201
|
Liu J, Zhang B, Zhang Y, Zhao H, Chen X, Zhong L, Shang D. Oxidative stress and autophagy-mediated immune patterns and tumor microenvironment infiltration characterization in gastric cancer. Aging (Albany NY) 2023; 15:12513-12536. [PMID: 37950729 PMCID: PMC10683600 DOI: 10.18632/aging.205194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/04/2023] [Indexed: 11/13/2023]
Abstract
Recent years have seen a sharp rise in the amount of research on the connection between oxidative stress, autophagy, and cancer cells. However, the significant functions of oxidative stress and autophagy-related genes (OARGs) in gastric cancer (GC) are yet to be investigated integrally. Therefore, it will be a new and promising concept to search for novel OARG-related biomarkers to predict the prognosis and treatment response of GC. First, we assessed changes in prognosis and tumor microenvironment (TME) characteristics across the various oxidative stress and autophagy-related modification patterns based on a detailed analysis of 17 OARGs with prognostic significance of 808 GC samples. We identified three distinct OARG alteration patterns which displayed unique biological characteristics and immune cell infiltration features. Using principal component analysis methods, the OARGscore was developed to evaluate the OARG modification patterns of certain tumors. The negative connection between OARGscore and immune cells was statistically significant. Increased survival, a higher incidence of mutations, and a better response to immunotherapy were all predicted to be related to patients' high-OARGscore. In addition, the candidate chemotherapeutic drugs were predicted using the oncoPredict program. The low-OARGscore group was predicted to benefit more from Ribociclib, Alisertib, Niraparib, Epirubicin, Olaparib, and Axitinib, while patients in the high-OARGscore group were predicted to benefit more from Afatinib, Oxaliplatin, Paclitaxel, 5-Fluorouracil, Dabrafenib and Lapatinib. Our findings offer a specific method for predicting a patient's prognosis and susceptibility to immunotherapy, as well as a promising insight of oxidative stress and autophagy in GC.
Collapse
Affiliation(s)
- Jifeng Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Biao Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yunshu Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huahui Zhao
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xu Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lei Zhong
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
202
|
Kolesarova A, Baldovska S, Kohut L, Vasicek J, Ivanisova E, Arvay J, Duracka M, Roychoudhury S. Modulatory effect of pomegranate peel extract on key regulators of ovarian cellular processes in vitro. Front Endocrinol (Lausanne) 2023; 14:1277155. [PMID: 38027211 PMCID: PMC10663288 DOI: 10.3389/fendo.2023.1277155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
In this study, response of ovarian cells (human granulosa cell line HGL5, and human adenocarcinoma cell line OVCAR-3) to short-term pomegranate peel extract (PPE) treatment (for 24 hours in cell culture) was evaluated in vitro. Quantitative and qualitative screening of polyphenols revealed punicalagins α and β as major polyphenolic components. Total phenolic content (TPC) was 93.76 mg GAE/g d.w. with a high antioxidant activity of 95.30 mg TEAC/g d.w. In OVCAR-3, PPE treatment inhibited the metabolic activity, and increased cyclin-dependent kinase 1 (CDKN1A, p21) level at the highest dose, but not in HGL5. Flow cytometry analysis could not detect any significant difference between proportions of live, dead, and apoptotic cells in both cell lines. Reactive oxygen species (ROS) revealed an antioxidant effect on HGL5, and a prooxidant effect by stimulating ROS generation in OVCAR-3 cells at the higher doses of PPE. However, in contrast to HGL5, PPE treatment decreased release of growth factors - TGF-β2 and EGF at the highest dose, as well as their receptors TGFBR2 and EGFR in OVCAR-3 cells. PPE also influenced steroidogenesis in granulosa cells HGL5 by stimulating 17β-estradiol secretion at higher doses. In conclusion, the present study highlighted the bioactive compounds in pomegranate peels and the possible mechanisms of action of PPE, shedding light on its promising role in ovarian cancer (chemo)prevention and/or management.
Collapse
Affiliation(s)
- Adriana Kolesarova
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovakia
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Simona Baldovska
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Ladislav Kohut
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Jaromir Vasicek
- Institute of Farm Animal Genetics and Reproduction, NPPC - Research Institute for Animal Production Nitra, Lužianky, Slovakia
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Eva Ivanisova
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Julius Arvay
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Michal Duracka
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | | |
Collapse
|
203
|
Scirè A, Casari G, Romaldi B, de Bari L, Antognelli C, Armeni T. Glutathionyl Hemoglobin and Its Emerging Role as a Clinical Biomarker of Chronic Oxidative Stress. Antioxidants (Basel) 2023; 12:1976. [PMID: 38001829 PMCID: PMC10669486 DOI: 10.3390/antiox12111976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Hemoglobin is one of the proteins that are more susceptible to S-glutathionylation and the levels of its modified form, glutathionyl hemoglobin (HbSSG), increase in several human pathological conditions. The scope of the present review is to provide knowledge about how hemoglobin is subjected to S-glutathionylation and how this modification affects its functionality. The different diseases that showed increased levels of HbSSG and the methods used for its quantification in clinical investigations will be also outlined. Since there is a growing need for precise and reliable methods for markers of oxidative stress in human blood, this review highlights how HbSSG is emerging more and more as a good indicator of severe oxidative stress but also as a key pathogenic factor in several diseases.
Collapse
Affiliation(s)
- Andrea Scirè
- Department of Life and Environmental Sciences (Di.S.V.A.), Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Giulia Casari
- Department of Odontostomatologic and Specialized Clinical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (G.C.); (B.R.); (T.A.)
| | - Brenda Romaldi
- Department of Odontostomatologic and Specialized Clinical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (G.C.); (B.R.); (T.A.)
| | - Lidia de Bari
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), 70126 Bari, Italy;
| | - Cinzia Antognelli
- Department of Medicine and Surgery, Università Degli Studi di Perugia, 06129 Perugia, Italy;
| | - Tatiana Armeni
- Department of Odontostomatologic and Specialized Clinical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (G.C.); (B.R.); (T.A.)
| |
Collapse
|
204
|
Hu C, Qiu Y, Guo J, Cao Y, Li D, Du Y. An Oxygen Supply Strategy for Sonodynamic Therapy in Tuberculous Granuloma Lesions Using a Catalase-Loaded Nanoplatform. Int J Nanomedicine 2023; 18:6257-6274. [PMID: 37936950 PMCID: PMC10627092 DOI: 10.2147/ijn.s430019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
Purpose Tuberculosis (TB) is a chronic disease caused by Mycobacterium tuberculosis (MTB) that remains a major global health challenge. One of the main obstacles to effective treatment is the heterogeneous microenvironment of TB granulomas. This study aimed to investigate the potential of a hypoxic remission-based strategy to enhance the outcome of tuberculosis treatment when implemented in combination with ultrasound. Methods A PLGA nanoparticle (LEV@CAT-NPs) loaded with levofloxacin (LEV) and catalase (CAT) was fabricated by a double emulsification method, and its physical characteristics, oxygen production capacity, drug release capacity, and biosafety were thoroughly investigated. The synergistic therapeutic effects of ultrasound (US)-mediated LEV@CAT-NPs were evaluated using an experimental mouse model of subcutaneous tuberculosis granuloma induced by Bacille Calmette-Guérin (BCG) as a substitute for MTB. Results LEV@CAT-NPs exhibited excellent oxygen production capacity, biosafety, and biocompatibility. Histological analysis revealed that ultrasound-mediated LEV@CAT-NPs could effectively remove bacteria from tuberculous granulomas, significantly alleviate the hypoxia state, reduce the necrotic area and inflammatory cells within the granuloma, and increase the penetration of dyes in granuloma tissues. The combined treatment also reduced the serum levels of inflammatory cytokines (eg, TNF-α, IL-6, and IL-8), and significantly downregulated the expression of hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF). These results suggested that the synergistic treatment of ultrasound-mediated LEV@CAT-NPs effectively eradicated the bacterial infection and reversed the hypoxic microenvironment of tuberculous granulomas, further promoting tissue repair. Conclusion This study provides a non-invasive and new avenue for treating refractory tuberculosis infections. The potential role of regulating hypoxia within infected lesions as a therapeutic target for infection deserves further exploration in future studies.
Collapse
Affiliation(s)
- Can Hu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yan Qiu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Jiajun Guo
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yuchao Cao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Dairong Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yonghong Du
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| |
Collapse
|
205
|
Ai L, Luo D, Wang H, Liu X, Yang M, Tian F, Qin S, Liu J, Li Y. Ameliorative effects of Bifidobacterium longum peptide-1 on benzo(α)pyrene induced oxidative damages via daf-16 in Caenorhabditis elegans. Cell Stress Chaperones 2023; 28:909-920. [PMID: 37828395 PMCID: PMC10746624 DOI: 10.1007/s12192-023-01385-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/18/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Oxidative stress is implicated in numerous diseases, with benzo(α)pyrene (BaP) known for causing substantial oxidative damage. Bifidobacterium longum (B. longum) is recognized as an antioxidant bacterium for certain hosts, yet its influence on oxidative damages instigated by BaP remains undetermined. In our study, we introduced various strains of Caenorhabditis elegans (C. elegans) to BaP to trigger oxidative stress, subsequently treating them with different forms of B. longum to evaluate its protective effects. Additionally, we explored the role of daf-16 in this context. Our findings indicated that in wild-type N2 C. elegans, B. longum-even in the form of inactivated bacteria or bacterial ultrasonic lysates (BULs)-significantly extended lifespan. BaP exposure notably decreased lifespan, superoxide dismutase (SOD) activity, and motility, while simultaneously down-regulating the expression of reactive oxygen species (ROS)-associated genes (sod-3, sek-1, cat-1) and daf-16 downstream genes (sod-3, ctl-2). However, it significantly increased the ROS level, malondialdehyde (MDA) content, and lipofuscin accumulation and up-regulated another daf-16 downstream gene (clk-1) (P <0.05). Interestingly, when further treated with B. longum peptide-1 (BLP-1), opposite effects were observed, and all the aforementioned indices changed significantly. In the case of RNAi (daf-16) C. elegans, BaP exposure significantly shortened the lifespan (P <0.05), which was only slightly prolonged upon further treatment with BLP-1. Furthermore, the expression of daf-16 downstream genes showed minor alterations in RNAi C. elegans upon treatment with either BaP or BLP-1. In conclusion, our findings suggest that B. longum acts as a probiotic for C. elegans. BLP-1 was shown to safeguard C. elegans from numerous oxidative damages induced by BaP, but these protective effects were contingent upon the daf-16 gene.
Collapse
Affiliation(s)
- Ling Ai
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Luzhou, 646000, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Dan Luo
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Luzhou, 646000, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, 518060, Guangdong, China
| | - Huailing Wang
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, 518060, Guangdong, China
| | - Xiaoyu Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, 518060, Guangdong, China
| | - Min Yang
- Kexing Biopharm Co., Ltd., Shenzhen, 518057, Guangdong, China
| | - Fangfang Tian
- Kexing Biopharm Co., Ltd., Shenzhen, 518057, Guangdong, China
| | - Suofu Qin
- Kexing Biopharm Co., Ltd., Shenzhen, 518057, Guangdong, China
| | - Jie Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, 518060, Guangdong, China
| | - Yuying Li
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Luzhou, 646000, Sichuan, China.
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
206
|
Zhao J, Zhao F, Yuan J, Liu H, Wang Y. Gut microbiota metabolites, redox status, and the related regulatory effects of probiotics. Heliyon 2023; 9:e21431. [PMID: 38027795 PMCID: PMC10643359 DOI: 10.1016/j.heliyon.2023.e21431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Oxidative stress is a state of imbalance between oxidation and antioxidation. It is caused by excess levels of free radicals and leads to the damage of DNA, proteins, and lipids. The crucial role of gut microbiota in regulating oxidative stress has been widely demonstrated. Studies have suggested that the redox regulatory effects of gut microbiota are related to gut microbiota metabolites, including fatty acids, lipopolysaccharides, tryptophan metabolites, trimethylamine-N-oxide and polyphenolic metabolites. In recent years, the potential benefits of probiotics have been gaining increasing scientific interest owing to their ability to modulate gut microbiota and oxidative stress. In this review, we summarise the adverse health effects of oxidative stress and discuss the role of the gut microbiota and its metabolites in redox regulation. Based on the influence of gut microbiota metabolites, the roles of probiotics in preventing oxidative stress are highlighted.
Collapse
Affiliation(s)
| | | | - Junmeng Yuan
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| |
Collapse
|
207
|
Cao F, Xia W, Dai S, Wang C, Shi R, Yang Y, Guo C, Xu XL, Luo J. Berberine: An inspiring resource for the treatment of colorectal diseases. Biomed Pharmacother 2023; 167:115571. [PMID: 37757496 DOI: 10.1016/j.biopha.2023.115571] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer is a prevalent malignant tumor with a complex and diverse pathogenesis. In recent years, natural products have shown promising application prospects as sources of anticancer drugs. BBR, a class of benzoquinoline alkaloids extracted from various plants, is widely used in disease treatments owing to its pharmacological activities, including antibacterial, anti-inflammatory, antioxidant, anticancer, and anti-angiogenesis properties. Research has demonstrated that BBR exerts an anti-Salmonella and -Escherichia coli infection effect, attenuating inflammatory reactions by inhibiting harmful bacteria. During the stage of colorectal precancerous lesions, BBR inhibits the activity of cell cyclin by regulating the PI3K/AKT, MAPK, and Wnt signaling pathways, thereby decelerating the cell cycle progression of polyp or adenoma cells. Moreover, the inhibitory effect of BBR on colorectal cancer primarily occurs through the regulation of the cancer cell cycle, anti-angiogenesis, gut microbiota, and antioxidant pathways. The specific involved pathways include the MPK/ERK, NF-kB, and EGFR signaling pathways, encompassing the regulation of Bcl-2 family proteins, vascular endothelial growth factor, and superoxide dismutase. This study reviews and summarizes, for the first time, the specific mechanisms of action of BBR in the carcinogenesis process of colorectal cancer, providing novel insights for its clinical application in intestinal diseases.
Collapse
Affiliation(s)
- Fang Cao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | | | - Shengcheng Dai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Changkang Wang
- Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Rui Shi
- Tong Ren People's Hospital, Chongqing, China
| | - Yujie Yang
- Chongqing Xinqiao Community Health Service Center, Chongqing, China
| | - Cui Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xue Liang Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jian Luo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
208
|
Barbier E, Carpentier J, Simonin O, Gosset P, Platel A, Happillon M, Alleman LY, Perdrix E, Riffault V, Chassat T, Lo Guidice JM, Anthérieu S, Garçon G. Oxidative stress and inflammation induced by air pollution-derived PM 2.5 persist in the lungs of mice after cessation of their sub-chronic exposure. ENVIRONMENT INTERNATIONAL 2023; 181:108248. [PMID: 37857188 DOI: 10.1016/j.envint.2023.108248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
More than 7 million early deaths/year are attributable to air pollution. Current health concerns are especially focused on air pollution-derived particulate matter (PM). Although oxidative stress-induced airway inflammation is one of the main adverse outcome pathways triggered by air pollution-derived PM, the persistence of both these underlying mechanisms, even after exposure cessation, remained poorly studied. In this study, A/JOlaHsd mice were also exposed acutely (24 h) or sub-chronically (4 weeks), with or without a recovery period (12 weeks), to two urban PM2.5 samples collected during contrasting seasons (i.e., autumn/winter, AW or spring/summer, SS). The distinct intrinsic oxidative potentials (OPs) of AW and SS PM2.5, as evaluated in acellular conditions, were closely related to their respective physicochemical characteristics and their respective ability to really generate ROS over-production in the mouse lungs. Despite the early activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) cell signaling pathway by AW and, in a lesser degree, SS PM2.5, in the murine lungs after acute and sub-chronic exposures, the critical redox homeostasis was not restored, even after the exposure cessation. Accordingly, an inflammatory response was reported through the activation of the nuclear factor-kappa B (NF-κB) cell signaling pathway activation, the secretion of cytokines, and the recruitment of inflammatory cells, in the murine lungs after the acute and sub-chronic exposures to AW and, in a lesser extent, to SS PM2.5, which persisted after the recovery period. Taken together, these original results provided, for the first time, new relevant insights that air pollution-derived PM2.5, with relatively high intrinsic OPs, induced oxidative stress and inflammation, which persisted admittedly at a lower level in the lungs after the exposure cessation, thereby contributing to the occurrence of molecular and cellular adverse events leading to the development and/or exacerbation of future chronic inflammatory lung diseases and even cancers.
Collapse
Affiliation(s)
- Emeline Barbier
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR4483-IMPECS, France
| | - Jessica Carpentier
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR4483-IMPECS, France
| | - Ophélie Simonin
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR4483-IMPECS, France
| | - Pierre Gosset
- Service d'Anatomo-pathologie, Hôpital Saint Vincent de Paul, Lille, France
| | - Anne Platel
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR4483-IMPECS, France
| | - Mélanie Happillon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR4483-IMPECS, France
| | - Laurent Y Alleman
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, Lille, France
| | - Esperanza Perdrix
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, Lille, France
| | - Véronique Riffault
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, Lille, France
| | - Thierry Chassat
- Institut Pasteur de Lille, Plateforme d'Expérimentation et de Haute Technologie Animale, Lille, France
| | | | | | - Guillaume Garçon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR4483-IMPECS, France.
| |
Collapse
|
209
|
Lan Q, Wang K, Meng Z, Lin H, Zhou T, Lin Y, Jiang Z, Chen J, Liu X, Lin Y, Lin D. Roxadustat promotes hypoxia-inducible factor-1α/vascular endothelial growth factor signalling to enhance random skin flap survival in rats. Int Wound J 2023; 20:3586-3598. [PMID: 37225176 PMCID: PMC10588316 DOI: 10.1111/iwj.14235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
Random skin flaps have limited clinical application as a broad surgical reconstruction treatment because of distal necrosis. The prolyl hydroxylase domain-containing protein inhibitor roxadustat (RXD) enhances angiogenesis and reduces oxidative stress and inflammation. This study explored the function of RXD in the survival of random skin flaps. Thirty-six male Sprague-Dawley rats were randomly divided into low-dose RXD group (L-RXD group, 10 mg/kg/2 day), high-dose RXD group (H-RXD group, 25 mg/kg/2 day), and control group (1 mL of solvent, 1:9 DMSO:corn oil). The proportion of surviving flaps was determined on day 7 after surgery. Angiogenesis was assessed by lead oxide/gelatin angiography, and microcirculation blood perfusion was evaluated by laser Doppler flow imaging. Specimens in zone II were obtained, and the contents of superoxide dismutase (SOD) and malondialdehyde (MDA) were measured as indicators of oxidative stress. Histopathological status was evaluated with haematoxylin and eosin staining. The levels of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), and the inflammatory factors interleukin (IL)-1β, IL-6, and tumour necrosis factor-α (TNF-α) were detected by immunohistochemistry. RXD promoted flap survival and microcirculatory blood perfusion. Angiogenesis was detected distinctly in the experimental group. SOD activity increased and the MDA level decreased in the experimental group. Immunohistochemistry indicated that the expression levels of HIF-1α and VEGF were increased while the levels of IL-6, IL-1β, and TNF-α were decreased after RXD injection. RXD promoted random flap survival by reinforcing vascular hyperplasia and decreasing inflammation and ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- Qicheng Lan
- Department of Hand and Plastic SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical UniversityWenzhouChina
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Wenzhou Medical University, The First School of Clinical Medical, Wenzhou Medical UniversityWenzhouChina
| | - Kaitao Wang
- Department of Hand and Plastic SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical UniversityWenzhouChina
| | - Zhefeng Meng
- Department of Hand and Plastic SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical UniversityWenzhouChina
| | - Hang Lin
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Wenzhou Medical University, The First School of Clinical Medical, Wenzhou Medical UniversityWenzhouChina
| | - Taotao Zhou
- Department of Hand and Plastic SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical UniversityWenzhouChina
| | - Yi Lin
- Department of Hand and Plastic SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical UniversityWenzhouChina
| | - Zhikai Jiang
- Department of Hand and Plastic SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical UniversityWenzhouChina
| | - Jianpeng Chen
- Department of Hand and Plastic SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical UniversityWenzhouChina
| | - Xuao Liu
- Department of Hand and Plastic SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical UniversityWenzhouChina
| | - Yuting Lin
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Wenzhou Medical University, The First School of Clinical Medical, Wenzhou Medical UniversityWenzhouChina
| | - Dingsheng Lin
- Department of Hand and Plastic SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
210
|
Wang C, Yao X, Li X, Wang Q, Jiang N, Hu X, Lv H, Mu B, Wang J. Fosthiazate, a soil-applied nematicide, induces oxidative stress, neurotoxicity and transcriptome aberrations in earthworm (Eisenia fetida). JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132865. [PMID: 39491983 DOI: 10.1016/j.jhazmat.2023.132865] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/14/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2024]
Abstract
Fosthiazate is a widely used organophosphorus nematicide that resides in the soil and controls soil root-knot nematodes. However, whether it has toxic effects on non-target soil organisms such as earthworms is unclear. Therefore, in this study, a 28-day experiment of fosthiazate exposure was conducted using the Eisenia fetida as the model organism. The results showed that fosthiazate stress caused excessive production of reactive oxygen species (ROS), increased the levels of malondialdehyde (MDA) and 8-hydroxy-2-deoxyguanosine (8-OHdG), and decreased the activities of superoxide dismutase (SOD) and catalase (CAT), suggesting that fosthiazate induced oxidative stress and DNA damage in E. fetida. Acetylcholinesterase (AChE) activity was significantly reduced, and the expression of its related functional genes was also altered, demonstrating that fosthiazate damaged the nervous system of E. fetida, which was further confirmed by AlphaFold2 modeling and molecular docking simulations. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that fosthiazate exposure may induce apoptosis, inflammation, and viral infection in E. fetida, which adversely affect the organism. This study provides reference data for the ecotoxicity of fosthiazate.
Collapse
Affiliation(s)
- Can Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712000, PR China
| | - Xiangfeng Yao
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xianxu Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Qian Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Nan Jiang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712000, PR China
| | - Xue Hu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Huijuan Lv
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Baoyan Mu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
211
|
Crudele L, Novielli F, De Matteis C, Petruzzelli S, Suppressa P, Berardi E, Antonica G, Piazzolla G, Sabbà C, Graziano G, Moschetta A. Thyroid nodule malignancy is associated with increased non-invasive hepatic fibrosis scores in metabolic subjects. Front Oncol 2023; 13:1233083. [PMID: 37965446 PMCID: PMC10641401 DOI: 10.3389/fonc.2023.1233083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction Thyroid cancer incidence is increasing, and adiposity-related conditions are gaining space in its pathogenesis. In this study, we aimed to detect any anthropometric, biohumoral, and clinical features that might be associated with thyroid nodule malignancy, potentially representing novel non-invasive markers of thyroid cancer. Materials and methods The study was conducted in a group of 142 consecutive outpatients (47 men and 95 women) who underwent fine-needle aspiration biopsy/cytology (FNAB/C) due to suspicion of malignancy from January 2018 to September 2022. We compared lipid and glycemic blood profiles as well as non-invasive liver fibrosis indexes such as aspartate aminotransferase (AST) to alanine aminotransferase (ALT) ratio (AAR), AST to platelet ratio index (APRI), and fibrosis index based on four factors (FIB-4) between patients with benign and malignant newly diagnosed nodules. Then, we performed receiver operating characteristic (ROC) analysis to assess their best cutoff values for discrimination of malignant nodules and chi-squared test to evaluate the association of specific dysmetabolic conditions with malignancy. To understand whether and to what degree dysmetabolic conditions increased the risk of thyroid nodule malignancy, we also calculated the odds ratio (OR) of the main biomarkers. Results After FNAB/C, 121 (85%) patients were diagnosed with benign thyroid nodules, while 21 (15%) individuals were diagnosed with thyroid cancer. Comparing patients with benign and malignant nodules, we found that individuals with thyroid cancer exhibited increased body mass index (BMI) (p = 0.048) and fasting plasma glucose (p = 0.046). Intriguingly, considering non-invasive scores for liver fibrosis, subjects with thyroid cancer presented increased AAR (p < 0.001) and APRI (p = 0.007), and these scores were associated with malignancy (p < 0.005) with OR = 7.1 and OR = 5, respectively. Moreover, we showed that only in the cancer group, low levels of vitamin D correlated with stigmata of impaired metabolism. Discussion In our study, AAR and APRI scores were associated with thyroid nodule malignancy and could be used to predict it and to speed up the diagnostic process. From a pathogenic point of view, we speculated that metabolic-associated fatty liver disease (MAFLD) along with hyperglycemia and vitamin D deficiency may represent putative drivers of thyroid carcinogenesis.
Collapse
Affiliation(s)
- Lucilla Crudele
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Fabio Novielli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Carlo De Matteis
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Stefano Petruzzelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Patrizia Suppressa
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Elsa Berardi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Gianfranco Antonica
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Giuseppina Piazzolla
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Carlo Sabbà
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Giusi Graziano
- Center for Outcomes Research and Clinical Epidemiology (CORESEARCH), Pescara, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
- IINBB National Institute for Biostructure and Biosystems, Roma, Italy
| |
Collapse
|
212
|
Peng P, He M, Fang W, Lai M, Xiao F, He W, Xiao H, Wei Q. Plasma 8-OHdG act as a biomarker for steroid-induced osteonecrosis of the femoral head. BMC Musculoskelet Disord 2023; 24:808. [PMID: 37828532 PMCID: PMC10568778 DOI: 10.1186/s12891-023-06804-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/16/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Oxidative stress was closely related to the occurrence and development of Steroid-induced osteonecrosis of the femoral head (SIONFH). 8-hydroxy-2'-deoxyguanosine (8-OHdG) is a important index of oxidative stress. The aim of this study is to investigate the role of 8-OHdG in the development of SIONFH. METHODS From May 2021 and November 2021, 33 patients diagnosed with SIONFH and 26 healthy controls were recruited in this study. Assessment included the radiography and pathology evaluation of clinical bone tissue, expression position and level of 8-OHdG, level of plasma 8-OHdG, as well as the receiver operating characteristic (ROC) curve. RESULTS We observed that expression levels of 8-OHdG in bone samples decreased with Association Research Circulation Osseous (ARCO) stages. Plasma 8-OHdG levels were significantly increased in the SIONFH group compared to the healthy control group. Plasma 8-OHdG level of pre-collapse patients was higher than that of post-collapse patients, the decreased plasma 8-OHdG level was related to higher ARCO stages. CONCLUSION Plasma 8-OHdG may represent potential biomarkers during SIONFH at different stages. Higher plasma 8-OHdG levels indicated early stage of SIONFH. The current study provided new clues for early diagnosis and treatment for SIONFH.
Collapse
Affiliation(s)
- Peng Peng
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Mincong He
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, Guangzhou, 510378, China
- Department of Orthopaedics, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510378, China
| | - Weihua Fang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Mengqi Lai
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Fangjun Xiao
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wei He
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, Guangzhou, 510378, China
- Department of Orthopaedics, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510378, China
| | - Huan Xiao
- Department of Orthopedics, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China.
| | - Qiushi Wei
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, Guangzhou, 510378, China.
- Department of Orthopaedics, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510378, China.
| |
Collapse
|
213
|
Gottwald E, Grün C, Nies C, Liebsch G. Physiological oxygen measurements in vitro-Schrödinger's cat in 3D cell biology. Front Bioeng Biotechnol 2023; 11:1218957. [PMID: 37885450 PMCID: PMC10598749 DOI: 10.3389/fbioe.2023.1218957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
After the development of 3D cell culture methods in the middle of the last century and the plethora of data generated with this culture configuration up to date, it could be shown that a three-dimensional arrangement of cells in most of the cases leads to a more physiological behavior of the generated tissue. However, a major determinant for an organotypic function, namely, the dissolved oxygen concentration in the used in vitro-system, has been neglected in most of the studies. This is due to the fact that the oxygen measurement in the beginning was simply not feasible and, if so, disturbed the measurement and/or the in vitro-system itself. This is especially true for the meanwhile more widespread use of 3D culture systems. Therefore, the tissues analyzed by these techniques can be considered as the Schrödinger's cat in 3D cell biology. In this perspective paper we will outline how the measurement and, moreover, the regulation of the dissolved oxygen concentration in vitro-3D culture systems could be established at all and how it may be possible to determine the oxygen concentration in organoid cultures and the respiratory capacity via mito stress tests, especially in spheroids in the size range of a few hundred micrometers, under physiological culture conditions, without disturbances or stress induction in the system and in a high-throughput fashion. By this, such systems will help to more efficiently translate tissue engineering approaches into new in vitro-platforms for fundamental and applied research as well as preclinical safety testing and clinical applications.
Collapse
Affiliation(s)
- Eric Gottwald
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Christoph Grün
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Cordula Nies
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | |
Collapse
|
214
|
Agrawal K, Asthana S, Kumar D. Role of Oxidative Stress in Metabolic Reprogramming of Brain Cancer. Cancers (Basel) 2023; 15:4920. [PMID: 37894287 PMCID: PMC10605619 DOI: 10.3390/cancers15204920] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Brain cancer is known as one of the deadliest cancers globally. One of the causative factors is the imbalance between oxidative and antioxidant activities in the body, which is referred to as oxidative stress (OS). As part of regular metabolism, oxygen is reduced by electrons, resulting in the creation of numerous reactive oxygen species (ROS). Inflammation is intricately associated with the generation of OS, leading to the increased production and accumulation of reactive oxygen and nitrogen species (RONS). Glioma stands out as one of the most common malignant tumors affecting the central nervous system (CNS), characterized by changes in the redox balance. Brain cancer cells exhibit inherent resistance to most conventional treatments, primarily due to the distinctive tumor microenvironment. Oxidative stress (OS) plays a crucial role in the development of various brain-related malignancies, such as glioblastoma multiforme (GBM) and medulloblastoma, where OS significantly disrupts the normal homeostasis of the brain. In this review, we provide in-depth descriptions of prospective targets and therapeutics, along with an assessment of OS and its impact on brain cancer metabolism. We also discuss targeted therapies.
Collapse
Affiliation(s)
- Kirti Agrawal
- School of Health Sciences and Technology (SoHST), UPES, Dehradun 248007, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), Faridabad 121001, India
| | - Dhruv Kumar
- School of Health Sciences and Technology (SoHST), UPES, Dehradun 248007, India
| |
Collapse
|
215
|
Zhu M, Zhang N, Ma J. Hierarchical clustering identifies oxidative stress-related subgroups for the prediction of prognosis and immune microenvironment in gastric cancer. Heliyon 2023; 9:e20804. [PMID: 37928388 PMCID: PMC10622623 DOI: 10.1016/j.heliyon.2023.e20804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 09/12/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Background Gastric cancer (GC) is a prevalent malignancy of the digestive tract globally, demonstrating a substantial occurrence of relapse and metastasis, alongside the absence of efficacious treatment. Tumor progression and the development of cancer are linked to oxidative stress. Our objective was twofold: first, to determine distinct subcategories based on oxidative stress in GC patients, and second, to establish oxidative stress-related genes that would aid in stratifying the risk for GC patients. Methods TCGA-STAD and GSE84437 datasets were utilized to obtain the mRNA expression profiles and corresponding clinical information of GC patients. Through consensus clustering analysis, distinct subgroups related to oxidative stress were identified. To uncover the underlying mechanisms, GSEA and GSVA were performed. xCell, CIBERSORT, MCPCounter, and TIMER algorithms were employed to evaluate the immune microenvironment and immune status of the different GC subtypes. A prognostic risk model was developed using the TCGA-STAD dataset and substantiated using the GSE84437 dataset. Furthermore, qRT-PCR was employed to validate the expression of genes associated with prognosis. Results Two distinct subtypes of oxidative stress were discovered, with markedly different survival rates. The C1 subtype demonstrated an activated immune signal pathway, a significant presence of immune cell infiltration, high immune score, and a high microenvironment score, indicating a poor prognosis. Moreover, a prognostic signature related to oxidative stress (IMPACT and PXDN) was able to accurately estimate the likelihood of survival for patients with gastric cancer. A nomogram incorporating the patients' gender, age, and risk score was able to predict survival in gastric cancer patients. Additionally, the expression of IMPACT and PXDN showed a strong correlation with overall survival and the infiltration of immune cells. Conclusion Based on signatures related to oxidative stress, we developed an innovative system for categorizing patients with GC. This stratification enables accurate prognostication of individuals with GC.
Collapse
Affiliation(s)
- Meng Zhu
- College of Basic Medicine, Ningxia Medical University, Ningxia, Yinchuan, 750004, China
| | - Ning Zhang
- Department of pathology, General Hospital of Ningxia Medical University, Ningxia, Yinchuan, 750004, China
| | - Jingwei Ma
- The second department of tumor surgery, General Hospital of Ningxia Medical University, Ningxia, Yinchuan, 750004, China
| |
Collapse
|
216
|
Zhou Y, Zhang A, Fang C, Yuan L, Shao A, Xu Y, Zhou D. Oxidative stress in pituitary neuroendocrine tumors: Affecting the tumor microenvironment and becoming a new target for pituitary neuroendocrine tumor therapy. CNS Neurosci Ther 2023; 29:2744-2759. [PMID: 37341156 PMCID: PMC10493678 DOI: 10.1111/cns.14315] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
Pituitary adenomas (PAs), or pituitary neuroendocrine tumors (PitNETs), are commonly found in the anterior pituitary gland. Although the majority of PitNETs are benign and stable, several tumors have malignant characteristics. The tumor microenvironment (TME) plays an important role in the process of tumorigenesis and is composed of several types of cells. Various cells in the TME are significantly affected by oxidative stress. It has been reported that immunotherapeutic strategies have good effects in several cancers. However, the clinical potential of immunotherapies in PitNETs has not yet been fully discussed. Oxidative stress can regulate PitNET cells and immune cells in the TME, thus affecting the immune status of the TME of PitNETs. Therefore, modulation of oxidative stress-regulated immune cells using a combination of several agents and the immune system to suppress PitNETs is a promising therapeutic direction. In this review, we systematically analyzed the oxidative stress process within PitNET cells and various immune cells to elucidate the potential value of immunotherapy.
Collapse
Affiliation(s)
- Yuhang Zhou
- The First Clinical Medical CollegeHeilongjiang University of Chinese MedicineHarbinChina
- Health Management CenterTongde Hospital of Zhejiang ProvinceHangzhouChina
| | - Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Ling Yuan
- School of Public Health, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Yuanzhi Xu
- Department of Neurosurgery, Huashan Hospital, School of MedicineFudan UniversityShanghaiChina
| | - Danyang Zhou
- Health Management CenterTongde Hospital of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
217
|
Aleksandrova Y, Neganova M. Deciphering the Mysterious Relationship between the Cross-Pathogenetic Mechanisms of Neurodegenerative and Oncological Diseases. Int J Mol Sci 2023; 24:14766. [PMID: 37834214 PMCID: PMC10573395 DOI: 10.3390/ijms241914766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The relationship between oncological pathologies and neurodegenerative disorders is extremely complex and is a topic of concern among a growing number of researchers around the world. In recent years, convincing scientific evidence has accumulated that indicates the contribution of a number of etiological factors and pathophysiological processes to the pathogenesis of these two fundamentally different diseases, thus demonstrating an intriguing relationship between oncology and neurodegeneration. In this review, we establish the general links between three intersecting aspects of oncological pathologies and neurodegenerative disorders, i.e., oxidative stress, epigenetic dysregulation, and metabolic dysfunction, examining each process in detail to establish an unusual epidemiological relationship. We also focus on reviewing the current trends in the research and the clinical application of the most promising chemical structures and therapeutic platforms that have a modulating effect on the above processes. Thus, our comprehensive analysis of the set of molecular determinants that have obvious cross-functional pathways in the pathogenesis of oncological and neurodegenerative diseases can help in the creation of advanced diagnostic tools and in the development of innovative pharmacological strategies.
Collapse
Affiliation(s)
- Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Margarita Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia
| |
Collapse
|
218
|
Choi SH, Ochirpurev B, Toriba A, Won JU, Kim H. Exposure to Benzo[a]pyrene and 1-Nitropyrene in Particulate Matter Increases Oxidative Stress in the Human Body. TOXICS 2023; 11:797. [PMID: 37755807 PMCID: PMC10534303 DOI: 10.3390/toxics11090797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/23/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have been reported to cause oxidative stress in metabolic processes. This study aimed to evaluate the relationship between exposure to PAHs, including benzo[a]pyrene (BaP) and 1-nitropyrene (1-NP), in the atmosphere and oxidative stress levels in the human body. This study included 44 Korean adults who lived in Cheongju, Republic of Korea. Atmospheric BaP and 1-NP concentrations and urinary 6-hydroxy-1-nitropyrene (6-OHNP), N-acetyl-1-aminopyrene (1-NAAP), and 1-hydroxypyrene (1-OHP) concentrations were measured. The oxidative stress level was assessed by measuring urinary thiobarbituric acid-reactive substances (TBARS) and 8-hydroxydeoxyguanosine (8-OHdG) concentrations. Urinary TBARS and 6-OHNP concentrations significantly differed between winter and summer. BaP exposure was significantly associated with urinary 8-OHdG concentrations in summer. However, atmospheric 1-NP did not show a significant correlation with oxidative stress marker concentrations. Urinary 1-NAAP concentration was a significant determinant for urinary 8-OHdG concentration in summer. Oxidative stress in the body increases in proportion to inhalation exposure to BaP, and more 8-OHdG is produced in the body as the amount of 1-NP, which is metabolized to 1-AP or 1-NAAP, increases.
Collapse
Affiliation(s)
- Sun-Haeng Choi
- Department of Occupational and Environmental Medicine, Chungbuk National University Hospital, Cheongju 28644, Republic of Korea
- Department of Public Health, Graduate School, Yonsei University, Seoul 03722, Republic of Korea
| | - Bolormaa Ochirpurev
- Department of Preventive Medicine, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Akira Toriba
- Department of Hygienic Chemistry, Graduate School of Biomedical Science, Nagasaki University, Nagasaki 852-8521, Japan
| | - Jong-Uk Won
- Department of Public Health, Graduate School, Yonsei University, Seoul 03722, Republic of Korea
| | - Heon Kim
- Department of Occupational and Environmental Medicine, Chungbuk National University Hospital, Cheongju 28644, Republic of Korea
- Department of Preventive Medicine, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
219
|
Andriolo LG, Cammisotto V, Spagnoli A, Alunni Fegatelli D, Chicone M, Di Rienzo G, Dell’Anna V, Lobreglio G, Serio G, Pignatelli P. Overview of angiogenesis and oxidative stress in cancer. World J Meta-Anal 2023; 11:253-265. [DOI: 10.13105/wjma.v11.i6.253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/07/2023] [Accepted: 07/10/2023] [Indexed: 09/13/2023] Open
Abstract
Neoplasms can be considered as a group of aberrant cells that need more vascular supply to fulfill all their functions. Therefore, they promote angiogenesis through the same neovascularization pathway used physiologically. Angiogenesis is a process characterized by a heterogeneous distribution of oxygen caused by the tumor and oxidative stress; the latter being one of the most powerful stimuli of angiogenesis. As a result of altered tumor metabolism due to hypoxia, acidosis occurs. The angiogenic process and oxidative stress can be detected by measuring serum and tissue biomarkers. The study of the mechanisms underlying angiogenesis and oxidative stress could lead to the identification of new biomarkers, ameliorating the selection of patients with neoplasms and the prediction of their response to possible anti-tumor therapies. In particular, in the treatment of patients with similar clinical tumor phenotypes but different prognoses, the new biomarkers could be useful. Moreover, they may lead to a better understanding of the mechanisms underlying drug resistance. Experimental studies show that blocking the vascular supply results in antiproliferative activity in vivo in neuroendocrine tumor cells, which require a high vascular supply.
Collapse
Affiliation(s)
- Luigi Gaetano Andriolo
- Department of General and Specialistic Surgery Paride Stefanini, Policlinico Umberto I, University of Rome Sapienza, Rome 06100, Italy
- Unità Operativa Complessa Chirurgia Toracica, Ospedale Vito Fazzi, Lecce 73100, Italy
| | - Vittoria Cammisotto
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, University of Rome Sapienza, Rome 06100, Italy
| | - Alessandra Spagnoli
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, Rome 06100, Italy
| | - Danilo Alunni Fegatelli
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, Rome 06100, Italy
| | - Michele Chicone
- Department of Clinical Pathology and Microbiology, Ospedale Vito Fazzi, Lecce 73100, Italy
| | - Gaetano Di Rienzo
- Unità Operativa Complessa Chirurgia Toracica, Ospedale Vito Fazzi, Lecce 73100, Italy
| | | | - Giambattista Lobreglio
- Department of Clinical Pathology and Microbiology, Ospedale Vito Fazzi, Lecce 73100, Italy
| | - Giovanni Serio
- Pathological Anatomy Unit, Ospedale Vito Fazzi, Lecce 73100, Italy
| | - Pasquale Pignatelli
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, University of Rome Sapienza, Rome 06100, Italy
| |
Collapse
|
220
|
Han L, Wang Q. Association between brominated flame retardants exposure and markers of oxidative stress in US adults: An analysis based on the National Health and Nutrition Examination Survey 2007-2016. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115253. [PMID: 37478566 DOI: 10.1016/j.ecoenv.2023.115253] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
We aimed to investigate the relationship between oxidative stress indicators and brominated flame retardant (BFR) levels in US adults. Using data from the NHANES (National Health and Nutrition Examination Survey) from 2007 to 2016, 8028 participants aged 18 and over were enrolled in this study. PBDE28, PBDE47, PBDE85, PBDE99, PBDE100, PBDE153, PBDE154, PBDE209, and PBB153, with over 75 % detection rates, were extracted in this study. Survey-weighted linear regression model, weighted quantile sum (WQS) model, and quantile-based g calculation (QGC) model were used to assess the correlation between serum BFRs levels and oxidative stress indicators (serum bilirubin and gamma-glutamyl transferase [GGT]). Besides, the nonlinear association was explored using restricted cubic splines (RCS). Each of the BFRs was confirmed by the survey-weighted linear regression model to be positively associated with GGT after controlling for variables, and BFRs except for PBDE153 were positively associated with serum bilirubin. Except for PBDE153, serum bilirubin in the highest quartile of BFRs was significantly higher than in the lowest high quartile. Additionally, except for PBDE85, serum GGT in the highest quartile of BFRs was higher than in the lowest high quartile. A significant nonlinear association between all BFRs with bilirubin and the PBDE153, PBDE209, and PBB153 with GGT was identified by RCS analysis. By WQS analysis, combined BFR exposure was associated with serum GGT (β: 0.093; 95 % CI = 0.066-0.121; P < 0.0001) and bilirubin (β: 0.090; 95 % CI = 0.068-0.113; P < 0.0001). QGC analysis found a similar correlation between BFR mixtures with serum GGT (β: 0.098; 95 % CI = 0.075-0.120; P < 0.0001) and bilirubin (β: 0.073; 95 % CI = 0.048-0.097; P < 0.0001). Exposure to BFRs is positively associated with markers of oxidative stress (serum bilirubin and GGT) in US adults, which needs further exploration by a large-scale cohort study.
Collapse
Affiliation(s)
- Lu Han
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Qi Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
221
|
Wang P, Chen B, Huang Y, Li J, Cao D, Chen Z, Li J, Ran B, Yang J, Wang R, Wei Q, Dong Q, Liu L. Selenium intake and multiple health-related outcomes: an umbrella review of meta-analyses. Front Nutr 2023; 10:1263853. [PMID: 37781125 PMCID: PMC10534049 DOI: 10.3389/fnut.2023.1263853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Selenium is an essential trace metalloid element that is associated with fundamental importance to human health. Our umbrella review aimed to evaluate the quality of evidence, validity, and biases in the relationship between selenium intake and health-related outcomes according to published systematic reviews with pooled data and meta-analyses. Selenium intake is associated with a decreased risk of digestive system cancers, all-cause mortality, depression, and Keshan disease, when in children reduce the risk of Kashin-Beck disease. Additionally, selenium supplementation can improve sperm quality, polycystic ovary syndrome, autoimmune thyroid disease, cardiovascular disease, and infective outcomes. Selenium supplementation also has relationship with a decreased concentration of serum lipids including total cholesterol and very low-density lipoprotein cholesterol. However, no evidence has shown that selenium is associated with better outcomes among patients in intensive care units. Furthermore, selenium intake may be related with a higher risk of type 2 diabetes and non-melanoma skin cancers. Moreover, most of included studies are evaluated as low quality according to our evidence assessment. Based on our study findings and the limited advantages of selenium intake, it is not recommended to receive extra supplementary selenium for general populations, and selenium supplementation should not be continued in patients whose selenium-deficient status has been corrected.
Collapse
Affiliation(s)
- Puze Wang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Chen
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yin Huang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Li
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Dehong Cao
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zeyu Chen
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinze Li
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Biao Ran
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiahao Yang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruyi Wang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
- Department of Urology, Hospital of Chengdu University, Chengdu, China
| | - Qiang Wei
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Dong
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Liangren Liu
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
222
|
Liu Y, Zhang X, Cheng F, Cao W, Geng Y, Chen Z, Wei W, Zhang L. Xanthatin induce DDP-resistance lung cancer cells apoptosis through regulation of GLUT1 mediated ROS accumulation. Drug Dev Res 2023; 84:1266-1278. [PMID: 37260173 DOI: 10.1002/ddr.22084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
Chemoresistance to cisplatin (DDP) therapy is a major obstacle that needs to be overcome in treating lung cancer patients. Xanthatin has been reported to exhibit an antitumor effect on various cancers, but the function of xanthatin in DDP-resistance lung cancer remains unclear. The study aimed to explore the effect and mechanisms of xanthatin on proliferation, apoptosis, and migration in DDP-resistance lung cancer cells. In the present study, xanthatin suppresses the expression of glucose transporter 1 (GLUT1), attenuates the pentose phosphate pathway (PPP), and causes ROS accumulation and apoptosis, thereby mitigating the antioxidative capacity in DDP-resistance cells. Previous studies have shown that GLUT1 is associated with resistance to platinum drugs. We found that GLUT1 was significantly increased in the DDP-resistant lung cancer cell line compared to the parental cell line, and xanthatin significantly downregulated GLUT1 expression in DDP-resistant lung cancer cells. Notably, overexpression of GLUT1 significantly reduced the production of ROS and increased cellular NADPH/NADP+ and GSH/GSSG ratios. Thus, these results suggest that xanthatin induces DDP-resistance lung cancer cells apoptosis through regulation of GLUT1-mediated ROS accumulation. These findings might provide a possible strategy for the clinical treatment of DDP-resistant lung cancer.
Collapse
Affiliation(s)
- Yunxiao Liu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Xinge Zhang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Fenting Cheng
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Cao
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yadi Geng
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhaolin Chen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Lei Zhang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
223
|
Zhou R, Jin C, Jiao L, Zhang S, Tian M, Liu J, Yang S, Yao W, Zhou F. Geranylgeranylacetone, an inducer of heat shock protein 70, attenuates pulmonary fibrosis via inhibiting NF-κB/NOX4/ROS signalling pathway in vitro and in vivo. Chem Biol Interact 2023; 382:110603. [PMID: 37307957 DOI: 10.1016/j.cbi.2023.110603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/21/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating and progressive pulmonary disease which is characterized by epithelial cell damage and extracellular collagen deposition. To date, the therapeutic options for IPF are still very limited, so the relevant mechanisms need to be explored. Heat shock protein 70 (HSP70), which has protective versus antitumor effects on cells under stress, is a member of the heat shock protein family. In the current study, qRT-PCR, western blotting, immunofluorescence staining, and migration assays were used to explore the Epithelial-mesenchymal transition (EMT) process in BEAS-2B cells. Moreover, the role of GGA in the process of pulmonary fibrosis was detected by HE, Masson staining, pulmonary function test and immunohistochemistry in C57BL/6 mice. Our results indicated that GGA, as an inducer of HSP70, enhanced the transformation of BEAS-2B cells from epithelial to mesenchymal cells through the NF-κB/NOX4/ROS (reactive oxygen species) signalling pathway and could significantly reduce apoptosis of BEAS-2B cells induced by TGF-β1(Transforming growth factor β1) in vitro. In vivo studies demonstrated that HSP70-inducing drugs, such as GGA, attenuated pulmonary fibrosis progression induced by bleomycin (BLM). Collectively, these results suggested that overexpression of HSP70 attenuated pulmonary fibrosis induced by BLM in C57BL/6 mice and EMT process induced by TGF-β1 through NF-κB/NOX4/ROS pathway in vitro. Thus, HSP70 might be a potential therapeutic strategy for human lung fibrosis.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China.
| | - Chaomei Jin
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China.
| | - Linlin Jiao
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China.
| | - Siyu Zhang
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China.
| | - Mei Tian
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China.
| | - Jiamin Liu
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China.
| | - Songtai Yang
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China.
| | - Wu Yao
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China.
| | - Fang Zhou
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China.
| |
Collapse
|
224
|
Zhang W, He Y, Chen F, Wang C, Kang X, Peng Y, Li W. Chinese Dietary Indices and Glioma: New Insights of a Case-Control Study in the Chinese Population. Nutrients 2023; 15:3602. [PMID: 37630792 PMCID: PMC10457799 DOI: 10.3390/nu15163602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Identifying modifiable factors in primary prevention strategies is a typical goal of glioma epidemiology. Among many glioma risk factors, diet was always considered as one. Most of the relevant studies thus far were concentrated on the West. It was crucial to investigate the connection between the Chinese diet and gliomas given the stark variations between western and eastern diets. A food frequency questionnaire including 114 items was used to investigate the food intake of the study subjects. The Chinese Dietary Quality Index (CDQI), the Chinese Dietary Balance Index (CDBI), the Dietary Antioxidant Index (DAI), the Dietary Inflammation Index (DII), and the Chinese Healthy Eating Index (CHEI) were calculated based on the data provided by the food frequency questionnaire to evaluate dietary quality, dietary balance, dietary antioxidants, dietary inflammation and adherence to the Chinese dietary guidelines in 506 glioma patients and 506 controls, respectively. After adjusting covariates, CHEI (OR = 0.90, 95% CI: 0.88-0.93) and DAI (OR = 0.61, 95% CI: 0.54-0.70) were correlated to a reduced glioma risk, and CDBI-based undernutrition (OR = 1.08, 95% CI: 1.06-1.12) and overnutrition (OR = 1.14, 95% CI: 1.09-1.20) and DII (OR = 2.20, 95% CI: 1.81-2.68) were correlated to an elevated glioma risk. Moreover, restrictive cubic spline analysis showed that there were significant nonlinear dose-response relationships between CHEI, CDBI, DAI, DII, and glioma. Therefore, adhering to the Chinese dietary guidelines was connected with a lower glioma risk, and undernutrition and overnutrition in the Chinese diet were associated with an increased risk of glioma.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenbin Li
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (W.Z.); (Y.H.); (F.C.); (C.W.); (X.K.); (Y.P.)
| |
Collapse
|
225
|
Liu Y, Lu S, Wu LL, Yang L, Yang L, Wang J. The diversified role of mitochondria in ferroptosis in cancer. Cell Death Dis 2023; 14:519. [PMID: 37580393 PMCID: PMC10425449 DOI: 10.1038/s41419-023-06045-y] [Citation(s) in RCA: 146] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/23/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
Ferroptosis is a form of regulated cell death induced by iron-dependent lipid peroxidation, and it has been studied extensively since its discovery in 2012. Induced by iron overload and ROS accumulation, ferroptosis is modulated by various cellular metabolic and signaling pathways. The GSH-GPX4 pathway, the FSP1-CoQ10 pathway, the GCH1-BH4 pathway, the DHODH-CoQH2 system and the sex hormones suppress ferroptosis. Mitochondrial iron metabolism regulates ferroptosis and mitochondria also undergo a morphological change during ferroptosis, these changes include increased membrane density and reduced mitochondrial cristae. Moreover, mitochondrial energy metabolism changes during ferroptosis, the increased oxidative phosphorylation and ATP production rates lead to a decrease in the glycolysis rate. In addition, excessive oxidative stress induces irreversible damage to mitochondria, diminishing organelle integrity. ROS production, mitochondrial membrane potential, mitochondrial fusion and fission, and mitophagy also function in ferroptosis. Notably, some ferroptosis inhibitors target mitochondria. Ferroptosis is a major mechanism for cell death associated with the progression of cancer. Metastasis-prone or metastatic cancer cells are more susceptible to ferroptosis. Inducing ferroptosis in tumor cells shows very promising potential for treating drug-resistant cancers. In this review, we present a brief retrospect of the discovery and the characteristics of ferroptosis, then we discuss the regulation of ferroptosis and highlight the unique role played by mitochondria in the ferroptosis of cancer cells. Furthermore, we explain how ferroptosis functions as a double-edged sword as well as novel therapies aimed at selectively manipulating cell death for cancer eradication.
Collapse
Affiliation(s)
- Yu'e Liu
- Institute of Hepatobiliary and Pancreatic Surgery, Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Shiping Lu
- Center for Translational Research in infection and Inflammation, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Lei-Lei Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China
| | - Liang Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Lixue Yang
- Department of Biliary Tract Surgery II, Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| | - Jinghan Wang
- Institute of Hepatobiliary and Pancreatic Surgery, Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
226
|
Zykova MV, Volikov AB, Buyko EE, Bratishko KA, Ivanov VV, Konstantinov AI, Logvinova LA, Mihalyov DA, Sobolev NA, Zhirkova AM, Maksimov SV, Perminova IV, Belousov MV. Enhanced Antioxidant Activity and Reduced Cytotoxicity of Silver Nanoparticles Stabilized by Different Humic Materials. Polymers (Basel) 2023; 15:3386. [PMID: 37631443 PMCID: PMC10457742 DOI: 10.3390/polym15163386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The current article describes the biological activity of new biomaterials combining the "green" properties of humic substances (HSs) and silver nanoparticles. The aim is to investigate the antioxidant activity (AOA) of HS matrices (macroligands) and AgNPs stabilized with humic macroligands (HS-AgNPs). The unique chemical feature of HSs makes them very promising ligands (matrices) for AgNP stabilization. HSs have previously been shown to exert many pharmacological effects mediated by their AOA. AgNPs stabilized with HS showed a pronounced ability to bind to reactive oxygen species (ROS) in the test with ABTS. Also, higher AOA was observed for HS-AgNPs as compared to the HS matrices. In vitro cytotoxicity studies have shown that the stabilization of AgNPs with the HS matrices reduces the cytotoxicity of AgNPs. As a result of in vitro experiments with the use of 2,7-dichlorodihydrofluorescein diacetate (DCFDA), it was found that all HS materials tested and the HS-AgNPs did not exhibit prooxidant effects. Moreover, more pronounced AOA was shown for HS-AgNP samples as compared to the original HS matrices. Two putative mechanisms of the pronounced AOA of the tested compositions are proposed: firstly, the pronounced ability of HSs to inactivate ROS and, secondly, the large surface area and surface-to-volume ratio of HS-AgNPs, which facilitate electron transfer and mitigate kinetic barriers to the reduction reaction. As a result, the antioxidant properties of the tested HS-AgNPs might be of particular interest for biomedical applications aimed at inhibiting the growth of bacteria and viruses and the healing of purulent wounds.
Collapse
Affiliation(s)
- Maria V. Zykova
- Pharmaceutical Faculty, Siberian State Medical University, 634050 Tomsk, Russia; (E.E.B.); (K.A.B.); (V.V.I.); (L.A.L.); (D.A.M.); (M.V.B.)
| | - Alexander B. Volikov
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, 119991 Moscow, Russia; (A.B.V.); (A.I.K.); (N.A.S.); (A.M.Z.); (S.V.M.); (I.V.P.)
| | - Evgeny E. Buyko
- Pharmaceutical Faculty, Siberian State Medical University, 634050 Tomsk, Russia; (E.E.B.); (K.A.B.); (V.V.I.); (L.A.L.); (D.A.M.); (M.V.B.)
| | - Kristina A. Bratishko
- Pharmaceutical Faculty, Siberian State Medical University, 634050 Tomsk, Russia; (E.E.B.); (K.A.B.); (V.V.I.); (L.A.L.); (D.A.M.); (M.V.B.)
| | - Vladimir V. Ivanov
- Pharmaceutical Faculty, Siberian State Medical University, 634050 Tomsk, Russia; (E.E.B.); (K.A.B.); (V.V.I.); (L.A.L.); (D.A.M.); (M.V.B.)
| | - Andrey I. Konstantinov
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, 119991 Moscow, Russia; (A.B.V.); (A.I.K.); (N.A.S.); (A.M.Z.); (S.V.M.); (I.V.P.)
| | - Lyudmila A. Logvinova
- Pharmaceutical Faculty, Siberian State Medical University, 634050 Tomsk, Russia; (E.E.B.); (K.A.B.); (V.V.I.); (L.A.L.); (D.A.M.); (M.V.B.)
| | - Dmitrii A. Mihalyov
- Pharmaceutical Faculty, Siberian State Medical University, 634050 Tomsk, Russia; (E.E.B.); (K.A.B.); (V.V.I.); (L.A.L.); (D.A.M.); (M.V.B.)
| | - Nikita A. Sobolev
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, 119991 Moscow, Russia; (A.B.V.); (A.I.K.); (N.A.S.); (A.M.Z.); (S.V.M.); (I.V.P.)
| | - Anastasia M. Zhirkova
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, 119991 Moscow, Russia; (A.B.V.); (A.I.K.); (N.A.S.); (A.M.Z.); (S.V.M.); (I.V.P.)
| | - Sergey V. Maksimov
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, 119991 Moscow, Russia; (A.B.V.); (A.I.K.); (N.A.S.); (A.M.Z.); (S.V.M.); (I.V.P.)
| | - Irina V. Perminova
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, 119991 Moscow, Russia; (A.B.V.); (A.I.K.); (N.A.S.); (A.M.Z.); (S.V.M.); (I.V.P.)
| | - Mikhail V. Belousov
- Pharmaceutical Faculty, Siberian State Medical University, 634050 Tomsk, Russia; (E.E.B.); (K.A.B.); (V.V.I.); (L.A.L.); (D.A.M.); (M.V.B.)
| |
Collapse
|
227
|
Farahzadi R, Hejazi MS, Molavi O, Pishgahzadeh E, Montazersaheb S, Jafari S. Clinical Significance of Carnitine in the Treatment of Cancer: From Traffic to the Regulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9328344. [PMID: 37600065 PMCID: PMC10435298 DOI: 10.1155/2023/9328344] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/12/2022] [Accepted: 03/23/2023] [Indexed: 08/22/2023]
Abstract
Metabolic reprogramming is a common hallmark of cancer cells. Cancer cells exhibit metabolic flexibility to maintain high proliferation and survival rates. In other words, adaptation of cellular demand is essential for tumorigenesis, since a diverse supply of nutrients is required to accommodate tumor growth and progression. Diversity of carbon substrates fueling cancer cells indicate metabolic heterogeneity, even in tumors sharing the same clinical diagnosis. In addition to the alteration of glucose and amino acid metabolism in cancer cells, there is evidence that cancer cells can alter lipid metabolism. Some tumors rely on fatty acid oxidation (FAO) as the primary energy source; hence, cancer cells overexpress the enzymes involved in FAO. Carnitine is an essential cofactor in the lipid metabolic pathways. It is crucial in facilitating the transport of long-chain fatty acids into the mitochondria for β-oxidation. This role and others played by carnitine, especially its antioxidant function in cellular processes, emphasize the fine regulation of carnitine traffic within tissues and subcellular compartments. The biological activity of carnitine is orchestrated by specific membrane transporters that mediate the transfer of carnitine and its derivatives across the cell membrane. The concerted function of carnitine transporters creates a collaborative network that is relevant to metabolic reprogramming in cancer cells. Here, the molecular mechanisms relevant to the role and expression of carnitine transporters are discussed, providing insights into cancer treatment.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elahe Pishgahzadeh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevda Jafari
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
228
|
Ye Y, Luo Y, Guo T, Zhang C, Sun Y, Xu A, Ji L, Ou J, Wu SY. Leveraging senescence-oxidative stress co-relation to predict prognosis and drug sensitivity in breast invasive carcinoma. Front Endocrinol (Lausanne) 2023; 14:1179050. [PMID: 37600707 PMCID: PMC10437062 DOI: 10.3389/fendo.2023.1179050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Female breast cancer has risen to be the most common malignancy worldwide, causing a huge disease burden for both patients and society. Both senescence and oxidative stress attach importance to cancer development and progression. However, the prognostic roles of senescence and oxidative stress remain obscure in breast cancer. In this present study, we attempted to establish a predictive model based on senescence-oxidative stress co-relation genes (SOSCRGs) and evaluate its clinical utility in multiple dimensions. Methods SOSCRGs were identified via correlation analysis. Transcriptome data and clinical information of patients with breast invasive carcinoma (BRCA) were accessed from The Cancer Genome Atlas (TCGA) and GSE96058. SVM algorithm was employed to process subtype classification of patients with BRCA based on SOSCRGs. LASSO regression analysis was utilized to establish the predictive model based on SOSCRGs. Analyses of the predictive model with regards to efficacy evaluation, subgroup analysis, clinical association, immune infiltration, functional strength, mutation feature, and drug sensitivity were organized. Single-cell analysis was applied to decipher the expression pattern of key SOSCRGs in the tumor microenvironment. Additionally, qPCR was conducted to check the expression levels of key SOSCRGs in five different breast cancer cell lines. Results A total of 246 SOSCRGs were identified. Two breast cancer subtypes were determined based on SOSCRGs and subtype 1 showed an active immune landscape. A SOSCRGs-based predictive model was subsequently developed and the risk score was clarified as independent prognostic predictors in breast cancer. A novel nomogram was constructed and exhibited favorable predictive capability. We further ascertained that the infiltration levels of immune cells and expressions of immune checkpoints were significantly influenced by the risk score. The two risk groups were characterized by distinct functional strengths. Sugar metabolism and glycolysis were significantly upregulated in the high risk group. The low risk group was deciphered to harbor PIK3CA mutation-driven tumorigenesis, while TP53 mutation was dominant in the high risk group. The analysis further revealed a significantly positive correlation between risk score and TMB. Patients in the low risk group may also sensitively respond to several drug agents. Single-cell analysis dissected that ERRFI1, ETS1, NDRG1, and ZMAT3 were expressed in the tumor microenvironment. Moreover, the expression levels of the seven SOSCRGs in five different breast cancer cell lines were quantified and compared by qPCR respectively. Conclusion Multidimensional evaluations verified the clinical utility of the SOSCRGs-based predictive model to predict prognosis, aid clinical decision, and risk stratification for patients with breast cancer.
Collapse
Affiliation(s)
- Yinghui Ye
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yulou Luo
- Department of Breast Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Tong Guo
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chenguang Zhang
- Department of Breast Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Yutian Sun
- Department of Medical Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Anping Xu
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ling Ji
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jianghua Ou
- Department of Breast Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Shang Ying Wu
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
229
|
Huang S, Nan Y, Chen G, Ning N, Du Y, Lu D, Yang Y, Meng F, Yuan L. The Role and Mechanism of Perilla frutescens in Cancer Treatment. Molecules 2023; 28:5883. [PMID: 37570851 PMCID: PMC10421205 DOI: 10.3390/molecules28155883] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Perilla frutescens is an annual herb of the Labiatae family and is widely grown in several countries in Asia. Perilla frutescens is a plant that is used medicinally in its entirety, as seen in its subdivision into perilla seeds, perilla stalks, and perilla leaves, which vary more markedly in their chemical composition. Several studies have shown that Perilla frutescens has a variety of pharmacological effects, including anti-inflammatory, antibacterial, detoxifying, antioxidant, and hepatoprotective. In the absence of a review of Perilla frutescens for the treatment of cancer. This review provides an overview of the chemical composition and molecular mechanisms of Perilla frutescens for cancer treatment. It was found that the main active components of Perilla frutescens producing cancer therapeutic effects were perilla aldehyde (PAH), rosmarinic acid (Ros A), lignan, and isoestrogen (IK). In addition to these, extracts of the leaves and fruits of Perilla frutescens are also included. Among these, perilla seed oil (PSO) has a preventive effect against colorectal cancer due to the presence of omega-3 polyunsaturated fatty acids. This review also provides new ideas and thoughts for scientific innovation and clinical applications related to Perilla frutescens.
Collapse
Affiliation(s)
- Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
| | - Yi Nan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Guoqing Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
| | - Na Ning
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
| | - Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
| | - Doudou Lu
- Clinical Medical School, Ningxia Medical University, Yinchuan 750004, China;
| | - Yating Yang
- Institute of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China; (Y.Y.); (F.M.)
| | - Fandi Meng
- Institute of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China; (Y.Y.); (F.M.)
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
| |
Collapse
|
230
|
Gao L, Zhang A. Copper-instigated modulatory cell mortality mechanisms and progress in oncological treatment investigations. Front Immunol 2023; 14:1236063. [PMID: 37600774 PMCID: PMC10433393 DOI: 10.3389/fimmu.2023.1236063] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Copper, a transition metal, serves as an essential co-factor in numerous enzymatic active sites and constitutes a vital trace element in the human body, participating in crucial life-sustaining activities such as energy metabolism, antioxidation, coagulation, neurotransmitter synthesis, iron metabolism, and tetramer deposition. Maintaining the equilibrium of copper ions within biological systems is of paramount importance in the prevention of atherosclerosis and associated cardiovascular diseases. Copper induces cellular demise through diverse mechanisms, encompassing reactive oxygen species responses, apoptosis, necrosis, pyroptosis, and mitochondrial dysfunction. Recent research has identified and dubbed a novel regulatory cell death modality-"cuprotosis"-wherein copper ions bind to acylated proteins in the tricarboxylic acid cycle of mitochondrial respiration, resulting in protein aggregation, subsequent downregulation of iron-sulfur cluster protein expression, induction of proteotoxic stress, and eventual cell death. Scholars have synthesized copper complexes by combining copper ions with various ligands, exploring their significance and applications in cancer therapy. This review comprehensively examines the multiple pathways of copper metabolism, copper-induced regulatory cell death, and the current status of copper complexes in cancer treatment.
Collapse
Affiliation(s)
- Lei Gao
- Medical Imaging Department, Huabei Petroleum Administration Bureau General Hospital, Renqiu, China
| | - Anqi Zhang
- Oncology Department, Huabei Petroleum Administration Bureau General Hospital, Renqiu, China
| |
Collapse
|
231
|
Seçme M, Urgancı ABE, Üzen R, Aslan A, Tıraş F. Determination of the effects of fusaric acid, a mycotoxin, on cytotoxicity, gamma-H2AX, 8-hydroxy-2 deoxyguanosine and DNA repair gene expressions in pancreatic cancer cells. Toxicon 2023; 231:107179. [PMID: 37321408 DOI: 10.1016/j.toxicon.2023.107179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/20/2023] [Accepted: 06/04/2023] [Indexed: 06/17/2023]
Abstract
Pancreatic cancer has a poor prognosis and is an important public health problem for developing countries. Oxidative stress plays an important role in cancer initiation, progression, proliferation, invasion, angiogenesis and metastasis. For this reason, one of the important strategic targets of new cancer therapeutics is to drive cancer cells into apoptosis through oxidative stress. In nuclear and mitochondrial DNA, 8-hydroxy-2'-deoxyguanosine and gamma-H2AX (γ-H2AX) are used as important oxidative stress biomarkers. Fusaric acid (FA) is a mycotoxin that mediates toxicity produced by Fusarium species and exhibits anticancer effects in various cancers via inducing apoptosis, cell cycle arrest, or other cellular mechanisms. The aim of this study was to determine the effects of fusaric acid on cytotoxic and oxidative damage in MIA PaCa-2 and PANC-1 cell lines. In this context, dose and time dependent cytotoxic effect of fusaric acid was determined by XTT method, mRNA expression levels of genes related to DNA repair were determined by RT-PCR, and its effect on 8-hydroxy-2'-deoxyguanosine and γ-H2AX levels was revealed by ELISA assay. According to XTT results, fusaric acid inhibits cell proliferation in MIA PaCa-2 and Panc-1 cells in a dose- and time-dependent manner. IC50 doses were determined as 187.74 μM at 48 h in MIA PaCa-2 cells and 134.83 μM at 48 h in PANC-1 cells, respectively. γ-H2AX and 8-OHdG changes were not found significant in pancreatic cancer cells. The mRNA expression levels of DNA repair-related genes NEIL1, OGG1, XRCC and Apex-1 change with exposure to fusaric acid. This study contributes to the therapeutic approaches to be developed for pancreatic cancer and demonstrates the potential of fusaric acid as an anticancer agent.
Collapse
Affiliation(s)
- Mücahit Seçme
- Department of Medical Biology, Faculty of Medicine, Ordu University, Ordu, Turkey.
| | - Ayşen Buket Er Urgancı
- Department of Medical Biology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Ramazan Üzen
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Ali Aslan
- Department of Physiology, Faculty of Medicine, Ordu University, Ordu, Turkey
| | - Fatih Tıraş
- Leverhulme Research Centre for Forensic Science, Dundee University, Dundee, Scotland, UK
| |
Collapse
|
232
|
Liu D, Wang H, Li X, Liu J, Zhang Y, Hu J. Small molecule inhibitors for cancer metabolism: promising prospects to be explored. J Cancer Res Clin Oncol 2023; 149:8051-8076. [PMID: 37002510 DOI: 10.1007/s00432-022-04501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 04/03/2023]
Abstract
BACKGROUND Abnormal metabolism is the main hallmark of cancer, and cancer metabolism plays an important role in tumorigenesis, metastasis, and drug resistance. Therefore, studying the changes of tumor metabolic pathways is beneficial to find targets for the treatment of cancer diseases. The success of metabolism-targeted chemotherapy suggests that cancer metabolism research will provide potential new targets for the treatment of malignant tumors. PURPOSE The aim of this study was to systemically review recent research findings on targeted inhibitors of tumor metabolism. In addition, we summarized new insights into tumor metabolic reprogramming and discussed how to guide the exploration of new strategies for cancer-targeted therapy. CONCLUSION Cancer cells have shown various altered metabolic pathways, providing sufficient fuel for their survival. The combination of these pathways is considered to be a more useful method for screening multilateral pathways. Better understanding of the clinical research progress of small molecule inhibitors of potential targets of tumor metabolism will help to explore more effective cancer treatment strategies.
Collapse
Affiliation(s)
- Dan Liu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - HongPing Wang
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - XingXing Li
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - JiFang Liu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - YanLing Zhang
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - Jing Hu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
233
|
Mo X, Yuan K, Hu D, Huang C, Luo J, Liu H, Li Y. Identification and validation of immune-related hub genes based on machine learning in prostate cancer and AOX1 is an oxidative stress-related biomarker. Front Oncol 2023; 13:1179212. [PMID: 37583929 PMCID: PMC10423936 DOI: 10.3389/fonc.2023.1179212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023] Open
Abstract
To investigate potential diagnostic and prognostic biomarkers associated with prostate cancer (PCa), we obtained gene expression data from six datasets in the Gene Expression Omnibus (GEO) database. The datasets included 127 PCa cases and 52 normal controls. We filtered for differentially expressed genes (DEGs) and identified candidate PCa biomarkers using a least absolute shrinkage and selector operation (LASSO) regression model and support vector machine recursive feature elimination (SVM-RFE) analyses. A difference analysis was conducted on these genes in the test group. The discriminating ability of the train group was determined using the area under the receiver operating characteristic curve (AUC) value, with hub genes defined as those having an AUC greater than 85%. The expression levels and diagnostic utility of the biomarkers in PCa were further confirmed in the GSE69223 and GSE71016 datasets. Finally, the invasion of cells per sample was assessed using the CIBERSORT algorithm and the ESTIMATE technique. The possible prostate cancer (PCa) diagnostic biomarkers AOX1, APOC1, ARMCX1, FLRT3, GSTM2, and HPN were identified and validated using the GSE69223 and GSE71016 datasets. Among these biomarkers, AOX1 was found to be associated with oxidative stress and could potentially serve as a prognostic biomarker. Experimental validations showed that AOX1 expression was low in PCa cell lines. Overexpression of AOX1 significantly reduced the proliferation and migration of PCa cells, suggesting that the anti-tumor effect of AOX1 may be attributed to its impact on oxidative stress. Our study employed a comprehensive approach to identify PCa biomarkers and investigate the role of cell infiltration in PCa.
Collapse
Affiliation(s)
- Xiaocong Mo
- Department of Oncology, the First Affiliated Hospital of Jinan University, Jinan University, Guangdong, Guangzhou, China
| | - Kaisheng Yuan
- Department of Metabolic and Bariatric Surgery, the First Affiliated Hospital of Jinan University, Jinan University, Guangdong, Guangzhou, China
| | - Di Hu
- Department of Neurology and Stroke Centre, the First Affiliated Hospital of Jinan University, Jinan University, Guangdong, Guangzhou, China
| | - Cheng Huang
- Department of Neurology and Stroke Centre, the First Affiliated Hospital of Jinan University, Jinan University, Guangdong, Guangzhou, China
| | - Juyu Luo
- Department of Neurology and Stroke Centre, the First Affiliated Hospital of Jinan University, Jinan University, Guangdong, Guangzhou, China
| | - Hang Liu
- Department of Urology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Yin Li
- Department of Oncology, the First Affiliated Hospital of Jinan University, Jinan University, Guangdong, Guangzhou, China
| |
Collapse
|
234
|
Wang H, Wang L, Tian C, Rajput SA, Qi D. Effects of Methyl Sulfonyl Methane and Selenium Yeast on Fatty Liver Syndrome in Laying Hens and Their Biological Mechanisms. Animals (Basel) 2023; 13:2466. [PMID: 37570275 PMCID: PMC10416963 DOI: 10.3390/ani13152466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
The purpose of this study was to explore the effects of MSM and Se-Y on FLS in laying hens during the late peak laying period and the underlying biological mechanisms. Therefore 240 55-week-old Jing-fen No. 6 laying hens were randomly divided into five groups, with eight replicates in each group and six laying hens in each replicate. The hens were fed a basal diet (Control) and diets supplemented with 350 and 700 mg/kg MSM and 25 and 50 mg/kg Se-Y, respectively, for four weeks. The results showed that MSM and Se-Y had no significant effects on the performance of laying hens. With the increasing dosage of MSM and Se-Y, the symptoms of liver steatosis in laying hens were reduced, and MSM and Se-Y could significantly reduce the content of malondialdehyde (MDA) in serum and liver (p < 0.05) and increase the contents of total superoxide dismutase (T-SOD) and glutathione peroxidase (GPX) in serum and liver (p < 0.05). The RNA-seq results showed that 700 mg/kg MSM significantly downregulated the expression levels of the ATP5I, ATP5G1, CYCS, and UQCRQ genes in the liver, and 50 mg/kg Se-Y significantly downregulated the expression levels of MAPK10, SRC, BMP2, and FGF9 genes in the liver. In conclusion, dietary supplementation with MSM and Se-Y can effectively reduce the FLS of laying hens in the late peak laying period and increase their antioxidant capacity. The underlying biological mechanism may be related to the downregulation of genes involved in liver oxidative phosphorylation and inflammation-related pathways.
Collapse
Affiliation(s)
- Huanbin Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.W.); (L.W.); (C.T.)
| | - Lingfeng Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.W.); (L.W.); (C.T.)
| | - Changyu Tian
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.W.); (L.W.); (C.T.)
| | - Shahid Ali Rajput
- Faculty of Veterinary and Animal Science, Muhammad Nawaz Shareef University of Agriculture, Multan 60000, Pakistan;
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.W.); (L.W.); (C.T.)
| |
Collapse
|
235
|
Li X, Cao D, Sun S, Wang Y. Anticancer therapeutic effect of ginsenosides through mediating reactive oxygen species. Front Pharmacol 2023; 14:1215020. [PMID: 37564184 PMCID: PMC10411515 DOI: 10.3389/fphar.2023.1215020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Dysregulation of reactive oxygen species (ROS) production and ROS-regulated pathways in cancer cells leads to abnormal accumulation of reactive oxygen species, displaying a double-edged role in cancer progression, either supporting transformation/proliferation and stimulating tumorigenesis or inducing cell death. Cancer cells can accommodate reactive oxygen species by regulating them at levels that allow the activation of pro-cancer signaling pathways without inducing cell death via modulation of the antioxidant defense system. Therefore, targeting reactive oxygen species is a promising approach for cancer treatment. Ginsenosides, their derivatives, and related drug carriers are well-positioned to modulate multiple signaling pathways by regulating oxidative stress-mediated cellular and molecular targets to induce apoptosis; regulate cell cycle arrest and autophagy, invasion, and metastasis; and enhance the sensitivity of drug-resistant cells to chemotherapeutic agents of different cancers depending on the type, level, and source of reactive oxygen species, and the type and stage of the cancer. Our review focuses on the pro- and anticancer effects of reactive oxygen species, and summarizes the mechanisms and recent advances in different ginsenosides that bring about anticancer effects by targeting reactive oxygen species, providing new ideas for designing further anticancer studies or conducting more preclinical and clinical studies.
Collapse
Affiliation(s)
- Xiaonan Li
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, China
| | - Donghui Cao
- Department of Clinical Research, The First Hospital of Jilin University, Changchun, China
| | - Siming Sun
- Department of Clinical Research, The First Hospital of Jilin University, Changchun, China
| | - Yuehui Wang
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
236
|
Teng Y, Xu L, Li W, Liu P, Tian L, Liu M. Targeting reactive oxygen species and fat acid oxidation for the modulation of tumor-associated macrophages: a narrative review. Front Immunol 2023; 14:1224443. [PMID: 37545527 PMCID: PMC10401428 DOI: 10.3389/fimmu.2023.1224443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are significant immunocytes infiltrating the tumor microenvironment(TME). Recent research has shown that TAMs exhibit diversity in terms of their phenotype, function, time, and spatial distribution, which allows for further classification of TAM subtypes. The metabolic efficiency of fatty acid oxidation (FAO) varies among TAM subtypes. FAO is closely linked to the production of reactive oxygen species (ROS), which play a role in processes such as oxidative stress. Current evidence demonstrates that FAO and ROS can influence TAMs' recruitment, polarization, and phagocytosis ability either individually or in combination, thereby impacting tumor progression. But the specific mechanisms associated with these relationships still require further investigation. We will review the current status of research on the relationship between TAMs and tumor development from three aspects: ROS and TAMs, FAO and TAMs, and the interconnectedness of FAO, ROS, and TAMs.
Collapse
Affiliation(s)
| | | | | | | | - Linli Tian
- *Correspondence: Linli Tian, ; Ming Liu,
| | - Ming Liu
- *Correspondence: Linli Tian, ; Ming Liu,
| |
Collapse
|
237
|
Rodríguez-Ruiz M, Ramos MC, Campos MJ, Díaz-Sánchez I, Cautain B, Mackenzie TA, Vicente F, Corpas FJ, Palma JM. Pepper Fruit Extracts Show Anti-Proliferative Activity against Tumor Cells Altering Their NADPH-Generating Dehydrogenase and Catalase Profiles. Antioxidants (Basel) 2023; 12:1461. [PMID: 37507999 PMCID: PMC10376568 DOI: 10.3390/antiox12071461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is considered one of the main causes of human death worldwide, being characterized by an alteration of the oxidative metabolism. Many natural compounds from plant origin with anti-tumor attributes have been described. Among them, capsaicin, which is the molecule responsible for the pungency in hot pepper fruits, has been reported to show antioxidant, anti-inflammatory, and analgesic activities, as well as anti-proliferative properties against cancer. Thus, in this work, the potential anti-proliferative activity of pepper (Capsicum annuum L.) fruits from diverse varieties with different capsaicin contents (California < Piquillo < Padrón < Alegría riojana) against several tumor cell lines (lung, melanoma, hepatoma, colon, breast, pancreas, and prostate) has been investigated. The results showed that the capsaicin content in pepper fruits did not correspond with their anti-proliferative activity against tumor cell lines. By contrast, the greatest activity was promoted by the pepper tissues which contained the lowest capsaicin amount. This indicates that other compounds different from capsaicin have this anti-tumor potentiality in pepper fruits. Based on this, green fruits from the Alegría riojana variety, which has negligible capsaicin levels, was used to study the effect on the oxidative and redox metabolism of tumor cell lines from liver (Hep-G2) and pancreas (MIA PaCa-2). Different parameters from both lines treated with crude pepper fruit extracts were determined including protein nitration and protein S-nitrosation (two post-translational modifications (PTMs) promoted by nitric oxide), the antioxidant capacity, as well as the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX), among others. In addition, the activity of the NADPH-generating enzymes glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), and NADP-isocitrate dehydrogenase (NADP-ICDH) was followed. Our data revealed that the treatment of both cell lines with pepper fruit extracts altered their antioxidant capacity, enhanced their catalase activity, and considerably reduced the activity of the NADPH-generating enzymes. As a consequence, less H2O2 and NADPH seem to be available to cells, thus avoiding cell proliferation and possibly triggering cell death in both cell lines.
Collapse
Affiliation(s)
- Marta Rodríguez-Ruiz
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), 18008 Granada, Spain
| | - María C Ramos
- Department Screening & Target Validation, Fundación MEDINA, 18016 Granada, Spain
| | - María J Campos
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), 18008 Granada, Spain
| | - Inmaculada Díaz-Sánchez
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), 18008 Granada, Spain
| | - Bastien Cautain
- Evotec, University Paul Sabatier Toulouse III, 31100 Toulouse, France
| | - Thomas A Mackenzie
- Department Screening & Target Validation, Fundación MEDINA, 18016 Granada, Spain
| | - Francisca Vicente
- Department Screening & Target Validation, Fundación MEDINA, 18016 Granada, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), 18008 Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), 18008 Granada, Spain
| |
Collapse
|
238
|
Zhou Y, Ji X, Wang D, Guo Y, Zhao J, Yan W. Effect of silkworm pupae ( Bombyx mori) protein on colon cancer in nude mice: inhibition of tumor growth, oxidative stress and inflammatory response. Front Pharmacol 2023; 14:1138742. [PMID: 37538184 PMCID: PMC10394231 DOI: 10.3389/fphar.2023.1138742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023] Open
Abstract
Silkworm pupa (bombyx mori) protein (SPP) is a potential therapeutic bioactive substance that has anti-tumor activity against breast, liver, and gastric cancers. The aim of this study was to investigate the antitumor effect of SPP on colon cancer nude mice. Using a subcutaneous tumor formation method, we validated the therapeutic effect of SPP on colon cancer nude mice in vivo. Results showed that SPP was cytotoxic to tumor cells. SPP could protect the liver of the nude mice by lowering hepatic oxidative stress and regulating serum inflammation levels by decreasing TNF-α and IL-2 levels while in-creasing INF-γ levels. In addition, diminished Ki-67 protein, enhanced cleaved caspase-3 protein, di-minished Vimentin, enhanced E-cadherin. These findings suggested that SPP's antitumor activity may be achieved by reducing inflammation, inhibiting tumor proliferation and metastasis, and inducing apoptosis in cancer cells. In the future, SPP could be used as an anticancer drug, potentially providing a new source of drugs for the treatment of colon cancer.
Collapse
Affiliation(s)
- Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, Beijing, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Xiaojiao Ji
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Diandian Wang
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Yu Guo
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Jian Zhao
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, China
| |
Collapse
|
239
|
Tirendi S, Marengo B, Domenicotti C, Bassi AM, Almonti V, Vernazza S. Colorectal cancer and therapy response: a focus on the main mechanisms involved. Front Oncol 2023; 13:1208140. [PMID: 37538108 PMCID: PMC10396348 DOI: 10.3389/fonc.2023.1208140] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/19/2023] [Indexed: 08/05/2023] Open
Abstract
Introduction The latest GLOBOCAN 2021 reports that colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide. Most CRC cases are sporadic and associated with several risk factors, including lifestyle habits, gut dysbiosis, chronic inflammation, and oxidative stress. Aim To summarize the biology of CRC and discuss current therapeutic interventions designed to counteract CRC development and to overcome chemoresistance. Methods Literature searches were conducted using PubMed and focusing the attention on the keywords such as "Current treatment of CRC" or "chemoresistance and CRC" or "oxidative stress and CRC" or "novel drug delivery approaches in cancer" or "immunotherapy in CRC" or "gut microbiota in CRC" or "systematic review and meta-analysis of randomized controlled trials" or "CSCs and CRC". The citations included in the search ranged from September 1988 to December 2022. An additional search was carried out using the clinical trial database. Results Rounds of adjuvant therapies, including radiotherapy, chemotherapy, and immunotherapy are commonly planned to reduce cancer recurrence after surgery (stage II and stage III CRC patients) and to improve overall survival (stage IV). 5-fluorouracil-based chemotherapy in combination with other cytotoxic drugs, is the mainstay to treat CRC. However, the onset of the inherent or acquired resistance and the presence of chemoresistant cancer stem cells drastically reduce the efficacy. On the other hand, the genetic-molecular heterogeneity of CRC often precludes also the efficacy of new therapeutic approaches such as immunotherapies. Therefore, the CRC complexity made of natural or acquired multidrug resistance has made it necessary the search for new druggable targets and new delivery systems. Conclusion Further knowledge of the underlying CRC mechanisms and a comprehensive overview of current therapeutic opportunities can provide the basis for identifying pharmacological and biological barriers that render therapies ineffective and for identifying new potential biomarkers and therapeutic targets for advanced and aggressive CRC.
Collapse
Affiliation(s)
- Sara Tirendi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Barbara Marengo
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Cinzia Domenicotti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Anna M. Bassi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Vanessa Almonti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Stefania Vernazza
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| |
Collapse
|
240
|
Gianì F, Allia F, Trovato MA, Masto R, Pellegriti G, Vigneri R. Antioxidant Defense Capacity Is Reduced in Thyroid Stem/Precursor Cells Compared to Differentiated Thyrocytes. Int J Mol Sci 2023; 24:11509. [PMID: 37511265 PMCID: PMC10380350 DOI: 10.3390/ijms241411509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
There is much evidence linking oxidative stress to thyroid cancer, and stem cells are thought to play a key role in the tumor-initiating mechanism. Their vulnerability to oxidative stress is unexplored. This study aimed to comparatively evaluate the antioxidant capacity of stem/precursor thyroid cells and mature thyrocytes. Human stem/precursor cells and mature thyrocytes were exposed to increasing concentrations of menadione, an oxidative-stress-producing agent, and reactive oxygen species (ROS) production and cell viability were measured. The expression of antioxidant and detoxification genes was measured via qPCR as well as the total antioxidant capacity and the content of glutathione. Menadione elevated ROS generation in stem/precursor thyroid cells more than in mature thyrocytes. The ROS increase was inversely correlated (p = 0.005) with cell viability, an effect that was partially prevented by the antioxidant curcumin. Most thyroid antioxidant defense genes, notably those encoding for the glutathione-generating system and phase I detoxification enzymes, were significantly less expressed in stem/precursor thyroid cells. As a result, the glutathione level and the total antioxidant capacity in stem/precursor thyroid cells were significantly decreased. This reduced antioxidant defense may have clinical implications, making stem/precursor thyroid cells critical targets for environmental conditions that are not detrimental for differentiated thyrocytes.
Collapse
Affiliation(s)
- Fiorenza Gianì
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Medical Center, 95122 Catania, Italy
| | - Fabio Allia
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Medical Center, 95122 Catania, Italy
| | | | - Roberta Masto
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Medical Center, 95122 Catania, Italy
| | - Gabriella Pellegriti
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Medical Center, 95122 Catania, Italy
- Oncology, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Riccardo Vigneri
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Medical Center, 95122 Catania, Italy
| |
Collapse
|
241
|
Pasciu V, Nieddu M, Sotgiu FD, Baralla E, Berlinguer F. An Overview on Assay Methods to Quantify ROS and Enzymatic Antioxidants in Erythrocytes and Spermatozoa of Small Domestic Ruminants. Animals (Basel) 2023; 13:2300. [PMID: 37508077 PMCID: PMC10376267 DOI: 10.3390/ani13142300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The present review aims to provide an overview of the assay methods for the quantification of ROS and principal enzymatic antioxidants as biomarkers of oxidative stress in erythrocytes and spermatozoa of small domestic ruminants. A complete literature search was carried out in PubMed, Scopus and the World Wide Web using relevant keywords and focusing on the last five years (2018-2023). Among spectrophotometry, fluorometry and chemiluminescence, the most widely used method for ROS assay is fluorometry, probably because it allows to simultaneously assay several ROS, using different probes, with greater economic advantages. Regarding intracellular antioxidant enzymes, recent literature reports only spectrophotometric methods, many of which use commercial kits. The use of a less sensitive but cheapest method is suitable because both erythrocytes and spermatozoa samples are highly concentrated in domestic ruminant species. All methods considered in this review have been found to be appropriate; in general, the differences are related to their costs and sensitivity. Quantification of ROS and enzymatic antioxidant activity in erythrocytes and spermatozoa may find application in the study of the welfare and health status of small domestic ruminants for monitoring livestock production.
Collapse
Affiliation(s)
- Valeria Pasciu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Maria Nieddu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | | | - Elena Baralla
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | | |
Collapse
|
242
|
Grypari IM, Tzelepi V, Gyftopoulos K. DNA Damage Repair Pathways in Prostate Cancer: A Narrative Review of Molecular Mechanisms, Emerging Biomarkers and Therapeutic Targets in Precision Oncology. Int J Mol Sci 2023; 24:11418. [PMID: 37511177 PMCID: PMC10380086 DOI: 10.3390/ijms241411418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Prostate cancer (PCa) has a distinct molecular signature, including characteristic chromosomal translocations, gene deletions and defective DNA damage repair mechanisms. One crucial pathway involved is homologous recombination deficiency (HRD) and it is found in almost 20% of metastatic castrate-resistant PCa (mCRPC). Inherited/germline mutations are associated with a hereditary predisposition to early PCa development and aggressive behavior. BRCA2, ATM and CHECK2 are the most frequently HRD-mutated genes. BRCA2-mutated tumors have unfavorable clinical and pathological characteristics, such as intraductal carcinoma. PARP inhibitors, due to the induction of synthetic lethality, have been therapeutically approved for mCRPC with HRD alterations. Mutations are detected in metastatic tissue, while a liquid biopsy is utilized during follow-up, recognizing acquired resistance mechanisms. The mismatch repair (MMR) pathway is another DNA repair mechanism implicated in carcinogenesis, although only 5% of metastatic PCa is affected. It is associated with aggressive disease. PD-1 inhibitors have been used in MMR-deficient tumors; thus, the MMR status should be tested in all metastatic PCa cases. A surrogate marker of defective DNA repair mechanisms is the tumor mutational burden. PDL-1 expression and intratumoral lymphocytes have ambivalent predictive value. Few experimental molecules have been so far proposed as potential biomarkers. Future research may further elucidate the role of DNA damage pathways in PCa, revealing new therapeutic targets and predictive biomarkers.
Collapse
Affiliation(s)
- Ioanna-Maria Grypari
- Cytology Department, Aretaieion University Hospital, National Kapodistrian University of Athens, 11528 Athens, Greece
| | - Vasiliki Tzelepi
- Department of Pathology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Kostis Gyftopoulos
- Department of Anatomy, School of Medicine, University of Patras, 26504 Patras, Greece
| |
Collapse
|
243
|
Lai W, Chen J, Wang T, Liu Q. Crosstalk between ferroptosis and steroid hormone signaling in gynecologic cancers. Front Mol Biosci 2023; 10:1223493. [PMID: 37469703 PMCID: PMC10352791 DOI: 10.3389/fmolb.2023.1223493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/22/2023] [Indexed: 07/21/2023] Open
Abstract
Ferroptosis is a novel types of regulated cell death and is widely studied in cancers and many other diseases in recent years. It is characterized by iron accumulation and intense lipid peroxidation that ultimately inducing oxidative damage. So far, signaling pathways related to ferroptosis are involved in all aspects of determining cell fate, including oxidative phosphorylation, metal-ion transport, energy metabolism and cholesterol synthesis progress, et al. Recently, accumulated studies have demonstrated that ferroptosis is associated with gynecological oncology related to steroid hormone signaling. This review trends to summarize the mechanisms and applications of ferroptosis in cancers related to estrogen and progesterone, which is expected to provide a theoretical basis for the prevention and treatment of gynecologic cancers.
Collapse
Affiliation(s)
- Wen Lai
- Department of Obstetrics and Gynecology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Jianquan Chen
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Tianming Wang
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Qiaoling Liu
- Department of Obstetrics and Gynecology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
244
|
Wu S, Chen Q, Wang Y, Yin H, Wei Y. Lipid nanoparticle delivery of siRNA targeting Cyp2e1 gene attenuates subacute alcoholic liver injury in mice. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:306-317. [PMID: 37476942 PMCID: PMC10409911 DOI: 10.3724/zdxbyxb-2022-0729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/09/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVES To investigate the effect and mechanism of lipid nanoparticle (LNP) delivery of small interfering RNA (siRNA) targeting Cyp2e1 gene on subacute alcoholic liver injury in mice. METHODS siRNA targeting Cyp2e1 gene was encapsulated in LNP (si-Cyp2e1 LNP) by microfluidic technique and the resulting LNPs were characterized. The optimal dose of si-Cyp2e1 LNP administration was screened. Forty female C57BL/6N mice were randomly divided into blank control group, model control group, si-Cyp2e1 LNP group, LNP control group and metadoxine group. The subacute alcoholic liver injury mouse model was induced by ethanol feeding for 10 d plus ethanol gavage for the last 3 d. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, and the superoxide dismutase (SOD) activity as well as malondialdehyde, reactive oxygen species, glutathione, triacylglycerol, total cholesterol contents in liver tissue were measured in each group, and liver index was calculated. The expression of genes related to oxidative stress, lipid synthesis and inflammation in each group of mice were measured by realtime RT-PCR. RESULTS Compared with the model control group, the levels of liver index, serum ALT, AST activities, malondialdehyde, reactive oxygen species, triacylglycerol, total cholesterol contents in liver tissue decreased, but the SOD activity as well as glutathione increased in the si-Cyp2e1 LNP group (all P<0.01). Hematoxylin-eosin staining result showed disorganized hepatocytes with sparse cytoplasm and a large number of fat vacuoles and necrosis in the model control group, while the si-Cyp2e1 LNP group had uniformly sized and arranged hepatocytes with normal liver tissue morphology and structure. Oil red O staining result showed si-Cyp2e1 LNP group had lower fat content of the liver compared to the model control group (P<0.01), and no fat droplets accumulated. Anti-F4/80 monoclonal antibody fluorescence immunohistochemistry showed that the si-Cyp2e1 LNP group had lower cumulative optical density values compared to the model control group (P<0.01) and no significant inflammatory reaction. Compared with the model control group, the expression of catalytic genes P47phox, P67phox and Gp91phox were reduced (all P<0.01), while the expression of the antioxidant enzyme genes Sod1, Gsh-rd and Gsh-px were increased (all P<0.01). The mRNA expression of the lipid metabolism genes Pgc-1α and Cpt1 were increased (all P<0.01) and the lipid synthesis-related genes Srebp1c, Acc and Fasn were decreased (all P<0.01); the expression of liver inflammation-related genes Tgf-β, Tnf-α and Il-6 were decreased (all P<0.01). CONCLUSIONS The si-Cyp2e1 LNP may attenuate subacute alcoholic liver injury in mice mainly by reducing reactive oxygen levels, increasing antioxidant activity, blocking oxidative stress pathways and reducing ethanol-induced steatosis and inflammation.
Collapse
Affiliation(s)
- Shuang Wu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| | - Qiubing Chen
- Department of Urology, Frontier Science Centre for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yalan Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Hao Yin
- Department of Urology, Frontier Science Centre for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- RNA Institute, Wuhan University, Wuhan 430072, China
- Wuhan Research Centre for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430010, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| |
Collapse
|
245
|
Zhang L, Chen Y, Zhou Z, Wang Z, Fu L, Zhang L, Xu C, Loor JJ, Wang G, Zhang T, Dong X. Vitamin C injection improves antioxidant stress capacity through regulating blood metabolism in post-transit yak. Sci Rep 2023; 13:10233. [PMID: 37353533 PMCID: PMC10290073 DOI: 10.1038/s41598-023-36779-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023] Open
Abstract
Transportation stress is one of the most serious issues in the management of yak. Previous studies have demonstrated that transport stress is caused by a pro-oxidant state in the animal resulting from an imbalance between pro-oxidant and antioxidant status. In this context, vitamin C has the ability to regulate reactive oxygen species (ROS) synthesis and alleviate oxidative stress. Although this effect of vitamin C is useful in pigs, goats and cattle, the effect of vitamin C on the mitigation of transport stress in yaks is still unclear. The purpose of this study was to better assess the metabolic changes induced by the action of vitamin C in yaks under transportation stress, and whether these changes can influence antioxidant status. After the yaks arrived at the farm, control or baseline blood samples were collected immediately through the jugular vein (VC_CON). Then, 100 mg/kg VC was injected intramuscularly, and blood samples were collected on the 10th day before feeding in the morning (VC). Relative to the control group, the VC injection group had higher levels of VC. Compared with VC_CON, VC injection significantly (P < 0.05) decreased the blood concentrations of ALT, AST, T-Bil, D-Bil, IDBIL, UREA, CRP and LDH. However, VC injection led to greater (P < 0.05) AST/ALT and CREA-S relative to VC_CON. There was no difference (P > 0.05) in GGT, ALP, TBA, TP, ALBII, GLO, A/G, TC, TG, HDL-C, LDL-C, GLU and L-lactate between VC_CON and VC. The injection of VC led to greater (P < 0.05) concentration of MDA, but did not alter (P > 0.05) the serum concentrations of LPO and ROS. The injection of VC led to greater (P < 0.05) serum concentrations of POD, CAT and GSH-PX. In contrast, lower (P < 0.05) serum concentrations of SOD, POD and TPX were observed in VC relative to VC_CON. No difference (P > 0.05) in GSH, GSH-ST and GR was observed between VC_CON and VC. Compared with the control group, metabolomics using liquid chromatography tandem-mass spectrometry identified 156 differential metabolites with P < 0.05 and a variable importance in projection (VIP) score > 1.5 in the VC injection group. The injection of VC resulted in significant changes to the intracellular amino acid metabolism of glutathione, glutamate, cysteine, methionine, glycine, phenylalanine, tyrosine, tryptophan, alanine and aspartate. Overall, our study indicated that VC injections were able to modulate antioxidant levels by affecting metabolism to resist oxidative stress generated during transport.
Collapse
Affiliation(s)
- Li Zhang
- Chongqing Academy of Animal Sciences, Rongchang, 402460, China
| | - Yi Chen
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection; Chongqing Key Laboratory of Nano/Micro Composite Material and Device, College of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Ziyao Zhou
- Chongqing Academy of Animal Sciences, Rongchang, 402460, China
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhiyu Wang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Fu
- Chongqing Academy of Animal Sciences, Rongchang, 402460, China
| | - Lijun Zhang
- Tibet Leowuqi Animal Husbandry Station, Changdu Tibet, 855600, China
| | - Changhui Xu
- Tibet Leowuqi Animal Husbandry Station, Changdu Tibet, 855600, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, 61801, USA
| | - Gaofu Wang
- Chongqing Academy of Animal Sciences, Rongchang, 402460, China
| | - Tao Zhang
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection; Chongqing Key Laboratory of Nano/Micro Composite Material and Device, College of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| | - Xianwen Dong
- Chongqing Academy of Animal Sciences, Rongchang, 402460, China.
| |
Collapse
|
246
|
Kim M, Jang H, Kim W, Kim D, Park JH. Therapeutic Applications of Plant-Derived Extracellular Vesicles as Antioxidants for Oxidative Stress-Related Diseases. Antioxidants (Basel) 2023; 12:1286. [PMID: 37372016 PMCID: PMC10295733 DOI: 10.3390/antiox12061286] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Extracellular vesicles (EVs) composed of a lipid bilayer are released from various cell types, including animals, plants, and microorganisms, and serve as important mediators of cell-to-cell communication. EVs can perform a variety of biological functions through the delivery of bioactive molecules, such as nucleic acids, lipids, and proteins, and can also be utilized as carriers for drug delivery. However, the low productivity and high cost of mammalian-derived EVs (MDEVs) are major barriers to their practical clinical application where large-scale production is essential. Recently, there has been growing interest in plant-derived EVs (PDEVs) that can produce large amounts of electricity at a low cost. In particular, PDEVs contain plant-derived bioactive molecules such as antioxidants, which are used as therapeutic agents to treat various diseases. In this review, we discuss the composition and characteristics of PDEVs and the appropriate methods for their isolation. We also discuss the potential use of PDEVs containing various plant-derived antioxidants as replacements for conventional antioxidants.
Collapse
Affiliation(s)
| | | | | | | | - Ju Hyun Park
- Department of Biomedical Science, Kangwon National University, Chuncheon-si 24341, Republic of Korea; (M.K.); (H.J.); (W.K.); (D.K.)
| |
Collapse
|
247
|
Tong Z, Chu G, Wan C, Wang Q, Yang J, Meng Z, Du L, Yang J, Ma H. Multiple Metabolites Derived from Mushrooms and Their Beneficial Effect on Alzheimer's Diseases. Nutrients 2023; 15:2758. [PMID: 37375662 DOI: 10.3390/nu15122758] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Mushrooms with edible and medicinal potential have received widespread attention because of their diverse biological functions, nutritional value, and delicious taste, which are closely related to their rich active components. To date, many bioactive substances have been identified and purified from mushrooms, including proteins, carbohydrates, phenols, and vitamins. More importantly, molecules derived from mushrooms show great potential to alleviate the pathological manifestations of Alzheimer's disease (AD), which seriously affects the health of elderly people. Compared with current therapeutic strategies aimed at symptomatic improvement, it is particularly important to identify natural products from resource-rich mushrooms that can modify the progression of AD. This review summarizes recent investigations of multiple constituents (carbohydrates, peptides, phenols, etc.) isolated from mushrooms to combat AD. In addition, the underlying molecular mechanisms of mushroom metabolites against AD are discussed. The various mechanisms involved in the antiAD activities of mushroom metabolites include antioxidant and anti-neuroinflammatory effects, apoptosis inhibition, and stimulation of neurite outgrowth, etc. This information will facilitate the application of mushroom-derived products in the treatment of AD. However, isolation of new metabolites from multiple types of mushrooms and further in vivo exploration of the molecular mechanisms underlying their antiAD effect are still required.
Collapse
Affiliation(s)
- Zijian Tong
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Guodong Chu
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Chenmeng Wan
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Qiaoyu Wang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Jialing Yang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Zhaoli Meng
- Laboratory of Tumor Immunolgy, The First Hospital of Jilin University, Changchun 130061, China
| | - Linna Du
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Jing Yang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Hongxia Ma
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
248
|
Fu Y, Sui Y, Zhao Y, Jiang J, Wang X, Cui J, Fu X, Xing S, Zhao ZJ. PZR promotes tumorigenicity of lung cancer cells by regulating cell migration and invasion via modulating oxidative stress and cell adhesion. Aging (Albany NY) 2023; 15:204771. [PMID: 37279992 PMCID: PMC10292906 DOI: 10.18632/aging.204771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/17/2023] [Indexed: 06/08/2023]
Abstract
PZR is a transmembrane glycoprotein encoded by the MPZL1 gene. It serves as a specific binding protein and substrate of tyrosine phosphatase SHP-2 whose mutations cause developmental diseases and cancers. Bioinformatic analyses of cancer gene databases revealed that PZR is overexpressed in lung cancer and correlated with unfavorable prognosis. To investigate the role of PZR in lung cancer, we employed the CRISPR technique to knockout its expression and recombinant lentiviruses to overexpress it in lung adenocarcinoma SPC-A1 cells. While knockout of PZR reduced colony formation, migration, and invasion, overexpression of PZR had the opposite effects. Furthermore, when implanted in immunodeficient mice, PZR-knockout SPC-A1 cells showed suppressed tumor-forming ability. Finally, the underlying molecular mechanism for these functions of PZR is its positive role in activating tyrosine kinases FAK and c-Src and in maintaining the intracellular level of reactive oxygen species (ROS). In conclusion, our data indicated that PZR plays an important role in lung cancer development, and it may serve as a therapeutic target for anti-cancer development and as a biomarker for cancer prognosis.
Collapse
Affiliation(s)
- Ying Fu
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Yuan Sui
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Yuming Zhao
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Jianzhuo Jiang
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Xueyuan Wang
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Jiarui Cui
- Department of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Xueqi Fu
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Shu Xing
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
249
|
Liu YH, Meng R, Zhu B, Zhan QQ, Yang X, Ding GY, Jia CL, Liu QY, Xu WG. Integrated oxidative stress score for predicting prognosis in stage III gastric cancer undergoing surgery. Pathol Oncol Res 2023; 29:1610897. [PMID: 37334172 PMCID: PMC10272382 DOI: 10.3389/pore.2023.1610897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 05/16/2023] [Indexed: 06/20/2023]
Abstract
Objective: This study aimed to develop a novel scoring system, named the integrated oxidative stress score (IOSS), based on oxidative stress indices to predict the prognosis in stage III gastric cancer. Methods: Retrospective analysis of stage III gastric cancer patients who were operated on between January 2014 and December 2016 were enrolled into this research. IOSS is a comprehensive index based on an achievable oxidative stress index, comprising albumin, blood urea nitrogen, and direct bilirubin. The patients were divided according to receiver operating characteristic curve into two groups of low IOSS (IOSS ≤ 2.00) and high IOSS (IOSS > 2.00). The grouping variable was performed by Chi-square test or Fisher's precision probability test. The continuous variables were evaluated by t-test. The disease free survival (DFS) and overall survival (OS) were performed by Kaplan-Meier and Log-Rank tests. Univariate Cox proportional hazards regression models and stepwise multivariate Cox proportional hazards regression analysis were determined to appraise the potential prognostic factors for DFS and OS. A nomogram of the potential prognostic factors by the multivariate analysis for DFS and OS was established with R software. In order to assess the accuracy of the nomogram in forecasting prognosis, the calibration curve and decision curve analysis were produced, contrasting the observed outcomes with the predicted outcomes. Results: The IOSS was significantly correlated with the DFS and OS, and was a potential prognostic factor in patients with stage III gastric cancer. Patients with low IOSS had longer survival (DFS: χ2 = 6.632, p = 0.010; OS: χ2 = 6.519, p = 0.011), and higher survival rates. According to the univariate and multivariate analyses, the IOSS was a potential prognostic factor. The nomograms were conducted on the potential prognostic factors to improve the correctness of survival prediction and evaluate the prognosis in stage III gastric cancer patients. The calibration curve indicated a good agreement in 1-, 3-, 5-year lifetime rates. The decision curve analysis indicated that the nomogram's predictive clinical utility for clinical decision was better than IOSS. Conclusion: IOSS is a nonspecific tumor predictor based on available oxidative stress index, and low IOSS is found to be a vigorous factor of better prognosis in stage III gastric cancer.
Collapse
Affiliation(s)
- Yu-hang Liu
- School of Clinical Medicine, North China University of Science and Technology, Tangshan, China
| | - Rui Meng
- Department of Emergency Intensive Care Unit, Yangpu Hospital, Tongji University, Shanghai, China
| | - Bing Zhu
- Tangshan Gongren Hospital, Tangshan, China
| | - Qi-qi Zhan
- North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Xin Yang
- North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | | | | | - Qian-yu Liu
- North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Wei-guo Xu
- North China University of Science and Technology Affiliated Hospital, Tangshan, China
- Department of Gastrointestinal Surgery, China Hospital Medical Sciences, Shenzhen, China
| |
Collapse
|
250
|
Svolacchia F, Brongo S, Catalano A, Ceccarini A, Svolacchia L, Santarsiere A, Scieuzo C, Salvia R, Finelli F, Milella L, Saturnino C, Sinicropi MS, Fabrizio T, Giuzio F. Natural Products for the Prevention, Treatment and Progression of Breast Cancer. Cancers (Basel) 2023; 15:cancers15112981. [PMID: 37296944 DOI: 10.3390/cancers15112981] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
In this review, we summarize the most used natural products as useful adjuvants in BC by clarifying how these products may play a critical role in the prevention, treatment and progression of this disease. BC is the leading cancer, in terms of incidence, that affects women. The epidemiology and pathophysiology of BC were widely reported. Inflammation and cancer are known to influence each other in several tumors. In the case of BC, the inflammatory component precedes the development of the neoplasm through a slowly increasing and prolonged inflammation that also favors its growth. BC therapy involves a multidisciplinary approach comprising surgery, radiotherapy and chemotherapy. There are numerous observations that showed that the effects of some natural substances, which, in integration with the classic protocols, can be used not only for prevention or integration in order to prevent recurrences and induce a state of chemoquiescence but also as chemo- and radiosensitizers during classic therapy.
Collapse
Affiliation(s)
- Fabiano Svolacchia
- Department of Medical-Surgical Sciences and Biotechnologies, La Sapienza University, 00118 Rome, Italy
- Department of Medical Sciences, Policlinic Foundation Tor Vergata University, 00133 Rome, Italy
| | - Sergio Brongo
- Department of Plastic Surgery, University of Salerno, 84131 Campania, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70126 Bari, Italy
| | - Agostino Ceccarini
- U.O.C. Primary Care and Territorial Health, Social and Health Department, State Hospital, 47893 San Marino, San Marino
| | - Lorenzo Svolacchia
- Department of Medical-Surgical Sciences and Biotechnologies, La Sapienza University, 00118 Rome, Italy
| | - Alessandro Santarsiere
- Department of Science, University of Basilicata, 85100 Potenza, Italy
- CNRS, UMR 7042-LIMA, ECPM, Université de Strasbourg, Université de Haute-Alsace, 67000 Strasbourg, France
| | - Carmen Scieuzo
- Department of Science, University of Basilicata, 85100 Potenza, Italy
- Spinoff XFlies s.r.l., University of Basilicata, 85100 Potenza, Italy
| | - Rosanna Salvia
- Department of Science, University of Basilicata, 85100 Potenza, Italy
- Spinoff XFlies s.r.l., University of Basilicata, 85100 Potenza, Italy
| | | | - Luigi Milella
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Tommaso Fabrizio
- Department of Plastic Surgery, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Federica Giuzio
- U.O.C. Primary Care and Territorial Health, Social and Health Department, State Hospital, 47893 San Marino, San Marino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
- Spinoff TNcKILLERS s.r.l., University of Basilicata, 85100 Potenza, Italy
| |
Collapse
|