201
|
Xu Z, Gong J, Wang C, Wang Y, Song Y, Xu W, Liu Z, Liu Y. The diagnostic value and functional roles of phosphoglycerate mutase 1 in glioma. Oncol Rep 2016; 36:2236-44. [PMID: 27572934 DOI: 10.3892/or.2016.5046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/01/2016] [Indexed: 11/05/2022] Open
Abstract
Previous studies indicated that phosphoglycerate mutase 1 (PGAM1) is involved in many cancer types and promotes breast cancer progression. However, the role of PGAM1 in glioma remains unclear. The present study aimed to investigate the association of PGAM1 expression with glioma grade and the role of PGAM1 in proliferation, apoptosis, migration and invasion of glioma cells. The mRNA and protein expression of PGAM1 was analysed in glioma tissues and normal brain tissues. The expression of PGAM1 was examined further by immunohistochemical analysis. In addition, we inhibited the expression of PGAM1 in glioma cell line by siRNA to evaluate its role in glioma proliferation, apoptosis, migration and invasion. The mRNA and protein expression of PGAM1 was significantly greater in glioma than normal brain tissues. PGAM1 expression was associated with the WHO grade of glioma. siRNA knockdown of PGAM1 significantly inhibited glioma cell proliferation, promoted glioma cell apoptosis, induced S phase cell cycle arrest and inhibited glioma cell migration and invasion in vitro. PGAM1 may be associated with the grade of glioma and be involved in the biological behavior of glioma cells. PGAM1 might be a novel therapeutic target in glioma.
Collapse
Affiliation(s)
- Zhenkuan Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Brain Science Research Institute of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jie Gong
- Department of Neurosurgery, Qilu Hospital of Shandong University, Brain Science Research Institute of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Chuanwei Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Brain Science Research Institute of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yunyan Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Brain Science Research Institute of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yan Song
- Department of Neurosurgery, Qilu Hospital of Shandong University, Brain Science Research Institute of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wenzhe Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Brain Science Research Institute of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhiguo Liu
- Department of Neurosurgery, Shandong Provincial Hospital affiliated to Shandong University, Shandong Cancer Hospital, Shandong Provincial Institute of Cancer Prevention and Treatment, Jinan, Shandong 250012, P.R. China
| | - Yuguang Liu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Brain Science Research Institute of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
202
|
Lu J, Xia Q, Long XD. Glycogen metabolic reprogramming in hepatocellular carcinoma: An update. Shijie Huaren Xiaohua Zazhi 2016; 24:3391-3397. [DOI: 10.11569/wcjd.v24.i22.3391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly prevalent malignant tumor. Abnormal glycogen metabolism, an important metabolism process in HCC, mainly results from the variant structure, function, and expression levels of the corresponding enzymes and proteins. This variation, also called metabolic reprogramming, can regulate glycogen metabolic pathway to promote HCC tumorigenesis. This review aims to summarize glycogen metabolism-regulated factors (including glucose transporters, glycogen synthase kinase 3β, and glycogen phosphorylase) involved in glycogen metabolic reprogramming in HCC
Collapse
|
203
|
Liu Z, Jian Z, Wang Q, Cheng T, Feuerecker B, Schwaiger M, Huang SC, Ziegler SI, Shi K. A Continuously Infused Microfluidic Radioassay System for the Characterization of Cellular Pharmacokinetics. J Nucl Med 2016; 57:1548-1555. [PMID: 27363838 DOI: 10.2967/jnumed.115.169151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/08/2016] [Indexed: 12/14/2022] Open
Abstract
Measurement of cellular tracer uptake is widely applied to learn the physiologic status of cells and their interactions with imaging agents and pharmaceuticals. In-culture measurements have the advantage of less stress to cells. However, the tracer solution still needs to be loaded, unloaded, and purged from the cell culture during the measurements. Here, we propose a continuously infused microfluidic radioassay (CIMR) system for continuous in-culture measurement of cellular uptake. The system was tested to investigate the influence of the glucose concentration in cell culture media on 18F-FDG uptake kinetics. METHODS The CIMR system consists of a microfluidic chip integrated with a flow-control unit and a positron camera. Medium diluted with radioactive tracer flows through a cell chamber continuously at low speed. Positrons emitted from the cells and from tracer in the medium are measured with the positron camera. The human cell lines SkBr3 and Capan-1 were incubated with media of 3 different glucose concentrations and then measured with 18F-FDG on the CIMR system. In addition, a conventional uptake experiment was performed. The relative uptake ratios between different medium conditions were compared. A cellular 2-compartment model was applied to estimate the cellular pharmacokinetics on CIMR data. The estimated pharmacokinetic parameters were compared with expressions of glucose transporter-1 (GLUT1) and hexokinase-2 measured by quantitative real-time polymerase chain reaction. RESULTS The relative uptake ratios obtained from CIMR measurements correlated significantly with those from the conventional uptake experiments. The relative SDs of the relative uptake ratios obtained from the CIMR uptake experiments were significantly lower than those from the conventional uptake experiments. The fit of the cellular 2-compartment model to the 18F-FDG CIMR measurements was of high quality. For SkBr3, the estimated pharmacokinetic parameters k1 and k3 were consistent with the messenger RNA expression of GLUT1 and hexokinase-2: culturing with low glucose concentrations led to higher GLUT1 and hexokinase-2 expression as well as higher estimated k1 and k3 For Capan-1, the estimated k1 and k3 increased as the glucose concentration in the culture medium decreased, and this finding did not match the corresponding messenger RNA expression. CONCLUSION The CIMR system captures dynamic uptake within the cell culture and enables estimation of the cellular pharmacokinetics.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Nuclear Medicine, Technische Universität München, Munich, Germany; and
| | - Ziying Jian
- Department of Nuclear Medicine, Technische Universität München, Munich, Germany; and
| | - Qian Wang
- Department of Nuclear Medicine, Technische Universität München, Munich, Germany; and
| | - Tao Cheng
- Department of Nuclear Medicine, Technische Universität München, Munich, Germany; and
| | - Benedikt Feuerecker
- Department of Nuclear Medicine, Technische Universität München, Munich, Germany; and
| | - Markus Schwaiger
- Department of Nuclear Medicine, Technische Universität München, Munich, Germany; and
| | - Sung-Cheng Huang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Sibylle I Ziegler
- Department of Nuclear Medicine, Technische Universität München, Munich, Germany; and
| | - Kuangyu Shi
- Department of Nuclear Medicine, Technische Universität München, Munich, Germany; and
| |
Collapse
|
204
|
Kim JU, Shariff MIF, Crossey MME, Gomez-Romero M, Holmes E, Cox IJ, Fye HKS, Njie R, Taylor-Robinson SD. Hepatocellular carcinoma: Review of disease and tumor biomarkers. World J Hepatol 2016; 8:471-484. [PMID: 27057305 PMCID: PMC4820639 DOI: 10.4254/wjh.v8.i10.471] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/02/2016] [Accepted: 03/16/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy and now the second commonest global cause of cancer death. HCC tumorigenesis is relatively silent and patients experience late symptomatic presentation. As the option for curative treatments is limited to early stage cancers, diagnosis in non-symptomatic individuals is crucial. International guidelines advise regular surveillance of high-risk populations but the current tools lack sufficient sensitivity for early stage tumors on the background of a cirrhotic nodular liver. A number of novel biomarkers have now been suggested in the literature, which may reinforce the current surveillance methods. In addition, recent metabonomic and proteomic discoveries have established specific metabolite expressions in HCC, according to Warburg’s phenomenon of altered energy metabolism. With clinical validation, a simple and non-invasive test from the serum or urine may be performed to diagnose HCC, particularly benefiting low resource regions where the burden of HCC is highest.
Collapse
|
205
|
Brito AF, Ribeiro M, Abrantes AM, Mamede AC, Laranjo M, Casalta-Lopes JE, Gonçalves AC, Sarmento-Ribeiro AB, Tralhão JG, Botelho MF. New Approach for Treatment of Primary Liver Tumors: The Role of Quercetin. Nutr Cancer 2016; 68:250-66. [PMID: 26943884 DOI: 10.1080/01635581.2016.1145245] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver tumor (PLT), with cholangiocarcinoma (CC) being the second most frequent. Glucose transporter 1 (GLUT-1) expression is increased in PLTs and therefore it is suggested as a therapeutic target. Flavonoids, like quercetin, are GLUT-1 competitive inhibitors and may be considered as potential therapeutic agents for PLTs. The objective of this study was evaluation of quercetin anticancer activity in three human HCC cell lines (HepG2, HuH7, and Hep3B2.1-7) and in a human CC cell line (TFK-1). The possible synergistic effect between quercetin and sorafenib, a nonspecific multikinase inhibitor used in clinical practice in patients with advanced HCC, was also evaluated. It was found that in all the cell lines, quercetin induced inhibition of the metabolic activity and cell death by apoptosis, followed by increase in BAX/BCL-2 ratio. Treatment with quercetin caused DNA damage in HepG2, Hep3B2.1-7, and TFK-1 cell lines. The effect of quercetin appears to be independent of P53. Incubation with quercetin induced an increase in GLUT-1 membrane expression and a consequent reduction in the cytoplasmic fraction, observed as a decrease in (18)F-FDG uptake, indicating a GLUT-1 competitive inhibition. The occurrence of synergy when sorafenib and quercetin were added simultaneously to HCC cell lines was noticed. Thus, the use of quercetin seems to be a promising approach for PLTs through GLUT-1 competitive inhibition.
Collapse
Affiliation(s)
- Ana Filipa Brito
- a Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,b Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra , Coimbra , Portugal
| | - Marina Ribeiro
- a Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,c Faculty of Sciences and Technology, University of Coimbra , Coimbra , Portugal
| | - Ana Margarida Abrantes
- a Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,b Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra , Coimbra , Portugal.,d CNC.IBILI, Faculty of Medicine, University of Coimbra , Coimbra , Portugal
| | - Ana Catarina Mamede
- a Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,b Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra , Coimbra , Portugal.,d CNC.IBILI, Faculty of Medicine, University of Coimbra , Coimbra , Portugal.,e CICS-UBI, Health Sciences Research Centre, University of Beira Interior , Covilhã , Portugal
| | - Mafalda Laranjo
- a Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,b Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra , Coimbra , Portugal.,d CNC.IBILI, Faculty of Medicine, University of Coimbra , Coimbra , Portugal
| | - João Eduardo Casalta-Lopes
- a Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,b Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra , Coimbra , Portugal
| | - Ana Cristina Gonçalves
- b Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra , Coimbra , Portugal.,d CNC.IBILI, Faculty of Medicine, University of Coimbra , Coimbra , Portugal.,f Applied Molecular Biology and Hematology Group, Faculty of Medicine, University of Coimbra , Coimbra , Portugal
| | - Ana Bela Sarmento-Ribeiro
- b Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra , Coimbra , Portugal.,d CNC.IBILI, Faculty of Medicine, University of Coimbra , Coimbra , Portugal.,f Applied Molecular Biology and Hematology Group, Faculty of Medicine, University of Coimbra , Coimbra , Portugal
| | - José Guilherme Tralhão
- a Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,b Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra , Coimbra , Portugal.,g Surgical Department , Surgery A, CHUC , Coimbra , Portugal
| | - Maria Filomena Botelho
- a Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,b Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra , Coimbra , Portugal.,d CNC.IBILI, Faculty of Medicine, University of Coimbra , Coimbra , Portugal
| |
Collapse
|
206
|
Leung CON, Wong CCL, Fan DNY, Kai AKL, Tung EKK, Xu IMJ, Ng IOL, Lo RCL. PIM1 regulates glycolysis and promotes tumor progression in hepatocellular carcinoma. Oncotarget 2016; 6:10880-92. [PMID: 25834102 PMCID: PMC4484426 DOI: 10.18632/oncotarget.3534] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/18/2015] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is characteristically one of the most rapidly proliferating tumors which outgrows functional blood supply and results in regional oxygen deprivation. Overexpression of PIM1, a serine/threonine kinase, has been identified recently in human cancers. Knowledge on PIM1 in HCC is however, scarce. By immunohistochemical analysis on 56 human primary HCC samples, we observed overexpression of PIM1 in 39% of the cases. In two independent cohorts of paired primary and extra-hepatic metastatic HCC tissues, PIM1 expression was higher (p=0.002) in the extra-hepatic metastatic HCC tissues as compared with the corresponding primary HCCs. PIM1 was markedly up-regulated in multiple HCC cell lines in hypoxic condition (1% O2) versus normoxia (20% O2). Silencing of PIM1 suppressed HCC cell invasion in vitro as compared to non-target control, and decreased HCC cell proliferation in vitro and tumor growth and metastatic potential in vivo. Knockdown of PIM1 significantly reduced glucose uptake by HCC cells and was associated with decreased levels of p-AKT and key molecules in the glycolytic pathway. Taken together, PIM1 is up-regulated by hypoxia in HCC and promotes tumor growth and metastasis through facilitating cancer cell glycolysis. Targeting PIM1 may have potential role in the management of HCC.
Collapse
Affiliation(s)
| | - Carmen Chak-lui Wong
- Department of Pathology, The University of Hong Kong, Hong Kong, China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| | | | - Alan Ka-lun Kai
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | | | - Iris Ming-jing Xu
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Irene Oi-lin Ng
- Department of Pathology, The University of Hong Kong, Hong Kong, China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| | - Regina Cheuk-lam Lo
- Department of Pathology, The University of Hong Kong, Hong Kong, China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
207
|
Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. Proc Natl Acad Sci U S A 2016; 113:E1306-15. [PMID: 26884164 DOI: 10.1073/pnas.1518189113] [Citation(s) in RCA: 407] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The beneficial roles of probiotics in lowering the gastrointestinal inflammation and preventing colorectal cancer have been frequently demonstrated, but their immunomodulatory effects and mechanism in suppressing the growth of extraintestinal tumors remain unexplored. Here, we adopted a mouse model and metagenome sequencing to investigate the efficacy of probiotic feeding in controlling s.c. hepatocellular carcinoma (HCC) and the underlying mechanism suppressing the tumor progression. Our result demonstrated that Prohep, a novel probiotic mixture, slows down the tumor growth significantly and reduces the tumor size and weight by 40% compared with the control. From a mechanistic point of view the down-regulated IL-17 cytokine and its major producer Th17 cells, whose levels decreased drastically, played critical roles in tumor reduction upon probiotics feeding. Cell staining illustrated that the reduced Th17 cells in the tumor of the probiotic-treated group is mainly caused by the reduced frequency of migratory Th17 cells from the intestine and peripheral blood. In addition, shotgun-metagenome sequencing revealed the crosstalk between gut microbial metabolites and the HCC development. Probiotics shifted the gut microbial community toward certain beneficial bacteria, including Prevotella and Oscillibacter, that are known producers of antiinflammatory metabolites, which subsequently reduced the Th17 polarization and promoted the differentiation of antiinflammatory Treg/Tr1 cells in the gut. Overall, our study offers novel insights into the mechanism by which probiotic treatment modulates the microbiota and influences the regulation of the T-cell differentiation in the gut, which in turn alters the level of the proinflammatory cytokines in the extraintestinal tumor microenvironment.
Collapse
|
208
|
Vici P, Pizzuti L, Di Lauro L, Conti L, Mandoj C, Antenucci A, Digiesi G, Sergi D, Amodio A, Marchetti P, Sperati F, Valle M, Garofalo A, Vizza E, Corrado G, Vincenzoni C, Tomao F, Kayal R, Marsella A, Carosi M, Antoniani B, Giordano A, Maugeri-Saccà M, Barba M. Metabolic Determinants and Anthropometric Indicators Impact Clinical-pathological Features in Epithelial Ovarian Cancer Patients. J Cancer 2016; 7:516-22. [PMID: 26958087 PMCID: PMC4780127 DOI: 10.7150/jca.13578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/08/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Over the last twenty years, the efforts of the scientific community devoted to the comprehension and treatment of ovarian cancer have remained poorly remunerative, with the case-fatality ratio of this disease remaining disappointedly high. Limited knowledge of the basic principles regulating ovarian carcinogenesis and factors impacting the course of disease may significantly impair our ability to intervene in early stages and lessen our expectations in terms of treatment outcomes. In the present study, we sought to assess whether metabolic factors and anthropometric indicators, i.e., pre-treatment fasting glucose and body mass index, are associated with renown cancer related prognostic factors such as tumour stage and grade at diagnosis. MATERIALS AND METHODS Study participants were 147 women diagnosed with epithelial ovarian cancer and treated with platinum based regimens and/or surgery at the Regina Elena National Cancer Institute of Rome, Italy. Glucose levels were assessed at the institutional laboratories on venous blood collected in overnight fasting conditions and prior to any therapeutic procedure. Stage was coded according to the FIGO staging system based on the results of the diagnostic workup, while tumour grade was locally assessed by an expert pathologist. Participants' characteristics were descriptively analyzed for the overall study population and in a subgroup of 70 patients for whom data on body mass index (BMI) were available. FIGO stage and grade were compared by categories of pre-treatment fasting glucose defined upon the median value, i.e., 89 mg/dl. The association of interest was tested in regression models including BMI. RESULTS For the overall study population, patients in the lowest category of fasting glucose were significantly more likely to exhibit a FIGO stage III-IV at diagnosis compared with their counterpart in the highest glucose category (81.3 vs 66.7%, p: 0.021). Subgroup analysis in 70 patients with BMI data confirmed this association (81.5 vs 55.8, p: 0.049), which remained significant when tested in regression models including BMI (OR: 0.28 95% CI 0.086-0.89, p: 0.031). No relevant evidence emerged when testing the association between fasting glucose and tumour grade. CONCLUSIONS In patients diagnosed with epithelial ovarian cancer, pre-treatment glucose levels appear to be inversely associated with FIGO stage. Further studies are warranted to eventually confirm and correctly interpret the implications of this novel finding.
Collapse
Affiliation(s)
- Patrizia Vici
- 1. Division of Medical Oncology 2, Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Pizzuti
- 1. Division of Medical Oncology 2, Regina Elena National Cancer Institute, Rome, Italy
| | - Luigi Di Lauro
- 1. Division of Medical Oncology 2, Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Conti
- 2. Division of Clinical Pathology, Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Mandoj
- 2. Division of Clinical Pathology, Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Antenucci
- 2. Division of Clinical Pathology, Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanna Digiesi
- 2. Division of Clinical Pathology, Regina Elena National Cancer Institute, Rome, Italy
| | - Domenico Sergi
- 1. Division of Medical Oncology 2, Regina Elena National Cancer Institute, Rome, Italy
| | - Antonella Amodio
- 1. Division of Medical Oncology 2, Regina Elena National Cancer Institute, Rome, Italy
| | - Paolo Marchetti
- 3. Oncology Unit, Sant'Andrea Hospital, La Sapienza University of Rome, Italy
| | - Francesca Sperati
- 4. Biostatistics Unit-Scientific Direction, Regina Elena National Cancer Institute, Rome, Italy
| | - Mario Valle
- 5. General Surgery, Regina Elena National Institute, Rome, Italy
| | - Alfredo Garofalo
- 5. General Surgery, Regina Elena National Institute, Rome, Italy
| | - Enrico Vizza
- 6. Gynecological Oncology, Regina Elena National Cancer Institute, Rome, Italy
| | - Giacomo Corrado
- 6. Gynecological Oncology, Regina Elena National Cancer Institute, Rome, Italy
| | - Cristina Vincenzoni
- 6. Gynecological Oncology, Regina Elena National Cancer Institute, Rome, Italy
| | - Federica Tomao
- 7. Department of Gynecologic Oncology, University “Sapienza”, Viale del Policlinico 155, 00161 Rome, Italy
| | - Ramy Kayal
- 8. Department of Radiology, Regina Elena National Cancer Institute, Rome, Italy
| | - Annalise Marsella
- 8. Department of Radiology, Regina Elena National Cancer Institute, Rome, Italy
| | - Mariantonia Carosi
- 9. Department of Pathology, Regina Elena National Cancer Institute, Rome, Italy
| | - Barbara Antoniani
- 9. Department of Pathology, Regina Elena National Cancer Institute, Rome, Italy
| | - Antonio Giordano
- 10. Sbarro Institute for Cancer Research and Molecular Medicine e del Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
- 11. Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Marcello Maugeri-Saccà
- 1. Division of Medical Oncology 2, Regina Elena National Cancer Institute, Rome, Italy
- 12. Scientific Direction, Regina Elena National Cancer Institute, Rome, Italy
| | - Maddalena Barba
- 1. Division of Medical Oncology 2, Regina Elena National Cancer Institute, Rome, Italy
- 12. Scientific Direction, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
209
|
Liu Y, Zhao Y, Guo L. Effects of orexin A on glucose metabolism in human hepatocellular carcinoma in vitro via PI3K/Akt/mTOR-dependent and -independent mechanism. Mol Cell Endocrinol 2016; 420:208-16. [PMID: 26549689 DOI: 10.1016/j.mce.2015.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/31/2015] [Accepted: 11/02/2015] [Indexed: 12/20/2022]
Abstract
Orexins are hypothalamic neuropeptides that regulate food intake, energy homeostasis, reward system and sleep/wakefulness states. The purpose of this study was to investigate the effects of orexin A on glucose metabolism in human hepatocellular carcinoma cell line, Hep3B, and determine the possible mechanisms. Hep3B cells were incubated with different concentrations of orexin A (10(-9)-10(-7) M) in vitro in the presence or absence of the orexin receptor 1 (OX1R) inhibitor (SB334867), Akt inhibitor (PF-04691502) and mammalian target of rapamycin (mTOR) inhibitor (temsirolimus). Subsequently, OX1R protein expression, glucose transporter 1 (GLUT1) expression, glucose uptake, the mRNA expression of lactate dehydrogenase (LDHA), pyruvate dehydrogenase kinase 1 (PDK1) and pyruvate dehydrogenase B (PDHB), lactate generation and mitochondrial pyruvate dehydrogenase (PDH) enzyme activity were measured. The activity of phosphoinositide 3-kinase (PI3K)/Akt/mTOR signaling was also determined. OX1R was expressed in hepatoma tissues and Hep3B cells. Stimulation of the Hep3B cells with orexin A resulted in a dose-dependent increase of GLUT1 expression and glucose uptake, which was associated with the activation of PI3K/Akt/mTOR pathway. Further, orexin A increased PDHB expression and PDH enzyme activity, decreased LDHA, PDK1 mRNA levels and lactate generation independent of PI3K/Akt/mTOR pathway. Our results demonstrated that orexin A directed the cellular metabolism towards mitochondrial glucose oxidation rather than glycolysis. These findings provide functional evidence of the metabolic actions of orexin A in hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Endocrinology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, 110001, PR China
| | - Yuyan Zhao
- Department of Endocrinology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, 110001, PR China
| | - Lei Guo
- Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, 110001, PR China.
| |
Collapse
|
210
|
Deng D, Yan N. GLUT, SGLT, and SWEET: Structural and mechanistic investigations of the glucose transporters. Protein Sci 2016; 25:546-58. [PMID: 26650681 DOI: 10.1002/pro.2858] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/20/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022]
Abstract
Glucose is the primary fuel to life on earth. Cellular uptake of glucose is a fundamental process for metabolism, growth, and homeostasis. Three families of secondary glucose transporters have been identified in human, including the major facilitator superfamily glucose facilitators GLUTs, the sodium-driven glucose symporters SGLTs, and the recently identified SWEETs. Structures of representative members or their prokaryotic homologs of all three families were obtained. This review focuses on the recent advances in the structural elucidation of the glucose transporters and the mechanistic insights derived from these structures, including the molecular basis for substrate recognition, alternating access, and stoichiometric coupling of co-transport.
Collapse
Affiliation(s)
- Dong Deng
- State Key Laboratory of Bio-Membrane and Membrane Biotechnology, Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Nieng Yan
- State Key Laboratory of Bio-Membrane and Membrane Biotechnology, Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
211
|
Savic LJ, Chapiro J, Duwe G, Geschwind JF. Targeting glucose metabolism in cancer: new class of agents for loco-regional and systemic therapy of liver cancer and beyond? Hepat Oncol 2016; 3:19-28. [PMID: 26989470 DOI: 10.2217/hep.15.36] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers and the third leading cause of cancer-related deaths worldwide. In patients with unresectable disease, loco-regional catheter-based intra-arterial therapies (IAT) can achieve selective tumor control while minimizing systemic toxicity. As molecular features of tumor growth and microenvironment are better understood, new targets arise for selective anticancer therapy. Particularly, antiglycolytic drugs that exploit the hyperglycolytic cancer cell metabolism - also known as the 'Warburg effect' - have emerged as promising therapeutic options. Thus, future developments will combine the selective character of loco-regional drug delivery platforms with highly specific molecular targeted antiglycolytic agents. This review will exemplify literature on antiglycolytic approaches and particularly focus on intra-arterial delivery methods.
Collapse
Affiliation(s)
- Lynn Jeanette Savic
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, US; Department of Diagnostic & Interventional Radiology, Universitätsmedizin Charité Berlin, Berlin, Germany
| | - Julius Chapiro
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, US; Department of Diagnostic & Interventional Radiology, Universitätsmedizin Charité Berlin, Berlin, Germany
| | - Gregor Duwe
- Department of Diagnostic & Interventional Radiology, Universitätsmedizin Charité Berlin, Berlin, Germany
| | | |
Collapse
|
212
|
Zhang Y, Chan JW, Moretti A, Uhrich KE. Designing polymers with sugar-based advantages for bioactive delivery applications. J Control Release 2015; 219:355-368. [PMID: 26423239 PMCID: PMC4656084 DOI: 10.1016/j.jconrel.2015.09.053] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/22/2015] [Accepted: 09/25/2015] [Indexed: 01/18/2023]
Abstract
Sugar-based polymers have been extensively explored as a means to increase drug delivery systems' biocompatibility and biodegradation. Here,we review he use of sugar-based polymers for drug delivery applications, with a particular focus on the utility of the sugar component(s) to provide benefits for drug targeting and stimuli responsive systems. Specifically, numerous synthetic methods have been developed to reliably modify naturally-occurring polysaccharides, conjugate sugar moieties to synthetic polymer scaffolds to generate glycopolymers, and utilize sugars as a multifunctional building block to develop sugar-linked polymers. The design of sugar-based polymer systems has tremendous implications on both the physiological and biological properties imparted by the saccharide units and are unique from synthetic polymers. These features include the ability of glycopolymers to preferentially target various cell types and tissues through receptor interactions, exhibit bioadhesion for prolonged residence time, and be rapidly recognized and internalized by cancer cells. Also discussed are the distinct stimuli-sensitive properties of saccharide-modified polymers to mediate drug release under desired conditions. Saccharide-based systems with inherent pH- and temperature-sensitive properties, as well as enzyme-cleavable polysaccharides for targeted bioactive delivery, are covered. Overall, this work emphasizes inherent benefits of sugar-containing polymer systems for bioactive delivery.
Collapse
Affiliation(s)
- Yingyue Zhang
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA
| | - Jennifer W Chan
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Alysha Moretti
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA
| | - Kathryn E Uhrich
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA; Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
213
|
Zhu H, Zhang S, Ling Y, Meng G, Yang Y, Zhang W. pH-responsive hybrid quantum dots for targeting hypoxic tumor siRNA delivery. J Control Release 2015; 220:529-544. [DOI: 10.1016/j.jconrel.2015.11.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/17/2015] [Accepted: 11/11/2015] [Indexed: 12/23/2022]
|
214
|
RRAD inhibits aerobic glycolysis, invasion, and migration and is associated with poor prognosis in hepatocellular carcinoma. Tumour Biol 2015; 37:5097-105. [PMID: 26546438 DOI: 10.1007/s13277-015-4329-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancer worldwide. However, the mechanism underlying the HCC development remains unclear. Ras-related associated with diabetes (RRAD) is a small Ras-related GTPase which has been implicated in metabolic disease and several types of cancer, yet its functions in HCC remain unknown. A tissue microarray constructed by 90 paired HCC tissues and adjacent non-cancerous liver tissues was used to examine the protein levels of RRAD, and the messenger RNA (mRNA) expression of RRAD was also detected in a subset of this cohort. The prognostic significance of RRAD was estimated by the Kaplan-Meier analysis and Cox regression. The glucose utilization assay and lactate production assay were performed to measure the role of RRAD in HCC glycolysis. The effect of RRAD in HCC invasion and metastasis was analyzed by transwell assays. Our results suggested that the expression of RRAD was downregulated in HCC tissues compared to the adjacent non-tumorous liver tissues both in mRNA and protein levels and lower RRAD expression served as an independent prognostic indicator for the survival of HCC patients. Moreover, RRAD inhibited hepatoma cell aerobic glycolysis by negatively regulating the expression of glucose transporter 1 (GLUT1) and hexokinase II (HK-II). In addition, RRAD inhibition dramatically increased hepatoma cell invasion and metastasis. In conclusion, our study revealed that RRAD expression was decreased in HCC tumor tissues and predicted poor clinical outcome for HCC patients and played an important role in regulating aerobic glycolysis and cell invasion and metastasis and may represent potential targets for improving the treatment of HCC.
Collapse
|
215
|
Koch A, Lang SA, Wild PJ, Gantner S, Mahli A, Spanier G, Berneburg M, Müller M, Bosserhoff AK, Hellerbrand C. Glucose transporter isoform 1 expression enhances metastasis of malignant melanoma cells. Oncotarget 2015; 6:32748-60. [PMID: 26293674 PMCID: PMC4741727 DOI: 10.18632/oncotarget.4977] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/11/2015] [Indexed: 12/29/2022] Open
Abstract
The glucose transporter isoform 1 (GLUT1; SLC2A1) is a key rate-limiting factor in the transport of glucose into cancer cells. Enhanced GLUT1 expression and accelerated glycolysis have been found to promote aggressive growth in a range of tumor entities. However, it was unknown whether GLUT1 directly impacts metastasis. Here, we aimed at analyzing the expression and function of GLUT1 in malignant melanoma. Immunohistochemical analysis of 78 primary human melanomas on a tissue micro array showed that GLUT1 expression significantly correlated with the mitotic activity and a poor survival. To determine the functional role of GLUT1 in melanoma, we stably suppressed GLUT1 in the murine melanoma cell line B16 with shRNA. GLUT1 suppressed melanoma cells revealed significantly reduced proliferation, apoptosis resistance, migratory activity and matrix metalloproteinase 2 (MMP2) expression. In a syngeneic murine model of hepatic metastasis, GLUT1-suppressed cells formed significantly less metastases and showed increased apoptosis compared to metastases formed by control cells. Treatment of four different human melanoma cell lines with a pharmacological GLUT1 inhibitor caused a dose-dependent reduction of proliferation, apoptosis resistance, migratory activity and MMP2 expression. Analysis of MAPK signal pathways showed that GLUT1 inhibition significantly decreased JNK activation, which regulates a wide range of targets in the metastatic cascade. In summary, our study provides functional evidence that enhanced GLUT1 expression in melanoma cells favors their metastatic behavior. These findings specify GLUT1 as an attractive therapeutic target and prognostic marker for this highly aggressive tumor.
Collapse
Affiliation(s)
- Andreas Koch
- Department of Internal Medicine I, University Hospital Regensburg, Germany
| | - Sven Arke Lang
- Department of Surgery, University Hospital Regensburg, Germany
| | | | - Susanne Gantner
- Department of Dermatology, University Hospital Regensburg, Germany
| | - Abdo Mahli
- Department of Internal Medicine I, University Hospital Regensburg, Germany
| | - Gerrit Spanier
- Department of Cranio-Maxillo-Facial Surgery, University Hospital Regensburg, Germany
| | - Mark Berneburg
- Department of Dermatology, University Hospital Regensburg, Germany
| | - Martina Müller
- Department of Internal Medicine I, University Hospital Regensburg, Germany
| | | | - Claus Hellerbrand
- Department of Internal Medicine I, University Hospital Regensburg, Germany
| |
Collapse
|
216
|
Cancer Microenvironment and Endoplasmic Reticulum Stress Response. Mediators Inflamm 2015; 2015:417281. [PMID: 26491226 PMCID: PMC4600498 DOI: 10.1155/2015/417281] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/21/2015] [Accepted: 04/24/2015] [Indexed: 12/17/2022] Open
Abstract
Different stressful conditions such as hypoxia, nutrient deprivation, pH changes, or reduced vascularization, potentially able to act as growth-limiting factors for tumor cells, activate the unfolded protein response (UPR). UPR is therefore involved in tumor growth and adaptation to severe environments and is generally cytoprotective in cancer. The present review describes the molecular mechanisms underlying UPR and able to promote survival and proliferation in cancer. The critical role of UPR activation in tumor growth promotion is discussed in detail for a few paradigmatic tumors such as prostate cancer and melanoma.
Collapse
|
217
|
Iansante V, Choy PM, Fung SW, Liu Y, Chai JG, Dyson J, Del Rio A, D'Santos C, Williams R, Chokshi S, Anders RA, Bubici C, Papa S. PARP14 promotes the Warburg effect in hepatocellular carcinoma by inhibiting JNK1-dependent PKM2 phosphorylation and activation. Nat Commun 2015; 6:7882. [PMID: 26258887 PMCID: PMC4918319 DOI: 10.1038/ncomms8882] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 06/23/2015] [Indexed: 02/07/2023] Open
Abstract
Most tumour cells use aerobic glycolysis (the Warburg effect) to support anabolic growth and evade apoptosis. Intriguingly, the molecular mechanisms that link the Warburg effect with the suppression of apoptosis are not well understood. In this study, using loss-of-function studies in vitro and in vivo, we show that the anti-apoptotic protein poly(ADP-ribose) polymerase (PARP)14 promotes aerobic glycolysis in human hepatocellular carcinoma (HCC) by maintaining low activity of the pyruvate kinase M2 isoform (PKM2), a key regulator of the Warburg effect. Notably, PARP14 is highly expressed in HCC primary tumours and associated with poor patient prognosis. Mechanistically, PARP14 inhibits the pro-apoptotic kinase JNK1, which results in the activation of PKM2 through phosphorylation of Thr365. Moreover, targeting PARP14 enhances the sensitization of HCC cells to anti-HCC agents. Our findings indicate that the PARP14-JNK1-PKM2 regulatory axis is an important determinant for the Warburg effect in tumour cells and provide a mechanistic link between apoptosis and metabolism.
Collapse
Affiliation(s)
- Valeria Iansante
- Cell Signaling and Cancer Laboratory, Institute of Hepatology, Foundation for Liver Research, London WC1E 6HX, UK
| | - Pui Man Choy
- Cell Signaling and Cancer Laboratory, Institute of Hepatology, Foundation for Liver Research, London WC1E 6HX, UK
| | - Sze Wai Fung
- Department of Medicine, Section of Inflammation and Signal Transduction, Imperial College, London W12 0NN, UK
| | - Ying Liu
- The Sol Goldman Pancreatic Cancer Research Center, Division of Gastrointestinal and Liver Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
- Department of Medical Oncology, Henan Cancer Hospital, Zhengzhou, Henan 450000, China
| | - Jian-Guo Chai
- Department of Medicine, Section of Molecular Immunology, Imperial College, London W12 0NN, UK
| | - Julian Dyson
- Department of Medicine, Section of Molecular Immunology, Imperial College, London W12 0NN, UK
| | - Alberto Del Rio
- Institute of Organic Synthesis and Photoreactivity, National Research Council, Bologna 40129, Italy
| | - Clive D'Santos
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Roger Williams
- Cell Signaling and Cancer Laboratory, Institute of Hepatology, Foundation for Liver Research, London WC1E 6HX, UK
- Viral Hepatitis Laboratory, Institute of Hepatology, Foundation for Liver Research, London WC1E 6HX, UK
| | - Shilpa Chokshi
- Viral Hepatitis Laboratory, Institute of Hepatology, Foundation for Liver Research, London WC1E 6HX, UK
| | - Robert A Anders
- The Sol Goldman Pancreatic Cancer Research Center, Division of Gastrointestinal and Liver Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | - Concetta Bubici
- Department of Medicine, Section of Inflammation and Signal Transduction, Imperial College, London W12 0NN, UK
| | - Salvatore Papa
- Cell Signaling and Cancer Laboratory, Institute of Hepatology, Foundation for Liver Research, London WC1E 6HX, UK
| |
Collapse
|
218
|
Ho D, Wang CHK, Chow EKH. Nanodiamonds: The intersection of nanotechnology, drug development, and personalized medicine. SCIENCE ADVANCES 2015; 1:e1500439. [PMID: 26601235 PMCID: PMC4643796 DOI: 10.1126/sciadv.1500439] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/20/2015] [Indexed: 05/07/2023]
Abstract
The implementation of nanomedicine in cellular, preclinical, and clinical studies has led to exciting advances ranging from fundamental to translational, particularly in the field of cancer. Many of the current barriers in cancer treatment are being successfully addressed using nanotechnology-modified compounds. These barriers include drug resistance leading to suboptimal intratumoral retention, poor circulation times resulting in decreased efficacy, and off-target toxicity, among others. The first clinical nanomedicine advances to overcome these issues were based on monotherapy, where small-molecule and nucleic acid delivery demonstrated substantial improvements over unmodified drug administration. Recent preclinical studies have shown that combination nanotherapies, composed of either multiple classes of nanomaterials or a single nanoplatform functionalized with several therapeutic agents, can image and treat tumors with improved efficacy over single-compound delivery. Among the many promising nanomaterials that are being developed, nanodiamonds have received increasing attention because of the unique chemical-mechanical properties on their faceted surfaces. More recently, nanodiamond-based drug delivery has been included in the rational and systematic design of optimal therapeutic combinations using an implicitly de-risked drug development platform technology, termed Phenotypic Personalized Medicine-Drug Development (PPM-DD). The application of PPM-DD to rapidly identify globally optimized drug combinations successfully addressed a pervasive challenge confronting all aspects of drug development, both nano and non-nano. This review will examine various nanomaterials and the use of PPM-DD to optimize the efficacy and safety of current and future cancer treatment. How this platform can accelerate combinatorial nanomedicine and the broader pharmaceutical industry toward unprecedented clinical impact will also be discussed.
Collapse
Affiliation(s)
- Dean Ho
- Division of Oral Biology and Medicine, University of California, Los Angeles (UCLA) School of Dentistry, Los Angeles, CA 90095, USA
- Department of Bioengineering, UCLA School of Engineering and Applied Science, Los Angeles, CA 90095, USA
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
- Corresponding author. E-mail: (D. H.); (E. K.-H. C.)
| | | | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 177599, Singapore
- National University Cancer Institute, Singapore, Singapore 119082, Singapore
- Corresponding author. E-mail: (D. H.); (E. K.-H. C.)
| |
Collapse
|
219
|
Mohd Abdul Rashid MB, Toh TB, Silva A, Nurrul Abdullah L, Ho CM, Ho D, Chow EKH. Identification and Optimization of Combinatorial Glucose Metabolism Inhibitors in Hepatocellular Carcinomas. ACTA ACUST UNITED AC 2015; 20:423-37. [DOI: 10.1177/2211068215579612] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Indexed: 12/23/2022]
|
220
|
Yan S, Wang Y, Chen M, Li G, Fan J. Deregulated SLC2A1 Promotes Tumor Cell Proliferation and Metastasis in Gastric Cancer. Int J Mol Sci 2015; 16:16144-16157. [PMID: 26193257 PMCID: PMC4519943 DOI: 10.3390/ijms160716144] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 11/29/2022] Open
Abstract
Gastric cancer (GC) is one of the common reasons of cancer-related death with few biomarkers for diagnosis and prognosis. Solute carrier family 2 (facilitated glucose transporter) member 1 protein SLC2A1, also known as glucose transporter type 1 (GLUT1), has been associated with tumor progression, metastasis, and poor prognosis in many human solid tumors. However, little is reported about its clinical significance and biological functions in GC. Here we observed a strong up-regulation of SLC2A1 in patients with GC and found that SLC2A1 was significantly correlated with depth of invasion and clinical stage. Additionally, over-expression of SLC2A1 in GC cells promotes cellular proliferation and metastasis in vitro and enhances tumor growth in vivo as well as enhancement of glucose utilization. Meanwhile, elevated SLC2A1 also contributes to tumor metastasis in vitro. Our results indicate SLC2A1 exhibits a pivotal role in tumor growth, metastasis and glucose metabolism, and also suggest SLC2A1 as a promising target for gastric cancer therapy.
Collapse
Affiliation(s)
- Shiyan Yan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| | - Yuqin Wang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| | - Meimei Chen
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| | - Guangming Li
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| | - Jiangao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
221
|
Suzuki H, Komuta M, Bolog A, Yokobori T, Wada S, Araki K, Kubo N, Watanabe A, Tsukagoshi M, Kuwano H. Relationship between 18-F-fluoro-deoxy-D-glucose uptake and expression of glucose transporter 1 and pyruvate kinase M2 in intrahepatic cholangiocarcinoma. Dig Liver Dis 2015; 47:590-6. [PMID: 25912843 DOI: 10.1016/j.dld.2015.03.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 03/08/2015] [Accepted: 03/17/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cholangiocellular carcinoma is characterized by elevated glucose consumption, resulting in an increased uptake of 18F-2-fluoro-2-deoxy-d-glucose (18F-FDG). This study investigates the relationship between 18F-FDG uptake and tumour glucose metabolism. METHODS This was a retrospective analysis of 19 patients with cholangiocellular carcinoma. Immunohistochemistry for glucose transporter 1 and pyruvate kinase type M2 were performed. Overall tumour glucose metabolism was evaluated by measuring 18F-FDG uptake and the protein expression levels of glucose transporter 1 and pyruvate kinase type M2. RESULTS 18F-FDG uptake had a strong positive correlation with histological differentiation. Both tumour status (p=0.044) and tumour size (p=0.011) were correlated with primary tumour 18F-FDG uptake. Glucose transporter 1 expression correlated with histological differentiation (p=0.017), while pyruvate kinase type M2 expression tended to correlate with lymph node metastasis (p=0.051). Glucose transporter 1 expression was strongly related to the standard uptake value (p=0.001), but that of pyruvate kinase type M2 was not (p=0.461). CONCLUSIONS Glucose transporter 1 expression exhibits a strong correlation with 18F-FDG uptake in cholangiocellular carcinoma tissue, while pyruvate kinase type M2 expression was not associated with fluoro-2-deoxy-d-glucose uptake. In addition to its glycolytic function, pyruvate kinase type M2 has a variety of roles and its expression may enhance tumour cell invasion and promote the lymph node metastasis of intrahepatic cholangiocarcinoma.
Collapse
Affiliation(s)
- Hideki Suzuki
- Department of General Surgical Science (Surgery I), Graduate School of Medicine, Gunma University, Japan.
| | - Mina Komuta
- Pathology Service, Saint-Luc University, Belgium
| | - Altan Bolog
- Department of General Surgical Science (Surgery I), Graduate School of Medicine, Gunma University, Japan
| | - Takehiko Yokobori
- Department of General Surgical Science (Surgery I), Graduate School of Medicine, Gunma University, Japan
| | - Satoshi Wada
- Department of General Surgical Science (Surgery I), Graduate School of Medicine, Gunma University, Japan
| | - Kenichiro Araki
- Department of General Surgical Science (Surgery I), Graduate School of Medicine, Gunma University, Japan
| | - Norio Kubo
- Department of General Surgical Science (Surgery I), Graduate School of Medicine, Gunma University, Japan
| | - Akira Watanabe
- Department of General Surgical Science (Surgery I), Graduate School of Medicine, Gunma University, Japan
| | - Mariko Tsukagoshi
- Department of General Surgical Science (Surgery I), Graduate School of Medicine, Gunma University, Japan
| | - Hiroyuki Kuwano
- Department of General Surgical Science (Surgery I), Graduate School of Medicine, Gunma University, Japan
| |
Collapse
|
222
|
Sun JD, Ahluwalia D, Liu Q, Li W, Wang Y, Meng F, Bhupathi D, Matteucci MD, Hart CP. Combination treatment with hypoxia-activated prodrug evofosfamide (TH-302) and mTOR inhibitors results in enhanced antitumor efficacy in preclinical renal cell carcinoma models. Am J Cancer Res 2015; 5:2139-2155. [PMID: 26328245 PMCID: PMC4548326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 06/11/2015] [Indexed: 06/04/2023] Open
Abstract
Tumors often consist of hypoxic regions which are resistant to chemo- and radiotherapy. Evofosfamide (also known as TH-302), a 2-nitroimidazole triggered hypoxia-activated prodrug, preferentially releases the DNA cross-linker bromo-isophosphoramide mustard in hypoxic cells. The intracellular kinase mTOR plays a key role in multiple pathways which are important in cancer progression. Here we investigated the enhanced efficacy profile and possible mechanisms of evofosfamide in combination with mTOR inhibitor (mTORi) everolimus or temsirolimus in renal cell carcinoma (RCC) xenograft models. The antitumor activities of the mTORi everolimus or temsirolimus alone, evofosfamide alone, or the combination were investigated in the 786-O and Caki-1 RCC cells in vitro and in vivo xenograft models. Two schedules were tested in which evofosfamide was started on the same day as the mTORi or 1 week after. Combination mechanisms were investigated by measuring a panel of pharmacodynamic biomarkers by immunohistochemistry. Antitumor efficacy in both RCC xenograft models was enhanced by the combination of evofosfamide and mTORi. Evofosfamide reduced the increased hypoxia induced by mTORi. Combination treatment induced increased DNA damage, decreased cell proliferation, and decreased survivin. Addition of mTORi did not change evofosfamide-mediated cytotoxicity in 786-O or Caki-1 cells in vitro which might suggest cell non-autonomous effects, specifically increased tumor hypoxia, are important for the in vivo combination activity. Taken together, evofosfamide potentiates the antitumor efficacy of mTOR inhibitors and inhibits the increased tumor hypoxia caused by mTOR inhibition. These studies provide a translational rationale for combining evofosfamide with mTOR inhibitors in clinical studies.
Collapse
Affiliation(s)
- Jessica D Sun
- Threshold Pharmaceuticals 170 Harbor Way, Suite 300, South San Francisco, CA 94080, USA
| | - Dharmendra Ahluwalia
- Threshold Pharmaceuticals 170 Harbor Way, Suite 300, South San Francisco, CA 94080, USA
| | - Qian Liu
- Threshold Pharmaceuticals 170 Harbor Way, Suite 300, South San Francisco, CA 94080, USA
| | - Wenwu Li
- Threshold Pharmaceuticals 170 Harbor Way, Suite 300, South San Francisco, CA 94080, USA
| | - Yan Wang
- Threshold Pharmaceuticals 170 Harbor Way, Suite 300, South San Francisco, CA 94080, USA
| | - Fanying Meng
- Threshold Pharmaceuticals 170 Harbor Way, Suite 300, South San Francisco, CA 94080, USA
| | - Deepthi Bhupathi
- Threshold Pharmaceuticals 170 Harbor Way, Suite 300, South San Francisco, CA 94080, USA
| | - Mark D Matteucci
- Threshold Pharmaceuticals 170 Harbor Way, Suite 300, South San Francisco, CA 94080, USA
| | - Charles P Hart
- Threshold Pharmaceuticals 170 Harbor Way, Suite 300, South San Francisco, CA 94080, USA
| |
Collapse
|
223
|
Teng CF, Hsieh WC, Wu HC, Lin YJ, Tsai HW, Huang W, Su IJ. Hepatitis B Virus Pre-S2 Mutant Induces Aerobic Glycolysis through Mammalian Target of Rapamycin Signal Cascade. PLoS One 2015; 10:e0122373. [PMID: 25909713 PMCID: PMC4409318 DOI: 10.1371/journal.pone.0122373] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/13/2015] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) pre-S2 mutant can induce hepatocellular carcinoma (HCC) via the induction of endoplasmic reticulum stress to activate mammalian target of rapamycin (MTOR) signaling. The association of metabolic syndrome with HBV-related HCC raises the possibility that pre-S2 mutant-induced MTOR activation may drive the development of metabolic disorders to promote tumorigenesis in chronic HBV infection. To address this issue, glucose metabolism and gene expression profiles were analyzed in transgenic mice livers harboring pre-S2 mutant and in an in vitro culture system. The pre-S2 mutant transgenic HCCs showed glycogen depletion. The pre-S2 mutant initiated an MTOR-dependent glycolytic pathway, involving the eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1), Yin Yang 1 (YY1), and myelocytomatosis oncogene (MYC) to activate the solute carrier family 2 (facilitated glucose transporter), member 1 (SLC2A1), contributing to aberrant glucose uptake and lactate production at the advanced stage of pre-S2 mutant transgenic tumorigenesis. Such a glycolysis-associated MTOR signal cascade was validated in human HBV-related HCC tissues and shown to mediate the inhibitory effect of a model of combined resveratrol and silymarin product on tumor growth. Our results provide the mechanism of pre-S2 mutant-induced MTOR activation in the metabolic switch in HBV tumorigenesis. Chemoprevention can be designed along this line to prevent HCC development in high-risk HBV carriers.
Collapse
Affiliation(s)
- Chiao-Fang Teng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Wen-Chuan Hsieh
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Han-Chieh Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Yih-Jyh Lin
- Department of Surgery, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Hung-Wen Tsai
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Wenya Huang
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Ih-Jen Su
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
- Department of Surgery, National Cheng Kung University Hospital, Tainan, Taiwan
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
224
|
Ooi AT, Gomperts BN. Molecular Pathways: Targeting Cellular Energy Metabolism in Cancer via Inhibition of SLC2A1 and LDHA. Clin Cancer Res 2015; 21:2440-4. [PMID: 25838393 DOI: 10.1158/1078-0432.ccr-14-1209] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/12/2015] [Indexed: 01/30/2023]
Abstract
Reprogramming of cellular energy metabolism is widely accepted to be one of the main hallmarks of cancer. The aberrant expression pattern of key regulators in the glycolysis pathway in cancer cells corroborates with the hypothesis that most cancer cells utilize aerobic glycolysis as their main ATP production method instead of mitochondrial oxidative phosphorylation. Overexpression of SLC2A1 and LDHA, both important regulators of the glycolysis pathway, was detected in the premalignant lesions and tumors of lung cancer patients, suggesting the involvement of these proteins in early carcinogenesis and tumor progression in cancer. Preclinical studies demonstrated that inhibiting SLC2A1 or LDHA led to diminished tumor growth in vitro and in vivo. SLC2A1 and LDHA inhibitors, when administered in combination with other chemotherapeutic agents, showed synergistic antitumor effects by resensitizing chemoresistant cancer cells to the chemotherapies. These results indicate that disrupting SLC2A1, LDHA, or other regulators in cancer cell energetics is a very promising approach for new targeted therapies.
Collapse
Affiliation(s)
- Aik T Ooi
- Mattel Children's Hospital UCLA, Department of Pediatrics, UCLA, Los Angeles, California
| | - Brigitte N Gomperts
- Mattel Children's Hospital UCLA, Department of Pediatrics, UCLA, Los Angeles, California. Pulmonary Medicine, UCLA, Los Angeles, California. Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California. Eli and Edythe Broad Stem Cell Research Center, UCLA, Los Angeles, California.
| |
Collapse
|
225
|
Xing X, Zhang B, Wang X, Liu F, Shi D, Cheng Y. An "imaging-biopsy" strategy for colorectal tumor reconfirmation by multipurpose paramagnetic quantum dots. Biomaterials 2015; 48:16-25. [PMID: 25701028 DOI: 10.1016/j.biomaterials.2015.01.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 12/27/2022]
Abstract
Glucose transporter1 (Glut1) plays important roles in treatment of colorectal cancer (CRC) involving early-stage diagnosis, subtype, TNM stage, and therapeutic schedule. Currently, in situ marking and tracking of the tumor biomarkers via clinical imaging remains great challenges in early stage CRC diagnosis. In this study, we have developed a unique cell-targeted, paramagnetic-fluorescent double-signal molecular nanoprobe for CRC in vivo magnetic resonance imaging (MRI) diagnosis and subsequent biopsy. The unique molecular nanoprobe is composed of a fluorescent quantum dot (QD) core; a coating layer of paramagnetic DTPA-Gd coupled BSA ((Gd)DTPA∙BSA), and a surface targeting moiety of anti-Glut1 polyclonal antibody. The engineered (Gd)DTPA∙BSA@QDs-PcAb is 35 nm in diameter and colloidally stable under both basic and acidic conditions. It exhibits strong fluorescent intensities and high relaxivity (r1 and r2: 16.561 and 27.702 s(-1) per mM of Gd(3+)). Distribution and expression of Glut1 of CRC cells are investigated by in vitro cellular confocal fluorescent imaging and MR scanning upon treating with the (Gd)DTPA∙BSA@QDs-PcAb nanoprobes. In vivo MRI shows real-time imaging of CRC tumor on nude mice after intravenously injection of the (Gd)DTPA∙BSA@QDs-PcAb nanoprobes. Ex vivo biopsy is subsequently conducted for expression of Glut1 on tumor tissues. These nanoprobes are found biocompatible in vitro and in vivo. (Gd)DTPA∙BSA@QDs-PcAb targeted nanoprobe is shown to be a promising agent for CRC cancer in vivo MRI diagnosis and ex vivo biopsy analysis. The "imaging-biopsy" is a viable strategy for tumor reconfirmation with improved diagnostic accuracy and biopsy in personalized treatment.
Collapse
Affiliation(s)
- Xiaohong Xing
- Department of Radiology of the Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, PR China
| | - Bingbo Zhang
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, PR China.
| | - Xiaohui Wang
- Department of Radiology of the Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, PR China
| | - Fengjun Liu
- Department of Radiology of the Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, PR China
| | - Donglu Shi
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, PR China; The Materials Science and Engineering Program, Dept of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH, 45221-0072, USA
| | - Yingsheng Cheng
- Department of Radiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, 200233, PR China.
| |
Collapse
|
226
|
Guo Y, Zhang Y, Li J, Zhang Y, Lu Y, Jiang X, He X, Ma H, An S, Jiang C. Cell microenvironment-controlled antitumor drug releasing-nanomicelles for GLUT1-targeting hepatocellular carcinoma therapy. ACS APPLIED MATERIALS & INTERFACES 2015; 7:5444-5453. [PMID: 25686400 DOI: 10.1021/am5091462] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In clinical therapy, the poor prognosis of hepatocellular carcinoma (HCC) is mainly attributed to the failure of chemotherapeutical agents to accumulate in tumor as well as their serious systemic toxicity. In this work, we developed actively tumor-targeting trilayer micelles with microenvironment-sensitive cross-links as a novel nanocarrier for HCC therapy. These micelles comprised biodegradable PEG-pLys-pPhe polymers, in which pLys could react with a disulfide-containing agent to form redox-responsive cross-links. In vitro drug release and pharmacokinetics studies showed that these cross-links were stable in physiological condition whereas cleaved once internalized into cells due to the high level of glutathione, resulting in facilitated intracellular doxorubicin release. In addition, dehydroascorbic acid (DHAA) was decorated on the surface of micelles for specific recognition of tumor cells via GLUT1, a member of glucose transporter family overexpressed on hepatocarcinoma cells. Moreover, DHAA exhibited a "one-way" continuous accumulation within tumor cells. Cellular uptake and in vivo imaging studies proved that these micelles had remarkable targeting property toward hepatocarcinoma cells and tumor. Enhanced anti-HCC efficacy of the micelles was also confirmed both in vitro and in vivo. Therefore, this micellar system may be a potential platform of chemotherapeutics delivery for HCC therapy.
Collapse
Affiliation(s)
- Yubo Guo
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Ishijima N, Kanki K, Shimizu H, Shiota G. Activation of AMP-activated protein kinase by retinoic acid sensitizes hepatocellular carcinoma cells to apoptosis induced by sorafenib. Cancer Sci 2015; 106:567-75. [PMID: 25683251 PMCID: PMC4452157 DOI: 10.1111/cas.12633] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 01/12/2015] [Accepted: 02/08/2015] [Indexed: 12/24/2022] Open
Abstract
To improve the outcome of cancer chemotherapy, strategies to enhance the efficacy of anticancer drugs are required. Sorafenib is the only drug to prolong overall survival of the patients with hepatocellular carcinoma (HCC), however, the outcome is still not satisfactory. Retinoids, vitamin A derivatives, have been known to exhibit inhibitory effects on various cancers including HCC. In this study, we investigated the effects of combined treatment using sorafenib and retinoids including all-trans retinoic acid (ATRA), NIK-333, and Am80 on HCC cells. Cell viability assays in six HCC cell lines, HepG2, PLC/PRF/5, HuH6, HLE, HLF, and Hep3B, revealed that 5 and 10 μM ATRA, concentrations that do not exert cytotoxic effects, enhanced the cytotoxicity of sorafenib, being much more effective than NIK-333 and Am80. We found that ATRA induced AMP-activated protein kinase activation, which was followed by reduced intracellular ATP level. Gene expression analysis revealed that ATRA decreased the expression of glycolytic genes such as GLUT-1 and LDHA. In the combination treatment using ATRA and sorafenib, increased apoptosis, followed by the activation of p38 MAPK and JNK, the upregulation and translocation of Bax to mitochondria, and the activation of caspase-3, was observed. Suppression of AMP-activated protein kinase by siRNA restored the viability of the cells treated with ATRA and sorafenib. Our results thus indicate that ATRA is useful for enhancing the cytotoxicity of sorafenib against HCC cells by regulating the energy metabolism of HCC cells.
Collapse
Affiliation(s)
- Naoki Ishijima
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Keita Kanki
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Hiroki Shimizu
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Goshi Shiota
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
228
|
Sakamoto A, Hino S, Nagaoka K, Anan K, Takase R, Matsumori H, Ojima H, Kanai Y, Arita K, Nakao M. Lysine Demethylase LSD1 Coordinates Glycolytic and Mitochondrial Metabolism in Hepatocellular Carcinoma Cells. Cancer Res 2015; 75:1445-56. [PMID: 25649769 DOI: 10.1158/0008-5472.can-14-1560] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 12/22/2014] [Indexed: 11/16/2022]
Abstract
The hallmark of most cancer cells is the metabolic shift from mitochondrial to glycolytic metabolism for adapting to the surrounding environment. Although epigenetic modification is intimately linked to cancer, the molecular mechanism, by which epigenetic factors regulate cancer metabolism, is poorly understood. Here, we show that lysine-specific demethylase-1 (LSD1, KDM1A) has an essential role in maintaining the metabolic shift in human hepatocellular carcinoma cells. Inhibition of LSD1 reduced glucose uptake and glycolytic activity, with a concurrent activation of mitochondrial respiration. These metabolic changes coexisted with the inactivation of the hypoxia-inducible factor HIF1α, resulting in a decreased expression of GLUT1 and glycolytic enzymes. In contrast, during LSD1 inhibition, a set of mitochondrial metabolism genes was activated with the concomitant increase of methylated histone H3 at lysine 4 in the promoter regions. Consistently, both LSD1 and GLUT1 were significantly overexpressed in carcinoma tissues. These findings demonstrate the epigenetic plasticity of cancer cell metabolism, which involves an LSD1-mediated mechanism.
Collapse
Affiliation(s)
- Akihisa Sakamoto
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan Department of Neurosurgery, Faculty of Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Katsuya Nagaoka
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Kotaro Anan
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Ryuta Takase
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Haruka Matsumori
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Hidenori Ojima
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yae Kanai
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kazunori Arita
- Department of Neurosurgery, Faculty of Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan.
| |
Collapse
|
229
|
Ming M, Wang ZG, Li D, Wu F, Liu S, Shi B, Xue W. The applications of corrected standardized uptake values in the diagnosis of peripheral lung lesions. Medicine (Baltimore) 2015; 94:e531. [PMID: 25674754 PMCID: PMC4602734 DOI: 10.1097/md.0000000000000531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fluorine 18-fluorodeoxyglucose positron emission tomography/computed tomography (F-FDG PET/CT) imaging has been widely used to diagnose many types of tumors. However, many factors can affect the accuracy of standardized uptake values (SUVs). In this study, we aimed to explore the applications of corrected SUVs in the diagnosis of peripheral solitary pulmonary lesions.A retrospective study was undertaken in 69 patients with peripheral solitary pulmonary lesions. Whole-body PET/CT was acquired approximately 60 min after F-FDG injection. The lesions were found to be malignant in 57 cases and benign in 12 cases. Of the 69 cases, 68 were correctly diagnosed, and only 1 was misdiagnosed by the corrected SUVs. The diagnostic accuracy rate was 98.5%. The sensitivity, specificity, positive predictive value, and negative predictive value of the corrected SUV were 100%, 91.7%, 98.3%, and 100%, respectively.F-FDG PET/CT with corrected SUVs is of great value for improving diagnostic accuracy in peripheral lung lesions.
Collapse
Affiliation(s)
- Ming Ming
- From the Hospital of Qingdao University, Qingdao, China (MM, ZGW, DL, FY, SL, BS, WX)
| | | | | | | | | | | | | |
Collapse
|
230
|
Wu TT, Zhou SH. Nanoparticle-based targeted therapeutics in head-and-neck cancer. Int J Med Sci 2015; 12:187-200. [PMID: 25589895 PMCID: PMC4293184 DOI: 10.7150/ijms.10083] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 12/30/2014] [Indexed: 12/17/2022] Open
Abstract
Head-and-neck cancer is a major form of the disease worldwide. Treatment consists of surgery, radiation therapy and chemotherapy, but these have not resulted in improved survival rates over the past few decades. Versatile nanoparticles, with selective tumor targeting, are considered to have the potential to improve these poor outcomes. Application of nanoparticle-based targeted therapeutics has extended into many areas, including gene silencing, chemotherapeutic drug delivery, radiosensitization, photothermal therapy, and has shown much promise. In this review, we discuss recent advances in the field of nanoparticle-mediated targeted therapeutics for head-and-neck cancer, with an emphasis on the description of targeting points, including future perspectives.
Collapse
Affiliation(s)
- Ting-Ting Wu
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, China
| | - Shui-Hong Zhou
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, China
| |
Collapse
|
231
|
Song K, Li M, Xu XJ, Xuan L, Huang GN, Song XL, Liu QF. HIF-1α and GLUT1 gene expression is associated with chemoresistance of acute myeloid leukemia. Asian Pac J Cancer Prev 2014; 15:1823-9. [PMID: 24641416 DOI: 10.7314/apjcp.2014.15.4.1823] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
AIMS Much evidence suggests that increased glucose metabolism in tumor cells might contribute to the development of acquired chemoresistance. However, the molecular mechanisms are not fully clear. Therefore, we investigated a possible correlation of mRNA expression of HIF-1α and GLUT1 with chemoresistance in acute myeloid leukemia (AML). METHODS Bone marrow samples were obtained from newly diagnosed and relapsed AML (M3 exclusion) cases. RNA interference with short hairpin RNA (shRNA) was used to stably silence GLUT1 or HIF-1α gene expression in an AML cell line and HIF-1α and GLUT1 mRNA expression was measured by real-time quantitative polymerase chain reaction assay (qPCR). RESULTS High levels of HIF-1α and GLUT1 were associated with poor responsiveness to chemotherapy in AML. Down-regulation of the expression of GLUT1 by RNA interference obviously sensitized drug-resistant HL-60/ADR cells to adriamycin (ADR) in vitro, comparable with RNA interference for the HIF-1α gene. CONCLUSIONS Our data revealed that over-expression of HIF-1α and GLUT1 might play a role in the chemoresistance of AML. GLUT1 might be a potential target to reverse such drug resistance.
Collapse
Affiliation(s)
- Kui Song
- Department of Hematology, Nanfang Hospital of Southern Medical University, Guangzhou, China E-mail :
| | | | | | | | | | | | | |
Collapse
|
232
|
ECM1 promotes the Warburg effect through EGF-mediated activation of PKM2. Cell Signal 2014; 27:228-35. [PMID: 25446258 DOI: 10.1016/j.cellsig.2014.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/24/2014] [Accepted: 11/06/2014] [Indexed: 11/21/2022]
Abstract
The Warburg effect is an oncogenic metabolic switch that allows cancer cells to take up more glucose than normal cells and favors anaerobic glycolysis. Extracellular matrix protein 1 (ECM1) is a secreted glycoprotein that is overexpressed in various types of carcinoma. Using two-dimensional digest-liquid chromatography-mass spectrometry (LC-MS)/MS, we showed that the expression of proteins associated with the Warburg effect was upregulated in trastuzumab-resistant BT-474 cells that overexpressed ECM1 compared to control cells. We further demonstrated that ECM1 induced the expression of genes that promote the Warburg effect, such as glucose transporter 1 (GLUT1), lactate dehydrogenase A (LDHA), and hypoxia-inducible factor 1 α (HIF-1α). The phosphorylation status of pyruvate kinase M2 (PKM-2) at Ser37, which is responsible for the expression of genes that promote the Warburg effect, was affected by the modulation of ECM1 expression. Moreover, EGF-dependent ERK activation that was regulated by ECM1 induced not only PKM2 phosphorylation but also gene expression of GLUT1 and LDHA. These findings provide evidence that ECM1 plays an important role in promoting the Warburg effect mediated by PKM2.
Collapse
|
233
|
Alves VA, Pinheiro C, Morais-Santos F, Felipe-Silva A, Longatto-Filho A, Baltazar F. Characterization of monocarboxylate transporter activity in hepatocellular carcinoma. World J Gastroenterol 2014; 20:11780-11787. [PMID: 25206282 PMCID: PMC4155368 DOI: 10.3748/wjg.v20.i33.11780] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 03/07/2014] [Accepted: 06/17/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To assess the immunoexpression of hypoxia-related markers in samples from cirrhosis and primary and metastatic hepatocellular carcinoma (HCC).
METHODS: From a total of 5836 autopsies performed at the Pathology Department - University of Sao Paulo School of Medicine Hospital - from 2003 to 2009, 188 presented primary liver tumors. Immunohistochemical reactivity for monocarboxylate transporters (MCTs)-1, 2 and 4, CD147 and glucose transporter-1 (GLUT1) was assessed in necropsies from 80 cases of HCC. Data were stored and analyzed using the IBM SPSS statistical software (version 19, IBM Company, Armonk, NY). All comparisons were examined for statistical significance using Pearson’s χ2 test and Fisher’s exact test (when n < 5). The threshold for significant P values was established as P < 0.05.
RESULTS: Plasma membrane expression of MCT4 and overall expression of GLUT1 showed progressively higher expression from non-neoplastic to primary HCC and to metastases. In contrast, overall expression of MCT2 was progressively decreased from non-neoplastic to primary HCC and to metastases. MCT1 (overall and plasma membrane expression), MCT2 and CD147 plasma membrane expression were associated with absence of cirrhosis, while plasma membrane expression of CD147 was also associated with absence of HBV infection. MCT2 overall expression was associated with lower liver weight, absence of metastasis and absence of abdominal dissemination. Additionally, MCT4 plasma membrane positivity was strongly associated with Ki-67 expression.
CONCLUSION: MCT4 and GLUT1 appear to play a role in HCC progression, while MCT2 is lost during progression and associated with better prognosis.
Collapse
|
234
|
Qian Y, Wang X, Chen X. Inhibitors of glucose transport and glycolysis as novel anticancer therapeutics. World J Transl Med 2014; 3:37-57. [DOI: 10.5528/wjtm.v3.i2.37] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/25/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Metabolic reprogramming and altered energetics have become an emerging hallmark of cancer and an active area of basic, translational, and clinical cancer research in the recent decade. Development of effective anticancer therapeutics may depend on improved understanding of the altered cancer metabolism compared to that of normal cells. Changes in glucose transport and glycolysis, which are drastically upregulated in most cancers and termed the Warburg effect, are one of major focuses of this new research area. By taking advantage of the new knowledge and understanding of cancer’s mechanisms, numerous therapeutic agents have been developed to target proteins and enzymes involved in glucose transport and metabolism, with promising results in cancer cells, animal tumor models and even clinical trials. It has also been hypothesized that targeting a pathway or a process, such as glucose transport or glucose metabolism, rather than a specific protein or enzyme in a signaling pathway may be more effective. This is based on the observation that cancer somehow can always bypass the inhibition of a target drug by switching to a redundant or compensatory pathway. In addition, cancer cells have higher dependence on glucose. This review will provide background information on glucose transport and metabolism in cancer, and summarize new therapeutic developments in basic and translational research in these areas, with a focus on glucose transporter inhibitors and glycolysis inhibitors. The daunting challenges facing both basic and clinical researchers of the field are also presented and discussed.
Collapse
|
235
|
Different expression of glucose transporters in the progression of intrahepatic cholangiocarcinoma. Hum Pathol 2014; 45:1610-7. [DOI: 10.1016/j.humpath.2014.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/12/2014] [Accepted: 03/21/2014] [Indexed: 12/22/2022]
|
236
|
Ochi H, Hirooka M, Hiraoka A, Koizumi Y, Abe M, Sogabe I, Ishimaru Y, Furuya K, Miyagawa M, Kawasaki H, Michitaka K, Takada Y, Mochizuki T, Hiasa Y. 18F-FDG-PET/CT predicts the distribution of microsatellite lesions in hepatocellular carcinoma. Mol Clin Oncol 2014; 2:798-804. [PMID: 25054048 DOI: 10.3892/mco.2014.328] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/02/2014] [Indexed: 12/12/2022] Open
Abstract
This study was conducted to investigate whether fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) is useful for predicting the distance of intrahepatic metastases and microvascular invasion from the main tumor and the pattern of postoperative recurrence. A total of 89 consecutive patients who underwent 18F-FDG PET/CT prior to liver resection for hepatocellular carcinoma (HCC) between April, 2006 and December, 2011 were enrolled in this study. The distance between the microsatellite lesion and the main nodule (microsatellite distance) was analyzed and measured pathologically. The correlation between maximal standardized uptake values (SUVmax) and microsatellite distance was analyzed and the independent risk factors for microsatellite distance >1 cm were assessed. The postoperative recurrence patterns were divided into no recurrence, intrahepatic recurrence and extrahepatic recurrence. SUVmax and the distribution of microsatellite lesions were compared among these groups. The postoperative recurrence patterns were also analyzed according to the SUVmax and the microsatellite lesion pattern. SUVmax was found to be significantly correlated with the distance from the microsatellite lesion to the main nodule (r=0.57, P<0.0001). On the multivariate analysis of microsatellite distance >1 cm, the only significant factor was SUVmax [P=0.002; hazard ratio=1.60; 95% confidence interval (CI): 1.23-2.26]. The optimal cutoff value of SUVmax for microsatellite distance >1 cm was 8.8. The mean SUVmax and the microsatellite distance were highest in patients with postoperative extrahepatic metastases (8.6 and 9,160 μm, respectively). In conclusion, the SUVmax of 18F-FDG PET/CT reflects microsatellite distance and the patterns of postoperative recurrence in HCC. Therefore, 18F-FDG PET/CT may be a useful imaging modality for determining the resection margin and the treatment protocol for HCC.
Collapse
Affiliation(s)
- Hironori Ochi
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Masashi Hirooka
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Atsushi Hiraoka
- Department of Gastroenterology, Ehime Prefectural Central Hospital, Matsuyama, Ehime 790-0024, Japan
| | - Yohei Koizumi
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Ichiro Sogabe
- Department of Radiology, Ehime Prefectural Central Hospital, Matsuyama, Ehime 790-0024, Japan
| | - Yoshihiro Ishimaru
- Department of Radiology, Ehime Prefectural Central Hospital, Matsuyama, Ehime 790-0024, Japan
| | - Keizou Furuya
- Department of Pathology, Ehime Prefectural Central Hospital, Matsuyama, Ehime 790-0024, Japan
| | - Masao Miyagawa
- Department of Radiology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Hideki Kawasaki
- Department of Surgery, Ehime Prefectural Central Hospital, Matsuyama, Ehime 790-0024, Japan
| | - Kojiro Michitaka
- Department of Gastroenterology, Ehime Prefectural Central Hospital, Matsuyama, Ehime 790-0024, Japan
| | - Yasutsugu Takada
- Department of Hepatobiliary-Pancreatic Surgery and Transplantation, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Teruhito Mochizuki
- Department of Radiology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| |
Collapse
|
237
|
Malone CF, Fromm JA, Maertens O, DeRaedt T, Ingraham R, Cichowski K. Defining key signaling nodes and therapeutic biomarkers in NF1-mutant cancers. Cancer Discov 2014; 4:1062-73. [PMID: 24913553 DOI: 10.1158/2159-8290.cd-14-0159] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED NF1 encodes a RAS GTPase-activating protein. Accordingly, aberrant RAS activation underlies the pathogenesis of NF1-mutant cancers. Nevertheless, it is unclear which RAS pathway components represent optimal therapeutic targets. Here, we identify mTORC1 as the key PI3K effector in NF1-mutant nervous system malignancies and conversely show that mTORC2 and AKT are dispensable. However, we find that tumor regression requires sustained inhibition of both mTORC1 and MEK. Transcriptional profiling studies were therefore used to establish a signature of effective mTORC1-MEK inhibition in vivo. We unexpectedly found that the glucose transporter GLUT1 was potently suppressed, but only when both pathways were inhibited. Moreover, unlike VHL- and LKB1-mutant cancers, reduction of (18)F-FDG uptake required the suppression of both mTORC1 and MEK. Together, these studies identify optimal and suboptimal therapeutic targets in NF1-mutant malignancies and define a noninvasive means of measuring combined mTORC1-MEK inhibition in vivo, which can be readily incorporated into clinical trials. SIGNIFICANCE This work demonstrates that mTORC1 and MEK are key therapeutic targets in NF1-mutant cancers and establishes a noninvasive biomarker of effective, combined target inhibition that can be evaluated in clinical trials.
Collapse
Affiliation(s)
- Clare F Malone
- Genetics Division, Department of Medicine, Brigham and Women's Hospital; Harvard Medical School; and
| | - Jody A Fromm
- Genetics Division, Department of Medicine, Brigham and Women's Hospital; Harvard Medical School; and
| | - Ophélia Maertens
- Genetics Division, Department of Medicine, Brigham and Women's Hospital; Harvard Medical School; and
| | - Thomas DeRaedt
- Genetics Division, Department of Medicine, Brigham and Women's Hospital; Harvard Medical School; and Ludwig Center at Dana-Farber/Harvard Cancer Center, Boston, Massachusetts
| | - Rachel Ingraham
- Genetics Division, Department of Medicine, Brigham and Women's Hospital; Harvard Medical School; and
| | - Karen Cichowski
- Genetics Division, Department of Medicine, Brigham and Women's Hospital; Harvard Medical School; and Ludwig Center at Dana-Farber/Harvard Cancer Center, Boston, Massachusetts
| |
Collapse
|
238
|
Hu ZY, Xiao L, Bode AM, Dong Z, Cao Y. Glycolytic genes in cancer cells are more than glucose metabolic regulators. J Mol Med (Berl) 2014; 92:837-45. [DOI: 10.1007/s00109-014-1174-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 05/14/2014] [Accepted: 05/20/2014] [Indexed: 12/28/2022]
|
239
|
Deng D, Xu C, Sun P, Wu J, Yan C, Hu M, Yan N. Crystal structure of the human glucose transporter GLUT1. Nature 2014; 510:121-5. [PMID: 24847886 DOI: 10.1038/nature13306] [Citation(s) in RCA: 565] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 04/01/2014] [Indexed: 12/11/2022]
Abstract
The glucose transporter GLUT1 catalyses facilitative diffusion of glucose into erythrocytes and is responsible for glucose supply to the brain and other organs. Dysfunctional mutations may lead to GLUT1 deficiency syndrome, whereas overexpression of GLUT1 is a prognostic indicator for cancer. Despite decades of investigation, the structure of GLUT1 remains unknown. Here we report the crystal structure of human GLUT1 at 3.2 Å resolution. The full-length protein, which has a canonical major facilitator superfamily fold, is captured in an inward-open conformation. This structure allows accurate mapping and potential mechanistic interpretation of disease-associated mutations in GLUT1. Structure-based analysis of these mutations provides an insight into the alternating access mechanism of GLUT1 and other members of the sugar porter subfamily. Structural comparison of the uniporter GLUT1 with its bacterial homologue XylE, a proton-coupled xylose symporter, allows examination of the transport mechanisms of both passive facilitators and active transporters.
Collapse
Affiliation(s)
- Dong Deng
- 1] State Key Laboratory of Bio-membrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [3] Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China [4]
| | - Chao Xu
- 1] State Key Laboratory of Bio-membrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [3] Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China [4]
| | - Pengcheng Sun
- 1] State Key Laboratory of Bio-membrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [3]
| | - Jianping Wu
- 1] State Key Laboratory of Bio-membrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [3] Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China [4]
| | - Chuangye Yan
- 1] State Key Laboratory of Bio-membrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Mingxu Hu
- 1] State Key Laboratory of Bio-membrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [3] Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Nieng Yan
- 1] State Key Laboratory of Bio-membrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China [2] Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China [3] Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
240
|
Girgis H, Masui O, White NM, Scorilas A, Rotondo F, Seivwright A, Gabril M, Filter ER, Girgis AH, Bjarnason GA, Jewett MA, Evans A, Al-Haddad S, Siu KM, Yousef GM. Lactate dehydrogenase A is a potential prognostic marker in clear cell renal cell carcinoma. Mol Cancer 2014; 13:101. [PMID: 24885701 PMCID: PMC4022787 DOI: 10.1186/1476-4598-13-101] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/22/2014] [Indexed: 12/17/2022] Open
Abstract
Background Over 90% of cancer-related deaths in clear cell renal cell carcinoma (RCC) are caused by tumor relapse and metastasis. Thus, there is an urgent need for new molecular markers that can potentiate the efficacy of the current clinical-based models of prognosis assessment. The objective of this study is to evaluate the potential significance of lactate dehydrogenase A (LDHA), assessed by immunohistochemical staining, as a prognostic marker in clear cell renal cell carcinoma in relation to clinicopathological features and clinical outcome. Methods We assessed the expression of LDHA at the protein level, by immunohistochemistry, and correlated its expression with multiple clinicopathological features including tumor size, clinical stage, histological grade, disease-free and overall survival in 385 patients with primary clear cell renal cell carcinoma. We also correlated the LDHA expression with overall survival, at mRNA level, in an independent data set of 170 clear cell renal cell carcinoma cases from The Cancer Genome Atlas databases. Cox proportional hazards models adjusted for the potential clinicopathological factors were used to test for associations between the LDHA expression and both disease-free survival and overall survival. Results There is statistically significant positive correlation between LDHA level of expression and tumor size, clinical stage and histological grade. Moreover, LDHA expression shows significantly inverse correlation with both disease-free survival and overall survival in patients with clear cell renal cell carcinoma. Our results are validated by examining LDHA expression, at the mRNA level, in the independent data set of clear cell renal cell carcinoma cases from The Cancer Genome Atlas databases which also shows that higher lactate dehydrogenase A expression is associated with significantly shorter overall survival. Conclusion Our results indicate that LDHA up-regulation can be a predictor of poor prognosis in clear cell renal cell carcinoma. Thus, it represents a potential prognostic biomarker that can boost the accuracy of other prognostic models in patients with clear cell renal cell carcinoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - George M Yousef
- The Keenan Research Center in the Li Ka Shing Knowledge Institute, St, Michael's Hospital, Toronto M5B 1 W8, Canada.
| |
Collapse
|
241
|
Ooi AT, Gower AC, Zhang KX, Vick JL, Hong L, Nagao B, Wallace WD, Elashoff DA, Walser TC, Dubinett SM, Pellegrini M, Lenburg ME, Spira A, Gomperts BN. Molecular profiling of premalignant lesions in lung squamous cell carcinomas identifies mechanisms involved in stepwise carcinogenesis. Cancer Prev Res (Phila) 2014; 7:487-95. [PMID: 24618292 DOI: 10.1158/1940-6207.capr-13-0372] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lung squamous cell carcinoma (SCC) is thought to arise from premalignant lesions in the airway epithelium; therefore, studying these lesions is critical for understanding lung carcinogenesis. Previous microarray and sequencing studies designed to discover early biomarkers and therapeutic targets for lung SCC had limited success identifying key driver events in lung carcinogenesis, mostly due to the cellular heterogeneity of patient samples examined and the interindividual variability associated with difficult to obtain airway premalignant lesions and appropriate normal control samples within the same patient. We performed RNA sequencing on laser-microdissected representative cell populations along the SCC pathologic continuum of patient-matched normal basal cells, premalignant lesions, and tumor cells. We discovered transcriptomic changes and identified genomic pathways altered with initiation and progression of SCC within individual patients. We used immunofluorescent staining to confirm gene expression changes in premalignant lesions and tumor cells, including increased expression of SLC2A1, CEACAM5, and PTBP3 at the protein level and increased activation of MYC via nuclear translocation. Cytoband enrichment analysis revealed coordinated loss and gain of expression in chromosome 3p and 3q regions, respectively, during carcinogenesis. This is the first gene expression profiling study of airway premalignant lesions with patient-matched SCC tumor samples. Our results provide much needed information about the biology of premalignant lesions and the molecular changes that occur during stepwise carcinogenesis of SCC, and it highlights a novel approach for identifying some of the earliest molecular changes associated with initiation and progression of lung carcinogenesis within individual patients.
Collapse
Affiliation(s)
- Aik T Ooi
- Mattel Children's Hospital, University of California, Los Angeles, 10833 Le Conte Avenue A2-410MDCC, Los Angeles, CA 90095.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Valletta D, Czech B, Spruss T, Ikenberg K, Wild P, Hartmann A, Weiss TS, Oefner PJ, Müller M, Bosserhoff AK, Hellerbrand C. Regulation and function of the atypical cadherin FAT1 in hepatocellular carcinoma. Carcinogenesis 2014; 35:1407-15. [DOI: 10.1093/carcin/bgu054] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
243
|
Tanaka M, Kataoka H, Yano S, Ohi H, Moriwaki K, Akashi H, Taguchi T, Hayashi N, Hamano S, Mori Y, Kubota E, Tanida S, Joh T. Antitumor Effects in Gastrointestinal Stromal Tumors Using Photodynamic Therapy with a Novel Glucose-Conjugated Chlorin. Mol Cancer Ther 2014; 13:767-75. [DOI: 10.1158/1535-7163.mct-13-0393] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
244
|
Marín-Hernández A, López-Ramírez SY, Gallardo-Pérez JC, Rodríguez-Enríquez S, Moreno-Sánchez R, Saavedra E. Systems Biology Approaches to Cancer Energy Metabolism. SYSTEMS BIOLOGY OF METABOLIC AND SIGNALING NETWORKS 2014. [DOI: 10.1007/978-3-642-38505-6_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
245
|
Expression and function of methylthioadenosine phosphorylase in chronic liver disease. PLoS One 2013; 8:e80703. [PMID: 24324622 PMCID: PMC3855635 DOI: 10.1371/journal.pone.0080703] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 10/07/2013] [Indexed: 12/21/2022] Open
Abstract
To study expression and function of methylthioadenosine phosphorylase (MTAP), the rate-limiting enzyme in the methionine and adenine salvage pathway, in chronic liver disease.
Collapse
|
246
|
Zhang D, Wang Y, Dong L, Huang Y, Yuan J, Ben W, Yang Y, Ning N, Lu M, Guan Y. Therapeutic role of EF24 targeting glucose transporter 1-mediated metabolism and metastasis in ovarian cancer cells. Cancer Sci 2013; 104:1690-6. [PMID: 24112101 DOI: 10.1111/cas.12293] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 01/04/2023] Open
Abstract
Cancer cells require glucose to support their rapid growth through a process known as aerobic glycolysis, or the Warburg effect. As in ovarian cancer cells, increased metabolic activity and glucose concentration has been linked to aggressiveness of cancer. However, it is unclear as to whether targeting the glycolytic pathway may kill the malignant cells and likely have broad therapeutic implications against ovarian cancer metastasis. In the present research, we found that EF24, a HIF-1α inhibitor, could significantly block glucose uptake, the rate of glycolysis, and lactate production compared with vehicle treatment in SKOV-3, A2780 and OVCAR-3 cells. These results might possibly contribute to the further observation that EF24 could inhibit ovarian cancer cell migration and invasion from wound healing and Transwell assays. Furthermore, as an important mediator of glucose metabolism, glucose transporter 1 (Glut1) was found to contribute to the function of EF24 in both energy metabolism and metastasis. To examine the effect of EF24 and the mediated role of Glut1 in vivo in a xenograph subcutaneous tumor model, intraperitoneal metastasis and lung metastasis model were introduced. Our results indicated that EF24 treatment could inhibit tumor growth, intraperitoneal metastasis and lung metastasis of SKOV-3 cells, and Glut1 is a possible mediator for the role of EF24. In conclusion, our results highlight that an anti-cancer reagent with an inhibiting effect on energy metabolism could inhibit metastasis, and EF24 is a possible candidate for anti-metastasis therapeutic applications for ovarian cancer.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Böttger J, Braeuning A, Budinsky RA, Burkhardt B, Cameron NR, Camussi G, Cho CS, Choi YJ, Craig Rowlands J, Dahmen U, Damm G, Dirsch O, Donato MT, Dong J, Dooley S, Drasdo D, Eakins R, Ferreira KS, Fonsato V, Fraczek J, Gebhardt R, Gibson A, Glanemann M, Goldring CEP, Gómez-Lechón MJ, Groothuis GMM, Gustavsson L, Guyot C, Hallifax D, Hammad S, Hayward A, Häussinger D, Hellerbrand C, Hewitt P, Hoehme S, Holzhütter HG, Houston JB, Hrach J, Ito K, Jaeschke H, Keitel V, Kelm JM, Kevin Park B, Kordes C, Kullak-Ublick GA, LeCluyse EL, Lu P, Luebke-Wheeler J, Lutz A, Maltman DJ, Matz-Soja M, McMullen P, Merfort I, Messner S, Meyer C, Mwinyi J, Naisbitt DJ, Nussler AK, Olinga P, Pampaloni F, Pi J, Pluta L, Przyborski SA, Ramachandran A, Rogiers V, Rowe C, Schelcher C, Schmich K, Schwarz M, Singh B, Stelzer EHK, Stieger B, Stöber R, Sugiyama Y, Tetta C, Thasler WE, Vanhaecke T, Vinken M, Weiss TS, Widera A, Woods CG, Xu JJ, Yarborough KM, Hengstler JG. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 2013; 87:1315-1530. [PMID: 23974980 PMCID: PMC3753504 DOI: 10.1007/s00204-013-1078-5] [Citation(s) in RCA: 967] [Impact Index Per Article: 80.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 12/15/2022]
Abstract
This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in up- and downregulation of hundreds of genes. An understanding of these changes is crucial for a correct interpretation of in vitro data. The possibilities and limitations of the most useful liver in vitro systems are summarized, including three-dimensional culture techniques, co-cultures with non-parenchymal cells, hepatospheres, precision cut liver slices and the isolated perfused liver. Also discussed is how closely hepatoma, stem cell and iPS cell-derived hepatocyte-like-cells resemble real hepatocytes. Finally, a summary is given of the state of the art of liver in vitro and mathematical modeling systems that are currently used in the pharmaceutical industry with an emphasis on drug metabolism, prediction of clearance, drug interaction, transporter studies and hepatotoxicity. One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation. Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.
Collapse
Affiliation(s)
- Patricio Godoy
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | | | - Ute Albrecht
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Melvin E. Andersen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Nariman Ansari
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Sudin Bhattacharya
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Johannes Georg Bode
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Jennifer Bolleyn
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Jan Böttger
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Albert Braeuning
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Robert A. Budinsky
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Britta Burkhardt
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Neil R. Cameron
- Department of Chemistry, Durham University, Durham, DH1 3LE UK
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - J. Craig Rowlands
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General Visceral, and Vascular Surgery, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - Georg Damm
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Olaf Dirsch
- Institute of Pathology, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - María Teresa Donato
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Jian Dong
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dirk Drasdo
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
- INRIA (French National Institute for Research in Computer Science and Control), Domaine de Voluceau-Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France
- UPMC University of Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, 4, pl. Jussieu, 75252 Paris cedex 05, France
| | - Rowena Eakins
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Karine Sá Ferreira
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
- GRK 1104 From Cells to Organs, Molecular Mechanisms of Organogenesis, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Valentina Fonsato
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Joanna Fraczek
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Andrew Gibson
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Matthias Glanemann
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Chris E. P. Goldring
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - María José Gómez-Lechón
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
| | - Geny M. M. Groothuis
- Department of Pharmacy, Pharmacokinetics Toxicology and Targeting, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lena Gustavsson
- Department of Laboratory Medicine (Malmö), Center for Molecular Pathology, Lund University, Jan Waldenströms gata 59, 205 02 Malmö, Sweden
| | - Christelle Guyot
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - David Hallifax
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Seddik Hammad
- Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Adam Hayward
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Claus Hellerbrand
- Department of Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany
| | | | - Stefan Hoehme
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
| | - Hermann-Georg Holzhütter
- Institut für Biochemie Abteilung Mathematische Systembiochemie, Universitätsmedizin Berlin (Charité), Charitéplatz 1, 10117 Berlin, Germany
| | - J. Brian Houston
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | | | - Kiyomi Ito
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585 Japan
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | - B. Kevin Park
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Claus Kordes
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Gerd A. Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Edward L. LeCluyse
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Peng Lu
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | - Anna Lutz
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Daniel J. Maltman
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
| | - Madlen Matz-Soja
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Patrick McMullen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | | | - Christoph Meyer
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jessica Mwinyi
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Dean J. Naisbitt
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andreas K. Nussler
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Francesco Pampaloni
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Jingbo Pi
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Linda Pluta
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Stefan A. Przyborski
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Vera Rogiers
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Cliff Rowe
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Celine Schelcher
- Department of Surgery, Liver Regeneration, Core Facility, Human in Vitro Models of the Liver, Ludwig Maximilians University of Munich, Munich, Germany
| | - Kathrin Schmich
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Michael Schwarz
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Bijay Singh
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Ernst H. K. Stelzer
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Regina Stöber
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama Biopharmaceutical R&D Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Ciro Tetta
- Fresenius Medical Care, Bad Homburg, Germany
| | - Wolfgang E. Thasler
- Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich, Germany
| | - Tamara Vanhaecke
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mathieu Vinken
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Thomas S. Weiss
- Department of Pediatrics and Juvenile Medicine, University of Regensburg Hospital, Regensburg, Germany
| | - Agata Widera
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Courtney G. Woods
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | | | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| |
Collapse
|
248
|
Song MJ, Bae SH, Lee SW, Song DS, Kim HY, Yoo IR, Choi JI, Lee YJ, Chun HJ, Lee HG, Choi JY, Yoon SK. 18F-fluorodeoxyglucose PET/CT predicts tumour progression after transarterial chemoembolization in hepatocellular carcinoma. Eur J Nucl Med Mol Imaging 2013; 40:865-873. [PMID: 23436073 DOI: 10.1007/s00259-013-2366-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/04/2013] [Indexed: 12/11/2022]
Abstract
PURPOSE (18)F-FDG PET monitoring of FDG uptake may be a useful tool for assessment of the biological behaviour of hepatocellular carcinoma (HCC). We evaluated the correlation between FDG uptake on (18)F-FDG PET and clinical characteristics and prognosis. METHODS In total, 58 HCC patients undergoing (18)F-FDG PET before transarterial chemoembolization (TACE) between May 2007 and May 2010 at Seoul St. Mary's Hospital were evaluated retrospectively. The predictive value of the ratio of maximal tumour standardized uptake value (SUV) to mean liver SUV (T(SUVmax)/L(SUVmean)) was tested. Primary endpoints were the clinical characteristics and treatment response according to T(SUVmax)/L(SUVmean). The secondary endpoint was time to progression (TTP). RESULTS A high SUV ratio (cutoff value 1.70) correlated significantly with tumour size (≥5 cm) and serum AFP level (≥400 ng/mL). Objective response rates were significantly different between those with a ratio above (15.7 %) and those with a ratio below (66.6 %) the cutoff value (P = 0.023). Patients in the low SUV ratio group had a median TTP of 16.8 months compared with 8.1 months in the high SUV ratio group (P = 0.011). Overall survival in the high SUV ratio group was worse than in the low SUV ratio group (median 56.5 vs. 23.3 months), although the difference was not statistically significant in a multivariate analysis. CONCLUSION Tumour metabolic activity (T(SUVmax)/L(SUVmean)), assessed by PET/CT, is an independent predictor of response to TACE in patients with intermediate-stage HCC. T(SUVmax)/L(SUVmean) can be used to predict tumour progression. Thus, (18)F-FDG PET can provide valuable information for prediction of prognosis and aid in decisions regarding treatment strategy.
Collapse
Affiliation(s)
- Myeong Jun Song
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Ribback S, Calvisi DF, Cigliano A, Sailer V, Peters M, Rausch J, Heidecke CD, Birth M, Dombrowski F. Molecular and metabolic changes in human liver clear cell foci resemble the alterations occurring in rat hepatocarcinogenesis. J Hepatol 2013; 58:1147-56. [PMID: 23348238 DOI: 10.1016/j.jhep.2013.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 12/24/2012] [Accepted: 01/09/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Activation of the AKT/mTOR and Ras/MAPK pathways and the lipogenic phenotype occurs in both a rat model of insulin-induced hepatocarcinogenesis and in human hepatocellular carcinoma (HCC). In the rat model, activation of these pathways is evident within the earliest morphologic detectable alterations, i.e., clear cell foci (CCF) of altered hepatocytes. CCF have also been described in the human liver, but molecular and metabolic alterations within these foci remain to be determined. METHODS A collection of human liver specimens was examined using electron microscopy, histology, enzyme- and immunohistochemistry, and molecular analysis. Human data were compared to rat preneoplastic CCF and HCC induced by N-nitrosomorpholine administration. RESULTS CCF occurred in ∼33% of extrafocal tissues of human non-cirrhotic livers. Electron microscopy showed massive glycogen storage within CCF, largely due to the reduced activity of the glycogenolytic enzyme glucose-6-phosphatase. Hepatocytes in CCF overexpressed the insulin receptor and glucose transporter proteins. AKT/mTOR and Ras/MAPK pathways as well as enzymes of glycolysis, de novo lipogenesis, beta-oxidation, and cholesterol synthesis were upregulated, both in human CCF, and in CCF and HCC of N-nitrosomorpholine-treated rats. The Ki-67 proliferation index was 2-fold higher in human CCF than in extrafocal tissue. CONCLUSIONS The high degree of similarity between human CCF and pre-neoplastic lesions from experimental models of hepatocarcinogenesis in terms of morphologic, molecular and metabolic features suggests a low-grade dysplastic nature of these lesions in human non-cirrhotic livers.
Collapse
Affiliation(s)
- Silvia Ribback
- Institut für Pathologie, Universitätsmedizin Greifswald, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Szablewski L. Expression of glucose transporters in cancers. Biochim Biophys Acta Rev Cancer 2013; 1835:164-9. [DOI: 10.1016/j.bbcan.2012.12.004] [Citation(s) in RCA: 253] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/09/2012] [Accepted: 12/10/2012] [Indexed: 12/12/2022]
|