251
|
Nellenbach K, Nandi S, Peeler C, Kyu A, Brown AC. Neonatal Fibrin Scaffolds Promote Enhanced Cell Adhesion, Migration, and Wound Healing In Vivo Compared to Adult Fibrin Scaffolds. Cell Mol Bioeng 2020; 13:393-404. [PMID: 33184573 PMCID: PMC7596151 DOI: 10.1007/s12195-020-00620-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/20/2020] [Indexed: 10/24/2022] Open
Abstract
INTRODUCTION Fibrin scaffolds are often utilized to treat chronic wounds. The monomer fibrinogen used to create such scaffolds is typically derived from adult human or porcine plasma. However, our previous studies have identified extensive differences in fibrin network properties between adults and neonates, including higher fiber alignment in neonatal networks. Wound healing outcomes have been linked to fibrin matrix structure, including fiber alignment, which can affect the binding and migration of cells. We hypothesized that fibrin scaffolds derived from neonatal fibrin would enhance wound healing outcomes compared to adult fibrin scaffolds. METHODS Fibrin scaffolds were formed from purified adult or neonatal fibrinogen and thrombin then structural analysis was conducted via confocal microscopy. Human neonatal dermal fibroblast attachment, migration, and morphology on fibrin scaffolds were assessed. A murine full thickness injury model was used to compare healing in vivo in the presence of neonatal fibrin, adult fibrin, or saline. RESULTS Distinct fibrin architectures were observed between adult and neonatal scaffolds. Significantly higher fibroblast attachment and migration was observed on neonatal scaffolds compared to adults. Cell morphology on neonatal scaffolds exhibited higher spreading compared to adult scaffolds. In vivo significantly smaller wound areas and greater epidermal thickness were observed when wounds were treated with neonatal fibrin compared to adult fibrin or a saline control. CONCLUSIONS Distinctions in neonatal and adult fibrin scaffold properties influence cellular behavior and wound healing. These studies indicate that fibrin scaffolds sourced from neonatal plasma could improve healing outcomes compared to scaffolds sourced from adult plasma.
Collapse
Affiliation(s)
- Kimberly Nellenbach
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Raleigh, NC 27695 USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695 USA
| | - Seema Nandi
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Raleigh, NC 27695 USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695 USA
| | - Christopher Peeler
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Raleigh, NC 27695 USA
| | - Alexander Kyu
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Raleigh, NC 27695 USA
| | - Ashley C. Brown
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Raleigh, NC 27695 USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
252
|
Kim M, Cha C. Graft Architecture Guided Simultaneous Control of Degradation and Mechanical Properties of In Situ Forming and Fast Dissolving Polyaspartamide Hydrogels. Biomacromolecules 2020; 21:3693-3703. [PMID: 32786519 DOI: 10.1021/acs.biomac.0c00806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Polyaspartamide, derived from polysuccinimide (PSI), has the advantage of conveniently presenting desired functional groups by ring-opening addition of amine-based nucleophiles to the succinimidyl ring moieties of PSI. Using diamines with varying lengths of poly(ethylene glycol) linker, polyaspartamide presenting amine groups with controllable grafting density and length, namely, poly(2-hydroxyethyl aspartamide)-g-amino-poly(ethylene glycol) (PHEA-PEGAm) could be synthesized. This PHEA-PEGAm was then used to develop in situ forming hydrogels by Schiff base formation with aldehyde-containing alginate (Alg-ALD). By modulating the graft architecture (i.e., grafting length and density), the mechanical properties of the resulting Alg-PHEA hydrogels could be controlled in a broad range. Remarkably, the hydrogels were shown to undergo facile degradation and complete dissolution in physiological conditions, regardless of hydrogel mechanics, by the expedited hydrolysis through the action of remaining amine groups, which was also heavily influenced by the graft architecture. Moreover, the rate of degradation could be further controlled by additional ionic cross-linking of alginate. The potential application as an injectable drug delivery system was demonstrated by measuring drug release kinetics and monitoring degradation ex vivo.
Collapse
Affiliation(s)
- Mirae Kim
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.,Center for Multidimensional Programmable Matter, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Chaenyung Cha
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.,Center for Multidimensional Programmable Matter, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
253
|
Shi R, Fern J, Xu W, Jia S, Huang Q, Pahapale G, Schulman R, Gracias DH. Multicomponent DNA Polymerization Motor Gels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002946. [PMID: 32776420 DOI: 10.1002/smll.202002946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Hydrogels with the ability to change shape in response to biochemical stimuli are important for biosensing, smart medicine, drug delivery, and soft robotics. Here, a family of multicomponent DNA polymerization motor gels with different polymer backbones is created, including acrylamide-co-bis-acrylamide (Am-BIS), poly(ethylene glycol) diacrylate (PEGDA), and gelatin-methacryloyl (GelMA) that swell extensively in response to specific DNA sequences. A common mechanism, a polymerization motor that induces swelling is driven by a cascade of DNA hairpin insertions into hydrogel crosslinks. These multicomponent hydrogels can be photopatterned into distinct shapes, have a broad range of mechanical properties, including tunable shear moduli between 297 and 3888 Pa and enhanced biocompatibility. Human cells adhere to the GelMA-DNA gels and remain viable during ≈70% volumetric swelling of the gel scaffold induced by DNA sequences. The results demonstrate the generality of sequential DNA hairpin insertion as a mechanism for inducing shape change in multicomponent hydrogels, suggesting widespread applicability of polymerization motor gels in biomaterials science and engineering.
Collapse
Affiliation(s)
- Ruohong Shi
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Joshua Fern
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Weinan Xu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sisi Jia
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Qi Huang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Gayatri Pahapale
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Rebecca Schulman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - David H Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Material Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
254
|
Ciccone G, Dobre O, Gibson GM, Rey JM, Gonzalez-Garcia C, Vassalli M, Salmeron-Sanchez M, Tassieri M. What Caging Force Cells Feel in 3D Hydrogels: A Rheological Perspective. Adv Healthc Mater 2020; 9:e2000517. [PMID: 32696605 DOI: 10.1002/adhm.202000517] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/29/2020] [Indexed: 12/30/2022]
Abstract
It has been established that the mechanical properties of hydrogels control the fate of (stem) cells. However, despite its importance, a one-to-one correspondence between gels' stiffness and cell behavior is still missing from literature. In this work, the viscoelastic properties of poly(ethylene-glycol) (PEG)-based hydrogels are investigated by means of rheological measurements performed at different length scales. The outcomes of this work reveal that PEG-based hydrogels show significant stiffening when subjected to a compressional deformation, implying that conventional bulk rheology measurements may overestimate the stiffness of hydrogels by up to an order of magnitude. It is hypothesized that this apparent stiffening is caused by an induced "tensional state" of the gel network, due to the application of a compressional normal force during sample loading. Moreover, it is shown that the actual stiffness of the hydrogels is instead accurately determined by means of both passive-video-particle-tracking (PVPT) microrheology and nanoindentation measurements, which are inherently performed at the cell's length scale and in absence of any externally applied force in the case of PVPT. These results underpin a methodology for measuring hydrogels' linear viscoelastic properties that are representative of the mechanical constraints perceived by cells in 3D hydrogel cultures.
Collapse
Affiliation(s)
- Giuseppe Ciccone
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Oana Dobre
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
- Centre for the Cellular Microenvironment, University of Glasgow, G12 8LT, UK
| | - Graham M Gibson
- SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Jose Manuel Rey
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
- Centre for the Cellular Microenvironment, University of Glasgow, G12 8LT, UK
| | - Cristina Gonzalez-Garcia
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
- Centre for the Cellular Microenvironment, University of Glasgow, G12 8LT, UK
| | - Massimo Vassalli
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
- Centre for the Cellular Microenvironment, University of Glasgow, G12 8LT, UK
| | - Manuel Salmeron-Sanchez
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
- Centre for the Cellular Microenvironment, University of Glasgow, G12 8LT, UK
| | - Manlio Tassieri
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| |
Collapse
|
255
|
Dunham C, Havlioglu N, Chamberlain A, Lake S, Meyer G. Adipose stem cells exhibit mechanical memory and reduce fibrotic contracture in a rat elbow injury model. FASEB J 2020; 34:12976-12990. [PMID: 33411380 PMCID: PMC8745456 DOI: 10.1096/fj.202001274r] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023]
Abstract
Fibrosis is driven by a misdirected cell response causing the overproduction of extracellular matrix and tissue dysfunction. Numerous pharmacological strategies have attempted to prevent fibrosis but have attained limited efficacy with some detrimental side effects. While stem cell treatments have provided more encouraging results, they have exhibited high variability and have not always improved tissue function. To enhance stem cell efficacy, we evaluated whether mechanical memory could direct cell response. We hypothesized that mechanically pre-conditioning on a soft matrix (soft priming) will delay adipose-derived stem cell (ASC) transition to a pro-fibrotic phenotype, expanding their regenerative potential, and improving healing in a complex tissue environment. Primary ASCs isolated from rat and human subcutaneous fat exhibited mechanical memory, demonstrated by a delayed cell response to stiffness following two weeks of soft priming including decreased cell area, actin coherency, and extracellular matrix production compared to cells on stiff substrates. Soft primed ASCs injected into our rat model of post-traumatic elbow contracture decreased histological evidence of anterior capsule fibrosis and increased elbow range-of-motion when evaluated by joint mechanics. These findings suggest that exploiting mechanical memory by strategically controlling the culture environment during cell expansion may improve the efficacy of stem cell-based therapies targeting fibrosis.
Collapse
Affiliation(s)
- Chelsey Dunham
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Necat Havlioglu
- Department of Pathology, John Cochran VA Medical Center, St. Louis, MO, USA
| | - Aaron Chamberlain
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Spencer Lake
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO
| | - Gretchen Meyer
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO
- Program in Physical Therapy, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
256
|
Yang S, Shi J, Yang J, Feng C, Tang H. Fluid-Structure Interaction Analysis of Perfusion Process of Vascularized Channels within Hydrogel Matrix Based on Three-Dimensional Printing. Polymers (Basel) 2020; 12:polym12091898. [PMID: 32847066 PMCID: PMC7563590 DOI: 10.3390/polym12091898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 11/16/2022] Open
Abstract
The rise of three-dimensional bioprinting technology provides a new way to fabricate in tissue engineering in vitro, but how to provide sufficient nutrition for the internal region of the engineered printed tissue has become the main obstacle. In vitro perfusion culture can not only provide nutrients for the growth of internal cells but also take away the metabolic wastes in time, which is an effective method to solve the problem of tissue engineering culture in vitro. Aiming at user-defined tissue engineering with internal vascularized channels obtained by three-dimensional printing experiment in the early stage, a simulation model was established and the in vitro fluid-structure interaction finite element analysis of tissue engineering perfusion process was carried out. Through fluid-structure interaction simulation, the hydrodynamic behavior and mechanical properties of vascularized channels in the perfusion process was discussed when the perfusion pressure, hydrogel concentration, and crosslinking density changed. The effects of perfusion pressure, hydrogel concentration, and crosslinking density on the flow velocity, pressure on the vascularized channels, and deformation of vascularized channels were analyzed. The simulation results provide a method to optimize the perfusion parameters of tissue engineering, avoiding the perfusion failure caused by unreasonable perfusion pressure and hydrogel concentration and promoting the development of tissue engineering culture in vitro.
Collapse
Affiliation(s)
- Shuai Yang
- School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China; (S.Y.); (C.F.); (H.T.)
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing 210042, China
| | - Jianping Shi
- School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China; (S.Y.); (C.F.); (H.T.)
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing 210042, China
- Correspondence: (J.S.); (J.Y.)
| | - Jiquan Yang
- School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China; (S.Y.); (C.F.); (H.T.)
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing 210042, China
- Correspondence: (J.S.); (J.Y.)
| | - Chunmei Feng
- School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China; (S.Y.); (C.F.); (H.T.)
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing 210042, China
| | - Hao Tang
- School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China; (S.Y.); (C.F.); (H.T.)
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing 210042, China
| |
Collapse
|
257
|
Durotaxis Index of 3T3 Fibroblast Cells Scales with Stiff-to-Soft Membrane Tension Polarity. Biophys J 2020; 119:1427-1438. [PMID: 32898477 DOI: 10.1016/j.bpj.2020.07.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 01/08/2023] Open
Abstract
Cell durotaxis is an essential process in tissue development. Although the role of cytoskeleton in cell durotaxis has been widely studied, whether cell volume and membrane tension are implicated in cell durotaxis remains unclear. By quantifying the volume distribution during cell durotaxis, we show that the volume of 3T3 fibroblast cells decreases by almost 40% as cells migrate toward stiffer regions of gradient gels. Inhibiting ion transporters that can reduce the amplitude of cell volume decrease significantly suppresses cell durotaxis. However, from the correlation analysis, we find that durotaxis index does not correlate with the cell volume decrease. It scales with the membrane tension difference in the direction of stiffness gradient. Because of the tight coupling between cell volume and membrane tension, inhibition of Na+/K+ ATPase and Na+/H+ exchanger results in smaller volume decrease and membrane tension difference. Collectively, our findings indicate that the polarization of membrane tension is a central regulator of cell durotaxis, and Na+/K+ ATPase and Na+/H+ exchanger can help to maintain the membrane tension polarity.
Collapse
|
258
|
Lin S, Chen P, Guan L, Shao Y, Hao Y, Li Q, Li B, Weitz DA, Feng X. Universal Statistical Laws for the Velocities of Collective Migrating Cells. ACTA ACUST UNITED AC 2020; 4:e2000065. [DOI: 10.1002/adbi.202000065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/09/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Shao‐Zhen Lin
- Institute of Biomechanics and Medical Engineering Department of Engineering Mechanics Tsinghua University Beijing 100084 China
| | - Peng‐Cheng Chen
- Institute of Biomechanics and Medical Engineering Department of Engineering Mechanics Tsinghua University Beijing 100084 China
| | - Liu‐Yuan Guan
- Institute of Biomechanics and Medical Engineering Department of Engineering Mechanics Tsinghua University Beijing 100084 China
| | - Yue Shao
- Institute of Biomechanics and Medical Engineering Department of Engineering Mechanics Tsinghua University Beijing 100084 China
| | - Yu‐Kun Hao
- Institute of Biomechanics and Medical Engineering Department of Engineering Mechanics Tsinghua University Beijing 100084 China
| | - Qunyang Li
- AML Department of Engineering Mechanics Tsinghua University Beijing 100084 China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering Department of Engineering Mechanics Tsinghua University Beijing 100084 China
| | - David A. Weitz
- School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
| | - Xi‐Qiao Feng
- Institute of Biomechanics and Medical Engineering Department of Engineering Mechanics Tsinghua University Beijing 100084 China
| |
Collapse
|
259
|
Park A, Choi JH, Lee S, Been S, Song JE, Khang G. Application of double network of gellan gum and pullulan for bone marrow stem cells differentiation towards chondrogenesis by controlling viscous substrates. J Tissue Eng Regen Med 2020; 14:1592-1603. [PMID: 32767724 DOI: 10.1002/term.3116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 01/19/2023]
Abstract
Hydrogels have a large amount of water that provides a cartilage-like environment and is used in tissue engineering with biocompatibility and adequate degradation rates. In order to differentiate stem cells, it is necessary to adjust the characteristics of the matrix such as stiffness, stress-relaxing time, and microenvironment. Double network (DN) hydrogels provide differences in cellular biological behavior and have interpenetrating networks that combine the advantages of the components. In this study, by varying the viscous substrate of pullulan (PL), the DN hydrogels of gellan gum (GG) and PL were prepared to determine the cartilage differentiation of bone marrow stem cell (BMSC). The characteristics of GG/PL hydrogel were investigated by examining the swelling ratio, weight loss, sol fraction, compressive modulus, and gelation temperature. The viability, proliferation, and toxicity of BMSCs encapsulated in hydrogels were evaluated. Cartilage phenotype and cartilage differentiation were confirmed by morphology, GAG content, and cartilage-specific gene expression. Overall results demonstrate that GG/PL hydrogels can form cartilage differentiation of BMSCs and can be applied for tissue engineering purposes.
Collapse
Affiliation(s)
- Ain Park
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Joo Hee Choi
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Sumi Lee
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Suyoung Been
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Jeong Eun Song
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Gilson Khang
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology Research Center, Jeonbuk National University, Jeonju-si, Republic of Korea
| |
Collapse
|
260
|
Munir H, Mazzaglia C, Shields JD. Stromal regulation of tumor-associated lymphatics. Adv Drug Deliv Rev 2020; 161-162:75-89. [PMID: 32783989 DOI: 10.1016/j.addr.2020.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/27/2020] [Accepted: 08/06/2020] [Indexed: 02/08/2023]
Abstract
Recent advances have identified a growing array of roles played by lymphatics in the tumor microenvironment, from providing a route of metastasis to immune modulation. The tumor microenvironment represents an exceptionally complex, dynamic niche comprised of a diverse mixture of cancer cells and normal host cells termed the stroma. This review discusses our current understanding of stromal elements and how they regulate lymphatic growth and functional properties in the tumor context.
Collapse
Affiliation(s)
- Hafsa Munir
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Box 197 Cambridge Biomedical Campus, Cambridge, CB2 0XZ
| | - Corrado Mazzaglia
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Box 197 Cambridge Biomedical Campus, Cambridge, CB2 0XZ
| | - Jacqueline D Shields
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Box 197 Cambridge Biomedical Campus, Cambridge, CB2 0XZ.
| |
Collapse
|
261
|
Liu S, Wu X, Yu Y, Wen X, Yu Z, Feng XQ, Zhao H. Geometric Confinement Guides the Expression of Cancer Stem Cell Molecular Markers CD44 via Cell Traction Forces. ACS Biomater Sci Eng 2020; 6:4623-4630. [PMID: 33455169 DOI: 10.1021/acsbiomaterials.0c00366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cancer stem cells (CSCs) play a critical role in the cancer metastasis and account for tumor heterogeneity. Growing evidence indicates that the CSC phenotypes are related to the tumor microenvironment. In this study, we report that the gradient of mechanical stresses guides the spatial patterning of the expression of CD44 and Yes-associated protein (YAP) in the geometrically confined multicellular sheets. Our study shows that the cytoskeletal contraction regulates the expression of CD44 through the translocation of YAP into the nucleus. The results demonstrate that geometric confinement and mechanical stresses are the regulators in the spatial patterning of CSC. It may help to understand the relationship between the tumor microenvironment and oncogenesis.
Collapse
Affiliation(s)
- Sisi Liu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China
| | - Xiaoan Wu
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Yang Yu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China
| | - Xiongwei Wen
- National Engineering Laboratory of Neuromodulation, Tsinghua University, Beijing 100084, P. R. China
| | - Zhang Yu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China
| | - Hucheng Zhao
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
262
|
Espinosa-Hoyos D, Burstein SR, Cha J, Jain T, Nijsure M, Jagielska A, Fossati V, Van Vliet KJ. Mechanosensitivity of Human Oligodendrocytes. Front Cell Neurosci 2020; 14:222. [PMID: 32848617 PMCID: PMC7420028 DOI: 10.3389/fncel.2020.00222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/22/2020] [Indexed: 12/28/2022] Open
Abstract
Oligodendrocytes produce and repair myelin, which is critical for the integrity and function of the central nervous system (CNS). Oligodendrocyte and oligodendrocyte progenitor cell (OPC) biology is modulated in vitro by mechanical cues within the magnitudes observed in vivo. In some cases, these cues are sufficient to accelerate or inhibit terminal differentiation of murine oligodendrocyte progenitors. However, our understanding of oligodendrocyte lineage mechanobiology has been restricted primarily to animal models to date, due to the inaccessibility and challenges of human oligodendrocyte cell culture. Here, we probe the mechanosensitivity of human oligodendrocyte lineage cells derived from human induced pluripotent stem cells. We target phenotypically distinct stages of the human oligodendrocyte lineage and quantify the effect of substratum stiffness on cell migration and differentiation, within the range documented in vivo. We find that human oligodendrocyte lineage cells exhibit mechanosensitive migration and differentiation. Further, we identify two patterns of human donor line-dependent mechanosensitive differentiation. Our findings illustrate the variation among human oligodendrocyte responses, otherwise not captured by animal models, that are important for translational research. Moreover, these findings highlight the importance of studying glia under conditions that better approximate in vivo mechanical cues. Despite significant progress in human oligodendrocyte derivation methodology, the extended duration, low yield, and low selectivity of human-induced pluripotent stem cell-derived oligodendrocyte protocols significantly limit the scale-up and implementation of these cells and protocols for in vivo and in vitro applications. We propose that mechanical modulation, in combination with traditional soluble and insoluble factors, provides a key avenue to address these challenges in cell production and in vitro analysis.
Collapse
Affiliation(s)
- Daniela Espinosa-Hoyos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Suzanne R. Burstein
- The New York Stem Cell Foundation Research Institute, New York, NY, United States
| | - Jaaram Cha
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Tanya Jain
- The New York Stem Cell Foundation Research Institute, New York, NY, United States
| | - Madhura Nijsure
- The New York Stem Cell Foundation Research Institute, New York, NY, United States
| | - Anna Jagielska
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART) CREATE, Singapore, Singapore
| | - Valentina Fossati
- The New York Stem Cell Foundation Research Institute, New York, NY, United States
| | - Krystyn J. Van Vliet
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART) CREATE, Singapore, Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
263
|
Todorovski V, Fox AH, Choi YS. Matrix stiffness-sensitive long noncoding RNA NEAT1 seeded paraspeckles in cancer cells. Mol Biol Cell 2020; 31:1654-1662. [PMID: 32293985 PMCID: PMC7521846 DOI: 10.1091/mbc.e20-02-0097] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer progression is influenced by changes in the tumor microenvironment, such as the stiffening of the extracellular matrix. Yet our understanding of how cancer cells sense and convert mechanical stimuli into biochemical signals and physiological responses is still limited. The long noncoding RNA nuclear paraspeckle assembly transcript 1 (NEAT1), which forms the backbone of subnuclear "paraspeckle" bodies, has been identified as a key genetic regulator in numerous cancers. Here, we investigated whether paraspeckles, as defined by NEAT1 localization, are mechanosensitive. Using tunable polyacrylamide hydrogels of extreme stiffnesses, we measured paraspeckle parameters in several cancer cell lines and observed an increase in paraspeckles in cells cultured on soft (3 kPa) hydrogels compared with stiffer (40 kPa) hydrogels. This response to soft substrate is erased when cells are first conditioned on stiff substrate, and then transferred onto soft hydrogels, suggestive of mechanomemory upstream of paraspeckle regulation. We also examined some well-characterized mechanosensitive markers, but found that lamin A expression, as well as YAP and MRTF-A nuclear translocation did not show consistent trends between stiffnesses, despite all cell types having increased migration, nuclear, and cell area on stiffer hydrogels. We thus propose that paraspeckles may prove of use as mechanosensors in cancer mechanobiology.
Collapse
Affiliation(s)
- Vanja Todorovski
- School of Human Sciences, The University of Western Australia, Crawley 6009, Australia
| | - Archa H. Fox
- School of Human Sciences, The University of Western Australia, Crawley 6009, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Crawley 6009, Australia
| |
Collapse
|
264
|
Haas AJ, Zihni C, Ruppel A, Hartmann C, Ebnet K, Tada M, Balda MS, Matter K. Interplay between Extracellular Matrix Stiffness and JAM-A Regulates Mechanical Load on ZO-1 and Tight Junction Assembly. Cell Rep 2020; 32:107924. [PMID: 32697990 PMCID: PMC7383227 DOI: 10.1016/j.celrep.2020.107924] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/08/2020] [Accepted: 06/26/2020] [Indexed: 12/22/2022] Open
Abstract
Tight-junction-regulated actomyosin activity determines epithelial and endothelial tension on adherens junctions and drives morphogenetic processes; however, whether or not tight junctions themselves are under tensile stress is not clear. Here, we use a tension sensor based on ZO-1, a scaffolding protein that links the junctional membrane to the cytoskeleton, to determine if tight junctions carry a mechanical load. Our data indicate that ZO-1 is under mechanical tension and that forces acting on ZO-1 are regulated by extracellular matrix (ECM) stiffness and the junctional adhesion molecule JAM-A. JAM-A depletion stimulates junctional recruitment of p114RhoGEF/ARHGEF18, mechanical tension on ZO-1, and traction forces at focal adhesions. p114RhoGEF is required for activation of junctional actomyosin activity and tight junction integrity on stiff but not soft ECM. Thus, junctional ZO-1 bears a mechanical load, and junction assembly is regulated by interplay between the physical properties of the ECM and adhesion-regulated signaling at tight junctions.
Collapse
Affiliation(s)
- Alexis J Haas
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Ceniz Zihni
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Artur Ruppel
- LiPhy, CNRS, Université Grenoble Alpes, Grenoble 38000, France
| | - Christian Hartmann
- Institute-associated Research Group "Cell adhesion and cell polarity," Institute of Medical Biochemistry, ZMBE, University of Münster, Münster 48149, Germany
| | - Klaus Ebnet
- Institute-associated Research Group "Cell adhesion and cell polarity," Institute of Medical Biochemistry, ZMBE, University of Münster, Münster 48149, Germany
| | - Masazumi Tada
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Maria S Balda
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK.
| | - Karl Matter
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK.
| |
Collapse
|
265
|
Monitoring matrix remodeling in the cellular microenvironment using microrheology for complex cellular systems. Acta Biomater 2020; 111:254-266. [PMID: 32434077 DOI: 10.1016/j.actbio.2020.04.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
Abstract
Multiple particle tracking (MPT) microrheology was employed for monitoring the development of extracellular matrix (ECM) mechanical properties in the direct microenvironment of living cells. A customized setup enabled us to overcome current limitations: (i) Continuous measurements were enabled using a cell culture chamber, with this, matrix remodeling by fibroblasts in the heterogeneous environment of macroporous scaffolds was monitored continuously. (ii) Employing tracer laden porous scaffolds for seeding human mesenchymal stem cells (hMSCs), we followed conventional differentiation protocols. Thus, we were, for the first time able to study the massive alterations in ECM elasticity during hMSC differentiation. (iii) MPT measurements in 2D cell cultures were enabled using a long distance objective. Exemplarily, local mechanical properties of the ECM in human umbilical vein endothelial cell (HUVEC) cultures, that naturally form 2D layers, were investigated scaffold-free. Using our advanced setup, we measured local, apparent elastic moduli G0,app in a range between 0.08 and 60 Pa. For fibroblasts grown in collagen-based scaffolds, a continuous decrease of local matrix elasticity resulted during the first 10 hours after seeding. The osteogenic differentiation of hMSC cells cultivated in similar scaffolds, led to an increase of G0,app by 100 %, whereas after adipogenic differentiation it was reduced by 80 %. The local elasticity of ECM that was newly secreted by HUVECs increased significantly upon addition of protease inhibitor and in high glucose conditions even a twofold increase in G0,app was observed. The combination of these advanced methods opens up new avenues for a broad range of investigations regarding cell-matrix interactions and the propagation of ECM mechanical properties in complex biological systems. STATEMENT OF SIGNIFICANCE: Cells sense the elasticity of their environment on a micrometer length scale. For studying the local elasticity of extracellular matrix (ECM) in the direct environment of living cells, we employed an advanced multipleparticle tracking microrheology setup. MPT is based on monitoring the Brownian motion oftracer particles, which is restricted by the surrounding network. Network elasticity can thusbe quantified. Overcoming current limitations, we realized continuous investigations of ECM elasticityduring fibroblast growth. Furthermore, MPT measurements of stem cell ECM showed ECMstiffening during osteogenic differentiation and softening during adipogenic differentiation.Finally, we characterized small amounts of delicate ECM newly secreted in scaffold-freecultures of endothelial cells, that naturally form 2D layers.
Collapse
|
266
|
Deng Z, Fear MW, Suk Choi Y, Wood FM, Allahham A, Mutsaers SE, Prêle CM. The extracellular matrix and mechanotransduction in pulmonary fibrosis. Int J Biochem Cell Biol 2020; 126:105802. [PMID: 32668329 DOI: 10.1016/j.biocel.2020.105802] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022]
Abstract
Pulmonary fibrosis is characterised by excessive scarring in the lung which leads to compromised lung function, serious breathing problems and in some diseases, death. It includes several lung disorders with idiopathic pulmonary fibrosis (IPF) the most common and most severe. Pulmonary fibrosis is considered to be perpetuated by aberrant wound healing which leads to fibroblast accumulation, differentiation and activation, and deposition of excessive amounts of extracellular matrix (ECM) components, in particular, collagen. Recent studies have identified the importance of changes in the composition and structure of lung ECM during the development of pulmonary fibrosis and the interaction between ECM and lung cells. There is strong evidence that increased matrix stiffness induces changes in cell function including proliferation, migration, differentiation and activation. Understanding how changes in the ECM microenvironment influence cell behaviour during fibrogenesis, and the mechanisms regulating these changes, will provide insight for developing new treatments.
Collapse
Affiliation(s)
- Zhenjun Deng
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Nedlands, 6009, WA, Australia
| | - Mark W Fear
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Nedlands, 6009, WA, Australia; Institute for Respiratory Health, Nedlands, WA, Australia
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Fiona M Wood
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Nedlands, 6009, WA, Australia; Burns Service of Western Australia, Perth Children's Hospital, Nedlands, WA, Australia; Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Amira Allahham
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Nedlands, 6009, WA, Australia
| | - Steven E Mutsaers
- Institute for Respiratory Health, Nedlands, WA, Australia; Centre for Respiratory Health, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Cecilia M Prêle
- Institute for Respiratory Health, Nedlands, WA, Australia; Centre for Respiratory Health, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia.
| |
Collapse
|
267
|
Vaeyens MM, Jorge-Peñas A, Barrasa-Fano J, Shapeti A, Roeffaers M, Van Oosterwyck H. Actomyosin-dependent invasion of endothelial sprouts in collagen. Cytoskeleton (Hoboken) 2020; 77:261-276. [PMID: 32588525 DOI: 10.1002/cm.21624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/11/2020] [Accepted: 06/22/2020] [Indexed: 12/30/2022]
Abstract
During sprouting angiogenesis-the growth of blood vessels from the existing vasculature-endothelial cells (ECs) adopt an elongated invasive form and exert forces at cell-cell and cell-matrix interaction sites. These cell shape changes and cellular tractions require extensive reorganizations of the actomyosin network. However, the respective roles of actin and myosin for endothelial sprouting are not fully elucidated. In this study, we further investigate these roles by treating 2D-migrating and 3D-sprouting ECs with chemical compounds targeting either myosin or actin. These treatments affected the endothelial cytoskeleton drastically and reduced the invasive response in a compound-specific manner; pointing toward a tight control of the actin and myosin activity during sprouting. Clusters in the data further illustrate that endothelial sprout morphology is sensitive to the in vitro model mechanical microenvironment and directs future research toward mechanical substrate guidance as a strategy for promoting engineered tissue vascularization. In summary, our results add to a growing corpus of research highlighting a key role of the cytoskeleton for sprouting angiogenesis.
Collapse
Affiliation(s)
- Marie-Mo Vaeyens
- Biomechanics Section (BMe), Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Alvaro Jorge-Peñas
- Biomechanics Section (BMe), Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Jorge Barrasa-Fano
- Biomechanics Section (BMe), Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Apeksha Shapeti
- Biomechanics Section (BMe), Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Maarten Roeffaers
- Department of Microbial and Molecular Systems (M2S), Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Leuven, Belgium
| | - Hans Van Oosterwyck
- Biomechanics Section (BMe), Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
268
|
Li Y, Randriantsilefisoa R, Chen J, Cuellar-Camacho JL, Liang W, Li W. Matrix Stiffness Regulates Chemosensitivity, Stemness Characteristics, and Autophagy in Breast Cancer Cells. ACS APPLIED BIO MATERIALS 2020; 3:4474-4485. [DOI: 10.1021/acsabm.0c00448] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yan Li
- Institute of Chemistry and Biochemistry, Free University of Berlin, Takustr. 3, 14195 Berlin, Germany
| | | | - Jie Chen
- Institute of Chemistry and Biochemistry, Free University of Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Jose Luis Cuellar-Camacho
- Institute of Chemistry and Biochemistry, Free University of Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Wanjun Liang
- Institute of Chemistry and Biochemistry, Free University of Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Wenzhong Li
- Institute of Chemistry and Biochemistry, Free University of Berlin, Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|
269
|
Serna-Márquez N, Rodríguez-Hernández A, Ayala-Reyes M, Martínez-Hernández LO, Peña-Rico MÁ, Carretero-Ortega J, Hautefeuille M, Vázquez-Victorio G. Fibrillar Collagen Type I Participates in the Survival and Aggregation of Primary Hepatocytes Cultured on Soft Hydrogels. Biomimetics (Basel) 2020; 5:E30. [PMID: 32630500 PMCID: PMC7345357 DOI: 10.3390/biomimetics5020030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Liver is an essential organ that carries out multiple functions such as glycogen storage, the synthesis of plasma proteins, and the detoxification of xenobiotics. Hepatocytes are the parenchyma that sustain almost all the functions supported by this organ. Hepatocytes and non-parenchymal cells respond to the mechanical alterations that occur in the extracellular matrix (ECM) caused by organogenesis and regenerating processes. Rearrangements of the ECM modify the composition and mechanical properties that result in specific dedifferentiation programs inside the hepatic cells. Quiescent hepatocytes are embedded in the soft ECM, which contains an important concentration of fibrillar collagens in combination with a basement membrane-associated matrix (BM). This work aims to evaluate the role of fibrillar collagens and BM on actin cytoskeleton organization and the function of rat primary hepatocytes cultured on soft elastic polyacrylamide hydrogels (PAA HGs). We used rat tail collagen type I and Matrigel® as references of fibrillar collagens and BM respectively and mixed different percentages of collagen type I in combination with BM. We also used peptides obtained from decellularized liver matrices (dECM). Remarkably, hepatocytes showed a poor adhesion in the absence of collagen on soft PAA HGs. We demonstrated that collagen type I inhibited apoptosis and activated extracellular signal-regulated kinases 1/2 (ERK1/2) in primary hepatocytes cultured on soft hydrogels. Epidermal growth factor (EGF) was not able to rescue cell viability in conjugated BM but affected cell aggregation in soft PAA HGs conjugated with combinations of different proportions of collagen and BM. Interestingly, actin cytoskeleton was localized and preserved close to plasma membrane (cortical actin) and proximal to intercellular ducts (canaliculi-like structures) in soft conditions; however, albumin protein expression was not preserved, even though primary hepatocytes did not remodel their actin cytoskeleton significantly in soft conditions. This investigation highlights the important role of fibrillar collagens on soft hydrogels for the maintenance of survival and aggregation of the hepatocytes. Data suggest evaluating the conditions that allow the establishment of optimal biomimetic environments for physiology and cell biology studies, where the phenotype of primary cells may be preserved for longer periods of time.
Collapse
Affiliation(s)
- Nathalia Serna-Márquez
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia (LaNSBioDyT), Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Ciudad de México CP 04510, Mexico; (N.S.-M.); (A.R.-H.); (M.A.-R.); (L.O.M.-H.); (J.C.-O.); (M.H.)
| | - Adriana Rodríguez-Hernández
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia (LaNSBioDyT), Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Ciudad de México CP 04510, Mexico; (N.S.-M.); (A.R.-H.); (M.A.-R.); (L.O.M.-H.); (J.C.-O.); (M.H.)
| | - Marisol Ayala-Reyes
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia (LaNSBioDyT), Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Ciudad de México CP 04510, Mexico; (N.S.-M.); (A.R.-H.); (M.A.-R.); (L.O.M.-H.); (J.C.-O.); (M.H.)
| | - Lorena Omega Martínez-Hernández
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia (LaNSBioDyT), Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Ciudad de México CP 04510, Mexico; (N.S.-M.); (A.R.-H.); (M.A.-R.); (L.O.M.-H.); (J.C.-O.); (M.H.)
- Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec CP 68301, Oaxaca, Mexico;
| | - Miguel Ángel Peña-Rico
- Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec CP 68301, Oaxaca, Mexico;
| | - Jorge Carretero-Ortega
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia (LaNSBioDyT), Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Ciudad de México CP 04510, Mexico; (N.S.-M.); (A.R.-H.); (M.A.-R.); (L.O.M.-H.); (J.C.-O.); (M.H.)
| | - Mathieu Hautefeuille
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia (LaNSBioDyT), Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Ciudad de México CP 04510, Mexico; (N.S.-M.); (A.R.-H.); (M.A.-R.); (L.O.M.-H.); (J.C.-O.); (M.H.)
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Ciudad de México CP 04510, Mexico
| | - Genaro Vázquez-Victorio
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia (LaNSBioDyT), Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Ciudad de México CP 04510, Mexico; (N.S.-M.); (A.R.-H.); (M.A.-R.); (L.O.M.-H.); (J.C.-O.); (M.H.)
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Ciudad de México CP 04510, Mexico
| |
Collapse
|
270
|
Barber-Pérez N, Georgiadou M, Guzmán C, Isomursu A, Hamidi H, Ivaska J. Mechano-responsiveness of fibrillar adhesions on stiffness-gradient gels. J Cell Sci 2020; 133:jcs242909. [PMID: 32393601 PMCID: PMC7328166 DOI: 10.1242/jcs.242909] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/22/2020] [Indexed: 01/01/2023] Open
Abstract
Fibrillar adhesions are important structural and adhesive components in fibroblasts, and are required for fibronectin fibrillogenesis. While nascent and focal adhesions are known to respond to mechanical cues, the mechanoresponsive nature of fibrillar adhesions remains unclear. Here, we used ratiometric analysis of paired adhesion components to determine an appropriate fibrillar adhesion marker. We found that active α5β1-integrin exhibits the most definitive fibrillar adhesion localization compared to other proteins, such as tensin-1, reported to be in fibrillar adhesions. To elucidate the mechanoresponsiveness of fibrillar adhesions, we designed a cost-effective and reproducible technique to fabricate physiologically relevant stiffness gradients on thin polyacrylamide (PA) hydrogels, embedded with fluorescently labelled beads. We generated a correlation curve between bead density and hydrogel stiffness, thus enabling a readout of stiffness without the need for specialized knowhow, such as atomic force microscopy (AFM). We find that stiffness promotes growth of fibrillar adhesions in a tensin-1-dependent manner. Thus, the formation of these extracellular matrix-depositing structures is coupled to the mechanical parameters of the cell environment and may enable cells to fine-tune their matrix environment in response to changing physical conditions.
Collapse
Affiliation(s)
- Nuria Barber-Pérez
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FIN-20520 Turku, Finland
| | - Maria Georgiadou
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FIN-20520 Turku, Finland
| | - Camilo Guzmán
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FIN-20520 Turku, Finland
| | - Aleksi Isomursu
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FIN-20520 Turku, Finland
| | - Hellyeh Hamidi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FIN-20520 Turku, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FIN-20520 Turku, Finland
- Department of Biochemistry, University of Turku, FIN-20520 Turku, Finland
| |
Collapse
|
271
|
Cabriales L, Hautefeuille M, Vázquez‐Victorio G, Martinez‐Pastor D, Carretero‐Ortega J, Jiménez‐Escobar A, Macias‐Silva M. Hepatic C9 cells switch their behaviour in short or long exposure to soft substrates. Biol Cell 2020; 112:265-279. [DOI: 10.1111/boc.201900115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Lucia Cabriales
- LaNSBioDyT, Facultad de Ciencias Universidad Nacional Autónoma de México Ciudad Universitaria Circuito Exterior S/N Ciudad de México CP 04510 México
- Departamento de Física Facultad de Ciencias Universidad Nacional Autónoma de México Ciudad Universitaria Circuito Exterior S/N Ciudad de México CP 04510 México
| | - Mathieu Hautefeuille
- LaNSBioDyT, Facultad de Ciencias Universidad Nacional Autónoma de México Ciudad Universitaria Circuito Exterior S/N Ciudad de México CP 04510 México
- Departamento de Física Facultad de Ciencias Universidad Nacional Autónoma de México Ciudad Universitaria Circuito Exterior S/N Ciudad de México CP 04510 México
| | - Genaro Vázquez‐Victorio
- LaNSBioDyT, Facultad de Ciencias Universidad Nacional Autónoma de México Ciudad Universitaria Circuito Exterior S/N Ciudad de México CP 04510 México
- Departamento de Física Facultad de Ciencias Universidad Nacional Autónoma de México Ciudad Universitaria Circuito Exterior S/N Ciudad de México CP 04510 México
| | - David Martinez‐Pastor
- LaNSBioDyT, Facultad de Ciencias Universidad Nacional Autónoma de México Ciudad Universitaria Circuito Exterior S/N Ciudad de México CP 04510 México
- Instituto de Fisiología Celular Universidad Nacional Autónoma de México Ciudad Universitaria Circuito Exterior S/N Ciudad de México CP 04510 México
| | - Jorge Carretero‐Ortega
- LaNSBioDyT, Facultad de Ciencias Universidad Nacional Autónoma de México Ciudad Universitaria Circuito Exterior S/N Ciudad de México CP 04510 México
| | - Alejandra Jiménez‐Escobar
- LaNSBioDyT, Facultad de Ciencias Universidad Nacional Autónoma de México Ciudad Universitaria Circuito Exterior S/N Ciudad de México CP 04510 México
| | - Marina Macias‐Silva
- LaNSBioDyT, Facultad de Ciencias Universidad Nacional Autónoma de México Ciudad Universitaria Circuito Exterior S/N Ciudad de México CP 04510 México
- Instituto de Fisiología Celular Universidad Nacional Autónoma de México Ciudad Universitaria Circuito Exterior S/N Ciudad de México CP 04510 México
| |
Collapse
|
272
|
Gordon E, Schimmel L, Frye M. The Importance of Mechanical Forces for in vitro Endothelial Cell Biology. Front Physiol 2020; 11:684. [PMID: 32625119 PMCID: PMC7314997 DOI: 10.3389/fphys.2020.00684] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Blood and lymphatic vessels are lined by endothelial cells which constantly interact with their luminal and abluminal extracellular environments. These interactions confer physical forces on the endothelium, such as shear stress, stretch and stiffness, to mediate biological responses. These physical forces are often altered during disease, driving abnormal endothelial cell behavior and pathology. Therefore, it is critical that we understand the mechanisms by which endothelial cells respond to physical forces. Traditionally, endothelial cells in culture are grown in the absence of flow on stiff substrates such as plastic or glass. These cells are not subjected to the physical forces that endothelial cells endure in vivo, thus the results of these experiments often do not mimic those observed in the body. The field of vascular biology now realize that an intricate analysis of endothelial signaling mechanisms requires complex in vitro systems to mimic in vivo conditions. Here, we will review what is known about the mechanical forces that guide endothelial cell behavior and then discuss the advancements in endothelial cell culture models designed to better mimic the in vivo vascular microenvironment. A wider application of these technologies will provide more biologically relevant information from cultured cells which will be reproducible to conditions found in the body.
Collapse
Affiliation(s)
- Emma Gordon
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Lilian Schimmel
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Maike Frye
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
273
|
James BD, Montoya N, Allen J. MechanoBioTester: A Decoupled Multistimulus Cell Culture Device for Studying Complex Microenvironments In Vitro. ACS Biomater Sci Eng 2020; 6:3673-3689. [PMID: 32704528 PMCID: PMC7377433 DOI: 10.1021/acsbiomaterials.0c00498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Increasingly being recognized is the role of the complex microenvironment to regulate cell phenotype; however, the cell culture systems used to study these effects in vitro are lagging. The complex microenvironment is host to a combination of biological interactions, chemical factors, and mechanical stimuli. Many devices have been designed to probe the effects of one mechanical stimulus, but few are capable of systematically interrogating all combinations of mechanical stimuli with independent control. To address this gap, we have developed the MechanoBioTester platform, a decoupled, multi-stimulus cell culture model for studying the cellular response to complex microenvironments in vitro. The system uses an engineered elastomeric chamber with a specially defined region for incorporating different target materials to act as the cell culture substrate. We have tested the system with several target materials including: polydimethylsiloxane elastomer, polyacrylamide gel, poly(1,8-octanediol citrate) elastomer, and type I collagen gel for both 2D and 3D co-culture. Additionally, when the chamber is connected to a flow circuit and our stretching device, stimuli in the form of fluid flow, cyclic stretch, and hydrostatic pressure are able to be imparted with independent control. We validated the device using experimental and computational methods to define a range of capabilities relevant to physiological microenvironments. The MechanoBioTester platform promises to function as a model system for mechanobiology, biomaterial design, and drug discovery applications that focus on probing the impact of a complex microenvironment in an in vitro setting. The protocol described within provides the details characterizing the MechanoBioTester system, the steps for fabricating the MechanoBioTester chamber, and the procedure for operating the MechanoBioTester system to stimulate cells.
Collapse
Affiliation(s)
- Bryan D. James
- Department of Materials Science & Engineering, University of Florida, 100 Rhines Hall, PO Box 116400, Gainesville, Florida 32611, United States
- Institute for Computational Engineering, University of Florida, 300 Weil Hall, PO Box 116550, Gainesville, Florida 32611, United States
| | - Nicolas Montoya
- Department of Electrical & Computer Engineering, University of Florida, 216 Larsen Hall, Gainesville, Florida 32611, United States
| | - Josephine Allen
- Department of Materials Science & Engineering, University of Florida, 100 Rhines Hall, PO Box 116400, Gainesville, Florida 32611, United States
| |
Collapse
|
274
|
Exosomes derived from hucMSC attenuate renal fibrosis through CK1δ/β-TRCP-mediated YAP degradation. Cell Death Dis 2020; 11:327. [PMID: 32382019 PMCID: PMC7205986 DOI: 10.1038/s41419-020-2510-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 01/02/2023]
Abstract
Exosomes from human umbilical cord mesenchymal stem cells (hucMSC-Ex) have been suggested as novel nanomaterials for regenerative medicine. Here we explored the roles of hucMSC-Ex through regulating Yes-associated protein (YAP) in renal injury repair by using rat unilateral ureteral obstruction (UUO) models. Our study identified mechanical stress induced YAP nucleus expression and stimulated collagen deposition and interstitial fibrosis in the kidney. Then, infusion with hucMSC-Ex promoted YAP nuclear cytoplasmic shuttling and ameliorated renal fibrosis in UUO model. Interestingly, hucMSC-Ex delivered casein kinase 1δ (CK1δ) and E3 ubiquitin ligase β-TRCP to boost YAP ubiquitination and degradation. Knockdown of CK1δ and β-TRCP in hucMSC decreased the repairing effects of hucMSC-Ex on renal fibrosis. Our results suggest that hucMSC-Ex attenuates renal fibrosis through CK1δ/β-TRCP inhibited YAP activity, unveiling a new mechanism for the therapeutic effects of hucMSC-Ex on tissue injury and offering a potential approach for renal fibrosis treatment.
Collapse
|
275
|
Xie R, Zheng W, Guan L, Ai Y, Liang Q. Engineering of Hydrogel Materials with Perfusable Microchannels for Building Vascularized Tissues. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1902838. [PMID: 31559675 DOI: 10.1002/smll.201902838] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/06/2019] [Indexed: 05/23/2023]
Abstract
Vascular systems are responsible for various physiological and pathological processes related to all organs in vivo, and the survival of engineered tissues for enough nutrient supply in vitro. Thus, biomimetic vascularization is highly needed for constructing both a biomimetic organ model and a reliable engineered tissue. However, many challenges remain in constructing vascularized tissues, requiring the combination of suitable biomaterials and engineering techniques. In this review, the advantages of hydrogels on building engineered vascularized tissues are discussed and recent engineering techniques for building perfusable microchannels in hydrogels are summarized, including micromolding, 3D printing, and microfluidic spinning. Furthermore, the applications of these perfusable hydrogels in manufacturing organ-on-a-chip devices and transplantable engineered tissues are highlighted. Finally, current challenges in recapitulating the complexity of native vascular systems are discussed and future development of vascularized tissues is prospected.
Collapse
Affiliation(s)
- Ruoxiao Xie
- MOE Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wenchen Zheng
- MOE Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Liandi Guan
- MOE Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yongjian Ai
- MOE Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qionglin Liang
- MOE Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
276
|
Davidson MD, Burdick JA, Wells RG. Engineered Biomaterial Platforms to Study Fibrosis. Adv Healthc Mater 2020; 9:e1901682. [PMID: 32181987 PMCID: PMC7274888 DOI: 10.1002/adhm.201901682] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022]
Abstract
Many pathologic conditions lead to the development of tissue scarring and fibrosis, which are characterized by the accumulation of abnormal extracellular matrix (ECM) and changes in tissue mechanical properties. Cells within fibrotic tissues are exposed to dynamic microenvironments that may promote or prolong fibrosis, which makes it difficult to treat. Biomaterials have proved indispensable to better understand how cells sense their extracellular environment and are now being employed to study fibrosis in many tissues. As mechanical testing of tissues becomes more routine and biomaterial tools become more advanced, the impact of biophysical factors in fibrosis are beginning to be understood. Herein, fibrosis from a materials perspective is reviewed, including the role and mechanical properties of ECM components, the spatiotemporal mechanical changes that occur during fibrosis, current biomaterial systems to study fibrosis, and emerging biomaterial systems and tools that can further the understanding of fibrosis initiation and progression. This review concludes by highlighting considerations in promoting wide-spread use of biomaterials for fibrosis investigations and by suggesting future in vivo studies that it is hoped will inspire the development of even more advanced biomaterial systems.
Collapse
Affiliation(s)
- Matthew D Davidson
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rebecca G Wells
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
277
|
Zhou T, Gao B, Fan Y, Liu Y, Feng S, Cong Q, Zhang X, Zhou Y, Yadav PS, Lin J, Wu N, Zhao L, Huang D, Zhou S, Su P, Yang Y. Piezo1/2 mediate mechanotransduction essential for bone formation through concerted activation of NFAT-YAP1-ß-catenin. eLife 2020; 9:52779. [PMID: 32186512 PMCID: PMC7112954 DOI: 10.7554/elife.52779] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/17/2020] [Indexed: 12/15/2022] Open
Abstract
Mechanical forces are fundamental regulators of cell behaviors. However, molecular regulation of mechanotransduction remain poorly understood. Here, we identified the mechanosensitive channels Piezo1 and Piezo2 as key force sensors required for bone development and osteoblast differentiation. Loss of Piezo1, or more severely Piezo1/2, in mesenchymal or osteoblast progenitor cells, led to multiple spontaneous bone fractures in newborn mice due to inhibition of osteoblast differentiation and increased bone resorption. In addition, loss of Piezo1/2 rendered resistant to further bone loss caused by unloading in both bone development and homeostasis. Mechanistically, Piezo1/2 relayed fluid shear stress and extracellular matrix stiffness signals to activate Ca2+ influx to stimulate Calcineurin, which promotes concerted activation of NFATc1, YAP1 and ß-catenin transcription factors by inducing their dephosphorylation as well as NFAT/YAP1/ß-catenin complex formation. Yap1 and ß-catenin activities were reduced in the Piezo1 and Piezo1/2 mutant bones and such defects were partially rescued by enhanced ß-catenin activities.
Collapse
Affiliation(s)
- Taifeng Zhou
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States.,Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Bo Gao
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States.,Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Fan
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States
| | - Yuchen Liu
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States
| | - Shuhao Feng
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States.,Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Qian Cong
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States
| | - Xiaolei Zhang
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States.,Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yaxing Zhou
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States
| | - Prem S Yadav
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States
| | - Jiachen Lin
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States.,Department of Orthopedic Surgery and Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Nan Wu
- Department of Orthopedic Surgery and Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Liang Zhao
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Dongsheng Huang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, United States
| | - Peiqiang Su
- Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States
| |
Collapse
|
278
|
Parigoris E, Dunkelmann DL, Murphy A, Wili N, Kaech A, Dumrese C, Jimenez-Rojo N, Silvan U. Facile generation of giant unilamellar vesicles using polyacrylamide gels. Sci Rep 2020; 10:4824. [PMID: 32179778 PMCID: PMC7075891 DOI: 10.1038/s41598-020-61655-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/23/2019] [Indexed: 12/30/2022] Open
Abstract
Giant unilamellar vesicles (GUVs) are model cell-sized systems that have broad applications including drug delivery, analysis of membrane biophysics, and synthetic reconstitution of cellular machineries. Although numerous methods for the generation of free-floating GUVs have been established over the past few decades, only a fraction have successfully produced uniform vesicle populations both from charged lipids and in buffers of physiological ionic strength. In the method described here, we generate large numbers of free-floating GUVs through the rehydration of lipid films deposited on soft polyacrylamide (PAA) gels. We show that this technique produces high GUV concentrations for a range of lipid types, including charged ones, independently of the ionic strength of the buffer used. We demonstrate that the gentle hydration of PAA gels results in predominantly unilamellar vesicles, which is in contrast to comparable methods analyzed in this work. Unilamellarity is a defining feature of GUVs and the generation of uniform populations is key for many downstream applications. The PAA method is widely applicable and can be easily implemented with commonly utilized laboratory reagents, making it an appealing platform for the study of membrane biophysics.
Collapse
Affiliation(s)
- Eric Parigoris
- University Hospital Balgrist, University of Zurich, Zürich, Switzerland.,Institute for Biomechanics, ETH Zurich, Zürich, Switzerland.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, USA
| | | | - Allan Murphy
- University Hospital Balgrist, University of Zurich, Zürich, Switzerland.,Institute for Biomechanics, ETH Zurich, Zürich, Switzerland
| | - Nino Wili
- Laboratory of Physical Chemistry, ETH Zurich, Zürich, Switzerland
| | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Claudia Dumrese
- Flow Cytometry Facility, University of Zurich, Zurich, Switzerland
| | - Noemi Jimenez-Rojo
- NCCR Chemical Biology, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Unai Silvan
- University Hospital Balgrist, University of Zurich, Zürich, Switzerland. .,Institute for Biomechanics, ETH Zurich, Zürich, Switzerland.
| |
Collapse
|
279
|
Girard CA, Lecacheur M, Ben Jouira R, Berestjuk I, Diazzi S, Prod'homme V, Mallavialle A, Larbret F, Gesson M, Schaub S, Pisano S, Audebert S, Mari B, Gaggioli C, Leucci E, Marine JC, Deckert M, Tartare-Deckert S. A Feed-Forward Mechanosignaling Loop Confers Resistance to Therapies Targeting the MAPK Pathway in BRAF-Mutant Melanoma. Cancer Res 2020; 80:1927-1941. [PMID: 32179513 DOI: 10.1158/0008-5472.can-19-2914] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/15/2020] [Accepted: 03/06/2020] [Indexed: 11/16/2022]
Abstract
Aberrant extracellular matrix (ECM) deposition and stiffening is a physical hallmark of several solid cancers and is associated with therapy failure. BRAF-mutant melanomas treated with BRAF and MEK inhibitors almost invariably develop resistance that is frequently associated with transcriptional reprogramming and a de-differentiated cell state. Melanoma cells secrete their own ECM proteins, an event that is promoted by oncogenic BRAF inhibition. Yet, the contribution of cancer cell-derived ECM and tumor mechanics to drug adaptation and therapy resistance remains poorly understood. Here, we show that melanoma cells can adapt to targeted therapies through a mechanosignaling loop involving the autocrine remodeling of a drug-protective ECM. Analyses revealed that therapy-resistant cells associated with a mesenchymal dedifferentiated state displayed elevated responsiveness to collagen stiffening and force-mediated ECM remodeling through activation of actin-dependent mechanosensors Yes-associated protein (YAP) and myocardin-related transcription factor (MRTF). Short-term inhibition of MAPK pathway also induced mechanosignaling associated with deposition and remodeling of an aligned fibrillar matrix. This provided a favored ECM reorganization that promoted tolerance to BRAF inhibition in a YAP- and MRTF-dependent manner. Matrix remodeling and tumor stiffening were also observed in vivo upon exposure of BRAF-mutant melanoma cell lines or patient-derived xenograft models to MAPK pathway inhibition. Importantly, pharmacologic targeting of YAP reversed treatment-induced excessive collagen deposition, leading to enhancement of BRAF inhibitor efficacy. We conclude that MAPK pathway targeting therapies mechanically reprogram melanoma cells to confer a drug-protective matrix environment. Preventing melanoma cell mechanical reprogramming might be a promising therapeutic strategy for patients on targeted therapies. SIGNIFICANCE: These findings reveal a biomechanical adaptation of melanoma cells to oncogenic BRAF pathway inhibition, which fuels a YAP/MRTF-dependent feed-forward loop associated with tumor stiffening, mechanosensing, and therapy resistance. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/10/1927/F1.large.jpg.
Collapse
Affiliation(s)
- Christophe A Girard
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - Margaux Lecacheur
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - Rania Ben Jouira
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - Ilona Berestjuk
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - Serena Diazzi
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - Virginie Prod'homme
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - Aude Mallavialle
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - Frédéric Larbret
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - Maéva Gesson
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | | | - Sabrina Pisano
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Stéphane Audebert
- Aix-Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Bernard Mari
- Université Côte d'Azur, CNRS, IPMC, Sophia Antipolis, France
| | | | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium.,TRACE, LKI Leuven Cancer Institute, KU Leuven
| | - Jean-Christophe Marine
- Laboratory For Molecular Cancer Biology, VIB Center for Cancer Biology, VIB, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Marcel Deckert
- Université Côte d'Azur, INSERM, C3M, Nice, France. .,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - Sophie Tartare-Deckert
- Université Côte d'Azur, INSERM, C3M, Nice, France. .,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| |
Collapse
|
280
|
Agarwal M, Biswas P, Bhattacharya A, Sinha DK. Reactive oxygen species-mediated cytoplasmic stiffening impairs the phagocytic ability of the macrophage. J Cell Sci 2020; 133:jcs.236471. [PMID: 32005700 DOI: 10.1242/jcs.236471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 01/17/2020] [Indexed: 12/12/2022] Open
Abstract
The phagocytic ability of macrophages empowers them to enforce innate immunity. RAW264.7, THP-1 and peripheral blood mononuclear cell-derived macrophages display considerable variability with regards to their phagocytic ability. We identify the underlying causes that attenuate the phagocytic abilities of a macrophage. Deformability of the cytoplasm and cortex influences the macrophage's phagocytic ability, and macrophages use the large cell-to-cell variability of their cytoplasmic stiffness to modulate their phagocytic ability. We find that the more-deformable macrophages have a higher phagocytic ability than those that are less deformable. Further, the subcellular spatial variability of cortex stiffness gives rise to more-deformable subdomains on the membrane for pathogen ingestion. We report a previously unknown negative-feedback loop that is triggered by the phagocytic oxidative burst. Macrophages utilize the excess reactive oxygen species to stiffen the cytoplasm, reducing their phagocytic propensity. In organisms, ageing or pathological conditions impair the phagocytic ability of macrophages. Our findings identify the targets that could potentially be utilized for restoring the phagocytic ability of the defunct macrophages.
Collapse
Affiliation(s)
- Mahesh Agarwal
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 32, India
| | - Parijat Biswas
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 32, India
| | - Anindita Bhattacharya
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 32, India
| | - Deepak Kumar Sinha
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 32, India
| |
Collapse
|
281
|
Choraghe RP, Kołodziej T, Buser A, Rajfur Z, Neumann AK. RHOA-mediated mechanical force generation through Dectin-1. J Cell Sci 2020; 133:jcs236166. [PMID: 31964711 PMCID: PMC7063837 DOI: 10.1242/jcs.236166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/07/2020] [Indexed: 11/20/2022] Open
Abstract
Dendritic cell-associated C-type lectin 1 (Dectin-1, also known as CLEC7A) is an innate immune pattern recognition receptor that recognizes β-glucan on the Candida albicans cell wall. Recognition of β-glucan by immune cells leads to phagocytosis, oxidative burst, cytokine and chemokine production. We looked for specific mechanisms that coordinate phagocytosis downstream of Dectin-1 leading to actin reorganization and internalization of fungus. We found that stimulation of Dectin-1 by soluble β-glucan leads to mechanical force generation and areal contraction in Dectin-1-transfected HEK-293 cells and M1 macrophages. With inhibitor studies, we found this force generation is a spleen tyrosine kinase (SYK)-independent, but SRC family kinase (SFK)-dependent process mediated through the RHOA-ROCK-myosin light chain (MLC) pathway. We confirmed activation of RHOA downstream of Dectin-1 using activity assays and stress fiber formation. Through phagocytosis assays, we found direct evidence for the importance of RHOA-ROCK-MLC signaling in the process of phagocytosis of C. albicans.
Collapse
Affiliation(s)
- Rohan P Choraghe
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Tomasz Kołodziej
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Alan Buser
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Zenon Rajfur
- Institute of Physics, Jagiellonian University, Krakow 30-348, Poland
| | - Aaron K Neumann
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
282
|
Tei R, Baskin JM. Spatiotemporal control of phosphatidic acid signaling with optogenetic, engineered phospholipase Ds. J Cell Biol 2020; 219:e201907013. [PMID: 31999306 PMCID: PMC7054994 DOI: 10.1083/jcb.201907013] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/09/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Phosphatidic acid (PA) is both a central phospholipid biosynthetic intermediate and a multifunctional lipid second messenger produced at several discrete subcellular locations. Organelle-specific PA pools are believed to play distinct physiological roles, but tools with high spatiotemporal control are lacking for unraveling these pleiotropic functions. Here, we present an approach to precisely generate PA on demand on specific organelle membranes. We exploited a microbial phospholipase D (PLD), which produces PA by phosphatidylcholine hydrolysis, and the CRY2-CIBN light-mediated heterodimerization system to create an optogenetic PLD (optoPLD). Directed evolution of PLD using yeast membrane display and IMPACT, a chemoenzymatic method for visualizing cellular PLD activity, yielded a panel of optoPLDs whose range of catalytic activities enables mimicry of endogenous, physiological PLD signaling. Finally, we applied optoPLD to elucidate that plasma membrane, but not intracellular, pools of PA can attenuate the oncogenic Hippo signaling pathway. OptoPLD represents a powerful and precise approach for revealing spatiotemporally defined physiological functions of PA.
Collapse
Affiliation(s)
| | - Jeremy M. Baskin
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| |
Collapse
|
283
|
Lee C, O'Connell CD, Onofrillo C, Choong PFM, Di Bella C, Duchi S. Human articular cartilage repair: Sources and detection of cytotoxicity and genotoxicity in photo-crosslinkable hydrogel bioscaffolds. Stem Cells Transl Med 2020; 9:302-315. [PMID: 31769213 PMCID: PMC7031631 DOI: 10.1002/sctm.19-0192] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/03/2019] [Accepted: 10/27/2019] [Indexed: 12/14/2022] Open
Abstract
Three-dimensional biofabrication using photo-crosslinkable hydrogel bioscaffolds has the potential to revolutionize the need for transplants and implants in joints, with articular cartilage being an early target tissue. However, to successfully translate these approaches to clinical practice, several barriers must be overcome. In particular, the photo-crosslinking process may impact on cell viability and DNA integrity, and consequently on chondrogenic differentiation. In this review, we primarily explore the specific sources of cellular cytotoxicity and genotoxicity inherent to the photo-crosslinking reaction, the methods to analyze cell death, cell metabolism, and DNA damage within the bioscaffolds, and the possible strategies to overcome these detrimental effects.
Collapse
Affiliation(s)
- Cheryl Lee
- Department of SurgeryUniversity of Melbourne, St Vincent's HospitalFitzroyVictoriaAustralia
| | - Cathal D. O'Connell
- BioFab3D, Aikenhead Centre for Medical DiscoverySt Vincent's HospitalFitzroyVictoriaAustralia
| | - Carmine Onofrillo
- Department of SurgeryUniversity of Melbourne, St Vincent's HospitalFitzroyVictoriaAustralia
- BioFab3D, Aikenhead Centre for Medical DiscoverySt Vincent's HospitalFitzroyVictoriaAustralia
| | - Peter F. M. Choong
- Department of SurgeryUniversity of Melbourne, St Vincent's HospitalFitzroyVictoriaAustralia
- BioFab3D, Aikenhead Centre for Medical DiscoverySt Vincent's HospitalFitzroyVictoriaAustralia
- Department of OrthopaedicsSt Vincent's HospitalFitzroyVictoriaAustralia
| | - Claudia Di Bella
- Department of SurgeryUniversity of Melbourne, St Vincent's HospitalFitzroyVictoriaAustralia
- BioFab3D, Aikenhead Centre for Medical DiscoverySt Vincent's HospitalFitzroyVictoriaAustralia
- Department of OrthopaedicsSt Vincent's HospitalFitzroyVictoriaAustralia
| | - Serena Duchi
- Department of SurgeryUniversity of Melbourne, St Vincent's HospitalFitzroyVictoriaAustralia
- BioFab3D, Aikenhead Centre for Medical DiscoverySt Vincent's HospitalFitzroyVictoriaAustralia
| |
Collapse
|
284
|
Zhou Z, Qu J, He L, Zhu Y, Yang SZ, Zhang F, Guo T, Peng H, Chen P, Zhou Y. Stiff matrix instigates type I collagen biogenesis by mammalian cleavage factor I complex-mediated alternative polyadenylation. JCI Insight 2020; 5:e133972. [PMID: 31935199 PMCID: PMC7098798 DOI: 10.1172/jci.insight.133972] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/08/2020] [Indexed: 12/20/2022] Open
Abstract
Alternative polyadenylation (APA) is a widespread and important mechanism in regulation of gene expression. Dysregulation of the 3' UTR cleavage and polyadenylation represents a common characteristic among many disease states, including lung fibrosis. In this study, we investigated the role of mammalian cleavage factor I-mediated (CFIm-mediated) APA in regulating extracellular matrix production in response to mechanical stimuli from stiffened matrix simulating the fibrotic lungs. We found that stiff matrix downregulated expression of CFIm68, CFIm59 and CFIm25 subunits and promoted APA in favor of the proximal poly(A) site usage in the 3' UTRs of type I collagen (COL1A1) and fibronectin (FN1) in primary human lung fibroblasts. Knockdown and overexpression of each individual CFIm subunit demonstrated that CFIm68 and CFIm25 are indispensable attributes of stiff matrix-induced APA and overproduction of COL1A1, whereas CFIm did not appear to mediate stiffness-regulated FN1 APA. Furthermore, expression of the CFIm subunits was associated with matrix stiffness in vivo in a bleomycin-induced mouse model of pulmonary fibrosis. These data suggest that stiff matrix instigates type I collagen biogenesis by selectively targeting mRNA transcripts for 3' UTR shortening. The current study uncovered a potential mechanism for regulation of the CFIm complex by mechanical cues under fibrotic conditions.
Collapse
Affiliation(s)
- Zijing Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Respiratory Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jing Qu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Li He
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yi Zhu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shan-Zhong Yang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Feng Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ting Guo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Respiratory Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hong Peng
- Department of Respiratory Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ping Chen
- Department of Respiratory Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yong Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
285
|
Herum KM, Romaine A, Wang A, Melleby AO, Strand ME, Pacheco J, Braathen B, Dunér P, Tønnessen T, Lunde IG, Sjaastad I, Brakebusch C, McCulloch AD, Gomez MF, Carlson CR, Christensen G. Syndecan-4 Protects the Heart From the Profibrotic Effects of Thrombin-Cleaved Osteopontin. J Am Heart Assoc 2020; 9:e013518. [PMID: 32000579 PMCID: PMC7033859 DOI: 10.1161/jaha.119.013518] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/05/2019] [Indexed: 01/18/2023]
Abstract
Background Pressure overload of the heart occurs in patients with hypertension or valvular stenosis and induces cardiac fibrosis because of excessive production of extracellular matrix by activated cardiac fibroblasts. This initially provides essential mechanical support to the heart, but eventually compromises function. Osteopontin is associated with fibrosis; however, the underlying signaling mechanisms are not well understood. Herein, we examine the effect of thrombin-cleaved osteopontin on fibrosis in the heart and explore the role of syndecan-4 in regulating cleavage of osteopontin. Methods and Results Osteopontin was upregulated and cleaved by thrombin in the pressure-overloaded heart of mice subjected to aortic banding. Cleaved osteopontin was higher in plasma from patients with aortic stenosis receiving crystalloid compared with blood cardioplegia, likely because of less heparin-induced inhibition of thrombin. Cleaved osteopontin and the specific osteopontin peptide sequence RGDSLAYGLR that is exposed after thrombin cleavage both induced collagen production in cardiac fibroblasts. Like osteopontin, the heparan sulfate proteoglycan syndecan-4 was upregulated after aortic banding. Consistent with a heparan sulfate binding domain in the osteopontin cleavage site, syndecan-4 was found to bind to osteopontin in left ventricles and cardiac fibroblasts and protected osteopontin from cleavage by thrombin. Shedding of the extracellular part of syndecan-4 was more prominent at later remodeling phases, at which time levels of cleaved osteopontin were increased. Conclusions Thrombin-cleaved osteopontin induces collagen production by cardiac fibroblasts. Syndecan-4 protects osteopontin from cleavage by thrombin, but this protection is lost when syndecan-4 is shed in later phases of remodeling, contributing to progression of cardiac fibrosis.
Collapse
Affiliation(s)
- Kate M. Herum
- Institute for Experimental Medical ResearchOslo University Hospital and University of OsloNorway
- KG Jebsen Center for Cardiac ResearchUniversity of OsloNorway
- Center for Heart Failure ResearchOslo University HospitalOsloNorway
- Department of BioengineeringUniversity of California, San DiegoLa JollaCA
- Biotech Research and Innovation CentreUniversity of CopenhagenDenmark
| | - Andreas Romaine
- Institute for Experimental Medical ResearchOslo University Hospital and University of OsloNorway
- KG Jebsen Center for Cardiac ResearchUniversity of OsloNorway
- Center for Heart Failure ResearchOslo University HospitalOsloNorway
| | - Ariel Wang
- Department of BioengineeringUniversity of California, San DiegoLa JollaCA
| | - Arne Olav Melleby
- Institute for Experimental Medical ResearchOslo University Hospital and University of OsloNorway
- KG Jebsen Center for Cardiac ResearchUniversity of OsloNorway
- Center for Heart Failure ResearchOslo University HospitalOsloNorway
| | - Mari E. Strand
- Institute for Experimental Medical ResearchOslo University Hospital and University of OsloNorway
- KG Jebsen Center for Cardiac ResearchUniversity of OsloNorway
- Center for Heart Failure ResearchOslo University HospitalOsloNorway
| | - Julian Pacheco
- Department of BioengineeringUniversity of California, San DiegoLa JollaCA
| | - Bjørn Braathen
- Department of Cardiothoracic SurgeryOslo University HospitalOsloNorway
| | - Pontus Dunér
- Department of Clinical SciencesLund University Diabetes CentreLund UniversityMalmöSweden
| | - Theis Tønnessen
- Institute for Experimental Medical ResearchOslo University Hospital and University of OsloNorway
- Department of Cardiothoracic SurgeryOslo University HospitalOsloNorway
| | - Ida G. Lunde
- Institute for Experimental Medical ResearchOslo University Hospital and University of OsloNorway
- KG Jebsen Center for Cardiac ResearchUniversity of OsloNorway
- Center for Heart Failure ResearchOslo University HospitalOsloNorway
| | - Ivar Sjaastad
- Institute for Experimental Medical ResearchOslo University Hospital and University of OsloNorway
- KG Jebsen Center for Cardiac ResearchUniversity of OsloNorway
- Center for Heart Failure ResearchOslo University HospitalOsloNorway
| | - Cord Brakebusch
- Biotech Research and Innovation CentreUniversity of CopenhagenDenmark
| | - Andrew D. McCulloch
- Department of BioengineeringUniversity of California, San DiegoLa JollaCA
- Department of MedicineUniversity of California, San DiegoLa JollaCA
| | - Maria F. Gomez
- Department of Clinical SciencesLund University Diabetes CentreLund UniversityMalmöSweden
| | - Cathrine R. Carlson
- Institute for Experimental Medical ResearchOslo University Hospital and University of OsloNorway
- KG Jebsen Center for Cardiac ResearchUniversity of OsloNorway
- Center for Heart Failure ResearchOslo University HospitalOsloNorway
| | - Geir Christensen
- Institute for Experimental Medical ResearchOslo University Hospital and University of OsloNorway
- KG Jebsen Center for Cardiac ResearchUniversity of OsloNorway
- Center for Heart Failure ResearchOslo University HospitalOsloNorway
| |
Collapse
|
286
|
Mattei G, Cacopardo L, Ahluwalia A. Engineering Gels with Time-Evolving Viscoelasticity. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E438. [PMID: 31963333 PMCID: PMC7014018 DOI: 10.3390/ma13020438] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 02/01/2023]
Abstract
From a mechanical point of view, a native extracellular matrix (ECM) is viscoelastic. It also possesses time-evolving or dynamic behaviour, since pathophysiological processes such as ageing alter their mechanical properties over time. On the other hand, biomaterial research on mechanobiology has focused mainly on the development of substrates with varying stiffness, with a few recent contributions on time- or space-dependent substrate mechanics. This work reports on a new method for engineering dynamic viscoelastic substrates, i.e., substrates in which viscoelastic parameters can change or evolve with time, providing a tool for investigating cell response to the mechanical microenvironment. In particular, a two-step (chemical and enzymatic) crosslinking strategy was implemented to modulate the viscoelastic properties of gelatin hydrogels. First, gels with different glutaraldehyde concentrations were developed to mimic a wide range of soft tissue viscoelastic behaviours. Then their mechanical behaviour was modulated over time using microbial transglutaminase. Typically, enzymatically induced mechanical alterations occurred within the first 24 h of reaction and then the characteristic time constant decreased although the elastic properties were maintained almost constant for up to seven days. Preliminary cell culture tests showed that cells adhered to the gels, and their viability was similar to that of controls. Thus, the strategy proposed in this work is suitable for studying cell response and adaptation to temporal variations of substrate mechanics during culture.
Collapse
Affiliation(s)
- Giorgio Mattei
- Department of Information Engineering, University of Pisa, Via Girolamo Caruso 16, 56122 Pisa, Italy;
| | - Ludovica Cacopardo
- Research Centre “E. Piaggio”, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy;
| | - Arti Ahluwalia
- Department of Information Engineering, University of Pisa, Via Girolamo Caruso 16, 56122 Pisa, Italy;
- Research Centre “E. Piaggio”, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy;
| |
Collapse
|
287
|
Bauer J, Emon MAB, Staudacher JJ, Thomas AL, Zessner-Spitzenberg J, Mancinelli G, Krett N, Saif MT, Jung B. Increased stiffness of the tumor microenvironment in colon cancer stimulates cancer associated fibroblast-mediated prometastatic activin A signaling. Sci Rep 2020; 10:50. [PMID: 31919369 PMCID: PMC6952350 DOI: 10.1038/s41598-019-55687-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/24/2019] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer (CRC) is the second deadliest cancer in the US due to its propensity to metastasize. Stromal cells and especially cancer-associated fibroblasts (CAF) play a critical biophysical role in cancer progression, but the precise pro-metastatic mechanisms are not clear. Activin A, a TGF-β family member, is a strong pro-metastatic cytokine in the context of CRC. Here, we assessed the link between biophysical forces and pro-metastatic signaling by testing the hypothesis that CAF-generated mechanical forces lead to activin A release and associated downstream effects. Consistent with our hypothesis, we first determined that stromal activin A secretion increased with increasing substrate stiffness. Then we found that stromally-secreted activin A induced ligand-dependent CRC epithelial cell migration and epithelial to mesenchymal transition (EMT). In addition, serum activin A levels are significantly increased in metastatic (stage IV) CRC patients (1.558 ng/ml versus 0.4179 ng/ml, p < 0.05). We propose that increased tumor microenvironment stiffness leads to stromal cell-mediated TGF-β family signaling relying on the induction and utilization of activin A signaling.
Collapse
Affiliation(s)
- Jessica Bauer
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Md Abul Bashar Emon
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jonas J Staudacher
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité-University Medicine, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Alexandra L Thomas
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Jasmin Zessner-Spitzenberg
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL, USA.,Medical University of Vienna, Vienna, Austria
| | - Georgina Mancinelli
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Nancy Krett
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL, USA
| | - M Taher Saif
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Barbara Jung
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
288
|
Porter L, Minaisah RM, Ahmed S, Ali S, Norton R, Zhang Q, Ferraro E, Molenaar C, Holt M, Cox S, Fountain S, Shanahan C, Warren D. SUN1/2 Are Essential for RhoA/ROCK-Regulated Actomyosin Activity in Isolated Vascular Smooth Muscle Cells. Cells 2020; 9:cells9010132. [PMID: 31935926 PMCID: PMC7017107 DOI: 10.3390/cells9010132] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) are the predominant cell type in the blood vessel wall. Changes in VSMC actomyosin activity and morphology are prevalent in cardiovascular disease. The actin cytoskeleton actively defines cellular shape and the LInker of Nucleoskeleton and Cytoskeleton (LINC) complex, comprised of nesprin and the Sad1p, UNC-84 (SUN)-domain family members SUN1/2, has emerged as a key regulator of actin cytoskeletal organisation. Although SUN1 and SUN2 function is partially redundant, they possess specific functions and LINC complex composition is tailored for cell-type-specific functions. We investigated the importance of SUN1 and SUN2 in regulating actomyosin activity and cell morphology in VSMCs. We demonstrate that siRNA-mediated depletion of either SUN1 or SUN2 altered VSMC spreading and impaired actomyosin activity and RhoA activity. Importantly, these findings were recapitulated using aortic VSMCs isolated from wild-type and SUN2 knockout (SUN2 KO) mice. Inhibition of actomyosin activity, using the rho-associated, coiled-coil-containing protein kinase1/2 (ROCK1/2) inhibitor Y27632 or blebbistatin, reduced SUN2 mobility in the nuclear envelope and decreased the association between SUN2 and lamin A, confirming that SUN2 dynamics and interactions are influenced by actomyosin activity. We propose that the LINC complex exists in a mechanical feedback circuit with RhoA to regulate VSMC actomyosin activity and morphology.
Collapse
Affiliation(s)
- Lauren Porter
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King’s College London, London SE5 9NU, UK
| | - Rose-Marie Minaisah
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King’s College London, London SE5 9NU, UK
| | - Sultan Ahmed
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Seema Ali
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Rosemary Norton
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Qiuping Zhang
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King’s College London, London SE5 9NU, UK
| | - Elisa Ferraro
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King’s College London, London SE5 9NU, UK
| | - Chris Molenaar
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King’s College London, London SE5 9NU, UK
| | - Mark Holt
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King’s College London, London SE5 9NU, UK
- Randall Division of Cell and Molecular Biophysics, New Hunt’s House, King’s College London, London SE1 1YR, UK
| | - Susan Cox
- Randall Division of Cell and Molecular Biophysics, New Hunt’s House, King’s College London, London SE1 1YR, UK
| | - Samuel Fountain
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Catherine Shanahan
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King’s College London, London SE5 9NU, UK
| | - Derek Warren
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King’s College London, London SE5 9NU, UK
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- Correspondence:
| |
Collapse
|
289
|
Bandara SR, Molley TG, Kim H, Bharath PA, Kilian KA, Leal C. The structural fate of lipid nanoparticles in the extracellular matrix. MATERIALS HORIZONS 2020; 7:125-134. [PMID: 31942243 PMCID: PMC6961836 DOI: 10.1039/c9mh00835g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Drug-loaded liposomes are the most successful nanomedicine to date, with multiple FDA-approved systems for a myriad of diseases. While liposome circulation time in blood and retention in tissues have been studied in detail, the structural fate of liposomes-and nanoparticles in general-in the body has not been extensively investigated. Here, we explore the interactions of liposomes with synthetic and natural hydrogel materials to understand how the natural extracellular matrix influences liposome structural characteristics. Small angle X-ray scattering, confocal microscopy, and cryogenic transmission electron microscopy data demonstrate that poly(ethylene glycol) (PEG), gelatin, alginate, and Matrigel® hydrogels cause 200-nm liposomes of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) to transform into micrometer-sized aggregates. These aggregates are composed of multilamellar vesicles around 100 nm in diameter with a mean interlamellar separation of 5.5 nm. Protecting the liposomes with a corona of PEG damps this restructuring effect, making the multilamellar vesicles less stable. We attribute this unilamellar to multilamellar transition to an osmotic driving force from the hydrogel environment. This lipid restructuring has broad ramifications in the design and use of nanomedicines, and in understanding the fate and function of natural lipid-based materials within the tissue microenvironment.
Collapse
Affiliation(s)
- Sarith R. Bandara
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Thomas G. Molley
- School of Chemistry, School of Materials Science and Engineering, Australian Centre for Nanomedicine, University of New South Wales, Sydney NSW 2052, Australia
| | - Hojun Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Priyalini A. Bharath
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kristopher A. Kilian
- School of Chemistry, School of Materials Science and Engineering, Australian Centre for Nanomedicine, University of New South Wales, Sydney NSW 2052, Australia
| | - Cecilia Leal
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
290
|
Schutrum BE, Whitman MA, Fischbach C. Biomaterials-Based Model Systems to Study Tumor–Microenvironment Interactions. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
291
|
Mann J, Rossi RL, Smith AAA, Appel EA. Universal Scaling Behavior during Network Formation in Controlled Radical Polymerizations. Macromolecules 2019; 52:9456-9465. [PMID: 31894160 PMCID: PMC6933816 DOI: 10.1021/acs.macromol.9b02109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/15/2019] [Indexed: 01/14/2023]
Abstract
Despite the ubiquity of branched and network polymers in biological, electronic, and rheological applications, it remains difficult to predict the network structure arising from polymerization of vinyl and multivinyl monomers. While controlled radical polymerization (CRP) techniques afford modularity and control in the synthesis of (hyper)branched polymers, a unifying understanding of network formation providing grounded predictive power is still lacking. A current limitation is the inability to predict the number and weight average molecular weights that arise during the synthesis of (hyper)branched polymers using CRP. This study addresses this literature gap through first building intuition via a growth boundary analysis on how certain environmental cues (concentration, monomer choice, and cross-linker choice) affect the cross-link efficiency during network formation through experimental gel point measurements. We then demonstrate, through experimental gel point normalization, universal scaling behavior of molecular weights in the synthesis of branched polymers corroborated by previous literature experiments. Moreover, the normalization employed in this analysis reveals trends in the macroscopic mechanical properties of networks synthesized using CRP techniques. Gel point normalization employed in this analysis both enables a polymer chemist to target specific number and weight average molecular weights of (hyper)branched polymers using CRP and demonstrates the utility of CRP for gel synthesis.
Collapse
Affiliation(s)
- Joseph
L. Mann
- Department of Materials Science
and Engineering, Stanford University, Stanford, California 94305, United States
| | - Rachel L. Rossi
- Department of Materials Science
and Engineering, Stanford University, Stanford, California 94305, United States
| | - Anton A. A. Smith
- Department of Materials Science
and Engineering, Stanford University, Stanford, California 94305, United States
| | - Eric A. Appel
- Department of Materials Science
and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
292
|
Caveolin-1 Modulates Mechanotransduction Responses to Substrate Stiffness through Actin-Dependent Control of YAP. Cell Rep 2019; 25:1622-1635.e6. [PMID: 30404014 PMCID: PMC6231326 DOI: 10.1016/j.celrep.2018.10.024] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/16/2018] [Accepted: 10/03/2018] [Indexed: 02/04/2023] Open
Abstract
The transcriptional regulator YAP orchestrates many cellular functions, including tissue homeostasis, organ growth control, and tumorigenesis. Mechanical stimuli are a key input to YAP activity, but the mechanisms controlling this regulation remain largely uncharacterized. We show that CAV1 positively modulates the YAP mechanoresponse to substrate stiffness through actin-cytoskeleton-dependent and Hippo-kinase-independent mechanisms. RHO activity is necessary, but not sufficient, for CAV1-dependent mechanoregulation of YAP activity. Systematic quantitative interactomic studies and image-based small interfering RNA (siRNA) screens provide evidence that this actin-dependent regulation is determined by YAP interaction with the 14-3-3 protein YWHAH. Constitutive YAP activation rescued phenotypes associated with CAV1 loss, including defective extracellular matrix (ECM) remodeling. CAV1-mediated control of YAP activity was validated in vivo in a model of pancreatitis-driven acinar-to-ductal metaplasia. We propose that this CAV1-YAP mechanotransduction system controls a significant share of cell programs linked to these two pivotal regulators, with potentially broad physiological and pathological implications.
Collapse
|
293
|
Gungordu HI, Bao M, van Helvert S, Jansen JA, Leeuwenburgh SCG, Walboomers XF. Effect of mechanical loading and substrate elasticity on the osteogenic and adipogenic differentiation of mesenchymal stem cells. J Tissue Eng Regen Med 2019; 13:2279-2290. [PMID: 31483956 DOI: 10.1002/term.2956] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 06/11/2019] [Accepted: 06/19/2019] [Indexed: 11/10/2022]
Abstract
Mesenchymal stem cells (MSCs) are highly sensitive to biomechanics of their extracellular environment. Generally, a higher elasticity of culture substrates can drive cells into the osteogenic lineage, whereas low substrate elasticity results in adipogenesis. Applied mechanical loading by cyclic strain is another major variable influencing cell fate. Yet, little is known about the simultaneous effect of both cues. Therefore, the present study investigated the relative importance of both cues on differentiation. MSCs were cultured in an osteogenic and also an adipogenic environment on soft polyacrylamide (PAAm; E = 23 ± 0.3 kPa), stiff PAAm (111 ± 2 kPa), and polydimethylsiloxane (PDMS; E = 1,5 ± 0.07 MPa) either unstrained or with 8% cyclic strain at 1 Hz. Without strain, the relative expression of the early osteogenic marker alkaline phosphatase (ALP) was significantly higher (78%) on PDMS than on both PAAm. With 8% cyclic strain, ALP expression increased for all groups in comparison with unstrained controls. The highest increase was observed for the soft PAAm by 36%. Moreover, relative oil red O (ORO) expression-indicating adipogenesis-was the highest for unstrained soft PAAm. On the other hand, the percentage of ORO positive cells significantly decreased by 57% and 69% for soft and stiff PAAm when strained. In conclusion, biomaterial elasticity and mechanical loading can act simultaneously on cell differentiation. Substrate elasticity is an important factor, regulating the differentiation, but cyclic strain can drive MSCs towards the osteogenesis even on the softest substrate. As such, the osteogenic effect of mechanical loading can overrule the adipogenic effect of soft substrates, thereby acting as an inhibitor.
Collapse
Affiliation(s)
- Hatice Imran Gungordu
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Min Bao
- Department of Physical Organic Chemistry, Radboud University, Nijmegen, The Netherlands
| | - Sjoerd van Helvert
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - John A Jansen
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - X Frank Walboomers
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
294
|
Fanous MJ, Li Y, Kandel ME, Abdeen AA, Kilian KA, Popescu G. Effects of substrate patterning on cellular spheroid growth and dynamics measured by gradient light interference microscopy (GLIM). JOURNAL OF BIOPHOTONICS 2019; 12:e201900178. [PMID: 31400294 PMCID: PMC7716417 DOI: 10.1002/jbio.201900178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/05/2019] [Accepted: 08/07/2019] [Indexed: 05/12/2023]
Abstract
The development of three-dimensional (3D) cellular architectures during development and pathological processes involves intricate migratory patterns that are modulated by genetics and the surrounding microenvironment. The substrate composition of cell cultures has been demonstrated to influence growth, proliferation and migration in 2D. Here, we study the growth and dynamics of mouse embryonic fibroblast cultures patterned in a tissue sheet which then exhibits 3D growth. Using gradient light interference microscopy (GLIM), a label-free quantitative phase imaging approach, we explored the influence of geometry on cell growth patterns and rotational dynamics. We apply, for the first time to our knowledge, dispersion-relation phase spectroscopy (DPS) in polar coordinates to generate the radial and rotational cell mass-transport. Our data show that cells cultured on engineered substrates undergo rotational transport in a radially independent manner and exhibit faster vertical growth than the control, unpatterned cells. The use of GLIM and polar DPS provides a novel quantitative approach to studying the effects of spatially patterned substrates on cell motility and growth.
Collapse
Affiliation(s)
- Michael J. Fanous
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Yanfen Li
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts
| | - Mikhail E. Kandel
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Amr A. Abdeen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Kristopher A. Kilian
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
- School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales, Sydney, Australia
- School of Materials Science and Engineering, University of New South Wales, Sydney, Australia
| | - Gabriel Popescu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Correspondence: Gabriel Popescu, Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL.
| |
Collapse
|
295
|
Lee JY, Dominguez AA, Nam S, Stowers RS, Qi LS, Chaudhuri O. Identification of cell context-dependent YAP-associated proteins reveals β 1 and β 4 integrin mediate YAP translocation independently of cell spreading. Sci Rep 2019; 9:17188. [PMID: 31748579 PMCID: PMC6868278 DOI: 10.1038/s41598-019-53659-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022] Open
Abstract
Yes-associated protein (YAP) is a transcriptional regulator and mechanotransducer, relaying extracellular matrix (ECM) stiffness into proliferative gene expression in 2D culture. Previous studies show that YAP activation is dependent on F-actin stress fiber mediated nuclear pore opening, however the protein mediators of YAP translocation remain unclear. Here, we show that YAP co-localizes with F-actin during activating conditions, such as sparse plating and culturing on stiff 2D substrates. To identify proteins mediating YAP translocation, we performed co-immunoprecipitation followed by mass spectrometry (co-IP/MS) for proteins that differentially associated with YAP under activating conditions. Interestingly, YAP preferentially associates with β1 integrin under activating conditions, and β4 integrin under inactivating conditions. In activating conditions, CRISPR/Cas9 knockout (KO) of β1 integrin (ΔITGB1) resulted in decreased cell area, which correlated with decreased YAP nuclear localization. ΔITGB1 did not significantly affect the slope of the correlation between YAP nuclear localization with area, but did decrease overall nuclear YAP independently of cell spreading. In contrast, β4 integrin KO (ΔITGB4) cells showed no change in cell area and similarly decreased nuclear YAP. These results reveal proteins that differentially associate with YAP during activation, which may aid in regulating YAP nuclear translocation.
Collapse
Affiliation(s)
- Joanna Y Lee
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA, 94080, USA
| | - Antonia A Dominguez
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, 94305, USA
- Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA
| | - Sungmin Nam
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Ryan S Stowers
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, 94305, USA
- Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
296
|
Hetmanski JHR, de Belly H, Busnelli I, Waring T, Nair RV, Sokleva V, Dobre O, Cameron A, Gauthier N, Lamaze C, Swift J, Del Campo A, Starborg T, Zech T, Goetz JG, Paluch EK, Schwartz JM, Caswell PT. Membrane Tension Orchestrates Rear Retraction in Matrix-Directed Cell Migration. Dev Cell 2019; 51:460-475.e10. [PMID: 31607653 PMCID: PMC6863396 DOI: 10.1016/j.devcel.2019.09.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 07/02/2019] [Accepted: 09/10/2019] [Indexed: 01/11/2023]
Abstract
In development, wound healing, and cancer metastasis, vertebrate cells move through 3D interstitial matrix, responding to chemical and physical guidance cues. Protrusion at the cell front has been extensively studied, but the retraction phase of the migration cycle is not well understood. Here, we show that fast-moving cells guided by matrix cues establish positive feedback control of rear retraction by sensing membrane tension. We reveal a mechanism of rear retraction in 3D matrix and durotaxis controlled by caveolae, which form in response to low membrane tension at the cell rear. Caveolae activate RhoA-ROCK1/PKN2 signaling via the RhoA guanidine nucleotide exchange factor (GEF) Ect2 to control local F-actin organization and contractility in this subcellular region and promote translocation of the cell rear. A positive feedback loop between cytoskeletal signaling and membrane tension leads to rapid retraction to complete the migration cycle in fast-moving cells, providing directional memory to drive persistent cell migration in complex matrices.
Collapse
Affiliation(s)
- Joseph H R Hetmanski
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Henry de Belly
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| | - Ignacio Busnelli
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg 67200, France; Université de Strasbourg, Strasbourg 67000, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg 67000, France
| | - Thomas Waring
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK
| | - Roshna V Nair
- INM, Leibniz Institute for New Materials, Campus D226, 66123 Saarbrücken, Germany
| | - Vanesa Sokleva
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Oana Dobre
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Angus Cameron
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Nils Gauthier
- IFOM, the FIRC Institute for Molecular Oncology, Milan 20139, Italy
| | - Christophe Lamaze
- Institut Curie - Centre de Recherche, PSL Research University, CNRS UMR 3666, INSERM U1143, Membrane Dynamics and Mechanics of Intracellular Signaling Laboratory, 75248 Paris Cedex 05, France
| | - Joe Swift
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | | | - Tobias Starborg
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Tobias Zech
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK
| | - Jacky G Goetz
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg 67200, France; Université de Strasbourg, Strasbourg 67000, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg 67000, France
| | - Ewa K Paluch
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Jean-Marc Schwartz
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Patrick T Caswell
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.
| |
Collapse
|
297
|
McKenzie AJ, Svec KV, Williams TF, Howe AK. Protein kinase A activity is regulated by actomyosin contractility during cell migration and is required for durotaxis. Mol Biol Cell 2019; 31:45-58. [PMID: 31721649 PMCID: PMC6938270 DOI: 10.1091/mbc.e19-03-0131] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Dynamic subcellular regulation of protein kinase A (PKA) activity is important for the motile behavior of many cell types, yet the mechanisms governing PKA activity during cell migration remain largely unknown. The motility of SKOV-3 epithelial ovarian cancer (EOC) cells has been shown to be dependent both on localized PKA activity and, more recently, on mechanical reciprocity between cellular tension and extracellular matrix rigidity. Here, we investigated the possibility that PKA is regulated by mechanical signaling during migration. We find that localized PKA activity in migrating cells rapidly decreases upon inhibition of actomyosin contractility (specifically, of myosin ATPase, Rho kinase, or myosin light-chain kinase activity). Moreover, PKA activity is spatially and temporally correlated with cellular traction forces in migrating cells. Additionally, PKA is rapidly and locally activated by mechanical stretch in an actomyosin contractility-dependent manner. Finally, inhibition of PKA activity inhibits mechanically guided migration, also known as durotaxis. These observations establish PKA as a locally regulated effector of cellular mechanotransduction and as a regulator of mechanically guided cell migration.
Collapse
Affiliation(s)
- Andrew J McKenzie
- Department of Pharmacology.,University of Vermont Cancer Center, and
| | - Kathryn V Svec
- Department of Pharmacology.,University of Vermont Cancer Center, and
| | - Tamara F Williams
- Department of Pharmacology.,University of Vermont Cancer Center, and
| | - Alan K Howe
- Department of Pharmacology.,University of Vermont Cancer Center, and.,Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| |
Collapse
|
298
|
Polycystin-1 Regulates Actomyosin Contraction and the Cellular Response to Extracellular Stiffness. Sci Rep 2019; 9:16640. [PMID: 31719603 PMCID: PMC6851149 DOI: 10.1038/s41598-019-53061-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/24/2019] [Indexed: 01/01/2023] Open
Abstract
Polycystin-1 (PC-1) and 2 (PC-2) are the products of the PKD1 and PKD2 genes, which are mutated in Autosomal Dominant Polycystic Kidney Disease (ADPKD). They form a receptor/channel complex that has been suggested to function as a mechanosensor, possibly activated by ciliary bending in the renal tubule, and resulting in calcium influx. This model has recently been challenged, leaving the question as to which mechanical stimuli activate the polycystins still open. Here, we used a SILAC/Mass-Spec approach to identify intracellular binding partners of tagged-endogenous PC-1 whereby we detected a class of interactors mediating regulation of cellular actomyosin contraction. Accordingly, using gain and loss-of-function cellular systems we found that PC-1 negatively regulates cellular contraction and YAP activation in response to extracellular stiffness. Thus, PC-1 enables cells to sense the rigidity of the extracellular milieu and to respond appropriately. Of note, in an orthologous murine model of PKD we found evidence of increased actomyosin contraction, leading to enhanced YAP nuclear translocation and transcriptional activity. Finally, we show that inhibition of ROCK-dependent actomyosin contraction by Fasudil reversed YAP activation and significantly improved disease progression, in line with recent studies. Our data suggest a possible direct role of PC-1 as a mechanosensor of extracellular stiffness.
Collapse
|
299
|
Shin Y, Lim S, Kim J, Jeon JS, Yoo H, Gweon B. Emulating endothelial dysfunction by implementing an early atherosclerotic microenvironment within a microfluidic chip. LAB ON A CHIP 2019; 19:3664-3677. [PMID: 31565711 DOI: 10.1039/c9lc00352e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent studies on endothelial dysfunction in relation to vascular diseases including atherosclerosis have highlighted the key contribution of the microenvironment of endothelial cells (ECs). By mimicking the microenvironment of early atherosclerotic lesions, here, we replicate the pathophysiological phenotype and function of ECs within microchannels. Considering the elevated deposition of fibronectin (FN) in early atherosclerotic plaques and the close correlation between the vascular stiffness and the progression of atherosclerosis, we utilized FN coated hydrogels with increased stiffness for endothelial substrates within the microchannels. As a result, we demonstrated that endothelial integrity on FN coated microchannels is likely to be undermined exhibiting a random orientation in response to the applied fluid flow, notable disruption of vascular endothelial cadherins (VE-cadherins), and higher endothelial permeability as opposed to that on microchannels coated with collagen (CL), the atheroresistant vascular model.
Collapse
Affiliation(s)
- Yujin Shin
- Department of Biomedical Engineering, Hanyang University, Republic of Korea
| | - Seongjin Lim
- Department of Mechanical Engineering, KAIST, Republic of Korea.
| | - Jinwon Kim
- Cardiovascular Center, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Jessie S Jeon
- Department of Mechanical Engineering, KAIST, Republic of Korea.
| | - Hongki Yoo
- Department of Biomedical Engineering, Hanyang University, Republic of Korea and Department of Mechanical Engineering, KAIST, Republic of Korea.
| | - Bomi Gweon
- Department of Biomedical Engineering, Hanyang University, Republic of Korea and Department of Mechanical Engineering, Sejong University, Republic of Korea.
| |
Collapse
|
300
|
Horvath AN, Holenstein CN, Silvan U, Snedeker JG. The Protein Mat(ters)-Revealing the Biologically Relevant Mechanical Contribution of Collagen- and Fibronectin-Coated Micropatterns. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41791-41798. [PMID: 31589401 DOI: 10.1021/acsami.9b12430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Understanding cell-material interactions requires accurate characterization of the substrate mechanics, which are generally measured by indentation-type atomic force microscopy. To facilitate cell-substrate interaction, model extracellular matrix coatings are used although their tensile mechanical properties are generally unknown. In this study, beyond standard compressive stiffness estimation, we performed a novel tensile mechanical characterization of collagen- and fibronectin-micropatterned polyacrylamide hydrogels. We further demonstrate the impact of the protein mat on the tensile stiffness characterization of adherent cells. To our knowledge, our study is the first to uncover direction-dependent mechanical behavior of the protein coatings and to demonstrate that it affects cellular response relative to substrate mechanics.
Collapse
Affiliation(s)
- Aron N Horvath
- Biomechanics Laboratory , University Hospital Balgrist, University of Zurich , 8008 Zurich , Switzerland
- Institute for Biomechanics , ETH Zurich , 8008 Zurich , Switzerland
| | - Claude N Holenstein
- Biomechanics Laboratory , University Hospital Balgrist, University of Zurich , 8008 Zurich , Switzerland
- Institute for Biomechanics , ETH Zurich , 8008 Zurich , Switzerland
| | - Unai Silvan
- Biomechanics Laboratory , University Hospital Balgrist, University of Zurich , 8008 Zurich , Switzerland
- Institute for Biomechanics , ETH Zurich , 8008 Zurich , Switzerland
| | - Jess G Snedeker
- Biomechanics Laboratory , University Hospital Balgrist, University of Zurich , 8008 Zurich , Switzerland
- Institute for Biomechanics , ETH Zurich , 8008 Zurich , Switzerland
| |
Collapse
|