251
|
Pereverzeva E, Treschalin I, Bodyagin D, Maksimenko O, Langer K, Dreis S, Asmussen B, Kreuter J, Gelperina S. Influence of the formulation on the tolerance profile of nanoparticle-bound doxorubicin in healthy rats: Focus on cardio- and testicular toxicity. Int J Pharm 2007; 337:346-56. [PMID: 17306479 DOI: 10.1016/j.ijpharm.2007.01.031] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 01/09/2007] [Accepted: 01/13/2007] [Indexed: 10/23/2022]
Abstract
A toxicological study of doxorubicin bound to poly(butyl cyanoacrylate) or human serum albumin nanoparticles coated with polysorbate 80 was performed in healthy rats. The doxorubicin formulations were injected at a therapeutic dose regimen (3 x 1.5 mg/kg with a 72 h interval), and the animals were followed up for 15 or 30 days. The overall result of this study suggests that the surfactant-coated nanoparticle formulations of doxorubicin have favorable toxicological profiles. Specifically, these formulations display a considerably reduced cardio- and testicular toxicity, as compared to a free drug.
Collapse
Affiliation(s)
- E Pereverzeva
- Gauze Institute of Novel Antibiotics, Academy of Medical Sciences, Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
252
|
Motl S, Zhuang Y, Waters CM, Stewart CF. Pharmacokinetic considerations in the treatment of CNS tumours. Clin Pharmacokinet 2007; 45:871-903. [PMID: 16928151 DOI: 10.2165/00003088-200645090-00002] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite aggressive therapy, the majority of primary and metastatic brain tumour patients have a poor prognosis with brief survival periods. This is because of the different pharmacokinetic parameters of systemically administered chemotherapeutic agents between the brain and the rest of the body. Specifically, before systemically administered drugs can distribute into the CNS, they must cross two membrane barriers, the blood-brain barrier (BBB) and blood-cerebrospinal fluid (CSF) barrier (BCB). To some extent, these structures function to exclude xenobiotics, such as anticancer drugs, from the brain. An understanding of these unique barriers is essential to predict when and how systemically administered drugs will be transported to the brain. Specifically, factors such as physiological variables (e.g. blood flow), physicochemical properties of the drug (e.g. molecular weight), as well as influx and efflux transporter expression at the BBB and BCB (e.g. adenosine triphosphate-binding cassette transporters) determine what compounds reach the CNS. A large body of preclinical and clinical research exists regarding brain penetration of anticancer agents. In most cases, a surrogate endpoint (i.e. CSF to plasma area under the concentration-time curve [AUC] ratio) is used to describe how effectively agents can be transported into the CNS. Some agents, such as the topoisomerase I inhibitor, topotecan, have high CSF to plasma AUC ratios, making them valid therapeutic options for primary and metastatic brain tumours. In contrast, other agents like the oral tyrosine kinase inhibitor, imatinib, have a low CSF to plasma AUC ratio. Knowledge of these data can have important clinical implications. For example, it is now known that chronic myelogenous leukaemia patients treated with imatinib might need additional CNS prophylaxis. Since most anticancer agents have limited brain penetration, new pharmacological approaches are needed to enhance delivery into the brain. BBB disruption, regional administration of chemotherapy and transporter modulation are all currently being evaluated in an effort to improve therapeutic outcomes. Additionally, since many chemotherapeutic agents are metabolised by the cytochrome P450 3A enzyme system, minimising drug interactions by avoiding concomitant drug therapies that are also metabolised through this system may potentially enhance outcomes. Specifically, the use of non-enzyme-inducing antiepileptic drugs and curtailing nonessential corticosteroid use may have an impact.
Collapse
Affiliation(s)
- Susannah Motl
- Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | | |
Collapse
|
253
|
Silva GA. What impact will nanotechnology have on neurology? ACTA ACUST UNITED AC 2007; 3:180-1. [PMID: 17410106 DOI: 10.1038/ncpneuro0466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Accepted: 02/14/2007] [Indexed: 11/08/2022]
Affiliation(s)
- Gabriel A Silva
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92037-0946, USA.
| |
Collapse
|
254
|
Dreis S, Rothweiler F, Michaelis M, Cinatl J, Kreuter J, Langer K. Preparation, characterisation and maintenance of drug efficacy of doxorubicin-loaded human serum albumin (HSA) nanoparticles. Int J Pharm 2007; 341:207-14. [PMID: 17478065 DOI: 10.1016/j.ijpharm.2007.03.036] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 03/21/2007] [Accepted: 03/24/2007] [Indexed: 10/23/2022]
Abstract
Human serum albumin (HSA) nanoparticles represent promising drug carrier systems. Binding of cytostatics to HSA nanoparticles may diminish their toxicity, optimise their body distribution and/or may overcome multidrug resistance. In the present study, doxorubicin-loaded HSA nanoparticle preparations were prepared. Doxorubicin was loaded to the HSA nanoparticles either by adsorption to the nanoparticles' surfaces or by incorporation into the particle matrix. Both loading strategies resulted in HSA nanoparticles of a size range between 150nm and 500nm with a loading efficiency of 70-95%. The influence on cell viability of the resulting nanoparticles was investigated in two different neuroblastoma cell lines. The anti-cancer effects of the drug-loaded nanoparticles were increased in comparison to doxorubicin solution. Based on these result a standard protocol for the preparation of doxorubicin-loaded HSA nanoparticles for further antitumoural studies was established.
Collapse
Affiliation(s)
- S Dreis
- Institute of Pharmaceutical Technology, Biocenter Niederursel, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 9, D-60438 Frankfurt/Main, Germany
| | | | | | | | | | | |
Collapse
|
255
|
Liu Y, Steiniger SC, Kim Y, Kaufmann GF, Felding-Habermann B, Janda KD. Mechanistic studies of a peptidic GRP78 ligand for cancer cell-specific drug delivery. Mol Pharm 2007; 4:435-47. [PMID: 17373820 PMCID: PMC2533281 DOI: 10.1021/mp060122j] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Major obstacles in the development of new therapeutic anticancer drugs are the low bioavailability of hydrophilic substances and the nonspecific toxicity toward healthy tissues. As such, cell-targeting oligopeptides have emerged as attractive drug delivery vehicles for a variety of different types of cargo. The recently identified peptide Pep42 binds to the glucose-regulated protein 78 (GRP78), which is overexpressed on the cell surface of human cancer cells and internalizes into these cells. Herein, we demonstrate how Pep42 can be utilized as a carrier for different types of cytotoxic drugs to specifically target human cancer cell lines in vitro in a strictly GRP78-dependent manner. Furthermore, the mechanism of internalization of Pep42 was elucidated and found to involve clathrin-mediated endocytosis. Pep42 subsequently colocalizes within the lysosomal compartment. Importantly, we also provide evidence that Pep42-conjugated quantum dots have the ability to selectively enrich in tumor tissue in a xenograft mouse model. Our results suggest that the highly specific GRP78-Pep42 interaction can be utilized for the generation of Pep42-drug conjugates as a powerful anticancer drug delivery system that could substantially enhance the efficacy of chemotherapy by increasing the drug-tumor specificity, thus minimizing the adverse side effects associated with conventional cancer therapeutics.
Collapse
Affiliation(s)
- Ying Liu
- The Skaggs Institute for Chemical Biology and Departments of Chemistry and Immunology, The Scripps Research Institute, La Jolla, California, 92037
| | - Sebastian C.J. Steiniger
- The Skaggs Institute for Chemical Biology and Departments of Chemistry and Immunology, The Scripps Research Institute, La Jolla, California, 92037
| | - YoungSoo Kim
- The Skaggs Institute for Chemical Biology and Departments of Chemistry and Immunology, The Scripps Research Institute, La Jolla, California, 92037
| | - Gunnar F. Kaufmann
- The Skaggs Institute for Chemical Biology and Departments of Chemistry and Immunology, The Scripps Research Institute, La Jolla, California, 92037
| | - Brunhilde Felding-Habermann
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, 92037
| | - Kim D. Janda
- The Skaggs Institute for Chemical Biology and Departments of Chemistry and Immunology, The Scripps Research Institute, La Jolla, California, 92037
- Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California, 92037
- *Address correspondence to this author: Kim D. Janda, Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, Tel. 858 784-2516; Fax. 858 784-2590 e.mail:
| |
Collapse
|
256
|
Kawasaki ES, Player A. Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2007; 1:101-9. [PMID: 17292064 DOI: 10.1016/j.nano.2005.03.002] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Accepted: 03/25/2005] [Indexed: 12/20/2022]
Abstract
Cancer is the leading cause of death in the United States among people younger than 85 years, and for the first time has surpassed heart disease as the number one killer. This worrisome statistic has resulted not from an increase in the incidence of cancer, but because deaths from heart disease have dropped nearly in half while the number of cancer-related deaths has remained about the same. This fact accentuates the need for a new generation of more effective therapies for cancer. In this review, the development of new therapies will be discussed in the context of advances in nanotechnologies related to cancer detection, analysis, diagnosis, and therapeutic intervention. First, several nanoanalytical methods, such as the use of quantum dots in detection and imaging of cancer, will be described. These techniques will be essential to the process of precisely describing cancer at the level of the cell and whole organism. Second, examples of how nanotechnologies can be used in the development of new therapies will be given, including methods that might allow for more efficient and accurate drug delivery and rationally designed, targeted drugs. Finally, a new initiative--the National Cancer Institute Alliance for Nanotechnology in Cancer--will be described and discussed with respect to the scientific issues, policies, and funding.
Collapse
|
257
|
Kreuter J, Hekmatara T, Dreis S, Vogel T, Gelperina S, Langer K. Covalent attachment of apolipoprotein A-I and apolipoprotein B-100 to albumin nanoparticles enables drug transport into the brain. J Control Release 2007; 118:54-8. [PMID: 17250920 DOI: 10.1016/j.jconrel.2006.12.012] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 12/12/2006] [Accepted: 12/13/2006] [Indexed: 10/23/2022]
Abstract
Apolipoprotein E3, A-I as well as B-100 were covalently attached to human serum albumin nanoparticles via the NHS-PEG-Mal 3400 linker. Loperamide as a model drug was bound to these nanoparticles, and the antinociceptive reaction of these preparations was recorded after intravenous injection in mice by the tail-flick test. After 15 min, all three nanoparticle preparations with the coupled apolipoproteins E3, A-I, and B-100 yielded considerable antinociceptive effects, which lasted over 1 h. The maximally possible effects [MPE] of these preparations amounted to 95%, 65%, and 50%, respectively, and were statistically different from the controls (p<0.02), whereas the loperamide solution achieved no effect. This result demonstrates that more than one mechanism is involved in the interaction of nanoparticles with the brain endothelial cells and the resulting delivery of drugs to the central nervous system.
Collapse
Affiliation(s)
- Jörg Kreuter
- Institut für Pharmazeutische Technologie, Biozentrum, Johann Wolfgang Goethe-Universität Frankfurt, Germany.
| | | | | | | | | | | |
Collapse
|
258
|
Lu W, Wan J, Zhang Q, She Z, Jiang X. Aclarubicin-loaded cationic albumin-conjugated pegylated nanoparticle for glioma chemotherapy in rats. Int J Cancer 2007; 120:420-31. [PMID: 17066446 DOI: 10.1002/ijc.22296] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Traditional glioma chemotherapy with those second-line drugs such as anthracyclines usually failed because they are inaccessible to blood-brain barrier (BBB) in tumor. In our study, we incorporated aclarubicin (ACL) into cationic albumin-conjugated pegylated nanoparticle (CBSA-NP-ACL) to determine its therapeutic potential of rats with intracranially implanted C6 glioma cells. When labeled with fluorescent probe, 6-coumarin, CBSA-NP was shown to accumulate much more in tumor mass than nanoparticle without conjugated CBSA (NP) 1 hr post intravenous injection, as well as better retention after 24 hr. Tumor drug concentration of CBSA-NP-ACL displayed 2.6- and 3.3-fold higher than that of NP-ACL and ACL solution 1 hr post injection, while 2.7 and 6.6-fold higher after 24 hr, respectively. Moreover, using tumor microdialysis sampling, AUC(0-24 hr) of free drug amount in tumor interstitium delivered by CBSA-NP-ACL was about 2.0- and 2.7-fold higher than that of NP-ACL and ACL solutions, respectively. When the tumor rat model was subjected to 4 cycles of 2 mg/kg of ACL in different formulations, a significant increase of median survival time was found in the group of CBSA-NP-ACL compared with that of saline control animals, animals treated with NP-ACL and ACL solution. By terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling, CBSA-NP-ACL can extensively make the tumor cell apoptosis. Histochemical evaluation by periodic acid Shiff staining and biochemical analysis depicted that the incorporation of ACL into CBSA-NP reduced its toxicity to liver, kidney and heart. Besides, CBSA-NP-ACL was not shown to open tight junction evaluated by BBB coculture. It was concluded that CBSA-NP-ACL could have a therapeutic potential for treatment of glioma.
Collapse
Affiliation(s)
- Wei Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
259
|
Silva GA. Nanotechnology approaches for drug and small molecule delivery across the blood brain barrier. ACTA ACUST UNITED AC 2007; 67:113-6. [PMID: 17254859 DOI: 10.1016/j.surneu.2006.08.033] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 08/21/2006] [Indexed: 11/25/2022]
Abstract
Nanotechnology involves the design, synthesis, and characterization of materials and devices that have a functional organization in at least one dimension on the nanometer (ie, one billionth of a meter) scale. One area in which nanotechnology may have a significant clinical impact in neuroscience is the selective transport and delivery of drugs and other small molecules across the blood brain barrier that cannot cross otherwise. Using a variety of nanoparticles composed of different chemical compositions, different groups are exploring proof-of-concept approaches for the delivery of different antineoplastic drugs, oligonucleotides, genes, and magnetic resonance imaging contrast agents. This review discusses some of the main technical challenges associated with the development of nanotechnologies for delivery across the blood brain barrier and summarizes ongoing work.
Collapse
Affiliation(s)
- Gabriel A Silva
- Department of Bioengineering, University of California, San Diego, CA 92037, USA.
| |
Collapse
|
260
|
Pieretti-Vanmarcke R, Donahoe PK, Pearsall LA, Dinulescu DM, Connolly DC, Halpern EF, Seiden MV, MacLaughlin DT. Mullerian Inhibiting Substance enhances subclinical doses of chemotherapeutic agents to inhibit human and mouse ovarian cancer. Proc Natl Acad Sci U S A 2006; 103:17426-31. [PMID: 17088539 PMCID: PMC1859945 DOI: 10.1073/pnas.0607959103] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mullerian Inhibiting Substance (MIS), a biological modifier that causes regression of Mullerian ducts in male embryos, is effective as a single agent in vitro and in vivo against human and mouse ovarian cancer cell lines expressing MIS type II receptor; however, little is known about how recombinant human MIS (rhMIS), now being scaled for preclinical trials, could be used in combination with cytotoxic or targeted chemotherapeutic agents. Mouse serous and endometrioid ovarian carcinoma cell lines were tested in vitro against rhMIS alone and with doxorubicin, paclitaxel, or cisplatin as agents in clinical use. Because MIS releases FK506 binding protein (FKBP12), which activates the mammalian target of rapamycin (mTOR) downstream of Akt, rhMIS and rapamycin combinations were tested. MIS increases p16 protein levels, and 5'-Aza-2'-deoxycytidine (AzadC) induces p16 mRNA; therefore, they were used in combination in vitro and in vivo with a human ovarian cancer cell line. A paclitaxel-resistant human ovarian cancer cell line and its parental line both respond to rhMIS in vitro. Additivity, synergy, or competition was observed with MIS and rapamycin, AzadC, doxorubicin, cisplatin, and paclitaxel, suggesting that MIS in combination with selective targeted therapies might achieve greater activity against ovarian cancer than the use of each individual agent alone. These assays and statistical analyses could be useful in selecting rhMIS and chemotherapeutic agent combinations that enhance clinical efficacy and reduce toxicity.
Collapse
Affiliation(s)
| | - Patricia K. Donahoe
- *Pediatric Surgical Research Laboratories, Department of Surgery
- To whom correspondence may be addressed at:
Pediatric Surgical Research Laboratories/CPZN6200, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114. E-mail:
or
| | - Lisa A. Pearsall
- *Pediatric Surgical Research Laboratories, Department of Surgery
| | - Daniela M. Dinulescu
- Department of Pathology, Brigham and Women's Hospital/Harvard Medical School, Eugene Braunwald Research Center, 221 Longwood Avenue, Boston, MA 02115; and
| | - Denise C. Connolly
- Medical Science Division, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111
| | | | - Michael V. Seiden
- Ovarian Tumor Biology Laboratory, Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114
| | - David T. MacLaughlin
- *Pediatric Surgical Research Laboratories, Department of Surgery
- To whom correspondence may be addressed at:
Pediatric Surgical Research Laboratories/CPZN6200, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114. E-mail:
or
| |
Collapse
|
261
|
Petri B, Bootz A, Khalansky A, Hekmatara T, Müller R, Uhl R, Kreuter J, Gelperina S. Chemotherapy of brain tumour using doxorubicin bound to surfactant-coated poly(butyl cyanoacrylate) nanoparticles: revisiting the role of surfactants. J Control Release 2006; 117:51-8. [PMID: 17150277 DOI: 10.1016/j.jconrel.2006.10.015] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 10/05/2006] [Accepted: 10/16/2006] [Indexed: 11/23/2022]
Abstract
Poly(butyl cyanoacrylate) nanoparticles coated with poloxamer 188 (Pluronic) F68) and also, as shown previously, polysorbate 80 (Tween 80) considerably enhance the anti-tumour effect of doxorubicin against an intracranial glioblastoma in rats. The investigation of plasma protein adsorption on the surface of the drug-loaded nanoparticles by two-dimensional electrophoresis (2-D PAGE) revealed that both surfactants, besides other plasma components, induced a considerable adsorption of apolipoprotein A-I (ApoA-I). It is hypothesized that delivery of doxorubicin to the brain by means of nanoparticles may be augmented by the interaction of apolipoprotein A-I that is anchored on the surface of the nanoparticles with the scavenger receptor class B type I (SR-BI) located at the blood-brain barrier. This is the first study that shows a correlation between the adsorption of apolipoprotein A-I on the nanoparticle surface and the delivery of the drug across the blood-brain barrier.
Collapse
Affiliation(s)
- B Petri
- Institute of Pharmacy, Free University of Berlin, 14195, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
262
|
Xie J, Wang CH. Electrospun Micro- and Nanofibers for Sustained Delivery of Paclitaxel to Treat C6 Glioma in Vitro. Pharm Res 2006; 23:1817-26. [PMID: 16841195 DOI: 10.1007/s11095-006-9036-z] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 04/11/2006] [Indexed: 10/24/2022]
Abstract
PURPOSE The present study aims to develop electrospun PLGA-based micro- and nanofibers as implants for the sustained delivery of anticancer drug to treat C6 glioma in vitro. METHODS PLGA and an anticancer drug--paclitaxel-loaded PLGA micro- and nanofibers were fabricated by electrospinning and the key processing parameters were investigated. The physical and chemical properties of the micro- and nanofibers were characterized by various state-of-the-art techniques, such as scanning electron microscope and field emission scanning electron microscope for morphology, X-ray photoelectron spectroscopy for surface chemistry, gel permeation chromatogram for molecular weight measurements and differential scanning calorimeter for drug physical status. The encapsulation efficiency and in vitro release profile were measured by high performance liquid chromatography. In addition, the cytotoxicity of paclitaxel-loaded PLGA nanofibers was evaluated using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide MTT) assay on C6 glioma cell lines. RESULTS PLGA fibers with diameters of around several tens nanometers to 10 microm were successfully obtained by electrospinning. Ultrafine fibers of around 30 nm were achieved after addition of organic salts to dilute polymer solution. The encapsulation efficiency for paclitaxel-loaded PLGA micro- and nanofibers was more than 90%. DSC results suggest that the drug was in the solid solution state in the polymeric micro- and nanofibers. In vitro release profiles suggest that paclitaxel sustained release was achieved for more than 60 days. Cytotoxicity test results suggest that IC50 value of paclitaxel-loaded PLGA nanofibers (36 microg/ml, calculated based on the amount of paclitaxel) is comparable to the commercial paclitaxel formulation-Taxol. CONCLUSIONS Electrospun paclitaxel-loaded biodegradable micro- and nanofibers may be promising for the treatment of brain tumour as alternative drug delivery devices.
Collapse
MESH Headings
- Antineoplastic Agents, Phytogenic/administration & dosage
- Antineoplastic Agents, Phytogenic/therapeutic use
- Brain Neoplasms/drug therapy
- Cell Line, Tumor
- Cell Survival/drug effects
- Chemical Phenomena
- Chemistry, Pharmaceutical
- Chemistry, Physical
- Chromatography, Gel
- Delayed-Action Preparations
- Drug Compounding
- Excipients
- Glioma/drug therapy
- Humans
- Lactic Acid
- Microscopy, Confocal
- Microscopy, Electron, Scanning
- Nanoparticles
- Paclitaxel/administration & dosage
- Paclitaxel/therapeutic use
- Polyglycolic Acid
- Polylactic Acid-Polyglycolic Acid Copolymer
- Polymers
- Spectrometry, X-Ray Emission
Collapse
Affiliation(s)
- Jingwei Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117576, Singapore
| | | |
Collapse
|
263
|
Ambruosi A, Khalansky AS, Yamamoto H, Gelperina SE, Begley DJ, Kreuter J. Biodistribution of polysorbate 80-coated doxorubicin-loaded [14C]-poly(butyl cyanoacrylate) nanoparticles after intravenous administration to glioblastoma-bearing rats. J Drug Target 2006; 14:97-105. [PMID: 16608736 DOI: 10.1080/10611860600636135] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
It was recently shown that doxorubicin (DOX) bound to polysorbate-coated nanoparticles (NP) crossed the intact blood-brain barrier (BBB), and thus reached therapeutic concentrations in the brain. Here, we investigated the biodistribution in the brain and in the body of poly(butyl-2-cyano[3-(14)C]acrylate) NP ([(14)C]-PBCA NP), polysorbate 80 (PS 80)-coated [(14)C]-PBCA NP, DOX-loaded [(14)C]-PBCA NP in glioblastoma 101/8-bearing rats after i.v. injection. The biodistribution profiles and brain concentrations of radiolabeled NP were determined by radioactivity counting after i.v. administration in rats. Changes in BBB permeability after tumour inoculation were assessed by i.v. injection of Evans Blue solution. The accumulation of NP in the tumour site and in the contralateral hemisphere in glioblastoma bearing-rats probably was augmented by the enhanced permeability and retention effect (EPR effect) that may have been becoming instrumental due to the impaired BBB on the NP delivery into the brain. The uptake of the NP by the organs of the reticuloendothelial system (RES) was reduced after PS 80-coating, but the addition of DOX increased again the concentration of NP in the RES.
Collapse
Affiliation(s)
- Alessandra Ambruosi
- Institute of Pharmaceutical Technology, Johann Wolfgang Goethe-University, Marie-Curie-Strasse 9, 60439, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
264
|
Wong HL, Rauth AM, Bendayan R, Manias JL, Ramaswamy M, Liu Z, Erhan SZ, Wu XY. A new polymer-lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells. Pharm Res 2006; 23:1574-85. [PMID: 16786442 DOI: 10.1007/s11095-006-0282-x] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 03/01/2006] [Indexed: 11/28/2022]
Abstract
PURPOSE This work is intended to develop and evaluate a new polymer-lipid hybrid nanoparticle system that can efficiently load and release water-soluble anticancer drug doxorubicin hydrochloride (Dox) and enhance Dox toxicity against multidrug-resistant (MDR) cancer cells. METHODS Cationic Dox was complexed with a new soybean-oil-based anionic polymer and dispersed together with a lipid in water to form Dox-loaded solid lipid nanoparticles (Dox-SLNs). Drug loading and release properties were measured spectrophotometrically. The in vitro cytotoxicity of Dox-SLN and the excipients in an MDR human breast cancer cell line (MDA435/LCC6/MDR1) and its wild-type line were evaluated by trypan blue exclusion and clonogenic assays. Cellular uptake and retention of Dox were determined with a microplate fluorometer. RESULTS Dox-SLNs were prepared with a drug encapsulation efficiency of 60-80% and a particle size range of 80-350 nm. About 50% of the loaded drug was released in the first few hours and an additional 10-20% in 2 weeks. Treatment of the MDR cells with Dox-SLN resulted in over 8-fold increase in cell kill when compared to Dox solution treatment at equivalent doses. The blank SLN and the excipients exhibited little cytotoxicity. The biological activity of the released Dox remained unchanged from fresh, free Dox. Cellular Dox uptake and retention by the MDR cells were both significantly enhanced (p < 0.05) when Dox was delivered in Dox-SLN form. CONCLUSIONS The new polymer-lipid hybrid nanoparticle system is effective for delivery of Dox and enhances its efficacy against MDR breast cancer cells.
Collapse
Affiliation(s)
- Ho Lun Wong
- Leslie Dan Faculty of Pharmacy, University of Toronto, 19 Russell Street, Toronto, Ontario, Canada, M5S 2S2
| | | | | | | | | | | | | | | |
Collapse
|
265
|
Michaelis K, Hoffmann MM, Dreis S, Herbert E, Alyautdin RN, Michaelis M, Kreuter J, Langer K. Covalent linkage of apolipoprotein e to albumin nanoparticles strongly enhances drug transport into the brain. J Pharmacol Exp Ther 2006; 317:1246-53. [PMID: 16554356 DOI: 10.1124/jpet.105.097139] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Drug delivery to the brain is becoming more and more important but is severely restricted by the blood-brain barrier. Nanoparticles coated with polysorbates have previously been shown to enable the transport of several drugs across the blood-brain barrier, which under normal circumstances is impermeable to these compounds. Apolipoprotein E was suggested to mediate this drug transport across the blood-brain barrier. In the present study, apolipoprotein E was coupled by chemical methods to nanoparticles made of human serum albumin (HSA-NP). Loperamide, which does not cross the blood-brain barrier but exerts antinociceptive effects after direct injection into the brain, was used as model drug. Apolipoprotein E was chemically bound via linkers to loperamide-loaded HSA-NP. This preparation induced antinociceptive effects in the tail-flick test in ICR mice after i.v. injection. In contrast, nanoparticles linked to apolipoprotein E variants that do not recognize lipoprotein receptors failed to induce these effects. These results indicate that apolipoprotein E attached to the surface of nanoparticles facilitates transport of drugs across the blood-brain barrier, probably after interaction with lipoprotein receptors on the brain capillary endothelial cell membranes.
Collapse
Affiliation(s)
- K Michaelis
- Institute for Pharmaceutical Technology, Biocenter of Johann Wolfgang Goethe-University, Marie-Curie-Strasse 9, D-60439 Frankfurt, Germany
| | | | | | | | | | | | | | | |
Collapse
|
266
|
Steinfeld U, Pauli C, Kaltz N, Bergemann C, Lee HH. T lymphocytes as potential therapeutic drug carrier for cancer treatment. Int J Pharm 2006; 311:229-36. [PMID: 16460895 DOI: 10.1016/j.ijpharm.2005.12.040] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 12/12/2005] [Accepted: 12/17/2005] [Indexed: 11/24/2022]
Abstract
The aim of our research is the application of human immune cells (T lymphocytes) as target directed drug carrier. Thereby, the inclusion of therapeutical nanoparticles into immune cells is a new strategy for a localized chemotherapy. The autonomous targeting of diseased sites makes immune cells to perfectly controlled drug delivery systems. The study's aim was to demonstrate the feasibility to mobilise immune cells as therapeutic drug carrier systems which can be combined with existing immunotherapies. Therefore, Jurkat cells as well as T lymphocytes were used to identify the smoothest procedure for loading nanoparticles into immune cells. Different loading processes, incubation times and nanoparticle concentrations were compared. Nanoparticles coated with cytotoxic antibiotic doxorubicin were used in first release experiments. A time dependent liberation of doxorubicin from carrier cells was discussed as first therapeutic approach.
Collapse
Affiliation(s)
- Ute Steinfeld
- Korea Institute of Science and Technology Europe, Universität des Saarlandes, Stuhlsatzenhausweg 97, D-66123 Saarbrücken, Germany.
| | | | | | | | | |
Collapse
|
267
|
Abstract
Nanotechnology is the manipulation of matter in dimensions <100 nm. At this size, matter can take on different chemical and physical properties, giving the products characteristics useful to industry, medicine and technology. Government funding and private investors provide billions of research dollars for the development of new materials and applications. The potential utility of these technologies is such that they are expected be a trillion-dollar industry within the next 10 years. However, the novel properties of nanoengineered materials lead to the potential for different toxicity compared with the bulk material. The field of nanotoxicology is still in its infancy, however, with very limited literature regarding potential health effects. Inhalational toxicity is to be expected, given the known effects of inhaled fine particulate matter. However, the degree to which most nanoparticles will aerosolise remains to be determined. It has been proposed that dermal exposure will be the most relevant route of exposure, but there is considerably less literature regarding dermal effects and absorption. Less defined still are the potential effects of nanoproducts on fetal development and the environment.
Collapse
Affiliation(s)
- John Curtis
- Division of Medical Toxicology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|
268
|
Huynh GH, Deen DF, Szoka FC. Barriers to carrier mediated drug and gene delivery to brain tumors. J Control Release 2006; 110:236-259. [PMID: 16318895 DOI: 10.1016/j.jconrel.2005.09.053] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 09/29/2005] [Indexed: 01/18/2023]
Abstract
Brain tumor patients face a poor prognosis despite significant advances in tumor imaging, neurosurgery and radiation therapy. Potent chemotherapeutic drugs fail when used to treat brain tumors because biochemical and physiological barriers limit drug delivery into the brain. In the past decade a number of strategies have been introduced to increase drug delivery into the brain parenchyma. In particular, direct drug administration into the brain tumor has shown promising results in both animal models and clinical trials. This technique is well suited for the delivery of liposome and polymer drug carriers, which have the potential to provide a sustained level of drug and to reach cellular targets with improved specificity. We will discuss the current approaches that have been used to increase drug delivery into the brain parenchyma in the context of fluid and solute transport into, through and from the brain, with a focus on liposome and polymer drug carriers.
Collapse
Affiliation(s)
- Grace H Huynh
- Joint Graduate Group in Bioengineering, University of California at San Francisco and Berkeley San Francisco, CA 94143-0446, United States
| | - Dennis F Deen
- Brain Tumor Research Center of the Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA 94143-0520, United States
| | - Francis C Szoka
- Joint Graduate Group in Bioengineering, University of California at San Francisco and Berkeley San Francisco, CA 94143-0446, United States; Departments of Pharmaceutical Chemistry and Biopharmaceutical Sciences, University of California at San Francisco, San Francisco, CA 94143-0446, United States.
| |
Collapse
|
269
|
Siegemund T, Paulke BR, Schmiedel H, Bordag N, Hoffmann A, Harkany T, Tanila H, Kacza J, Härtig W. Thioflavins released from nanoparticles target fibrillar amyloid β in the hippocampus of APP/PS1 transgenic mice. Int J Dev Neurosci 2005; 24:195-201. [PMID: 16386399 DOI: 10.1016/j.ijdevneu.2005.11.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
For the delivery of drugs into the brain, the use of nanoparticles as carriers has been described as a promising approach. Here, we prepared nanoparticles as carriers for the model drugs thioflavin T and thioflavin S that bind fibrillar amyloid beta peptides (Abeta). These polymer colloids are composed of a polystyrene core and a degradable PBCA [poly(butyl-2-cyanoacrylate)] shell with a diameter of 90-100nm as shown by dynamic light scattering. Fluorescence spectrophotometric analysis revealed that encapsulated thioflavin T exhibited significantly stronger fluorescence than the free fluorophore. The enzymatic degradation of core-shell nanoparticles, as required in vivo, was shown after their treatment with porcine liver esterase, a non-specific esterase, in vitro. Shells of nanoparticles were dose-dependently degraded while their polystyrene cores remained intact. In the cortices of 7-14 months old APP/PS1 mice with age-dependent beta-amyloidosis, thioflavins selectively targeted fibrillar Abeta after biodegradation-induced release from their nanoparticulate carriers upon intracerebral injection. Collectively, our data suggest that core-shell nanoparticles with controlled degradation in vivo can become versatile tools to trace and clear Abeta in the brain.
Collapse
Affiliation(s)
- T Siegemund
- Department of Neurochemistry, Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, D-04109 Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
270
|
Abstract
An ideal injected therapeutic drug would travel through the vasculature, reach the intended target at full concentration, and there act selectively on diseased cells and tissues only, without creating undesired side effects. Unfortunately, even the best current therapies fail to attain this ideal behavior, by a wide margin. A primary reason is the fact that the target recognition abilities of the current therapeutics molecules are quite limited. Furthermore, the natural defenses of the body present a sequence of formidable obstacles on the drug's pathway to the intended lesion. Requiring any molecule to have sufficient therapeutic efficacy, target recognition specificity, as well as all of the tools required to bypass multiple biological barriers is probably unrealistic. A different approach is to decouple the problem (i.e. employ the drug molecules for their therapeutic action only, and deliver them to the intended site by vectors that can be preferentially concentrated at desired body locations through the concurrent action of multiple targeting mechanisms). These vectors must also be large enough to comprise all the requirements for the evasion of the body defenses, while still sufficiently small so as not to create undesired blockages of even the smallest of blood vessels - and thus, by definition, nanotechnological.
Collapse
Affiliation(s)
- Mauro Ferrari
- The Ohio State University, Columbus 43210-1002, USA.
| |
Collapse
|
271
|
Abstract
Applications of nanotechnology for treatment, diagnosis, monitoring, and control of biological systems has recently been referred to as "nanomedicine" by the National Institutes of Health. Research into the rational delivery and targeting of pharmaceutical, therapeutic, and diagnostic agents is at the forefront of projects in nanomedicine. These involve the identification of precise targets (cells and receptors) related to specific clinical conditions and choice of the appropriate nanocarriers to achieve the required responses while minimizing the side effects. Mononuclear phagocytes, dendritic cells, endothelial cells, and cancers (tumor cells, as well as tumor neovasculature) are key targets. Today, nanotechnology and nanoscience approaches to particle design and formulation are beginning to expand the market for many drugs and are forming the basis for a highly profitable niche within the industry, but some predicted benefits are hyped. This article will highlight rational approaches in design and surface engineering of nanoscale vehicles and entities for site-specific drug delivery and medical imaging after parenteral administration. Potential pitfalls or side effects associated with nanoparticles are also discussed.
Collapse
Affiliation(s)
- S Moein Moghimi
- Molecular Targeting and Polymer Toxicology Group, School of Pharmacy, University of Brighton, Brighton, UK
| | | | | |
Collapse
|
272
|
Hsu W, Lesniak MS, Tyler B, Brem H. Local Delivery of Interleukin-2 and Adriamycin is Synergistic in the Treatment of Experimental Malignant Glioma. J Neurooncol 2005; 74:135-40. [PMID: 16193383 DOI: 10.1007/s11060-004-6597-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Local delivery of adriamycin (ADR) via biodegradable polymers has been shown to improve survival in rats challenged intracranially with 9L gliosarcoma. Likewise, local delivery of interleukin-2 (IL-2) has been shown to extend survival in experimental brain tumor models. In the current study, we hypothesized that local delivery of ADR and IL-2 might act synergistically against experimental intracranial glioma. METHODS Polyanhydride polymers (PCPP-SA) containing 5% ADR by weight were prepared using the mix-melt method. IL-2 polymer microspheres (IL-2 MS) were produced via the complex coacervation of gelatin and chondroitin sulfate in the presence of IL-2. Sixty male Fisher 344 rats received an intracranial challenge with a lethal dose of 9L gliosarcoma cells. In addition, a group of rats were injected with either IL-2 MS or empty microspheres. Five days later they received ADR or blank polymer. There were a total of four treatment groups: (1) empty microspheres, blank polymer; (2) empty microspheres, ADR polymer; (3) IL-2 MS, blank polymer; and (4) IL-2 MS, ADR polymer. RESULTS Compared to control animals treated with empty microspheres and blank polymer, animals receiving empty microspheres and ADR polymer (P < 0.0004), IL-2 MS and blank polymer (P < 0.0005), and IL-2 MS combined with ADR polymer (P < 0.0000002) all showed statistically significant improvement in survival. In addition, animals receiving the IL-2/ADR combination had significantly extended survival compared to either ADR or IL-2 alone (P < 0.000003 and P < 0.0004, respectively). CONCLUSIONS Both ADR and IL-2, when delivered locally, are effective monotherapeutic agents against experimental intracranial gliosarcoma. The combination ADR and IL-2 therapy is more effective than either agent alone.
Collapse
Affiliation(s)
- Wesley Hsu
- Departments of Neurosurgery and Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
273
|
Green-Sadan T, Kuttner Y, Lublin-Tennenbaum T, Kinor N, Boguslavsky Y, Margel S, Yadid G. Glial cell line-derived neurotrophic factor-conjugated nanoparticles suppress acquisition of cocaine self-administration in rats. Exp Neurol 2005; 194:97-105. [PMID: 15899247 DOI: 10.1016/j.expneurol.2005.01.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Revised: 01/19/2005] [Accepted: 01/26/2005] [Indexed: 10/25/2022]
Abstract
The neurotrophic factor glial cell line-derived neurotrophic factor (GDNF) may have therapeutic potential for preventing and treating cocaine addiction. Previously, we found that transplantation of a GDNF-expressing astrocyte cell line into the striatum and nucleus accumbens attenuates cocaine-seeking behavior in Sprague-Dawley rats. However, as a potential treatment for humans, cell transplantation presents several technical and ethical complications. Nanoparticulate systems are a safe and effective method for introducing exogenous compounds into the brain. Therefore, we examined the effect of GDNF-conjugated nanoparticles microinjected into the striatum and nucleus accumbens on cocaine self-administration in rats. GDNF-conjugated nanoparticles blocked the acquisition of cocaine self-administration compared to control treatments. Furthermore, a cocaine dose response demonstrated that decreased lever response in rats that received GDNF-conjugated nanoparticles persisted after substitution with different cocaine doses. This effect is not due to a non-specific disruption of locomotor or operant behavior, as seen following a water operant task. The current study is one of the first demonstrations that drug-conjugated nanoparticles may be effective in treating brain disorders. These findings suggest that GDNF-conjugated nanoparticles may serve as a novel potential treatment for drug addiction.
Collapse
Affiliation(s)
- T Green-Sadan
- Neuropharmacology Laboratory, Faculty of Life Sciences and the Leslie and Susan Gonda (Goldshmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | | | | | |
Collapse
|
274
|
Garcia-Garcia E, Andrieux K, Gil S, Couvreur P. Colloidal carriers and blood–brain barrier (BBB) translocation: A way to deliver drugs to the brain? Int J Pharm 2005; 298:274-92. [PMID: 15896933 DOI: 10.1016/j.ijpharm.2005.03.031] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 03/16/2005] [Accepted: 03/21/2005] [Indexed: 11/27/2022]
Abstract
The major problem in drug delivery to the brain is the presence of the blood-brain barrier (BBB) which limits drug penetration even if in certain pathological situations the BBB is partly disrupted. Therefore, various strategies have been proposed to improve the delivery of drugs to this tissue. This review presents the status of the BBB in healthy patients and in pathologies like neurodegenerative, cerebrovascular and inflammatory diseases. The second part of this article aims to review the invasive and non-invasive strategies developed to circumvent the BBB and deliver drugs into the brain. The use of nanotechnologies (liposomes, nanoparticles) is especially discussed in the ultimate part of the review evidencing their potentiality as non-invasive technique in the brain delivery of drugs with the possibility to target specific brain tissue thanks to ligand linked to carrier surface.
Collapse
Affiliation(s)
- E Garcia-Garcia
- Laboratory of Pharmaceutical Technology and Biopharmacy, UMR CNRS 8612, Faculty of Pharmacy, University of Paris-XI, 92296 Châtenay-Malabry, France
| | | | | | | |
Collapse
|
275
|
Abstract
Nanotechnology refers to research and technology development at the atomic, molecular, and macromolecular scale, leading to the controlled manipulation and study of structures and devices with length scales in the 1- to 100-nanometers range. Objects at this scale, such as "nanoparticles," take on novel properties and functions that differ markedly from those seen in the bulk scale. The small size, surface tailorability, improved solubility, and multifunctionality of nanoparticles open many new research avenues for biologists. The novel properties of nanomaterials offer the ability to interact with complex biological functions in new ways-operating at the very scale of biomolecules. This rapidly growing field allows cross-disciplinary researchers the opportunity to design and develop multifunctional nanoparticles that can target, diagnose, and treat diseases such as cancer. This article presents an overview of nanotechnology for the biologist and discusses "nanotech" strategies and constructs that have already demonstrated in vitro and in vivo efficacy.
Collapse
Affiliation(s)
- Scott E McNeil
- Nanotechnology Characterization Laboratory, 1050 Boyles St., Frederick, MD 21702-1201, USA.
| |
Collapse
|
276
|
|
277
|
|
278
|
Abstract
Nanotechnology is a multidisciplinary field, which covers a vast and diverse array of devices derived from engineering, biology, physics and chemistry. These devices include nanovectors for the targeted delivery of anticancer drugs and imaging contrast agents. Nanowires and nanocantilever arrays are among the leading approaches under development for the early detection of precancerous and malignant lesions from biological fluids. These and other nanodevices can provide essential breakthroughs in the fight against cancer.
Collapse
Affiliation(s)
- Mauro Ferrari
- Division of Haematology and Oncology, 110U Davis Heart and Lung Research Institute, The Ohio State University, 473 West 12th Avenue, Columbus OH 43210-1002, USA.
| |
Collapse
|
279
|
Abstract
Nanoparticle drug carriers consist of solid biodegradable particles in size ranging from 10 to 1000 nm (50-300 nm generally). They cannot freely diffuse through the blood-brain barrier (BBB) and require receptor-mediated transport through brain capillary endothelium to deliver their content into the brain parenchyma. Polysorbate 80-coated polybutylcyanoacrylate nanoparticles can deliver drugs to the brain by a still debated mechanism. Despite interesting results these nanoparticles have limitations, discussed in this review, that may preclude, or at least limit, their potential clinical applications. Long-circulating nanoparticles made of methoxypoly(ethylene glycol)- polylactide or poly(lactide-co-glycolide) (mPEG-PLA/PLGA) have a good safety profiles and provide drug-sustained release. The availability of functionalized PEG-PLA permits to prepare target-specific nanoparticles by conjugation of cell surface ligand. Using peptidomimetic antibodies to BBB transcytosis receptor, brain-targeted pegylated immunonanoparticles can now be synthesized that should make possible the delivery of entrapped actives into the brain parenchyma without inducing BBB permeability alteration. This review presents their general properties (structure, loading capacity, pharmacokinetics) and currently available methods for immunonanoparticle preparation.
Collapse
|
280
|
Begley DJ. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther 2004; 104:29-45. [PMID: 15500907 DOI: 10.1016/j.pharmthera.2004.08.001] [Citation(s) in RCA: 434] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The presence of a blood-brain barrier (BBB) and a blood-cerebrospinal fluid barrier presents a huge challenge for effective delivery of therapeutics to the central nervous system (CNS). Many potential drugs, which are effective at their site of action, have failed and have been discarded during their development for clinical use due to a failure to deliver them in sufficient quantity to the CNS. In consequence, many diseases of the CNS are undertreated. In recent years, it has become clear that the blood-CNS barriers are not only anatomical barriers to the free movement of solutes between blood and brain but also transport and metabolic barriers. The cell association, sometimes called the neurovascular unit, constitutes the BBB and is now appreciated to be a complex group of interacting cells, which in combination induce the formation of a BBB. The various strategies available and under development for enhancing drug delivery to the CNS are reviewed.
Collapse
Affiliation(s)
- David J Begley
- Blood-Brain Barrier Research Group, GKT School of Biomedical Science, Guy's Campus, King's College London, Hodgkin Building, London SE1 1UL, UK.
| |
Collapse
|