201
|
Sun L, Yi L, Zhang C, Liu X, Feng S, Chen W, Lan J, Zhao L, Tu J, Lin L. Glutamine is required for snakehead fish vesiculovirus propagation via replenishing the tricarboxylic acid cycle. J Gen Virol 2016; 97:2849-2855. [DOI: 10.1099/jgv.0.000597] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Lindan Sun
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Lizhu Yi
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Chi Zhang
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiaodan Liu
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Shuangshuang Feng
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Wenjie Chen
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Jiangfeng Lan
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Lijuan Zhao
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Jiagang Tu
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Li Lin
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Key Laboratory of Tropical Biological Resources of the Ministry of Education, College of Marine Science, Hainan University, Haikou, Hainan 570228, PR China
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
202
|
Jean Beltran PM, Mathias RA, Cristea IM. A Portrait of the Human Organelle Proteome In Space and Time during Cytomegalovirus Infection. Cell Syst 2016; 3:361-373.e6. [PMID: 27641956 PMCID: PMC5083158 DOI: 10.1016/j.cels.2016.08.012] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 06/30/2016] [Accepted: 08/23/2016] [Indexed: 11/18/2022]
Abstract
The organelles within a eukaryotic host are manipulated by viruses to support successful virus replication and spread of infection, yet the global impact of viral infection on host organelles is poorly understood. Integrating microscopy, subcellular fractionation, mass spectrometry, and functional analyses, we conducted a cell-wide study of organelles in primary fibroblasts throughout the time course of human cytomegalovirus (HCMV) infection. We used label-free and isobaric-labeling proteomics to characterize nearly 4,000 host and 100 viral proteins, then classified their specific subcellular locations over time using machine learning. We observed a global reorganization of proteins across the secretory pathway, plasma membrane, and mitochondria, including reorganization and processing of lysosomal proteins into distinct subpopulations and translocations of individual proteins between organelles at specific time points. We also demonstrate that MYO18A, an unconventional myosin that translocates from the plasma membrane to the viral assembly complex, is necessary for efficient HCMV replication. This study provides a comprehensive resource for understanding host and virus biology during HCMV pathogenesis.
Collapse
Affiliation(s)
- Pierre M Jean Beltran
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Rommel A Mathias
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
203
|
Levy G, Habib N, Guzzardi MA, Kitsberg D, Bomze D, Ezra E, Uygun BE, Uygun K, Trippler M, Schlaak JF, Shibolet O, Sklan EH, Cohen M, Timm J, Friedman N, Nahmias Y. Nuclear receptors control pro-viral and antiviral metabolic responses to hepatitis C virus infection. Nat Chem Biol 2016; 12:1037-1045. [PMID: 27723751 DOI: 10.1038/nchembio.2193] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/02/2016] [Indexed: 12/11/2022]
Abstract
Viruses lack the basic machinery needed to replicate and therefore must hijack the host's metabolism to propagate. Virus-induced metabolic changes have yet to be systematically studied in the context of host transcriptional regulation, and such studies shoul offer insight into host-pathogen metabolic interplay. In this work we identified hepatitis C virus (HCV)-responsive regulators by coupling system-wide metabolic-flux analysis with targeted perturbation of nuclear receptors in primary human hepatocytes. We found HCV-induced upregulation of glycolysis, ketogenesis and drug metabolism, with glycolysis controlled by activation of HNF4α, ketogenesis by PPARα and FXR, and drug metabolism by PXR. Pharmaceutical inhibition of HNF4α reversed HCV-induced glycolysis, blocking viral replication while increasing apoptosis in infected cells showing virus-induced dependence on glycolysis. In contrast, pharmaceutical inhibition of PPARα or FXR reversed HCV-induced ketogenesis but increased viral replication, demonstrating a novel host antiviral response. Our results show that virus-induced changes to a host's metabolism can be detrimental to its life cycle, thus revealing a biologically complex relationship between virus and host.
Collapse
Affiliation(s)
- Gahl Levy
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Naomi Habib
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Maria Angela Guzzardi
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Daniel Kitsberg
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Bomze
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elishai Ezra
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Faculty of Engineering, Jerusalem College of Technology, Jerusalem, Israel
| | - Basak E Uygun
- Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Korkut Uygun
- Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Martin Trippler
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Joerg F Schlaak
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Oren Shibolet
- Liver Unit, Department of Gastroenterology, Tel-Aviv Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Ella H Sklan
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Merav Cohen
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joerg Timm
- Institute for Virology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Nir Friedman
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yaakov Nahmias
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
204
|
Jiang H, Shi H, Sun M, Wang Y, Meng Q, Guo P, Cao Y, Chen J, Gao X, Li E, Liu J. PFKFB3-Driven Macrophage Glycolytic Metabolism Is a Crucial Component of Innate Antiviral Defense. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:2880-2890. [PMID: 27566823 DOI: 10.4049/jimmunol.1600474] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/01/2016] [Indexed: 01/03/2025]
Abstract
Signaling by viral nucleic acids and subsequently by type I IFN is central to antiviral innate immunity. These signaling events are also likely to engage metabolic changes in immune and nonimmune cells to support antiviral defense. In this study, we show that cytosolic viral recognition, by way of secondary IFN signaling, leads to upregulation of glycolysis preferentially in macrophages. This metabolic switch involves induction of glycolytic activator 6-phosphofructose-2-kinase and fructose-2,6-bisphosphatase (PFKFB3). Using a genetic inactivation approach together with pharmacological perturbations in mouse cells, we show that PFKFB3-driven glycolysis selectively promotes the extrinsic antiviral capacity of macrophages, via metabolically supporting the engulfment and removal of virus-infected cells. Furthermore, the antiviral function of PFKFB3, as well as some contribution of its action from the hematopoietic compartment, was confirmed in a mouse model of respiratory syncytial virus infection. Therefore, different from the long-standing perception of glycolysis as a proviral pathway, our findings establish an antiviral, immunometabolic aspect of glycolysis that may have therapeutic implications.
Collapse
Affiliation(s)
- Hui Jiang
- State Key Laboratory of Pharmaceutical Biotechnology and Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China; and
| | - Hengfei Shi
- School of Medicine, Nanjing University, Nanjing 210093, China
| | - Man Sun
- State Key Laboratory of Pharmaceutical Biotechnology and Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China; and
| | - Yafeng Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China; and
| | - Qingzhou Meng
- State Key Laboratory of Pharmaceutical Biotechnology and Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China; and
| | - Panpan Guo
- State Key Laboratory of Pharmaceutical Biotechnology and Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China; and
| | - Yanlan Cao
- State Key Laboratory of Pharmaceutical Biotechnology and Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China; and
| | - Jiong Chen
- State Key Laboratory of Pharmaceutical Biotechnology and Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China; and
| | - Xiang Gao
- State Key Laboratory of Pharmaceutical Biotechnology and Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China; and
| | - Erguang Li
- State Key Laboratory of Pharmaceutical Biotechnology and Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China; and School of Medicine, Nanjing University, Nanjing 210093, China
| | - Jianghuai Liu
- State Key Laboratory of Pharmaceutical Biotechnology and Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China; and
| |
Collapse
|
205
|
Human Cytomegalovirus Can Procure Deoxyribonucleotides for Viral DNA Replication in the Absence of Retinoblastoma Protein Phosphorylation. J Virol 2016; 90:8634-43. [PMID: 27440891 DOI: 10.1128/jvi.00731-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/13/2016] [Indexed: 01/31/2023] Open
Abstract
UNLABELLED Viral DNA replication requires deoxyribonucleotide triphosphates (dNTPs). These molecules, which are found at low levels in noncycling cells, are generated either by salvage pathways or through de novo synthesis. Nucleotide synthesis utilizes the activity of a series of nucleotide-biosynthetic enzymes (NBEs) whose expression is repressed in noncycling cells by complexes between the E2F transcription factors and the retinoblastoma (Rb) tumor suppressor. Rb-E2F complexes are dissociated and NBE expression is activated during cell cycle transit by cyclin-dependent kinase (Cdk)-mediated Rb phosphorylation. The DNA virus human cytomegalovirus (HCMV) encodes a viral Cdk (v-Cdk) (the UL97 protein) that phosphorylates Rb, induces the expression of cellular NBEs, and is required for efficient viral DNA synthesis. A long-held hypothesis proposed that viral proteins with Rb-inactivating activities functionally similar to those of UL97 facilitated viral DNA replication in part by inducing the de novo production of dNTPs. However, we found that dNTPs were limiting even in cells infected with wild-type HCMV in which UL97 is expressed and Rb is phosphorylated. Furthermore, we revealed that both de novo and salvage pathway enzymes contribute to viral DNA replication during HCMV infection and that Rb phosphorylation by cellular Cdks does not correct the viral DNA replication defect observed in cells infected with a UL97-deficient virus. We conclude that HCMV can obtain dNTPs in the absence of Rb phosphorylation and that UL97 can contribute to the efficiency of DNA replication in an Rb phosphorylation-independent manner. IMPORTANCE Transforming viral oncoproteins, such as adenovirus E1A and papillomavirus E7, inactivate Rb. The standard hypothesis for how Rb inactivation facilitates infection with these viruses is that it is through an increase in the enzymes required for DNA synthesis, which include nucleotide-biosynthetic enzymes. However, HCMV UL97, which functionally mimics these viral oncoproteins through phosphorylation of Rb, fails to induce the production of nonlimiting amounts of dNTPs. This finding challenges the paradigm of the role of Rb inactivation during DNA virus infection and uncovers the existence of an alternative mechanism by which UL97 contributes to HCMV DNA synthesis. The ineffectiveness of the UL97 inhibitor maribavir in clinical trials might be better explained with a fuller understanding of the role of UL97 during infection. Furthermore, as the nucleoside analog ganciclovir is the current drug of choice for treating HCMV, knowing the provenance of the dNTPs incorporated into viral DNA may help inform antiviral therapeutic regimens.
Collapse
|
206
|
1H Nuclear Magnetic Resonance Metabolomics of Plasma Unveils Liver Dysfunction in Dengue Patients. J Virol 2016; 90:7429-7443. [PMID: 27279613 DOI: 10.1128/jvi.00187-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/27/2016] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED Dengue, due to its global burden, is the most important arthropod-borne flavivirus disease, and early detection lowers fatality rates to below 1%. Since the metabolic resources crucial for viral replication are provided by host cells, detection of changes in the metabolic profile associated with disease pathogenesis could help with the identification of markers of prognostic and diagnostic importance. We applied (1)H nuclear magnetic resonance exploratory metabolomics to study longitudinal changes in plasma metabolites in a cohort in Recife, Brazil. To gain statistical power, we used innovative paired multivariate analyses to discriminate individuals with primary and secondary infection presenting as dengue fever (DF; mild) and dengue hemorrhagic fever (DHF; severe) and subjects with a nonspecific nondengue (ND) illness (ND subjects). Our results showed that a decrease in plasma low-density lipoprotein (LDL) and very-low-density lipoprotein (VLDL) discriminated dengue virus (DENV)-infected subjects from ND subjects, and also, subjects with severe infection even presented a decrease in lipoprotein concentrations compared to the concentrations in subjects with mild infection. These results add to the ongoing discussion that the manipulation of lipid metabolism is crucial for DENV replication and infection. In addition, a decrease in plasma glutamine content was characteristic of DENV infection and disease severity, and an increase in plasma acetate levels discriminated subjects with DF and DHF from ND subjects. Several other metabolites shown to be altered in DENV infection and the implications of these alterations are discussed. We hypothesize that these changes in the plasma metabolome are suggestive of liver dysfunction, could provide insights into the underlying molecular mechanisms of dengue virus pathogenesis, and could help to discriminate individuals at risk of the development of severe infection and predict disease outcome. IMPORTANCE Dengue, due to its global burden, is the most important mosquito-borne viral disease. There is no specific treatment for dengue disease, and early detection lowers fatality rates to below 1%. In this study, we observed the effects of dengue virus infection on the profile of small molecules in the blood of patients with mild and severe infection. Variations in the profiles of these small molecules reflected the replication of dengue virus in different tissues and the extent of tissue damage during infection. The results of this study showed that the molecules that changed the most were VLDL, LDL, and amino acids. We propose that these changes reflect liver dysfunction and also that they can be used to discriminate subjects with mild dengue from those with severe dengue.
Collapse
|
207
|
Lagunoff M. Activation of cellular metabolism during latent Kaposi's Sarcoma herpesvirus infection. Curr Opin Virol 2016; 19:45-9. [PMID: 27434732 DOI: 10.1016/j.coviro.2016.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/22/2016] [Accepted: 06/29/2016] [Indexed: 02/07/2023]
Abstract
Herpesviruses can establish latent infections in the host with severely limited viral gene expression. Kaposi's Sarcoma-associated herpesvirus (KSHV) is found predominantly in the latent state in the main KS tumor cell, a cell of endothelial origin. While many viruses alter host cell metabolism during productive infection, latent KSHV infection of endothelial cells activates metabolic pathways that are activated in many cancer cells. Inhibition of these major metabolic pathways leads to apoptotic cell death of the latently infected cells. The study of KSHV activation of metabolism may lead to novel therapeutic options for eliminating latent infection of gamma-herpesviruses and could also lead to a deeper mechanistic understanding of how to target cancer cell metabolism.
Collapse
Affiliation(s)
- Michael Lagunoff
- Department of Microbiology, University of Washington, 1959 N.E. Pacific St., Box 347252, Seattle, WA 98195, United States.
| |
Collapse
|
208
|
Schoeman JC, Hou J, Harms AC, Vreeken RJ, Berger R, Hankemeier T, Boonstra A. Metabolic characterization of the natural progression of chronic hepatitis B. Genome Med 2016; 8:64. [PMID: 27286979 PMCID: PMC4902991 DOI: 10.1186/s13073-016-0318-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/17/2016] [Indexed: 02/07/2023] Open
Abstract
Background Worldwide, over 350 million people are chronically infected with the hepatitis B virus (HBV) and are at increased risk of developing progressive liver diseases. The confinement of HBV replication to the liver, which also acts as the central hub for metabolic and nutritional regulation, emphasizes the interlinked nature of host metabolism and the disease. Still, the metabolic processes operational during the distinct clinical phases of a chronic HBV infection—immune tolerant, immune active, inactive carrier, and HBeAg-negative hepatitis phases—remains unexplored. Methods To investigate this, we conducted a targeted metabolomics approach on serum to determine the metabolic progression over the clinical phases of chronic HBV infection, using patient samples grouped based on their HBV DNA, alanine aminotransferase, and HBeAg serum levels. Results Our data illustrate the strength of metabolomics to provide insight into the metabolic dysregulation experienced during chronic HBV. The immune tolerant phase is characterized by the speculated viral hijacking of the glycerol-3-phosphate–NADH shuttle, explaining the reduced glycerophospholipid and increased plasmalogen species, indicating a strong link to HBV replication. The persisting impairment of the choline glycerophospholipids, even during the inactive carrier phase with minimal HBV activity, alludes to possible metabolic imprinting effects. The progression of chronic HBV is associated with increased concentrations of very long chain triglycerides together with citrulline and ornithine, reflective of a dysregulated urea cycle peaking in the HBV envelope antigen-negative phase. Conclusions The work presented here will aid in future studies to (i) validate and understand the implication of these metabolic changes using a thorough systems biology approach, (ii) monitor and predict disease severity, as well as (iii) determine the therapeutic value of the glycerol-3-phosphate–NADH shuttle. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0318-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Johannes C Schoeman
- Department of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands.,Netherlands Metabolomics Centre, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands
| | - Jun Hou
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Wytemaweg 80, Room Na-1011, 3015, CE, Rotterdam, The Netherlands
| | - Amy C Harms
- Department of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands.,Netherlands Metabolomics Centre, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands
| | - Rob J Vreeken
- Department of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands.,Netherlands Metabolomics Centre, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands.,Present address: Discovery Sciences, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Ruud Berger
- Department of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands.,Netherlands Metabolomics Centre, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands
| | - Thomas Hankemeier
- Department of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands.,Netherlands Metabolomics Centre, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Wytemaweg 80, Room Na-1011, 3015, CE, Rotterdam, The Netherlands.
| |
Collapse
|
209
|
Monleón D, Giménez E, Muñoz-Cobo B, Morales JM, Solano C, Amat P, Navarro D. Plasma metabolomics profiling for the prediction of cytomegalovirus DNAemia and analysis of virus–host interaction in allogeneic stem cell transplant recipients. J Gen Virol 2016; 96:3373-3381. [PMID: 26341195 DOI: 10.1099/jgv.0.000275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Metabolomics analysis of biofluids is increasingly being recognized as a useful tool for the diagnosis and management of a number of infectious diseases. Here we showed that plasma metabolomics profiling by untargeted 1H nuclear magnetic resonance may allow the anticipation of the occurrence of cytomegalovirus (CMV) DNAemia in allogeneic stem cell transplant. For this purpose, key discriminatory metabolites were total glutathione, taurine, methylamine, trimethylamine N-oxide and lactate, all of which were upregulated in patients eventually developing CMV DNAemia. The overall classification accuracy (predictability) of the projection to latent structure discriminant analysis (PLS-DA) model in cross-validation technical replicates was 73 %. Increased levels of alanine, lactate and total fatty acids, and a shift in the fatty acid profile towards unsaturated species, were observed in patients with detectable CMV DNA in plasma. The classification accuracy of this PLS-DA model in cross-validation technical replicates was 81 %. Plasma metabolomics profiling may prove useful for identifying patients at highest risk for CMV DNAemia thus allowing early inception of antiviral therapy.
Collapse
Affiliation(s)
- Daniel Monleón
- Metabolomic and Molecular Image Laboratory, Fundación de Investigación INCLIVA, Valencia, Spain
| | - Estela Giménez
- Microbiology Service, Hospital Clínico Universitario, Fundación de Investigación INCLIVA, Valencia, Spain
| | - Beatriz Muñoz-Cobo
- Microbiology Service, Hospital Clínico Universitario, Fundación de Investigación INCLIVA, Valencia, Spain
| | - José Manuel Morales
- Metabolomic and Molecular Image Laboratory, Fundación de Investigación INCLIVA, Valencia, Spain
| | - Carlos Solano
- Hematalogy and Medical Oncology Service, Hospital Clínico Universitario, Fundación de Investigación INCLIVA, Valencia, Spain
- Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain
| | - Paula Amat
- Hematalogy and Medical Oncology Service, Hospital Clínico Universitario, Fundación de Investigación INCLIVA, Valencia, Spain
| | - David Navarro
- Microbiology Service, Hospital Clínico Universitario, Fundación de Investigación INCLIVA, Valencia, Spain
- Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
210
|
Making Bunyaviruses Talk: Interrogation Tactics to Identify Host Factors Required for Infection. Viruses 2016; 8:v8050130. [PMID: 27187446 PMCID: PMC4885085 DOI: 10.3390/v8050130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 12/26/2022] Open
Abstract
The identification of host cellular genes that act as either proviral or antiviral factors has been aided by the development of an increasingly large number of high-throughput screening approaches. Here, we review recent advances in which these new technologies have been used to interrogate host genes for the ability to impact bunyavirus infection, both in terms of technical advances as well as a summary of biological insights gained from these studies.
Collapse
|
211
|
Enolase-1 is a therapeutic target in endometrial carcinoma. Oncotarget 2016; 6:15610-27. [PMID: 25951350 PMCID: PMC4558174 DOI: 10.18632/oncotarget.3639] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/10/2015] [Indexed: 12/14/2022] Open
Abstract
ENO1 plays a paradoxical role in driving the pathogenesis of tumors. However, the clinical significance of ENO1 expression remains unclear and its function and modulatory mechanisms have never been reported in endometrial carcinoma (EC). In this study, ENO1 silencing significantly reduced cell glycolysis, proliferation, migration, and invasion in vitro, as well as tumorigenesis and metastasis in vivo by modulating p85 suppression. This in turn mediated inactivation of PI3K/AKT signaling and its downstream signals including glycolysis, cell cycle progression, and epithelial-mesenchymal transition (EMT)-associated genes. These effects on glycolysis and cell growth were not observed after ENO1 suppression in normal human endometrial epithelial cells (HEEC). Knocking down ENO1 could significantly enhance the sensitivity of EC cells to cisplatin (DDP) and markedly inhibited the growth of EC xenografts in vivo. In clinical samples, EC tissues exhibited higher expression levels of ENO1 mRNA and protein compared with normal endometrium tissues. Patients with higher ENO1 expression had a markedly shorter overall survival than patients with low ENO1 expression. We conclude that ENO1 favors carcinogenesis, representing a potential target for gene-based therapy.
Collapse
|
212
|
Kido H, Indalao IL, Kim H, Kimoto T, Sakai S, Takahashi E. Energy metabolic disorder is a major risk factor in severe influenza virus infection: Proposals for new therapeutic options based on animal model experiments. Respir Investig 2016; 54:312-9. [PMID: 27566378 DOI: 10.1016/j.resinv.2016.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 02/20/2016] [Accepted: 02/24/2016] [Indexed: 12/14/2022]
Abstract
Severe influenza is characterized by cytokine storm and multiorgan failure. Influenza patients with underlying diseases show a rapid progression in disease severity. The major mechanism that underlies multiorgan failure during the progressive stage of infection, particularly in patients with underlying risk factors, is mitochondrial energy crisis. The relationship between the factors that determine infection severity, such as influenza virus, cytokines, cellular trypsin as a hemagglutinin processing protease for viral multiplication, accumulation of metabolic intermediates and ATP crisis in mitochondria, is termed the "influenza virus-cytokine-trypsin" cycle. This occurs during the initial stages of infection, and is interconnected with the "metabolic disorders-cytokine" cycle in the middle to late phase of infection. Experiments using animal models have highlighted the complex relationship between these two cycles. New treatment options have been proposed that target the ATP crisis and multiorgan failure during the late phase of infection, rather than antiviral treatments with neuraminidase inhibitors that work during the initial phase. These options are (i) restoration of glucose oxidation in mitochondria by diisopropylamine dichloroacetate, which inhibits infection-induced pyruvate dehydrogenase kinase 4 activity, and (ii) restoration of long-chain fatty acid oxidation in mitochondria by l-carnitine and bezafibrate, an agonist of peroxisome proliferation-activated receptors-β/δ, which transcriptionally upregulates carnitine palmitoyltransferase II. The latter is particularly effective in patients with influenza-associated encephalopathy who have thermolabile and short half-life compound variants of carnitine palmitoyltransferase II.
Collapse
Affiliation(s)
- Hiroshi Kido
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Kuramoto-cho 3-18-15, Tokushima 770-8503, Japan.
| | - Irene L Indalao
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Kuramoto-cho 3-18-15, Tokushima 770-8503, Japan.
| | - Hyejin Kim
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Kuramoto-cho 3-18-15, Tokushima 770-8503, Japan.
| | - Takashi Kimoto
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Kuramoto-cho 3-18-15, Tokushima 770-8503, Japan.
| | - Satoko Sakai
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Kuramoto-cho 3-18-15, Tokushima 770-8503, Japan.
| | - Etsuhisa Takahashi
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Kuramoto-cho 3-18-15, Tokushima 770-8503, Japan.
| |
Collapse
|
213
|
Karniely S, Weekes MP, Antrobus R, Rorbach J, van Haute L, Umrania Y, Smith DL, Stanton RJ, Minczuk M, Lehner PJ, Sinclair JH. Human Cytomegalovirus Infection Upregulates the Mitochondrial Transcription and Translation Machineries. mBio 2016; 7:e00029. [PMID: 27025248 PMCID: PMC4807356 DOI: 10.1128/mbio.00029-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/25/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Infection with human cytomegalovirus (HCMV) profoundly affects cellular metabolism. Like in tumor cells, HCMV infection increases glycolysis, and glucose carbon is shifted from the mitochondrial tricarboxylic acid cycle to the biosynthesis of fatty acids. However, unlike in many tumor cells, where aerobic glycolysis is accompanied by suppression of mitochondrial oxidative phosphorylation, HCMV induces mitochondrial biogenesis and respiration. Here, we affinity purified mitochondria and used quantitative mass spectrometry to determine how the mitochondrial proteome changes upon HCMV infection. We found that the mitochondrial transcription and translation systems are induced early during the viral replication cycle. Specifically, proteins involved in biogenesis of the mitochondrial ribosome were highly upregulated by HCMV infection. Inhibition of mitochondrial translation with chloramphenicol or knockdown of HCMV-induced ribosome biogenesis factor MRM3 abolished the HCMV-mediated increase in mitochondrially encoded proteins and significantly impaired viral growth under bioenergetically restricting conditions. Our findings demonstrate how HCMV manipulates mitochondrial biogenesis to support its replication. IMPORTANCE Human cytomegalovirus (HCMV), a betaherpesvirus, is a leading cause of morbidity and mortality during congenital infection and among immunosuppressed individuals. HCMV infection significantly changes cellular metabolism. Akin to tumor cells, in HCMV-infected cells, glycolysis is increased and glucose carbon is shifted from the tricarboxylic acid cycle to fatty acid biosynthesis. However, unlike in tumor cells, HCMV induces mitochondrial biogenesis even under aerobic glycolysis. Here, we have affinity purified mitochondria and used quantitative mass spectrometry to determine how the mitochondrial proteome changes upon HCMV infection. We find that the mitochondrial transcription and translation systems are induced early during the viral replication cycle. Specifically, proteins involved in biogenesis of the mitochondrial ribosome were highly upregulated by HCMV infection. Inhibition of mitochondrial translation with chloramphenicol or knockdown of HCMV-induced ribosome biogenesis factor MRM3 abolished the HCMV-mediated increase in mitochondrially encoded proteins and significantly impaired viral growth. Our findings demonstrate how HCMV manipulates mitochondrial biogenesis to support its replication.
Collapse
Affiliation(s)
- S Karniely
- Department of Medicine, University of Cambridge Clinical School, Addenbrookes Hospital, Cambridge, United Kingdom
| | - M P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - R Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - J Rorbach
- MRC, Mitochondrial Biology Unit, Cambridge, United Kingdom
| | - L van Haute
- MRC, Mitochondrial Biology Unit, Cambridge, United Kingdom
| | - Y Umrania
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - D L Smith
- Paterson Institute for Cancer Research, University of Manchester, Withington, Manchester, United Kingdom
| | - R J Stanton
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - M Minczuk
- MRC, Mitochondrial Biology Unit, Cambridge, United Kingdom
| | - P J Lehner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - J H Sinclair
- Department of Medicine, University of Cambridge Clinical School, Addenbrookes Hospital, Cambridge, United Kingdom
| |
Collapse
|
214
|
Shenk T, Alwine JC. Human Cytomegalovirus: Coordinating Cellular Stress, Signaling, and Metabolic Pathways. Annu Rev Virol 2016; 1:355-74. [PMID: 26958726 DOI: 10.1146/annurev-virology-031413-085425] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viruses face a multitude of challenges when they infect a host cell. Cells have evolved innate defenses to protect against pathogens, and an infecting virus may induce a stress response that antagonizes viral replication. Further, the metabolic, oxidative, and cell cycle state may not be conducive to the viral infection. But viruses are fabulous manipulators, inducing host cells to use their own characteristic mechanisms and pathways to provide what the virus needs. This article centers on the manipulation of host cell metabolism by human cytomegalovirus (HCMV). We review the features of the metabolic program instituted by the virus, discuss the mechanisms underlying these dramatic metabolic changes, and consider how the altered program creates a synthetic milieu that favors efficient HCMV replication and spread.
Collapse
Affiliation(s)
- Thomas Shenk
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - James C Alwine
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
215
|
Abstract
Metabolism refers to the chemical reactions that occur in living cells, and the reactants and products of these reactions compose the metabolome. The lipidome is comprised by hydrophobic metabolites and includes several broad classes of structurally diverse molecules. Lipids supplied by the host cell are required for many viral processes, and many if not all viruses have evolved mechanisms to perturb host metabolism to promote viral replication. This chapter provides background and a framework for examining the role of lipid metabolites in viral processes and rational attempts to target host metabolism as an antiviral strategy.
Collapse
|
216
|
Zhou Y, Wen F, Zhang P, Tang R, Li Q. Vesicular stomatitis virus is a potent agent for the treatment of malignant ascites. Oncol Rep 2015; 35:1573-81. [PMID: 26707610 DOI: 10.3892/or.2015.4522] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/26/2015] [Indexed: 02/05/2023] Open
Abstract
Cancer cells in ascites are usually exposed to a hypoxia tumor microenvironment and utilize enhanced glycolysis which produces energy and metabolizes nutrients to support proliferation. Vesicular stomatitis virus (VSV) is an oncolytic virus that relies on the host cellular metabolism for replication. We tested the efficacy of VSV on peritoneal carcinomatosis and assessed VSV replication in cancer cells from ascites. BALB/c female mice bearing peritoneal H22 or MethA cells received an i.p. administration of 1x108 PFU VSV or 1x108 PFU equivalent of UV-inactivated VSV on day 10, 12 and 14 after incubation. Administration of VSV resulted in a significant inhibition of ascites formation and prolonged survival of the treated mice. The replication of VSV was obviously enhanced in the cancer cells from the ascites. Considering the central carbon metabolic pathways, cancer cells in the malignant ascites provided more exogenous glucose, glutamine and pyruvate after VSV infection due to its unregulated glycolytic activity and glutamine metabolism. Pharmacologically, inhibition of the glycolytic pathway and glutamine metabolism reduced VSV replication, and this inhibited replication was rescued by the addition of multiple tricarboxylic acid (TCA) cycle intermediates. Our results demonstrated that metabolic adaptive processes in peritoneal carcinoma, such as high glycolytic activity and glutamine metabolism, favor VSV replication. These results suggest the clinical potency of VSV in the treatment of malignant ascites and provide new insights into the further exploration of the potential application of VSV in the treatment of hypoxia ascites cancer cells.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Feng Wen
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Pengfei Zhang
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ruilei Tang
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
217
|
Lévy P, Bartosch B. Metabolic reprogramming: a hallmark of viral oncogenesis. Oncogene 2015; 35:4155-64. [DOI: 10.1038/onc.2015.479] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/11/2015] [Accepted: 11/14/2015] [Indexed: 02/07/2023]
|
218
|
Liu B, Fang M, He Z, Cui D, Jia S, Lin X, Xu X, Zhou T, Liu W. Hepatitis B virus stimulates G6PD expression through HBx-mediated Nrf2 activation. Cell Death Dis 2015; 6:e1980. [PMID: 26583321 PMCID: PMC4670929 DOI: 10.1038/cddis.2015.322] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/19/2015] [Accepted: 09/10/2015] [Indexed: 12/23/2022]
Abstract
Metabolic reprogramming is a hallmark of physiological changes in cancer. Cancer cells primarily apply glycolysis for cell metabolism, which enables the cells to use glycolytic intermediates for macromolecular biosynthesis in order to meet the needs of cell proliferation. Here, we show that glucose-6-phosphate dehydrogenase (G6PD), the first and rate-limiting enzyme of the pentose phosphate pathway, is highly expressed in chronic hepatitis B virus (HBV)-infected human liver and HBV-associated liver cancer, together with an elevated activity of the transcription factor Nrf2. In hepatocytes, HBV stimulates by its X protein (HBx) the expression of G6PD in an Nrf2 activation-dependent pathway. HBx associates with the UBA and PB1 domains of the adaptor protein p62 and augments the interaction between p62 and the Nrf2 repressor Keap1 to form HBx–p62–Keap1 complex in the cytoplasm. The aggregation of HBx–p62–Keap1 complexes hijacks Keap1 from Nrf2 leading to the activation of Nrf2 and consequently G6PD transcription. Our data suggest that HBV upregulates G6PD expression by HBx-mediated activation of Nrf2. This implies a potential effect of HBV on the reprogramming of the glucose metabolism in hepatocytes, which may be of importance in the development of HBV-associated hepatocarcinoma.
Collapse
Affiliation(s)
- B Liu
- Department of Biochemistry and Molecular Biology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - M Fang
- Department of Biochemistry and Molecular Biology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Z He
- Department of Biochemistry and Molecular Biology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - D Cui
- Department of Biochemistry and Molecular Biology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - S Jia
- Department of Biochemistry and Molecular Biology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - X Lin
- Department of Biochemistry and Molecular Biology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - X Xu
- Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - T Zhou
- Department of Biochemistry and Molecular Biology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - W Liu
- Department of Biochemistry and Molecular Biology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
219
|
Thai M, Thaker SK, Feng J, Du Y, Hu H, Ting Wu T, Graeber TG, Braas D, Christofk HR. MYC-induced reprogramming of glutamine catabolism supports optimal virus replication. Nat Commun 2015; 6:8873. [PMID: 26561297 PMCID: PMC4660206 DOI: 10.1038/ncomms9873] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 10/12/2015] [Indexed: 12/18/2022] Open
Abstract
Viruses rewire host cell glucose and glutamine metabolism to meet the bioenergetic and biosynthetic demands of viral propagation. However, the mechanism by which viruses reprogram glutamine metabolism and the metabolic fate of glutamine during adenovirus infection have remained elusive. Here, we show MYC activation is necessary for adenovirus-induced upregulation of host cell glutamine utilization and increased expression of glutamine transporters and glutamine catabolism enzymes. Adenovirus-induced MYC activation promotes increased glutamine uptake, increased use of glutamine in reductive carboxylation and increased use of glutamine in generating hexosamine pathway intermediates and specific amino acids. We identify glutaminase (GLS) as a critical enzyme for optimal adenovirus replication and demonstrate that GLS inhibition decreases replication of adenovirus, herpes simplex virus 1 and influenza A in cultured primary cells. Our findings show that adenovirus-induced reprogramming of glutamine metabolism through MYC activation promotes optimal progeny virion generation, and suggest that GLS inhibitors may be useful therapeutically to reduce replication of diverse viruses. Viruses can reprogram glutamine metabolism of host cells to support bioenergetics demands of viral replication. Here the authors show that adenoviral infection leads to enhanced glutamine metabolism through virus-mediated activation of MYC, which is required for optimal progeny virion generation.
Collapse
Affiliation(s)
- Minh Thai
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 90095 California, USA
| | - Shivani K Thaker
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 90095 California, USA
| | - Jun Feng
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 90095 California, USA
| | - Yushen Du
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 90095 California, USA
| | - Hailiang Hu
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, 90095 California, USA.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, 90095 California, USA
| | - Ting Ting Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 90095 California, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 90095 California, USA.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, 90095 California, USA.,Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, 90095 Californa, USA.,UCLA Metabolomics Center, Los Angeles, 90095 California, USA
| | - Daniel Braas
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 90095 California, USA.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, 90095 California, USA.,Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, 90095 Californa, USA.,UCLA Metabolomics Center, Los Angeles, 90095 California, USA
| | - Heather R Christofk
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 90095 California, USA.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, 90095 California, USA.,UCLA Metabolomics Center, Los Angeles, 90095 California, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, 90095 California, USA
| |
Collapse
|
220
|
Trehalose, an mTOR-Independent Inducer of Autophagy, Inhibits Human Cytomegalovirus Infection in Multiple Cell Types. J Virol 2015; 90:1259-77. [PMID: 26559848 DOI: 10.1128/jvi.02651-15] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/06/2015] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED Human cytomegalovirus (HCMV) is the major viral cause of birth defects and a serious problem in immunocompromised individuals and has been associated with atherosclerosis. Previous studies have shown that the induction of autophagy can inhibit the replication of several different types of DNA and RNA viruses. The goal of the work presented here was to determine whether constitutive activation of autophagy would also block replication of HCMV. Most prior studies have used agents that induce autophagy via inhibition of the mTOR pathway. However, since HCMV infection alters the sensitivity of mTOR kinase-containing complexes to inhibitors, we sought an alternative method of inducing autophagy. We chose to use trehalose, a nontoxic naturally occurring disaccharide that is found in plants, insects, microorganisms, and invertebrates but not in mammals and that induces autophagy by an mTOR-independent mechanism. Given the many different cell targets of HCMV, we proceeded to determine whether trehalose would inhibit HCMV infection in human fibroblasts, aortic artery endothelial cells, and neural cells derived from human embryonic stem cells. We found that in all of these cell types, trehalose induces autophagy and inhibits HCMV gene expression and production of cell-free virus. Treatment of HCMV-infected neural cells with trehalose also inhibited production of cell-associated virus and partially blocked the reduction in neurite growth and cytomegaly. These results suggest that activation of autophagy by the natural sugar trehalose or other safe mTOR-independent agents might provide a novel therapeutic approach for treating HCMV disease. IMPORTANCE HCMV infects multiple cell types in vivo, establishes lifelong persistence in the host, and can cause serious health problems for fetuses and immunocompromised individuals. HCMV, like all other persistent pathogens, has to finely tune its interplay with the host cellular machinery to replicate efficiently and evade detection by the immune system. In this study, we investigated whether modulation of autophagy, a host pathway necessary for the recycling of nutrients and removal of protein aggregates, misfolded proteins, and pathogens, could be used to target HCMV. We found that autophagy could be significantly increased by treatment with the nontoxic, natural disaccharide trehalose. Importantly, trehalose had a profound inhibitory effect on viral gene expression and strongly impaired viral spread. These data constitute a proof-of-concept for the use of natural products targeting host pathways rather than the virus itself, thus reducing the risk of the development of resistance to treatment.
Collapse
|
221
|
Persistent human Borna disease virus infection modifies the acetylome of human oligodendroglia cells towards higher energy and transporter levels. Virology 2015. [DOI: 10.1016/j.virol.2015.06.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
222
|
Abstract
For a number of years, sirtuin enzymes have been appreciated as effective "sensors" of the cellular environment to rapidly transmit information to diverse cellular pathways. Much effort was placed into exploring their roles in human cancers and aging. However, a growing body of literature brings these enzymes to the spotlight in the field of virology. Here, we discuss sirtuin functions in the context of viral infection, which provide regulatory points for therapeutic intervention against pathogens.
Collapse
|
223
|
Goodwin CM, Xu S, Munger J. Stealing the Keys to the Kitchen: Viral Manipulation of the Host Cell Metabolic Network. Trends Microbiol 2015; 23:789-798. [PMID: 26439298 PMCID: PMC4679435 DOI: 10.1016/j.tim.2015.08.007] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/07/2015] [Accepted: 08/17/2015] [Indexed: 12/23/2022]
Abstract
Host cells possess the metabolic assets required for viral infection. Recent studies indicate that control of the host's metabolic resources is a core host–pathogen interaction. Viruses have evolved mechanisms to usurp the host's metabolic resources, funneling them towards the production of virion components as well as the organization of specialized compartments for replication, maturation, and dissemination. Consequently, hosts have developed a variety of metabolic countermeasures to sense and resist these viral changes. The complex interplay between virus and host over metabolic control has only just begun to be deconvoluted. However, it is clear that virally induced metabolic reprogramming can substantially impact infectious outcomes, highlighting the promise of targeting these processes for antiviral therapeutic development. Numerous viruses modulate host-cell metabolic processes to ensure successful infection. The host-cell metabolic network contributes the energy, precursors, and specialized components necessary to produce infectious virions. Viruses deploy host-cell metabolic activities to organize viral maturation compartments. Metabolic control is a host–pathogen interaction that can sway the outcome of viral infection.
Collapse
Affiliation(s)
- Christopher M Goodwin
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Shihao Xu
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Joshua Munger
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
224
|
GC-MS-Based Metabonomic Profiling Displayed Differing Effects of Borna Disease Virus Natural Strain Hu-H1 and Laboratory Strain V Infection in Rat Cortical Neurons. Int J Mol Sci 2015; 16:19347-68. [PMID: 26287181 PMCID: PMC4581300 DOI: 10.3390/ijms160819347] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/25/2015] [Accepted: 08/03/2015] [Indexed: 11/23/2022] Open
Abstract
Borna disease virus (BDV) persists in the central nervous systems of a wide variety of vertebrates and causes behavioral disorders. Previous studies have revealed that metabolic perturbations are associated with BDV infection. However, the pathophysiological effects of different viral strains remain largely unknown. Rat cortical neurons infected with human strain BDV Hu-H1, laboratory BDV Strain V, and non-infected control (CON) cells were cultured in vitro. At day 12 post-infection, a gas chromatography coupled with mass spectrometry (GC–MS) metabonomic approach was used to differentiate the metabonomic profiles of 35 independent intracellular samples from Hu-H1-infected cells (n = 12), Strain V-infected cells (n = 12), and CON cells (n = 11). Partial least squares discriminant analysis (PLS-DA) was performed to demonstrate discrimination between the three groups. Further statistical testing determined which individual metabolites displayed significant differences between groups. PLS-DA demonstrated that the whole metabolic pattern enabled statistical discrimination between groups. We identified 31 differential metabolites in the Hu-H1 and CON groups (21 decreased and 10 increased in Hu-H1 relative to CON), 35 differential metabolites in the Strain V and CON groups (30 decreased and 5 increased in Strain V relative to CON), and 21 differential metabolites in the Hu-H1 and Strain V groups (8 decreased and 13 increased in Hu-H1 relative to Strain V). Comparative metabonomic profiling revealed divergent perturbations in key energy and amino acid metabolites between natural strain Hu-H1 and laboratory Strain V of BDV. The two BDV strains differentially alter metabolic pathways of rat cortical neurons in vitro. Their systematic classification provides a valuable template for improved BDV strain definition in future studies.
Collapse
|
225
|
Sanchez EL, Carroll PA, Thalhofer AB, Lagunoff M. Latent KSHV Infected Endothelial Cells Are Glutamine Addicted and Require Glutaminolysis for Survival. PLoS Pathog 2015. [PMID: 26197457 PMCID: PMC4510438 DOI: 10.1371/journal.ppat.1005052] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Kaposi’s Sarcoma-associated Herpesvirus (KSHV) is the etiologic agent of Kaposi’s Sarcoma (KS). KSHV establishes a predominantly latent infection in the main KS tumor cell type, the spindle cell, which is of endothelial cell origin. KSHV requires the induction of multiple metabolic pathways, including glycolysis and fatty acid synthesis, for the survival of latently infected endothelial cells. Here we demonstrate that latent KSHV infection leads to increased levels of intracellular glutamine and enhanced glutamine uptake. Depletion of glutamine from the culture media leads to a significant increase in apoptotic cell death in latently infected endothelial cells, but not in their mock-infected counterparts. In cancer cells, glutamine is often required for glutaminolysis to provide intermediates for the tri-carboxylic acid (TCA) cycle and support for the production of biosynthetic and bioenergetic precursors. In the absence of glutamine, the TCA cycle intermediates alpha-ketoglutarate (αKG) and pyruvate prevent the death of latently infected cells. Targeted drug inhibition of glutaminolysis also induces increased cell death in latently infected cells. KSHV infection of endothelial cells induces protein expression of the glutamine transporter, SLC1A5. Chemical inhibition of SLC1A5, or knockdown by siRNA, leads to similar cell death rates as glutamine deprivation and, similarly, can be rescued by αKG. KSHV also induces expression of the heterodimeric transcription factors c-Myc-Max and related heterodimer MondoA-Mlx. Knockdown of MondoA inhibits expression of both Mlx and SLC1A5 and induces a significant increase in cell death of only cells latently infected with KSHV, again, fully rescued by the supplementation of αKG. Therefore, during latent infection of endothelial cells, KSHV activates and requires the Myc/MondoA-network to upregulate the glutamine transporter, SLC1A5, leading to increased glutamine uptake for glutaminolysis. These findings expand our understanding of the required metabolic pathways that are activated during latent KSHV infection of endothelial cells, and demonstrate a novel role for the extended Myc-regulatory network, specifically MondoA, during latent KSHV infection. KSHV is the etiologic agent of KS, the most common tumor of AIDS patients worldwide. Currently, there are no therapeutics available to directly treat latent KSHV infection. This study reveals that latent KSHV infection induces endothelial cells to become glutamine addicted, similarly to cancer cells. Extracellular glutamine is required to feed the TCA cycle through glutaminolysis, a process called anaplerosis. KSHV induces protein expression of the glutamine transporter SLC1A5 and SLC1A5 expression is required for the survival of latently infected cells. KSHV also induces the expression of the proto-oncogene Myc and its binding partner Max, as well as, the nutrient-sensing transcription factor, MondoA and its binding partner Mlx. MondoA regulates SLC1A5 and glutaminolysis during latent KSHV infection, and its expression is required for the survival of latently infected endothelial cells. These studies show that glutaminolysis and a single glutamine transporter, under the regulation of MondoA, are required for the survival of latently infected cells, providing novel druggable targets for latently infected endothelial cells. This work supports that a cancer-like metabolic signature is established by latent KSHV infection, opening the door to further therapeutic targeting specifically of KSHV latently infected cells.
Collapse
Affiliation(s)
- Erica L. Sanchez
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Patrick A. Carroll
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Angel B. Thalhofer
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Michael Lagunoff
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
226
|
Kotzamanis K, Angulo A, Ghazal P. Infection homeostasis: implications for therapeutic and immune programming of metabolism in controlling infection. Med Microbiol Immunol 2015; 204:395-407. [PMID: 25800350 PMCID: PMC4439431 DOI: 10.1007/s00430-015-0402-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/28/2015] [Indexed: 12/16/2022]
Abstract
Homeostasis underpins at a systems level the regulatory control of immunity and metabolism. While physiologically these systems are often viewed as independent, there is increasing evidence showing a tight coupling between immune and metabolic functions. Critically upon infection, the homeostatic regulation for both immune and metabolic pathways is altered yet these changes are often investigated in isolation. Here, we summarise our current understanding of these processes in the context of a clinically relevant pathogen, cytomegalovirus. We synthesise from the literature an integrative view of a coupled immune-metabolic infection process, centred on sugar and lipid metabolism. We put forward the notion that understanding immune control of key metabolic enzymatic steps in infection will promote the future development of novel therapeutic modalities based on metabolic modifiers that either enhance protection or inhibit infection.
Collapse
Affiliation(s)
- Konstantinos Kotzamanis
- Division of Pathway and Infection Medicine, Edinburgh Infectious Diseases, University of Edinburgh, Medical School, Edinburgh, Scotland, UK
| | - Ana Angulo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Peter Ghazal
- Division of Pathway and Infection Medicine, Edinburgh Infectious Diseases, University of Edinburgh, Medical School, Edinburgh, Scotland, UK
- SynthSys, University of Edinburgh, The King’s Buildings, Edinburgh, Scotland, UK
| |
Collapse
|
227
|
Engel EA, Song R, Koyuncu OO, Enquist LW. Investigating the biology of alpha herpesviruses with MS-based proteomics. Proteomics 2015; 15:1943-56. [PMID: 25764121 DOI: 10.1002/pmic.201400604] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/11/2015] [Accepted: 03/07/2015] [Indexed: 12/20/2022]
Abstract
Viruses are intracellular parasites that can only replicate and spread in cells of susceptible hosts. Alpha herpesviruses (α-HVs) contain double-stranded DNA genomes of at least 120 kb, encoding for 70 or more genes. The viral genome is contained in an icosahedral capsid that is surrounded by a proteinaceous tegument layer and a lipid envelope. Infection starts in epithelial cells and spreads to the peripheral nervous system. In the natural host, α-HVs establish a chronic latent infection that can be reactivated and rarely spread to the CNS. In the nonnatural host, viral infection will in most cases spread to the CNS with often fatal outcome. The host response plays a crucial role in the outcome of viral infection. α-HVs do not encode all the genes required for viral replication and spread. They need a variety of host gene products including RNA polymerase, ribosomes, dynein, and kinesin. As a result, the infected cell is dramatically different from the uninfected cell revealing a complex and dynamic interplay of viral and host components required to complete the virus life cycle. In this review, we describe the pivotal contribution of MS-based proteomics studies over the past 15 years to understand the complicated life cycle and pathogenesis of four α-HV species from the alphaherpesvirinae subfamily: Herpes simplex virus-1, varicella zoster virus, pseudorabies virus and bovine herpes virus-1. We describe the viral proteome dynamics during host infection and the host proteomic response to counteract such pathogens.
Collapse
Affiliation(s)
- Esteban A Engel
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Ren Song
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Orkide O Koyuncu
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Lynn W Enquist
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, USA
| |
Collapse
|
228
|
Pyrimidine Metabolism: Dynamic and Versatile Pathways in Pathogens and Cellular Development. J Genet Genomics 2015; 42:195-205. [PMID: 26059768 DOI: 10.1016/j.jgg.2015.04.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 04/13/2015] [Accepted: 04/14/2015] [Indexed: 11/21/2022]
Abstract
The importance of pyrimidines lies in the fact that they are structural components of a broad spectrum of key molecules that participate in diverse cellular functions, such as synthesis of DNA, RNA, lipids, and carbohydrates. Pyrimidine metabolism encompasses all enzymes involved in the synthesis, degradation, salvage, interconversion and transport of these molecules. In this review, we summarize recent publications that document how pyrimidine metabolism changes under a variety of conditions, including, when possible, those studies based on techniques of genomics, transcriptomics, proteomics, and metabolomics. First, we briefly look at the dynamics of pyrimidine metabolism during nonpathogenic cellular events. We then focus on changes that pathogen infections cause in the pyrimidine metabolism of their host. Next, we discuss the effects of antimetabolites and inhibitors, and finally we consider the consequences of genetic manipulations, such as knock-downs, knock-outs, and knock-ins, of pyrimidine enzymes on pyrimidine metabolism in the cell.
Collapse
|
229
|
Zheng M, Xie L, Liang Y, Wu S, Xu H, Zhang Y, Liu H, Lin D, Han J, Lu K. Recognition of cytosolic DNA attenuates glucose metabolism and induces AMPK mediated energy stress response. Int J Biol Sci 2015; 11:587-94. [PMID: 25892965 PMCID: PMC4400389 DOI: 10.7150/ijbs.10945] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/07/2015] [Indexed: 11/05/2022] Open
Abstract
Both viral infection and DNA transfection expose single-stranded or double-stranded DNA to the cytoplasm of mammalian cells. Recognition of cytosolic DNA activates a series of cellular responses, including induction of pro-inflammatory genes such as type I interferon through the well-known cGAS-STING pathway. Here we show for the first time that intracellular administration of either single or double stranded interferon stimulating DNA (ISD), but not poly(dA) suppresses cell growth in many different cell types. Suppression of cell growth by cytosolic DNA is cGAS/STING independent and associated with inhibition of glucose metabolism, ATP depletion and subsequent cellular energy stress responses including activation of AMPK and inactivation of mTORC1. Our results suggest that in concert with but independent of innate immune response, recognition of cytosolic DNA induced cellular energy stress potentially functions as a metabolic barrier to viral replication.
Collapse
Affiliation(s)
- Min Zheng
- 1. Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China. ; 2. Translational Medicine Institute, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Linna Xie
- 1. Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China. ; 3. Department of Bioengineering, Fujian Vocational College of Bioengineering, Fuzhou, Fujian, 350007, China
| | - Yaoji Liang
- 4. State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Suqin Wu
- 4. State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Huijuan Xu
- 2. Translational Medicine Institute, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Yuedong Zhang
- 2. Translational Medicine Institute, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Hekun Liu
- 2. Translational Medicine Institute, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Dexin Lin
- 1. Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Jiahuai Han
- 4. State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Kunping Lu
- 2. Translational Medicine Institute, Fujian Medical University, Fuzhou, Fujian, 350108, China. ; 5. Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
230
|
Abstract
Peter Wildy first observed genetic recombination between strains of HSV in 1955. At the time, knowledge of DNA repair mechanisms was limited, and it has only been in the last decade that particular DNA damage response (DDR) pathways have been examined in the context of viral infections. One of the first reports addressing the interaction between a cellular DDR protein and HSV-1 was the observation by Lees-Miller et al. that DNA-dependent protein kinase catalytic subunit levels were depleted in an ICP0-dependent manner during Herpes simplex virus 1 infection. Since then, there have been numerous reports describing the interactions between HSV infection and cellular DDR pathways. Due to space limitations, this review will focus predominantly on the most recent observations regarding how HSV navigates a potentially hostile environment to replicate its genome.
Collapse
Affiliation(s)
- Samantha Smith
- Department of Molecular Biology & Biophysics, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Sandra K Weller
- Department of Molecular Biology & Biophysics, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
231
|
Sanchez EL, Lagunoff M. Viral activation of cellular metabolism. Virology 2015; 479-480:609-18. [PMID: 25812764 DOI: 10.1016/j.virol.2015.02.038] [Citation(s) in RCA: 400] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 01/31/2015] [Accepted: 02/19/2015] [Indexed: 12/22/2022]
Abstract
To ensure optimal environments for their replication and spread, viruses have evolved to alter many host cell pathways. In the last decade, metabolomic studies have shown that eukaryotic viruses induce large-scale alterations in host cellular metabolism. Most viruses examined to date induce aerobic glycolysis also known as the Warburg effect. Many viruses tested also induce fatty acid synthesis as well as glutaminolysis. These modifications of carbon source utilization by infected cells can increase available energy for virus replication and virion production, provide specific cellular substrates for virus particles and create viral replication niches while increasing infected cell survival. Each virus species also likely requires unique metabolic changes for successful spread and recent research has identified additional virus-specific metabolic changes induced by many virus species. A better understanding of the metabolic alterations required for the replication of each virus may lead to novel therapeutic approaches through targeted inhibition of specific cellular metabolic pathways.
Collapse
Affiliation(s)
- Erica L Sanchez
- Department of Microbiology and program in Molecular and Cellular Biology, University of Washington, Seattle WA, USA
| | - Michael Lagunoff
- Department of Microbiology and program in Molecular and Cellular Biology, University of Washington, Seattle WA, USA.
| |
Collapse
|
232
|
Kao YT, Chang BL, Liang JJ, Tsai HJ, Lee YL, Lin RJ, Lin YL. Japanese encephalitis virus nonstructural protein NS5 interacts with mitochondrial trifunctional protein and impairs fatty acid β-oxidation. PLoS Pathog 2015; 11:e1004750. [PMID: 25816318 PMCID: PMC4376648 DOI: 10.1371/journal.ppat.1004750] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 02/17/2015] [Indexed: 01/16/2023] Open
Abstract
Infection with Japanese encephalitis virus (JEV) can induce the expression of pro-inflammatory cytokines and cause acute encephalitis in humans. β-oxidation breaks down fatty acids for ATP production in mitochondria, and impaired β-oxidation can induce pro-inflammatory cytokine expression. To address the role of fatty-acid β-oxidation in JEV infection, we measured the oxygen consumption rate of mock- and JEV-infected cells cultured with or without long chain fatty acid (LCFA) palmitate. Cells with JEV infection showed impaired LCFA β-oxidation and increased interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) expression. JEV nonstructural protein 5 (NS5) interacted with hydroxyacyl-CoA dehydrogenase α and β subunits, two components of the mitochondrial trifunctional protein (MTP) involved in LCFA β-oxidation, and NS5 proteins were detected in mitochondria and co-localized with MTP. LCFA β-oxidation was impaired and higher cytokines were induced in cells overexpressing NS5 protein as compared with control cells. Deletion and mutation studies showed that the N-terminus of NS5 was involved in the MTP association, and a single point mutation of NS5 residue 19 from methionine to alanine (NS5-M19A) reduced its binding ability with MTP. The recombinant JEV with NS5-M19A mutation (JEV-NS5-M19A) was less able to block LCFA β-oxidation and induced lower levels of IL-6 and TNF-α than wild-type JEV. Moreover, mice challenged with JEV-NS5-M19A showed less neurovirulence and neuroinvasiveness. We identified a novel function of JEV NS5 in viral pathogenesis by impairing LCFA β-oxidation and inducing cytokine expression by association with MTP.
Collapse
Affiliation(s)
- Yu-Ting Kao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Bi-Lan Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hang-Jen Tsai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Ling Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ren-Jye Lin
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Primary Care Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yi-Ling Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
233
|
Purdy JG, Shenk T, Rabinowitz JD. Fatty acid elongase 7 catalyzes lipidome remodeling essential for human cytomegalovirus replication. Cell Rep 2015; 10:1375-85. [PMID: 25732827 PMCID: PMC4354725 DOI: 10.1016/j.celrep.2015.02.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/23/2014] [Accepted: 01/29/2015] [Indexed: 11/26/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection rewires host cell metabolism, up-regulating flux from glucose into acetyl-CoA to feed fatty acid metabolism, with saturated very long-chain fatty acids (VLFCA) required for production of infectious virion progeny. The human genome encodes seven elongase enzymes (ELOVL) that extend long chain fatty acids into VLCFA. Here we identify ELOVL7 as pivotal for HCMV infection. HCMV induces ELOVL7 by more than 150-fold. This induction is dependent on mTOR and SREBP-1. ELOVL7 knockdown or mTOR inhibition impairs HCMV-induced fatty acid elongation, HCMV particle release, and infectivity per particle. ELOVL7 overexpression enhances HCMV replication. During HCMV infection, mTOR activity is maintained by the viral protein pUL38. Expression of pUL38 is sufficient to induce ELOVL7, and pUL38-deficient virus is partially defective in ELOVL7 induction and fatty acid elongation. Thus, through its ability to modulate mTOR and SREBP-1, HCMV induces ELOVL7 to synthesize the saturated VLCFA required for efficient virus replication.
Collapse
Affiliation(s)
- John G Purdy
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Thomas Shenk
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
234
|
Affiliation(s)
- Travis E. Hartman
- Division
of Infectious Diseases, Department of Medicine, and ‡Department of Microbiology and
Immunology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Kyu Y. Rhee
- Division
of Infectious Diseases, Department of Medicine, and ‡Department of Microbiology and
Immunology, Weill Cornell Medical College, New York, New York 10065, United States
| |
Collapse
|
235
|
Abstract
The seven human sirtuins are a family of ubiquitously expressed and evolutionarily conserved NAD+-dependent deacylases/mono-ADP ribosyltransferases that regulate numerous cellular and organismal functions, including metabolism, cell cycle, and longevity. Here, we report the discovery that all seven sirtuins have broad-range antiviral properties. We demonstrate that small interfering RNA (siRNA)-mediated knockdown of individual sirtuins and drug-mediated inhibition of sirtuin enzymatic activity increase the production of virus progeny in infected human cells. This impact on virus growth is observed for both DNA and RNA viruses. Importantly, sirtuin-activating drugs inhibit the replication of diverse viruses, as we demonstrate for human cytomegalovirus, a slowly replicating DNA virus, and influenza A (H1N1) virus, an RNA virus that multiplies rapidly. Furthermore, sirtuin defense functions are evolutionarily conserved, since CobB, the sirtuin homologue in Escherichia coli, protects against bacteriophages. Altogether, our findings establish sirtuins as broad-spectrum and evolutionarily conserved components of the immune defense system, providing a framework for elucidating a new set of host cell defense mechanisms and developing sirtuin modulators with antiviral activity. We live in a sea of viruses, some of which are human pathogens. These pathogenic viruses exhibit numerous differences: DNA or RNA genomes, enveloped or naked virions, nuclear or cytoplasmic replication, diverse disease symptoms, etc. Most antiviral drugs target specific viral proteins. Consequently, they often work for only one virus, and their efficacy can be compromised by the rapid evolution of resistant variants. There is a need for the identification of host proteins with broad-spectrum antiviral functions, which provide effective targets for therapeutic treatments that limit the evolution of viral resistance. Here, we report that sirtuins present such an opportunity for the development of broad-spectrum antiviral treatments, since our findings highlight these enzymes as ancient defense factors that protect against a variety of viral pathogens.
Collapse
|
236
|
Estrogen-related receptor α is required for efficient human cytomegalovirus replication. Proc Natl Acad Sci U S A 2014; 111:E5706-15. [PMID: 25512541 DOI: 10.1073/pnas.1422361112] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An shRNA-mediated screen of the 48 human nuclear receptor genes identified multiple candidates likely to influence the production of human cytomegalovirus in cultured human fibroblasts, including the estrogen-related receptor α (ERRα), an orphan nuclear receptor. The 50-kDa receptor and a 76-kDa variant were induced posttranscriptionally following infection. Genetic and pharmacological suppression of the receptor reduced viral RNA, protein, and DNA accumulation, as well as the yield of infectious progeny. In addition, RNAs encoding multiple metabolic enzymes, including enzymes sponsoring glycolysis (enolase 1, triosephosphate isomerase 1, and hexokinase 2), were reduced when the function of ERRα was inhibited in infected cells. Consistent with the effect on RNAs, a substantial number of metabolites, which are normally induced by infection, were either not increased or were increased to a reduced extent in the absence of normal ERRα activity. We conclude that ERRα is needed for the efficient production of cytomegalovirus progeny, and we propose that the nuclear receptor contributes importantly to the induction of a metabolic environment that supports optimal cytomegalovirus replication.
Collapse
|
237
|
Abstract
UNLABELLED Viruses rely on host cellular metabolism to provide the energy and biosynthetic building blocks required for their replication. Dengue virus (DENV), a member of the Flaviviridae family, is one of the most important arthropod-borne human pathogens worldwide. We analyzed global intracellular metabolic changes associated with DENV infection of primary human cells. Our metabolic profiling data suggested that central carbon metabolism, particularly glycolysis, is strikingly altered during a time course of DENV infection. Glucose consumption is increased during DENV infection and depriving DENV-infected cells of exogenous glucose had a pronounced impact on viral replication. Furthermore, the expression of both glucose transporter 1 and hexokinase 2, the first enzyme of glycolysis, is upregulated in DENV-infected cells. Pharmacologically inhibiting the glycolytic pathway dramatically reduced DENV RNA synthesis and infectious virion production, revealing a requirement for glycolysis during DENV infection. Thus, these experiments suggest that DENV induces the glycolytic pathway to support efficient viral replication. This study raises the possibility that metabolic inhibitors, such as those that target glycolysis, could be used to treat DENV infection in the future. IMPORTANCE Approximately 400 million people are infected with dengue virus (DENV) annually, and more than one-third of the global population is at risk of infection. As there are currently no effective vaccines or specific antiviral therapies for DENV, we investigated the impact DENV has on the host cellular metabolome to identify metabolic pathways that are critical for the virus life cycle. We report an essential role for glycolysis during DENV infection. DENV activates the glycolytic pathway, and inhibition of glycolysis significantly blocks infectious DENV production. This study provides further evidence that viral metabolomic analyses can lead to the discovery of novel therapeutic targets to block the replication of medically important human pathogens.
Collapse
|
238
|
Moorman NJ, Murphy EA. Roseomics: a blank slate. Curr Opin Virol 2014; 9:188-93. [PMID: 25437230 PMCID: PMC4268339 DOI: 10.1016/j.coviro.2014.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/23/2014] [Accepted: 09/26/2014] [Indexed: 11/24/2022]
Abstract
Recent technological advances have led to an explosion in the system-wide profiling of biological processes in the study of herpesvirus biology, herein referred to as '-omics'. In many cases these approaches have revealed novel virus-induced changes to host cell biology that can be targeted with new antiviral therapeutics. Despite these successes, -omics approaches are not widely applied in the study of roseoloviruses. Here we describe examples of how -omics studies have shaped our understanding of herpesvirus biology, and discuss how these approaches might be used to identify host and viral factors that mediate roseolovirus pathogenesis.
Collapse
Affiliation(s)
- Nathaniel J Moorman
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eain A Murphy
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
239
|
Hegedus A, Kavanagh Williamson M, Huthoff H. HIV-1 pathogenicity and virion production are dependent on the metabolic phenotype of activated CD4+ T cells. Retrovirology 2014; 11:98. [PMID: 25421745 PMCID: PMC4252996 DOI: 10.1186/s12977-014-0098-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/24/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND HIV-1, like all viruses, is entirely dependent on the host cell for providing the metabolic resources for completion of the viral replication cycle and the production of virions. It is well established that HIV-1 replicates efficiently in activated CD4+ T cells, whereas resting CD4+ T cells are refractory to infection with HIV-1. A hallmark of T cell activation is the upregulation of glycolysis to meet the biosynthetic and bioenergetic needs of cell proliferation and the execution of effector functions by the secretion of cytokines. To date, it has remained unknown if HIV-1 requires the high glycolytic activity of activated T cells to support its replication. RESULTS We report that in primary CD4+ T cells, the flux through the glycolytic pathway is increased upon infection with HIV-1. This increase in glycolytic activity does not occur in T cell lines when infected with HIV-1. By providing cells with galactose instead of glucose, the former being a poor substrate for glycolysis, we monitored the effect of preventing glycolysis in CD4+ T cells on virus replication cycle and cell fate. We observed that HIV-1 infected primary CD4+ T cells cultured in galactose have a survival advantage over those cultured in glucose and this coincides with reduced caspase 3 activation and apoptosis in cultures with galactose. T cell lines do not recapitulate this difference in cell death. Finally, we demonstrate that virion production is dependent on glycolysis as cultures containing galactose yield reduced amounts of HIV-1 virions compared with cultures containing glucose. CONCLUSIONS The replication of HIV-1 in primary CD4+ T cells causes an increase in glycolytic flux of the cell. Glycolysis is particularly required for virion production and additionally increases the sensitivity of the infected cell to virus-induced cell death.
Collapse
Affiliation(s)
- Andrea Hegedus
- Department of Infectious Diseases, King's College London, 2nd Floor Borough Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| | - Maia Kavanagh Williamson
- Department of Infectious Diseases, King's College London, 2nd Floor Borough Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| | - Hendrik Huthoff
- Department of Infectious Diseases, King's College London, 2nd Floor Borough Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|
240
|
Mazzon M, Castro C, Roberts LD, Griffin JL, Smith GL. A role for vaccinia virus protein C16 in reprogramming cellular energy metabolism. J Gen Virol 2014; 96:395-407. [PMID: 25351724 PMCID: PMC4298679 DOI: 10.1099/vir.0.069591-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Vaccinia virus (VACV) is a large DNA virus that replicates in the cytoplasm and encodes about 200 proteins of which approximately 50 % may be non-essential for viral replication. These proteins enable VACV to suppress transcription and translation of cellular genes, to inhibit the innate immune response, to exploit microtubule- and actin-based transport for virus entry and spread, and to subvert cellular metabolism for the benefit of the virus. VACV strain WR protein C16 induces stabilization of the hypoxia-inducible transcription factor (HIF)-1α by binding to the cellular oxygen sensor prolylhydroxylase domain-containing protein (PHD)2. Stabilization of HIF-1α is induced by several virus groups, but the purpose and consequences are unclear. Here, 1H-NMR spectroscopy and liquid chromatography-mass spectrometry are used to investigate the metabolic alterations during VACV infection in HeLa and 2FTGH cells. The role of C16 in such alterations was examined by comparing infection to WT VACV (strain WR) and a derivative virus lacking gene C16L (vΔC16). Compared with uninfected cells, VACV infection caused increased nucleotide and glutamine metabolism. In addition, there were increased concentrations of glutamine derivatives in cells infected with WT VACV compared with vΔC16. This indicates that C16 contributes to enhanced glutamine metabolism and this may help preserve tricarboxylic acid cycle activity. These data show that VACV infection reprogrammes cellular energy metabolism towards increased synthesis of the metabolic precursors utilized during viral replication, and that C16 contributes to this anabolic reprogramming of the cell, probably via the stabilization of HIF-1α.
Collapse
Affiliation(s)
- Michela Mazzon
- Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, UK
| | - Cecilia Castro
- Department of Biochemistry and Cambridge Systems Biology Centre, Tennis Court Road, University of Cambridge, Cambridge CB2 1GA, UK
| | - Lee D Roberts
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, Fulborn Road, Cambridge CB1 9NL, UK.,Department of Biochemistry and Cambridge Systems Biology Centre, Tennis Court Road, University of Cambridge, Cambridge CB2 1GA, UK
| | - Julian L Griffin
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, Fulborn Road, Cambridge CB1 9NL, UK.,Department of Biochemistry and Cambridge Systems Biology Centre, Tennis Court Road, University of Cambridge, Cambridge CB2 1GA, UK
| | - Geoffrey L Smith
- Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, UK
| |
Collapse
|
241
|
Sévin DC, Kuehne A, Zamboni N, Sauer U. Biological insights through nontargeted metabolomics. Curr Opin Biotechnol 2014; 34:1-8. [PMID: 25461505 DOI: 10.1016/j.copbio.2014.10.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/03/2014] [Accepted: 10/03/2014] [Indexed: 01/10/2023]
Abstract
Metabolomics is increasingly employed to investigate metabolism and its reciprocal crosstalk with cellular signaling and regulation. In recent years, several nontargeted metabolomics methods providing substantial metabolome coverage have been developed. Here, we review and compare the contributions of traditional targeted and nontargeted metabolomics in advancing different research areas ranging from biotechnology to human health. Although some studies demonstrated the power of nontargeted profiling in generating unexpected and yet highly important insights, we found that most mechanistic links were still revealed by hypothesis-driven targeted methods. Novel computational approaches for formal interpretation of complex metabolic patterns and integration of complementary molecular layers are required to tap the full potential of nontargeted metabolomics for data-driven, discovery-oriented research and rapidly nucleating novel biological insights.
Collapse
Affiliation(s)
- Daniel C Sévin
- Institute of Molecular Systems Biology, ETH Zurich, Switzerland; PhD Program on Systems Biology, Life Science Zurich, Switzerland
| | - Andreas Kuehne
- Institute of Molecular Systems Biology, ETH Zurich, Switzerland; PhD Program on Systems Biology, Life Science Zurich, Switzerland
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, Switzerland.
| |
Collapse
|
242
|
Targeting bacterial central metabolism for drug development. ACTA ACUST UNITED AC 2014; 21:1423-32. [PMID: 25442374 DOI: 10.1016/j.chembiol.2014.08.020] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/25/2014] [Accepted: 08/08/2014] [Indexed: 11/23/2022]
Abstract
Current antibiotics, derived mainly from natural sources, inhibit a narrow spectrum of cellular processes, namely DNA replication, protein synthesis, and cell wall biosynthesis. With the worldwide explosion of drug resistance, there is renewed interest in the investigation of alternate essential cellular processes, including bacterial central metabolic pathways, as a drug target space for the next generation of antibiotics. However, the validation of targets in central metabolism is more complex, as essentiality of such targets can be conditional and/or contextual. Bearing in mind our enhanced understanding of prokaryotic central metabolism, a key question arises: can central metabolism be bacteria's Achilles' heel and a therapeutic target for the development of new classes of antibiotics? In this review, we draw lessons from oncology and attempt to address some of the open questions related to feasibility of targeting bacterial central metabolism as a strategy for developing new antibacterial drugs.
Collapse
|
243
|
Yogev O, Lagos D, Enver T, Boshoff C. Kaposi's sarcoma herpesvirus microRNAs induce metabolic transformation of infected cells. PLoS Pathog 2014; 10:e1004400. [PMID: 25255370 PMCID: PMC4177984 DOI: 10.1371/journal.ppat.1004400] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 08/14/2014] [Indexed: 02/01/2023] Open
Abstract
Altered cell metabolism is inherently connected with pathological conditions including cancer and viral infections. Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS). KS tumour cells display features of lymphatic endothelial differentiation and in their vast majority are latently infected with KSHV, while a small number are lytically infected, producing virions. Latently infected cells express only a subset of viral genes, mainly located within the latency-associated region, among them 12 microRNAs. Notably, the metabolic properties of KSHV-infected cells closely resemble the metabolic hallmarks of cancer cells. However, how and why KSHV alters host cell metabolism remains poorly understood. Here, we investigated the effect of KSHV infection on the metabolic profile of primary dermal microvascular lymphatic endothelial cells (LEC) and the functional relevance of this effect. We found that the KSHV microRNAs within the oncogenic cluster collaborate to decrease mitochondria biogenesis and to induce aerobic glycolysis in infected cells. KSHV microRNAs expression decreases oxygen consumption, increase lactate secretion and glucose uptake, stabilize HIF1α and decreases mitochondria copy number. Importantly this metabolic shift is important for latency maintenance and provides a growth advantage. Mechanistically we show that KSHV alters host cell energy metabolism through microRNA-mediated down regulation of EGLN2 and HSPA9. Our data suggest that the KSHV microRNAs induce a metabolic transformation by concurrent regulation of two independent pathways; transcriptional reprograming via HIF1 activation and reduction of mitochondria biogenesis through down regulation of the mitochondrial import machinery. These findings implicate viral microRNAs in the regulation of the cellular metabolism and highlight new potential avenues to inhibit viral latency. Kaposi's sarcoma (KS) is the most common cancer in HIV-infected untreated individuals. Kaposi's sarcoma-associated herpesvirus (KSHV) is the infectious cause of this neoplasm. The discovery of KSHV and its oncogenic enigmas has enlightened many fields of tumor biology and viral oncogenesis. The metabolic properties of KS significantly differ from those of normal cells and resemble cancer cells in general, but the mechanisms employed by KSHV to alter host cell metabolism are poorly understood. Our work demonstrates that KSHV microRNAs can alter cell metabolism through coherent control of independent pathways, a key feature of microRNA-mediated control of cellular functions. This provides a fresh perspective for how microRNA-encoding pathogens shape a cell's metabolism to create an optimal environment for their survival and/or replication. Indeed, we show that, in the case of KSHV, viral microRNA-driven regulation of metabolism is important for viral latency. These findings will evoke new and exciting approaches to prevent KSHV from establishing latency and later on KS.
Collapse
MESH Headings
- Aerobiosis
- Blotting, Western
- Bone Neoplasms/metabolism
- Bone Neoplasms/pathology
- Bone Neoplasms/virology
- Cell Proliferation
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelial Cells/virology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/virology
- Energy Metabolism
- Gene Expression Regulation, Viral
- Glucose/metabolism
- Herpesvirus 8, Human/physiology
- Humans
- Lactic Acid/metabolism
- MicroRNAs/genetics
- Mitochondria/metabolism
- Mitochondria/pathology
- Mitochondria/virology
- Osteosarcoma/metabolism
- Osteosarcoma/pathology
- Osteosarcoma/virology
- Oxygen Consumption
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Sarcoma, Kaposi/metabolism
- Sarcoma, Kaposi/pathology
- Sarcoma, Kaposi/virology
- Tumor Cells, Cultured
- Virion/metabolism
- Virus Latency
Collapse
Affiliation(s)
- Ohad Yogev
- UCL Cancer Institute, Research Department of Cancer Biology, University College London, London, United Kingdom
- * E-mail:
| | - Dimitris Lagos
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, United Kingdom
| | - Tariq Enver
- UCL Cancer Institute, Research Department of Cancer Biology, University College London, London, United Kingdom
| | - Chris Boshoff
- UCL Cancer Institute, Research Department of Cancer Biology, University College London, London, United Kingdom
| |
Collapse
|
244
|
Mazzon M, Mercer J. Lipid interactions during virus entry and infection. Cell Microbiol 2014; 16:1493-502. [PMID: 25131438 PMCID: PMC4265854 DOI: 10.1111/cmi.12340] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 07/26/2014] [Accepted: 08/01/2014] [Indexed: 12/14/2022]
Abstract
For entry and infection viruses have developed numerous strategies to subjugate indispensable cellular factors and functions. Host cell lipids and cellular lipid synthesis machinery are no exception. Not only do viruses exploit existing lipid signalling and modifications for virus entry and trafficking, they also reprogram lipid synthesis, metabolism, and compartmentalization for assembly and egress. Here we review these various concepts and highlight recent progress in understanding viral interactions with host cell lipids during entry and assembly.
Collapse
Affiliation(s)
- Michela Mazzon
- MRC-Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | | |
Collapse
|
245
|
Abstract
Genome sequencing efforts have revealed a strikingly large number of unannotated and uncharacterized genes that fall into metabolic enzymes classes, likely indicating that our current knowledge of biochemical pathways in normal physiology, let alone in disease states, remains largely incomplete. This realization presents a daunting challenge for post-genomic-era scientists in deciphering the biochemical and (patho)physiological roles of these enzymes and their metabolites and metabolic networks. This is further complicated by many recent studies showing a rewiring of normal metabolic networks in disease states to give rise to unique pathophysiological functions of enzymes, metabolites, and metabolic pathways. This review focuses on recent discoveries made using metabolic mapping technologies to uncover novel pathways and metabolite-mediated posttranslational modifications and epigenetic alterations and their impact on physiology and disease.
Collapse
Affiliation(s)
- Melinda M Mulvihill
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California
| | - Daniel K Nomura
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California
| |
Collapse
|
246
|
Locci E, Noto A, Lanari M, Lazzarotto T, Fanos V, Atzori L. Metabolomics: a new tool for the investigation of metabolic changes induced by cytomegalovirus. J Matern Fetal Neonatal Med 2014; 26 Suppl 2:17-9. [PMID: 24059546 DOI: 10.3109/14767058.2013.829684] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To date, cytomegalovirus (CMV) is one of the most studied and characterized virus, however the current knowledge on the effect of the human CMV (HCMV) infection on global metabolism is still poorly understood. Metabolomics is a new approach based on the systematic study of the complete set of low molecular weight compounds, both endogenous and exogenous, found within a cell, tissue, biofluid or organism. The purpose of this review is to provide insight into the use of the metabolomic approach on the study of the impact of HCMV on the human metabolome. The results described in this work suggest that metabolomics could be a new tool for HCMV investigation.
Collapse
Affiliation(s)
- Emanuela Locci
- Department of Biomedical Sciences, University of Cagliari , Cagliari , Italy
| | | | | | | | | | | |
Collapse
|
247
|
Su MA, Huang YT, Chen IT, Lee DY, Hsieh YC, Li CY, Ng TH, Liang SY, Lin SY, Huang SW, Chiang YA, Yu HT, Khoo KH, Chang GD, Lo CF, Wang HC. An invertebrate Warburg effect: a shrimp virus achieves successful replication by altering the host metabolome via the PI3K-Akt-mTOR pathway. PLoS Pathog 2014; 10:e1004196. [PMID: 24945378 PMCID: PMC4055789 DOI: 10.1371/journal.ppat.1004196] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 05/05/2014] [Indexed: 01/20/2023] Open
Abstract
In this study, we used a systems biology approach to investigate changes in the proteome and metabolome of shrimp hemocytes infected by the invertebrate virus WSSV (white spot syndrome virus) at the viral genome replication stage (12 hpi) and the late stage (24 hpi). At 12 hpi, but not at 24 hpi, there was significant up-regulation of the markers of several metabolic pathways associated with the vertebrate Warburg effect (or aerobic glycolysis), including glycolysis, the pentose phosphate pathway, nucleotide biosynthesis, glutaminolysis and amino acid biosynthesis. We show that the PI3K-Akt-mTOR pathway was of central importance in triggering this WSSV-induced Warburg effect. Although dsRNA silencing of the mTORC1 activator Rheb had only a relatively minor impact on WSSV replication, in vivo chemical inhibition of Akt, mTORC1 and mTORC2 suppressed the WSSV-induced Warburg effect and reduced both WSSV gene expression and viral genome replication. When the Warburg effect was suppressed by pretreatment with the mTOR inhibitor Torin 1, even the subsequent up-regulation of the TCA cycle was insufficient to satisfy the virus's requirements for energy and macromolecular precursors. The WSSV-induced Warburg effect therefore appears to be essential for successful viral replication. The Warburg effect (or aerobic glycolysis) is a metabolic shift that was first found in cancer cells, but has also recently been discovered in vertebrate cells infected by viruses. The Warburg effect facilitates the production of more energy and building blocks to meet the enormous biosynthetic requirements of cancerous and virus-infected cells. To date, all of our knowledge of the Warburg effect comes from vertebrate cell systems and our previous paper was the first to suggest that the Warburg effect may also occur in invertebrates. Here, we use a state-of-the-art systems biology approach to show the global metabolomic and proteomic changes that are triggered in shrimp hemocytes by a shrimp virus, white spot syndrome virus (WSSV). We characterize several critical metabolic properties of the invertebrate Warburg effect and show that they are similar to the vertebrate Warburg effect. WSSV triggers aerobic glycolysis via the PI3K-Akt-mTOR pathway, and during the WSSV genome replication stages, we show that the Warburg effect is essential for the virus, because even when the TCA cycle is boosted in mTOR-inactivated shrimp, this fails to provide enough energy and materials for successful viral replication. Our study provides new insights into the rerouting of the host metabolome that is triggered by an invertebrate virus.
Collapse
Affiliation(s)
- Mei-An Su
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Yun-Tzu Huang
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - I-Tung Chen
- Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Der-Yen Lee
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
- Center for Systems Biology, National Taiwan University, Taipei, Taiwan
| | - Yun-Chieh Hsieh
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Yuan Li
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Tze Hann Ng
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Suh-Yuen Liang
- Core Facilities for Protein Structural Analysis, Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Shu-Yu Lin
- Academia Sinica Common Mass Spectrometry Facilities at Institute of Biological Chemistry, Taipei, Taiwan
| | - Shiao-Wei Huang
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yi-An Chiang
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Hon-Tsen Yu
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
- Core Facilities for Protein Structural Analysis, Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Geen-Dong Chang
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chu-Fang Lo
- Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan, Taiwan
| | - Han-Ching Wang
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
248
|
Rosenwasser S, Mausz MA, Schatz D, Sheyn U, Malitsky S, Aharoni A, Weinstock E, Tzfadia O, Ben-Dor S, Feldmesser E, Pohnert G, Vardi A. Rewiring Host Lipid Metabolism by Large Viruses Determines the Fate of Emiliania huxleyi, a Bloom-Forming Alga in the Ocean. THE PLANT CELL 2014; 26:2689-2707. [PMID: 24920329 PMCID: PMC4114960 DOI: 10.1105/tpc.114.125641] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/07/2014] [Accepted: 05/26/2014] [Indexed: 05/21/2023]
Abstract
Marine viruses are major ecological and evolutionary drivers of microbial food webs regulating the fate of carbon in the ocean. We combined transcriptomic and metabolomic analyses to explore the cellular pathways mediating the interaction between the bloom-forming coccolithophore Emiliania huxleyi and its specific coccolithoviruses (E. huxleyi virus [EhV]). We show that EhV induces profound transcriptome remodeling targeted toward fatty acid synthesis to support viral assembly. A metabolic shift toward production of viral-derived sphingolipids was detected during infection and coincided with downregulation of host de novo sphingolipid genes and induction of the viral-encoded homologous pathway. The depletion of host-specific sterols during lytic infection and their detection in purified virions revealed their novel role in viral life cycle. We identify an essential function of the mevalonate-isoprenoid branch of sterol biosynthesis during infection and propose its downregulation as an antiviral mechanism. We demonstrate how viral replication depends on the hijacking of host lipid metabolism during the chemical "arms race" in the ocean.
Collapse
Affiliation(s)
- Shilo Rosenwasser
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michaela A Mausz
- Institute of Inorganic and Analytical Chemistry/Bioorganic Analytics, Friedrich Schiller University Jena, 07743 Jena, Germany Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany
| | - Daniella Schatz
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Uri Sheyn
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sergey Malitsky
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eyal Weinstock
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Oren Tzfadia
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shifra Ben-Dor
- Bioinformatics and Biological Computing Unit, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ester Feldmesser
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Georg Pohnert
- Institute of Inorganic and Analytical Chemistry/Bioorganic Analytics, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Assaf Vardi
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
249
|
Thai M, Graham NA, Braas D, Nehil M, Komisopoulou E, Kurdistani SK, McCormick F, Graeber TG, Christofk HR. Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication. Cell Metab 2014; 19:694-701. [PMID: 24703700 PMCID: PMC4294542 DOI: 10.1016/j.cmet.2014.03.009] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 12/10/2013] [Accepted: 02/03/2014] [Indexed: 12/28/2022]
Abstract
Virus infections trigger metabolic changes in host cells that support the bioenergetic and biosynthetic demands of viral replication. Although recent studies have characterized virus-induced changes in host cell metabolism (Munger et al., 2008; Terry et al., 2012), the molecular mechanisms by which viruses reprogram cellular metabolism have remained elusive. Here, we show that the gene product of adenovirus E4ORF1 is necessary for adenovirus-induced upregulation of host cell glucose metabolism and sufficient to promote enhanced glycolysis in cultured epithelial cells by activation of MYC. E4ORF1 localizes to the nucleus, binds to MYC, and enhances MYC binding to glycolytic target genes, resulting in elevated expression of specific glycolytic enzymes. E4ORF1 activation of MYC promotes increased nucleotide biosynthesis from glucose intermediates and enables optimal adenovirus replication in primary lung epithelial cells. Our findings show how a viral protein exploits host cell machinery to reprogram cellular metabolism and promote optimal progeny virion generation.
Collapse
Affiliation(s)
- Minh Thai
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nicholas A Graham
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel Braas
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA Metabolomics Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Nehil
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco School of Medicine, San Francisco, CA 94158, USA
| | - Evangelia Komisopoulou
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Siavash K Kurdistani
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco School of Medicine, San Francisco, CA 94158, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA Metabolomics Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Heather R Christofk
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA Metabolomics Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
250
|
Targeting Epstein-Barr virus oncoprotein LMP1-mediated glycolysis sensitizes nasopharyngeal carcinoma to radiation therapy. Oncogene 2014; 33:4568-78. [PMID: 24662831 PMCID: PMC4162460 DOI: 10.1038/onc.2014.32] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 11/26/2013] [Accepted: 12/16/2013] [Indexed: 12/13/2022]
Abstract
Our goal in this work was to illustrate the Epstein-Barr virus (EBV)-modulated global biochemical profile and provide a novel metabolism-related target to improve the therapeutic regimen of nasopharyngeal carcinoma (NPC). We used a metabolomics approach to investigate EBV-modulated metabolic changes, and found that the exogenous overexpression of the EBV-encoded latent membrane protein 1 (LMP1) significantly increased glycolysis. The deregulation of several glycolytic genes, including hexokinase 2 (HK2), was determined to be responsible for the reprogramming of LMP1-mediated glucose metabolism in NPC cells. The upregulation of HK2 elevated aerobic glycolysis and facilitated proliferation by blocking apoptosis. More importantly, HK2 was positively correlated with LMP1 in NPC biopsies, and high HK2 levels were significantly associated with poor overall survival of NPC patients following radiation therapy. Knockdown of HK2 effectively enhanced the sensitivity of LMP1-overexpressing NPC cells to irradiation. Finally, c-Myc was demonstrated to be required for LMP1-induced upregulation of HK2. The LMP1-mediated attenuation of the PI3-K/Akt-GSK3beta-FBW7 signaling axis resulted in the stabilization of c-Myc. These findings indicate a close relationship between EBV and glycolysis in NPC. Notably, LMP1 is the key regulator of the reprogramming of EBV-mediated glycolysis in NPC cells. Given the importance of EBV-mediated deregulation of glycolysis, anti-glycolytic therapy might represent a worthwhile avenue of exploration in the treatment of EBV-related cancers.
Collapse
|