout human tissue, with high expression in detoxification organs, especially the liver. Thus, Nrf2 may serve as a major regulator of several cellular defense associated pathways by which hepatic cells combat oxidative stress. We review the relevant literature concerning the crucial role of Nrf2 and its signaling pathways against oxidative stress to protect hepatic cell from oxidative damage during development of common chronic liver diseases. We also review the use of Nrf2 as a therapeutic target to prevent and treat liver diseases.
Collapse
|
248
|
Probiotics and synbiotics may improve liver aminotransferases levels in non-alcoholic fatty liver disease patients. Ann Hepatol 2014. [DOI: 10.1016/s1665-2681(19)31246-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
|
249
|
Giorgio V, Alisi A, Kazem HM, Monti S, Nobili V. NASH and the Cross-Talk Between the Gut and Liver. CURRENT PEDIATRICS REPORTS 2014. [DOI: 10.1007/s40124-014-0047-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
250
|
Wang SQ, Huang Y. Advances in research of nonalcoholic fatty liver disease. Shijie Huaren Xiaohua Zazhi 2014; 22:3410-3415. [DOI: 10.11569/wcjd.v22.i23.3410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) refers to a clinicopathologic syndrome characterized by a spectrum of histological abnormalities such as hepatocyte fatty degeneration and liver inflammation, not including those caused by alcohol and other specific factors. NAFLD is a heredity, environmental, metabolic disease, and its spectrum ranges from nonalcoholic fatty liver to nonalcoholic steatohepatitis and liver cirrhosis.
Collapse
|