201
|
Harden SW, Frazier CJ. Oxytocin depolarizes fast-spiking hilar interneurons and induces GABA release onto mossy cells of the rat dentate gyrus. Hippocampus 2016; 26:1124-39. [PMID: 27068005 DOI: 10.1002/hipo.22595] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2016] [Indexed: 12/28/2022]
Abstract
Delivery of exogenous oxytocin (OXT) to central oxytocin receptors (OXT-Rs) is currently being investigated as a potential treatment for conditions such as post-traumatic stress disorder (PTSD), depression, social anxiety, and autism spectrum disorder (ASD). Despite significant research implicating central OXT signaling in modulation of mood, affect, social behavior, and stress response, relatively little is known about the cellular and synaptic mechanisms underlying these complex actions, particularly in brain regions which express the OXT-R but lie outside of the hypothalamus (where OXT-synthesizing neurons reside). We report that bath application of low concentrations of the selective OXT-R agonist Thr4,Gly7-OXT (TGOT) reliably and robustly drives GABA release in the dentate gyrus in an action potential dependent manner. Additional experiments led to identification of a small subset of small hilar interneurons that are directly depolarized by acute application of TGOT. From a physiological perspective, TGOT-responsive hilar interneurons have high input resistance, rapid repolarization velocity during an action potential, and a robust afterhyperpolarization. Further, they fire irregularly (or stutter) in response to moderate depolarization, and fire quickly with minimal spike frequency accommodation in response to large current injections. From an anatomical perspective, TGOT responsive hilar interneurons have dense axonal arborizations in the hilus that were found in close proximity with mossy cell somata and/or proximal dendrites, and also invade the granule cell layer. Further, they have primary dendrites that always extend into the granule cell layer, and sometimes have clear arborizations in the molecular layer. Overall, these data reveal a novel site of action for OXT in an important limbic circuit, and represent a significant step towards better understanding how endogenous OXT may modulate flow of information in hippocampal networks. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Scott W Harden
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida.,Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida
| | - Charles J Frazier
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida.,Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida
| |
Collapse
|
202
|
Hegeman DJ, Hong ES, Hernández VM, Chan CS. The external globus pallidus: progress and perspectives. Eur J Neurosci 2016; 43:1239-65. [PMID: 26841063 PMCID: PMC4874844 DOI: 10.1111/ejn.13196] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 12/12/2022]
Abstract
The external globus pallidus (GPe) of the basal ganglia is in a unique and powerful position to influence processing of motor information by virtue of its widespread projections to all basal ganglia nuclei. Despite the clinical importance of the GPe in common motor disorders such as Parkinson's disease, there is only limited information about its cellular composition and organizational principles. In this review, recent advances in the understanding of the diversity in the molecular profile, anatomy, physiology and corresponding behaviour during movement of GPe neurons are described. Importantly, this study attempts to build consensus and highlight commonalities of the cellular classification based on existing but contentious literature. Additionally, an analysis of the literature concerning the intricate reciprocal loops formed between the GPe and major synaptic partners, including both the striatum and the subthalamic nucleus, is provided. In conclusion, the GPe has emerged as a crucial node in the basal ganglia macrocircuit. While subtleties in the cellular makeup and synaptic connection of the GPe create new challenges, modern research tools have shown promise in untangling such complexity, and will provide better understanding of the roles of the GPe in encoding movements and their associated pathologies.
Collapse
Affiliation(s)
- Daniel J Hegeman
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ellie S Hong
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Vivian M Hernández
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - C Savio Chan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
203
|
Elghaba R, Vautrelle N, Bracci E. Mutual Control of Cholinergic and Low-Threshold Spike Interneurons in the Striatum. Front Cell Neurosci 2016; 10:111. [PMID: 27199665 PMCID: PMC4850159 DOI: 10.3389/fncel.2016.00111] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/18/2016] [Indexed: 01/05/2023] Open
Abstract
The striatum is the largest nucleus of the basal ganglia and is crucially involved in action selection and reward processing. Cortical and thalamic inputs to the striatum are processed by local networks in which several classes of interneurons play an important, but still poorly understood role. Here we investigated the interactions between cholinergic and low-threshold spike (LTS) interneurons. LTS interneurons were hyperpolarized by co-application of muscarinic and nicotinic receptor antagonists (atropine and mecamylamine, respectively). Mecamylamine alone also caused hyperpolarizations, while atropine alone caused depolarizations and increased firing. LTS interneurons were also under control of tonic GABA, as application of the GABAA receptor antagonist picrotoxin caused depolarizations and increased firing. Frequency of spontaneous GABAergic events in LTS interneurons was increased by co-application of atropine and mecamylamine or by atropine alone, but reduced by mecamylamine alone. In the presence of picrotoxin and tetrodotoxin (TTX), atropine and mecamylamine depolarized the LTS interneurons. We concluded that part of the excitatory effects of tonic acetylcholine (ACh) on LTS interneurons were due to cholinergic modulation of tonic GABA. We then studied the influence of LTS interneurons on cholinergic interneurons. Application of antagonists of somatostatin or neuropeptide Y (NPY) receptors or of an inhibitor of nitric oxide synthase (L-NAME) did not cause detectable effects in cholinergic interneurons. However, prolonged synchronized depolarizations of LTS interneurons (elicited with optogenetics tools) caused slow-onset depolarizations in cholinergic interneurons, which were often accompanied by strong action potential firing and were fully abolished by L-NAME. Thus, a mutual excitatory influence exists between LTS and cholinergic interneurons in the striatum, providing an opportunity for sustained activation of the two cell types. This activation may endow the striatal microcircuits with the ability to enter a high ACh/high nitric oxide regime when adequately triggered by external excitatory stimuli to these interneurons.
Collapse
Affiliation(s)
- Rasha Elghaba
- Department of Psychology, The University of Sheffield Sheffield, UK
| | | | - Enrico Bracci
- Department of Psychology, The University of Sheffield Sheffield, UK
| |
Collapse
|
204
|
Liput DJ, Lu VB, Davis MI, Puhl HL, Ikeda SR. Rem2, a member of the RGK family of small GTPases, is enriched in nuclei of the basal ganglia. Sci Rep 2016; 6:25137. [PMID: 27118437 PMCID: PMC4846870 DOI: 10.1038/srep25137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/11/2016] [Indexed: 11/09/2022] Open
Abstract
Rem2 is a member of the RGK subfamily of RAS small GTPases. Rem2 inhibits high voltage activated calcium channels, is involved in synaptogenesis, and regulates dendritic morphology. Rem2 is the primary RGK protein expressed in the nervous system, but to date, the precise expression patterns of this protein are unknown. In this study, we characterized Rem2 expression in the mouse nervous system. In the CNS, Rem2 mRNA was detected in all regions examined, but was enriched in the striatum. An antibody specific for Rem2 was validated using a Rem2 knockout mouse model and used to show abundant expression in striatonigral and striatopallidal medium spiny neurons but not in several interneuron populations. In the PNS, Rem2 was abundant in a subpopulation of neurons in the trigeminal and dorsal root ganglia, but was absent in sympathetic neurons of superior cervical ganglia. Under basal conditions, Rem2 was subject to post-translational phosphorylation, likely at multiple residues. Further, Rem2 mRNA and protein expression peaked at postnatal week two, which corresponds to the period of robust neuronal maturation in rodents. This study will be useful for elucidating the functions of Rem2 in basal ganglia physiology.
Collapse
Affiliation(s)
- Daniel J. Liput
- Laboratories of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, 20892-9411, USA
| | - Van B. Lu
- Laboratories of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, 20892-9411, USA
| | - Margaret I. Davis
- Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, 20892-9411, USA
| | - Henry L. Puhl
- Laboratories of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, 20892-9411, USA
| | - Stephen R. Ikeda
- Laboratories of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, 20892-9411, USA
| |
Collapse
|
205
|
Surface expression of GABAA receptors in the rat nucleus accumbens is increased in early but not late withdrawal from extended-access cocaine self-administration. Brain Res 2016; 1642:336-343. [PMID: 27060767 DOI: 10.1016/j.brainres.2016.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 02/08/2023]
Abstract
It is well established that cocaine-induced changes in glutamate receptor expression in the nucleus accumbens (NAc) play a significant role in animal models of cocaine addiction. Far less is known about cocaine-induced changes in GABA transmission, despite its importance in regulating NAc output via local interneurons and medium spiny neuron (MSN) axon collaterals (GABA 'microcircuit'). Here we investigated whether GABAA receptor surface or total expression is altered following an extended-access cocaine self-administration regimen that produces a time-dependent intensification (incubation) of cue-induced cocaine craving in association with strengthening of AMPA receptor (AMPAR) transmission onto MSN. Rats self-administered cocaine or saline (control condition) 6h/day for 10 days. NAc tissue was obtained and surface proteins biotinylated on three withdrawal days (WD) chosen to span incubation of craving and associated AMPAR plasticity: WD2, WD25 and WD48. Immunoblotting was used to measure total and surface expression of three GABAA receptor subunits (α1, α2, and α4) that are strongly expressed in the NAc. We found a transient increase in surface, but not total, expression of the α2 subunit on WD2 from cocaine self-administration, an effect that was no longer observed by WD25. The expression of α1 and α4 subunits was not altered at these withdrawal times. On WD48, when AMPAR transmission is significantly potentiated, we did not find any alteration in GABAA receptor surface or total expression. Our findings suggest that the strengthening of AMPAR-mediated glutamate transmission in the NAc is not accompanied by compensatory strengthening of GABAergic transmission through insertion of additional GABAA receptors.
Collapse
|
206
|
|
207
|
Boehlen A, Heinemann U, Henneberger C. Hierarchical spike clustering analysis for investigation of interneuron heterogeneity. Neurosci Lett 2016; 619:86-91. [PMID: 26987719 DOI: 10.1016/j.neulet.2016.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/02/2016] [Accepted: 03/11/2016] [Indexed: 11/18/2022]
Abstract
Action potentials represent the output of a neuron. Especially interneurons display a variety of discharge patterns ranging from regular action potential firing to prominent spike clustering or stuttering. The mechanisms underlying this heterogeneity remain incompletely understood. We established hierarchical cluster analysis of spike trains as a measure of spike clustering. A clustering index was calculated from action potential trains recorded in the whole-cell patch clamp configuration from hippocampal (CA1, stratum radiatum) and entorhinal (medial entorhinal cortex, layer 2) interneurons in acute slices and simulated data. Prominent, region-dependent, but also variable spike clustering was detected using this measure. Further analysis revealed a strong positive correlation between spike clustering and membrane potentials oscillations but an inverse correlation with neuronal resonance. Furthermore, clustering was more pronounced when the balance between fast-activating K(+) currents, assessed by the spike repolarisation time, and hyperpolarization-activated currents, gauged by the size of the sag potential, was shifted in favour of fast K(+) currents. Simulations of spike clustering confirmed that variable ratios of fast K(+) and hyperpolarization-activated currents could underlie different degrees of spike clustering and could thus be crucial for temporally structuring interneuron spike output.
Collapse
Affiliation(s)
- Anne Boehlen
- Institute of Neurophysiology, Charité, Berlin, Germany; Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany.
| | - Uwe Heinemann
- Institute of Neurophysiology, Charité, Berlin, Germany; Excellence Cluster NeuroCure, Berlin, Germany
| | - Christian Henneberger
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
208
|
Xu M, Li L, Pittenger C. Ablation of fast-spiking interneurons in the dorsal striatum, recapitulating abnormalities seen post-mortem in Tourette syndrome, produces anxiety and elevated grooming. Neuroscience 2016; 324:321-9. [PMID: 26968763 DOI: 10.1016/j.neuroscience.2016.02.074] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/24/2016] [Accepted: 02/29/2016] [Indexed: 02/02/2023]
Abstract
Tic disorders, including Tourette syndrome (TS), are thought to involve pathology of cortico-basal ganglia loops, but their pathology is not well understood. Post-mortem studies have shown a reduced number of several populations of striatal interneurons, including the parvalbumin-expressing fast-spiking interneurons (FSIs), in individuals with severe, refractory TS. We tested the causal role of this interneuronal deficit by recapitulating it in an otherwise normal adult mouse using a combination transgenic-viral cell ablation approach. FSIs were reduced bilaterally by ∼40%, paralleling the deficit found post-mortem. This did not produce spontaneous stereotypies or tic-like movements, but there was increased stereotypic grooming after acute stress in two validated paradigms. Stereotypy after amphetamine, in contrast, was not elevated. FSI ablation also led to increased anxiety-like behavior in the elevated plus maze, but not to alterations in motor learning on the rotorod or to alterations in prepulse inhibition, a measure of sensorimotor gating. These findings indicate that a striatal FSI deficit can produce stress-triggered repetitive movements and anxiety. These repetitive movements may recapitulate aspects of the pathophysiology of tic disorders.
Collapse
Affiliation(s)
- M Xu
- Department of Psychiatry, Yale University, New Haven, CT, United States
| | - L Li
- Department of Psychiatry, Yale University, New Haven, CT, United States
| | - C Pittenger
- Department of Psychiatry, Yale University, New Haven, CT, United States; Department of Psychology, Yale University, New Haven, CT, United States; Child Study Center, Yale University, New Haven, CT, United States; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States.
| |
Collapse
|
209
|
|
210
|
Ai Z, Xiang Z, Li Y, Liu G, Wang H, Zheng Y, Qiu X, Zhao S, Zhu X, Li Y, Ji W, Li T. Conversion of monkey fibroblasts to transplantable telencephalic neuroepithelial stem cells. Biomaterials 2016; 77:53-65. [DOI: 10.1016/j.biomaterials.2015.10.079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/27/2015] [Accepted: 10/29/2015] [Indexed: 12/11/2022]
|
211
|
Schwab DJ, Houk JC. Presynaptic Inhibition in the Striatum of the Basal Ganglia Improves Pattern Classification and Thus Promotes Superior Goal Selection. Front Syst Neurosci 2015; 9:152. [PMID: 26696840 PMCID: PMC4678214 DOI: 10.3389/fnsys.2015.00152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/23/2015] [Indexed: 11/13/2022] Open
Abstract
This review article takes a multidisciplinary approach to understand how presynaptic inhibition in the striatum of the basal ganglia (BG) contributes to pattern classification and the selection of goals that control behavior. It is a difficult problem both because it is multidimensional and because it is has complex system dynamics. We focus on the striatum because, as the main site for input to the BG, it gets to decide what goals are important to consider.
Collapse
Affiliation(s)
- David J Schwab
- Department of Physics and Astronomy, Northwestern University Evanston, IL, USA
| | - James C Houk
- Department of Physiology, Northwestern University Chicago, IL, USA
| |
Collapse
|
212
|
Kleene R, Chaudhary H, Karl N, Katic J, Kotarska A, Guitart K, Loers G, Schachner M. Interaction between CHL1 and serotonin receptor 2c regulates signal transduction and behavior in mice. J Cell Sci 2015; 128:4642-52. [PMID: 26527397 DOI: 10.1242/jcs.176941] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/28/2015] [Indexed: 02/05/2023] Open
Abstract
The serotonergic system plays important roles in multiple functions of the nervous system and its malfunctioning leads to neurological and psychiatric disorders. Here, we show that the cell adhesion molecule close homolog of L1 (CHL1), which has been linked to mental disorders, binds to a peptide stretch in the third intracellular loop of the serotonin 2c (5-HT2c) receptor through its intracellular domain. Moreover, we provide evidence that CHL1 deficiency in mice leads to 5-HT2c-receptor-related reduction in locomotor activity and reactivity to novelty, and that CHL1 regulates signaling pathways triggered by constitutively active isoforms of the 5-HT2c receptor. Furthermore, we found that the 5-HT2c receptor and CHL1 colocalize in striatal and hippocampal GABAergic neurons, and that 5-HT2c receptor phosphorylation and its association with phosphatase and tensin homolog (PTEN) and β-arrestin 2 is regulated by CHL1. Our results demonstrate that CHL1 regulates signal transduction pathways through constitutively active 5-HT2c receptor isoforms, thereby altering 5-HT2c receptor functions and implicating CHL1 as a new modulator of the serotonergic system.
Collapse
Affiliation(s)
- Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, Hamburg 20246, Germany
| | - Harshita Chaudhary
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, Hamburg 20246, Germany
| | - Nicole Karl
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, Hamburg 20246, Germany
| | - Jelena Katic
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, Hamburg 20246, Germany
| | - Agnieszka Kotarska
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, Hamburg 20246, Germany
| | - Kathrin Guitart
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, Hamburg 20246, Germany
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, Hamburg 20246, Germany
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, China
| |
Collapse
|
213
|
Sawiak SJ, Jupp B, Taylor T, Caprioli D, Carpenter TA, Dalley JW. In vivo γ-aminobutyric acid measurement in rats with spectral editing at 4.7T. J Magn Reson Imaging 2015; 43:1308-12. [PMID: 26633759 PMCID: PMC4869682 DOI: 10.1002/jmri.25093] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 10/28/2015] [Indexed: 12/28/2022] Open
Abstract
Purpose To evaluate the feasibility of spectral editing for quantification of γ‐aminobutyric acid (GABA) in the rat brain and to determine whether altered GABA concentration in the ventral striatum is a neural endophenotype associated with trait‐like impulsive behavior. Materials and Methods Spectra were acquired at 4.7T for 23 male Lister‐hooded rats that had been previously screened for extremely low and high impulsivity phenotypes on an automated behavioral task (n = 11 low‐impulsive; n = 12 high‐impulsive). Voxels of 3 × 7 × 4 mm3 (84 μL) centered bilaterally across the ventral striatum were used to evaluate GABA concentration ratios. Results Quantifiable GABA signals in the ventral striatum were obtained for all rats. Mean‐edited GABA to n‐acetyl aspartate (NAA) ratios in the ventral striatum were 0.22 (95% confidence interval [CI] [0.18, 0.25]). Mean GABA/NAA ratios in this region were significantly decreased by 28% in high‐impulsive rats compared to low‐impulsive rats (P = 0.02; 95% CI [–53%, –2%]). Conclusion These findings demonstrate that spectral editing at 4.7T is a feasible method to assess in vivo GABA concentrations in the rat brain. The results show that diminished GABA content in the ventral striatum may be a neural endophenotype associated with impulsivity. J. Magn. Reson. Imaging 2016;43:1308–1312.
Collapse
Affiliation(s)
- Stephen J Sawiak
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK.,Wolfson Brain Imaging Centre, University of Cambridge, UK
| | - Bianca Jupp
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK
| | - Tom Taylor
- Cavendish Laboratory, University of Cambridge, UK
| | - Daniele Caprioli
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK
| | | | - Jeffrey W Dalley
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK.,Department of Psychology, University of Cambridge, UK.,Department of Psychiatry, University of Cambridge, UK
| |
Collapse
|
214
|
Nagypál T, Gombkötő P, Barkóczi B, Benedek G, Nagy A. Activity of Caudate Nucleus Neurons in a Visual Fixation Paradigm in Behaving Cats. PLoS One 2015; 10:e0142526. [PMID: 26544604 PMCID: PMC4636356 DOI: 10.1371/journal.pone.0142526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/22/2015] [Indexed: 11/25/2022] Open
Abstract
Beside its motor functions, the caudate nucleus (CN), the main input structure of the basal ganglia, is also sensitive to various sensory modalities. The goal of the present study was to investigate the effects of visual stimulation on the CN by using a behaving, head-restrained, eye movement-controlled feline model developed recently for this purpose. Extracellular multielectrode recordings were made from the CN of two cats in a visual fixation paradigm applying static and dynamic stimuli. The recorded neurons were classified in three groups according to their electrophysiological properties: phasically active (PAN), tonically active (TAN) and high-firing (HFN) neurons. The response characteristics were investigated according to this classification. The PAN and TAN neurons were sensitive primarily to static stimuli, while the HFN neurons responded primarily to changes in the visual environment i.e. to optic flow and the offset of the stimuli. The HFNs were the most sensitive to visual stimulation; their responses were stronger than those of the PANs and TANs. The majority of the recorded units were insensitive to the direction of the optic flow, regardless of group, but a small number of direction-sensitive neurons were also found. Our results demonstrate that both the static and the dynamic components of the visual information are represented in the CN. Furthermore, these results provide the first piece of evidence on optic flow processing in the CN, which, in more general terms, indicates the possible role of this structure in dynamic visual information processing.
Collapse
Affiliation(s)
- Tamás Nagypál
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Péter Gombkötő
- Center for Molecular and Behavioral Neuroscience Rutgers University, Newark, New Jersey, United States of America
| | - Balázs Barkóczi
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - György Benedek
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Attila Nagy
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
- * E-mail:
| |
Collapse
|
215
|
Rafalovich IV, Melendez AE, Plotkin JL, Tanimura A, Zhai S, Surmeier DJ. Interneuronal Nitric Oxide Signaling Mediates Post-synaptic Long-Term Depression of Striatal Glutamatergic Synapses. Cell Rep 2015; 13:1336-1342. [PMID: 26549446 DOI: 10.1016/j.celrep.2015.10.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/10/2015] [Accepted: 10/05/2015] [Indexed: 02/04/2023] Open
Abstract
Experience-driven plasticity of glutamatergic synapses on striatal spiny projection neurons (SPNs) is thought to be essential to goal-directed behavior and habit formation. One major form of striatal plasticity, long-term depression (LTD), has long appeared to be expressed only pre-synaptically. Contrary to this view, nitric oxide (NO) generated by striatal interneurons was found to induce a post-synaptically expressed form of LTD at SPN glutamatergic synapses. This form of LTD was dependent on signaling through guanylyl cyclase and protein kinase G, both of which are abundantly expressed by SPNs. NO-LTD was unaffected by local synaptic activity or antagonism of endocannabinoid (eCb) and dopamine receptors, all of which modulate canonical, pre-synaptic LTD. Moreover, NO signaling disrupted induction of this canonical LTD by inhibiting dendritic Ca(2+) channels regulating eCb synthesis. These results establish an interneuron-dependent, heterosynaptic form of post-synaptic LTD that could act to promote stability of the striatal network during learning.
Collapse
Affiliation(s)
- Igor V Rafalovich
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alexandria E Melendez
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Joshua L Plotkin
- Department of Neurobiology and Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
| | - Asami Tanimura
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shenyu Zhai
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
216
|
Abstract
Anhedonia, or the loss of pleasure in previously rewarding stimuli, is a core symptom of major depressive disorder that may reflect an underlying dysregulation in reward processing. The mesolimbic dopamine circuit, also known as the brain's reward circuit, is integral to processing the rewarding salience of stimuli to guide actions. Manifestation of anhedonia and associated depression symptoms like feelings of sadness, changes in appetite, and psychomotor effects, may reflect changes in the brain reward circuitry as a common underlying disease process. This review will synthesize the recent literature from human and rodent studies providing a circuit-level framework for understanding anhedonia in depression, with emphasis on the nucleus accumbens.
Collapse
Affiliation(s)
- Mitra Heshmati
- Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Icahn 10-71, Box 1065, New York, NY 10029 (212) 659- 5917
| | - Scott J Russo
- Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Icahn 10-71, Box 1065, New York, NY 10029 (212) 659- 5917
| |
Collapse
|
217
|
Krügel U. Purinergic receptors in psychiatric disorders. Neuropharmacology 2015; 104:212-25. [PMID: 26518371 DOI: 10.1016/j.neuropharm.2015.10.032] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/23/2015] [Accepted: 10/23/2015] [Indexed: 02/07/2023]
Abstract
Psychiatric disorders describe different mental or behavioral patterns, causing suffering or poor coping of ordinary life with manifold presentations. Multifactorial processes can contribute to their development and progression. Purinergic neurotransmission and neuromodulation in the brain have attracted increasing therapeutic interest in the field of psychiatry. Purine nucleotides and nucleosides are well recognized as signaling molecules mediating cell to cell communication. The actions of ATP are mediated by ionotropic P2X and metabotropic P2Y receptor subfamilies, whilst the actions of adenosine are mediated by P1 (A1 or A2) adenosine receptors. Purinergic mechanisms and specific receptor subtypes have been shown to be linked to the regulation of many aspects of behavior and mood and to dysregulation in pathological processes of brain function. In this review the recent knowledge on the role of purinergic receptors in the two most frequent psychiatric diseases, major depression and schizophrenia, as well as on related animal models is summarized. At present the most promising data for therapeutic strategies derive from investigations of the adenosine system emphasizing a unique function of A2A receptors at neurons and astrocytes in these disorders. Among the P2 receptor family, in particular P2X7 and P2Y1 receptors were related to disturbances in major depression and schizophrenia, respectively. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Ute Krügel
- Rudolf Boehm Institute of Pharmacology and Toxicology, Universität Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany.
| |
Collapse
|
218
|
Yamada H, Inokawa H, Hori Y, Pan X, Matsuzaki R, Nakamura K, Samejima K, Shidara M, Kimura M, Sakagami M, Minamimoto T. Characteristics of fast-spiking neurons in the striatum of behaving monkeys. Neurosci Res 2015; 105:2-18. [PMID: 26477717 DOI: 10.1016/j.neures.2015.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 12/26/2022]
Abstract
Inhibitory interneurons are the fundamental constituents of neural circuits that organize network outputs. The striatum as part of the basal ganglia is involved in reward-directed behaviors. However, the role of the inhibitory interneurons in this process remains unclear, especially in behaving monkeys. We recorded the striatal single neuron activity while monkeys performed reward-directed hand or eye movements. Presumed parvalbumin-containing GABAergic interneurons (fast-spiking neurons, FSNs) were identified based on narrow spike shapes in three independent experiments, though they were a small population (4.2%, 42/997). We found that FSNs are characterized by high-frequency and less-bursty discharges, which are distinct from the basic firing properties of the presumed projection neurons (phasically active neurons, PANs). Besides, the encoded information regarding actions and outcomes was similar between FSNs and PANs in terms of proportion of neurons, but the discharge selectivity was higher in PANs than that of FSNs. The coding of actions and outcomes in FSNs and PANs was consistently observed under various behavioral contexts in distinct parts of the striatum (caudate nucleus, putamen, and anterior striatum). Our results suggest that FSNs may enhance the discharge selectivity of postsynaptic output neurons (PANs) in encoding crucial variables for a reward-directed behavior.
Collapse
Affiliation(s)
- Hiroshi Yamada
- Department of Physiology, Kyoto Prefectural University of Medicine Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan; Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan.
| | - Hitoshi Inokawa
- Department of Physiology, Kyoto Prefectural University of Medicine Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yukiko Hori
- Department of Physiology, Kyoto Prefectural University of Medicine Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; Department of Molecular Neuroimaging, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Xiaochuan Pan
- Brain Science Institute, Tamagawa University, 6-1-1, Tamagawa-Gakuen, Machida, Tokyo 194-8610, Japan; Institute for Cognitive Neurodynamics, East China University of Science and Technology, Shanghai 200237, China
| | - Ryuichi Matsuzaki
- Department of Physiology, Kansai Medical University, Shin-machi, Hirakata city, Osaka 570-1010, Japan
| | - Kae Nakamura
- Department of Physiology, Kansai Medical University, Shin-machi, Hirakata city, Osaka 570-1010, Japan; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Kazuyuki Samejima
- Brain Science Institute, Tamagawa University, 6-1-1, Tamagawa-Gakuen, Machida, Tokyo 194-8610, Japan
| | - Munetaka Shidara
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Minoru Kimura
- Department of Physiology, Kyoto Prefectural University of Medicine Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; Brain Science Institute, Tamagawa University, 6-1-1, Tamagawa-Gakuen, Machida, Tokyo 194-8610, Japan
| | - Masamichi Sakagami
- Brain Science Institute, Tamagawa University, 6-1-1, Tamagawa-Gakuen, Machida, Tokyo 194-8610, Japan
| | - Takafumi Minamimoto
- Department of Physiology, Kyoto Prefectural University of Medicine Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; Department of Molecular Neuroimaging, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
219
|
Villalba RM, Mathai A, Smith Y. Morphological changes of glutamatergic synapses in animal models of Parkinson's disease. Front Neuroanat 2015; 9:117. [PMID: 26441550 PMCID: PMC4585113 DOI: 10.3389/fnana.2015.00117] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/17/2015] [Indexed: 02/05/2023] Open
Abstract
The striatum and the subthalamic nucleus (STN) are the main entry doors for extrinsic inputs to reach the basal ganglia (BG) circuitry. The cerebral cortex, thalamus and brainstem are the key sources of glutamatergic inputs to these nuclei. There is anatomical, functional and neurochemical evidence that glutamatergic neurotransmission is altered in the striatum and STN of animal models of Parkinson’s disease (PD) and that these changes may contribute to aberrant network neuronal activity in the BG-thalamocortical circuitry. Postmortem studies of animal models and PD patients have revealed significant pathology of glutamatergic synapses, dendritic spines and microcircuits in the striatum of parkinsonians. More recent findings have also demonstrated a significant breakdown of the glutamatergic corticosubthalamic system in parkinsonian monkeys. In this review, we will discuss evidence for synaptic glutamatergic dysfunction and pathology of cortical and thalamic inputs to the striatum and STN in models of PD. The potential functional implication of these alterations on synaptic integration, processing and transmission of extrinsic information through the BG circuits will be considered. Finally, the significance of these pathological changes in the pathophysiology of motor and non-motor symptoms in PD will be examined.
Collapse
Affiliation(s)
- Rosa M Villalba
- Yerkes National Primate Research Center, Emory University Atlanta, GA, USA ; UDALL Center of Excellence for Parkinson's Disease, Emory University Atlanta, GA, USA
| | - Abraham Mathai
- Yerkes National Primate Research Center, Emory University Atlanta, GA, USA ; UDALL Center of Excellence for Parkinson's Disease, Emory University Atlanta, GA, USA
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University Atlanta, GA, USA ; UDALL Center of Excellence for Parkinson's Disease, Emory University Atlanta, GA, USA ; Department of Neurology, Emory University Atlanta, GA, USA
| |
Collapse
|
220
|
New neurons in the adult striatum: from rodents to humans. Trends Neurosci 2015; 38:517-23. [PMID: 26298770 DOI: 10.1016/j.tins.2015.07.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/03/2015] [Accepted: 07/28/2015] [Indexed: 01/17/2023]
Abstract
Most neurons are generated during development and are not replaced during adulthood, even if they are lost to injury or disease. However, it is firmly established that new neurons are generated in the dentate gyrus of the hippocampus of almost all adult mammals, including humans. Nevertheless, many questions remain regarding adult neurogenesis in other brain regions and particularly in humans, where standard birth-dating methods are not generally feasible. Exciting recent evidence indicates that calretinin-expressing interneurons are added to the adult human striatum at a substantial rate. The role of new neurons is unknown, but studies in rodents will be able to further elucidate their identity and origin and then we may begin to understand their regulation and function.
Collapse
|
221
|
Girasole AE, Nelson AB. Probing striatal microcircuitry to understand the functional role of cholinergic interneurons. Mov Disord 2015; 30:1306-18. [PMID: 26227561 DOI: 10.1002/mds.26340] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/12/2015] [Accepted: 06/21/2015] [Indexed: 12/23/2022] Open
Affiliation(s)
- Allison E Girasole
- Department of Neurology, University of California, San Francisco, USA.,Neuroscience Graduate Program, University of California, San Francisco, USA
| | - Alexandra B Nelson
- Department of Neurology, University of California, San Francisco, USA.,Neuroscience Graduate Program, University of California, San Francisco, USA
| |
Collapse
|
222
|
Dervola KSN, Johansen EB, Walaas SI, Fonnum F. Gender-dependent and genotype-sensitive monoaminergic changes induced by polychlorinated biphenyl 153 in the rat brain. Neurotoxicology 2015. [PMID: 26215117 DOI: 10.1016/j.neuro.2015.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polychlorinated biphenyls (PCBs) are present as ortho- and non-ortho-substituted PCBs, with most of the ortho-substituted congeners being neurotoxic. The present study examined effects of the ortho-substituted PCB 153 on dopamine, serotonin and amino acid neurotransmitters in the neostriatum of both male and female Wistar Kyoto (WKY) and spontaneously hypertensive rat (SHR) genotypes. PCB 153 exposure at p8, p14 and p20 had no effects on levels of these transmitters when examined at p55, but led to increased levels of both homovanillic acid and 5-hydroxyindoleacetic acid, the degradation products of dopamine and serotonin, respectively, in all groups except the female SHR. Immunoblotting showed that PCB exposure induced gender-specific decreases in dopaminergic synaptic proteins. These included a novel finding of decreased levels of the dopamine D5 receptor in both genders and genotypes, whereas male-specific changes included decreases in the postsynaptic density (PSD)-95 protein in the WKY and SHRs and a decrease in the presynaptic dopamine transporter in both the WKY and, less clearly in the male SHR. A female-specific tendency of increased vesicular monoamine transporter-2 was observed in the SHRs after PCB exposure. No changes were seen in tyrosine hydroxylase, the cytoskeletal neurotubulin or the plasma membrane marker Na(+)/K(+)-ATPase in any strain. Hence, PCB-exposure led to increases in monoamine transmitter turnover in both male and female animals, whereas decreases in both pre- and postsynaptic dopaminergic proteins were predominantly seen in male animals. PCB 153 may therefore induce neostriatal toxicity through both presynaptic and postsynaptic mechanisms in both genotypes and genders, including effects on the aspiny interneurons, which employ the D5 receptor to mediate dopamine effects on interneurons in the basal ganglia.
Collapse
Affiliation(s)
- Kine S N Dervola
- Department of Biochemistry, Division of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Norway
| | - Espen B Johansen
- Oslo and Akershus University College of Applied Sciences, Oslo, Norway
| | - S Ivar Walaas
- Department of Biochemistry, Division of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Norway.
| | - Frode Fonnum
- Department of Biochemistry, Division of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Norway
| |
Collapse
|
223
|
Abstract
Striatal GABAergic interneurons that express the gene for tyrosine hydroxylase (TH) have been identified previously by several methods. Although generally assumed to be dopaminergic, possibly serving as a compensatory source of dopamine (DA) in Parkinson's disease, this assumption has never been tested directly. In TH-Cre mice whose nigrostriatal pathway had been eliminated unilaterally with 6-hydroxydopamine, we injected a Cre-dependent virus coding for channelrhodopsin-2 and enhanced yellow fluorescent protein unilaterally into the unlesioned midbrain or bilaterally into the striatum. Fast-scan cyclic voltammetry in striatal slices revealed that both optical and electrical stimulation readily elicited DA release in control striata but not from contralateral striata when nigrostriatal neurons were transduced. In contrast, neither optical nor electrical stimulation could elicit striatal DA release in either the control or lesioned striata when the virus was injected directly into the striatum transducing only striatal TH interneurons. This demonstrates that striatal TH interneurons do not release DA. Fluorescence immunocytochemistry in enhanced green fluorescent protein (EGFP)-TH mice revealed colocalization of DA, l-amino acid decarboxylase, the DA transporter, and vesicular monoamine transporter-2 with EGFP in midbrain dopaminergic neurons but not in any of the striatal EGFP-TH interneurons. Optogenetic activation of striatal EGFP-TH interneurons produced strong GABAergic inhibition in all spiny neurons tested. These results indicate that striatal TH interneurons are not dopaminergic but rather are a type of GABAergic interneuron that expresses TH but none of the other enzymes or transporters necessary to operate as dopaminergic neurons and exert widespread GABAergic inhibition onto direct and indirect spiny neurons.
Collapse
|
224
|
Attention-Deficit/Hyperactivity Disorder-like Phenotype in a Mouse Model with Impaired Actin Dynamics. Biol Psychiatry 2015; 78:95-106. [PMID: 24768258 DOI: 10.1016/j.biopsych.2014.03.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 03/05/2014] [Accepted: 03/05/2014] [Indexed: 11/23/2022]
Abstract
BACKGROUND Actin depolymerizing proteins of the actin depolymerizing factor (ADF)/cofilin family are essential for actin dynamics, which is critical for synaptic function. Two ADF/cofilin family members, ADF and n-cofilin, are highly abundant in the brain, where they are present in excitatory synapses. Previous studies demonstrated the relevance of n-cofilin for postsynaptic plasticity, associative learning, and anxiety. These studies also suggested overlapping functions for ADF and n-cofilin. METHODS We performed pharmacobehavioral, electrophysiologic, and electron microscopic studies on ADF and n-cofilin single mutants and double mutants (named ACC mice) to characterize the importance of ADF/cofilin activity for synapse physiology and mouse behavior. RESULTS The ACC mice, but not single mutants, exhibited hyperlocomotion, impulsivity, and impaired working memory. Hyperlocomotion and impulsive behavior were reversed by methylphenidate, a psychostimulant commonly used for the treatment of attention-deficit/hyperactivity disorder (ADHD). Also, ACC mice displayed a disturbed morphology of striatal excitatory synapses, accompanied by strongly increased glutamate release. Blockade of dopamine or glutamate transmission resulted in normal locomotion. CONCLUSIONS Our study reveals that ADHD can result from a disturbed balance between excitation and inhibition in striatal circuits, providing novel insights into the mechanisms underlying this neurobehavioral disorder. Our results link actin dynamics to ADHD, suggesting that mutations in actin regulatory proteins may contribute to the etiology of ADHD in humans.
Collapse
|
225
|
Abstract
Anhedonia, or the loss of pleasure in previously rewarding stimuli, is a core symptom of major depressive disorder that may reflect an underlying dysregulation in reward processing. The mesolimbic dopamine circuit, also known as the brain's reward circuit, is integral to processing the rewarding salience of stimuli to guide actions. Manifestation of anhedonia and associated depression symptoms like feelings of sadness, changes in appetite, and psychomotor effects, may reflect changes in the brain reward circuitry as a common underlying disease process. This review will synthesize the recent literature from human and rodent studies providing a circuit-level framework for understanding anhedonia in depression, with emphasis on the nucleus accumbens.
Collapse
Affiliation(s)
- Mitra Heshmati
- Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Icahn 10-71, Box 1065, New York, NY 10029 (212) 659- 5917
| | - Scott J Russo
- Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Icahn 10-71, Box 1065, New York, NY 10029 (212) 659- 5917
| |
Collapse
|
226
|
Bauernfeind AL, Soderblom EJ, Turner ME, Moseley MA, Ely JJ, Hof PR, Sherwood CC, Wray GA, Babbitt CC. Evolutionary Divergence of Gene and Protein Expression in the Brains of Humans and Chimpanzees. Genome Biol Evol 2015; 7:2276-88. [PMID: 26163674 PMCID: PMC4558850 DOI: 10.1093/gbe/evv132] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although transcriptomic profiling has become the standard approach for exploring molecular differences in the primate brain, very little is known about how the expression levels of gene transcripts relate to downstream protein abundance. Moreover, it is unknown whether the relationship changes depending on the brain region or species under investigation. We performed high-throughput transcriptomic (RNA-Seq) and proteomic (liquid chromatography coupled with tandem mass spectrometry) analyses on two regions of the human and chimpanzee brain: The anterior cingulate cortex and caudate nucleus. In both brain regions, we found a lower correlation between mRNA and protein expression levels in humans and chimpanzees than has been reported for other tissues and cell types, suggesting that the brain may engage extensive tissue-specific regulation affecting protein abundance. In both species, only a few categories of biological function exhibited strong correlations between mRNA and protein expression levels. These categories included oxidative metabolism and protein synthesis and modification, indicating that the expression levels of mRNA transcripts supporting these biological functions are more predictive of protein expression compared with other functional categories. More generally, however, the two measures of molecular expression provided strikingly divergent perspectives into differential expression between human and chimpanzee brains: mRNA comparisons revealed significant differences in neuronal communication, ion transport, and regulatory processes, whereas protein comparisons indicated differences in perception and cognition, metabolic processes, and organization of the cytoskeleton. Our results highlight the importance of examining protein expression in evolutionary analyses and call for a more thorough understanding of tissue-specific protein expression levels.
Collapse
Affiliation(s)
- Amy L Bauernfeind
- Department of Anatomy and Neurobiology, Washington University Medical School Department of Anthropology, Washington University in St. Louis Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University
| | - Erik J Soderblom
- Proteomics and Metabolomics Shared Resource, Duke University School of Medicine Center for Genomic and Computational Biology, Duke University
| | - Meredith E Turner
- Proteomics and Metabolomics Shared Resource, Duke University School of Medicine Center for Genomic and Computational Biology, Duke University
| | - M Arthur Moseley
- Proteomics and Metabolomics Shared Resource, Duke University School of Medicine Center for Genomic and Computational Biology, Duke University
| | | | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York New York Consortium in Evolutionary Primatology, New York, New York
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University
| | - Gregory A Wray
- Center for Genomic and Computational Biology, Duke University Department of Biology, Duke University Department of Evolutionary Anthropology, Duke University
| | | |
Collapse
|
227
|
Melchior JR, Ferris MJ, Stuber GD, Riddle DR, Jones SR. Optogenetic versus electrical stimulation of dopamine terminals in the nucleus accumbens reveals local modulation of presynaptic release. J Neurochem 2015; 134:833-44. [PMID: 26011081 DOI: 10.1111/jnc.13177] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/07/2015] [Accepted: 05/13/2015] [Indexed: 12/24/2022]
Abstract
The nucleus accumbens is highly heterogeneous, integrating regionally distinct afferent projections and accumbal interneurons, resulting in diverse local microenvironments. Dopamine (DA) neuron terminals similarly express a heterogeneous collection of terminal receptors that modulate DA signaling. Cyclic voltammetry is often used to probe DA terminal dynamics in brain slice preparations; however, this method traditionally requires electrical stimulation to induce DA release. Electrical stimulation excites all of the neuronal processes in the stimulation field, potentially introducing simultaneous, multi-synaptic modulation of DA terminal release. We used optogenetics to selectively stimulate DA terminals and used voltammetry to compare DA responses from electrical and optical stimulation of the same area of tissue around a recording electrode. We found that with multiple pulse stimulation trains, optically stimulated DA release increasingly exceeded that of electrical stimulation. Furthermore, electrical stimulation produced inhibition of DA release across longer duration stimulations. The GABAB antagonist, CGP 55845, increased electrically stimulated DA release significantly more than light stimulated release. The nicotinic acetylcholine receptor antagonist, dihydro-β-erythroidine hydrobromide, inhibited single pulse electrically stimulated DA release while having no effect on optically stimulated DA release. Our results demonstrate that electrical stimulation introduces local multi-synaptic modulation of DA release that is absent with optogenetically targeted stimulation.
Collapse
Affiliation(s)
- James R Melchior
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Mark J Ferris
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Garret D Stuber
- Departments of Psychiatry and Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - David R Riddle
- Department of Biological Sciences, Western Michigan University School of Medicine, Kalamazoo, Michigan, USA
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
228
|
Huertas-Fernández I, Gómez-Garre P, Madruga-Garrido M, Bernal-Bernal I, Bonilla-Toribio M, Martín-Rodríguez JF, Cáceres-Redondo MT, Vargas-González L, Carrillo F, Pascual A, Tischfield JA, King RA, Heiman GA, Mir P. GDNF gene is associated with tourette syndrome in a family study. Mov Disord 2015; 30:1115-20. [PMID: 26096985 DOI: 10.1002/mds.26279] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 04/16/2015] [Accepted: 05/03/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Tourette syndrome is a disorder characterized by persistent motor and vocal tics, and frequently accompanied by the comorbidities attention deficit hyperactivity disorder and obsessive-compulsive disorder. Impaired synaptic neurotransmission has been implicated in its pathogenesis. Our aim was to investigate the association of 28 candidate genes, including genes related to synaptic neurotransmission and neurotrophic factors, with Tourette syndrome. METHODS We genotyped 506 polymorphisms in a discovery cohort from the United States composed of 112 families and 47 unrelated singletons with Tourette syndrome (201 cases and 253 controls). Genes containing significant polymorphisms were imputed to fine-map the signal(s) to potential causal variants. Allelic analyses in Tourette syndrome cases were performed to check the role in attention deficit hyperactivity disorder and obsessive-compulsive disorder comorbidities. Target polymorphisms were further studied in a replication cohort from southern Spain composed of 37 families and three unrelated singletons (44 cases and 73 controls). RESULTS The polymorphism rs3096140 in glial cell line-derived neurotrophic factor gene (GDNF) was significant in the discovery cohort after correction (P = 1.5 × 10(-4) ). No linkage disequilibrium was found between rs3096140 and other functional variants in the gene. We selected rs3096140 as target polymorphism, and the association was confirmed in the replication cohort (P = 0.01). No association with any comorbidity was found. CONCLUSIONS As a conclusion, a common genetic variant in GDNF is associated with Tourette syndrome. A defect in the production of GDNF could compromise the survival of parvalbumin interneurons, thus altering the excitatory/inhibitory balance in the corticostriatal circuitry. Validation of this variant in other family cohorts is necessary.
Collapse
Affiliation(s)
- Ismael Huertas-Fernández
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Pilar Gómez-Garre
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Marcos Madruga-Garrido
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Inmaculada Bernal-Bernal
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Marta Bonilla-Toribio
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Juan Francisco Martín-Rodríguez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - María Teresa Cáceres-Redondo
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Laura Vargas-González
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Fátima Carrillo
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Alberto Pascual
- Laboratorio de Mecanismos de Mantenimiento Neuronal, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Jay A Tischfield
- Human Genetics Institute of New Jersey and Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
| | - Robert A King
- Child Study Center of Yale University, New Haven, Connecticut, USA
| | - Gary A Heiman
- Human Genetics Institute of New Jersey and Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| |
Collapse
|
229
|
Diverse Short-Term Dynamics of Inhibitory Synapses Converging on Striatal Projection Neurons: Differential Changes in a Rodent Model of Parkinson's Disease. Neural Plast 2015; 2015:573543. [PMID: 26167304 PMCID: PMC4475734 DOI: 10.1155/2015/573543] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/20/2015] [Indexed: 02/08/2023] Open
Abstract
Most neurons in the striatum are projection neurons (SPNs) which make synapses with each other within distances of approximately 100 µm. About 5% of striatal neurons are GABAergic interneurons whose axons expand hundreds of microns. Short-term synaptic plasticity (STSP) between fast-spiking (FS) interneurons and SPNs and between SPNs has been described with electrophysiological and optogenetic techniques. It is difficult to obtain pair recordings from some classes of interneurons and due to limitations of actual techniques, no other types of STSP have been described on SPNs. Diverse STSPs may reflect differences in presynaptic release machineries. Therefore, we focused the present work on answering two questions: Are there different identifiable classes of STSP between GABAergic synapses on SPNs? And, if so, are synapses exhibiting different classes of STSP differentially affected by dopamine depletion? Whole-cell voltage-clamp recordings on SPNs revealed three classes of STSPs: depressing, facilitating, and biphasic (facilitating-depressing), in response to stimulation trains at 20 Hz, in a constant ionic environment. We then used the 6-hydroxydopamine (6-OHDA) rodent model of Parkinson's disease to show that synapses with different STSPs are differentially affected by dopamine depletion. We propose a general model of STSP that fits all the dynamics found in our recordings.
Collapse
|
230
|
Faust TW, Assous M, Shah F, Tepper JM, Koós T. Novel fast adapting interneurons mediate cholinergic-induced fast GABAA inhibitory postsynaptic currents in striatal spiny neurons. Eur J Neurosci 2015; 42:1764-74. [PMID: 25865337 DOI: 10.1111/ejn.12915] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 03/29/2015] [Accepted: 04/07/2015] [Indexed: 11/30/2022]
Abstract
Previous work suggests that neostriatal cholinergic interneurons control the activity of several classes of GABAergic interneurons through fast nicotinic receptor-mediated synaptic inputs. Although indirect evidence has suggested the existence of several classes of interneurons controlled by this mechanism, only one such cell type, the neuropeptide-Y-expressing neurogliaform neuron, has been identified to date. Here we tested the hypothesis that in addition to the neurogliaform neurons that elicit slow GABAergic inhibitory responses, another interneuron type exists in the striatum that receives strong nicotinic cholinergic input and elicits conventional fast GABAergic synaptic responses in projection neurons. We obtained in vitro slice recordings from double transgenic mice in which Channelrhodopsin-2 was natively expressed in cholinergic neurons and a population of serotonin receptor-3a-Cre-expressing GABAergic interneurons were visualized with tdTomato. We show that among the targeted GABAergic interneurons a novel type of interneuron, termed the fast-adapting interneuron, can be identified that is distinct from previously known interneurons based on immunocytochemical and electrophysiological criteria. We show using optogenetic activation of cholinergic inputs that fast-adapting interneurons receive a powerful supra-threshold nicotinic cholinergic input in vitro. Moreover, fast adapting neurons are densely connected to projection neurons and elicit fast, GABAA receptor-mediated inhibitory postsynaptic current responses. The nicotinic receptor-mediated activation of fast-adapting interneurons may constitute an important mechanism through which cholinergic interneurons control the activity of projection neurons and perhaps the plasticity of their synaptic inputs when animals encounter reinforcing or otherwise salient stimuli.
Collapse
Affiliation(s)
- Thomas W Faust
- Center for Molecular and Behavioral Neuroscience, Rutgers, the State University of New Jersey, 197 University Avenue, Newark, NJ, 07102, USA
| | - Maxime Assous
- Center for Molecular and Behavioral Neuroscience, Rutgers, the State University of New Jersey, 197 University Avenue, Newark, NJ, 07102, USA
| | - Fulva Shah
- Center for Molecular and Behavioral Neuroscience, Rutgers, the State University of New Jersey, 197 University Avenue, Newark, NJ, 07102, USA
| | - James M Tepper
- Center for Molecular and Behavioral Neuroscience, Rutgers, the State University of New Jersey, 197 University Avenue, Newark, NJ, 07102, USA
| | - Tibor Koós
- Center for Molecular and Behavioral Neuroscience, Rutgers, the State University of New Jersey, 197 University Avenue, Newark, NJ, 07102, USA
| |
Collapse
|
231
|
Niu W, Zang T, Smith DK, Vue TY, Zou Y, Bachoo R, Johnson JE, Zhang CL. SOX2 reprograms resident astrocytes into neural progenitors in the adult brain. Stem Cell Reports 2015; 4:780-94. [PMID: 25921813 PMCID: PMC4437485 DOI: 10.1016/j.stemcr.2015.03.006] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 01/14/2023] Open
Abstract
Glial cells can be in vivo reprogrammed into functional neurons in the adult CNS; however, the process by which this reprogramming occurs is unclear. Here, we show that a distinct cellular sequence is involved in SOX2-driven in situ conversion of adult astrocytes to neurons. This includes ASCL1+ neural progenitors and DCX+ adult neuroblasts (iANBs) as intermediates. Importantly, ASCL1 is required, but not sufficient, for the robust generation of iANBs in the adult striatum. These progenitor-derived iANBs predominantly give rise to calretinin+ interneurons when supplied with neurotrophic factors or the small-molecule valproic acid. Patch-clamp recordings from the induced neurons reveal subtype heterogeneity, though all are functionally mature, fire repetitive action potentials, and receive synaptic inputs. Together, these results show that SOX2-mediated in vivo reprogramming of astrocytes to neurons passes through proliferative intermediate progenitors, which may be exploited for regenerative medicine. SOX2 induces ASCL1-positive neural progenitors in the adult mouse brain Ascl1 in resident astrocytes is required for SOX2-mediated in vivo reprogramming Induced ASCL1-positive neural progenitors generate mature calretinin neurons
Collapse
Affiliation(s)
- Wenze Niu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Tong Zang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Derek K Smith
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Tou Yia Vue
- Department of Neuroscience, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yuhua Zou
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Robert Bachoo
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
232
|
Ibáñez-Sandoval O, Xenias HS, Tepper JM, Koós T. Dopaminergic and cholinergic modulation of striatal tyrosine hydroxylase interneurons. Neuropharmacology 2015; 95:468-76. [PMID: 25908399 DOI: 10.1016/j.neuropharm.2015.03.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 03/17/2015] [Accepted: 03/31/2015] [Indexed: 10/23/2022]
Abstract
The recent electrophysiological characterization of TH-expressing GABAergic interneurons (THINs) in the neostriatum revealed an unexpected degree of diversity of interneurons in this brain area (Ibáñez-Sandoval et al., 2010, Unal et al., 2011, 2015). Despite being relatively few in number, THINs may play a significant role in transmitting and distributing extra- and intrastriatal neuromodulatory signals in the striatal circuitry. Here we investigated the dopaminergic and cholinergic regulation of THINs in vitro. We found that the dominant effect of dopamine was a dramatic enhancement of the ability of THINs to generate long-lasting depolarizing plateau potentials (PPs). Interestingly, the same effect could also be elicited by amphetamine-induced release of endogenous dopamine suggesting that THINs may exhibit similar responses to changes in extracellular dopamine concentration in vivo. The enhancement of PPs in THINs is perhaps the most pronounced effect of dopamine on the intrinsic excitability of neostriatal neurons described to date. Further, we demonstrate that all subtypes of THINSs tested also express nicotinic cholinergic receptors. All THIS responded, albeit differentially, with depolarization, PPs and spiking to brief application of nicotinic agonists. Powerful modulation of the nonlinear integrative properties of THINs by dopamine and the direct depolarization of these neurons by acetylcholine may play important roles in mediating the effects of these neuromodulators in the neostriatum with potentially important implications for understanding the mechanisms of neuropsychiatric disorders affecting the basal ganglia.
Collapse
Affiliation(s)
- Osvaldo Ibáñez-Sandoval
- Center for Molecular and Behavioral Neuroscience, Rutgers The State University of New Jersey, 197 University Avenue, Newark, NJ 07102, USA
| | - Harry S Xenias
- Center for Molecular and Behavioral Neuroscience, Rutgers The State University of New Jersey, 197 University Avenue, Newark, NJ 07102, USA
| | - James M Tepper
- Center for Molecular and Behavioral Neuroscience, Rutgers The State University of New Jersey, 197 University Avenue, Newark, NJ 07102, USA.
| | - Tibor Koós
- Center for Molecular and Behavioral Neuroscience, Rutgers The State University of New Jersey, 197 University Avenue, Newark, NJ 07102, USA.
| |
Collapse
|
233
|
Gonzales KK, Smith Y. Cholinergic interneurons in the dorsal and ventral striatum: anatomical and functional considerations in normal and diseased conditions. Ann N Y Acad Sci 2015; 1349:1-45. [PMID: 25876458 DOI: 10.1111/nyas.12762] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Striatal cholinergic interneurons (ChIs) are central for the processing and reinforcement of reward-related behaviors that are negatively affected in states of altered dopamine transmission, such as in Parkinson's disease or drug addiction. Nevertheless, the development of therapeutic interventions directed at ChIs has been hampered by our limited knowledge of the diverse anatomical and functional characteristics of these neurons in the dorsal and ventral striatum, combined with the lack of pharmacological tools to modulate specific cholinergic receptor subtypes. This review highlights some of the key morphological, synaptic, and functional differences between ChIs of different striatal regions and across species. It also provides an overview of our current knowledge of the cellular localization and function of cholinergic receptor subtypes. The future use of high-resolution anatomical and functional tools to study the synaptic microcircuitry of brain networks, along with the development of specific cholinergic receptor drugs, should help further elucidate the role of striatal ChIs and permit efficient targeting of cholinergic systems in various brain disorders, including Parkinson's disease and addiction.
Collapse
Affiliation(s)
- Kalynda K Gonzales
- Yerkes National Primate Research Center, Department of Neurology and Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Yoland Smith
- Yerkes National Primate Research Center, Department of Neurology and Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia
| |
Collapse
|
234
|
Chang R, Liu X, Li S, Li XJ. Transgenic animal models for study of the pathogenesis of Huntington's disease and therapy. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2179-88. [PMID: 25931812 PMCID: PMC4404937 DOI: 10.2147/dddt.s58470] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Huntington’s disease (HD) is caused by a genetic mutation that results in polyglutamine expansion in the N-terminal regions of huntingtin. As a result, this polyQ expansion leads to the misfolding and aggregation of mutant huntingtin as well as age-dependent neurodegeneration. The genetic mutation in HD allows for generating a variety of animal models that express different forms of mutant huntingtin and show differential pathology. Studies of these animal models have provided an important insight into the pathogenesis of HD. Mouse models of HD include transgenic mice, which express N-terminal or full-length mutant huntingtin ubiquitously or selectively in different cell types, and knock-in mice that express full-length mutant Htt at the endogenous level. Large animals, such as pig, sheep, and monkeys, have also been used to generate animal HD models. This review focuses on the different features of commonly used transgenic HD mouse models as well as transgenic large animal models of HD, and also discusses how to use them to identify potential therapeutics. Since HD shares many pathological features with other neurodegenerative diseases, identification of therapies for HD would also help to develop effective treatment for different neurodegenerative diseases that are also caused by protein misfolding and occur in an age-dependent manner.
Collapse
Affiliation(s)
- Renbao Chang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xudong Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Shihua Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Xiao-Jiang Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China ; Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
235
|
Deng Y, Lanciego J, Kerkerian-Le-Goff L, Coulon P, Salin P, Kachidian P, Lei W, Del Mar N, Reiner A. Differential organization of cortical inputs to striatal projection neurons of the matrix compartment in rats. Front Syst Neurosci 2015; 9:51. [PMID: 25926776 PMCID: PMC4396197 DOI: 10.3389/fnsys.2015.00051] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/12/2015] [Indexed: 11/13/2022] Open
Abstract
In prior studies, we described the differential organization of corticostriatal and thalamostriatal inputs to the spines of direct pathway (dSPNs) and indirect pathway striatal projection neurons (iSPNs) of the matrix compartment. In the present electron microscopic (EM) analysis, we have refined understanding of the relative amounts of cortical axospinous vs. axodendritic input to the two types of SPNs. Of note, we found that individual dSPNs receive about twice as many axospinous synaptic terminals from IT-type (intratelencephalically projecting) cortical neurons as they do from PT-type (pyramidal tract projecting) cortical neurons. We also found that PT-type axospinous synaptic terminals were about 1.5 times as common on individual iSPNs as IT-type axospinous synaptic terminals. Overall, a higher percentage of IT-type terminals contacted dSPN than iSPN spines, while a higher percentage of PT-type terminals contacted iSPN than dSPN spines. Notably, IT-type axospinous synaptic terminals were significantly larger on iSPN spines than on dSPN spines. By contrast to axospinous input, the axodendritic PT-type input to dSPNs was more substantial than that to iSPNs, and the axodendritic IT-type input appeared to be meager and comparable for both SPN types. The prominent axodendritic PT-type input to dSPNs may accentuate their PT-type responsiveness, and the large size of axospinous IT-type terminals on iSPNs may accentuate their IT-type responsiveness. Using transneuronal labeling with rabies virus to selectively label the cortical neurons with direct input to the dSPNs projecting to the substantia nigra pars reticulata, we found that the input predominantly arose from neurons in the upper layers of motor cortices, in which IT-type perikarya predominate. The differential cortical input to SPNs is likely to play key roles in motor control and motor learning.
Collapse
Affiliation(s)
- Yunping Deng
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center Memphis, TN, USA
| | - Jose Lanciego
- Neurosciences Division, Center for Applied Medical Research (CIMA), Centro de Investigación Biomédica en Red sobre Enfermedades Neurosdegenerativas (CIBERNED), and Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra Medical College Pamplona, Spain
| | | | - Patrice Coulon
- Aix Marseille Université, CNRS, INT UMR 7289 Marseille, France
| | - Pascal Salin
- Aix-Marseille Université, CNRS, IBDM UMR 7288 Marseille, France
| | | | - Wanlong Lei
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center Memphis, TN, USA ; Department of Anatomy, Zhongshan Medical School of Sun Yat-Sen University Guangzhou, China
| | - Nobel Del Mar
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center Memphis, TN, USA
| | - Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center Memphis, TN, USA
| |
Collapse
|
236
|
Guo Q, Wang D, He X, Feng Q, Lin R, Xu F, Fu L, Luo M. Whole-brain mapping of inputs to projection neurons and cholinergic interneurons in the dorsal striatum. PLoS One 2015; 10:e0123381. [PMID: 25830919 PMCID: PMC4382118 DOI: 10.1371/journal.pone.0123381] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/20/2015] [Indexed: 12/14/2022] Open
Abstract
The dorsal striatum integrates inputs from multiple brain areas to coordinate voluntary movements, associative plasticity, and reinforcement learning. Its projection neurons consist of the GABAergic medium spiny neurons (MSNs) that express dopamine receptor type 1 (D1) or dopamine receptor type 2 (D2). Cholinergic interneurons account for a small portion of striatal neuron populations, but they play important roles in striatal functions by synapsing onto the MSNs and other local interneurons. By combining the modified rabies virus with specific Cre- mouse lines, a recent study mapped the monosynaptic input patterns to MSNs. Because only a small number of extrastriatal neurons were labeled in the prior study, it is important to reexamine the input patterns of MSNs with higher labeling efficiency. Additionally, the whole-brain innervation pattern of cholinergic interneurons remains unknown. Using the rabies virus-based transsynaptic tracing method in this study, we comprehensively charted the brain areas that provide direct inputs to D1-MSNs, D2-MSNs, and cholinergic interneurons in the dorsal striatum. We found that both types of projection neurons and the cholinergic interneurons receive extensive inputs from discrete brain areas in the cortex, thalamus, amygdala, and other subcortical areas, several of which were not reported in the previous study. The MSNs and cholinergic interneurons share largely common inputs from areas outside the striatum. However, innervations within the dorsal striatum represent a significantly larger proportion of total inputs for cholinergic interneurons than for the MSNs. The comprehensive maps of direct inputs to striatal MSNs and cholinergic interneurons shall assist future functional dissection of the striatal circuits.
Collapse
Affiliation(s)
- Qingchun Guo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Daqing Wang
- National Institute of Biological Sciences, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaobin He
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Qiru Feng
- National Institute of Biological Sciences, Beijing, China
| | - Rui Lin
- National Institute of Biological Sciences, Beijing, China
| | - Fuqiang Xu
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Ling Fu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Minmin Luo
- National Institute of Biological Sciences, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
237
|
Perk CG, Wickens JR, Hyland BI. Differing properties of putative fast-spiking interneurons in the striatum of two rat strains. Neuroscience 2015; 294:215-26. [PMID: 25758937 DOI: 10.1016/j.neuroscience.2015.02.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 02/05/2015] [Accepted: 02/27/2015] [Indexed: 11/25/2022]
Abstract
Local circuits within the striatum of the basal ganglia include a small number of γ-aminobutyric acid (GABA)-ergic fast-spiking interneurons (FSI). The number of these cells is reduced in disorders of behavioral control, but it is unknown whether this is accompanied by altered electrophysiological properties. The genetically hypertensive (GH) rat strain exhibits impulsiveness and hyperactivity. We investigated if resting-state FSI activity is affected in this strain using extracellular recordings. We also examined the effect of systemic amphetamine (AMPH), a stimulant drug used in the treatment of these particular behavioral deficits. Putative FSI (pFSI) were encountered less often in GH rats compared to the Wistar control strain. pFSI in GH rats also exhibited a higher mean firing rate, higher intraburst firing rate, lower interburst interval, and shorter bursts compared to controls. AMPH increased the mean overall firing rate of Wistar rat pFSI but did not significantly alter the firing properties of this subtype in GH rats. These differences in the resting-state electrophysiological activity of pFSI in GH rats point to them as a cell type of particular interest in understanding striatal functioning across different strains.
Collapse
Affiliation(s)
- C G Perk
- Department of Physiology, Otago School of Medical Sciences, Brain Health Research Centre, and Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand; Department of Anatomy, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand.
| | - J R Wickens
- Department of Anatomy, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand; Neurobiology Research Unit, Okinawa Institute of Science and Technology, 1919-1, Tancha, Onna-Son, Kunigami, Okinawa 904-0412, Japan
| | - B I Hyland
- Department of Physiology, Otago School of Medical Sciences, Brain Health Research Centre, and Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
238
|
Striatal cholinergic dysfunction as a unifying theme in the pathophysiology of dystonia. Prog Neurobiol 2015; 127-128:91-107. [PMID: 25697043 DOI: 10.1016/j.pneurobio.2015.02.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/05/2015] [Accepted: 02/07/2015] [Indexed: 01/06/2023]
Abstract
Dystonia is a movement disorder of both genetic and non-genetic causes, which typically results in twisted posturing due to abnormal muscle contraction. Evidence from dystonia patients and animal models of dystonia indicate a crucial role for the striatal cholinergic system in the pathophysiology of dystonia. In this review, we focus on striatal circuitry and the centrality of the acetylcholine system in the function of the basal ganglia in the control of voluntary movement and ultimately clinical manifestation of movement disorders. We consider the impact of cholinergic interneurons (ChIs) on dopamine-acetylcholine interactions and examine new evidence for impairment of ChIs in dysfunction of the motor systems producing dystonic movements, particularly in animal models. We have observed paradoxical excitation of ChIs in the presence of dopamine D2 receptor agonists and impairment of striatal synaptic plasticity in a mouse model of DYT1 dystonia, which are improved by administration of recently developed M1 receptor antagonists. These findings have been confirmed across multiple animal models of DYT1 dystonia and may represent a common endophenotype by which to investigate dystonia induced by other types of genetic and non-genetic causes and to investigate the potential effectiveness of pharmacotherapeutics and other strategies to improve dystonia.
Collapse
|
239
|
Kummer KK, El Rawas R, Kress M, Saria A, Zernig G. Social interaction and cocaine conditioning in mice increase spontaneous spike frequency in the nucleus accumbens or septal nuclei as revealed by multielectrode array recordings. Pharmacology 2015; 95:42-9. [PMID: 25592253 DOI: 10.1159/000370314] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/02/2014] [Indexed: 11/19/2022]
Abstract
Both cocaine and social interaction place preference conditioning lead to increased neuronal expression of the immediate early gene EGR1 in the nucleus accumbens, a central region of the reward pathway, suggesting that both drug and natural rewards may be processed in similar brain regions. In order to gain novel insights into the intrinsic in vitro electrical activity of the nucleus accumbens and adjacent brain regions and to explore the effects of reward conditioning on network activity, we performed multielectrode array recordings of spontaneous firing in acute brain slices of mice conditioned to either cocaine or social interaction place preference. Cocaine conditioning increased the spike frequency of neurons in the septal nuclei, whereas social interaction conditioning increased the spike frequency in the nucleus accumbens compared to saline control animals. In addition, social interaction conditioning decreased the amount of active neuron clusters in the nucleus accumbens. Our findings suggest that place preference conditioning for both drug and natural rewards may induce persistent changes in neuronal network activity in the nucleus accumbens and the septum that are still preserved in acute slice preparations.
Collapse
Affiliation(s)
- Kai K Kummer
- Experimental Psychiatry Unit, Medical University of Innsbruck, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
240
|
Reddington AE, Rosser AE, Dunnett SB. Differentiation of pluripotent stem cells into striatal projection neurons: a pure MSN fate may not be sufficient. Front Cell Neurosci 2014; 8:398. [PMID: 25520619 PMCID: PMC4251433 DOI: 10.3389/fncel.2014.00398] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/05/2014] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant inherited disorder leading to the loss inter alia of DARPP-32 positive medium spiny projection neurons ("MSNs") in the striatum. There is no known cure for HD but the relative specificity of cell loss early in the disease has made cell replacement by neural transplantation an attractive therapeutic possibility. Transplantation of human fetal striatal precursor cells has shown "proof-of-principle" in clinical trials; however, the practical and ethical difficulties associated with sourcing fetal tissues have stimulated the need to identify alternative source(s) of donor cells that are more readily available and more suitable for standardization. We now have available the first generation of protocols to generate DARPP-32 positive MSN-like neurons from pluripotent stem cells and these have been successfully grafted into animal models of HD. However, whether these grafts can provide stable functional recovery to the level that can regularly be achieved with primary fetal striatal grafts remains to be demonstrated. Of particular concern, primary fetal striatal grafts are not homogenous; they contain not only the MSN subpopulation of striatal projection neurons but also include all the different cell types that make up the mature striatum, such as the multiple populations of striatal interneurons and striatal glia, and which certainly contribute to normal striatal function. By contrast, present protocols for pluripotent stem cell differentiation are almost entirely targeted at specifying just neurons of an MSN lineage. So far, evidence for the functionality and integration of stem-cell derived grafts is correspondingly limited. Indeed, consideration of the features of full striatal reconstruction that is achieved with primary fetal striatal grafts suggests that optimal success of the next generations of stem cell-derived replacement therapy in HD will require that graft protocols be developed to allow inclusion of multiple striatal cell types, such as interneurons and/or glia. Almost certainly, therefore, more sophisticated differentiation protocols will be necessary, over and above replacement of a specific population of MSNs. A rational solution to this technical challenge requires that we re-address the underlying question-what constitutes a functional striatal graft?
Collapse
Affiliation(s)
- Amy E Reddington
- The Brain Repair Group, School of Biosciences, Cardiff University Cardiff, UK
| | - Anne E Rosser
- The Brain Repair Group, School of Biosciences, Cardiff University Cardiff, UK ; Department of Psychological Medicine and Neurology, Cardiff University Cardiff, UK
| | - Stephen B Dunnett
- The Brain Repair Group, School of Biosciences, Cardiff University Cardiff, UK
| |
Collapse
|
241
|
Beatty JA, Song SC, Wilson CJ. Cell-type-specific resonances shape the responses of striatal neurons to synaptic input. J Neurophysiol 2014; 113:688-700. [PMID: 25411465 DOI: 10.1152/jn.00827.2014] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurons respond to synaptic inputs in cell-type-specific ways. Each neuron type may thus respond uniquely to shared patterns of synaptic input. We applied statistically identical barrages of artificial synaptic inputs to four striatal cell types to assess differences in their responses to a realistic input pattern. Each interneuron type fired in phase with a specific input-frequency component. The fast-spiking interneuron fired in relation to the gamma-band (and higher) frequencies, the low-threshold spike interneuron to the beta-band frequencies, and the cholinergic neurons to the delta-band frequencies. Low-threshold spiking and cholinergic interneurons showed input impedance resonances at frequencies matching their spiking resonances. Fast-spiking interneurons showed resonance of input impedance but at lower than gamma frequencies. The spiny projection neuron's frequency preference did not have a fixed frequency but instead tracked its own firing rate. Spiny cells showed no input impedance resonance. Striatal interneurons are each tuned to a specific frequency band corresponding to the major frequency components of local field potentials. Their influence in the circuit may fluctuate along with the contribution of that frequency band to the input. In contrast, spiny neurons may tune to any of the frequency bands by a change in firing rate.
Collapse
Affiliation(s)
- Joseph A Beatty
- Department of Biology, University of Texas, San Antonio, Texas
| | - Soomin C Song
- Department of Biology, University of Texas, San Antonio, Texas
| | | |
Collapse
|
242
|
Pistillo F, Clementi F, Zoli M, Gotti C. Nicotinic, glutamatergic and dopaminergic synaptic transmission and plasticity in the mesocorticolimbic system: focus on nicotine effects. Prog Neurobiol 2014; 124:1-27. [PMID: 25447802 DOI: 10.1016/j.pneurobio.2014.10.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 10/08/2014] [Accepted: 10/24/2014] [Indexed: 01/11/2023]
Abstract
Cigarette smoking is currently the leading cause of preventable deaths and disability throughout the world, being responsible for about five million premature deaths/year. Unfortunately, fewer than 10% of tobacco users who try to stop smoking actually manage to do so. The main addictive agent delivered by cigarette smoke is nicotine, which induces psychostimulation and reward, and reduces stress and anxiety. The use of new technologies (including optogenetics) and the development of mouse models characterised by cell-specific deletions of receptor subtype genes or the expression of gain-of-function nAChR subunits has greatly increased our understanding of the molecular mechanisms and neural substrates of nicotine addiction first revealed by classic electrophysiological, neurochemical and behavioural approaches. It is now becoming clear that various aspects of nicotine dependence are mediated by close interactions of the glutamatergic, dopaminergic and γ-aminobutyric acidergic systems in the mesocorticolimbic system. This review is divided into two parts. The first provides an updated overview of the circuitry of the ventral tegmental area, ventral striatum and prefrontal cortex, the neurotransmitter receptor subtypes expressed in these areas, and their physiological role in the mesocorticolimbic system. The second will focus on the molecular, functional and behavioural mechanisms involved in the acute and chronic effects of nicotine on the mesocorticolimbic system.
Collapse
Affiliation(s)
- Francesco Pistillo
- CNR, Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy
| | - Francesco Clementi
- CNR, Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Section of Physiology and Neurosciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Cecilia Gotti
- CNR, Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy.
| |
Collapse
|
243
|
On the relevance of the NPY2-receptor variation for modes of action cascading processes. Neuroimage 2014; 102 Pt 2:558-64. [DOI: 10.1016/j.neuroimage.2014.08.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 08/05/2014] [Accepted: 08/15/2014] [Indexed: 01/22/2023] Open
|
244
|
Sun N, Laviolette SR. Dopamine receptor blockade modulates the rewarding and aversive properties of nicotine via dissociable neuronal activity patterns in the nucleus accumbens. Neuropsychopharmacology 2014; 39:2799-815. [PMID: 24896614 PMCID: PMC4200490 DOI: 10.1038/npp.2014.130] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 11/09/2022]
Abstract
The mesolimbic pathway comprising the ventral tegmental area (VTA) and projection terminals in the nucleus accumbens (NAc) has been identified as a critical neural system involved in processing both the rewarding and aversive behavioral effects of nicotine. Transmission through dopamine (DA) receptors functionally modulates these effects directly within the NAc. Nevertheless, the neuronal mechanisms within the NAc responsible for these bivalent behavioral effects are presently not known. Using an unbiased conditioned place preference procedure combined with in vivo neuronal recordings, we examined the effects of nicotine reward and aversion conditioning on intra-NAc neuronal sub-population activity patterns. We report that intra-VTA doses of nicotine that differentially produce rewarding or aversive behavioral effects produce opposite effects on sub-populations of fast-spiking interneurons (FSIs) or medium spiny neurons (MSNs) within the shell region of the NAc (NAshell). Thus, while the rewarding effects of intra-VTA nicotine were associated with inhibition of FSI and activation of MSNs, the aversive effects of nicotine produced the opposite pattern of NAshell neuronal population activity. Blockade of DA transmission with a broad-spectrum DA receptor antagonist, α-flupenthixol, strongly inhibited the spontaneous activity of NAshell FSIs, and reversed the conditioning properties of intra-VTA nicotine, switching nicotine-conditioned responses from aversive to rewarding. Remarkably, DA receptor blockade switched intra-NAshell neuronal population activity from an aversion to a reward pattern, concomitant with the observed switch in behavioral conditioning effects.
Collapse
Affiliation(s)
- Ninglei Sun
- Department of Anatomy and Cell Biology, The Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Steven R Laviolette
- Department of Anatomy and Cell Biology, The Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada,Department of Psychiatry, The Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada,Department of Psychology, The Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada,Department of Anatomy and Cell Biology, The Schulich School of Medicine and Dentistry, University of Western Ontario, 468 Medical Science Building, London, ON, Canada N6A 5C1, Tel: +1 519 661 2111 ext. 80302, Fax: +1 519 661 3936, E-mail:
| | | |
Collapse
|
245
|
Victor MB, Richner M, Hermanstyne TO, Ransdell JL, Sobieski C, Deng PY, Klyachko VA, Nerbonne JM, Yoo AS. Generation of human striatal neurons by microRNA-dependent direct conversion of fibroblasts. Neuron 2014; 84:311-23. [PMID: 25374357 DOI: 10.1016/j.neuron.2014.10.016] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2014] [Indexed: 12/11/2022]
Abstract
The promise of using reprogrammed human neurons for disease modeling and regenerative medicine relies on the ability to induce patient-derived neurons with high efficiency and subtype specificity. We have previously shown that ectopic expression of brain-enriched microRNAs (miRNAs), miR-9/9* and miR-124 (miR-9/9*-124), promoted direct conversion of human fibroblasts into neurons. Here we show that coexpression of miR-9/9*-124 with transcription factors enriched in the developing striatum, BCL11B (also known as CTIP2), DLX1, DLX2, and MYT1L, can guide the conversion of human postnatal and adult fibroblasts into an enriched population of neurons analogous to striatal medium spiny neurons (MSNs). When transplanted in the mouse brain, the reprogrammed human cells persisted in situ for over 6 months, exhibited membrane properties equivalent to native MSNs, and extended projections to the anatomical targets of MSNs. These findings highlight the potential of exploiting the synergism between miR-9/9*-124 and transcription factors to generate specific neuronal subtypes.
Collapse
Affiliation(s)
- Matheus B Victor
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Program in Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michelle Richner
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Tracey O Hermanstyne
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Center for Cardiovascular Research, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joseph L Ransdell
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Center for Cardiovascular Research, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Courtney Sobieski
- Program in Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Pan-Yue Deng
- Departments of Biomedical Engineering and Cell Biology and Physiology, CIMED, Washington University, Saint Louis, MO 63110, USA
| | - Vitaly A Klyachko
- Departments of Biomedical Engineering and Cell Biology and Physiology, CIMED, Washington University, Saint Louis, MO 63110, USA
| | - Jeanne M Nerbonne
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Center for Cardiovascular Research, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Andrew S Yoo
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
246
|
Lim SAO, Kang UJ, McGehee DS. Striatal cholinergic interneuron regulation and circuit effects. Front Synaptic Neurosci 2014; 6:22. [PMID: 25374536 PMCID: PMC4204445 DOI: 10.3389/fnsyn.2014.00022] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/05/2014] [Indexed: 01/11/2023] Open
Abstract
The striatum plays a central role in motor control and motor learning. Appropriate responses to environmental stimuli, including pursuit of reward or avoidance of aversive experience all require functional striatal circuits. These pathways integrate synaptic inputs from limbic and cortical regions including sensory, motor and motivational information to ultimately connect intention to action. Although many neurotransmitters participate in striatal circuitry, one critically important player is acetylcholine (ACh). Relative to other brain areas, the striatum contains exceptionally high levels of ACh, the enzymes that catalyze its synthesis and breakdown, as well as both nicotinic and muscarinic receptor types that mediate its postsynaptic effects. The principal source of striatal ACh is the cholinergic interneuron (ChI), which comprises only about 1-2% of all striatal cells yet sends dense arbors of projections throughout the striatum. This review summarizes recent advances in our understanding of the factors affecting the excitability of these neurons through acute effects and long term changes in their synaptic inputs. In addition, we discuss the physiological effects of ACh in the striatum, and how changes in ACh levels may contribute to disease states during striatal dysfunction.
Collapse
Affiliation(s)
| | - Un Jung Kang
- Department of Neurology, Columbia University New York, NY, USA
| | - Daniel S McGehee
- Committee on Neurobiology, University of Chicago Chicago, IL, USA ; Department of Anesthesia and Critical Care, University of Chicago Chicago, IL, USA
| |
Collapse
|
247
|
Prast JM, Schardl A, Schwarzer C, Dechant G, Saria A, Zernig G. Reacquisition of cocaine conditioned place preference and its inhibition by previous social interaction preferentially affect D1-medium spiny neurons in the accumbens corridor. Front Behav Neurosci 2014; 8:317. [PMID: 25309368 PMCID: PMC4174134 DOI: 10.3389/fnbeh.2014.00317] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/27/2014] [Indexed: 11/13/2022] Open
Abstract
We investigated if counterconditioning with dyadic (i.e., one-to-one) social interaction, a strong inhibitor of the subsequent reacquisition of cocaine conditioned place preference (CPP), differentially modulates the activity of the diverse brain regions oriented along a mediolateral corridor reaching from the interhemispheric sulcus to the anterior commissure, i.e., the nucleus of the vertical limb of the diagonal band, the medial septal nucleus, the major island of Calleja, the intermediate part of the lateral septal nucleus, and the medial accumbens shell and core. We also investigated the involvement of the lateral accumbens core and the dorsal caudate putamen. The anterior cingulate 1 (Cg1) region served as a negative control. Contrary to our expectations, we found that all regions of the accumbens corridor showed increased expression of the early growth response protein 1 (EGR1, Zif268) in rats 2 h after reacquisition of CPP for cocaine after a history of cocaine CPP acquisition and extinction. Previous counterconditioning with dyadic social interaction inhibited both the reacquisition of cocaine CPP and the activation of the whole accumbens corridor. EGR1 activation was predominantly found in dynorphin-labeled cells, i.e., presumably D1 receptor-expressing medium spiny neurons (D1-MSNs), with D2-MSNs (immunolabeled with an anti-DRD2 antibody) being less affected. Cholinergic interneurons or GABAergic interneurons positive for parvalbumin, neuropeptide Y or calretinin were not involved in these CPP-related EGR1 changes. Glial cells did not show any EGR1 expression either. The present findings could be of relevance for the therapy of impaired social interaction in substance use disorders, depression, psychosis, and autism spectrum disorders.
Collapse
Affiliation(s)
- Janine M Prast
- Experimental Psychiatry Unit, Innsbruck Medical University Innsbruck, Austria
| | - Aurelia Schardl
- Experimental Psychiatry Unit, Innsbruck Medical University Innsbruck, Austria
| | | | - Georg Dechant
- Institute for Neuroscience, Innsbruck Medical University Innsbruck, Austria
| | - Alois Saria
- Experimental Psychiatry Unit, Innsbruck Medical University Innsbruck, Austria
| | - Gerald Zernig
- Experimental Psychiatry Unit, Innsbruck Medical University Innsbruck, Austria ; Department of Psychology, Leopold-Franzens University of Innsbruck Innsbruck, Austria
| |
Collapse
|
248
|
Stansfield KH, Bichell TJ, Bowman AB, Guilarte TR. BDNF and Huntingtin protein modifications by manganese: implications for striatal medium spiny neuron pathology in manganese neurotoxicity. J Neurochem 2014; 131:655-66. [PMID: 25099302 DOI: 10.1111/jnc.12926] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 12/23/2022]
Abstract
High levels of manganese (Mn) exposure decrease striatal medium spiny neuron (MSN) dendritic length and spine density, but the mechanism(s) are not known. The Huntingtin (HTT) gene has been functionally linked to cortical brain-derived neurotrophic factor (BDNF) support of striatal MSNs via phosphorylation at serine 421. In Huntington's disease, pathogenic CAG repeat expansions of HTT decrease synthesis and disrupt transport of cortical-striatal BDNF, which may contribute to disease, and Mn is a putative environmental modifier of Huntington's disease pathology. Thus, we tested the hypothesis that changes in MSN dendritic morphology Mn due to exposure are associated with decreased BDNF levels and alterations in Htt protein. We report that BDNF levels are decreased in the striatum of Mn-exposed non-human primates and in the cerebral cortex and striatum of mice exposed to Mn. Furthermore, proBDNF and mature BDNF concentrations in primary cortical and hippocampal neuron cultures were decreased by exposure to Mn confirming the in vivo findings. Mn exposure decreased serine 421 phosphorylation of Htt in cortical and hippocampal neurons and increased total Htt levels. These data strongly support the hypothesis that Mn-exposure-related MSN pathology is associated with decreased BDNF trophic support via alterations in Htt.
Collapse
Affiliation(s)
- Kirstie H Stansfield
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | | | | | | |
Collapse
|
249
|
Muñoz-Manchado AB, Foldi C, Szydlowski S, Sjulson L, Farries M, Wilson C, Silberberg G, Hjerling-Leffler J. Novel Striatal GABAergic Interneuron Populations Labeled in the 5HT3a(EGFP) Mouse. Cereb Cortex 2014; 26:96-105. [PMID: 25146369 DOI: 10.1093/cercor/bhu179] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Histological and morphological studies indicate that approximately 5% of striatal neurons are cholinergic or γ-aminobutyric acidergic (GABAergic) interneurons (gINs). However, the number of striatal neurons expressing known interneuron markers is too small to account for the entire interneuron population. We therefore studied the serotonin (5HT) receptor 3a-enhanced green fluorescent protein (5HT3a(EGFP)) mouse, in which we found that a large number of striatal gINs are labeled. Roughly 20% of 5HT3a(EGFP)-positive cells co-express parvalbumin and exhibit fast-spiking (FS) electrophysiological properties. However, the majority of labeled neurons do not overlap with known molecular interneuron markers. Intrinsic electrical properties reveal at least 2 distinct novel subtypes: a late-spiking (LS) neuropeptide-Y (NPY)-negative neurogliaform (NGF) interneuron, and a large heterogeneous population with several features resembling low-threshold-spiking (LTS) interneurons that do not express somatostatin, NPY, or neuronal nitric oxide synthase. Although the 5HT3a(EGFP) NGF and LTS-like interneurons have electrophysiological properties similar to previously described populations, they are pharmacologically distinct. In direct contrast to previously described NPY(+) LTS and NGF cells, LTS-like 5HT3a(EGFP) cells show robust responses to nicotine administration, while the 5HT3a(EGFP) NGF cell type shows little or no response. By constructing a molecular map of the overlap between these novel populations and existing interneuron populations, we are able to reconcile the morphological and molecular estimates of striatal interneuron numbers.
Collapse
Affiliation(s)
| | - C Foldi
- Department of Medical Biochemistry and Biophysics
| | - S Szydlowski
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - L Sjulson
- Department of Psychiatry.,Department of Neuroscience and Physiology, NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA
| | - M Farries
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - C Wilson
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - G Silberberg
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
250
|
Abstract
The motor and learning functions of the striatum are critically dependent on synaptic transmission from midbrain dopamine neurons and striatal cholinergic interneurons (CINs). Both neural populations alter their discharge in vivo in response to salient sensory stimuli, albeit in opposite directions. Whereas midbrain dopamine neurons respond to salient stimuli with a brief burst of activity, CINs exhibit a distinct pause in firing that is often followed by a period of increased excitability. Although this "pause-rebound" sensory response requires dopaminergic signaling, the precise mechanisms underlying the modulation of CIN firing by dopaminergic afferents remain unclear. Here, we show that phasic activation of nigrostriatal afferents in a mouse striatal slice preparation is sufficient to evoke a pause-rebound response in CINs. Using a combination of optogenetic, electrophysiological, and pharmacological approaches, we demonstrate that synaptically released dopamine inhibits CINs through type 2 dopamine receptors, while another unidentified transmitter mediates the delayed excitation. These findings imply that, in addition to their direct effects on striatal projection neurons, midbrain dopamine neurons indirectly modulate striatal output by dynamically controlling cholinergic tone. In addition, our data suggest that phasic dopaminergic activity may directly participate in the characteristic pause-rebound sensory response that CINs exhibit in vivo in response to salient and conditioned stimuli.
Collapse
|