201
|
Reina-Couto M, Silva-Pereira C, Pereira-Terra P, Quelhas-Santos J, Bessa J, Serrão P, Afonso J, Martins S, Dias CC, Morato M, Guimarães JT, Roncon-Albuquerque R, Paiva JA, Albino-Teixeira A, Sousa T. Endothelitis profile in acute heart failure and cardiogenic shock patients: Endocan as a potential novel biomarker and putative therapeutic target. Front Physiol 2022; 13:965611. [PMID: 36035482 PMCID: PMC9407685 DOI: 10.3389/fphys.2022.965611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/05/2022] [Indexed: 12/02/2022] Open
Abstract
Aims: Inflammation-driven endothelitis seems to be a hallmark of acute heart failure (AHF) and cardiogenic shock (CS). Endocan, a soluble proteoglycan secreted by the activated endothelium, contributes to inflammation and endothelial dysfunction, but has been scarcely explored in human AHF. We aimed to evaluate serum (S-Endocan) and urinary endocan (U-Endocan) profiles in AHF and CS patients and to correlate them with biomarkers/parameters of inflammation, endothelial activation, cardiovascular dysfunction and prognosis. Methods: Blood and spot urine were collected from patients with AHF (n = 23) or CS (n = 25) at days 1–2 (admission), 3-4 and 5-8 and from controls (blood donors, n = 22) at a single time point. S-Endocan, U-Endocan, serum IL-1β, IL-6, tumour necrosis factor-α (S-TNF-α), intercellular adhesion molecule-1 (S-ICAM-1), vascular cell adhesion molecule-1 (S-VCAM-1) and E-selectin were determined by ELISA or multiplex immunoassays. Serum C-reactive protein (S-CRP), plasma B-type natriuretic peptide (P-BNP) and high-sensitivity troponin I (P-hs-trop I), lactate, urea, creatinine and urinary proteins, as well as prognostic scores (APACHE II, SAPS II) and echocardiographic left ventricular ejection fraction (LVEF) were also evaluated. Results: Admission S-Endocan was higher in both patient groups, with CS presenting greater values than AHF (AHF and CS vs. Controls, p < 0.001; CS vs. AHF, p < 0.01). Admission U-Endocan was only higher in CS patients (p < 0.01 vs. Controls). At admission, S-VCAM-1, S-IL-6 and S-TNF-α were also higher in both patient groups but there were no differences in S-E-selectin and S-IL-1β among the groups, nor in P-BNP, S-CRP or renal function between AHF and CS. Neither endocan nor other endothelial and inflammatory markers were reduced during hospitalization (p > 0.05). S-Endocan positively correlated with S-VCAM-1, S-IL-6, S-CRP, APACHE II and SAPS II scores and was positively associated with P-BNP in multivariate analyses. Admission S-Endocan raised in line with LVEF impairment (p = 0.008 for linear trend). Conclusion: Admission endocan significantly increases across AHF spectrum. The lack of reduction in endothelial and inflammatory markers throughout hospitalization suggests a perpetuation of endothelial dysfunction and inflammation. S-Endocan appears to be a biomarker of endothelitis and a putative therapeutic target in AHF and CS, given its association with LVEF impairment and P-BNP and its positive correlation with prognostic scores.
Collapse
Affiliation(s)
- Marta Reina-Couto
- Departamento de Biomedicina—Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto (MedInUP), Porto, Portugal
- Serviço de Medicina Intensiva, Centro Hospitalar Universitário São João (CHUSJ), Porto, Portugal
- Serviço de Farmacologia Clínica, CHUSJ, Porto, Portugal
| | - Carolina Silva-Pereira
- Departamento de Biomedicina—Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto (MedInUP), Porto, Portugal
| | - Patrícia Pereira-Terra
- Departamento de Biomedicina—Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto (MedInUP), Porto, Portugal
| | - Janete Quelhas-Santos
- Departamento de Biomedicina—Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | - João Bessa
- Departamento de Biomedicina—Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | - Paula Serrão
- Departamento de Biomedicina—Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto (MedInUP), Porto, Portugal
| | - Joana Afonso
- Departamento de Biomedicina—Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto (MedInUP), Porto, Portugal
| | - Sandra Martins
- Serviço de Patologia Clínica, CHUSJ and EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Cláudia Camila Dias
- Departamento de Medicina da Comunidade, Informação e Decisão em Saúde, FMUP, Porto, Portugal
- CINTESIS—Centro de Investigação em Tecnologias e Serviços de Saúde, Porto, Portugal
| | - Manuela Morato
- Laboratório de Farmacologia, Departamento de Ciências do Medicamento, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
- LAQV/REQUIMTE, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - João T Guimarães
- Serviço de Patologia Clínica, CHUSJ and EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Departamento de Biomedicina—Unidade de Bioquímica, FMUP, Porto, Portugal
| | - Roberto Roncon-Albuquerque
- Serviço de Medicina Intensiva, Centro Hospitalar Universitário São João (CHUSJ), Porto, Portugal
- Departamento de Cirurgia e Fisiologia, FMUP, Porto, Portugal
| | - José-Artur Paiva
- Serviço de Medicina Intensiva, Centro Hospitalar Universitário São João (CHUSJ), Porto, Portugal
- Departamento de Medicina, FMUP, Porto, Portugal
| | - António Albino-Teixeira
- Departamento de Biomedicina—Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto (MedInUP), Porto, Portugal
| | - Teresa Sousa
- Departamento de Biomedicina—Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto (MedInUP), Porto, Portugal
- *Correspondence: Teresa Sousa,
| |
Collapse
|
202
|
Li H, Gao YH, Song L, Chen TF, Zhang GP, Ye ZG, Gao Y, Huo W. Ginsenoside Rg1 protects mice against 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced liver injury by inhibiting CYP1A1 through the aryl hydrocarbon receptor. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115394. [PMID: 35595219 DOI: 10.1016/j.jep.2022.115394] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/26/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng C. A. Meyer (ginseng) is a widely used traditional Chinese medicine that has played a beneficial role in the treatment of various diseases, including liver diseases. Ginsenoside Rg1 is a saponin isolated and purified from ginseng that exerts protective effects on the liver in some liver injury models. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a ubiquitous dioxin found mostly in food products that causes liver injury and other human diseases. Although significant efforts have been made to reduce the burden of liver disease, there is still a lack of effective treatment methods. AIM OF THE STUDY Although ginsenoside Rg1 was reported to inhibit TCDD-mediated cytochrome P450 1A1 (CYP1A1) induction in HepG2 cells, we sought to verify its hepatoprotective effects and elucidate its mechanism in a TCDD-induced liver injury model in mice. MATERIAL AND METHODS The mouse liver injury model was established by intraperitoneal TCDD injection, followed by treatment with various doses of ginsenoside Rg1 (50, 100, and 200 mg/kg). Clinical indicators of liver injury, such as an increase in serum aspartate aminotransferase and alanine aminotransferase levels, as well as histopathological changes were evaluated. RESULTS The common clinical indicators of liver injury were detected following TCDD injection, including an increase in serum alanine aminotransferase and aspartate aminotransferase levels, increased relative liver weight, and histopathological changes. Following treatment with ginsenoside Rg1, the levels of aspartate aminotransferase and alanine aminotransferase decreased significantly, and the liver histology was improved. In addition, ginsenoside Rg1 competitively inhibited TCDD-induced Cyp1a1 mRNA transcription through the modulation of aryl hydrocarbon receptor (AhR) nuclear translocation. CONCLUSION Ginsenoside Rg1 is a potent partial AhR agonist that has potential as an effective medication for protecting against TCDD-associated liver injury.
Collapse
Affiliation(s)
- Han Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yun-Hang Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ling Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Teng-Fei Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Guang-Ping Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Zu-Guang Ye
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yue Gao
- Institute of Radiation Medicine Academy of Military Medical Sciences, Beijing, 100850, China.
| | - Wang Huo
- Department of Traditional Chinese Medicine, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China.
| |
Collapse
|
203
|
Wajsbrot NB, Leite NC, Salles GF, Villela-Nogueira CA. Non-alcoholic fatty liver disease and the impact of genetic, epigenetic and environmental factors in the offspring. World J Gastroenterol 2022; 28:2890-2899. [PMID: 35978876 PMCID: PMC9280730 DOI: 10.3748/wjg.v28.i25.2890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/20/2022] [Accepted: 05/14/2022] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide and is strongly associated with metabolic deregulation. More recently, a significant impact of parental NAFLD in the offspring was demonstrated and has been widely discussed. However, pathogenetic pathways implicated in the inheritance by the offspring and relatives are still under debate. Probably, multiple mechanisms are involved as well as in NAFLD pathogenesis itself. Among the multifactorial involved mechanisms, genetic, epigenetic and environmental backgrounds are strongly related to NAFLD development in the offspring. Thus, based on recent evidence from the available literature concerning genetic, epigenetic and environmental disease modifiers, this review aimed to discuss the relationship between parental NAFLD and its impact on the offspring.
Collapse
Affiliation(s)
- Natalia Balassiano Wajsbrot
- Division of Hepatology, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro 20941-913, Brazil
| | - Nathalie Carvalho Leite
- Division of Hepatology, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro 20941-913, Brazil
| | - Gil F Salles
- Department of Internal Medicine, Medical School, Federal University of Rio de Janeiro, Rio de Janeiro 22750-240, Brazil
| | - Cristiane A Villela-Nogueira
- Department of Internal Medicine, Medical School, Federal University of Rio de Janeiro, Rio de Janeiro 22750-240, Brazil
| |
Collapse
|
204
|
Benoit L, Jornod F, Zgheib E, Tomkiewicz C, Koual M, Coustillet T, Barouki R, Audouze K, Vinken M, Coumoul X. Adverse outcome pathway from activation of the AhR to breast cancer-related death. ENVIRONMENT INTERNATIONAL 2022; 165:107323. [PMID: 35660951 DOI: 10.1016/j.envint.2022.107323] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/03/2022] [Accepted: 05/24/2022] [Indexed: 05/15/2023]
Abstract
Adverse outcome pathways (AOPs) are formalized and structured linear concepts that connect one molecular initiating event (MIE) to an adverse outcome (AO) via different key events (KE) through key event relationships (KER). They are mainly used in eco-toxicology toxicology, and regulatory health issues. AOPs must respond to specific guidelines from the Organization for Economic Co-operation and Development (OECD) to weight the evidence between each KE. Breast cancer is the deadliest cancer in women with a poor prognosis in case of metastatic breast cancer. The role of the environments in the formation of metastasis has been suggested. We hypothesized that activation of the AhR (MIE), a xenobiotic receptor, could lead to breast cancer related death (AO), through different KEs, constituting a new AOP. An artificial intelligence tool (AOP-helpfinder), which screens the available literature, was used to collect all existing scientific abstracts to build a novel AOP, using a list of key words. Four hundred and seven abstracts were found containing at least a word from our MIE list and either one word from our AO or KE list. A manual curation retained 113 pertinent articles, which were also screened using PubTator. From these analyses, an AOP was created linking the activation of the AhR to breast cancer related death through decreased apoptosis, inflammation, endothelial cell migration, angiogenesis, and invasion. These KEs promote an increased tumor growth, angiogenesis and migration which leads to breast cancer metastasis and breast cancer related death. The evidence of the proposed AOP was weighted using the tailored Bradford Hill criteria and the OECD guidelines. The confidence in our AOP was considered strong. An in vitro validation must be carried out, but our review proposes a strong relationship between AhR activation and breast cancer-related death with an innovative use of an artificial intelligence literature search.
Collapse
Affiliation(s)
- Louise Benoit
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France; Assistance Publique-Hôpitaux de Paris, European Hospital Georges-Pompidou, Gynecologic and Breast Oncologic Surgery Department, Paris, France.
| | - Florence Jornod
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Elias Zgheib
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Celine Tomkiewicz
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Meriem Koual
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France; Assistance Publique-Hôpitaux de Paris, European Hospital Georges-Pompidou, Gynecologic and Breast Oncologic Surgery Department, Paris, France
| | - Thibaut Coustillet
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Robert Barouki
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France; Assistance Publique-Hôpitaux de Paris, European Hospital Georges-Pompidou, Gynecologic and Breast Oncologic Surgery Department, Paris, France
| | - Karine Audouze
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Xavier Coumoul
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| |
Collapse
|
205
|
Chen H, Zhang S, Yu B, Xu Y, Rappold AG, Diaz-Sanchez D, Samet JM, Tong H. Circulating microRNAs as putative mediators in the association between short-term exposure to ambient air pollution and cardiovascular biomarkers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113604. [PMID: 35576800 PMCID: PMC9167781 DOI: 10.1016/j.ecoenv.2022.113604] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND Exposure to ambient air pollution is associated with increased cardiovascular morbidity and mortality. Circulating microRNAs (miRNAs) may mediate cardiovascular effects of exposure to air pollution. This study aims to investigate whether circulating miRNAs mediate the associations between short-term human exposure to ambient air pollution and cardiovascular biomarkers. METHODS Twenty-four healthy adults residing in the Research Triangle area of North Carolina, USA were enrolled between December 2016 and July 2019. Circulating miRNAs, protein, and lipid biomarkers were assessed repeatedly for 3 sessions separated by at least 7 days. Linear mixed-effects models were used to assess the associations between air pollutant concentrations obtained from nearby air quality monitoring stations and miRNAs controlling for covariates including omega-3 index, relative humidity, and temperature. miRNAs that were significantly altered were then matched with protein or blood lipid biomarkers using either Ingenuity Pathway Analysis or a literature search. A mediation analysis was performed to test the statistical significance of miRNA's mediating effects between exposure to air pollution and cardiovascular biomarkers. RESULTS Short-term exposure to ambient fine particulate matter (PM2.5), ozone (O3), and nitrogen dioxide (NO2) was associated with changes in 11, 9, and 24 circulating miRNAs, respectively. Pathway analysis showed that several miRNAs including miR-125b-5p, miR-144-5p, miR-26a-5p, and miR-34a-5p may mediate the effects of air pollutant exposure on the changes of downstream protein / lipid biomarkers including serum amyloid A (SAA), C-reactive protein (CRP), soluble vascular adhesive molecules 1 (sICAM1), total cholesterol, and high-density lipoproteins (HDL). Mediation analysis showed that only miR-26a-5p significantly mediated air pollutant (PM2.5 and NO2)-induced effects on blood CRP and total cholesterol levels. For example, 34.1% of PM2.5-associated changes in CRP were significantly mediated by miR-26a-5p at lag4 [indirect effects, 0.06 (0.02, 0.10), P = 0.005]. Similarly, the proportions of indirect effects of miR-26a-5p on the association between NO2 exposure and CRP were 46.8% at lag2 [0.06 (0.02, 0.11), P = 0.003], 61.2% at lag3 [0.05 (0.00, 0.09), P = 0.04], and 30.8% at 5-day moving average [0.06 (0.02, 0.10), P = 0.01]. In addition, omega-3 index may be a significant modifying factor of the mediated effects of miRNAs. CONCLUSIONS This study demonstrates that short-term exposure to ambient PM2.5, O3, and NO2 was associated with specific circulating miRNAs, and some of which may mediate their effects on the downstream inflammation and blood lipid markers.
Collapse
Affiliation(s)
- Hao Chen
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Siqi Zhang
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Bin Yu
- Department of Surgery, School of Medicine, Duke University, Durham, NC, USA
| | - Yunan Xu
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Ana G Rappold
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - David Diaz-Sanchez
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - James M Samet
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - Haiyan Tong
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Chapel Hill, NC, USA.
| |
Collapse
|
206
|
Single cell RNA-seq reveals the CCL5/SDC1 receptor-ligand interaction between T cells and tumor cells in pancreatic cancer. Cancer Lett 2022; 545:215834. [DOI: 10.1016/j.canlet.2022.215834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/04/2022] [Accepted: 07/17/2022] [Indexed: 12/15/2022]
|
207
|
Yang Z, Chen S, Ying H, Yao W. Targeting syndecan-1: new opportunities in cancer therapy. Am J Physiol Cell Physiol 2022; 323:C29-C45. [PMID: 35584326 PMCID: PMC9236862 DOI: 10.1152/ajpcell.00024.2022] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022]
Abstract
Syndecan-1 (SDC1, CD138) is one of the heparan sulfate proteoglycans and is essential for maintaining normal cell morphology, interacting with the extracellular and intracellular protein repertoire, as well as mediating signaling transduction upon environmental stimuli. The critical role of SDC1 in promoting tumorigenesis and metastasis has been increasingly recognized in various cancer types, implying a promising potential of utilizing SDC1 as a novel target for cancer therapy. This review summarizes the current knowledge on SDC1 structure and functions, including its role in tumor biology. We also discuss the highlights and limitations of current SDC1-targeted therapies as well as the obstacles in developing new therapeutic methods, offering our perspective on the future directions to target SDC1 for cancer treatment.
Collapse
Affiliation(s)
- Zecheng Yang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shuaitong Chen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wantong Yao
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
208
|
Devi G.V Y, Nagendra AH, Shenoy P S, Chatterjee K, Venkatesan J. Isolation and purification of fucoidan from Sargassum ilicifolium: Osteogenic differentiation potential in mesenchymal stem cells for bone tissue engineering. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
209
|
Zhang Y, Gu D. Prognostic Impact of Serum CRP Level in Head and Neck Squamous Cell Carcinoma. Front Oncol 2022; 12:889844. [PMID: 35847918 PMCID: PMC9277075 DOI: 10.3389/fonc.2022.889844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/23/2022] [Indexed: 12/02/2022] Open
Abstract
Objective This study evaluated the association of pretreatment serum C-reactive protein (CRP) level with prognosis in patients with head and neck squamous cell carcinoma (HNSCC). Methods Within a single-center retrospective study, HNSCC patients receiving treatment between 2014 and 2016 were analyzed regarding the prognostic value of CRP serum levels. X-Tile software was used to determine the optimal cutoff value of serum CRP level. The log-rank test and Kaplan–Meier method were used to assess the effects of CRP level on prognosis in patients with HNSCC. Univariate and multivariate analyses (enter method) using a Cox proportional hazards model were utilized to identify prognostic indicators of progression-free survival (PFS) as the primary outcome and overall survival (OS) as the secondary outcome. Results A total of 221 patients with HNSCC were assessed for eligibility, and 208 cases were included in the analysis. The HNSCC patients in the low-group (CRP ≤11.3 mg/L) showed better survival than those in the high-group (CRP > 11.3 mg/L). The univariate and multivariate analyses showed that N1-3 stage and a high serum CRP level (>11.3 mg/L) were unfavorable prognostic factors for PFS and OS in patients with HNSCC. Conclusion Serum CRP level is an independent prognostic marker for patients with HNSCC. CRP level could be regarded as a novel prognostic factor for HNSCC patients.
Collapse
|
210
|
Mitsala A, Tsalikidis C, Romanidis K, Pitiakoudis M. Non-Alcoholic Fatty Liver Disease and Extrahepatic Cancers: A Wolf in Sheep’s Clothing? Curr Oncol 2022; 29:4478-4510. [PMID: 35877216 PMCID: PMC9325209 DOI: 10.3390/curroncol29070356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 12/02/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is now considered the main driver and leading cause of chronic liver disease globally. The umbrella term NAFLD describes a range of liver conditions closely related to insulin resistance, metabolic syndrome, diabetes mellitus, obesity, and dyslipidemia. At the same time, several malignancies, including hepatocellular carcinoma and colorectal cancer, are considered to be common causes of death among patients with NAFLD. At first, our review herein aims to investigate the role of NAFLD in developing colorectal neoplasms and adenomatous polyps based on the current literature. We will also explore the connection and the missing links between NAFLD and extrahepatic cancers. Interestingly, any relationship between NAFLD and extrahepatic malignancies could be attributable to several shared metabolic risk factors. Overall, obesity, insulin resistance, metabolic syndrome, and related disorders may increase the risk of developing cancer. Therefore, early diagnosis of NAFLD is essential for preventing the progression of the disease and avoiding its severe complications. In addition, cancer screening and early detection in these patients may improve survival and reduce any delays in treatment.
Collapse
|
211
|
Zanotti S, Boot GF, Coto-Llerena M, Gallon J, Hess GF, Soysal SD, Kollmar O, Ng CKY, Piscuoglio S. The Role of Chronic Liver Diseases in the Emergence and Recurrence of Hepatocellular Carcinoma: An Omics Perspective. Front Med (Lausanne) 2022; 9:888850. [PMID: 35814741 PMCID: PMC9263082 DOI: 10.3389/fmed.2022.888850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/23/2022] [Indexed: 12/02/2022] Open
Abstract
Hepatocellular carcinoma (HCC) typically develops from a background of cirrhosis resulting from chronic inflammation. This inflammation is frequently associated with chronic liver diseases (CLD). The advent of next generation sequencing has enabled extensive analyses of molecular aberrations in HCC. However, less attention has been directed to the chronically inflamed background of the liver, prior to HCC emergence and during recurrence following surgery. Hepatocytes within chronically inflamed liver tissues present highly activated inflammatory signaling pathways and accumulation of a complex mutational landscape. In this altered environment, cells may transform in a stepwise manner toward tumorigenesis. Similarly, the chronically inflamed environment which persists after resection may impact the timing of HCC recurrence. Advances in research are allowing an extensive epigenomic, transcriptomic and proteomic characterization of CLD which define the emergence of HCC or its recurrence. The amount of data generated will enable the understanding of oncogenic mechanisms in HCC from the CLD perspective and provide the possibility to identify robust biomarkers or novel therapeutic targets for the treatment of primary and recurrent HCC. Importantly, biomarkers defined by the analysis of CLD tissue may permit the early detection or prevention of HCC emergence and recurrence. In this review, we compile the current omics based evidence of the contribution of CLD tissues to the emergence and recurrence of HCC.
Collapse
Affiliation(s)
- Sofia Zanotti
- Anatomic Pathology Unit, IRCCS Humanitas University Research Hospital, Milan, Italy
| | - Gina F. Boot
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Mairene Coto-Llerena
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - John Gallon
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Gabriel F. Hess
- Clarunis, University Center for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Savas D. Soysal
- Clarunis, University Center for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Otto Kollmar
- Clarunis, University Center for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Charlotte K. Y. Ng
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Bern Center for Precision Medicine, Bern, Switzerland
| | - Salvatore Piscuoglio
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- *Correspondence: Salvatore Piscuoglio
| |
Collapse
|
212
|
Geinguenaud F, Catherine OS, Poirier F, Besnard V, Haddad O, Chaubet F, Lalatonne Y, Lutomski D, Sutton A, Motte L. Iron Oxide Nanoparticles Functionalized with Fucoidan: a Potential Theranostic Nanotool for Hepatocellular Carcinoma. Chembiochem 2022; 23:e202200265. [PMID: 35748603 DOI: 10.1002/cbic.202200265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/24/2022] [Indexed: 12/02/2022]
Abstract
Fucoidan is a natural sulfated polysaccharide with a large range of biological activities including anticancer and anti-oxidation activities. Hepatocellular carcinoma is the fourth most common aggressive cancer type. The aim of this study was to investigate the bioactivity of free fucoidan versus its vectorization using nanoparticles (NPs) in human hepatoma cells, Huh-7. Iron oxide NPs were functionalized with fucoidan by a one-step surface complexation. NP cellular uptake was quantified by magnetic measurement at various extracellular iron concentrations. Cell invasion and migration were reduced with NPs while free fucoidan increases these events at low fucoidan concentration (≤ 0.5 mM). Concomitantly, a high decrease of reactive oxygen species production related with a decrease of the matrix metalloproteinase-9 activity and an increase of its expression was observed with NPs compared to free fucoidan. A proteomic analysis evidenced that some fucoidan regulated proteins appeared related to protein synthesis, N-glycan processing, and cellular stress. To our knowledge, this is the first study which reveals such activity induced by fucoidan. These results pave the way for USPIO-fucoidan-NPs as potential theranostic nanotool for hepatocellular carcinoma treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Y Lalatonne
- Universite Sorbonne Paris Nord, LVTS, FRANCE
| | | | - A Sutton
- Universite Sorbonne Paris Nord, LVTS, FRANCE
| | - Laurence Motte
- Université Paris 13, Sorbonne Paris Cité, 74 Rue Marcel Cachin, bobigny, FRANCE
| |
Collapse
|
213
|
Jin Y, Liu G, Yu Q, Ma S, Chang M. Serum Extracellular Vesicles Attenuate Cardiomyocyte Injury Induced by Hypoxic/Reoxygenation by Regulating miR-1229-5p. TOHOKU J EXP MED 2022; 258:35-41. [PMID: 35705319 DOI: 10.1620/tjem.2022.j048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Yinhao Jin
- Department of Cardiology, The First Affiliated Hospital of Qiqihar Medical College
| | - Guiqing Liu
- Department of Cardiology, The First Affiliated Hospital of Qiqihar Medical College
| | - Qianqian Yu
- Department of Cardiology, The First Affiliated Hospital of Qiqihar Medical College
| | - Shumin Ma
- Department of Cardiology, The First Affiliated Hospital of Qiqihar Medical College
| | - Ming Chang
- Department of Cardiology, The First Affiliated Hospital of Qiqihar Medical College
| |
Collapse
|
214
|
Reszegi A, Tátrai P, Regős E, Kovalszky I, Baghy K. Syndecan-1 in liver pathophysiology. Am J Physiol Cell Physiol 2022; 323:C289-C294. [PMID: 35704700 DOI: 10.1152/ajpcell.00039.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Syndecan-1 is a heparan sulfate/chondroitin sulfate proteoglycan (PG) of the cell surface and the extracellular matrix, which regulates a broad spectrum of physiological and pathological processes such as cell proliferation, migration, inflammation, matrix remodeling, wound healing, or tumorigenesis. Syndecan-1 represents the major PG of the liver, expressed by hepatocytes and cholangiocytes, and its elevated expression is a characteristic feature of liver diseases. The highest syndecan-1 expression is found in liver cirrhosis and in hepatocellular carcinoma (HCC) developed in cirrhotic livers. In addition, as being a hepatitis C receptor, hepatitis C virus (HCV) infected livers produce extremely large amounts of syndecan-1. The serum levels of the cleaved (shedded) extracellular domain has clinical significance, as its increased concentration reflects on poor prognosis in cirrhosis as well as in cancer. In vivo experiments confirmed that syndecan-1 protects against early stages of fibrogenesis mainly by enhanced clearance of transforming growth factor beta (TGFβ1) and thrombospondin-1 via circulation, and against hepatocarcinogenesis by interfering with several signaling pathways and enhancing cell cycle blockade. In addition, syndecan-1 is capable to hinder lipid metabolism and ribosomal biogenesis in induced cancer models.. These observations together with its participation in the uptake of viruses (e.g. HCV, SARS-CoV-2) indicate that syndecan-1 is a central player in liver pathologies.
Collapse
Affiliation(s)
- Andrea Reszegi
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | | | - Eszter Regős
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Ilona Kovalszky
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Kornelia Baghy
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
215
|
Gargaro M, Scalisi G, Manni G, Briseño CG, Bagadia P, Durai V, Theisen DJ, Kim S, Castelli M, Xu CA, zu Hörste GM, Servillo G, Della Fazia MA, Mencarelli G, Ricciuti D, Padiglioni E, Giacchè N, Colliva C, Pellicciari R, Calvitti M, Zelante T, Fuchs D, Orabona C, Boon L, Bessede A, Colonna M, Puccetti P, Murphy TL, Murphy KM, Fallarino F. Indoleamine 2,3-dioxygenase 1 activation in mature cDC1 promotes tolerogenic education of inflammatory cDC2 via metabolic communication. Immunity 2022; 55:1032-1050.e14. [PMID: 35704993 PMCID: PMC9220322 DOI: 10.1016/j.immuni.2022.05.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/07/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022]
Abstract
Conventional dendritic cells (cDCs), cDC1 and cDC2, act both to initiate immunity and maintain self-tolerance. The tryptophan metabolic enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is used by cDCs in maintaining tolerance, but its role in different subsets remains unclear. At homeostasis, only mature CCR7+ cDC1 expressed IDO1 that was dependent on IRF8. Lipopolysaccharide treatment induced maturation and IDO1-dependent tolerogenic activity in isolated immature cDC1, but not isolated cDC2. However, both human and mouse cDC2 could induce IDO1 and acquire tolerogenic function when co-cultured with mature cDC1 through the action of cDC1-derived l-kynurenine. Accordingly, cDC1-specific inactivation of IDO1 in vivo exacerbated disease in experimental autoimmune encephalomyelitis. This study identifies a previously unrecognized metabolic communication in which IDO1-expressing cDC1 cells extend their immunoregulatory capacity to the cDC2 subset through their production of tryptophan metabolite l-kynurenine. This metabolic axis represents a potential therapeutic target in treating autoimmune demyelinating diseases.
Collapse
Affiliation(s)
- Marco Gargaro
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy,Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Giulia Scalisi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giorgia Manni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Carlos G. Briseño
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Prachi Bagadia
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Vivek Durai
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Derek J. Theisen
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Sunkyung Kim
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Marilena Castelli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Chenling A. Xu
- Department of Electrical Engineering & Computer Science, Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Gerd Meyer zu Hörste
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Giuseppe Servillo
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy,University research center in functional genomics (c.u.r.ge.f.), University of Perugia, Perugia, Italy
| | | | - Giulia Mencarelli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Doriana Ricciuti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | | | | | | | - Mario Calvitti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Teresa Zelante
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Ciriana Orabona
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | | | - Marco Colonna
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Paolo Puccetti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy,University research center in functional genomics (c.u.r.ge.f.), University of Perugia, Perugia, Italy
| | - Theresa L. Murphy
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Kenneth M. Murphy
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA,Howard Hughes Medical Institute, Washington University in St. Louis School of Medicine, St. Louis, MO, USA,Corresponding author
| | - Francesca Fallarino
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy; University research center in functional genomics (c.u.r.ge.f.), University of Perugia, Perugia, Italy.
| |
Collapse
|
216
|
Chuaypen N, Siripongsakun S, Hiranrat P, Tanpowpong N, Avihingsanon A, Tangkijvanich P. Improvement of liver fibrosis, but not steatosis, after HCV eradication as assessment by MR-based imaging: Role of metabolic derangement and host genetic variants. PLoS One 2022; 17:e0269641. [PMID: 35696400 PMCID: PMC9191717 DOI: 10.1371/journal.pone.0269641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/22/2022] [Indexed: 12/05/2022] Open
Abstract
Significant liver fibrosis regression occurs after hepatitis C virus (HCV) therapy. However, the impact of direct-acting antivirals (DAAs) on steatosis is less clear. This study was aimed at evaluating serial fibrosis and steatosis alterations in patients with HCV genotype 1, who achieved sustained virological response (SVR). We enrolled 55 HCV mono-infected and 28 HCV/HIV co-infected patients receiving elbasvir/grazoprevir from a clinical trial. Fibrosis and steatosis were assessed at baseline, follow-up week-24 (FUw24) and week-72 (FUw72) by magnetic resonance elastography (MRE) and proton density fat fraction (PDFF), respectively. Patatin-like phospholipase domain-containing protein 3 (PNPLA3) rs738409, transmembrane six superfamily member 2 (TM6SF2) rs58542926 and membrane bound O-acyltransferase domain-containing 7 (MBOAT7) rs641738 polymorphisms were determined by allelic discrimination. Overall, mean MRE decreased significantly from baseline to FUw24 and FUw72. At FUw72, patients with baseline F2-F4 had higher rate of ≥30% MRE decline compared with individuals with baseline F0-F1 (30.2%vs.3.3%, P = 0.004). In multivariate analysis, significant fibrosis was associated with MRE reduction. The prevalence of steatosis (PDFF≥5.2%) at baseline was 21.7%. Compared to baseline, there were 17 (20.5%) patients with decreased PDFF values at FUw72 (<30%), while 23 (27.7%) patients had increased PDFF values (≥30%). Regarding the overall cohort, mean PDFF significantly increased from baseline to FUw72, and displayed positive correlation with body mass index (BMI) alteration. In multivariate analysis, the presence of diabetes, PNPLA3 CG+GG genotypes and increased BMI at FUw72 were significantly associated with progressive steatosis after SVR. Other genetic variants were not related to fibrosis and steatosis alteration. This study concluded that HCV eradication was associated with fibrosis improvement. However, progressive steatosis was observed in a proportion of patients, particularly among individuals with metabolic derangement and PNPLA3 variants. The combined clinical parameters and host genetic factors might allow a better individualized strategy in this sub-group of patients to alleviate progressive steatosis after HCV cure.
Collapse
Affiliation(s)
- Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Surachate Siripongsakun
- Sonographer School, Faculty of Health Science Technology, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Pantajaree Hiranrat
- Sonographer School, Faculty of Health Science Technology, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Natthaporn Tanpowpong
- Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Anchalee Avihingsanon
- The HIV Netherlands Australia Thailand Research Collaboration (HIV NAT), Bangkok, Thailand
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
217
|
Patsenker E, Thangapandi VR, Knittelfelder O, Palladini A, Hefti M, Beil-Wagner J, Rogler G, Buch T, Shevchenko A, Hampe J, Stickel F. The Pnpla3 Variant I148M Reveals Protective Effects Towards Hepatocellular Carcinoma in Mice via Restoration of Omega-3 Polyunsaturated Fats. J Nutr Biochem 2022; 108:109081. [PMID: 35691594 DOI: 10.1016/j.jnutbio.2022.109081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 02/02/2022] [Accepted: 05/03/2022] [Indexed: 12/02/2022]
Abstract
Alcohol consumption and high caloric diet are leading causes of progressive fatty liver disease. Genetic variant rs738409 in patatin-like phospholipase domain-containing protein 3 (PNPLA3 rs738409 C>G) has been repeatedly described as one of the major risk loci for alcoholic liver cirrhosis (ALC) and hepatocellular carcinoma (HCC) in humans, however, the mechanism behind this association is incompletely understood. We generated mice carrying the rs738409 variant (PNPLA3 I148M) in order to detect genotype-phenotype relationships in mice upon chow and alcohol-high fat/high sugar diet (EtOH/WD). We could clearly demonstrate that the presence of rs738409 per se is sufficient to induce spontaneous development of steatosis after one year in mice on a chow diet, whereas in the setting of unhealthy diet feeding, PNPLA3 I148M did not affect hepatic inflammation or fibrosis, but induced a striking lipid remodelling, microvesicular steatosis and protected from HCC formation. Using shot gun lipidomics, we detected a striking restoration of reduced long chain-polyunsaturated fatty acids (LC-PUFA)-containing TGs, docosapentaenoic acid (C22:5 n3) and omega-3-derived eicosanoids (5-HEPE, 20-HEPE, 19,20-EDP, 21-HDHA) in PNPLA3 I148M mice upon EtOH/WD. At the molecular level, PNPLA3 I148M modulated enzymes for fatty acid and TG transport and metabolism. These findings suggest (dietary) lipids as an important and independent driver of hepatic tumorigenesis. Genetic variant in PNPLA3 exerted protective effects in mice, conflicting with findings in humans. Species-related differences in physiology and metabolism should be taken into account when modelling unhealthy human lifestyle, as genetic mouse models may not always allow for translation of insight gained in humans.
Collapse
Affiliation(s)
- Eleonora Patsenker
- Department of Gastroenterology and Hepatology, University of Zurich, 8091 Zurich, Switzerland.
| | - Veera Raghavan Thangapandi
- Department of Gastroenterology and Hepatology, Universitätsklinikum Dresden, 01304 Dresden, Germany; Center for Regenerative Therapies, TU Dresden, 01307 Dresden, Germany
| | - Oskar Knittelfelder
- Max Plank Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Alessandra Palladini
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Michaela Hefti
- Department of Gastroenterology and Hepatology, University of Zurich, 8091 Zurich, Switzerland
| | - Jane Beil-Wagner
- Institute of Laboratory Animal Science, University of Zurich, 8952 Schlieren, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University of Zurich, 8091 Zurich, Switzerland
| | - Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, 8952 Schlieren, Switzerland
| | - Andrej Shevchenko
- Max Plank Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Jochen Hampe
- Department of Gastroenterology and Hepatology, Universitätsklinikum Dresden, 01304 Dresden, Germany; Center for Regenerative Therapies, TU Dresden, 01307 Dresden, Germany
| | - Felix Stickel
- Department of Gastroenterology and Hepatology, University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
218
|
Ahmad MI, Khan MU, Kodali S, Shetty A, Bell SM, Victor D. Hepatocellular Carcinoma Due to Nonalcoholic Fatty Liver Disease: Current Concepts and Future Challenges. J Hepatocell Carcinoma 2022; 9:477-496. [PMID: 35673598 PMCID: PMC9167599 DOI: 10.2147/jhc.s344559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/14/2022] [Indexed: 12/24/2022] Open
Abstract
Obesity has been labeled as the global pandemic of the 21st century, resulting from a sedentary lifestyle and caloric excess. Nonalcoholic fatty liver disease (NAFLD), characterized by excessive hepatic steatosis, is strongly associated with obesity and metabolic syndrome and is estimated to be present in one-quarter of the world population, making it the most common cause of the chronic liver disease (CLD). NAFLD spectrum varies from simple steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis. The burden of NAFLD has been predicted to increase in the coming decades resulting in increased rates of decompensated cirrhosis, hepatocellular carcinoma (HCC), and liver-related deaths. In the current review, we describe the pathophysiology of NAFLD and NASH, risk factors associated with disease progression, related complications, and mortality. Later, we have discussed the changing epidemiology of HCC, with NAFLD emerging as the most common cause of CLD and HCC. We have also addressed the risk factors of HCC development in the NAFLD population (including demographic, metabolic, genetic, dietary, and lifestyle factors), presentation of NAFLD-associated HCC, its prognosis, and the issue of HCC development in non-cirrhotic NAFLD. Lastly, the problems related to HCC screening in the NAFLD population, the remaining challenges, and future directions, especially the need to identify the high-risk individuals, will be discussed. We will conclude the review by summarizing the clinical evidence for treating fibrosis and preventing HCC in those at risk with NAFLD-associated HCC.
Collapse
Affiliation(s)
- Muhammad Imran Ahmad
- Lynda K and David M Underwood Center for Digestive Disorders, Division of Gastroenterology and Hepatology, Houston Methodist Hospital Houston, Houston, TX, USA
| | - Muhammad Umair Khan
- Department of Gastroenterology and Hepatology, Hamad Medical Corporation, Doha, Qatar
- ECPE- Executive and Continuing Professional Education, Harvard T.H Chan School of Public Health, Boston, MA, 02115-5810, USA
| | - Sudha Kodali
- Lynda K and David M Underwood Center for Digestive Disorders, Division of Gastroenterology and Hepatology, Houston Methodist Hospital Houston, Houston, TX, USA
- Sherrie and Alan Conover Center for Liver Disease and Transplantation, Houston Methodist Hospital, Houston, TX, USA
| | - Akshay Shetty
- Lynda K and David M Underwood Center for Digestive Disorders, Division of Gastroenterology and Hepatology, Houston Methodist Hospital Houston, Houston, TX, USA
- Sherrie and Alan Conover Center for Liver Disease and Transplantation, Houston Methodist Hospital, Houston, TX, USA
| | - S Michelle Bell
- Sherrie and Alan Conover Center for Liver Disease and Transplantation, Houston Methodist Hospital, Houston, TX, USA
| | - David Victor
- Lynda K and David M Underwood Center for Digestive Disorders, Division of Gastroenterology and Hepatology, Houston Methodist Hospital Houston, Houston, TX, USA
- Sherrie and Alan Conover Center for Liver Disease and Transplantation, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
219
|
Marques F, Ghallab M, Vibert E, Boleslawski E, Soubrane O, Adam R, Farges O, Mabrut JY, Régimbeau JM, Cherqui D, Allard MA, Sa Cunha A, Samuel D, Pruvot FR, Golse N. Prognostic impact of surgical margins for hepatocellular carcinoma according to preoperative alpha-fetoprotein level. HPB (Oxford) 2022; 24:848-856. [PMID: 34785122 DOI: 10.1016/j.hpb.2021.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND HCC are known to have satellite nodules and microvascular invasions requiring sufficient margins. An alpha-fetoprotein (AFP) level >100 ng/mL is associated with worse pathological features in HCC. In practice, large resection margins, particularly >1 cm, are infrequently retrieved on the specimens. METHODS 397 patients from 5 centres were included from 2012 to 2017. The primary endpoint was time-to-recurrence in relation to AFP level (> or <100 ng/ml) as well as surgical margins (> or <1 cm). The secondary endpoint was overall survival (OS). RESULTS The median follow-up was 25 months. In Low AFP group, median time to recurrence (TTR) for patients with margins <1 cm was 36 months and for patients with margins ≥1 cm was 34 months (p = 0.756), and overall survival (OS) was not significantly different according to margins (p = 0.079). In High-AFP group, patients with margins <1 cm had a higher recurrence rate than patients with margins ≥1 cm (p = 0.016): median TTR for patients with margins <1 cm was 8 months whereas it was not reached for patients with margins ≥1 cm. Patients with margins <1 cm had a significantly worse OS compared to the patients with margins ≥1 cm (p = 0.043). CONCLUSION Preoperative AFP level may help determine margins to effectively treat high AFP tumours. For low-AFP tumours, margins didn't have an impact on TTR or OS.
Collapse
Affiliation(s)
- Frédéric Marques
- Department of Surgery, Paul-Brousse Hospital, Assistance Publique Hôpitaux de Paris, Centre Hépato-Biliaire, Villejuif, 94800, France
| | - Mohammed Ghallab
- Department of Surgery, Paul-Brousse Hospital, Assistance Publique Hôpitaux de Paris, Centre Hépato-Biliaire, Villejuif, 94800, France; The Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Eric Vibert
- Department of Surgery, Paul-Brousse Hospital, Assistance Publique Hôpitaux de Paris, Centre Hépato-Biliaire, Villejuif, 94800, France; Université Paris-Saclay, UMRS 1193, Université Paris-Saclay, Inserm, Physiopathogénèse et Traitement des Maladies Du Foie, FHU Hepatinov, 94800, Villejuif, France
| | - Emmanuel Boleslawski
- Department of Hepatobiliopancreatic Surgery and Liver Transplantation, Hôpital Claude Huriez, Lille, France
| | - Olivier Soubrane
- Department of Hepatobiliopancreatic Surgery and Liver Transplantation, Hôpital Beaujon, Assistance Publique Hôpitaux de Paris, Université Paris Clichy, INSERM, Unit 776, Villejuif F-94800, France
| | - René Adam
- Department of Surgery, Paul-Brousse Hospital, Assistance Publique Hôpitaux de Paris, Centre Hépato-Biliaire, Villejuif, 94800, France; Univ Paris-Sud, UMR-S 776, Villejuif, 94800, France
| | - Olivier Farges
- Department of Hepatobiliopancreatic Surgery and Liver Transplantation, Hôpital Beaujon, Assistance Publique Hôpitaux de Paris, Université Paris Clichy, INSERM, Unit 776, Villejuif F-94800, France
| | - Jean-Yves Mabrut
- Department of General Surgery and Liver Transplantation, Hospices Civils de Lyon, Croix-Rousse University Hospital, Lyon, France
| | - Jean-Marc Régimbeau
- Department of Digestive and Oncological Surgery, Amiens University Hospital, Amiens, France
| | - Daniel Cherqui
- Department of Surgery, Paul-Brousse Hospital, Assistance Publique Hôpitaux de Paris, Centre Hépato-Biliaire, Villejuif, 94800, France; Université Paris-Saclay, UMRS 1193, Université Paris-Saclay, Inserm, Physiopathogénèse et Traitement des Maladies Du Foie, FHU Hepatinov, 94800, Villejuif, France
| | - Marc-Antoine Allard
- Department of Surgery, Paul-Brousse Hospital, Assistance Publique Hôpitaux de Paris, Centre Hépato-Biliaire, Villejuif, 94800, France; Université Paris-Saclay, UMRS 1193, Université Paris-Saclay, Inserm, Physiopathogénèse et Traitement des Maladies Du Foie, FHU Hepatinov, 94800, Villejuif, France
| | - Antonio Sa Cunha
- Department of Surgery, Paul-Brousse Hospital, Assistance Publique Hôpitaux de Paris, Centre Hépato-Biliaire, Villejuif, 94800, France; Université Paris-Saclay, UMRS 1193, Université Paris-Saclay, Inserm, Physiopathogénèse et Traitement des Maladies Du Foie, FHU Hepatinov, 94800, Villejuif, France
| | - Didier Samuel
- Université Paris-Saclay, UMRS 1193, Université Paris-Saclay, Inserm, Physiopathogénèse et Traitement des Maladies Du Foie, FHU Hepatinov, 94800, Villejuif, France; Department of Hepatology, Paul-Brousse Hospital, Assistance Publique Hôpitaux de Paris, Centre Hépato-Biliaire, Villejuif, 94800, France
| | - François-René Pruvot
- Department of Hepatobiliopancreatic Surgery and Liver Transplantation, Hôpital Claude Huriez, Lille, France
| | - Nicolas Golse
- Department of Surgery, Paul-Brousse Hospital, Assistance Publique Hôpitaux de Paris, Centre Hépato-Biliaire, Villejuif, 94800, France; Université Paris-Saclay, UMRS 1193, Université Paris-Saclay, Inserm, Physiopathogénèse et Traitement des Maladies Du Foie, FHU Hepatinov, 94800, Villejuif, France.
| |
Collapse
|
220
|
Quintavalle C, Meyer‐Schaller N, Roessler S, Calabrese D, Marone R, Riedl T, Picco‐Rey S, Panagiotou OA, Uzun S, Piscuoglio S, Boldanova T, Bian CB, Semela D, Jochum W, Cathomas G, Mertz KD, Diebold J, Mazzucchelli L, Koelzer VH, Weber A, Decaens T, Terracciano LM, Heikenwalder M, Hoshida Y, Andersen JB, Thorgeirsson SS, Matter MS. miR-579-3p Controls Hepatocellular Carcinoma Formation by Regulating the Phosphoinositide 3-Kinase-Protein Kinase B Pathway in Chronically Inflamed Liver. Hepatol Commun 2022; 6:1467-1481. [PMID: 35132819 PMCID: PMC9134798 DOI: 10.1002/hep4.1894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 12/02/2022] Open
Abstract
Chronic liver inflammation causes continuous liver damage with progressive liver fibrosis and cirrhosis, which may eventually lead to hepatocellular carcinoma (HCC). Whereas the 10-year incidence for HCC in patients with cirrhosis is approximately 20%, many of these patients remain tumor free for their entire lives. Clarifying the mechanisms that define the various outcomes of chronic liver inflammation is a key aspect in HCC research. In addition to a wide variety of contributing factors, microRNAs (miRNAs) have also been shown to be engaged in promoting liver cancer. Therefore, we wanted to characterize miRNAs that are involved in the development of HCC, and we designed a longitudinal study with formalin-fixed and paraffin-embedded liver biopsy samples from several pathology institutes from Switzerland. We examined the miRNA expression by nCounterNanostring technology in matched nontumoral liver tissue from patients developing HCC (n = 23) before and after HCC formation in the same patient. Patients with cirrhosis (n = 26) remaining tumor free within a similar time frame served as a control cohort. Comparison of the two cohorts revealed that liver tissue from patients developing HCC displayed a down-regulation of miR-579-3p as an early step in HCC development, which was further confirmed in a validation cohort. Correlation with messenger RNA expression profiles further revealed that miR-579-3p directly attenuated phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) expression and consequently protein kinase B (AKT) and phosphorylated AKT. In vitro experiments and the use of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology confirmed that miR-579-3p controlled cell proliferation and cell migration of liver cancer cell lines. Conclusion: Liver tissues from patients developing HCC revealed changes in miRNA expression. miR-579-3p was identified as a novel tumor suppressor regulating phosphoinositide 3-kinase-AKT signaling at the early stages of HCC development.
Collapse
Affiliation(s)
- Cristina Quintavalle
- Institute of PathologyUniversity Hospital of BaselUniversity of BaselBaselSwitzerland
| | | | | | - Diego Calabrese
- Department of BiomedicineUniversity of BaselBaselSwitzerland
- Division of Hepatology and GastroenterologyUniversity Hospital of BaselBaselSwitzerland
| | - Romina Marone
- Department of BiomedicineUniversity Hospital of Basel, University of BaselBaselSwitzerland
| | - Tobias Riedl
- Division of Chronic Inflammation and CancerGerman Cancer Research CenterHeidelbergGermany
| | - Silvia Picco‐Rey
- Institute of PathologyUniversity Hospital of BaselUniversity of BaselBaselSwitzerland
| | - Orestis A. Panagiotou
- Department of Health Services, Policy and PracticeBrown University School of Public HealthProvidenceRIUSA
| | - Sarp Uzun
- Institute of PathologyUniversity Hospital of BaselUniversity of BaselBaselSwitzerland
| | - Salvatore Piscuoglio
- Institute of PathologyUniversity Hospital of BaselUniversity of BaselBaselSwitzerland
| | - Tuyana Boldanova
- Department of BiomedicineUniversity of BaselBaselSwitzerland
- Division of Hepatology and GastroenterologyUniversity Hospital of BaselBaselSwitzerland
| | - Chaoran B. Bian
- Department of Genetics and Genomic SciencesGraduate School of Biomedical SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - David Semela
- Division of GastroenterologyKantonsspital St. GallenSt. GallenSwitzerland
| | - Wolfram Jochum
- Institute of PathologyKantonsspital St. GallenSt. GallenSwitzerland
| | - Gieri Cathomas
- Institute of PathologyKantonsspital BasellandLiestalSwitzerland
| | | | - Joachim Diebold
- Institute of PathologyLuzerner KantonsspitalLucerneSwitzerland
| | | | - Viktor H. Koelzer
- Department of Pathology and Molecular PathologyUniversity and University Hospital ZurichZurichSwitzerland
| | - Achim Weber
- Department of Pathology and Molecular PathologyUniversity and University Hospital ZurichZurichSwitzerland
| | - Thomas Decaens
- Institute for Advanced BiosciencesINSERM U1209/CNRS UMR 5309/Université Grenoble‐AlpesGrenobleFrance
- Université Grenoble AlpesGrenobleFrance
- Clinique Universitaire d'Hépato‐gastroentérologie, Pôle DigiduneCentre Hospitalier UniversitaireGrenobleFrance
| | - Luigi M. Terracciano
- Institute of PathologyUniversity Hospital of BaselUniversity of BaselBaselSwitzerland
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and CancerGerman Cancer Research CenterHeidelbergGermany
| | - Yujin Hoshida
- Liver Tumor ProgramSimmons Comprehensive Cancer CenterDivision of Digestive and Liver DiseasesUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Jesper B. Andersen
- Biotech Research and Innovation CenterDepartment of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Snorri S. Thorgeirsson
- Laboratory of Experimental CarcinogenesisCenter for Cancer ResearchNational Cancer Institute‐National Institutes of HealthBethesdaMDUSA
| | - Matthias S. Matter
- Institute of PathologyUniversity Hospital of BaselUniversity of BaselBaselSwitzerland
| |
Collapse
|
221
|
Transcriptome sequencing of 3,3',4,4',5-Pentachlorobiphenyl (PCB126)-treated human preadipocytes demonstrates progressive changes in pathways associated with inflammation and diabetes. Toxicol In Vitro 2022; 83:105396. [PMID: 35618242 DOI: 10.1016/j.tiv.2022.105396] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 12/02/2022]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants that accumulate in adipose tissue and have been associated with cardiometabolic disease. We have previously demonstrated that exposure of human preadipocytes to the dioxin-like PCB126 disrupts adipogenesis via the aryl hydrocarbon receptor (AhR). To further understand how PCB126 disrupts adipose tissue cells, we performed RNAseq analysis of PCB126-treated human preadipocytes over a 3-day time course. The most significant predicted upstream regulator affected by PCB126 exposure at the early time point of 9 h was the AhR. Progressive changes occurred in the number and magnitude of transcript levels of genes associated with inflammation, most closely fitting the pathways of cytokine-cytokine-receptor signaling and the AGE-RAGE diabetic complications pathway. Transcript levels of genes involved in the IL-17A, IL-1β, MAP kinase, and NF-κB signaling pathways were increasingly dysregulated by PCB126 over time. Our results illustrate the progressive time-dependent nature of transcriptional changes caused by toxicants such as PCB126, point to important pathways affected by PCB126 exposure, and provide a rich dataset for further studies to address how PCB126 and other AhR agonists disrupt preadipocyte function. These findings have implications for understanding how dioxin-like PCBs and other dioxin-like compounds are involved in the development of obesity and diabetes.
Collapse
|
222
|
Riccio S, Melone R, Vitulano C, Guida P, Maddaluno I, Guarino S, Marzuillo P, Miraglia del Giudice E, Di Sessa A. Advances in pediatric non-alcoholic fatty liver disease: From genetics to lipidomics. World J Clin Pediatr 2022; 11:221-238. [PMID: 35663007 PMCID: PMC9134151 DOI: 10.5409/wjcp.v11.i3.221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/05/2021] [Accepted: 04/02/2022] [Indexed: 02/06/2023] Open
Abstract
As a result of the obesity epidemic, non-alcoholic fatty liver disease (NAFLD) represents a global medical concern in childhood with a closely related increased cardiometabolic risk. Knowledge on NAFLD pathophysiology has been largely expanded over the last decades. Besides the well-known key NAFLD genes (including the I148M variant of the PNPLA3 gene, the E167K allele of the TM6SF2, the GCKR gene, the MBOAT7-TMC4 rs641738 variant, and the rs72613567:TA variant in the HSD17B13 gene), an intriguing pathogenic role has also been demonstrated for the gut microbiota. More interestingly, evidence has added new factors involved in the "multiple hits" theory. In particular, omics determinants have been highlighted as potential innovative markers for NAFLD diagnosis and treatment. In fact, different branches of omics including metabolomics, lipidomics (in particular sphingolipids and ceramides), transcriptomics (including micro RNAs), epigenomics (such as DNA methylation), proteomics, and glycomics represent the most attractive pathogenic elements in NAFLD development, by providing insightful perspectives in this field. In this perspective, we aimed to provide a comprehensive overview of NAFLD pathophysiology in children, from the oldest pathogenic elements (including genetics) to the newest intriguing perspectives (such as omics branches).
Collapse
Affiliation(s)
- Simona Riccio
- Department of Woman, Child, General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Rosa Melone
- Department of Woman, Child, General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Caterina Vitulano
- Department of Woman, Child, General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Pierfrancesco Guida
- Department of Woman, Child, General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Ivan Maddaluno
- Department of Woman, Child, General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Stefano Guarino
- Department of Woman, Child, General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Pierluigi Marzuillo
- Department of Woman, Child, General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Emanuele Miraglia del Giudice
- Department of Woman, Child, General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Anna Di Sessa
- Department of Woman, Child, General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| |
Collapse
|
223
|
Vojdani A, Shoenfeld YY. Catastrophic Embolism Following Cosmetic Injection of Autologous Fat: Are Silicone-Treated Syringes the Only Suspects on the Crime Scene? Front Surg 2022; 9:867994. [PMID: 35615656 PMCID: PMC9124850 DOI: 10.3389/fsurg.2022.867994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/25/2022] [Indexed: 12/02/2022] Open
Affiliation(s)
- Aristo Vojdani
- Immunosciences Lab. Inc., Los Angeles, CA, United States
- Cyrex Labs LLC, Phoeniz, AZ, United States
- Correspondence: Aristo Vojdani Yehuda Yulius Shoenfeld
| | - Yehuda Yulius Shoenfeld
- Ariel University, Ariel, Samaria, Israel
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Aviv University, Ramat Gan, Israel
- Correspondence: Aristo Vojdani Yehuda Yulius Shoenfeld
| |
Collapse
|
224
|
Heindel JJ, Howard S, Agay-Shay K, Arrebola JP, Audouze K, Babin PJ, Barouki R, Bansal A, Blanc E, Cave MC, Chatterjee S, Chevalier N, Choudhury M, Collier D, Connolly L, Coumoul X, Garruti G, Gilbertson M, Hoepner LA, Holloway AC, Howell G, Kassotis CD, Kay MK, Kim MJ, Lagadic-Gossmann D, Langouet S, Legrand A, Li Z, Le Mentec H, Lind L, Monica Lind P, Lustig RH, Martin-Chouly C, Munic Kos V, Podechard N, Roepke TA, Sargis RM, Starling A, Tomlinson CR, Touma C, Vondracek J, Vom Saal F, Blumberg B. Obesity II: Establishing causal links between chemical exposures and obesity. Biochem Pharmacol 2022; 199:115015. [PMID: 35395240 PMCID: PMC9124454 DOI: 10.1016/j.bcp.2022.115015] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a multifactorial disease with both genetic and environmental components. The prevailing view is that obesity results from an imbalance between energy intake and expenditure caused by overeating and insufficient exercise. We describe another environmental element that can alter the balance between energy intake and energy expenditure: obesogens. Obesogens are a subset of environmental chemicals that act as endocrine disruptors affecting metabolic endpoints. The obesogen hypothesis posits that exposure to endocrine disruptors and other chemicals can alter the development and function of the adipose tissue, liver, pancreas, gastrointestinal tract, and brain, thus changing the set point for control of metabolism. Obesogens can determine how much food is needed to maintain homeostasis and thereby increase the susceptibility to obesity. The most sensitive time for obesogen action is in utero and early childhood, in part via epigenetic programming that can be transmitted to future generations. This review explores the evidence supporting the obesogen hypothesis and highlights knowledge gaps that have prevented widespread acceptance as a contributor to the obesity pandemic. Critically, the obesogen hypothesis changes the narrative from curing obesity to preventing obesity.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA.
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA
| | - Keren Agay-Shay
- Health and Environment Research (HER) Lab, The Azrieli Faculty of Medicine, Bar Ilan University, Israel
| | - Juan P Arrebola
- Department of Preventive Medicine and Public Health University of Granada, Granada, Spain
| | - Karine Audouze
- Department of Systems Biology and Bioinformatics, University of Paris, INSERM, T3S, Paris France
| | - Patrick J Babin
- Department of Life and Health Sciences, University of Bordeaux, INSERM, Pessac France
| | - Robert Barouki
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Etienne Blanc
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, USA
| | - Nicolas Chevalier
- Obstetrics and Gynecology, University of Cote d'Azur, Cote d'Azur, France
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Lisa Connolly
- The Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Northern Ireland, UK
| | - Xavier Coumoul
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Gabriella Garruti
- Department of Endocrinology, University of Bari "Aldo Moro," Bari, Italy
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland
| | - Lori A Hoepner
- Department of Environmental and Occupational Health Sciences, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Alison C Holloway
- McMaster University, Department of Obstetrics and Gynecology, Hamilton, Ontario, CA, USA
| | - George Howell
- Center for Environmental Health Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Mathew K Kay
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - Min Ji Kim
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | | | - Sophie Langouet
- Univ Rennes, INSERM EHESP, IRSET UMR_5S 1085, 35000 Rennes, France
| | - Antoine Legrand
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Zhuorui Li
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Helene Le Mentec
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Lars Lind
- Clinical Epidemiology, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - P Monica Lind
- Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California San Francisco, CA 94143, USA
| | | | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Normand Podechard
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Troy A Roepke
- Department of Animal Science, School of Environmental and Biological Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, Il 60612, USA
| | - Anne Starling
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Charbel Touma
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Frederick Vom Saal
- Division of Biological Sciences, The University of Missouri, Columbia, MO 65211, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
225
|
Kassotis CD, Vom Saal FS, Babin PJ, Lagadic-Gossmann D, Le Mentec H, Blumberg B, Mohajer N, Legrand A, Munic Kos V, Martin-Chouly C, Podechard N, Langouët S, Touma C, Barouki R, Kim MJ, Audouze K, Choudhury M, Shree N, Bansal A, Howard S, Heindel JJ. Obesity III: Obesogen assays: Limitations, strengths, and new directions. Biochem Pharmacol 2022; 199:115014. [PMID: 35393121 PMCID: PMC9050906 DOI: 10.1016/j.bcp.2022.115014] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/11/2022]
Abstract
There is increasing evidence of a role for environmental contaminants in disrupting metabolic health in both humans and animals. Despite a growing need for well-understood models for evaluating adipogenic and potential obesogenic contaminants, there has been a reliance on decades-old in vitro models that have not been appropriately managed by cell line providers. There has been a quick rise in available in vitro models in the last ten years, including commercial availability of human mesenchymal stem cell and preadipocyte models; these models require more comprehensive validation but demonstrate real promise in improved translation to human metabolic health. There is also progress in developing three-dimensional and co-culture techniques that allow for the interrogation of a more physiologically relevant state. While diverse rodent models exist for evaluating putative obesogenic and/or adipogenic chemicals in a physiologically relevant context, increasing capabilities have been identified for alternative model organisms such as Drosophila, C. elegans, zebrafish, and medaka in metabolic health testing. These models have several appreciable advantages, including most notably their size, rapid development, large brood sizes, and ease of high-resolution lipid accumulation imaging throughout the organisms. They are anticipated to expand the capabilities of metabolic health research, particularly when coupled with emerging obesogen evaluation techniques as described herein.
Collapse
Affiliation(s)
- Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, United States.
| | - Frederick S Vom Saal
- Division of Biological Sciences, The University of Missouri, Columbia, MO 65211, United States
| | - Patrick J Babin
- Department of Life and Health Sciences, University of Bordeaux, INSERM, Pessac, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Helene Le Mentec
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, The University of California, Irvine, Irvine CA 92697, United States
| | - Nicole Mohajer
- Department of Developmental and Cell Biology, The University of California, Irvine, Irvine CA 92697, United States
| | - Antoine Legrand
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Corinne Martin-Chouly
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Normand Podechard
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Sophie Langouët
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Charbel Touma
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Robert Barouki
- Department of Biochemistry, University of Paris, INSERM, Paris, France
| | - Min Ji Kim
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | | | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Texas A & M University, College Station, TX 77843, United States
| | - Nitya Shree
- Department of Pharmaceutical Sciences, Texas A & M University, College Station, TX 77843, United States
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, ACT, 2611, Australia
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, United States
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, United States
| |
Collapse
|
226
|
Yan Y, Zhu M, Ma J, He X, Yang X, Xu H, Jiang M, Zhang S, Duan Y, Han J, Chen Y. MEK1/2 inhibitor inhibits neointima formation by activating miR-126-3p/ C-X-C motif chemokine ligand 12 (CXCL12)/C-X-C motif chemokine receptor 4 (CXCR4) axis. Bioengineered 2022; 13:11214-11227. [PMID: 35485167 PMCID: PMC9208476 DOI: 10.1080/21655979.2022.2063496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Endothelial dysfunction is an initial and essential step in vascular-remodeling diseases, including atherosclerosis and neointima formation. During vascular remodeling, activated endothelial cells can release pro-inflammatory factors that promote phenotypic switching of vascular smooth muscle cells (VSMCs) to the proliferative phenotype. We previously reported that MEK1/2 inhibitor, U0126, has a protective effect on the development of atherosclerosis and vascular calcification. However, the effect of MEK1/2 inhibitors on neointimal formation and the underlying mechanism is not fully understood. We determined that MEK1/2 inhibitor reduced carotid artery ligation-induced neointimal formation, while increased collagen and elastin levels and vascular integrality. Mechanistically, MEK1/2 inhibitor or ERK1/2 siRNA increased miR-126-3p level in endothelial cells, thereby inhibiting expression of regular of G-protein signaling 16 (RGS16), a miR-126-3p target gene, to activate the C-X-C motif chemokine ligand 12 (CXCL12)/C-X-C motif chemokine receptor 4 (CXCR4) signaling pathway. Accordingly, miR-126-3p was also increased by U0126 in serum and carotid artery. RGS16 was inhibited while CXCR4 and CXCL12 was increased by U0126 in neointimal areas, especially in the endothelium. Moreover, similar results were observed in atherosclerotic plaques of high-fat diet-fed apolipoprotein E deficiency (apoE−/−) mice. In addition, vascular cell adhesion molecule 1 (VCAM-1), another miR-126-3p target gene, was reduced by U0126 in the neointimal areas, resulting reduced monocytes/macrophages accumulation. Taken together, our results indicate that MEK1/2 inhibitor can reduce neointima formation by activating endothelial miR-126-3p production to facilitate endothelium repair while reduce monocyte adhesion/infiltration.
Collapse
Affiliation(s)
- Yali Yan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Mengmeng Zhu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Jialing Ma
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Xiaoyu He
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Hongmei Xu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Meixiu Jiang
- The Institute of Translational Medicine, the National Engineering Research Center for Bioengineering Drugs and the Technologies, Nanchang University, Nanchang, Jiangxi, China
| | - Shuang Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Yajun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Jihong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China.,College of Life Sciences, Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, Hebei, China
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| |
Collapse
|
227
|
Rosmarinus officinalis L. Leaf Extracts and Their Metabolites Inhibit the Aryl Hydrocarbon Receptor (AhR) Activation In Vitro and in Human Keratinocytes: Potential Impact on Inflammatory Skin Diseases and Skin Cancer. Molecules 2022; 27:molecules27082499. [PMID: 35458697 PMCID: PMC9029298 DOI: 10.3390/molecules27082499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/10/2022] [Indexed: 12/02/2022] Open
Abstract
Aryl hydrocarbon receptor (AhR) activation by environmental agents and microbial metabolites is potentially implicated in a series of skin diseases. Hence, it would be very important to identify natural compounds that could inhibit the AhR activation by ligands of microbial origin as 6-formylindolo[3,2-b]carbazole (FICZ), indirubin (IND) and pityriazepin (PZ) or the prototype ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Five different dry Rosmarinus officinalis L. extracts (ROEs) were assayed for their activities as antagonists of AhR ligand binding with guinea pig cytosol in the presence of [3H]TCDD. The methanolic ROE was further assayed towards CYP1A1 mRNA induction using RT-PCR in human keratinocytes against TCDD, FICZ, PZ, and IND. The isolated metabolites, carnosic acid, carnosol, 7-O-methyl-epi-rosmanol, 4′,7-O-dimethylapigenin, and betulinic acid, were assayed for their agonist and antagonist activity in the presence and absence of TCDD using the gel retardation assay (GRA). All assayed ROE extracts showed similar dose-dependent activities with almost complete inhibition of AhR activation by TCDD at 100 ppm. The methanol ROE at 10 ppm showed 99%, 50%, 90%, and 85% inhibition against TCDD, FICZ, IND, and PZ, respectively, in human keratinocytes. Most assayed metabolites exhibited dose-dependent antagonist activity. ROEs inhibit AhR activation by TCDD and by the Malassezia metabolites FICZ, PZ, and IND. Hence, ROE could be useful for the prevention or treatment of skin diseases mediated by activation of AhR.
Collapse
|
228
|
Dituri F, Gigante G, Scialpi R, Mancarella S, Fabregat I, Giannelli G. Proteoglycans in Cancer: Friends or Enemies? A Special Focus on Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14081902. [PMID: 35454809 PMCID: PMC9024587 DOI: 10.3390/cancers14081902] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Proteoglycans affect multiple molecular and cellular processes during the progression of solid tumors with a highly desmoplastic stroma, such as HCC. Due to their role in enhancing or limiting the traits of cancer cells underlying their aggressiveness, such as proliferation, angiogenesis, epithelial to mesenchymal transition (EMT), and stemness, these macromolecules could be exploited as molecular targets or therapeutic agents. Proteoglycans, such as biglycan, versican, syndecan-1, glypican-3, and agrin, promote HCC cell proliferation, EMT, and angiogenesis, while endostatin and proteoglycan 4 were shown to impair cancer neovascularization or to enhance the sensitivity of HCC cells to drugs, such as sorafenib and regorafenib. Based on this evidence, interventional strategies involving the use of humanized monoclonal antibodies, T cells engineered with chimeric antigen receptors, or recombinant proteins mimicking potentially curative proteoglycans, are being employed or may be adopted in the near future for the treatment of HCC. Abstract Proteoglycans are a class of highly glycosylated proteins expressed in virtually all tissues, which are localized within membranes, but more often in the pericellular space and extracellular matrix (ECM), and are involved in tissue homeostasis and remodeling of the stromal microenvironment during physiological and pathological processes, such as tissue regeneration, angiogenesis, and cancer. In general, proteoglycans can perform signaling activities and influence a range of physical, chemical, and biological tissue properties, including the diffusivity of small electrolytes and nutrients and the bioavailability of growth factors. While the dysregulated expression of some proteoglycans is observed in many cancers, whether they act as supporters or limiters of neoplastic progression is still a matter of controversy, as the tumor promoting or suppressive function of some proteoglycans is context dependent. The participation of multiple proteoglycans in organ regeneration (as demonstrated for the liver in hepatectomy mouse models) and in cancer suggests that these molecules actively influence cell growth and motility, thus contributing to key events that characterize neoplastic progression. In this review, we outline the main roles of proteoglycans in the physiology and pathology of cancers, with a special mention to hepatocellular carcinoma (HCC), highlighting the translational potential of proteoglycans as targets or therapeutic agents for the treatment of this disease.
Collapse
Affiliation(s)
- Francesco Dituri
- National Institute of Gastroenterology Saverio de Bellis, IRCCS Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.G.); (R.S.); (S.M.); (G.G.)
- Correspondence:
| | - Gianluigi Gigante
- National Institute of Gastroenterology Saverio de Bellis, IRCCS Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.G.); (R.S.); (S.M.); (G.G.)
| | - Rosanna Scialpi
- National Institute of Gastroenterology Saverio de Bellis, IRCCS Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.G.); (R.S.); (S.M.); (G.G.)
| | - Serena Mancarella
- National Institute of Gastroenterology Saverio de Bellis, IRCCS Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.G.); (R.S.); (S.M.); (G.G.)
| | - Isabel Fabregat
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), CIBEREHD and University of Barcelona, L’Hospitalet de Llobregat, 08908 Barcelona, Spain;
| | - Gianluigi Giannelli
- National Institute of Gastroenterology Saverio de Bellis, IRCCS Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.G.); (R.S.); (S.M.); (G.G.)
| |
Collapse
|
229
|
Cisneros-Garza L, González-Huezo M, Moctezuma-Velázquez C, Ladrón de Guevara-Cetina L, Vilatobá M, García-Juárez I, Alvarado-Reyes R, Álvarez-Treviño G, Allende-Pérez S, Bornstein-Quevedo L, Calderillo-Ruiz G, Carrillo-Martínez M, Castillo-Barradas M, Cerda-Reyes E, Félix-Leyva J, Gabutti-Thomas J, Guerrero-Ixtlahuac J, Higuera-de-la-Tijera F, Huitzil-Meléndez D, Kimura-Hayama E, López-Hernández P, Malé-Velázquez R, Méndez-Sánchez N, Morales-Ruiz M, Ruíz-García E, Sánchez-Ávila J, Torrecillas-Torres L. The second Mexican consensus on hepatocellular carcinoma. Part I: Epidemiology and diagnosis. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO (ENGLISH EDITION) 2022; 87:216-234. [DOI: 10.1016/j.rgmxen.2021.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022] Open
|
230
|
Cisneros-Garza LE, González-Huezo MS, Moctezuma-Velázquez C, Ladrón de Guevara-Cetina L, Vilatobá M, García-Juárez I, Alvarado-Reyes R, Álvarez-Treviño GA, Allende-Pérez S, Bornstein-Quevedo L, Calderillo-Ruiz G, Carrillo-Martínez MA, Castillo-Barradas M, Cerda-Reyes E, Félix-Leyva JA, Gabutti-Thomas JA, Guerrero-Ixtlahuac J, Higuera-de-la-Tijera F, Huitzil-Meléndez D, Kimura-Hayama E, López-Hernández PA, Malé-Velázquez R, Méndez-Sánchez N, Morales-Ruiz MA, Ruíz-García E, Sánchez-Ávila JF, Torrecillas-Torres L. The second Mexican consensus on hepatocellular carcinoma. Part I: Epidemiology and diagnosis. REVISTA DE GASTROENTEROLOGIA DE MEXICO (ENGLISH) 2022; 87:216-234. [PMID: 35431142 DOI: 10.1016/j.rgmx.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/21/2021] [Indexed: 01/04/2025]
Abstract
Hepatocellular carcinoma (HCC) is more frequently manifesting as one of the main complications of cirrhosis of the liver, its principal risk factor. There have been modifications in its incidence over the past decade, related to an epidemiologic transition in the etiology of cirrhosis, with a decrease in the prevalence of hepatitis C and an increase in nonalcoholic fatty liver disease (NAFLD) as a cause, as well as the development of HCC in the non-cirrhotic liver due to NAFLD. Genetic markers associated with the disease have been identified, and surveillance and diagnosis have improved. Regarding treatment, surgical techniques, in both resection and transplantation, have advanced and radiologic techniques, at the curative stage of the disease, have enhanced survival in those patients. And finally, there have been radical changes in the systemic approach, with much more optimistic expectations, when compared with the options available a decade ago. Therefore, the Asociación Mexicana de Hepatología decided to carry out the Second Mexican Consensus on Hepatocellular Carcinoma, which is an updated review of the available national and international evidence on the epidemiology, risk factors, surveillance, diagnosis, and treatment of the disease, to offer the Mexican physician current information on the different topics regarding hepatocellular carcinoma. In this first part of the document, the topics related to epidemiology and diagnosis are presented.
Collapse
Affiliation(s)
- L E Cisneros-Garza
- Hospital Christus Muguerza Alta Especialidad, Monterrey, Nuevo León, Mexico
| | | | - C Moctezuma-Velázquez
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - M Vilatobá
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - I García-Juárez
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - G A Álvarez-Treviño
- Unidad de Medicina de Alta Especialidad 25 IMSS, Monterrey, Nuevo León, Mexico
| | | | - L Bornstein-Quevedo
- InmunoQ, Laboratorio de Patología, Inmunohistoquímica y Biología Molecular, Mexico City, Mexico
| | | | | | | | | | | | - J A Gabutti-Thomas
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | | | - D Huitzil-Meléndez
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - P A López-Hernández
- Unidad de Medicina de Alta Especialidad 25 IMSS, Monterrey, Nuevo León, Mexico
| | - R Malé-Velázquez
- Instituto de Salud Digestiva y Hepática SA de CV, Guadalajara, Jalisco, Mexico
| | | | - M A Morales-Ruiz
- Centro Oncológico Estatal Issemym, Toluca, Estado de México, Mexico
| | - E Ruíz-García
- Instituto Nacional de Cancerología, Mexico City, Mexico
| | - J F Sánchez-Ávila
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Monterrey, Nuevo León, Mexico
| | | |
Collapse
|
231
|
Hsueh RC, Wu WJ, Lin CL, Liu CJ, Huang YW, Hu JT, Wu CF, Sung FY, Liu WJ, Yu MW. Impact of PNPLA3 p.I148M and Hepatic Steatosis on Long-Term Outcomes for Hepatocellular Carcinoma and HBsAg Seroclearance in Chronic Hepatitis B. J Hepatocell Carcinoma 2022; 9:301-313. [PMID: 35433529 PMCID: PMC9012500 DOI: 10.2147/jhc.s355540] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/11/2022] [Indexed: 12/16/2022] Open
Abstract
Background Coexistence of hepatitis B and nonalcoholic fatty liver disease is common; however, little is known about the impact of hepatic steatosis and its major genetic determinants on the natural history of HBV infection. We aimed to study the effects of hepatic steatosis and PNPLA3 variant p.I148M on the risk of hepatocellular carcinoma (HCC) and the lifetime probability of HBsAg seroclearance, which is associated with functional remission and improved long-term outcome of HBV infection. Methods We conducted a cohort study of 2385 male, HBsAg-positive Taiwanese civil servants recruited in 1989–1992, and followed up until 2019. Cox regression with competing-risk models was used to estimate sub-distribution hazard ratios (sHRs) and 95% confidence intervals (CIs). Results Of 2385 participants, 628 experienced HBsAg seroclearance and 217 developed HCC. Hepatic steatosis, excess body-mass index, and the PNPLA3-148M variant were significantly associated with higher HBsAg seroclearance rate. However, multivariate analyses accounting for HBsAg seroclearance and various HCC risk factors showed that, while steatosis was associated with decreased HCC risk (sHR [95% CI]: 0.49 [0.36–0.66]), carriage of the PNPLA3-148M variant allele (vs II homozygotes: 1.64 [1.20–2.25] for MI heterozygotes; 1.83 [1.20–2.78] for MM homozygotes) and obesity (1.51 [1.07–2.13]) were associated with increased risk. The inverse hepatic steatosis-HCC association persisted after additional adjustment for other viral factors or using different follow-up time cut-offs to account for reverse causality. Moreover, the PNPLA3 MM genotype was positively associated with elevations of ALT and AST and liver cirrhosis, while hepatic steatosis was positively associated with ALT but inversely associated with AST and liver cirrhosis. Conclusion Hepatic steatosis and PNPLA3-148M variant appeared to have distinct impacts on the development of HBV-related progressive liver disease and HCC. PNPLA3 p.I148M, but not a diagnosis of hepatic steatosis, can help to identify HBV carriers with high-risk fatty liver disease in the progression to HCC.
Collapse
Affiliation(s)
- Rei-Chi Hsueh
- Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Wan-Jung Wu
- Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chih-Lin Lin
- Department of Gastroenterology, Ren-Ai Branch, Taipei City Hospital, Taipei, Taiwan
| | - Chun-Jen Liu
- Division of Gastroenterology, Department of Internal Medicine, National Taiwan University Hospital and Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Wen Huang
- Clinical Research Center, Liver Center and Division of Gastroenterology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jui-Ting Hu
- Liver Center, Cathay General Hospital Medical Center, School of Medicine, Fu-Jen Catholic University College of Medicine, Taipei, Taiwan
| | - Chih-Feng Wu
- Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Feng-Yu Sung
- Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Wen-Jie Liu
- Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ming-Whei Yu
- Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Correspondence: Ming-Whei Yu, Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Room 522 No. 17, Xuzhou Road Zhongzheng District, Taipei City, 10055, Taiwan, Email
| |
Collapse
|
232
|
Medina-Díaz IM, Ponce-Ruíz N, Rojas-García AE, Zambrano-Zargoza JF, Bernal-Hernández YY, González-Arias CA, Barrón-Vivanco BS, Herrera-Moreno JF. The Relationship between Cancer and Paraoxonase 1. Antioxidants (Basel) 2022; 11:antiox11040697. [PMID: 35453382 PMCID: PMC9028432 DOI: 10.3390/antiox11040697] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022] Open
Abstract
Extensive research has been carried out to understand and elucidate the mechanisms of paraoxonase 1 (PON1) in the development of diseases including cancer, cardiovascular diseases, neurological diseases, and inflammatory diseases. This review focuses on the relationship between PON1 and cancer. The data suggest that PON1, oxidative stress, chronic inflammation, and cancer are closely linked. Certainly, the gene expression of PON1 will remain challenging to study. Therefore, targeting PON1, redox-sensitive pathways, and transcription factors promise prevention and therapy in the development of several diseases, including cancer.
Collapse
Affiliation(s)
- Irma Martha Medina-Díaz
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
- Correspondence:
| | - Néstor Ponce-Ruíz
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | - Aurora Elizabeth Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | | | - Yael Y. Bernal-Hernández
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | - Cyndia Azucena González-Arias
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | - Briscia S. Barrón-Vivanco
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| | - José Francisco Herrera-Moreno
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepict 63000, Mexico; (N.P.-R.); (A.E.R.-G.); (Y.Y.B.-H.); (C.A.G.-A.); (B.S.B.-V.); (J.F.H.-M.)
| |
Collapse
|
233
|
Tandoh KZ, Quaye O. Genetic associations in chronic hepatitis B infection: toward developing polygenic risk scores. Future Microbiol 2022; 17:541-549. [PMID: 35332782 DOI: 10.2217/fmb-2021-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Chronic hepatitis B (CHB) infection results in multiple clinical phenotypes of varying severity. One of the critical gaps in CHB management is the lack of a genetic-based tool to aid existing hepatocellular carcinoma and cirrhosis risk stratification models for patients with active CHB. Such individual predictive models for CHB are plagued by an inherent limitation of discriminatory power that clearly indicates the need for their improvement. In this article, we highlight genetic association studies in CHB that identified HLA and cytokine genetic susceptibility loci to CHB. We advance the position that translating CHB genetic susceptibility loci into polygenic risk scores will be a welcome addendum to the current arsenal of CHB outcome predictive models. We conclude with comments on hurdles that future research efforts should address within the research enclave of CHB and advocate for increased genetic data representation from sub-Saharan Africa.
Collapse
Affiliation(s)
- Kwesi Z Tandoh
- Department of Biochemistry, West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Cell & Molecular Biology, College of Basic & Applied Sciences, University of Ghana, Accra, Ghana
| | - Osbourne Quaye
- Department of Biochemistry, West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Cell & Molecular Biology, College of Basic & Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
234
|
Brinkmann V, Romeo M, Larigot L, Hemmers A, Tschage L, Kleinjohann J, Schiavi A, Steinwachs S, Esser C, Menzel R, Giani Tagliabue S, Bonati L, Cox F, Ale-Agha N, Jakobs P, Altschmied J, Haendeler J, Coumoul X, Ventura N. Aryl Hydrocarbon Receptor-Dependent and -Independent Pathways Mediate Curcumin Anti-Aging Effects. Antioxidants (Basel) 2022; 11:613. [PMID: 35453298 PMCID: PMC9024831 DOI: 10.3390/antiox11040613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor whose activity can be modulated by polyphenols, such as curcumin. AhR and curcumin have evolutionarily conserved effects on aging. Here, we investigated whether and how the AhR mediates the anti-aging effects of curcumin across species. Using a combination of in vivo, in vitro, and in silico analyses, we demonstrated that curcumin has AhR-dependent or -independent effects in a context-specific manner. We found that in Caenorhabditis elegans, AhR mediates curcumin-induced lifespan extension, most likely through a ligand-independent inhibitory mechanism related to its antioxidant activity. Curcumin also showed AhR-independent anti-aging activities, such as protection against aggregation-prone proteins and oxidative stress in C. elegans and promotion of the migratory capacity of human primary endothelial cells. These AhR-independent effects are largely mediated by the Nrf2/SKN-1 pathway.
Collapse
Affiliation(s)
- Vanessa Brinkmann
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Margherita Romeo
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Lucie Larigot
- Faculté des Sciences Fondamentales et Biomédicales, Université de Paris, 45 Rue des Saints-Pères, F-75006 Paris, France; (L.L.); (X.C.)
| | - Anne Hemmers
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Lisa Tschage
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Jennifer Kleinjohann
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Alfonso Schiavi
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Swantje Steinwachs
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Charlotte Esser
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Ralph Menzel
- Institute of Biology, Humboldt-University Berlin, Philippstr. 13, 10115 Berlin, Germany;
| | - Sara Giani Tagliabue
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (S.G.T.); (L.B.)
| | - Laura Bonati
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (S.G.T.); (L.B.)
| | - Fiona Cox
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
- Institute of Clinical Pharmacology and Pharmacology, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany
| | - Niloofar Ale-Agha
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
| | - Philipp Jakobs
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
| | - Joachim Altschmied
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Judith Haendeler
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
| | - Xavier Coumoul
- Faculté des Sciences Fondamentales et Biomédicales, Université de Paris, 45 Rue des Saints-Pères, F-75006 Paris, France; (L.L.); (X.C.)
| | - Natascia Ventura
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| |
Collapse
|
235
|
Karengera A, Sterken MG, Kammenga JE, Riksen JAG, Dinkla IJT, Murk AJ. Differential expression of genes in C. elegans reveals transcriptional responses to indirect-acting xenobiotic compounds and insensitivity to 2,3,7,8-tetrachlorodibenzodioxin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113344. [PMID: 35219257 DOI: 10.1016/j.ecoenv.2022.113344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/12/2022] [Accepted: 02/20/2022] [Indexed: 05/14/2023]
Abstract
Caenorhabditis elegans is a well-established model organism for toxicity testing of chemical substances. We recently demonstrated its potential for bioanalysis of the toxic potency of chemical contaminants in water. While many detoxification genes are homologues to those in mammalians, C. elegans is reported to be deficient in cytochrome CYP1-like P450 metabolism and that its aryl hydrocarbon receptor (AhR) homolog encoded by ahr-1 purportedly does not interact with dioxins or any other known xenobiotic ligand. This suggests that C. elegans is insensitive for compounds that require bioactivation (indirectly acting compounds) and for dioxins or dioxin-like compounds. This study analysed genome-wide gene expression of the nematode in response to 30 μM of aflatoxin B1 (AFB1), benzo(a)pyrene (B(a)P), Aroclor 1254 (PCB1254), and 10 μM of 2,3,7,8-tetrachlorodibenzodioxin (TCDD). After 24 h of exposure in the early L4 larval stage, microarray analysis revealed 182, 86, and 321 differentially expressed genes in the nematodes treated with 30 μM of AFB1, B(a)P, and PCB1254, respectively. Among these genes, many encode xenobiotic-metabolizing enzymes, and their transcription levels were among the highest-ranked fold-changed genes. Interestingly, only one gene (F59B1.8) was upregulated in the nematodes exposed to 10 μM TCDD. Genes related to metabolic processes and catalytic activity were the most induced by exposure to 30 μM of AFB1, B(a)P, and PCB1254. Despite the genotoxic nature of AFB1 and B(a)P, no differential expression was found in the genes encoding DNA repair and cell cycle checkpoint proteins. Analysis of concentration-response curves was performed to determine the Lowest Observed Transcriptomic Effect Levels (LOTEL) of AFB1, B(a)P, and PCB1254. The obtained LOTEL values showed that gene expression changes in C. elegans are more sensitive to toxicants than reproductive effects. Overall, transcriptional responses of metabolic enzymes suggest that the nematode does metabolize AFB1, B(a)P, and PCB1254. Our findings also support the assumption that the transcription factor AhR homolog in C. elegans does not bind typical xenobiotic ligands, rendering the nematode transcriptionally insensitive to TCDD effects.
Collapse
Affiliation(s)
- Antoine Karengera
- Wageningen University, Department of Animal Sciences, Marine Animal Ecology Group, De Elst 1, 6708 WD Wageningen, The Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Mark G Sterken
- Wageningen University, Plant Sciences, Laboratory of Nematology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jan E Kammenga
- Wageningen University, Plant Sciences, Laboratory of Nematology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Joost A G Riksen
- Wageningen University, Plant Sciences, Laboratory of Nematology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Inez J T Dinkla
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Albertinka J Murk
- Wageningen University, Department of Animal Sciences, Marine Animal Ecology Group, De Elst 1, 6708 WD Wageningen, The Netherlands.
| |
Collapse
|
236
|
Luo F, Oldoni F, Das A. TM6SF2: A Novel Genetic Player in Nonalcoholic Fatty Liver and Cardiovascular Disease. Hepatol Commun 2022; 6:448-460. [PMID: 34532996 PMCID: PMC8870032 DOI: 10.1002/hep4.1822] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/13/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022] Open
Abstract
Transmembrane 6 superfamily member 2 (TM6SF2) is located on chromosome 19 (19p12) and encodes for a protein of undetermined function. Genetic studies have reported the association between a nonsynonymous variant in TM6SF2 (E167K, rs58542926) with hepatic triglyceride content and its impact on the cardiovascular system. Clinical and epidemiological studies have confirmed the role of TM6SF2 in the development of nonalcoholic fatty liver disease (NAFLD). Recently, TM6SF2 was also shown to play an important role in promoting hepatic fibrosis and hepatocellular cancer in mouse models. This review aims to capture the physiological role of TM6SF2 in the regulation of lipid metabolism and its involvement in cardiometabolic diseases.
Collapse
Affiliation(s)
- Fei Luo
- Department of Cardiovascular MedicineThe Second Xiangya Hospital of Central South UniversityChangshaChina
- Department of Molecular GeneticsUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Federico Oldoni
- Department of Molecular GeneticsUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Avash Das
- Department of Molecular GeneticsUniversity of Texas Southwestern Medical CenterDallasTXUSA
| |
Collapse
|
237
|
Wise JTF, Salazar-González RA, Habil MR, Doll MA, Hein DW. Expression of arylamine N-acetyltransferase 2 activity in immortalized human bronchial epithelial cells. Toxicol Appl Pharmacol 2022; 442:115993. [PMID: 35353990 PMCID: PMC9112076 DOI: 10.1016/j.taap.2022.115993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/09/2022] [Accepted: 03/22/2022] [Indexed: 01/30/2023]
Abstract
Lung cancer is the leading cause of cancer deaths in the United States with high incidence in tobacco smokers. Arylamine N-acetyltransferase 2 (NAT2) is a xenobiotic enzyme that catalyzes both N- and O-acetylation of carcinogens present in tobacco smoke and contributes towards the genotoxicity of these carcinogens. NAT2 allelic variants result in slow, intermediate, and rapid acetylation phenotypes. A recent meta-analysis reported NAT2 non-rapid (slow and intermediate) phenotypes had a significantly increased risk of lung cancer. NAT2 activity in humans is thought to be restricted to liver and gastrointestinal tract, and no studies to our knowledge have reported the expression of NAT2 activity in immortalized human lung epithelial cells. Given the importance of NAT2 in cancer and inhalation of various carcinogens directly into the lungs, we investigated NAT2 activity in human lung epithelial cells. Both NAT1 and NAT2 protein were detected by "in-cell" Western. Arylamine N-acetyltransferase activity was determined with selective substrates for NAT1 (p-aminobenzoic acid; PABA) and NAT2 (sulfamethazine; SMZ) in the presence and absence of a selective NAT1 inhibitor. PABA N-acetylation (NAT1 activity) in cell protein lysates was abolished in the presence of 25 μM of NAT1 inhibitor whereas SMZ N-acetylation (NAT2) was unaffected. Incubation with the NAT1 inhibitor partially reduced the N-acetylation of β-naphthylamine and the O-acetylation of N-hydroxy-4-aminobiphenyl consistent with catalysis by both NAT1 and NAT2. Immortalized human lung epithelial cells exhibited dose-dependent N-acetylation of 4-ABP with an apparent KM of 24.4 ± 5.1 μM. These data establish that NAT2 is expressed and functional in immortalized human lung epithelial cells and will help us further our understanding of NAT2 in lung cancer.
Collapse
Affiliation(s)
- James T F Wise
- Department of Pharmacology & Toxicology and Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Raúl A Salazar-González
- Department of Pharmacology & Toxicology and Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Mariam R Habil
- Department of Pharmacology & Toxicology and Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Mark A Doll
- Department of Pharmacology & Toxicology and Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - David W Hein
- Department of Pharmacology & Toxicology and Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
238
|
Fassio E, Barreyro FJ, Pérez MS, Dávila D, Landeira G, Gualano G, Ruffillo G. Hepatocellular carcinoma in patients with metabolic dysfunction-associated fatty liver disease: Can we stratify at-risk populations? World J Hepatol 2022; 14:354-371. [PMID: 35317172 PMCID: PMC8891669 DOI: 10.4254/wjh.v14.i2.354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/22/2021] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a new nomenclature recently proposed by a panel of international experts so that the entity is defined based on positive criteria and linked to pathogenesis, replacing the traditional non-alcoholic fatty liver disease (NAFLD), a definition based on exclusion criteria. NAFLD/MAFLD is currently the most common form of chronic liver disease worldwide and is a growing risk factor for development of hepatocellular carcinoma (HCC). It is estimated than 25% of the global population have NAFLD and is projected to increase in the next years. Major Scientific Societies agree that surveillance for HCC should be indicated in patients with NAFLD/ MAFLD and cirrhosis but differ in non-cirrhotic patients (including those with advanced fibrosis). Several studies have shown that the annual incidence rate of HCC in NAFLD-cirrhosis is greater than 1%, thus surveillance for HCC is cost-effective. Risk factors that increase HCC incidence in these patients are male gender, older age, presence of diabetes and any degree of alcohol consumption. In non-cirrhotic patients, the incidence of HCC is much lower and variable, being a great challenge to stratify the risk of HCC in this group. Furthermore, large epidemiological studies based on the general population have shown that diabetes and obesity significantly increase risk of HCC. Some genetic variants may also play a role modifying the HCC occurrence among patients with NAFLD. The purpose of this review is to discuss the epidemiology, clinical and genetic risk factors that may influence the risk of HCC in NAFLD/MAFLD patients and propose screening strategy to translate into better patient care.
Collapse
Affiliation(s)
- Eduardo Fassio
- Hepatology Section, Gastroenterology Service, Hospital Nacional Prof. Alejandro Posadas, El Palomar 1684, Buenos Aires, Argentina
| | - Fernando J Barreyro
- Biotechnology Institute of Misiones, Faculty of Chemical and Natural Sciences, National University of Misiones, Posadas N3300, Misiones, Argentina
| | - M Soledad Pérez
- Hepatology Section, Gastroenterology Service, Hospital Nacional Prof. Alejandro Posadas, El Palomar 1684, Buenos Aires, Argentina
| | - Diana Dávila
- Hepatology Section, Gastroenterology Service, Hospital Nacional Prof. Alejandro Posadas, El Palomar 1684, Buenos Aires, Argentina
| | - Graciela Landeira
- Hepatology Section, Gastroenterology Service, Hospital Nacional Prof. Alejandro Posadas, El Palomar 1684, Buenos Aires, Argentina
| | - Gisela Gualano
- Hepatology Section, Gastroenterology Service, Hospital Nacional Prof. Alejandro Posadas, El Palomar 1684, Buenos Aires, Argentina
| | - Gabriela Ruffillo
- Hepatology Section, Gastroenterology Service, Hospital Nacional Prof. Alejandro Posadas, El Palomar 1684, Buenos Aires, Argentina
| |
Collapse
|
239
|
Galisa SLG, Jacob PL, de Farias AA, Lemes RB, Alves LU, Nóbrega JCL, Zatz M, Santos S, Weller M. Haplotypes of single cancer driver genes and their local ancestry in a highly admixed long-lived population of Northeast Brazil. Genet Mol Biol 2022; 45:e20210172. [PMID: 35112701 PMCID: PMC8811751 DOI: 10.1590/1678-4685-gmb-2021-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/17/2021] [Indexed: 12/02/2022] Open
Abstract
Admixed populations have not been examined in detail in cancer genetic studies. Here, we inferred the local ancestry of cancer-associated single nucleotide polymorphisms (SNPs) and haplotypes of a highly admixed Brazilian population. SNP array was used to genotype 73 unrelated individuals aged 80-102 years. Local ancestry inference was performed by merging genotyped regions with phase three data from the 1000 Genomes Project Consortium using RFmix. The average ancestry tract length was 9.12-81.71 megabases. Strong linkage disequilibrium was detected in 48 haplotypes containing 35 SNPs in 10 cancer driver genes. All together, 19 risk and eight protective alleles were identified in 23 out of 48 haplotypes. Homozygous individuals were mainly of European ancestry, whereas heterozygotes had at least one Native American and one African ancestry tract. Native-American ancestry for homozygous individuals with risk alleles for HNF1B, CDH1, and BRCA1 was inferred for the first time. Results indicated that analysis of SNP polymorphism in the present admixed population has a high potential to identify new ancestry-associated alleles and haplotypes that modify cancer susceptibility differentially in distinct human populations. Future case-control studies with populations with a complex history of admixture could help elucidate ancestry-associated biological differences in cancer incidence and therapeutic outcomes.
Collapse
Affiliation(s)
- Steffany Larissa Galdino Galisa
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
| | - Priscila Lima Jacob
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
| | - Allysson Allan de Farias
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
- Universidade de São Paulo (USP), Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Renan Barbosa Lemes
- Universidade de São Paulo (USP), Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Leandro Ucela Alves
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
- Universidade de São Paulo (USP), Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Júlia Cristina Leite Nóbrega
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
| | - Mayana Zatz
- Universidade de São Paulo (USP), Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Silvana Santos
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
- Universidade Estadual da Paraíba (UEPB), Departamento de Biologia,
Campina Grande, PB, Brazil
| | - Mathias Weller
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
- Universidade Estadual da Paraíba (UEPB), Departamento de Biologia,
Campina Grande, PB, Brazil
| |
Collapse
|
240
|
Xue WY, Zhang L, Liu CM, Gao Y, Li SJ, Huai ZY, Dai J, Wang YY. Research progress on the relationship between TM6SF2 rs58542926 polymorphism and non-alcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol 2022; 16:97-107. [PMID: 35057689 DOI: 10.1080/17474124.2022.2032661] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION nonalcoholic fatty liver disease is a common liver disease with a global average prevalence of about 25%. In addition to the incidence of NAFLD being related to obesity, diabetes, hyperlipidemia, etc., genetic factors also have an important impact on the incidence of NAFLD. AREAS COVERED Current experimental results and clinical studies show that the transmembrane 6 superfamily member 2 (TM6SF2) gene plays an important role in the pathogenesis of NAFLD. The research on genetic polymorphism of TM6SF2 gene mainly focuses on rs58542926 locus (rs58542926 c.449 C > T, p. Glu167Lys, E167K). The Mutations of this site might increase the risk of NAFLD in carriers. EXPERT OPINION The mutation of this site causes the disorder of triglyceride metabolism in the liver, which leads to the deposition of a large amount of lipids in the liver, and further induces the incidence of NAFLD. With the study of the mechanism of TM6SF2 gene polymorphism in the pathogenesis of NAFLD, it is helpful to understand the molecular mechanism of the pathogenesis of NAFLD, which has a great value for the treatment of NAFLD.
Collapse
Affiliation(s)
- Wan-Ying Xue
- School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China
| | - Li Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Chuan-Miao Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Yu Gao
- School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China
| | - Shu-Jing Li
- School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China
| | - Zi-You Huai
- School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China
| | - Jing Dai
- School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China
| | - Yuan-Yuan Wang
- School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China
| |
Collapse
|
241
|
Whitfield JB, Schwantes-An TH, Darlay R, Aithal GP, Atkinson SR, Bataller R, Botwin G, Chalasani NP, Cordell HJ, Daly AK, Day CP, Eyer F, Foroud T, Gleeson D, Goldman D, Haber PS, Jacquet JM, Liang T, Liangpunsakul S, Masson S, Mathurin P, Moirand R, McQuillin A, Moreno C, Morgan MY, Mueller S, Müllhaupt B, Nagy LE, Nahon P, Nalpas B, Naveau S, Perney P, Pirmohamed M, Seitz HK, Soyka M, Stickel F, Thompson A, Thursz MR, Trépo E, Morgan TR, Seth D. A genetic risk score and diabetes predict development of alcohol-related cirrhosis in drinkers. J Hepatol 2022; 76:275-282. [PMID: 34656649 PMCID: PMC8803006 DOI: 10.1016/j.jhep.2021.10.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/06/2021] [Accepted: 10/05/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Only a minority of excess alcohol drinkers develop cirrhosis. We developed and evaluated risk stratification scores to identify those at highest risk. METHODS Three cohorts (GenomALC-1: n = 1,690, GenomALC-2: n = 3,037, UK Biobank: relevant n = 6,898) with a history of heavy alcohol consumption (≥80 g/day (men), ≥50 g/day (women), for ≥10 years) were included. Cases were participants with alcohol-related cirrhosis. Controls had a history of similar alcohol consumption but no evidence of liver disease. Risk scores were computed from up to 8 genetic loci identified previously as associated with alcohol-related cirrhosis and 3 clinical risk factors. Score performance for the stratification of alcohol-related cirrhosis risk was assessed and compared across the alcohol-related liver disease spectrum, including hepatocellular carcinoma (HCC). RESULTS A combination of 3 single nucleotide polymorphisms (SNPs) (PNPLA3:rs738409, SUGP1-TM6SF2:rs10401969, HSD17B13:rs6834314) and diabetes status best discriminated cirrhosis risk. The odds ratios (ORs) and (95% CIs) between the lowest (Q1) and highest (Q5) score quintiles of the 3-SNP score, based on independent allelic effect size estimates, were 5.99 (4.18-8.60) (GenomALC-1), 2.81 (2.03-3.89) (GenomALC-2), and 3.10 (2.32-4.14) (UK Biobank). Patients with diabetes and high risk scores had ORs of 14.7 (7.69-28.1) (GenomALC-1) and 17.1 (11.3-25.7) (UK Biobank) compared to those without diabetes and with low risk scores. Patients with cirrhosis and HCC had significantly higher mean risk scores than patients with cirrhosis alone (0.76 ± 0.06 vs. 0.61 ± 0.02, p = 0.007). Score performance was not significantly enhanced by information on additional genetic risk variants, body mass index or coffee consumption. CONCLUSIONS A risk score based on 3 genetic risk variants and diabetes status enables the stratification of heavy drinkers based on their risk of cirrhosis, allowing for the provision of earlier preventative interventions. LAY SUMMARY Excessive chronic drinking leads to cirrhosis in some people, but so far there is no way to identify those at high risk of developing this debilitating disease. We developed a genetic risk score that can identify patients at high risk. The risk of cirrhosis is increased >10-fold with just two risk factors - diabetes and a high genetic risk score. Risk assessment using this test could enable the early and personalised management of this disease in high-risk patients.
Collapse
Affiliation(s)
- John B Whitfield
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Queensland 4029, Australia.
| | - Tae-Hwi Schwantes-An
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis IN, USA
| | - Rebecca Darlay
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Guruprasad P Aithal
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals and the University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Stephen R Atkinson
- Department of Metabolism, Digestion & Reproduction, Imperial College London, UK
| | - Ramon Bataller
- Center for Liver Diseases, University of Pittsburgh Medical Center, 3471 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Greg Botwin
- Department of Veterans Affairs, VA Long Beach Healthcare System, 5901 East Seventh Street, Long Beach, CA 90822, USA; F. Widjaja Family Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California CA 90048, USA
| | - Naga P Chalasani
- Department of Medicine, Indiana University, Indianapolis, Indiana, IN 46202-5175, USA
| | - Heather J Cordell
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Ann K Daly
- Faculty of Medical Sciences, Newcastle University Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Christopher P Day
- Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Florian Eyer
- Division of Clinical Toxicology, Department of Internal Medicine 2, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis IN, USA
| | - Dermot Gleeson
- Liver Unit, Sheffield Teaching Hospitals, AO Floor Robert Hadfield Building, Northern General Hospital, Sheffied S5 7AU, UK
| | - David Goldman
- Laboratory of Neurogenetics, NIAAA, Rockville, MD 20852, USA
| | - Paul S Haber
- Drug Health Services, Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia; Faculty of Medicine and Health, the University of Sydney, Sydney, NSW 2006, Australia
| | | | - Tiebing Liang
- Department of Medicine, Indiana University, Indianapolis, Indiana, IN 46202-5175, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University and Roudebush Veterans Administration Medical Center, Indianapolis, USA
| | - Steven Masson
- Faculty of Medical Sciences, Newcastle University Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Philippe Mathurin
- CHRU de Lille, Hôpital Claude Huriez, Rue M. Polonovski CS 70001, 59 037 Lille Cedex, France
| | - Romain Moirand
- Univ Rennes, INRA, INSERM, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), F-35000 Rennes, France
| | - Andrew McQuillin
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London WC1E 6DE, UK
| | - Christophe Moreno
- CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium; Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium
| | - Marsha Y Morgan
- UCL Institute for Liver & Digestive Health, Division of Medicine, Royal Free Campus, University College London, London NW3 2PF, UK
| | - Sebastian Mueller
- Department of Internal Medicine, Salem Medical Center and Center for Alcohol Research, University of Heidelberg, Zeppelinstraße 11-33, 69121 Heidelberg, Germany
| | - Beat Müllhaupt
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Rämistrasse 100, CH-8901 Zurich, Switzerland
| | - Laura E Nagy
- Lerner Research Institute, 9500 Euclid Avenue, Cleveland, Ohio, OH 44195, USA
| | - Pierre Nahon
- Service d'Hépatologie, APHP Hôpital Avicenne et Université Paris 13, Bobigny, France; University Paris 13, Bobigny, France; Inserm U1162 Génomique fonctionnelle des tumeurs solides, Paris, France
| | - Bertrand Nalpas
- Service Addictologie, CHRU Caremeau, 30029 Nîmes, France; DISC, Inserm, 75013 Paris, France
| | - Sylvie Naveau
- Hôpital Antoine-Béclère, 157 Rue de la Porte de Trivaux, 92140 Clamart, France
| | - Pascal Perney
- Hôpital Universitaire Caremeau, Place du Pr. Robert Debre, 30029 Nîmes, France
| | - Munir Pirmohamed
- MRC Centre for Drug Safety Science and Wolfson Centre for Personalised Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GL, UK
| | - Helmut K Seitz
- Department of Internal Medicine, Salem Medical Center and Center for Alcohol Research, University of Heidelberg, Zeppelinstraße 11-33, 69121 Heidelberg, Germany
| | - Michael Soyka
- Psychiatric Hospital University of Munich, Nussbaumsstr.7, 80336 Munich, Germany; Privatklinik Meiringen, Willigen, CH 3860 Meiringen, Switzerland
| | - Felix Stickel
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Rämistrasse 100, CH-8901 Zurich, Switzerland
| | - Andrew Thompson
- MRC Centre for Drug Safety Science and Wolfson Centre for Personalised Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GL, UK; Health Analytics, Lane Clark & Peacock LLP, London, UK
| | - Mark R Thursz
- Department of Metabolism, Digestion & Reproduction, Imperial College London, UK
| | - Eric Trépo
- CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium; Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium
| | - Timothy R Morgan
- Department of Veterans Affairs, VA Long Beach Healthcare System, 5901 East Seventh Street, Long Beach, CA 90822, USA; Department of Medicine, University of California, Irvine, USA
| | - Devanshi Seth
- Drug Health Services, Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia; Faculty of Medicine and Health, the University of Sydney, Sydney, NSW 2006, Australia; Centenary Institute of Cancer Medicine and Cell Biology, the University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
242
|
Almohsen F, Al-Rubaie HA, Habib MA, Nasr SA, Perni R, Al-Quraishi L. Circulating miR-126-3p and miR-423-5p Expression in de novo Adult Acute Myeloid Leukemia: Correlations with Response to Induction Therapy and the 2-Year Overall Survival. J Blood Med 2022; 13:83-92. [PMID: 35210895 PMCID: PMC8863343 DOI: 10.2147/jbm.s347397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/20/2022] [Indexed: 12/02/2022] Open
Abstract
Background Purpose Patients and Methods Results Conclusion
Collapse
Affiliation(s)
- Faez Almohsen
- College of Medicine, University of Baghdad, Baghdad, Iraq
- Correspondence: Faez Almohsen, College of Medicine, University of Baghdad, Baghdad, Iraq, Tel +964 7902834062, Email
| | | | - Manal A Habib
- College of Medicine, University of Baghdad, Baghdad, Iraq
| | - Sherif A Nasr
- siParadigm Diagnostic Informatics, New Jersey, NJ, USA
| | | | | |
Collapse
|
243
|
Burlone ME, Bellan M, Barbaglia MN, Mocchetti G, Mallela VR, Minisini R, Rigamonti C, Pirisi M. HSD17B13 and other liver fat-modulating genes predict development of hepatocellular carcinoma among HCV-positive cirrhotics with and without viral clearance after DAA treatment. Clin J Gastroenterol 2022; 15:301-309. [PMID: 35098490 DOI: 10.1007/s12328-021-01578-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/17/2021] [Indexed: 12/02/2022]
Abstract
BACKGROUND Genetic predisposition to accumulate liver fat (expressed by a polygenic risk score, GRS, based on the number of at-risk alleles of PNPLA3, TM6SF2, MBOAT7 and GCKR) may influence the probability of developing hepatocellular carcinoma (HCC) after hepatitis C treatment. Whether this holds true taking into account carriage of the HSD17B13:TA splice variant, also affecting lipogenesis, and achievement of viral clearance (SVR), is unknown. METHODS PNPLA3, TM6SF2, MBOAT7, GCKR and HSD17B13 variants were determined in a cohort of 328 cirrhotic patients free of HCC before starting treatment with direct acting antivirals (DAA). RESULTS SVR in the study cohort was 96%. At the end of follow-up, N = 21 patients had been diagnosed an HCC; none of the genes included in the GRS was individually associated with HCC development. However, in a Cox proportional hazards model, a GRS > 0.457 predicted HCC independently of sex, diabetes, albumin, INR and FIB4. The fit of the model improved adding treatment outcome and carriage of the HSD17B13:TA splice variant, with sex, GRS > 0.457, HSD17B13:TA splice variant and failure to achieve an SVR (hazard ratio = 6.75, 4.24, 0.24 and 7.7, respectively) being independent predictors of HCC. CONCLUSION Our findings confirm that genes modulating liver fat and lipogenesis are important risk factors for HCC development among cirrhotics C treated with DAA.
Collapse
Affiliation(s)
- Michela E Burlone
- Internal Medicine, Azienda Ospedaliero-Universitaria "Maggiore Della Carità", Novara, Italy
| | - Mattia Bellan
- Internal Medicine, Azienda Ospedaliero-Universitaria "Maggiore Della Carità", Novara, Italy
- Department of Translational Medicine (DiMeT), Università del Piemonte Orientale, Novara, Italy
| | - Matteo N Barbaglia
- Department of Translational Medicine (DiMeT), Università del Piemonte Orientale, Novara, Italy
| | - Ginevra Mocchetti
- Department of Translational Medicine (DiMeT), Università del Piemonte Orientale, Novara, Italy
| | - Venkata R Mallela
- Department of Translational Medicine (DiMeT), Università del Piemonte Orientale, Novara, Italy
| | - Rosalba Minisini
- Department of Translational Medicine (DiMeT), Università del Piemonte Orientale, Novara, Italy
| | - Cristina Rigamonti
- Internal Medicine, Azienda Ospedaliero-Universitaria "Maggiore Della Carità", Novara, Italy
- Department of Translational Medicine (DiMeT), Università del Piemonte Orientale, Novara, Italy
| | - Mario Pirisi
- Internal Medicine, Azienda Ospedaliero-Universitaria "Maggiore Della Carità", Novara, Italy.
- Department of Translational Medicine (DiMeT), Università del Piemonte Orientale, Novara, Italy.
| |
Collapse
|
244
|
Wang Y, Li BX, Li X. Identification and Validation of Angiogenesis-Related Gene Expression for Predicting Prognosis in Patients With Ovarian Cancer. Front Oncol 2022; 11:783666. [PMID: 35047401 PMCID: PMC8761815 DOI: 10.3389/fonc.2021.783666] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/26/2021] [Indexed: 12/02/2022] Open
Abstract
Ovarian cancer (OC) is a highly heterogeneous disease with different cellular origins reported; thus, precise prognostic strategies and effective new therapies are urgently needed for patients with OC. A growing number of studies have shown that most malignancies have intensive angiogenesis and rapid growth. Therefore, angiogenesis plays an important role in the development of tumor metastasis. However, the prognostic value of angiogenesis-related genes (ARGs) in OC remains to be further elucidated. In this study, the expression data and corresponding clinical data from patients with OC and normal control samples were downloaded with UCSC XENA. A total of 1,960 differentially expressed ARGs were screened and functionally annotated through Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Univariate Cox regression analysis was performed to identify ARGs associated with prognosis. New ARGs signatures (including ESM1, CXCL13, TPCN2, PTPRD, FOXO1, and ELK3) were constructed for the prediction of overall survival (OS) in OC based on the least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis. Patients were divided based on their median risk score. In the The Cancer Genome Atlas (TCGA) training dataset, the survival analysis showed that overall survival was lower in the high-risk group than that in the low-risk group (p < 0.0001). The International Cancer Genome Consortium (ICGC) database was used for validation, and the receiver operating characteristic (ROC) curves showed good performance. Univariate and multivariate Cox analyses were conducted to identify independent predictors of OS. The nomogram, including the risk score, age, stage, grade, and position, can not only show good predictive ability but also can explore the correlation analysis based on ARGs for immunogenicity, immune components, and immune phenotypes with risk score. Risk scores were correlated strongly with the type of immune infiltration. Furthermore, homologous recombination defect (HRD), NtAIscore, LOH score, LSTm score, stemness index (mRNAsi), and stromal cells were significantly correlated with risk score. The present study suggests that the novel signature constructed from six ARGs may serve as effective prognostic biomarkers for OC and contribute to clinical decision making and personalized prognostic monitoring of OC.
Collapse
Affiliation(s)
- Yue Wang
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bao Xuan Li
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiang Li
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
245
|
Lu MY, Yeh ML, Huang CI, Wang SC, Tsai YS, Tsai PC, Ko YM, Lin CC, Chen KY, Wei YJ, Hsu PY, Hsu CT, Jang TY, Liu TW, Liang PC, Hsieh MY, Lin ZY, Chen SC, Huang CF, Huang JF, Dai CY, Chuang WL, Yu ML. Dynamics of cytokines predicts risk of hepatocellular carcinoma among chronic hepatitis C patients after viral eradication. World J Gastroenterol 2022; 28:140-153. [PMID: 35125824 PMCID: PMC8793012 DOI: 10.3748/wjg.v28.i1.140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/27/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chronic hepatitis C virus (HCV) infection induces profound alterations in the cytokine and chemokine signatures in peripheral blood. Clearance of HCV by antivirals results in host immune modification, which may interfere with immune-mediated cancer surveillance. Identifying HCV patients who remain at risk of hepatocellular carcinoma (HCC) following HCV eradication remains an unmet need. We hypothesized that antiviral therapy-induced immune reconstruction may be relevant to HCC development. AIM To investigate the impact of differential dynamics of cytokine expression on the development of HCC following successful antiviral therapy. METHODS One hundred treatment-naïve HCV patients with advanced fibrosis (F3/4) treated with direct-acting antivirals (DAAs) or peginterferon/ribavirin who achieved sustained virologic response [SVR, defined as undetectable HCV RNA throughout 12 wk (SVR12) for the DAA group or 24 wk (SVR24) for the interferon group after completion of antiviral therapy] were enrolled since 2003. The primary endpoint was the development of new-onset HCC. Standard HCC surveillance (abdominal ultrasound and α-fetoprotein) was performed every six months during the follow-up. Overall, 64 serum cytokines were detected by the multiplex immunoassay at baseline and 24 wk after end-of-treatment. RESULTS HCC developed in 12 of the 97 patients over 459 person-years after HCV eradication. In univariate analysis, the Fibrosis-4 index (FIB-4), hemoglobin A1c (HbA1c), the dynamics of tumor necrosis factor-α (TNF-α), and TNF-like weak inducer of apoptosis (TWEAK) after antiviral therapy were significant HCC predictors. The multivariate Cox regression model showed that ΔTNF-α (≤ -5.7 pg/mL) was the most important risk factor for HCC (HR = 11.54, 95%CI: 2.27-58.72, P = 0.003 in overall cases; HR = 9.98, 95%CI: 1.88-52.87, P = 0.007 in the interferon group). An HCC predictive model comprising FIB-4, HbA1c, ΔTNF-α, and ΔTWEAK had excellent performance, with 3-, 5-, 10-, and 13-year areas under the curve of 0.882, 0.864, 0.903, and 1.000, respectively. The 5-year accumulative risks of HCC were 0%, 16.9%, and 40.0% in the low-, intermediate-, and high-risk groups, respectively. CONCLUSION Downregulation of serum TNF-α significantly increases the risk of HCC after HCV eradication. A predictive model consisting of cytokine kinetics could ameliorate personalized HCC surveillance strategies for post-SVR HCV patients.
Collapse
Affiliation(s)
- Ming-Ying Lu
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Ming-Lun Yeh
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- School of Medicine and Hepatitis Research Center, College of Medicine, Center for Cancer Research and Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-I Huang
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- School of Medicine and Hepatitis Research Center, College of Medicine, Center for Cancer Research and Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Shan Tsai
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Pei-Chien Tsai
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Yu-Min Ko
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Ching-Chih Lin
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Kuan-Yu Chen
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Yu-Ju Wei
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Po-Yao Hsu
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Cheng-Ting Hsu
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Tyng-Yuan Jang
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Ta-Wei Liu
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Po-Cheng Liang
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Ming-Yen Hsieh
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Zu-Yau Lin
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- School of Medicine and Hepatitis Research Center, College of Medicine, Center for Cancer Research and Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shinn-Cherng Chen
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- School of Medicine and Hepatitis Research Center, College of Medicine, Center for Cancer Research and Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chung-Feng Huang
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- School of Medicine and Hepatitis Research Center, College of Medicine, Center for Cancer Research and Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jee-Fu Huang
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- School of Medicine and Hepatitis Research Center, College of Medicine, Center for Cancer Research and Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Yen Dai
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- School of Medicine and Hepatitis Research Center, College of Medicine, Center for Cancer Research and Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Health Management Center, Department of Community Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Wan-Long Chuang
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- School of Medicine and Hepatitis Research Center, College of Medicine, Center for Cancer Research and Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Lung Yu
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- School of Medicine and Hepatitis Research Center, College of Medicine, Center for Cancer Research and Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 80708, Taiwan
| |
Collapse
|
246
|
Bey L, Coumoul X, Kim MJ. TCDD aggravates the formation of the atherosclerotic plaque in ApoE KO mice with a sexual dimorphic pattern. Biochimie 2022; 195:54-58. [DOI: 10.1016/j.biochi.2022.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/20/2021] [Accepted: 01/21/2022] [Indexed: 12/02/2022]
|
247
|
Schnabl B, Arteel GE, Stickel F, Hengstler J, Vartak N, Ghallab A, Dooley S, Li Y, Schwabe RF. Liver specific, systemic and genetic contributors to alcohol-related liver disease progression. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2022; 60:36-44. [PMID: 35042252 PMCID: PMC8941985 DOI: 10.1055/a-1714-9330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Alcohol-related liver disease (ALD) impacts millions of patients worldwide each year and the numbers are increasing. Disease stages range from steatosis via steatohepatitis and fibrosis to cirrhosis, severe alcohol-associated hepatitis and liver cancer. ALD is usually diagnosed at an advanced stage of progression with no effective therapies. A major research goal is to improve diagnosis, prognosis and also treatments for early ALD. This however needs prioritization of this disease for financial investment in basic and clinical research to more deeply investigate mechanisms and identify biomarkers and therapeutic targets for early detection and intervention. Topics of interest are communication of the liver with other organs of the body, especially the gut microbiome, the individual genetic constitution, systemic and liver innate inflammation, including bacterial infections, as well as fate and number of hepatic stellate cells and the composition of the extracellular matrix in the liver. Additionally, mechanical forces and damaging stresses towards the sophisticated vessel system of the liver, including the especially equipped sinusoidal endothelium and the biliary tract, work together to mediate hepatocytic import and export of nutritional and toxic substances, adapting to chronic liver disease by morphological and functional changes. All the aforementioned parameters contribute to the outcome of alcohol use disorder and the risk to develop advanced disease stages including cirrhosis, severe alcoholic hepatitis and liver cancer. In the present collection, we summarize current knowledge on these alcohol-related liver disease parameters, excluding the aspect of inflammation, which is presented in the accompanying review article by Lotersztajn and colleagues.
Collapse
Affiliation(s)
- Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, United States
- Department of Medicine, VA San Diego Healthcare System, San Diego, United States
| | - Gavin E Arteel
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, United States
- Pittsburgh Liver Research Center, Pittsburgh, United States
| | - Felix Stickel
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Jan Hengstler
- Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund University, Dortmund, Germany
| | - Nachiket Vartak
- Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund University, Dortmund, Germany
| | - Ahmed Ghallab
- Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund University, Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yujia Li
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Robert F Schwabe
- Department of Medicine, Columbia University, New York, United States
| |
Collapse
|
248
|
Understanding the Role of the Gut Microbiome and Microbial Metabolites in Non-Alcoholic Fatty Liver Disease: Current Evidence and Perspectives. Biomolecules 2021; 12:biom12010056. [PMID: 35053205 PMCID: PMC8774162 DOI: 10.3390/biom12010056] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. NAFLD begins as a relatively benign hepatic steatosis which can evolve to non-alcoholic steatohepatitis (NASH); the risk of cirrhosis and hepatocellular carcinoma (HCC) increases when fibrosis is present. NAFLD represents a complex process implicating numerous factors—genetic, metabolic, and dietary—intertwined in a multi-hit etiopathogenetic model. Recent data have highlighted the role of gut dysbiosis, which may render the bowel more permeable, leading to increased free fatty acid absorption, bacterial migration, and a parallel release of toxic bacterial products, lipopolysaccharide (LPS), and proinflammatory cytokines that initiate and sustain inflammation. Although gut dysbiosis is present in each disease stage, there is currently no single microbial signature to distinguish or predict which patients will evolve from NAFLD to NASH and HCC. Using 16S rRNA sequencing, the majority of patients with NAFLD/NASH exhibit increased numbers of Bacteroidetes and differences in the presence of Firmicutes, resulting in a decreased F/B ratio in most studies. They also present an increased proportion of species belonging to Clostridium, Anaerobacter, Streptococcus, Escherichia, and Lactobacillus, whereas Oscillibacter, Flavonifaractor, Odoribacter, and Alistipes spp. are less prominent. In comparison to healthy controls, patients with NASH show a higher abundance of Proteobacteria, Enterobacteriaceae, and Escherichia spp., while Faecalibacterium prausnitzii and Akkermansia muciniphila are diminished. Children with NAFLD/NASH have a decreased proportion of Oscillospira spp. accompanied by an elevated proportion of Dorea, Blautia, Prevotella copri, and Ruminococcus spp. Gut microbiota composition may vary between population groups and different stages of NAFLD, making any conclusive or causative claims about gut microbiota profiles in NAFLD patients challenging. Moreover, various metabolites may be involved in the pathogenesis of NAFLD, such as short-chain fatty acids, lipopolysaccharide, bile acids, choline and trimethylamine-N-oxide, and ammonia. In this review, we summarize the role of the gut microbiome and metabolites in NAFLD pathogenesis, and we discuss potential preventive and therapeutic interventions related to the gut microbiome, such as the administration of probiotics, prebiotics, synbiotics, antibiotics, and bacteriophages, as well as the contribution of bariatric surgery and fecal microbiota transplantation in the therapeutic armamentarium against NAFLD. Larger and longer-term prospective studies, including well-defined cohorts as well as a multi-omics approach, are required to better identify the associations between the gut microbiome, microbial metabolites, and NAFLD occurrence and progression.
Collapse
|
249
|
Zelber-Sagi S, Noureddin M, Shibolet O. Lifestyle and Hepatocellular Carcinoma What Is the Evidence and Prevention Recommendations. Cancers (Basel) 2021; 14:cancers14010103. [PMID: 35008267 PMCID: PMC8750465 DOI: 10.3390/cancers14010103] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The increasing public health burden of Hepatocellular carcinoma (HCC) emphasizes the importance of defining important modifiable risk factors. In the following review, we will discuss the evidence for the relation of major lifestyle risk factors, mostly from large population-based studies. Generally, it is has been shown that healthy lifestyle habits, including minimizing obesity, eating a healthy diet, avoidance of smoking and alcohol, and increasing physical activity, have the potential to prevent HCC. Dietary composition is important beyond obesity. Consumption of n-3 polyunsaturated fatty acids, as well as fish and poultry, vegetables and fiber, are inversely associated with HCC, while red meat, saturated fat, cholesterol and sugar are related to increased risk. Data from multiple studies clearly show a beneficial effect for physical activity in reducing the risk of HCC. Smoking and alcohol can lead to liver fibrosis and liver cancer and jointly lead to an even greater risk. Abstract The increasing burden of hepatocellular carcinoma (HCC) emphasizes the unmet need for primary prevention. Lifestyle measures appear to be important modifiable risk factors for HCC regardless of its etiology. Lifestyle patterns, as a whole and each component separately, are related to HCC risk. Dietary composition is important beyond obesity. Consumption of n-3 polyunsaturated fatty acids, as well as fish and poultry, are inversely associated with HCC, while red meat, saturated fat, and cholesterol are related to increased risk. Sugar consumption is associated with HCC risk, while fiber and vegetable intake is protective. Data from multiple studies clearly show a beneficial effect for physical activity in reducing the risk of HCC. However, the duration, mode and intensity of physical activity needed are yet to be determined. There is evidence that smoking can lead to liver fibrosis and liver cancer and has a synergistic effect with alcohol drinking. On the other hand, an excessive amount of alcohol by itself has been associated with increased risk of HCC directly (carcinogenic effect) or indirectly (liver fibrosis and cirrhosis progression. Large-scale intervention studies testing the effect of comprehensive lifestyle interventions on HCC prevention among diverse cohorts of liver disease patients are greatly warranted.
Collapse
Affiliation(s)
- Shira Zelber-Sagi
- School of Public Health, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa 3498838, Israel
- Department of Gastroenterology & Hepatology, Tel Aviv Medical Center, Tel Aviv 6423906, Israel;
- Correspondence: ; Tel.: +972-54-4634440; Fax: +972-3-5446086
| | - Mazen Noureddin
- Karsh Division of Gastroenterology and Hepatology, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Oren Shibolet
- Department of Gastroenterology & Hepatology, Tel Aviv Medical Center, Tel Aviv 6423906, Israel;
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6697801, Israel
| |
Collapse
|
250
|
Dorairaj V, Sulaiman SA, Abu N, Abdul Murad NA. Nonalcoholic Fatty Liver Disease (NAFLD): Pathogenesis and Noninvasive Diagnosis. Biomedicines 2021; 10:15. [PMID: 35052690 PMCID: PMC8773432 DOI: 10.3390/biomedicines10010015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
The global prevalence of nonalcoholic fatty liver disease (NAFLD) or metabolic associated fatty liver disease (MAFLD), as it is now known, has gradually increased. NAFLD is a disease with a spectrum of stages ranging from simple fatty liver (steatosis) to a severe form of steatosis, nonalcoholic steatohepatitis (NASH), which could progress to irreversible liver injury (fibrosis) and organ failure, and in some cases hepatocellular carcinoma (HCC). Although a liver biopsy remains the gold standard for accurate detection of this condition, it is unsuitable for clinical screening due to a higher risk of death. There is thus an increased need to find alternative techniques or tools for accurate diagnosis. Early detection for NASH matters for patients because NASH is the marker for severe disease progression. This review summarizes the current noninvasive tools for NAFLD diagnosis and their performance. We also discussed potential and newer alternative tools for diagnosing NAFLD.
Collapse
Affiliation(s)
| | - Siti Aishah Sulaiman
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia; (V.D.); (N.A.); (N.A.A.M.)
| | | | | |
Collapse
|