251
|
Gripp E, Hlahla D, Didelot X, Kops F, Maurischat S, Tedin K, Alter T, Ellerbroek L, Schreiber K, Schomburg D, Janssen T, Bartholomäus P, Hofreuter D, Woltemate S, Uhr M, Brenneke B, Grüning P, Gerlach G, Wieler L, Suerbaum S, Josenhans C. Closely related Campylobacter jejuni strains from different sources reveal a generalist rather than a specialist lifestyle. BMC Genomics 2011; 12:584. [PMID: 22122991 PMCID: PMC3283744 DOI: 10.1186/1471-2164-12-584] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 11/28/2011] [Indexed: 11/22/2022] Open
Abstract
Background Campylobacter jejuni and Campylobacter coli are human intestinal pathogens of global importance. Zoonotic transmission from livestock animals or animal-derived food is the likely cause for most of these infections. However, little is known about their general and host-specific mechanisms of colonization, or virulence and pathogenicity factors. In certain hosts, Campylobacter species colonize persistently and do not cause disease, while they cause acute intestinal disease in humans. Results Here, we investigate putative host-specificity using phenotypic characterization and genome-wide analysis of genetically closely related C. jejuni strains from different sources. A collection of 473 fresh Campylobacter isolates from Germany was assembled between 2006 and 2010 and characterized using MLST. A subset of closely related C. jejuni strains of the highly prevalent sequence type ST-21 was selected from different hosts and isolation sources. PCR typing of strain-variable genes provided evidence that some genes differed between these strains. Furthermore, phenotypic variation of these strains was tested using the following criteria: metabolic variation, protein expression patterns, and eukaryotic cell interaction. The results demonstrated remarkable phenotypic diversity within the ST-21 group, which however did not correlate with isolation source. Whole genome sequencing was performed for five ST-21 strains from chicken, human, bovine, and food sources, in order to gain insight into ST-21 genome diversity. The comparisons showed extensive genomic diversity, primarily due to recombination and gain of phage-related genes. By contrast, no genomic features associated with isolation source or host were identified. Conclusions The genome information and phenotypic data obtained in vitro and in a chicken infection model provided little evidence of fixed adaptation to a specific host. Instead, the dominant C. jejuni ST-21 appeared to be characterized by phenotypic flexibility and high genetic microdiversity, revealing properties of a generalist. High genetic flexibility might allow generalist variants of C. jejuni to reversibly express diverse fitness factors in changing environments.
Collapse
Affiliation(s)
- Eugenia Gripp
- Institute for Medical Microbiology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
252
|
Dicks LMT, Botes M. Probiotic lactic acid bacteria in the gastro-intestinal tract: health benefits, safety and mode of action. Benef Microbes 2011; 1:11-29. [PMID: 21831747 DOI: 10.3920/bm2009.0012] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lactic acid bacteria (LAB) have received considerable attention as probiotics over the past few years. This concept has grown from traditional dairy products to a profitable market of probiotic health supplements and functional foods. Extensive research is done on novel potential probiotic strains, with specific emphasis on their health benefits and mode of action. Criteria for the selection of probiotic strains have only recently been formulated by the Food and Agriculture Organization of the United Nations and the World Health Organization (FAO/WHO). Several in vitro techniques have been developed to evaluate the probiotic properties of strains. In many cases, this is followed by in vivo tests. Safety studies are also obligatory, as a few cases of bacteremia caused by LAB have been reported. This review focuses on the health benefits and safety of LAB probiotics, the criteria used to select a probiotic, mode of action and the impact these organisms have on natural microbiota in the gastro-intestinal tract.
Collapse
Affiliation(s)
- L M T Dicks
- Department of Microbiology, University of Stellenbosch, South Africa.
| | | |
Collapse
|
253
|
Langerholc T, Maragkoudakis PA, Wollgast J, Gradisnik L, Cencic A. Novel and established intestinal cell line models - An indispensable tool in food science and nutrition. Trends Food Sci Technol 2011; 22:S11-S20. [PMID: 32336880 PMCID: PMC7172287 DOI: 10.1016/j.tifs.2011.03.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review presents the applications of intestinal cell models of human and pig origin in food and nutritional sciences and highlights their potential as in vitro platforms for preclinical research. Intestinal cell models are used in studies of bioavailability, adsorption and transport in nutritional or toxicological settings, allergic effects of food components, as well as probiotics and/or host-pathogen gut interactions. In addition, this review discusses the advantages of using specialized and functional cell models over generic cancer-derived cell lines.
Collapse
Affiliation(s)
- Tomaz Langerholc
- Dep. of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Science, University of Maribor, Pivola 10, 2311 Hoce, Slovenia
| | - Petros A Maragkoudakis
- European Commission - Joint Research Centre - Institute for Health and Consumer Protection, Via Enrico Fermi 2749, 21027 Ispra (VA), Italy
| | - Jan Wollgast
- European Commission - Joint Research Centre - Institute for Health and Consumer Protection, Via Enrico Fermi 2749, 21027 Ispra (VA), Italy
| | - Lidija Gradisnik
- Dep. of Biochemistry and Nutrition, Faculty of Medicine, University of Maribor, Slomskov trg 15, 2000 Maribor, Slovenia
| | - Avrelija Cencic
- Dep. of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Science, University of Maribor, Pivola 10, 2311 Hoce, Slovenia
- Dep. of Biochemistry and Nutrition, Faculty of Medicine, University of Maribor, Slomskov trg 15, 2000 Maribor, Slovenia
| |
Collapse
|
254
|
Brosnahan AJ, Brown DR. Porcine IPEC-J2 intestinal epithelial cells in microbiological investigations. Vet Microbiol 2011; 156:229-37. [PMID: 22074860 DOI: 10.1016/j.vetmic.2011.10.017] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 10/12/2011] [Accepted: 10/14/2011] [Indexed: 11/30/2022]
Abstract
IPEC-J2 cells are porcine intestinal columnar epithelial cells that were isolated from neonatal piglet mid-jejunum. This cell line forms polarized monolayers with high transepithelial electrical resistance when cultured on 0.4 μm pore-size filters. The cell line is unique in that it is derived from small intestinal tissue (compared to the common human colon-derived lines HT-29, T84, and Caco-2) and is not transformed (compared to the porcine small intestinal line, IPI-2I). Porcine intestinal epithelial cells more closely mimic human physiology than analogous rodent cell lines (e.g. IEC-6 or IEC-18), which is important in studies of zoonotic infections; in addition, they provide specificity to study porcine-derived infections. IPEC-J2 cells are increasingly being used in microbiological studies to examine the interactions of various animal and human pathogens, including Salmonella enterica and pathogenic Escherichia coli, with intestinal epithelial cells. The IPEC-J2 cell line has also been employed in some probiotic studies, in which the cells have been used as an initial screening tool for adhesiveness and anti-inflammatory properties of the potential probiotic microorganisms. The validity of these studies is not clear as follow-up studies to assess the efficacy of the probiotics in vivo have not been published to date. The aims of this review are to provide a comprehensive overview of the microbiological studies that have been conducted with IPEC-J2 cells and a reference guide of key cellular and immune markers that have been identified in this cell line that may prove to be useful in future studies.
Collapse
Affiliation(s)
- Amanda J Brosnahan
- Department of Veterinary and Biomedical Sciences, University of Minnesota, College of Veterinary Medicine, 295 Animal Science/Veterinary Medicine, 1988 Fitch Ave, Saint Paul, MN 55108, USA.
| | | |
Collapse
|
255
|
Hermes RG, Manzanilla EG, Martín-Orúe SM, Pérez JF, Klasing KC. Influence of dietary ingredients on in vitro inflammatory response of intestinal porcine epithelial cells challenged by an enterotoxigenic Escherichia coli (K88). Comp Immunol Microbiol Infect Dis 2011; 34:479-88. [PMID: 21944732 DOI: 10.1016/j.cimid.2011.08.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 08/20/2011] [Accepted: 08/31/2011] [Indexed: 12/22/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) K88 is the main bacterial cause of diarrhea in piglets around weaning and the adhesion of ETEC to the intestinal mucosa is a prerequisite step for its colonization. In this study, the adhesion of a fimbriated ETEC and a non-fimbriated E. coli (NFEC) to the intestinal cells and the activation of the innate immune system were evaluated using a porcine intestinal epithelial cell line (IPEC-J2). The impact of several feedstuffs (wheat bran (WB); casein glycomacropeptide (CGMP); mannan-oligosaccharides (MOS); locust bean extract (LB) and Aspergillus oryzae fermentation extract (AO)) on ETEC attachment and the inflammatory response were also studied. The gene expression of TLR-4; TLR-5; IL-1β; IL-8; IL-10 and TNF-α were quantified using Cyclophilin-A, as a reference gene, and related to a non-challenged treatment. The fimbriated strain was markedly better than the non-fimbriated strain at adherence to intestinal cells and inducing an inflammatory response. All the feedstuffs studied were able to reduce the adhesion of ETEC, with the greatest decrease with CGMP or MOS at highest concentration. Regarding the inflammatory response, the highest dose of WB promoted the lowest relative expression of cytokines and chemokines. All tested feedstuffs were able to reduce the adhesion of ETEC to IPEC-J2 and interfere on the innate inflammatory response; however WB should be further studied according to the beneficial results on the intestinal inflammatory process evidenced in this study.
Collapse
Affiliation(s)
- Rafael G Hermes
- Grup de Nutrició, Maneig i Benestar, Department de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Spain. rafa
| | | | | | | | | |
Collapse
|
256
|
Vandenbroucke V, Croubels S, Martel A, Verbrugghe E, Goossens J, Van Deun K, Boyen F, Thompson A, Shearer N, De Backer P, Haesebrouck F, Pasmans F. The mycotoxin deoxynivalenol potentiates intestinal inflammation by Salmonella typhimurium in porcine ileal loops. PLoS One 2011; 6:e23871. [PMID: 21909370 PMCID: PMC3166085 DOI: 10.1371/journal.pone.0023871] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 07/27/2011] [Indexed: 11/19/2022] Open
Abstract
Background and Aims Both deoxynivalenol (DON) and nontyphoidal salmonellosis are emerging threats with possible hazardous effects on both human and animal health. The objective of this study was to examine whether DON at low but relevant concentrations interacts with the intestinal inflammation induced by Salmonella Typhimurium. Methodology By using a porcine intestinal ileal loop model, we investigated whether intake of low concentrations of DON interacts with the early intestinal inflammatory response induced by Salmonella Typhimurium. Results A significant higher expression of IL-12 and TNFα and a clear potentiation of the expression of IL-1β, IL-8, MCP-1 and IL-6 was seen in loops co-exposed to 1 µg/mL of DON and Salmonella Typhimurium compared to loops exposed to Salmonella Typhimurium alone. This potentiation coincided with a significantly enhanced Salmonella invasion in and translocation over the intestinal epithelial IPEC-J2 cells, exposed to non-cytotoxic concentrations of DON for 24 h. Exposure of Salmonella Typhimurium to 0.250 µg/mL of DON affected the bacterial gene expression level of a limited number of genes, however none of these expression changes seemed to give an explanation for the increased invasion and translocation of Salmonella Typhimurium and the potentiated inflammatory response in combination with DON. Conclusion These data imply that the intake of low and relevant concentrations of DON renders the intestinal epithelium more susceptible to Salmonella Typhimurium with a subsequent potentiation of the inflammatory response in the gut.
Collapse
Affiliation(s)
- Virginie Vandenbroucke
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
257
|
Sargeant HR, Miller HM, Shaw MA. Inflammatory response of porcine epithelial IPEC J2 cells to enterotoxigenic E. coli infection is modulated by zinc supplementation. Mol Immunol 2011; 48:2113-21. [PMID: 21803424 DOI: 10.1016/j.molimm.2011.07.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 06/28/2011] [Accepted: 07/06/2011] [Indexed: 11/25/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrhoea in pigs and humans. The duration and severity of diarrhoea can be controlled using zinc supplementation, typically pharmacological levels of zinc oxide in pigs. In this study, IPEC J2 cells were used as an in vitro model of intestinal ETEC infection, with separate and simultaneous zinc treatment. Genomic analysis identified increased expression of a variety of innate immune response genes (NF-κB targets) in response to ETEC exposure, and several stress response genes in response to zinc exposure, provided as ZnO. Expression of genes involved in the innate immune response was reduced when cells were simultaneously exposed to ZnO, and it is suggested that ZnO treatment inhibits the induction of NF-κB in response to pathogens, possibly through up-regulated heat shock proteins. A similar response in vivo with consequent down-regulation in the inflammatory response would reduce further pathogen invasion, maintain normal gut function and maintain growth.
Collapse
Affiliation(s)
- Hannah R Sargeant
- Faculty of Biological Sciences, University of Leeds, Clarendon Road, Leeds LS2 9JT, United Kingdom
| | | | | |
Collapse
|
258
|
Awad WA, Aschenbach JR, Zentek J. Cytotoxicity and metabolic stress induced by deoxynivalenol in the porcine intestinal IPEC-J2 cell line. J Anim Physiol Anim Nutr (Berl) 2011; 96:709-16. [DOI: 10.1111/j.1439-0396.2011.01199.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
259
|
Mazzoni M, Bosi P, De Sordi N, Lalatta-Costerbosa G. Distribution, organization and innervation of gastric MALT in conventional piglet. J Anat 2011; 219:611-21. [PMID: 21781093 DOI: 10.1111/j.1469-7580.2011.01415.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Mucosa-associated lymphoid tissue (MALT) is the initial inductive site for mucosal immunity. It is present in the different layers of the mucosal wall and consists of organized lymphoid tissue which may occur as isolated or aggregated lymphoid follicles (LFs) and interfollicular areas. It is present in many organs, including the pig stomach. Gastric MALT has been intensely studied in experimentally infected pigs but few data are available in healthy, non-gnotobiotic or germ-free animals. In the present study we described the gastric MALT in conventional piglets in the cardiac mucosa of the gastric diverticulum, in the pyloric mucosa, and in the sites of transition from cardiac to oxyntic and from cardiac to pyloric mucosa by means of histological and immunohistochemical stains. The majority of LFs were located in the cardiac mucosa and in the transition from the cardiac to the oxyntic mucosa. Here the LFs were mainly located in the submucosa and reached the mucosa; we called these submucosal lymphoid follicles (SLFs). In the pyloric mucosa and in the transition sites from the cardiac to the pyloric mucosa, LFs were located in the mucosa; we called these mucosal lymphoid follicles (MLFs). In SLFs, a compartmental organization of T and B lymphocytes was present; by contrast, in the MLFs, the T and B cells were intermingled, suggesting the possibility of different roles for the two types of follicles. In the epithelium overlying the lymphoid tissue, numerous T lymphocytes and some cells immunoreactive to cytokeratin-18 were observed. Following the application of the fluorescent tracer DiI into the SLFs of the diverticulum, enteric neurones located in the submucosal plexus were labelled, confirming the interplay between the immune and the enteric nervous system.
Collapse
Affiliation(s)
- Maurizio Mazzoni
- Department of Veterinary Medical Science, University of Bologna, Bologna, Italy.
| | | | | | | |
Collapse
|
260
|
Nossol C, Diesing AK, Walk N, Faber-Zuschratter H, Hartig R, Post A, Kluess J, Rothkötter HJ, Kahlert S. Air-liquid interface cultures enhance the oxygen supply and trigger the structural and functional differentiation of intestinal porcine epithelial cells (IPEC). Histochem Cell Biol 2011; 136:103-15. [PMID: 21681518 PMCID: PMC3132278 DOI: 10.1007/s00418-011-0826-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2011] [Indexed: 11/30/2022]
Abstract
The specific function of the epithelium as critical barrier between the intestinal lumen and the organism’s internal microenvironment is reflected by permanent maintenance of intercellular junctions and cellular polarity. The intestinal epithelial cells are responsible for absorption of nutritional components, facing mechanical stress and a changing oxygen supplementation via blood stream. Oxygen itself can regulate the barrier and the absorptive function of the epithelium. Therefore, we compared the dish cell culture, the transwell-like membrane culture and the oxygen enriched air–liquid interface (ALI) culture. We demonstrated strong influence of the different culture conditions on morphology and function of intestinal porcine epithelial cell lines in vitro. ALI culture resulted in a significant increase in cell number, epithelial cell layer thickness and expression as well as apical localisation of the microvilli-associated protein villin. Remarkable similarities regarding the morphological parameters were observed between ALI cultures and intestinal epithelial cells in vivo. Furthermore, the functional analysis of protein uptake and degradation by the epithelial cells demonstrated the necessity of sufficient oxygen supply as achieved in ALI cultures. Our study is the first report providing marked evidence that optimised oxygen supply using ALI cultures directly affects the morphological differentiation and functional properties of intestinal epithelial cells in vitro.
Collapse
Affiliation(s)
- Constanze Nossol
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, Magdeburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
261
|
Geens MM, Niewold TA. Optimizing culture conditions of a porcine epithelial cell line IPEC-J2 through a histological and physiological characterization. Cytotechnology 2011; 63:415-23. [PMID: 21626283 DOI: 10.1007/s10616-011-9362-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 05/05/2011] [Indexed: 11/30/2022] Open
Abstract
The high similarity between pigs and humans makes pigs a good gastrointestinal (GI) model for humans. Recently an epithelial cell line originating from the jejunum of pig (IPEC-J2) became available. Once validated, this model can be used to investigate the complex interactions occurring in the intestine. The advantages of using IPEC-J2 as in vitro model of the GI tract are the high resemblance between humans and pigs, and the ease of extrapolating in vitro to in vivo characteristics. In this study, the IPEC-J2 cells were functionally characterized by measuring the trans-epithelial electrical resistance (TEER), and by histological and ultrastructural studies. IPEC-J2 cells grown on six different permeable support systems, were investigated. The Transwell(®)-COL collagen-coated membrane (1.12 cm(2)) showed the best results concerning time efficiency and TEER values. The optimum seeding density of 12 × 10(5) cells/mL ensured that after 9 days of differentiation a confluent monolayer was formed. The decrease in TEER values after a maximum had been reached, coincided with the ultrastructural development of apical microvilli. We conclude that IPEC-J2 cells grown on collagen-coated membranes represent a valuable in vitro model system for the small intestinal epithelium which can be of great interest for intestinal research.
Collapse
Affiliation(s)
- Marisa M Geens
- Division of Livestock-Nutrition-Quality, Department of Biosystems, K.U. Leuven, Kasteelpark Arenberg 30-bus 2456, 3001, Heverlee, Belgium,
| | | |
Collapse
|
262
|
Leyman B, Boyen F, Van Parys A, Verbrugghe E, Haesebrouck F, Pasmans F. Salmonella Typhimurium LPS mutations for use in vaccines allowing differentiation of infected and vaccinated pigs. Vaccine 2011; 29:3679-85. [PMID: 21419163 DOI: 10.1016/j.vaccine.2011.03.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/14/2011] [Accepted: 03/02/2011] [Indexed: 11/25/2022]
Abstract
Contaminated pork is a major source of human salmonellosis and the serovar most frequently isolated from pigs is Salmonella Typhimurium. Vaccination could contribute greatly to controlling Salmonella infections in pigs. However, pigs vaccinated with the current vaccines cannot be discriminated from infected pigs with the LPS-based serological tests used in European Salmonella serosurveillance programmes. We therefore examined which LPS encoding genes of Salmonella Typhimurium can be deleted to allow differentiation of infected and vaccinated pigs (DIVA), without affecting the vaccine strain's protective capacity. For this purpose, deletion mutants in Salmonella strain 112910a, used as vaccine strain, were constructed in the LPS encoding genes: ΔrfbA, ΔrfaL, ΔrfaJ, ΔrfaI, ΔrfaG and ΔrfaF. Primary inoculation of BALB/c mice with the parent strain, ΔrfaL, ΔrfbA or ΔrfaJ strain but not the ΔrfaG, ΔrfaF or ΔrfaI strain protected significantly against subsequent infection with the virulent Salmonella Typhimurium strain NCTC12023. Immunization of piglets with the ΔrfaJ or ΔrfaL mutants resulted in the induction of a serological response lacking detectable antibodies against LPS. This allowed a clear differentiation between sera from pigs immunized with the ΔrfaJ or ΔrfaL strains and sera from pigs infected with their isogenic wild type strain. In conclusion, applying deletions in the rfaJ or the rfaL gene in Salmonella Typhimurium strain 112910a allows differentiation of infected and vaccinated pigs in an LPS based ELISA without reducing the strain's protective capacities in mice.
Collapse
Affiliation(s)
- Bregje Leyman
- Ghent University, Faculty of Veterinary Medicine, Department of Pathology, Bacteriology and Avian Diseases, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | | | | | |
Collapse
|
263
|
Petto C, Lesko S, Gäbel G, Böttner M, Wedel T, Kacza J, Pfannkuche H. Establishment and characterization of porcine colonic epithelial cells grown in primary culture. Cells Tissues Organs 2011; 194:457-68. [PMID: 21389677 DOI: 10.1159/000323916] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2010] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Primary cultures of epithelial cells are suitable models for studying epithelial function and, in particular, the regulation of epithelial tightness in vitro. The aim of our study was to develop a protocol for the isolation and culture of porcine colonic epithelial cells and to establish transepithelial electrical resistance (TEER) as a functional parameter for epithelial tightness. METHODS Epithelial cells were obtained from the proximal colon of piglets by enzymatic dispase digestion. Cells were cultured on collagen-coated membrane supports for 21 days. The epithelial origin of the cells was shown by immunohistochemical detection of cytokeratin and zonula occludens protein 1 (ZO-1). Scanning electron microscopy, transmission electron microscopy and confocal microscopy were used for further morphological characterization. The integrity and tightness of the artificial epithelium were determined by measuring TEER. RESULTS The cultured epithelial cells were immunoreactive for cytokeratin and ZO-1. They showed dense microvilli on their apical membranes and expression of Na(+)/K(+)-ATPase on their basolateral membranes. Adjacent cells were connected by tight junctions. We observed TEER to continuously increase up to 870 ± 38 Ω·cm(2) during the culture period. TEER correlated with the amount of epithelial cells expressing ZO-1. CONCLUSIONS The properties of primary cultured epithelial cells resemble the structural properties of polarized colonic epithelium in vivo. Measurement of TEER seems to be suitable for studying epithelial tightness in vitro. We suggest that these primary epithelial cultures be used to investigate the regulation of the epithelial barrier function.
Collapse
Affiliation(s)
- Carola Petto
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
264
|
Diesing AK, Nossol C, Dänicke S, Walk N, Post A, Kahlert S, Rothkötter HJ, Kluess J. Vulnerability of polarised intestinal porcine epithelial cells to mycotoxin deoxynivalenol depends on the route of application. PLoS One 2011; 6:e17472. [PMID: 21364771 PMCID: PMC3045462 DOI: 10.1371/journal.pone.0017472] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 02/03/2011] [Indexed: 11/18/2022] Open
Abstract
Background and Aims Deoxynivalenol (DON) is a Fusarium derived mycotoxin, often occurring on cereals used for human and animal nutrition. The intestine, as prominent barrier for nutritional toxins, has to handle the mycotoxin from the mucosa protected luminal side (apical exposure), as well as already absorbed toxin, reaching the cells from basolateral side via the blood stream. In the present study, the impact of the direction of DON exposure on epithelial cell behaviour and intestinal barrier integrity was elucidated. Methods A non-transformed intestinal porcine epithelial cell line (IPEC-J2), cultured in membrane inserts, serving as a polarised in vitro model to determine the effects of deoxynivalenol (DON) on cellular viability and tight junction integrity. Results Application of DON in concentrations up to 4000 ng/mL for 24, 48 and 72 hours on the basolateral side of membrane cultured polarised IPEC-J2 cells resulted in a breakdown of the integrity of cell connections measured by transepithelial electrical resistance (TEER), as well as a reduced expression of the tight junction proteins ZO-1 and claudin 3. Epithelial cell number decreased and nuclei size was enlarged after 72 h incubation of 4000 ng/mL DON from basolateral. Although necrosis or caspase 3 mediated apoptosis was not detectable after basolateral DON application, cell cycle analysis revealed a significant increase in DNA fragmentation, decrease in G0/G1 phase and slight increase in G2/M phase after 72 hours incubation with DON 2000 ng/mL. Conclusions Severity of impact of the mycotoxin deoxynivalenol on the intestinal epithelial barrier is dependent on route of application. The epithelium appears to be rather resistant towards apical (luminal) DON application whereas the same toxin dose from basolateral severely undermines barrier integrity.
Collapse
Affiliation(s)
- Anne-Kathrin Diesing
- Medical Faculty, Institute of Anatomy, Otto-von-Guericke University, Magdeburg, Germany
| | - Constanze Nossol
- Medical Faculty, Institute of Anatomy, Otto-von-Guericke University, Magdeburg, Germany
| | - Sven Dänicke
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Nicole Walk
- Medical Faculty, Institute of Anatomy, Otto-von-Guericke University, Magdeburg, Germany
| | - Andreas Post
- Medical Faculty, Institute of Anatomy, Otto-von-Guericke University, Magdeburg, Germany
| | - Stefan Kahlert
- Medical Faculty, Institute of Anatomy, Otto-von-Guericke University, Magdeburg, Germany
| | | | - Jeannette Kluess
- Medical Faculty, Institute of Anatomy, Otto-von-Guericke University, Magdeburg, Germany
- * E-mail:
| |
Collapse
|
265
|
Schierack P, Kleta S, Tedin K, Babila JT, Oswald S, Oelschlaeger TA, Hiemann R, Paetzold S, Wieler LH. E. coli Nissle 1917 Affects Salmonella adhesion to porcine intestinal epithelial cells. PLoS One 2011; 6:e14712. [PMID: 21379575 PMCID: PMC3040738 DOI: 10.1371/journal.pone.0014712] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 01/10/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The probiotic Escherichia coli strain Nissle 1917 (EcN) has been shown to interfere in a human in vitro model with the invasion of several bacterial pathogens into epithelial cells, but the underlying molecular mechanisms are not known. METHODOLOGY/PRINCIPAL FINDINGS In this study, we investigated the inhibitory effects of EcN on Salmonella Typhimurium invasion of porcine intestinal epithelial cells, focusing on EcN effects on the various stages of Salmonella infection including intracellular and extracellular Salmonella growth rates, virulence gene regulation, and adhesion. We show that EcN affects the initial Salmonella invasion steps by modulating Salmonella virulence gene regulation and Salmonella SiiE-mediated adhesion, but not extra- and intracellular Salmonella growth. However, the inhibitory activity of EcN against Salmonella invasion always correlated with EcN adhesion capacities. EcN mutants defective in the expression of F1C fimbriae and flagellae were less adherent and less inhibitory toward Salmonella invasion. Another E. coli strain expressing F1C fimbriae was also adherent to IPEC-J2 cells, and was similarly inhibitory against Salmonella invasion like EcN. CONCLUSIONS We propose that EcN affects Salmonella adhesion through secretory components. This mechanism appears to be common to many E. coli strains, with strong adherence being a prerequisite for an effective reduction of SiiE-mediated Salmonella adhesion.
Collapse
Affiliation(s)
- Peter Schierack
- Institut für Mikrobiologie und Tierseuchen, Freie Universität Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
266
|
Involvement of quorum sensing and heat-stable enterotoxin a in cell damage caused by a porcine enterotoxigenic Escherichia coli strain. Infect Immun 2011; 79:1688-95. [PMID: 21300771 DOI: 10.1128/iai.01281-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) strains with K88 fimbriae are often associated with the outbreaks of diarrhea in newborn and weaned piglets worldwide. In the present study, we observed that 10⁸ CFU/ml of K88(+) ETEC strain JG280 caused more death of pig intestinal IPEC-J2 cells than did 10⁹ CFU/ml, suggesting that ETEC-induced cell death was cell density dependent and that quorum sensing (QS) may play a role in pathogenesis. Subsequent investigations demonstrated a positive correlation between autoinducer 2 (AI-2) activity of JG280 and death of IPEC-J2 cells during the infection for up to 3 h. However, there was a negative correlation between AI-2 activity and expression of the JG280 enterotoxin genes estA and estB when IPEC-J2 cells were exposed to the pathogen at 10⁸ CFU/ml. We therefore cloned the luxS gene (responsible for AI-2 production) from JG280 and overexpressed it in E. coli DH5α, because deletion of the luxS gene was retarded by the lack of suitable antibiotic selection markers and the resistance of this pathogen to a wide range of antibiotics. The addition of culture fluid from E. coli DH5α with the overexpressed luxS reduced cell death of IPEC-J2 cells by 10⁸ CFU/ml JG280. The addition also reduced the estA expression by JG280. Nonpathogenic K88(+) strain JFF4, which lacks the enterotoxin genes, caused no death of IPEC-J2 cells, although it produced AI-2 activity comparable to that produced by JG280. These results suggest the involvement of AI-2-mediated quorum sensing in K88(+) ETEC pathogenesis, possibly through a negative regulation of STa production.
Collapse
|
267
|
Albert MA, Kojic LD, Nabi IR, Dubreuil JD. Cell type-dependent internalization of the Escherichia coli STb enterotoxin. ACTA ACUST UNITED AC 2011; 61:205-17. [PMID: 21204997 DOI: 10.1111/j.1574-695x.2010.00765.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous studies have suggested that internalization of the Escherichia coli STb enterotoxin in human and rat intestinal epithelial cells is involved in STb pathogenesis, but toxin uptake in porcine jejunum epithelium, the in vivo target tissue, still remains elusive. Using flow cytometry, we studied the internalization of fluorescein isothiocyanate-labelled STb in porcine intestinal epithelial IPEC-J2 and murine fibroblast NIH-3T3 cell lines. In contrast to the selective pronase resistance of STb in NIH-3T3 cells at 37 °C, but not at 4 °C, indicative of toxin internalization, most of the toxin was pronase-sensitive at both temperatures in IPEC-J2 cells, indicating reduced uptake, but significant cell surface binding. Actin reorganization is required for STb internalization by NIH-3T3 cells, confirming STb endocytosis in these cells. The toxin receptor, sulfatide, could not explain these internalization differences because both cell lines possessed surface sulfatide and internalized antisulfatide antibodies over time at 37 °C. Inhibition of lipid rafts endocytosis, known to contain sulfatide, with methyl-β-cyclodextrin or genistein, did not influence toxin uptake by either cell line. STb internalization is therefore differentially regulated depending on the cell type, possibly by factors other than sulfatide. Although a small STb fraction could be internalized by porcine intestinal epithelial cells, our findings suggest the ability of STb to induce, from the cell surface, intracellular signalling leading to fluid secretion in porcine intestinal epithelium.
Collapse
Affiliation(s)
- Marie-Astrid Albert
- Département de pathologie et microbiologie, Centre de Recherche en Infectiologie Porcine, Faculté de médecine vétérinaire, Université de Montréal, QC, Canada
| | | | | | | |
Collapse
|
268
|
Preliminary Characterization of the Transcriptional Response of the Porcine Intestinal Cell Line IPEC-J2 to Enterotoxigenic Escherichia coli, Escherichia coli, and E. coli Lipopolysaccharide. Comp Funct Genomics 2010; 2010:469583. [PMID: 21318186 PMCID: PMC3034941 DOI: 10.1155/2010/469583] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 11/05/2010] [Indexed: 11/18/2022] Open
Abstract
IPEC-J2, a promising in vitro model system, is not well characterized especially on the transcriptional level, in contrast to human counterparts. The aim of this study was to characterize the gene expression in IPEC-J2 cells when coincubated with enterotoxigenic Escherichia coli (ETEC), nonpathogenic E. coli, and E. coli endotoxin. Apical infection of polarized IPEC-J2 monolayers caused a time-dependent decrease in transepithelial electrical resistance (TEER). Microarray analysis showed up-regulation of interleukins when IPEC-J2 were cocultured with E. coli strains this has so far never been measured in this cell line. Highest IL8 expression was found with the ETEC strain possessing the F4 fimbrium, suggesting IPEC-J2 cells to be F4 receptor positive, confirmed in a brush border membrane adhesion assay. It is concluded that the innate immune responses to pathogens and LPS makes the IPEC-J2 cell line a suitable model for research on intestinal host pathogen interaction.
Collapse
|
269
|
Devriendt B, Stuyven E, Verdonck F, Goddeeris BM, Cox E. Enterotoxigenic Escherichia coli (K88) induce proinflammatory responses in porcine intestinal epithelial cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:1175-1182. [PMID: 20600278 DOI: 10.1016/j.dci.2010.06.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 06/11/2010] [Accepted: 06/12/2010] [Indexed: 05/29/2023]
Abstract
Infections with F4(+) enterotoxigenic Escherichia coli (ETEC) causes severe diarrhoea in piglets, resulting in morbidity and mortality. F4 fimbriae are the key virulence factors mediating the attachment of F4(+) ETEC to the intestinal epithelium. Intestinal epithelial cells (IEC) are recently being recognized as important regulators of the intestinal immune system through the secretion of cytokines, however, data on how F4(+) ETEC affect this cytokine secretion are scarce. By using ETEC strains expressing either polymeric, monomeric or F4 fimbriae with a reduced polymeric stability, we demonstrated that polymeric fimbriae are essential for adhesion to porcine IEC and the secretion of IL-6 and IL-8 by IEC. Remarkably, this cytokine secretion was not abrogated following stimulation with an F4-negative strain. Since this strain expresses flagellin, TLR5 mediated signalling could be involved. Indeed, porcine IEC express TLR5 and purified flagellin induced IL-6 and IL-8 secretion, indicating that, as for other pathogens, flagellin is the dominant virulence factor involved in the induction of proinflammatory responses in IEC. These results indicate a potential mucosal adjuvant capacity of ETEC-derived flagellin and may improve rational vaccine design against F4(+) ETEC infections.
Collapse
Affiliation(s)
- Bert Devriendt
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | | | | | | | | |
Collapse
|
270
|
Liu Y, Fatheree NY, Mangalat N, Rhoads JM. Human-derived probiotic Lactobacillus reuteri strains differentially reduce intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 2010; 299:G1087-G1096. [PMID: 20798357 PMCID: PMC2993169 DOI: 10.1152/ajpgi.00124.2010] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 08/25/2010] [Indexed: 01/31/2023]
Abstract
Lactobacillus reuteri (L. reuteri) is a probiotic that inhibits the severity of enteric infections and modulates the immune system. Human-derived L. reuteri strains DSM17938, ATCC PTA4659, ATCC PTA 5289, and ATCC PTA 6475 have demonstrated strain-specific immunomodulation in cultured monocytoid cells, but information about how these strains affect inflammation in intestinal epithelium is limited. We determined the effects of the four different L. reuteri strains on lipopolysaccharide (LPS)-induced inflammation in small intestinal epithelial cells and in the ileum of newborn rats. IPEC-J2 cells (derived from the jejunal epithelium of a neonatal piglet) and IEC-6 cells (derived from the rat crypt) were treated with L. reuteri. Newborn rat pups were gavaged cow milk formula supplemented with L. reuteri strains in the presence or absence of LPS. Protein and mRNA levels of cytokines and histological changes were measured. We demonstrate that even though one L. reuteri strain (DSM 17938) did not inhibit LPS-induced IL-8 production in cultured intestinal cells, all strains significantly reduced intestinal mucosal levels of KC/GRO (∼IL-8) and IFN-γ when newborn rat pups were fed formula containing LPS ± L. reuteri. Intestinal histological damage produced by LPS plus cow milk formula was also significantly reduced by all four strains. Cow milk formula feeding (without LPS) produced mild gut inflammation, evidenced by elevated mucosal IFN-γ and IL-13 levels, a process that could be suppressed by strain 17938. Other cytokines and chemokines were variably affected by the different strains, and there was no toxic effect of L. reuteri on intestinal cells or mucosa. In conclusion, L. reuteri strains differentially modulate LPS-induced inflammation. Probiotic interactions with both epithelial and nonepithelial cells in vivo must be instrumental in modulating intrinsic anti-inflammatory effects in the intestine. We suggest that the terms anti- and proinflammatory be used only to describe the effects of a probiotic in the living host.
Collapse
Affiliation(s)
- Yuying Liu
- Department of Pediatrics, Division of Gastroenterology and Pediatric Research Institute, The University of Texas Health Science Center at Houston, Houston, Texas 7703, USA
| | | | | | | |
Collapse
|
271
|
Diesing AK, Nossol C, Panther P, Walk N, Post A, Kluess J, Kreutzmann P, Dänicke S, Rothkötter HJ, Kahlert S. Mycotoxin deoxynivalenol (DON) mediates biphasic cellular response in intestinal porcine epithelial cell lines IPEC-1 and IPEC-J2. Toxicol Lett 2010; 200:8-18. [PMID: 20937367 DOI: 10.1016/j.toxlet.2010.10.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 10/01/2010] [Accepted: 10/05/2010] [Indexed: 10/19/2022]
Abstract
The Fusarium derived mycotoxin deoxynivalenol (DON) is frequently found in cereals used for human and animal nutrition. We studied effects of DON in non-transformed, non-carcinoma, polarized epithelial cells of porcine small intestinal origin (IPEC-1 and IPEC-J2) in a low (200 ng/mL) and a high (2000 ng/mL) concentration. Application of high DON concentrations showed significant toxic effects as indicated by a reduction in cell number, in cellular reduction capacity measured by MTT assay, reduced uptake of neutral red (NR) and a decrease in cell proliferation. High dose toxicity was accompanied by disintegration of tight junction protein ZO-1 and increase of cell cycle phase G2/M. Activation of caspase 3 was found as an early event in the high DON concentration with an initial maximum after 6-8 h. In contrast, application of 200 ng/mL DON exhibited a response pattern distinct from the high dose DON toxicity. The cell cycle, ZO-1 expression and distribution as well as caspase 3 activation were not changed. BrdU incorporation was significantly increased after 72 h incubation with 200 ng/mL DON and NR uptake was only transiently reduced after 24 h. Low dose effects of DON on intestinal epithelial cells were triggered by mechanisms different from those responsible for the high dose toxicity.
Collapse
Affiliation(s)
- Anne-Kathrin Diesing
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
272
|
Electric cell-substrate impedance sensing (ECIS) based real-time measurement of titer dependent cytotoxicity induced by adenoviral vectors in an IPI-2I cell culture model. Biosens Bioelectron 2010; 26:2000-5. [PMID: 20875729 DOI: 10.1016/j.bios.2010.08.075] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 08/03/2010] [Accepted: 08/28/2010] [Indexed: 11/20/2022]
Abstract
Recombinant viral vectors are widespread tools for transfer of genetic material in various modern biotechnological applications like for example RNA interference (RNAi). However, an accurate and reproducible titer assignment represents the basic step for most downstream applications regarding a precise multiplicity of infection (MOI) adjustment. As necessary scaffold for the studies described in this work we introduce a quantitative real-time PCR (qPCR) based approach for viral particle measurement. Still an implicated problem concerning physiological effects is that the appliance of viral vectors is often attended by toxic effects on the individual target. To determine the critical viral dose leading to cell death we developed an electric cell-substrate impedance sensing (ECIS) based assay. With ECIS technology the impedance change of a current flow through the cell culture medium in an array plate is measured in a non-invasive manner, visualizing effects like cell attachment, cell-cell contacts or proliferation. Here we describe the potential of this online measurement technique in an in vitro model using the porcine ileal epithelial cell line IPI-2I in combination with an adenoviral transfection vector (Ad5-derivate). This approach shows a clear dose-depending toxic effect, as the amount of applied virus highly correlates (p<0.001) with the level of cell death. Thus this assay offers the possibility to discriminate the minimal non-toxic dose of the individual transfection method. In addition this work suggests that the ECIS-device bears the feasibility to transfer this assay to multiple other cytotoxicological questions.
Collapse
|
273
|
The metabolic impact of zinc oxide on porcine intestinal cells and enterotoxigenic Escherichia coli K88. Livest Sci 2010. [DOI: 10.1016/j.livsci.2010.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
274
|
Liu F, Li G, Wen K, Bui T, Cao D, Zhang Y, Yuan L. Porcine small intestinal epithelial cell line (IPEC-J2) of rotavirus infection as a new model for the study of innate immune responses to rotaviruses and probiotics. Viral Immunol 2010; 23:135-49. [PMID: 20373994 DOI: 10.1089/vim.2009.0088] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Previous studies of epithelial immune responses to rotavirus infection have been conducted in transformed cell lines. In this study, we evaluated a non-transformed porcine jejunum epithelial cell line (IPEC-J2) as an in-vitro model of rotavirus infection and probiotic treatment. Cell-culture-adapted porcine rotavirus (PRV) OSU strain, or human rotavirus (HRV) Wa strain, along with Lactobacillus acidophilus (LA) or Lactobacillus rhamnosus GG (LGG) were used to inoculate IPEC-J2 cells. LA or LGG treatment was applied pre- or post-rotavirus infection. We demonstrated that IPEC-J2 cells were productively infected by PRV. LA or LGG treatment of the cells did not reduce virus replication. PRV infection increased MUC3 mucin secretion. LGG treatment post-rotavirus infection reduced the mucin secretion response induced by PRV; LGG alone increased the production of membrane-associated MUC3 mucin. LA treatment prior to rotavirus infection significantly increased PRV replication and the IL-6 response to PRV infection, which is consistent with the adjuvant effect of LA. LGG treatment post-rotavirus infection downregulated the IL-6 response, confirming the anti-inflammatory effect of LGG. IPEC-J2 cells expressed toll-like receptor (TLR) 2, TLR3, and TLR9 constitutively. TLR2 expression was upregulated by LGG and peptidoglycan, corresponding to the decreased IL-6 response, indicating that the protective effect of LGG is associated with upregulation of TLR2 expression on intestinal epithelial cells. The IPEC-J2 cell model of PRV infection is a completely homologous system. It is a valuable model for studying the interactions among rotavirus-host-probiotics, and the mechanisms behind the immunomodulating effect of probiotic bacteria on innate immune responses.
Collapse
Affiliation(s)
- Fangning Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | | | | | | | | | | | | |
Collapse
|
275
|
Dänicke S, Hegewald AK, Kahlert S, Kluess J, Rothkötter HJ, Breves G, Döll S. Studies on the toxicity of deoxynivalenol (DON), sodium metabisulfite, DON-sulfonate (DONS) and de-epoxy-DON for porcine peripheral blood mononuclear cells and the Intestinal Porcine Epithelial Cell lines IPEC-1 and IPEC-J2, and on effects of DON and DONS on piglets. Food Chem Toxicol 2010; 48:2154-62. [PMID: 20478350 DOI: 10.1016/j.fct.2010.05.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 05/02/2010] [Accepted: 05/10/2010] [Indexed: 12/01/2022]
Affiliation(s)
- S Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Braunschweig, Germany.
| | | | | | | | | | | | | |
Collapse
|
276
|
Response of porcine intestinal in vitro organ culture tissues following exposure to Lactobacillus plantarum JC1 and Salmonella enterica serovar Typhimurium SL1344. Appl Environ Microbiol 2010; 76:6645-57. [PMID: 20639369 DOI: 10.1128/aem.03115-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of novel intervention strategies for the control of zoonoses caused by bacteria such as Salmonella spp. in livestock requires appropriate experimental models to assess their suitability. Here, a novel porcine intestinal in vitro organ culture (IVOC) model utilizing cell crown (CC) technology (CCIVOC) (Scaffdex) was developed. The CCIVOC model was employed to investigate the characteristics of association of S. enterica serovar Typhimurium strain SL1344 with porcine intestinal tissue following exposure to a Lactobacillus plantarum strain. The association of bacteria to host cells was examined by light microscopy and electron microscopy (EM) after appropriate treatments and staining, while changes in the proteome of porcine jejunal tissues were investigated using quantitative label-free proteomics. Exposure of porcine intestinal mucosal tissues to L. plantarum JC1 did not reduce the numbers of S. Typhimurium bacteria associating to the tissues but was associated with significant (P < 0.005) reductions in the percentages of areas of intestinal IVOC tissues giving positive staining results for acidic mucins. Conversely, the quantity of neutrally charged mucins present within the goblet cells of the IVOC tissues increased significantly (P < 0.05). In addition, tubulin-α was expressed at high levels following inoculation of jejunal IVOC tissues with L. plantarum. Although L. plantarum JC1 did not reduce the association of S. Typhimurium strain SL1344 to the jejunal IVOC tissues, detection of increased acidic mucin secretion, host cytoskeletal rearrangements, and proteins involved in the porcine immune response demonstrated that this strain of L. plantarum may contribute to protecting the pig from infections by S. Typhimurium or other pathogens.
Collapse
|
277
|
Rasschaert K, Devriendt B, Favoreel H, Goddeeris BM, Cox E. Clathrin-mediated endocytosis and transcytosis of enterotoxigenic Escherichia coli F4 fimbriae in porcine intestinal epithelial cells. Vet Immunol Immunopathol 2010; 137:243-50. [PMID: 20580439 DOI: 10.1016/j.vetimm.2010.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 05/25/2010] [Accepted: 05/28/2010] [Indexed: 11/24/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) cause severe diarrhea in neonatal and recently weaned piglets. Previously, we demonstrated that oral immunization of F4 receptor positive piglets with purified F4 fimbriae induces a protective F4-specific intestinal immune response. However, in F4 receptor negative animals no F4-specific immune response can be elicited, indicating that the induction of an F4-specific mucosal immune response upon oral immunisation is receptor-dependent. Although F4 fimbriae undergo transcytosis across the intestinal epithelium in vivo, the endocytosis pathways used remain unknown. In the present study, we characterized the internalization of F4 fimbriae in the porcine intestinal epithelial cell line IPEC-J2. The results in the present study demonstrate that F4 fimbriae are internalized through a clathrin-dependent pathway. Furthermore, our results suggest that F4 fimbriae are transcytosed across differentiated IPEC-J2 cells. This receptor-dependent transcytosis of F4 fimbriae may explain the immunogenicity of these fimbriae upon oral administration in vivo.
Collapse
Affiliation(s)
- Kristien Rasschaert
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | | | | | | | | |
Collapse
|
278
|
Functional cell models of the gut and their applications in food microbiology--a review. Int J Food Microbiol 2010; 141 Suppl 1:S4-14. [PMID: 20444515 PMCID: PMC7173225 DOI: 10.1016/j.ijfoodmicro.2010.03.026] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Revised: 03/17/2010] [Accepted: 03/18/2010] [Indexed: 02/08/2023]
Abstract
Animal experimentation has a long tradition for risk assessment of new drugs before they reach the clinic. To reduce expensive animal experimentation, attempts have been made to build inexpensive and convenient intestinal functional cell models to study toxicity and bioavailability of new substances along with providing relevant models to study interactions between the host, pathogens and intestinal microflora. We review the available cell lines and models of the intestine and their potential uses. Tumor derived cell lines such as Caco-2, T84 and HT-29 are widely used despite many drawbacks, which are discussed with respect to complexity of the gut, where various cell types interact with commensal microbiota and gut-associated lymphoid tissue. To address this complexity, 3D models of human and animal gut represent a promising in vitro system to mimic in vivo situation without the use of transformed cell lines.
Collapse
|
279
|
Arce C, Ramírez-Boo M, Lucena C, Garrido J. Innate immune activation of swine intestinal epithelial cell lines (IPEC-J2 and IPI-2I) in response to LPS from Salmonella typhimurium. Comp Immunol Microbiol Infect Dis 2010; 33:161-74. [DOI: 10.1016/j.cimid.2008.08.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2008] [Indexed: 12/25/2022]
|
280
|
Aperce CC, Burkey TE, KuKanich B, Crozier-Dodson BA, Dritz SS, Minton JE. Interaction of Bacillus species and Salmonella enterica serovar Typhimurium in immune or inflammatory signaling from swine intestinal epithelial cells. J Anim Sci 2010; 88:1649-56. [PMID: 20081082 DOI: 10.2527/jas.2009-2263] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previous research evaluated a laboratory strain of Bacillus licheniformis (BL) in a model swine epithelium and found it exerted antiinflammatory effects on Salmonella enterica serovar Typhimurium (Sal)-induced secretion of IL-8. The current investigation evaluated the antiinflammatory actions of Bacillus bacteria available commercially as feed additives for the swine industry. Three isolates were obtained from the product, 2 Bacillus subtilis (BS1 and BS3) and 1 BL (BL2). Swine jejunal epithelial IPEC-J2 cells were seeded into wells on permeable membrane supports and allowed to form confluent monolayers. Treatments included apical pretreatment with BL, BS1, BL2, or BS3 for 17 h without Sal, and the same Bacillus treatments but with 10(8) cfu of Sal added in the final hour of Bacillus incubation. Two additional treatments included negative control wells receiving no bacteria (control) and positive control wells receiving only Sal (10 total treatments). After bacterial incubation, wells were washed and fresh medium containing gentamicin was added. Cells were incubated for an additional 5 h, after which apical and basolateral media were recovered for determination of IL-8 and bacitracin. In addition, inserts with epithelial cells that had received Sal were lysed and lysates were cultured to determine treatment effects on Sal invasion. Exposure to Sal alone provoked an increase in IL-8 secretion from IPEC-J2 cells compared with control wells (P < 0.001 for both the apical and basolateral directions). Pretreatment with each Bacillus isolate followed by challenge with Sal reduced Sal-induced IL-8 secretion in both the apical and basolateral compartments compared with wells receiving only Sal (P < 0.001; except for BS3 apical, P < 0.01). The residual presence of bacitracin could be detected only in BL2 and BL2+Sal. Fewer Sal colonies could be cultured from lysates of BL2+Sal than from the Sal, BS1+Sal, and BS3+Sal treatments (P < 0.001). Results indicate that B. subtilis and BL have the ability to intervene in secretion of the neutrophil chemoattractant IL-8 from swine intestinal epithelial cells. This effect on chemokine secretion by gastrointestinal epithelial cells in vitro could not be explained solely by reduced invasion of epithelial cells by Sal.
Collapse
Affiliation(s)
- C C Aperce
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506-0201, USA
| | | | | | | | | | | |
Collapse
|
281
|
Characterization of newly established bovine intestinal epithelial cell line. Histochem Cell Biol 2009; 133:125-34. [PMID: 19830445 DOI: 10.1007/s00418-009-0648-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2009] [Indexed: 10/20/2022]
Abstract
Membranous epithelial cells (M cells) of the follicle-associated epithelium in Peyer's patches have a high capacity for transcytosis of several viruses and microorganisms. Here, we report that we have successfully established a bovine intestinal epithelial cell line (BIE cells) and developed an in vitro M cell model. BIE cells have a cobblestone morphology and microvilli-like structures, and strongly express cell-to-cell junctional proteins and cytokeratin, which is a specific intermediate filament protein of epithelial cells. After co-culture with murine intestinal lymphocytes or treatment with supernatant from bovine PBMC cultured with IL-2, BIE cells acquired the ability of transcytosis. Therefore, BIE cells have typical characteristics of bovine intestinal epithelial cells and also have the ability to differentiate into an M cell like linage. In addition, our results indicate that contact between immune cells and epithelial cells may not be absolutely required for the differentiation of M cells. We think that BIE cells will be useful for studying the transport mechanisms of various pathogens and also the evaluation of drug delivery via M cells.
Collapse
|
282
|
Johnson AM, Kaushik RS, Hardwidge PR. Disruption of transepithelial resistance by enterotoxigenic Escherichia coli. Vet Microbiol 2009; 141:115-9. [PMID: 19733985 DOI: 10.1016/j.vetmic.2009.08.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 08/05/2009] [Accepted: 08/07/2009] [Indexed: 01/30/2023]
Abstract
Transepithelial resistance and tight junction protein localization in porcine intestinal epithelial cells were evaluated as a function of infection with porcine enterotoxigenic Escherichia coli isolates differing in adhesin and enterotoxin profiles. Robust heat-labile enterotoxin-independent reduction of host transepithelial resistance was observed in the absence of tight junction protein mislocalization.
Collapse
Affiliation(s)
- Amber M Johnson
- Department of Veterinary Science, South Dakota State University, Brookings, SD 57007, USA
| | | | | |
Collapse
|
283
|
Mariani V, Palermo S, Fiorentini S, Lanubile A, Giuffra E. Gene expression study of two widely used pig intestinal epithelial cell lines: IPEC-J2 and IPI-2I. Vet Immunol Immunopathol 2009; 131:278-84. [PMID: 19446887 DOI: 10.1016/j.vetimm.2009.04.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 04/07/2009] [Accepted: 04/14/2009] [Indexed: 11/26/2022]
Abstract
The intestinal epithelial cells (IEC) play an important role in the immune system of swine, protecting against infectious and non-infectious environmental insults. The IEC participate in the innate immune response of the intestine through different mechanisms such as barrier function, mucus secretion, antibacterial peptide synthesis and participation in the cytokine/chemokine networks. Most of the current knowledge of intestinal cell functions has come from studies conducted on cell cultures generated from human cancers or from classical animal models. However, because the molecular and cellular elements of the immune system have been selected over evolutionary time in response to the species-specific environment, models of immune function based on mouse and human need to be applied cautiously in pig. Few models of swine small intestine epithelium exist and these are poorly characterised. In the present study we characterised the basal expression of epithelial and immune-related genes of two pig small intestine cell lines, IPEC-J2 and IPI-2I, under different culture conditions. These data represent essential background information for future studies on pig-intestinal pathogen interactions.
Collapse
Affiliation(s)
- Valentina Mariani
- Parco Tecnologico Padano-CERSA-Centro Ricerche e Studi Agroalimentari, Lodi, Italy.
| | | | | | | | | |
Collapse
|
284
|
Rothkötter HJ. Anatomical particularities of the porcine immune system--a physician's view. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:267-272. [PMID: 18775744 DOI: 10.1016/j.dci.2008.06.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 06/30/2008] [Accepted: 06/30/2008] [Indexed: 05/26/2023]
Abstract
In this article the anatomical structure of the porcine immune organs is described. The focus is on their particularities that are related to the use of pigs as an animal model. Key issues of the intrauterine development of the lymphoid organs are presented, such as the specific epithelio-chorial placenta, the appearance of the thymic tissue and the initial development of B cells. The role of the thymus for the development of alpha/beta and gamma/delta T cells and the location of tonsillar tissue in the naso-pharynx, in the oral cavity and at the basis of the tongue are described. The porcine spleen is of interest for surgical techniques to treat splenic trauma adequately. The observation of the inverted lymph node structure of pigs is puzzling and it remains unclear why only few species have this distinct morphological organisation. Based on the functional differences in lymphocyte recirculation observed in pigs, specific lymph cannulation experiments are possible in the porcine immune system. The porcine intestinal lymphoid tissue and the lymphocytes in the mucosal epithelium and lamina propria are of interest for studying the gut immune responses. For use as a model the fact that the pig is a monogastric omnivorous animal represents an advantage, although the porcine ileal Peyer's patch has no obvious anatomical equivalent in man. Based on the detailed knowledge of porcine immune morphology the pig is suitable as model animal for immunology--in addition to the various experimental approaches in physiology, pharmacology, surgery, etc. that are applicable to human medicine.
Collapse
Affiliation(s)
- Hermann-Josef Rothkötter
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany.
| |
Collapse
|
285
|
Burkey TE, Skjolaas KA, Dritz SS, Minton JE. Expression of porcine Toll-like receptor 2, 4 and 9 gene transcripts in the presence of lipopolysaccharide and Salmonella enterica serovars Typhimurium and Choleraesuis. Vet Immunol Immunopathol 2009; 130:96-101. [PMID: 19200608 DOI: 10.1016/j.vetimm.2008.12.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 12/23/2008] [Accepted: 12/24/2008] [Indexed: 10/21/2022]
Abstract
Salmonella enterica serovar Typhimurium (ST) and Choleraesuis (SC) are among the most frequently isolated salmonellae serovars causing enteric disease in swine. Enteric disease in young pigs is of major concern in modern production systems due to the negative implications on animal health, food safety and economic return. Epithelial cells express Toll-like receptors (TLR) that recognize conserved microbial structures and act as mediators of innate and adaptive immune responses. However, little is known about the expression of TLR gene transcripts in swine. The objective of the current study was to characterize the relative abundance of porcine TLR2, 4 and 9 gene transcripts in vitro in a porcine jejunal epithelial cell line (IPEC-J2) and in porcine mononuclear phagocytes (pMP) in the presence of ST or SC, as well as in vivo in the distal ileum of pigs orally challenged with ST. Our results indicate that TLR2, 4 and 9 are constitutively expressed in vitro in IPEC-J2 cells and pMP and in vivo in the distal ileum. Additionally, transient modulation of porcine TLR was observed in vitro and in vivo in the presence of ST and SC. Further investigation is warranted to determine the effects of ST and SC on functional TLR.
Collapse
Affiliation(s)
- T E Burkey
- Animal Science Department, University of Nebraska, C206F Animal Science, Lincoln, NE 68583, USA.
| | | | | | | |
Collapse
|
286
|
Boyen F, Pasmans F, Van Immerseel F, Donné E, Morgan E, Ducatelle R, Haesebrouck F. Porcine in vitro and in vivo models to assess the virulence of Salmonella enterica serovar Typhimurium for pigs. Lab Anim 2009; 43:46-52. [DOI: 10.1258/la.2007.007084] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Salmonella Typhimurium infections in pigs pose an important human health hazard. One promising control measure is the development of live attenuated vaccine strains using defined knockout mutants. Preferably, screening of candidate knockout vaccine strains for attenuation should first be done in models allowing testing of a large number of strains. Thereafter, a limited number of selected strains should be further characterized in an experimental infection model in pigs. The aim of the present study was to develop such models. The invasive and proliferative characteristics of S. Typhimurium were assessed in both a non-polarized and a polarized porcine intestinal epithelial cell line. Neutrophils obtained from porcine blood were used to study the capacity of Salmonella to withstand killing by these phagocytes. The ability to induce an intestinal inflammatory response was investigated in a terminal intestinal loop model. The systemic phase of infection was mimicked by studying the uptake and intracellular survival of S. Typhimurium in porcine pulmonary alveolar macrophages and peripheral blood monocytes. These models should allow screening for attenuated strains. For further characterization, an experimental infection model was established, providing extensive data on the course of an oral infection and the optimal time points for colonization (day 5 postinoculation [pi]) and persistency (days 21–28 pi) in pigs. In conclusion, screening for virulence of S. Typhimurium strains with subsequent confirmation for a subset of strains in a well-defined experimental infection model would significantly reduce the number of experimental pigs required.
Collapse
Affiliation(s)
- F Boyen
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - F Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - F Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - E Donné
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - E Morgan
- Division of Microbiology, Institute for Animal Health, Compton, Nr Newbury, Berks RG20 7NN, UK
| | - R Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - F Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
287
|
Heat-labile enterotoxin promotes Escherichia coli adherence to intestinal epithelial cells. J Bacteriol 2008; 191:178-86. [PMID: 18978047 DOI: 10.1128/jb.00822-08] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Given recent evidence suggesting that the heat-labile enterotoxin (LT) provides a colonization advantage for enterotoxigenic Escherichia coli (ETEC) in vivo, we hypothesized that LT preconditions the host intestinal epithelium for ETEC adherence. To test this hypothesis, we used an in vitro model of ETEC adherence to examine the role of LT in promoting bacterium-host interactions. We present data demonstrating that elaboration of LT promotes a significant increase in E. coli adherence. This phenotype is primarily dependent on the inherent ADP-ribosylation activity of this toxin, with a secondary role observed for the receptor-binding LT-B subunit. Rp-3',5'-cyclic AMP (cAMP), an inhibitor of protein kinase A, was sufficient to abrogate LT's ability to promote subsequent bacterial adherence. Increased adherence was not due to changes in the surface expression of the host receptor for the K88ac adhesin. Evidence is also presented for a role for bacterial sensing of host-derived cAMP in promoting adherence to host cells.
Collapse
|
288
|
Pisal DS, Yellepeddi VK, Kumar A, Palakurthi S. Transport of Surface Engineered Polyamidoamine (PAMAM) Dendrimers Across IPEC-J2 Cell Monolayers. Drug Deliv 2008; 15:515-22. [DOI: 10.1080/10717540802321826] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
289
|
Veldhuizen EJA, Koomen I, Ultee T, van Dijk A, Haagsman HP. Salmonella serovar specific upregulation of porcine defensins 1 and 2 in a jejunal epithelial cell line. Vet Microbiol 2008; 136:69-75. [PMID: 19019577 DOI: 10.1016/j.vetmic.2008.09.072] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 09/10/2008] [Accepted: 09/19/2008] [Indexed: 11/28/2022]
Abstract
Defensins are important antimicrobial effector peptides of the innate immune system, which provides protection against bacterial infections in the intestine. Salmonella Choleraesuis and Salmonella Typhimurium are the most commonly isolated serovars in pig, but disease outcome is dependent on the Salmonella serovar. These infections are a serious problem for the swine industry and are also posing a major threat to public health because of Salmonella-related food-borne illnesses in human. To understand the innate immune response of pigs upon Salmonella infections, we studied the effect of these Salmonella serovars on defensin gene expression in the porcine ileal epithelial cell line IPEC-J2. With the use of scanning electron microscopy, we first visualized the surface characteristics of this cell line, and captured the invasion of Salmonella into the epithelial cell. Gene expression levels of porcine beta-defensin 1 and 2 were both induced upon S. Typhimurium infection but S. Choleraesuis had no effect. Invasion, adhesion and defensin susceptibility of both serovars were similar, which could not explain the observed difference in host response to these Salmonellae. In addition, induction of defensins was dependent on viability of S. Typhimurium, since Salmonella cell- or secreted components had no effect on defensin gene expression. These results provide further insight into the porcine innate immune response towards Salmonella infections, and could partially explain the different epidemiology of Salmonella infections in pig.
Collapse
Affiliation(s)
- Edwin J A Veldhuizen
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
290
|
Kanaya T, Miyazawa K, Takakura I, Itani W, Watanabe K, Ohwada S, Kitazawa H, Rose MT, McConochie HR, Okano H, Yamaguchi T, Aso H. Differentiation of a murine intestinal epithelial cell line (MIE) toward the M cell lineage. Am J Physiol Gastrointest Liver Physiol 2008; 295:G273-84. [PMID: 18556421 DOI: 10.1152/ajpgi.00378.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
M cells are a kind of intestinal epithelial cell in the follicle-associated epithelium of Peyer's patches. These cells can transport antigens and microorganisms into underlying lymphoid tissues. Despite the important role of M cells in mucosal immune responses, the origin and mechanisms of differentiation as well as cell death of M cells remain unclear. To clarify the mechanism of M cell differentiation, we established a novel murine intestinal epithelial cell line (MIE) from the C57BL/6 mouse. MIE cells grow rapidly and have a cobblestone morphology, which is a typical feature of intestinal epithelial cells. Additionally, they express cytokeratin, villin, cell-cell junctional proteins, and alkaline phosphatase activity and can form microvilli. Their expression of Musashi-1 antigen indicates that they may be close to intestinal stem cells or transit-amplifying cells. MIE cells are able to differentiate into the M cell lineage following coculture with intestinal lymphocytes, but not with Peyer's patch lymphocytes (PPL). However, PPL costimulated with anti-CD3/CD28 MAbs caused MIE cells to display typical features of M cells, such as transcytosis activity, the disorganization of microvilli, and the expression of M cell markers. This transcytosis activity of MIE cells was not induced by T cells isolated from PPL costimulated with the same MAbs and was reduced by the depletion of the T cell population from PPL. A mixture of T cells treated with MAbs and B cells both from PPL led MIE cells to differentiate into M cells. We report here that MIE cells have the potential ability to differentiate into M cells and that this differentiation required activated T cells and B cells.
Collapse
Affiliation(s)
- Takashi Kanaya
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku Univ., 1-1 Tsutsumidori Amamiyamachi, Aoba-ku, 981-8555 Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
291
|
Schoen J, Bondzio A, Topp K, Einspanier R. Establishment and characterization of an adherent pure epithelial cell line derived from the bovine oviduct. Theriogenology 2008; 69:536-45. [DOI: 10.1016/j.theriogenology.2007.10.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 10/22/2007] [Accepted: 10/29/2007] [Indexed: 11/29/2022]
|
292
|
Koh SY, George S, Brözel V, Moxley R, Francis D, Kaushik RS. Porcine intestinal epithelial cell lines as a new in vitro model for studying adherence and pathogenesis of enterotoxigenic Escherichia coli. Vet Microbiol 2008; 130:191-7. [PMID: 18261863 DOI: 10.1016/j.vetmic.2007.12.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 12/08/2007] [Accepted: 12/10/2007] [Indexed: 11/18/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) infections result in large economic losses in the swine industry worldwide. The organism causes diarrhea by adhering to and colonizing enterocytes in the small intestines. While much progress has been made in understanding the pathogenesis of ETEC, no homologous intestinal epithelial cultures suitable for studying porcine ETEC pathogenesis have been described prior to this report. In the current study, we investigated the adherence of various porcine ETEC strains to two porcine (IPEC-1 and IPEC-J2) and one human (INT-407) small intestinal epithelial cell lines. Each cell line was assessed for its ability to support the adherence of E. coli expressing fimbrial adhesins K88ab, K88ac, K88ad, K99, F41, 987P, and F18. Wild-type ETEC expressing K88ab, K88ac, and K88ad efficiently bound to both IPEC-1 and IPEC-J2 cells. An ETEC strain expressing both K99 and F41 bound heavily to both porcine cell lines but an E. coli strain expressing only K99 bound very poorly to these cells. E. coli expressing F18 adhesin strongly bound to IPEC-1 cells but did not adhere to IPEC-J2 cells. The E. coli strains G58-1 and 711 which express no fimbrial adhesins and those that express 987P fimbriae failed to bind to either porcine cell line. Only strains B41 and K12:K99 bound in abundance to INT-407 cells. The binding of porcine ETEC to IPEC-J2, IPEC-1 and INT-407 with varying affinities, together with lack of binding of 987P ETEC and non-fimbriated E. coli strains, suggests strain-specific E. coli binding to these cell lines. These findings suggest the potential usefulness of porcine intestinal cell lines for studying ETEC pathogenesis.
Collapse
Affiliation(s)
- Seung Y Koh
- Department of Veterinary Science, South Dakota State University, Brookings, SD 57007, USA
| | | | | | | | | | | |
Collapse
|
293
|
Schmidt LD, Kohrt LJ, Brown DR. Comparison of growth phase on Salmonella enterica serovar Typhimurium invasion in an epithelial cell line (IPEC J2) and mucosal explants from porcine small intestine. Comp Immunol Microbiol Infect Dis 2008; 31:63-9. [PMID: 17544508 PMCID: PMC10656783 DOI: 10.1016/j.cimid.2007.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2007] [Indexed: 11/26/2022]
Abstract
Salmonella Typhimurium DT104 is a zoonotic enteropathogen of increasing concern for human health. In this study, the influence of growth phase on invasiveness of a S. Typhimurium DT104 field isolate and two reference strains (SL1344 and ATCC 14028) was compared in IPEC J2 cells and mucosal explants from porcine ileum. Internalized bacteria were quantified by a gentamicin resistance assay. After 90 min of exposure to the apical aspect of epithelial monolayers or luminal surface of explants, internalization of all S. Typhimurium strains in mid-logarithmic phase of bacterial growth was comparable. Internalization of stationary phase bacteria was reduced relative to log phase bacteria, with DT104 exhibiting the greatest decrease. Growth phase-related differences in S. Typhimurium invasion are similar in porcine intestinal epithelial cells and mucosal explants, but may be greater in multidrug-resistant strains.
Collapse
Affiliation(s)
- Lisa D. Schmidt
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1988 Fitch Avenue, St. Paul, Minnesota 55108-6010
| | - Laura J. Kohrt
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1988 Fitch Avenue, St. Paul, Minnesota 55108-6010
| | - David R. Brown
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1988 Fitch Avenue, St. Paul, Minnesota 55108-6010
| |
Collapse
|
294
|
Toll-like receptor 4 and cytokine expression involved in functional immune response in an originally established porcine intestinal epitheliocyte cell line. Biochim Biophys Acta Gen Subj 2007; 1780:134-44. [PMID: 18082146 DOI: 10.1016/j.bbagen.2007.11.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 11/08/2007] [Accepted: 11/13/2007] [Indexed: 12/17/2022]
Abstract
To study the immune responses of porcine intestinal epithelial cells to gram-negative bacteria via toll-like receptors (TLRs), originally established porcine intestinal epitheliocyte (PIE) cells were treated with lipopolysaccharide (LPS) or swine-specific enterotoxigenic Escherichia coli (ETEC). Real-time quantitative PCR revealed that PIE cells expressed TLR1-9 and MD-2 mRNAs, preferentially expressed TLR4/MD-2. Immunostaining of PIE cells revealed that TLR4 was precisely expressed in PIE cells at the protein level. PIE cells treated with LPS had up-regulated expression of several TLRs (TLR2, 3, 4, 5 and 8), type 1 helper T (Th1) cytokines (interleukin (IL)-1alpha, IL-1beta, IL-6, IL-15, 18, leukemia inhibitory factor (LIF), and interferon (IFN)-beta), and chemokines (monocyte chemoattractant protein (MCP)-1 and IL-8). ETEC enhanced the expression of TLR2, Th1 type cytokines (IL-1alpha, IL-12p35 and IL-6) and chemokines (MCP-1 and IL-8). These results indicate that PIE induces inflammatory responses by up-regulating Th1 cytokines and chemokines in response to LPS or ETEC, suggesting that PIE is a useful cell line for studying inflammatory responses via TLR4/MD-2 in intestinal epithelial cells.
Collapse
|
295
|
Abstract
The progress in discerning the structure and function of cells and tissues in health and disease has been achieved to a large extent by the continued development of new reagents for histochemistry, the improvement of existing techniques and new imaging techniques. This review will highlight some advancements made in these fields.
Collapse
|
296
|
Brown EA, Kaushik RS, Hardwidge PR. Susceptibility of human enterotoxigenic Escherichia coli isolates to growth inhibition by porcine intestinal epithelial cells. FEMS Microbiol Lett 2007; 274:95-101. [PMID: 17590226 DOI: 10.1111/j.1574-6968.2007.00814.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Growth of human, but not porcine enterotoxigenic Escherichia coli (ETEC) isolates is inhibited during incubation with porcine intestinal epithelial cells and by a constitutively produced factor(s) present in unstimulated cell supernatants. The inhibitory factor(s) is heat stable, not produced by serum-starved cells, and is present in a diverse number of cultured epithelial cell lines of animal, but not of human origin. Susceptibility to porcine intestinal epithelial cells appears to be restricted to ETEC and not E. coli O157:H7 disease isolates.
Collapse
Affiliation(s)
- Eric A Brown
- Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA
| | | | | |
Collapse
|
297
|
Burkey TE, Skjolaas KA, Dritz SS, Minton JE. Expression of Toll-like receptors, interleukin 8, macrophage migration inhibitory factor, and osteopontin in tissues from pigs challenged with Salmonella enterica serovar Typhimurium or serovar Choleraesuis. Vet Immunol Immunopathol 2007; 115:309-19. [PMID: 17178162 DOI: 10.1016/j.vetimm.2006.11.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 11/14/2006] [Accepted: 11/21/2006] [Indexed: 11/30/2022]
Abstract
Two serovars of Salmonella enterica, namely serovar Typhimurium (ST) and serovar Choleraesuis (SC) account for the vast majority of clinical cases of swine salmonellosis worldwide. These serovars are thought to be transmitted among pigs in production settings mainly through fecal-oral routes. Yet, few studies have evaluated effects of these serovars on expression of innate immune targets when presented to pigs via repeated oral dosing in an attempt to model transmission in production settings. Thus, a primary objective of the current experiments was to evaluate expression of Toll-like receptors (TLR) and selected chemoattractive mediators (interleukin 8, IL8; macrophage migration inhibitory factor, MIF; osteopontin, OPN) in tissues from pigs exposed to ST or SC that had been transformed with kanamycin resistance and green (STG) or red (SCR) fluorescent protein to facilitate isolation from pen fecal samples. In vitro studies confirmed that STG and SCR largely (though not completely) retained their ability to upregulate IL8 and CC chemokine ligand 20 (CCL20) in cultured swine jejunal epithelial cells. Transformed bacteria were then fed to pigs in an in vivo study to determine tissue specific effects on mRNA relative expression. Pigs were fed cookie dough inoculated with bacteria on days 0, 3, 7, and 10 with 10(8)CFU STG (n=8) or SCR (n=8), while control (CTL) pigs (n=8) received dough without bacteria. Animals were sacrificed 14 days from the initial bacterial challenge and samples of tonsil, jejunum, ileum, colon, mesenteric lymph node (MLN), spleen, and liver were removed for subsequent RNA isolation. Expression of mRNA in tissues was determined using real-time quantitative PCR and expressed relative to 18S rRNA. Within CTL pigs, when expressed relative to the content in liver, mRNA for all targets demonstrated substantial tissue effects (P<0.001 for all TLR; MIF, and OPN; P<0.05 for IL8). Feeding STG and SCR resulted in significant (P<or=0.05) tissue specific effects for TLR5, TLR9, IL8, MIF and OPN. However, aside from STG stimulated increase in IL8 in MLN (approximately 10-fold increase relative to CTL; P<0.05), significant changes in other molecular targets were generally less than one-fold. Results suggest that transformed bacteria may be useful in modeling chronic oral exposure of pigs to economically important salmonellae serovars. However, although statistically significant effects of bacterial feeding were observed in selected tissues for some targets, most changes in mRNA were generally incremental in magnitude.
Collapse
Affiliation(s)
- T E Burkey
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506-0201, USA
| | | | | | | |
Collapse
|
298
|
Larsen N, Nissen P, Willats WGT. The effect of calcium ions on adhesion and competitive exclusion of Lactobacillus ssp. and E. coli O138. Int J Food Microbiol 2007; 114:113-9. [PMID: 17234293 DOI: 10.1016/j.ijfoodmicro.2006.10.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 08/09/2006] [Accepted: 10/09/2006] [Indexed: 11/20/2022]
Abstract
The adhesion abilities of 11 strains of Lactobacillus were determined in vitro using the IPEC-J2 cell line as a model system. Bacteria cultures included the probiotic strains L. rhamnosus GG, L. reuteri ATCC 55730, L. johnsonii NCC 533 and L. reuteri DSM 12246, and new isolates of Lactobacillus ssp. Adhesion was quantified by scintillation counting of radiolabelled bound bacteria. The highest adhesion of 38%, was determined for L. reuteri DSM 12246 followed by L. plantarum Q47 with an adhesion level of 24%. Other strains showed moderate to low binding of less than 16%. Competitive adhesion experiments on IPEC-J2 cells demonstrated that strongly adhesive strains, as L. reuteri DSM 12246 and L. plantarum Q47, significantly reduced the attachment of the less adhesive strains, such as L. rhamnosus GG and L. johnsonii NCC 533, both under condition of co-incubation and in displacement assays, indicating that bacteria may share the same binding sites for attachment to intestinal cells. Furthermore, it was revealed that calcium ions significantly increased the binding of tested lactobacilli to IPEC-J2 cells; and therefore, added calcium may be useful in enhancing the adhesion of normally weakly adhesive probiotic cultures. In contrast, no significant change in adhesion of lactobacilli was observed in the presence of Mg and Zn ions. Displacement assays performed with pathogenic E. coli O138 showed that all tested Lactobacillus strains reduced the attachment of E. coli O138 to IPEC-J2 by more than 2-fold both in the presence and the absence of calcium ions. The strains of Lactobacillus did not differ significantly in the extent of their inhibition of E. coli O138 adhesion, indicating that the reduced adhesion of E. coli O138 was due to steric hindrance of the binding sites rather than to specific interactions.
Collapse
Affiliation(s)
- Nadja Larsen
- Food Microbiology, Department of Food Science (IFV), The Royal Veterinary and Agricultural University (KVL), Rolighedsvej 30, 1958 Frederiksberg C, Denmark.
| | | | | |
Collapse
|
299
|
Vo ATT, van Duijkeren E, Fluit AC, Hendriks HGCJM, Tooten PCJ, Gaastra W. Comparison of the in vitro pathogenicity of two Salmonella Typhimurium phage types. Comp Immunol Microbiol Infect Dis 2007; 30:11-8. [PMID: 17067673 DOI: 10.1016/j.cimid.2006.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2006] [Indexed: 10/24/2022]
Abstract
The in vitro pathogenicity of Salmonella enterica serovar Typhimurium phage type (pt) 90 and pt 506 (also known as DT 104) isolates from human and porcine origin was studied in adhesion and invasion assays to the human cell line Caco-2 and the porcine cell line IPI-2. Interleukin-8 (IL-8) production by these two cell lines in response to stimulation by the two Salmonella phage types was also measured. Generally, Salmonella Typhimurium pt 506 and pt 90 adhered to and invaded Caco-2 cells and IPI-2 cells equally well. The release of IL-8 by Caco-2 cells or by IPI-2 cells was similar, independent of the Salmonella phage type used for stimulation of the cells. These data suggest that Salmonella Typhimurium pt 90 has a similar ability to cause Salmonella infections as Salmonella Typhimurium DT 104.
Collapse
Affiliation(s)
- An T T Vo
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80165, 3508 TD Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
300
|
Brown DR, Price LD. Characterization of Salmonella enterica serovar Typhimurium DT104 invasion in an epithelial cell line (IPEC J2) from porcine small intestine. Vet Microbiol 2006; 120:328-33. [PMID: 17157450 PMCID: PMC1858663 DOI: 10.1016/j.vetmic.2006.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 10/27/2006] [Accepted: 11/02/2006] [Indexed: 10/23/2022]
Abstract
Salmonella Typhimurium DT104 is an emerging enteric pathogen in swine of increasing medical importance. In this study, the time course and the actin-dependent host signaling processes necessary for invasion of a S. Typhimurium DT104 field isolate were investigated in IPEC J2 epithelial cells derived from porcine small intestine. Internalized bacteria were quantified by a gentamicin resistance assay. DT104 internalization into epithelial monolayers increased steadily between 15 and 120min after apical inoculation. Internalization was reduced by the Rho GTPase inhibitor mevastatin, the N-WASP inhibitor wiskostatin and the actin-disrupting agent cytochalasin D, but not the Rac1 GTPase inhibitor NSC-23766. Early DT104 invasion of porcine enterocytes appears to be mediated by Rac1 GTPase-independent changes in epithelial actin assembly.
Collapse
Affiliation(s)
- David R Brown
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St Paul, MN 55108-6010, USA.
| | | |
Collapse
|