251
|
Zeng H, Zhang Y, Peng L, Shao H, Menon NK, Yang J, Salomon AR, Freidland RP, Zagorski MG. Nicotine and amyloid formation. Biol Psychiatry 2001; 49:248-57. [PMID: 11230876 DOI: 10.1016/s0006-3223(00)01111-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The major protein constituents of amyloid deposits in Alzheimer's disease (AD) are the 40-residue beta-amyloid (Abeta) (1-40) peptide and the 42-residue Abeta(1-42) peptide. The Abeta(1-42) is more pathogenic and produced in greater quantities in familial forms of AD. A major goal of research is to uncover a suitable inhibitor that either slows down or inhibits Abeta formation (beta-amyloidosis). During beta-amyloidosis, structural changes associated with the conversion of monomeric Abeta peptide building blocks into the aggregated fibrillar beta-sheet structures occur (alpha-helix-->beta-sheet or random, extended chain-->beta-sheet). In previous work, we and others established that nicotine, a major component of cigarette smoke, inhibits beta-amyloidosis of the Abeta(1-42), which may result from nicotine binding to the alpha-helical structure. These conclusions were based on solution nuclear magnetic resonance (NMR) spectroscopic studies with the nonnative 28-residue Abeta(1-28). This information suggests that, when administered therapeutically to AD patients, nicotine may not only affect cholinergic activation, but could also conceivably alter amyloid deposition. In this report, NMR studies were augmented with the naturally occurring Abeta(1-42), under conditions where the peptide folds into a predominantly alpha-helical or random, extended chain structure. The major result is that nicotine shows only modest binding to these conformations, indicating that the nicotine inhibition to beta-amyloidosis probably results from binding to a small, soluble beta-sheet aggregate that is NMR invisible.
Collapse
Affiliation(s)
- H Zeng
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-7078, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
252
|
Dumery L, Bourdel F, Soussan Y, Fialkowsky A, Viale S, Nicolas P, Reboud-Ravaux M. beta-Amyloid protein aggregation: its implication in the physiopathology of Alzheimer's disease. PATHOLOGIE-BIOLOGIE 2001; 49:72-85. [PMID: 11265227 DOI: 10.1016/s0369-8114(00)00009-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
beta-Amyloid protein (A beta), a 39-42 residue peptide resulting from the proteolytic processing of a membrane-bound beta-amyloid precursor protein (APP), is one of the major components of the fibrillar deposits observed in Alzheimer patients. A beta fibril formation is a complex process which involves changes in A beta conformation and self-association to form cross-beta pleated sheets, protofibrils, and fibrils. Since the aggregation of soluble A beta peptide into fibrils is viewed as a critical event in the physiopathology of Alzheimer's disease (AD), preventing, altering, or reversing fibril formation may thus be of therapeutic value. This review will focus on the current state of knowledge of A beta fibril formation, with special emphasis on physiological and exogenous inhibitors which may have a therapeutic potential.
Collapse
Affiliation(s)
- L Dumery
- UFR 927 des Sciences de la Vie, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris
| | | | | | | | | | | | | |
Collapse
|
253
|
Chen F, Yang DS, Petanceska S, Yang A, Tandon A, Yu G, Rozmahel R, Ghiso J, Nishimura M, Zhang DM, Kawarai T, Levesque G, Mills J, Levesque L, Song YQ, Rogaeva E, Westaway D, Mount H, Gandy S, St George-Hyslop P, Fraser PE. Carboxyl-terminal fragments of Alzheimer beta-amyloid precursor protein accumulate in restricted and unpredicted intracellular compartments in presenilin 1-deficient cells. J Biol Chem 2000; 275:36794-802. [PMID: 10962005 DOI: 10.1074/jbc.m006986200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Absence of functional presenilin 1 (PS1) protein leads to loss of gamma-secretase cleavage of the amyloid precursor protein (betaAPP), resulting in a dramatic reduction in amyloid beta peptide (Abeta) production and accumulation of alpha- or beta-secretase-cleaved COOH-terminal fragments of betaAPP (alpha- or beta-CTFs). The major COOH-terminal fragment (CTF) in brain was identified as betaAPP-CTF-(11-98), which is consistent with the observation that cultured neurons generate primarily Abeta-(11-40). In PS1(-/-) murine neurons and fibroblasts expressing the loss-of-function PS1(D385A) mutant, CTFs accumulated in the endoplasmic reticulum, Golgi, and lysosomes, but not late endosomes. There were some subtle differences in the subcellular distribution of CTFs in PS1(-/-) neurons as compared with PS1(D385A) mutant fibroblasts. However, there was no obvious redistribution of full-length betaAPP or of markers of other organelles in either mutant. Blockade of endoplasmic reticulum-to-Golgi trafficking indicated that in PS1(-/-) neurons (as in normal cells) trafficking of betaAPP to the Golgi compartment is necessary before alpha- and beta-secretase cleavages occur. Thus, although we cannot exclude a specific role for PS1 in trafficking of CTFs, these data argue against a major role in general protein trafficking. These results are more compatible with a role for PS1 either as the actual gamma-secretase catalytic activity or in other functions indirectly related to gamma-secretase catalysis (e.g. an activator of gamma-secretase, a substrate adaptor for gamma-secretase, or delivery of gamma-secretase to betaAPP-containing compartments).
Collapse
Affiliation(s)
- F Chen
- Centre for Research in Neurodegenerative Diseases, Departments of Laboratory Medicine and Pathobiology, Medical Biophysics and Medicine, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
254
|
Antzutkin ON, Balbach JJ, Leapman RD, Rizzo NW, Reed J, Tycko R. Multiple quantum solid-state NMR indicates a parallel, not antiparallel, organization of beta-sheets in Alzheimer's beta-amyloid fibrils. Proc Natl Acad Sci U S A 2000; 97:13045-50. [PMID: 11069287 PMCID: PMC27175 DOI: 10.1073/pnas.230315097] [Citation(s) in RCA: 309] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Senile plaques associated with Alzheimer's disease contain deposits of fibrils formed by 39- to 43-residue beta-amyloid peptides with possible neurotoxic effects. X-ray diffraction measurements on oriented fibril bundles have indicated an extended beta-sheet structure for Alzheimer's beta-amyloid fibrils and other amyloid fibrils, but the supramolecular organization of the beta-sheets and other structural details are not well established because of the intrinsically noncrystalline, insoluble nature of amyloid fibrils. Here we report solid-state NMR measurements, using a multiple quantum (MQ) (13)C NMR technique, that probe the beta-sheet organization in fibrils formed by the full-length, 40-residue beta-amyloid peptide (Abeta(1-40)). Although an antiparallel beta-sheet organization often is assumed and is invoked in recent structural models for full-length beta-amyloid fibrils, the MQNMR data indicate an in-register, parallel organization. This work provides site-specific, atomic-level structural constraints on full-length beta-amyloid fibrils and applies MQNMR to a significant problem in structural biology.
Collapse
Affiliation(s)
- O N Antzutkin
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | | | | | | | | | | |
Collapse
|
255
|
Balbach JJ, Ishii Y, Antzutkin ON, Leapman RD, Rizzo NW, Dyda F, Reed J, Tycko R. Amyloid fibril formation by A beta 16-22, a seven-residue fragment of the Alzheimer's beta-amyloid peptide, and structural characterization by solid state NMR. Biochemistry 2000; 39:13748-59. [PMID: 11076514 DOI: 10.1021/bi0011330] [Citation(s) in RCA: 566] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The seven-residue peptide N-acetyl-Lys-Leu-Val-Phe-Phe-Ala-Glu-NH(2), called A beta(16-22) and representing residues 16-22 of the full-length beta-amyloid peptide associated with Alzheimer's disease, is shown by electron microscopy to form highly ordered fibrils upon incubation of aqueous solutions. X-ray powder diffraction and optical birefringence measurements confirm that these are amyloid fibrils. The peptide conformation and supramolecular organization in A beta(16-22) fibrils are investigated by solid state (13)C NMR measurements. Two-dimensional magic-angle spinning (2D MAS) exchange and constant-time double-quantum-filtered dipolar recoupling (CTDQFD) measurements indicate a beta-strand conformation of the peptide backbone at the central phenylalanine. One-dimensional and two-dimensional spectra of selectively and uniformly labeled samples exhibit (13)C NMR line widths of <2 ppm, demonstrating that the peptide, including amino acid side chains, has a well-ordered conformation in the fibrils. Two-dimensional (13)C-(13)C chemical shift correlation spectroscopy permits a nearly complete assignment of backbone and side chain (13)C NMR signals and indicates that the beta-strand conformation extends across the entire hydrophobic segment from Leu17 through Ala21. (13)C multiple-quantum (MQ) NMR and (13)C/(15)N rotational echo double-resonance (REDOR) measurements indicate an antiparallel organization of beta-sheets in the A beta(16-22) fibrils. These results suggest that the degree of structural order at the molecular level in amyloid fibrils can approach that in peptide or protein crystals, suggest how the supramolecular organization of beta-sheets in amyloid fibrils can be dependent on the peptide sequence, and illustrate the utility of solid state NMR measurements as probes of the molecular structure of amyloid fibrils. A beta(16-22) is among the shortest fibril-forming fragments of full-length beta-amyloid reported to date, and hence serves as a useful model system for physical studies of amyloid fibril formation.
Collapse
Affiliation(s)
- J J Balbach
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
256
|
McLaurin J, Fraser PE. Effect of amino-acid substitutions on Alzheimer's amyloid-beta peptide-glycosaminoglycan interactions. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6353-61. [PMID: 11029577 DOI: 10.1046/j.1432-1327.2000.01725.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One of the major clinical features of Alzheimer's disease is the presence of extracellular amyloid plaques that are associated with glycosaminoglycan-containing proteoglycans. It has been proposed that proteoglycans and glycosaminoglycans facilitate amyloid fibril formation and/or stabilize these aggregates. Characterization of proteoglycan-protein interactions has suggested that basic amino acids in a specific conformation are necessary for glycosaminoglycan binding. Amyloid-beta peptide (Abeta) has a cluster of basic amino acids at the N-terminus (residues 13-16, His-His-Gln-Lys), which are considered critical for glycosaminoglycan interactions. To understand the molecular recognition of glycosaminoglycans by Abeta, we have examined a series of synthetic peptides with systematic alanine substitutions. These include: His13-->Ala, His14-->Ala, Lys16-->Ala, His13His14Lys16-->Ala and Arg5His6-->Ala. Alanine substitutions result in differences in both the secondary and fibrous structure of Abeta1-28 as determined by circular dichroism spectroscopy and electron microscopy. The results demonstrate that the His-His-Gln-Lys region of Abeta, and in particular His13, is an important structural domain, as Ala substitution produces a dysfunctional folding mutant. Interaction of the substituted peptides with heparin and chondroitin sulfate glycosaminoglycans demonstrate that although electrostatic interactions contribute to binding, nonionic interactions such as hydrogen bonding and van der Waals packing play a role in glycosaminoglycan-induced Abeta folding and aggregation.
Collapse
Affiliation(s)
- J McLaurin
- Centre for Research in Neurodegenerative Diseases, Department of Laboratory Medicine , University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
257
|
Serpell LC, Blake CC, Fraser PE. Molecular structure of a fibrillar Alzheimer's A beta fragment. Biochemistry 2000; 39:13269-75. [PMID: 11052680 DOI: 10.1021/bi000637v] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyloid-beta (Abeta) peptide deposition as fibrillar senile plaques is a key element in the pathology of Alzheimer's disease. Here we present a high-resolution structure of an Abeta amyloid fibril using magnetically aligned preparations of a central Abeta domain which forms representative amyloid fibrils. Diffraction analysis of these samples revealed Bragg reflections on layer lines consistent with a preferred orientation, as opposed to the typical symmetry associated with fibers. These crystalline properties permitted a molecular replacement approach based upon a beta-hairpin motif resulting in a structure of the fibrillar Abeta peptide. This detailed molecular structure of Abeta in its fibrous state provides clues as to the mechanism of amyloid assembly and identifies potential targets for controlling the aggregation process.
Collapse
Affiliation(s)
- L C Serpell
- Neurobiology division, MRC Centre, Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, England U.K.
| | | | | |
Collapse
|
258
|
Abstract
Amyloid fibrils are intrinsically noncrystalline, insoluble, high-molecular-weight aggregates of peptides and proteins, with considerable biomedical and biophysical significance. Solid-state NMR techniques are uniquely capable of providing high-resolution, site-specific structural constraints for amyloid fibrils, at the level of specific interatomic distances and torsion angles. So far, a relatively small number of solid-state NMR studies of amyloid fibrils have been reported. These have addressed issues about the supramolecular organization of beta-sheets in the fibrils and the peptide conformation in the fibrils, and have concentrated on the beta-amyloid peptide of Alzheimer's disease. Many additional applications of solid-state NMR to amyloid fibrils from a variety of sources are anticipated in the near future, as these systems are ideally suited for the technique and are of widespread current interest.
Collapse
Affiliation(s)
- R Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA.
| |
Collapse
|
259
|
Austen BM, Frears ER, Davies H. The use of seldi proteinchip arrays to monitor production of Alzheimer's betaamyloid in transfected cells. J Pept Sci 2000; 6:459-69. [PMID: 11016883 DOI: 10.1002/1099-1387(200009)6:9<459::aid-psc286>3.0.co;2-b] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
beta-Amyloid (Abeta), a 39-43 residue peptide, is the principal component of senile plaques found in the brains of patients with Alzheimer's disease (AD). There are two main lines of evidence that its deposition is the cause of neurodegeneration. First, mutations found in three genes in familial Alzheimer's cases give rise to increased production of the longest, most toxic, form, Abeta 1-42. Second. aggregated Abeta is toxic to neuronal cells in culture. Inhibitors of the proteases involved in its release from the amyloid precursor protein are, therefore, of major therapeutic interest. The best candidates for the releasing proteases are both aspartyl proteases, which are integrated into the membranes of the endoplasmic reticulum and Golgi network. A sensitive assay using Ciphergen's Seldi system has been developed to measure all the variants of Abeta in culture supernatants, which will be of great value in screening inhibitors of these proteases. With this assay, it has been shown that increasing intracellular cholesterol increases the activities of both beta-secretase, and gamma-secretase 42. Moreover, changing the intracellular targeting of amyloid precursor glycoprotein (APP) yields increased alpha-secretase cleavage, and increases in the amounts of oxidized/nitrated forms of Abeta.
Collapse
Affiliation(s)
- B M Austen
- Department of Surgery, St George's Hospital Medical School, London, UK.
| | | | | |
Collapse
|
260
|
Otzen DE, Kristensen O, Oliveberg M. Designed protein tetramer zipped together with a hydrophobic Alzheimer homology: a structural clue to amyloid assembly. Proc Natl Acad Sci U S A 2000; 97:9907-12. [PMID: 10944185 PMCID: PMC27622 DOI: 10.1073/pnas.160086297] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2000] [Indexed: 11/18/2022] Open
Abstract
Limited solubility and precipitation of amyloidogenic sequences such as the Alzheimer peptide (beta-AP) are major obstacles to a molecular understanding of protein fibrillation and deposition processes. Here we have circumvented the solubility problem by stepwise engineering a beta-AP homology into a soluble scaffold, the monomeric protein S6. The S6 construct with the highest beta-AP homology crystallizes as a tetramer that is linked by the beta-AP residues forming intermolecular antiparallel beta-sheets. This construct also shows increased coil aggregation during refolding, and a 14-mer peptide encompassing the engineered sequence forms fibrils. Mutational analysis shows that intermolecular association is linked to the overall hydrophobicity of the sticky sequence and implies the existence of "structural gatekeepers" in the wild-type protein, that is, charged side chains that prevent aggregation by interrupting contiguous stretches of hydrophobic residues in the primary sequence.
Collapse
Affiliation(s)
- D E Otzen
- Department of Biochemistry, Umeâ University, S-901 87 Umeâ, Sweden
| | | | | |
Collapse
|
261
|
|
262
|
Garzon-Rodriguez W, Vega A, Sepulveda-Becerra M, Milton S, Johnson DA, Yatsimirsky AK, Glabe CG. A conformation change in the carboxyl terminus of Alzheimer's Abeta (1-40) accompanies the transition from dimer to fibril as revealed by fluorescence quenching analysis. J Biol Chem 2000; 275:22645-9. [PMID: 10806193 DOI: 10.1074/jbc.m000756200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alzheimer's disease is characterized by the presence of insoluble, fibrous deposits composed principally of amyloid beta (Abeta) peptide. A number of studies have provided information on the fibril structure and on the factors affecting fiber formation, but the details of the fibril structure are not known. We used fluorescence quenching to investigate the solvent accessibility and surface charge of the soluble Abeta(1-40) dimer and amyloid fibrils. Analogs of Abeta(1-40) containing a single tryptophan were synthesized by substituting residues at positions 4, 10, 34, and 40 with tryptophan. Quenching measurements in the dimeric state indicate that the amino-terminal analogs (AbetaF4W and AbetaY10W) are accessible to polar quenchers, and the more carboxyl-terminal analog AbetaV34W is less accessible. AbetaV40W, on the other hand, exhibits a low degree of quenching, indicating that this residue is highly shielded from the solvent in the dimeric state. Correcting for the effect of reduced translational and rotational diffusion, fibril formation was associated with a selective increase in solvent exposure of residues 34 and 40, suggesting that a conformation change may take place in the carboxyl-terminal region coincident with the dimer to fibril transition.
Collapse
Affiliation(s)
- W Garzon-Rodriguez
- Departments of Molecular Biology and Biochemistry and Biological Chemistry, University of California, Irvine, California 92697, USA
| | | | | | | | | | | | | |
Collapse
|
263
|
Abstract
Structural studies of Alzheimer's amyloid fibrils have revealed information about the structure at different levels. The amyloid-beta peptide has been examined in various solvents and conditions and this has led to a model by which a conformational switching occurs from alpha-helix or random coil, to a beta-sheet structure. Amyloid fibril assembly proceeds by a nucleation dependent pathway leading to elongation of the fibrils. Along this pathway small oligomeric intermediates and short fibrillar structures (protofibrils) have been observed. In cross-section the fibril appears to be composed of several subfibrils or protofilaments. Each of these protofilaments is composed of beta-sheet structure in which hydrogen bonding occurs along the length of the fibre and the beta-strands run perpendicular to the fibre axis. This hierarchy of structure is discussed in this review.
Collapse
Affiliation(s)
- L C Serpell
- Neurobiology Division, MRC Centre, Cambridge, UK.
| |
Collapse
|
264
|
Roher AE, Baudry J, Chaney MO, Kuo YM, Stine WB, Emmerling MR. Oligomerizaiton and fibril asssembly of the amyloid-beta protein. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1502:31-43. [PMID: 10899429 DOI: 10.1016/s0925-4439(00)00030-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this chapter, we attempt to analyze the evolution of the amyloid-beta (Abeta) molecular structure from its inception as part of the Abeta precursor protein to its release by the secretases and its extrusion from membrane into an aqueous environment. Biophysical studies suggest that the Abeta peptide sustains a series of transitions from a molecule rich in alpha-helix to a molecule in which beta-strands prevail. It is proposed that initially the extended C-termini of two opposing Abeta dimers form an antiparallel beta-sheet and that the subsequent addition of dimers generates a helical Abeta protofilament. Two or more protofilaments create a strand in which the hydrophobic core of the beta-sheets is shielded from the aqueous environment by the N-terminal polar domains of the Abeta dimers. Once the nucleation has occurred, the Abeta filament grows in length by the addition of dimers or tetramers.
Collapse
Affiliation(s)
- A E Roher
- Haldeman Laboratory for Alzheimer's Disease Research, Sun Health Research Institute, Sun City, AZ 85351, USA.
| | | | | | | | | | | |
Collapse
|
265
|
Sian AK, Frears ER, El-Agnaf OM, Patel BP, Manca MF, Siligardi G, Hussain R, Austen BM. Oligomerization of beta-amyloid of the Alzheimer's and the Dutch-cerebral-haemorrhage types. Biochem J 2000; 349:299-308. [PMID: 10861242 PMCID: PMC1221151 DOI: 10.1042/0264-6021:3490299] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A novel ELISA has been developed which detects oligomerization of beta-amyloid (A beta). Oligomerization, fibrillization and neurotoxicity of native A beta associated with Alzheimer's disease (AD) type has been compared with E22Q A beta (amyloid beta-protein containing residues 1--40 with the native Glu at residue 22 changed to Gln) implicated in Dutch cerebral haemorrhage disease. Solutions of A beta rapidly yield soluble oligomers in a concentration-dependent manner, which are detected by the ELISA, and by size-exclusion gel chromatography. Conformational changes from disordered to beta-sheet occur more slowly than oligomerization, and fibrils are produced after prolonged incubation. The E22Q A beta oligomerizes, changes conformation and fibrillizes more rapidly than the native form and produces shorter stubbier fibrils. Aged fibrillar preparations of E22Q A beta are more potent than aged fibrils of native A beta in inducing apoptotic changes and toxic responses in human neuroblastoma cell lines, whereas low-molecular-mass oligomers in briefly incubated solutions are much less potent. The differences in the rates of oligomerization of the two A beta forms, their conformational behaviour over a range of pH values, and NMR data reported elsewhere, are consistent with a molecular model of oligomerization in which strands of A beta monomers initially overcome charge repulsion to form dimers in parallel beta-sheet arrangement, stabilized by intramolecular hydrophobic interactions, with amino acids of adjacent chains in register.
Collapse
Affiliation(s)
- A K Sian
- Department of Surgery, St. George's Hospital Medical School, Cranmer Terrace, London SW17 ORE, UK
| | | | | | | | | | | | | | | |
Collapse
|
266
|
Lynn DG, Meredith SC. Review: model peptides and the physicochemical approach to beta-amyloids. J Struct Biol 2000; 130:153-73. [PMID: 10940223 DOI: 10.1006/jsbi.2000.4287] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
beta-Amyloid peptides are the main protein components of neuritic plaques and may be important in the pathogenesis of Alzheimer's Disease. The determination of the structure of beta-amyloid fibrils poses a challenge because of the limited solubility of beta-amyloid peptides and the noncrystalline nature of fibrils formed from these peptides. In this paper, we describe several physicochemical approaches which have been used to examine fibrils and the fibrillogenesis of peptide models of beta-amyloid. Recent advances in solid state NMR, such as the DRAWS pulse sequence, have made this approach a particularly attractive one for peptides such as beta-amyloid, which are not yet amenable to high-resolution solution phase NMR and crystallography. The application of solid state NMR techniques has yielded information on a model peptide comprising residues 10-35 of human beta-amyloid and indicates that in fibrils, this peptide assumes a parallel beta-strand conformation, with all residues in exact register. In addition, we discuss the use of block copolymers of Abeta peptides and polyethylene glycol as probes for the pathways of fibrillogenesis. These methods can be combined with other new methods, such as high-resolution synchrotron X-ray diffraction and small angle neutron and X-ray scattering, to yield structural data of relevance not only to disease, but to the broader question of protein folding and self-assembly.
Collapse
Affiliation(s)
- D G Lynn
- Department of Chemistry, The University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois, 60637-1403, USA
| | | |
Collapse
|
267
|
Serpell LC, Smith JM. Direct visualisation of the beta-sheet structure of synthetic Alzheimer's amyloid. J Mol Biol 2000; 299:225-31. [PMID: 10860734 DOI: 10.1006/jmbi.2000.3650] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amyloid fibrils are a major pathological feature of Alzheimer's disease as well as other amyloidoses including the prion diseases. They are an unusual phenomenon, being made up of different, normally soluble proteins which undergo a profound conformational change and assemble to form very stable, insoluble fibrils which accumulate in the extracellular spaces. In Alzheimer's disease the amyloid fibrils are composed of the A beta protein. Knowledge of the structure of amyloid is essential for understanding the abnormal assembly and deposition of these fibrils and could lead to the rational design of therapeutic agents for their prevention or disaggregation. Here we reveal the core structure of an Alzheimer's amyloid fibril by direct visualisation using cryo-electron microscopy. Synthetic amyloid fibrils composed of A beta residues 11 to 25 and 1 to 42 were examined. The A beta (11-25) fibrils are clearly composed of beta-sheet structure that is observable as striations across the fibres. The beta-strands run perpendicular to the fibre axis and the projections show that the fibres are composed of beta-sheets with the strands in direct register. This observation has implications not only for the further understanding of amyloid, but also for the development of cryo-electron microscopy for direct visualisation of secondary structure.
Collapse
Affiliation(s)
- L C Serpell
- Neurobiology Division, Medical Research Council Centre, Cambridge, UK.
| | | |
Collapse
|
268
|
Jarvet J, Damberg P, Bodell K, Göran Eriksson LE, Gräslund A. Reversible Random Coil to β-Sheet Transition and the Early Stage of Aggregation of the Aβ(12−28) Fragment from the Alzheimer Peptide. J Am Chem Soc 2000. [DOI: 10.1021/ja991167z] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
269
|
Huang X, Cuajungco MP, Atwood CS, Moir RD, Tanzi RE, Bush AI. Alzheimer's disease, beta-amyloid protein and zinc. J Nutr 2000; 130:1488S-92S. [PMID: 10801964 DOI: 10.1093/jn/130.5.1488s] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by amyloid deposits within the neocortical parenchyma and the cerebrovasculature. The main component of these predominantly extracellular collections, Abeta, which is normally a soluble component of all biological fluids, is cleaved out of a ubiquitously expressed parent protein, the amyloid protein precursor (APP), one of the type 1 integral membrane glycoproteins. Considerable evidence has indicated that there is zinc dyshomeostasis and abnormal cellular zinc mobilization in AD. We have characterized both APP and Abeta as copper/zinc metalloproteins. Zinc, copper and iron have recently been reported to be concentrated to 0.5 to 1 mmol/L in amyloid plaque. In vitro, rapid Abeta aggregation is mediated by Zn(II), promoted by the alpha-helical structure of Abeta, and is reversible with chelation. In addition, Abeta produces hydrogen peroxide in a Cu(II)/Fe(III)-dependent manner, and the hydrogen peroxide formation is quenched by Zn(II). Moreover, zinc preserves the nontoxic properties of Abeta. Although the zinc-binding proteins apolipoprotein E epsilon4 allele and alpha(2)-macroglobulin have been characterized as two genetic risk factors for AD, zinc exposure as a risk factor for AD has not been rigorously studied. Based on our findings, we envisage that zinc may serve twin roles by both initiating amyloid deposition and then being involved in mechanisms attempting to quench oxidative stress and neurotoxicity derived from the amyloid mass. Hence, it remains debatable whether zinc supplementation is beneficial or deleterious for AD until additional studies clarify the issue.
Collapse
Affiliation(s)
- X Huang
- Laboratory for Oxidation Biology, Genetics and Aging Unit, Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Charleston, MA 02129, USA
| | | | | | | | | | | |
Collapse
|
270
|
Serpell LC, Berriman J, Jakes R, Goedert M, Crowther RA. Fiber diffraction of synthetic alpha-synuclein filaments shows amyloid-like cross-beta conformation. Proc Natl Acad Sci U S A 2000; 97:4897-902. [PMID: 10781096 PMCID: PMC18329 DOI: 10.1073/pnas.97.9.4897] [Citation(s) in RCA: 587] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2000] [Accepted: 03/06/2000] [Indexed: 12/21/2022] Open
Abstract
Filamentous inclusions made of alpha-synuclein constitute the defining neuropathological characteristic of Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Rare familial cases of Parkinson's disease are associated with mutations A53T and A30P in alpha-synuclein. We report here the assembly properties and secondary structure characteristics of recombinant alpha-synuclein. Carboxy-terminally truncated human alpha-synuclein (1-87) and (1-120) showed the fastest rates of assembly, followed by human A53T alpha-synuclein, and rat and zebra finch alpha-synuclein. Wild-type human alpha-synuclein and the A30P mutant showed slower rates of assembly. Upon shaking, filaments formed within 48 h at 37 degrees C. The related proteins beta- and gamma-synuclein only assembled after several weeks of incubation. Synthetic human alpha-synuclein filaments were decorated by an antibody directed against the carboxy-terminal 10 amino acids of alpha-synuclein, as were filaments extracted from dementia with Lewy bodies and multiple system atrophy brains. Circular dichroism spectroscopy indicated that alpha-synuclein undergoes a conformational change from random coil to beta-sheet structure during assembly. X-ray diffraction and electron diffraction of the alpha-synuclein assemblies showed a cross-beta conformation characteristic of amyloid.
Collapse
Affiliation(s)
- L C Serpell
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | | | | | | |
Collapse
|
271
|
Berthon G. Does human betaA4 exert a protective function against oxidative stress in Alzheimer's disease? Med Hypotheses 2000; 54:672-7. [PMID: 10859663 DOI: 10.1054/mehy.1999.0924] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The hypothesis is advanced that human betaA4--as opposed to rodent betaA4--may exert a protective function against the iron-induced oxidative stress associated with neurological diseases (notably Alzheimer's disease). Subsequent to its release by the host in response to oxidative injury, human betaA4 would interact with Cu(2+)ions whose level is correlatively elevated, adopting the 'aggregated' structure recently characterized by Atwood et al.(15). Then, depending on the oxidative state--hence the pH--of the medium, it might either return to its original structure if physiological pH is restored, or undergo site-specific copper-mediated oxidation and, finally, degradation. In this context, betaA4 pathogenicity could be due to an interfering mechanism preventing the degradation of the oxidized peptide, making its aggregation irreversible and inducing its final deposition. Coordination of side group oxygen donors of the oxidized peptide with 'hard' metal ions occurring in the physiological medium (notably Al(3+)) might be at the origin of this interference.
Collapse
Affiliation(s)
- G Berthon
- Equipe de Chimie Bioinorganique Médicale, Université Paul Sabatier, Toulouse, France.
| |
Collapse
|
272
|
Benzinger TL, Gregory DM, Burkoth TS, Miller-Auer H, Lynn DG, Botto RE, Meredith SC. Two-dimensional structure of beta-amyloid(10-35) fibrils. Biochemistry 2000; 39:3491-9. [PMID: 10727245 DOI: 10.1021/bi991527v] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Beta-amyloid (Abeta) peptides are the main protein component of the pathognomonic plaques found in the brains of patients with Alzheimer's disease. These heterogeneous peptides adopt a highly organized fibril structure both in vivo and in vitro. Here we use solid-state NMR on stable, homogeneous fibrils of Abeta(10-35). Specific interpeptide distance constraints are determined with dipolar recoupling NMR on fibrils prepared from a series of singly labeled peptides containing (13)C-carbonyl-enriched amino acids, and skipping no more that three residues in the sequence. From these studies, we demonstrate that the peptide adopts the structure of an extended parallel beta-sheet in-register at pH 7.4. Analysis of DRAWS data indicates interstrand distances of 5.3 +/- 0.3 A (mean +/- standard deviation) throughout the entire length of the peptide, which is compatible only with a parallel beta-strand in-register. Intrastrand NMR constraints, obtained from peptides containing labels at two adjacent amino acids, confirm the secondary structural findings obtained using DRAWS. Using peptides with (13)C incorporated at the carbonyl position of adjacent amino acids, structural transitions from alpha-helix to beta-sheet were observed at residues 19 and 20, but using similar techniques, no evidence for a turn could be found in the putative turn region comprising residues 25-29. Implications of this extended parallel organization for Abeta(10-35) for overall fibril formation, stability, and morphology based upon specific amino acid contacts are discussed.
Collapse
Affiliation(s)
- T L Benzinger
- Department of Pathology and Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | |
Collapse
|
273
|
Chauhan A, Ray I, Chauhan VP. Interaction of amyloid beta-protein with anionic phospholipids: possible involvement of Lys28 and C-terminus aliphatic amino acids. Neurochem Res 2000; 25:423-9. [PMID: 10761989 DOI: 10.1023/a:1007509608440] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Fibrillar amyloid beta-protein (Abeta) is the major protein of amyloid plaques in the brains of patients with Alzheimer's disease (AD). The mechanism by which normally produced soluble Abeta gets fibrillized in AD is not clear. We studied the effect of neutral, zwitterionic, and anionic lipids on the fibrillization of Abeta 1-40. We report here that acidic phospholipids such as phosphatidic acid, phosphatidylserine, phosphatidylinositol (PI), PI 4-phosphate, PI 4,5-P2 and cardiolipin can increase the fibrillization of Abeta, while the neutral lipids (diacylglycerol, cholesterol, cerebrosides), zwitterionic lipids (phosphatidylcholine, phosphatidylethanolamine, sphingomyelin) and anionic lipids lacking phosphate groups (sulfatides, gangliosides) do not affect Abeta fibrillization. Abeta was found to increase the fluorescence of 1-acyl-2-[12-[(7-nitro-2-1, 3-benzoxadiazol-4-yl) amino] dodecanoyl]-sn-glycero-3-phosphate (NBD-PA) in a concentration-dependent manner, while no change was observed with 1-acyl-2- [12-[(7-nitro-2-1, 3-benzoxadiazol-4-yl) amino] dodecanoyl]-sn-glycero-3-phosphoethanolamine (NBD-PE). Under similar conditions, other proteins such as apolipoprotein E, gelsolin and polyglutamic acid did not interact with NBD-PA. The order of interaction of amyloid beta-peptides with NBD-PA was Abeta 1-43 = Abeta 1-42 = Abeta 17-42 > Abeta 1-40 = Abeta 17-40. Other Abeta peptides such as Abeta 1-11, Abeta 1-16, Abeta 1-28, Abeta 1-38, Abeta 12-28, Abeta 22-35, Abeta 25-35, and Abeta 31-35 did not increase the NBD-PA fluorescence. These results suggest that phosphate groups, fatty acids, and aliphatic amino acids at the C-terminus end of Abeta 1-40/Abeta 1-42 are essential for the interaction of Abeta with anionic phospholipids, while hydrophilic Abeta segment from 1-16 amino acids does not participate in this interaction. Since positively charged amino acids in Abeta are necessary for the interaction with negatively charged phosphate groups of phospholipids, it is suggested that Lys28 of Abeta may provide anchor for the phosphate groups of lipids, while aliphatic amino acids (Val-Val-Ile-Ala) at the C-terminus of Abeta interact with fatty acids of phospholipids.
Collapse
Affiliation(s)
- A Chauhan
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island 10314-6399, USA
| | | | | |
Collapse
|
274
|
Skovronsky DM, Pijak DS, Doms RW, Lee VM. A distinct ER/IC gamma-secretase competes with the proteasome for cleavage of APP. Biochemistry 2000; 39:810-7. [PMID: 10651647 DOI: 10.1021/bi991728z] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The deposition of amyloid-beta peptides (Abeta) in senile plaques (SPs) is a central pathological feature of Alzheimer's disease (AD). Since SPs are composed predominantly of Abeta1-42, which is more amyloidogenic in vitro, the enzymes involved in generating Abeta1-42 may be particularly important to the pathogenesis of AD. In contrast to Abeta1-40, which is generated in the trans-Golgi network and other cytoplasmic organelles, intracellular Abeta1-42 is produced in the endoplasmic reticulum/intermediate compartment (ER/IC), where it accumulates in a stable insoluble pool. Since this pool of insoluble Abeta1-42 may play a critical role in AD amyloidogenesis, we sought to determine how the production of intracellular Abeta is regulated. Surprisingly, the production of insoluble intracellular Abeta1-42 was increased by a putative gamma-secretase inhibitor as well as by an inhibitor of the proteasome. We further demonstrate that this increased generation of Abeta1-42 in the ER/IC is due to a reduction in the turnover of Abeta-containing APP C-terminal fragments. We conclude that the proteasome is a novel site for degradation of ER/IC-generated APP fragments. Proteasome inhibitors may augment the availability of APP C-terminal fragments for gamma-secretase cleavage and thereby increase production of Abeta1-42 in the ER/IC. Based on the organelle-specific differences in the generation of Abeta by gamma-secretase, we conclude that intracellular ER/IC-generated Abeta1-42 and secreted Abeta1-40 are produced by different gamma-secretases. Further, the fact that a putative gamma-secretase inhibitor had opposite effects on the production of secreted and intracellular Abeta may have important implications for AD drug design.
Collapse
Affiliation(s)
- D M Skovronsky
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
275
|
Tenidis K, Waldner M, Bernhagen J, Fischle W, Bergmann M, Weber M, Merkle ML, Voelter W, Brunner H, Kapurniotu A. Identification of a penta- and hexapeptide of islet amyloid polypeptide (IAPP) with amyloidogenic and cytotoxic properties. J Mol Biol 2000; 295:1055-71. [PMID: 10656810 DOI: 10.1006/jmbi.1999.3422] [Citation(s) in RCA: 349] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pancreatic amyloid is found in more than 95 % of type II diabetes patients. Pancreatic amyloid is formed by the aggregation of islet amyloid polypeptide (hIAPP or amylin), which is a 37-residue peptide. Because pancreatic amyloid is cytotoxic, it is believed that its formation is directly associated with the development of the disease. We recently showed that hIAPP amyloid formation follows the nucleation-dependent polymerization mechanism and proceeds via a conformational transition of soluble hIAPP into aggregated beta-sheets. Here, we report that the penta- and hexapeptide sequences, hIAPP(23-27) (FGAIL) and hIAPP(22-27) (NFGAIL) of hIAPP are sufficient for the formation of beta-sheet-containing amyloid fibrils. Although these two peptides differ by only one amino acid residue, they aggregate into completely different fibrillar assemblies. hIAPP(23-27) (FGAIL) fibrils self-assemble laterally into unusually broad ribbons, whereas hIAPP(22-27) (NFGAIL) fibrils coil around each other in a typical amyloid fibril morphology. hIAPP(20-27) (SNNFGAIL) also aggregates into beta-sheet-containing fibrils, whereas no amyloidogenicity is found for hIAPP(24-27) (GAIL), indicating that hIAPP(23-27) (FGAIL) is the shortest fibrillogenic sequence of hIAPP. Insoluble amyloid formation by the partial hIAPP sequences followed kinetics that were consistent with a nucleation-dependent polymerization mechanism. hIAPP(22-27) (NFGAIL), hIAPP(20-27) (SNNFGAIL), and also the known fibrillogenic sequence, hIAPP(20-29) (SNNFGAILSS) exhibited significantly lower kinetic and thermodynamic solubilities than the pentapeptide hIAPP(23-27) (FGAIL). Fibrils formed by all short peptide sequences and also by hIAPP(20-29) were cytotoxic towards the pancreatic cell line RIN5fm, whereas no cytotoxicity was observed for the soluble form of the peptides, a notion that is consistent with hIAPP cytotoxicity. Our results suggest that a penta- and hexapeptide sequence of an appropriate amino acid composition can be sufficient for beta-sheet and amyloid fibril formation and cytotoxicity and may assist in the rational design of inhibitors of pancreatic amyloid formation or other amyloidosis-related diseases.
Collapse
Affiliation(s)
- K Tenidis
- Physiological-chemical Institute, Tübingen, D-72076, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
276
|
Ray I, Chauhan A, Wegiel J, Chauhan VP. Gelsolin inhibits the fibrillization of amyloid beta-protein, and also defibrillizes its preformed fibrils. Brain Res 2000; 853:344-51. [PMID: 10640633 DOI: 10.1016/s0006-8993(99)02315-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Amyloid beta-protein (Abeta) is present in soluble form in the plasma and cerebrospinal fluid (CSF) of normal people and patients with Alzheimer's disease (AD). However, in AD patients, Abeta gets fibrillized as the main constituent of amyloid plaques in the brain. Soluble synthetic Abeta also forms amyloid-like fibrils when it is allowed to age. The mechanism that prevents soluble Abeta from fibrillization in biological fluids is not clear. We recently reported that gelsolin, a secretory protein, binds to Abeta, and that gelsolin/Abeta complex is present in the plasma [V.P.S. Chauhan, I. Ray, A. Chauhan, H.M. Wisniewski, Biochem. Biophys. Res. Commun. 258 (1999) 241-246.]. We now studied the effect of gelsolin on Abeta fibrillization. Congo red staining and electron microscopic examination in negative staining of aged samples of Abeta alone and Abeta incubated with gelsolin showed that gelsolin inhibits the fibrillization of synthetic Abeta 1-40 and Abeta 1-42 at gelsolin to Abeta molar ratio of 1:40. In addition, gelsolin also defibrillized the preformed fibrils of Abeta 1-40 and Abeta 1-42 in a time-dependent manner. These results suggest that gelsolin functions as an anti-amyloidogenic protein in the plasma and CSF, where it prevents Abeta from fibrillization, and helps to maintain it in the soluble form.
Collapse
Affiliation(s)
- I Ray
- New York State Institute for Basic Research in Developmental Disabilities 1050 Forest Hill Road, Staten Island, NY, USA
| | | | | | | |
Collapse
|
277
|
Gursky O, Aleshkov S. Temperature-dependent beta-sheet formation in beta-amyloid Abeta(1-40) peptide in water: uncoupling beta-structure folding from aggregation. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1476:93-102. [PMID: 10606771 DOI: 10.1016/s0167-4838(99)00228-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To probe the role of temperature in the conversion of soluble Alzheimer's beta-amyloid peptide (Abeta) to insoluble beta-sheet rich aggregates, we analyzed the solution conformation of Abeta(1-40) from 0 to 98 degrees C by far-UV circular dichroism (CD) and native gel electrophoresis. The CD spectra of 15-300 microg/ml Abeta(1-40) in aqueous solution (pH approximately 4.6) at 0 degrees C are concentration-independent and suggest a substantially unfolded and/or unusually folded conformation characteristic of Abeta monomer or dimer. Heating from 0 to 37 degrees C induces a rapid reversible coil to beta-strand transition that is independent of the peptide concentration and thus is not linked to oligomerization. Consequently, this transition may occur within the Abeta(1-40) monomer or dimer. Incubation at 37 degrees C leads to slow reversible concentration-dependent beta-sheet accumulation; heating to 85 degrees C induces further beta-sheet folding and oligomerization. Our results demonstrate the importance of temperature and thermal history for the conformation of Abeta.
Collapse
Affiliation(s)
- O Gursky
- Department of Biophysics, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118-2526, USA.
| | | |
Collapse
|
278
|
Abstract
Cell life depends on the dynamics of molecular processes: molecule folding, organelle building and transformations involving membrane fusion, protein activation and degradation. To carry out these processes, the hydrophilic/hydrophobic interfaces of amphipathic systems such as membranes and native proteins must be disrupted. In the past decade, protein fragments acting in the disruption of interfaces have been evidenced: they are named the tilted or oblique peptides. Due to a peculiar distribution of hydrophobicity, they can disrupt hydrophobicity interfaces. Tilted peptides should be present in many proteins involved in various stages of cell life. This hypothesis overviews their discovery, describes how they are detected and discusses how they could be involved in dynamic biological processes.
Collapse
Affiliation(s)
- R Brasseur
- Centre de Biophysique Moléculaire Numérique, Faculté Universitaire des Sciences Agronomiques de Gembloux, Belgium.
| |
Collapse
|
279
|
McLaurin J, Franklin T, Zhang X, Deng J, Fraser PE. Interactions of Alzheimer amyloid-beta peptides with glycosaminoglycans effects on fibril nucleation and growth. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:1101-10. [PMID: 10583407 DOI: 10.1046/j.1432-1327.1999.00957.x] [Citation(s) in RCA: 204] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proteoglycans and their constituent glycosaminoglycans are associated with all amyloid deposits and may be involved in the amyloidogenic pathway. In Alzheimer's disease, plaques are composed of the amyloid-beta peptide and are associated with at least four different proteoglycans. Using CD spectroscopy, fluorescence spectroscopy and electron microscopy, we examined glycosaminoglycan interaction with the amyloid-beta peptides 1-40 (Abeta40) and 1-42 (Abeta42) to determine the effects on peptide conformation and fibril formation. Monomeric amyloid-beta peptides in trifluoroethanol, when diluted in aqueous buffer, undergo a slow random to amyloidogenic beta sheet transition. In the presence of heparin, heparan sulfate, keratan sulfate or chondroitin sulfates, this transition was accelerated with Abeta42 rapidly adopting a beta-sheet conformation. This was accompanied by the appearance of well-defined amyloid fibrils indicating an enhanced nucleation of Abeta42. Incubation of preformed Abeta42 fibrils with glycosaminoglycans resulted in extensive lateral aggregation and precipitation of the fibrils. The glycosaminoglycans differed in their relative activities with the chondroitin sulfates producing the most pronounced effects. The less amyloidogenic Abeta40 isoform did not show an immediate structural transition that was dependent upon the shielding effect by the phosphate counter ion. Removal or substitution of phosphate resulted in similar glycosaminoglycan-induced conformational and aggregation changes. These findings clearly demonstrate that glycosaminoglycans act at the earliest stage of fibril formation, namely amyloid-beta nucleation, and are not simply involved in the lateral aggregation of preformed fibrils or nonspecific adhesion to plaques. The identification of a structure-activity relationship between amyloid-beta and the different glycosaminoglycans, as well as the condition dependence for glycosaminoglycan binding, are important for the successful development and evaluation of glycosaminoglycan-specific therapeutic interventions.
Collapse
Affiliation(s)
- J McLaurin
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
280
|
Hasegawa K, Yamaguchi I, Omata S, Gejyo F, Naiki H. Interaction between A beta(1-42) and A beta(1-40) in Alzheimer's beta-amyloid fibril formation in vitro. Biochemistry 1999; 38:15514-21. [PMID: 10569934 DOI: 10.1021/bi991161m] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We analyzed the interaction of two kinds of amyloid beta-peptides (A beta), i.e., A beta(1-42) and A beta(1-40), in the kinetics of beta-amyloid fibril (fA beta) formation in vitro, based on a nucleation-dependent polymerization model using fluorescence spectroscopy with thioflavin T. When 25 microM A beta(1-42) was incubated with increasing concentrations of amyloidogenic A beta(1-40), the time to proceed to equilibrium was extended dose-dependently. A similar inhibitory effect was observed when 45 microM A beta(1-40) was incubated with increasing concentrations of A beta(1-42). On the other hand, when 50 microM of nonamyloidogenic A beta(1-40) was incubated with A beta(1-42) at a molar ratio of 10:1 or 5:1, A beta(1-42) initiated fA beta formation from A beta(1-40). The lag time of the reaction shortened in a concentration-dependent manner, with A beta(1-42). We next examined the seeding effect of fA beta formed from A beta(1-42) (fA beta(1-42)) on nonamyloidogenic A beta(1-40). When 50 microM of nonamyloidogenic A beta(1-40) was incubated with 10 or 20 microg/mL (2.2 or 4.4 microM) of fA beta(1-42), the fluorescence showed a sigmoidal increase. The lag time of the reaction was shortened by fA beta(1-42) in a concentration-dependent manner. However, the time to proceed to equilibrium was much longer than when an equal concentration of fA beta formed from A beta(1-40) (fA beta(1-40)) was added to A beta(1-40). The fluorescence increased hyperbolically without a lag phase when 25 microM A beta(1-42) was incubated with 10 or 20 microg/mL (2.3 or 4.6 microM) of fA beta(1-40), and proceeded to equilibrium more rapidly than without fA beta(1-40). An electron microscopic study indicated that the morphology of fA beta formed is governed by the major component of fresh A beta peptides in the reaction mixture, not by the morphology of preexisting fibrils. These results may indicate the central role of A beta(1-42) for fA beta deposition in vivo, among the different coexisting A beta species.
Collapse
Affiliation(s)
- K Hasegawa
- Department of Pathology, Fukui Medical University, Japan
| | | | | | | | | |
Collapse
|
281
|
Contreras CF, Canales MA, Alvarez A, De Ferrari GV, Inestrosa NC. Molecular modeling of the amyloid-beta-peptide using the homology to a fragment of triosephosphate isomerase that forms amyloid in vitro. PROTEIN ENGINEERING 1999; 12:959-66. [PMID: 10585501 DOI: 10.1093/protein/12.11.959] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The main component of the amyloid senile plaques found in Alzheimer's brain is the amyloid-beta-peptide (A beta), a proteolytic product of a membrane precursor protein. Previous structural studies have found different conformations for the A beta peptide depending on the solvent and pH used. In general, they have suggested an alpha-helix conformation at the N-terminal domain and a beta-sheet conformation for the C-terminal domain. The structure of the complete A beta peptide (residues 1-40) solved by NMR has revealed that only helical structure is present in A beta. However, this result cannot explain the large beta-sheet A beta aggregates known to form amyloid under physiological conditions. Therefore, we investigated the structure of A beta by molecular modeling based on extensive homology using the Smith and Waterman algorithm implemented in the MPsrch program (Blitz server). The results showed a mean value of 23% identity with selected sequences. Since these values do not allow a clear homology to be established with a reference structure in order to perform molecular modeling studies, we searched for detailed homology. A 28% identity with an alpha/beta segment of a triosephosphate isomerase (TIM) from Culex tarralis with an unsolved three-dimensional structure was obtained. Then, multiple sequence alignment was performed considering A beta, TIM from C.tarralis and another five TIM sequences with known three-dimensional structures. We found a TIM segment with secondary structure elements in agreement with previous experimental data for A beta. Moreover, when a synthetic peptide from this TIM segment was studied in vitro, it was able to aggregate and to form amyloid fibrils, as established by Congo red binding and electron microscopy. The A beta model obtained was optimized by molecular dynamics considering ionizable side chains in order to simulate A beta in a neutral pH environment. We report here the structural implications of this study.
Collapse
Affiliation(s)
- C F Contreras
- Laboratorio de Biofísica Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción and Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica
| | | | | | | | | |
Collapse
|
282
|
Zagorski MG, Yang J, Shao H, Ma K, Zeng H, Hong A. Methodological and chemical factors affecting amyloid beta peptide amyloidogenicity. Methods Enzymol 1999; 309:189-204. [PMID: 10507025 DOI: 10.1016/s0076-6879(99)09015-1] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- M G Zagorski
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-7078, USA
| | | | | | | | | | | |
Collapse
|
283
|
Affiliation(s)
- L C Serpell
- Laboratory of Molecular Biology, Medical Research Council Centre, Cambridge, United Kingdom
| | | | | |
Collapse
|
284
|
Affiliation(s)
- M A Findeis
- PRAECIS Pharmaceuticals Inc., Cambridge, Massachusetts 02139-1572, USA
| | | |
Collapse
|
285
|
Ding TT, Harper JD. Analysis of amyloid-beta assemblies using tapping mode atomic force microscopy under ambient conditions. Methods Enzymol 1999; 309:510-25. [PMID: 10507045 DOI: 10.1016/s0076-6879(99)09035-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- T T Ding
- Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
286
|
Pillot T, Drouet B, Queillé S, Labeur C, Vandekerchkhove J, Rosseneu M, Pinçon-Raymond M, Chambaz J. The nonfibrillar amyloid beta-peptide induces apoptotic neuronal cell death: involvement of its C-terminal fusogenic domain. J Neurochem 1999; 73:1626-34. [PMID: 10501209 DOI: 10.1046/j.1471-4159.1999.0731626.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The toxicity of the nonaggregated amyloid beta-peptide (1-40) [A beta(1-40)] on the viability of rat cortical neurons in primary culture was investigated. We demonstrated that low concentrations of A beta peptide, in a nonfibrillar form, induced a time- and dose-dependent apoptotic cell death, including DNA condensation and fragmentation. We compared the neurotoxicity of the A beta(1-40) peptide with those of several A beta-peptide domains, comprising the membrane-destabilizing C-terminal domain of A beta peptide (e.g., amino acids 29-40 and 29-42). These peptides reproduced the effects of the (1-40) peptide, whereas mutant nonfusogenic A beta peptides and the central region of the A beta peptide (e.g., amino acids 13-28) had no effect on cell viability. We further demonstrated that the neurotoxicity of the nonaggregated A beta peptide paralleled a rapid and stable interaction between the A beta peptide and the plasma membrane of neurons, preceding apoptosis and DNA fragmentation. By contrast, the peptide in a fibrillar form induced a rapid and dramatic neuronal death mainly through a necrotic pathway, under our conditions. Taken together, our results suggest that A beta induces neuronal cell death by either apoptosis and necrosis and that an interaction between the nonfibrillar C-terminal domain of the A beta peptide and the plasma membrane of cortical neurons might represent an early event in a cascade leading to neurodegeneration.
Collapse
Affiliation(s)
- T Pillot
- INSERM U-505, Institut des Cordeliers, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
287
|
Ma K, Clancy EL, Zhang Y, Ray DG, Wollenberg K, Zagorski MG. Residue-Specific pKa Measurements of the β-Peptide and Mechanism of pH-Induced Amyloid Formation. J Am Chem Soc 1999. [DOI: 10.1021/ja990864o] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kan Ma
- Contribution from the Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, and Lubrizol, Inc., 29400 Lakeland Boulevard, Wickliffe, Ohio 44092-2298
| | - Erin L. Clancy
- Contribution from the Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, and Lubrizol, Inc., 29400 Lakeland Boulevard, Wickliffe, Ohio 44092-2298
| | - Yongbo Zhang
- Contribution from the Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, and Lubrizol, Inc., 29400 Lakeland Boulevard, Wickliffe, Ohio 44092-2298
| | - Dale G. Ray
- Contribution from the Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, and Lubrizol, Inc., 29400 Lakeland Boulevard, Wickliffe, Ohio 44092-2298
| | - Kurt Wollenberg
- Contribution from the Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, and Lubrizol, Inc., 29400 Lakeland Boulevard, Wickliffe, Ohio 44092-2298
| | - Michael G. Zagorski
- Contribution from the Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, and Lubrizol, Inc., 29400 Lakeland Boulevard, Wickliffe, Ohio 44092-2298
| |
Collapse
|
288
|
Tseng BP, Esler WP, Clish CB, Stimson ER, Ghilardi JR, Vinters HV, Mantyh PW, Lee JP, Maggio JE. Deposition of monomeric, not oligomeric, Abeta mediates growth of Alzheimer's disease amyloid plaques in human brain preparations. Biochemistry 1999; 38:10424-31. [PMID: 10441137 DOI: 10.1021/bi990718v] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Senile plaques composed of the peptide Abeta contribute to the pathogenesis of Alzheimer's disease (AD), and mechanisms underlying their formation and growth may be exploitable as therapeutic targets. To examine the process of amyloid plaque growth in human brain, we have utilized size exclusion chromatography (SEC), translational diffusion measured by NMR, and in vitro models of Abeta amyloid growth to identify the oligomerization state of Abeta that is competent to add onto an existing amyloid deposit. SEC of radiolabeled and unlabeled Abeta over a concentration range of 10(-)(10)-10(-)(4) M demonstrated that the freshly dissolved peptide eluted as a single low molecular weight species, consistent with monomer or dimer. This low molecular weight Abeta species isolated by SEC was competent to deposit onto preexisting amyloid in preparations of AD cortex, with first-order kinetic dependence on soluble Abeta concentration, establishing that solution-phase oligomerization is not rate limiting. Translational diffusion measurements of the low molecular weight Abeta fraction demonstrate that the form of the peptide active in plaque deposition is a monomer. In deliberately aged (>6 weeks) Abeta solutions, a high molecular weight (>100 000 M(r)) species was detectable in the SEC column void. In contrast to the active monomer, assembled Abeta isolated from the column showed little or no focal association with AD tissue. These studies establish that, at least in vitro, Abeta exists as a monomer at physiological concentrations and that deposition of monomers, rather than of oligomeric Abeta assemblies, mediates the growth of existing amyloid in human brain preparations.
Collapse
Affiliation(s)
- B P Tseng
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
289
|
Harkany T, Hortobágyi T, Sasvári M, Kónya C, Penke B, Luiten PG, Nyakas C. Neuroprotective approaches in experimental models of beta-amyloid neurotoxicity: relevance to Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 1999; 23:963-1008. [PMID: 10621945 DOI: 10.1016/s0278-5846(99)00058-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
1. beta-Amyloid peptides (A beta s) accumulate abundantly in the Alzheimer's disease (AD) brain in areas subserving information acquisition and processing, and memory formation. A beta fragments are produced in a process of abnormal proteolytic cleavage of their precursor, the amyloid precursor protein (APP). While conflicting data exist in the literature on the roles of A beta s in the brain, and particularly in AD, recent studies have provided firm experimental evidence for the direct neurotoxic properties of A beta. 2. Sequence analysis of A beta s revealed a high degree of evolutionary conservation and inter-species homology of the A beta amino acid sequence. In contrast, synthetic A beta fragments, even if modified fluorescent or isotope-labeled derivatives, are pharmacological candidates for in vitro and in vivo modeling of their cellular actions. During the past decade, acute injection, prolonged mini-osmotic brain perfusion approaches or A beta infusions into the blood circulation were developed in order to investigate the effects of synthetic A beta s, whereas transgenic models provided insight into the distinct molecular steps of pathological APP cleavage. 3. The hippocampus, caudate putamen, amygdala and neocortex all formed primary targets of acute neurotoxicity screening, but functional consequences of A beta infusions were primarily demonstrated following either intracerebroventricular or basal forebrain (medial septum or magnocellular basal nucleus (MBN)) infusions of A beta fragments. 4. In vivo investigations confirmed that, while the active core of A beta is located within the beta(25-35) sequence, the flanking peptide regions influence not only the folding properties of the A beta fragments, but also their in vivo neurotoxic potentials. 5. It has recently been established that A beta administration deranges neuron-glia signaling, affects the glial glutamate uptake and thereby induces noxious glutamatergic stimulation of nerve cells. In fact, a critical role for N-methyl-D-aspartate (NMDA) receptors was postulated in the neurotoxic processes. Additionally, A beta s might become internalized, either after their selective binding to cell-surface receptors or after membrane association in consequence of their highly lipophilic nature, and induce free radical generation and subsequent oxidative injury. Ca(2+)-mediated neurotoxic events and generation of oxygen free radicals may indeed potentiate each other, or even converge to the same neurotoxic events, leading to cell death. 6. Neuroprotection against A beta toxicity was achieved by both pre- and post-treatment with NMDA receptor channel antagonists. Moreover, direct radical-scavengers, such as vitamin E or vitamin C, attenuated A beta toxicity with high efficacy. Interestingly, combined drug treatments did not necessarily result in additive enhanced neuroprotection. 7. Similarly to the blockade of NMDA receptors, the neurotoxic action of A beta s could be markedly decreased by pharmacological manipulation of voltage-dependent Ca(2+)-channels, serotonergic IA or adenosine A1 receptors, and by drugs eliciting membrane hyperpolarization or indirect blockade of Ca(2+)-mediated intracellular consequences of intracerebral A beta infusions. 8. A beta neurotoxicity might be dose-dependently modulated by trace metals. In spite of the fact that zinc (Zn) may act as a potent inhibitor of the NMDA receptor channel, high Zn doses accelerate A beta fibril formation, stabilize the beta-sheet conformation and thereby potentiate A beta neurotoxicity. Combined trace element supplementation with Se, Mn, or Mg, which prevails over the expression of detoxifying enzymes or counteracts intracellular elevations of Ca2+, may reduce the neurotoxic impact of A beta s. 9. Alterations in the regulatory functions of the hypothalamo-pituitary-adrenal axis may contribute significantly to neurodegenerative changes in the brain. Furthermore, AD patients exhibit substantially increased circadia
Collapse
Affiliation(s)
- T Harkany
- Central Research Division of Clinical and Experimental Laboratory Medicine, Haynal Imre University of Health Sciences, Budapest, Hungary.
| | | | | | | | | | | | | |
Collapse
|
290
|
Konno T, Murata K, Nagayama K. Amyloid-like aggregates of a plant protein: a case of a sweet-tasting protein, monellin. FEBS Lett 1999; 454:122-6. [PMID: 10413108 DOI: 10.1016/s0014-5793(99)00789-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We report here a novel case of amyloid-like aggregation of a plant protein. A sweet-tasting protein, monellin, experiences an irreversible heat denaturation at pH 2.5 and 85 degrees C. Addition of 100 mM NaCl couples this process with protein aggregation. The aggregates were structured as regular fibers with approximately 10 nm width and capable of binding to Congo red, similarly to well-known amyloid fibrils. The amyloid-like aggregation process was also successfully monitored with a calorimetric method. This work supports the universality of the amyloid-like aggregation, not restricted to some special categories of protein.
Collapse
Affiliation(s)
- T Konno
- Center for Brain Experiment, National Institute for Physiological Sciences, Okazaki, Japan.
| | | | | |
Collapse
|
291
|
Li L, Darden TA, Bartolotti L, Kominos D, Pedersen LG. An atomic model for the pleated beta-sheet structure of Abeta amyloid protofilaments. Biophys J 1999; 76:2871-8. [PMID: 10354415 PMCID: PMC1300259 DOI: 10.1016/s0006-3495(99)77442-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Synchrotron x-ray studies on amyloid fibrils have suggested that the stacked pleated beta-sheets are twisted so that a repeating unit of 24 beta-strands forms a helical turn around the fibril axis (. J. Mol. Biol. 273:729-739). Based on this morphological study, we have constructed an atomic model for the twisted pleated beta-sheet of human Abeta amyloid protofilament. In the model, 48 monomers of Abeta 12-42 stack (four per layer) to form a helical turn of beta-sheet. Each monomer is in an antiparallel beta-sheet conformation with a turn located at residues 25-28. Residues 17-21 and 31-36 form a hydrophobic core along the fibril axis. The hydrophobic core should play a critical role in initializing Abeta aggregation and in stabilizing the aggregates. The model was tested using molecular dynamics simulations in explicit aqueous solution, with the particle mesh Ewald (PME) method employed to accommodate long-range electrostatic forces. Based on the molecular dynamics simulations, we hypothesize that an isolated protofilament, if it exists, may not be twisted, as it appears to be when in the fibril environment. The twisted nature of the protofilaments in amyloid fibrils is likely the result of stabilizing packing interactions of the protofilaments. The model also provides a binding mode for Congo red on Abeta amyloid fibrils. The model may be useful for the design of Abeta aggregation inhibitors.
Collapse
Affiliation(s)
- L Li
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505-2845, USA
| | | | | | | | | |
Collapse
|
292
|
Jayawickrama DA, Larive CK. Analysis of the (Trimethylsilyl)propionic Acid−β(12−28) Peptide Binding Equilibrium with NMR Spectroscopy. Anal Chem 1999; 71:2117-22. [DOI: 10.1021/ac980989w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
293
|
Li QX, Maynard C, Cappai R, McLean CA, Cherny RA, Lynch T, Culvenor JG, Trevaskis J, Tanner JE, Bailey KA, Czech C, Bush AI, Beyreuther K, Masters CL. Intracellular accumulation of detergent-soluble amyloidogenic A beta fragment of Alzheimer's disease precursor protein in the hippocampus of aged transgenic mice. J Neurochem 1999; 72:2479-87. [PMID: 10349858 DOI: 10.1046/j.1471-4159.1999.0722479.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To study amyloid beta-protein (A beta) production and aggregation in vivo, we created two transgenic (Tg) mouse lines expressing the C-terminal 100 amino acids of human amyloid precursor protein (APP): Tg C100.V717F and Tg C100.WT. Western blot analysis showed that human APP-C100 and A beta were produced in brain and some peripheral tissues and A beta was produced in serum. Using antibodies specific for the A beta C terminus we found that Tg C100.V717F produced a 1.6-fold increase in A beta42/A beta40 compared with Tg C100.WT. Approximately 30% of total brain A beta (approximately 122 ng/g of wet tissue) was water-soluble. The remaining 70% of A beta partitioned into the particulate fraction and was completely sodium dodecyl sulfate-soluble. In contrast, human Alzheimer's disease brain has predominantly sodium dodecyl sulfate-insoluble A beta. Immunohistochemistry with an A beta(5-8) antibody showed that A beta or A beta-containing fragments accumulated intracellularly in the hippocampus of aged Tg C100.V717F mice. The soluble A beta levels in Tg brain are similar to those in normal human brain, and this may explain the lack of microscopic amyloid deposits in the Tg mice. However, this mouse model provides a system to study the intracellular processing and accumulation of A beta or A beta-containing fragments and to screen for compounds directed at the gamma-secretase activity.
Collapse
Affiliation(s)
- Q X Li
- Department of Pathology, University of Melbourne, and Mental Health Research Institute of Victoria, Parkville, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
294
|
Findeis MA, Musso GM, Arico-Muendel CC, Benjamin HW, Hundal AM, Lee JJ, Chin J, Kelley M, Wakefield J, Hayward NJ, Molineaux SM. Modified-peptide inhibitors of amyloid beta-peptide polymerization. Biochemistry 1999; 38:6791-800. [PMID: 10346900 DOI: 10.1021/bi982824n] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cellular toxicity resulting from nucleation-dependent polymerization of amyloid beta-peptide (Abeta) is considered to be a major and possibly the primary component of Alzheimer's disease (AD). Inhibition of Abeta polymerization has thus been identified as a target for the development of therapeutic agents for the treatment of AD. The intrinsic affinity of Abeta for itself suggested that Abeta-specific interactions could be adapted to the development of compounds that would bind to Abeta and prevent it from polymerizing. Abeta-derived peptides of fifteen residues were found to be inhibitory of Abeta polymerization. The activity of these peptides was subsequently enhanced through modification of their amino termini with specific organic reagents. Additional series of compounds prepared to probe structural requirements for activity allowed reduction of the size of the inhibitors and optimization of the Abeta-derived peptide portion to afford a lead compound, cholyl-Leu-Val-Phe-Phe-Ala-OH (PPI-368), with potent polymerization inhibitory activity but limited biochemical stability. The corresponding all-D-amino acyl analogue peptide acid (PPI-433) and amide (PPI-457) retained inhibitory activity and were both stable in monkey cerebrospinal fluid for 24 h.
Collapse
Affiliation(s)
- M A Findeis
- PRAECIS Pharmaceuticals Incorporated, Cambridge, Massachusetts, 02139-1572, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
295
|
Esler WP, Stimson ER, Fishman JB, Ghilardi JR, Vinters HV, Mantyh PW, Maggio JE. Stereochemical specificity of Alzheimer's disease beta-peptide assembly. Biopolymers 1999; 49:505-14. [PMID: 10193196 DOI: 10.1002/(sici)1097-0282(199905)49:6<505::aid-bip8>3.0.co;2-i] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The formation and growth of insoluble amyloid deposits composed primarily of the human beta-amyloid peptide (A beta) in brain is an essentially invariant feature of Alzheimer's disease (AD) and is widely believed to contribute to the progressive neurodegeneration of the disorder. To probe the specificity of amyloid formation and growth, we synthesized and examined the self-assembly of D- and L-stereoisomers of A beta in vitro. While both enantiomers formed insoluble aggregates at similar rates with amyloid-like fibrillar morphology, deposition of soluble A beta peptide onto preexisting A beta aggregates was stereospecific. Although the L-peptide deposited readily onto immobilized L-A beta aggregates with first-order kinetic dependence on soluble peptide concentration, essentially no association between the D-peptide and L-template was observed. Similarly, the D-peptide deposited with first-order kinetics onto a D-A beta aggregate template but did not deposit onto a similar template composed of aggregates of the L-enantiomer. Furthermore, although the L-A beta isomer deposited onto authentic AD amyloid in preparations of unfixed AD brain, no focal association between the D-peptide and brain amyloid was detected. These results establish that deposition of soluble A beta onto preexisting amyloid template is stereospecific, likely involving direct docking interactions between peptide backbone and/or side chains rather than simple hydrophobic association.
Collapse
Affiliation(s)
- W P Esler
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
296
|
Tjernberg LO, Callaway DJ, Tjernberg A, Hahne S, Lilliehöök C, Terenius L, Thyberg J, Nordstedt C. A molecular model of Alzheimer amyloid beta-peptide fibril formation. J Biol Chem 1999; 274:12619-25. [PMID: 10212241 DOI: 10.1074/jbc.274.18.12619] [Citation(s) in RCA: 296] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polymerization of the amyloid beta (Abeta) peptide into protease-resistant fibrils is a significant step in the pathogenesis of Alzheimer's disease. It has not been possible to obtain detailed structural information about this process with conventional techniques because the peptide has limited solubility and does not form crystals. In this work, we present experimental results leading to a molecular level model for fibril formation. Systematically selected Abeta-fragments containing the Abeta16-20 sequence, previously shown essential for Abeta-Abeta binding, were incubated in a physiological buffer. Electron microscopy revealed that the shortest fibril-forming sequence was Abeta14-23. Substitutions in this decapeptide impaired fibril formation and deletion of the decapeptide from Abeta1-42 inhibited fibril formation completely. All studied peptides that formed fibrils also formed stable dimers and/or tetramers. Molecular modeling of Abeta14-23 oligomers in an antiparallel beta-sheet conformation displayed favorable hydrophobic interactions stabilized by salt bridges between all charged residues. We propose that this decapeptide sequence forms the core of Abeta-fibrils, with the hydrophobic C terminus folding over this core. The identification of this fundamental sequence and the implied molecular model could facilitate the design of potential inhibitors of amyloidogenesis.
Collapse
Affiliation(s)
- L O Tjernberg
- Laboratory of Biochemistry and Molecular Pharmacology, Section of Drug Dependence Research, Department of Clinical Neuroscience, CMM L8:01, Karolinska Hospital, S-171 76 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
297
|
Kayed R, Bernhagen J, Greenfield N, Sweimeh K, Brunner H, Voelter W, Kapurniotu A. Conformational transitions of islet amyloid polypeptide (IAPP) in amyloid formation in vitro. J Mol Biol 1999; 287:781-96. [PMID: 10191146 DOI: 10.1006/jmbi.1999.2646] [Citation(s) in RCA: 303] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amyloid aggregates have been recognized to be a pathological hallmark of several fatal diseases, including Alzheimer's disease, the prion-related diseases, and type II diabetes. Pancreatic amyloidosis is characterized by the deposition of amyloid consisting of islet amyloid polypeptide (IAPP). We followed the steps preceding IAPP insolubilization and amyloid formation in vitro using a variety of biochemical methods, including a filtration assay, far and near-UV circular dichroism (CD) spectropolarimetry, 1-anilino-8-naphthalenesulfonic acid (ANS) binding, and atomic force (AFM) and electron (EM) microscopy. IAPP insolubilization and amyloid formation followed kinetics that were consistent with the nucleation-dependent polymerization mechanism. Nucleation of IAPP amyloid formation with traces of preformed fibrils induced a rapid conformational transition into beta-sheets that subsequently aggregated into insoluble amyloid fibrils. Transition proceeded via a molten globule-like conformeric state with large contents of secondary structure, fluctuating tertiary and quaternary aromatic interactions, and strongly solvent-exposed hydrophobic patches. In the temperature denaturation pathway at 5 microM peptide, we found that this state was mostly populated at about 45 degrees C, and either aggregated rapidly into amyloid by prolonged exposure to this temperature, or melted into denaturated but still structured IAPP, when heated further to 65 degrees C. The state at 45 degrees C was also found to be populated at 4.25 M GdnHCl at 25 degrees C during GdnHCl-induced equilibrium denaturation, and was stable in solution for several hours before aggregating into amyloid fibrils. Our studies suggested that this amyloidogenic state was a self-associated form of an aggregation-prone, partially folded state of IAPP. We propose that this partially folded population and its self-associated forms are in a concentration-dependent equilibrium with a non-amyloidogenic IAPP conformer and may act as early, soluble precursors of beta-sheet and amyloid formation. Our findings on the molecular mechanism of IAPP amyloid formation in vitro should assist in gaining insight into the pathogenesis and inhibition of pancreatic amyloidosis and other amyloid-related diseases.
Collapse
Affiliation(s)
- R Kayed
- University of Tübingen, Tübingen, D-72076, Germany
| | | | | | | | | | | | | |
Collapse
|
298
|
Moir RD, Atwood CS, Romano DM, Laurans MH, Huang X, Bush AI, Smith JD, Tanzi RE. Differential effects of apolipoprotein E isoforms on metal-induced aggregation of A beta using physiological concentrations. Biochemistry 1999; 38:4595-603. [PMID: 10194381 DOI: 10.1021/bi982437d] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The epsilon 4 allele of apolipoprotein E (APOE) has been found to be a risk factor for late-onset Alzheimer's disease (AD). While the pathogenic mechanism of APOE in AD is not yet clear, APOE isoforms appear to differentially influence the aggregation of A beta, the principal component of Alzheimer-associated beta-amyloid deposits. To date, no data are available for the propensity of A beta to aggregate in the presence of APOE under conditions where these components are at physiological concentrations (in cerebrospinal fluid, APOE and A beta are approximately 100 nM and approximately 5 nM, respectively). We employed a novel in vitro filtration assay for detecting zinc(II)- and copper(II)-induced aggregation of A beta in solutions containing concentrations of the peptide that are similar to those reported for human cerebrospinal fluid. The potential for resolubilization with EDTA and the relative densities of zinc- and copper-induced A beta aggregates were also compared. Zinc-induced A beta aggregates were found to be denser and less easily resolubilized than copper-induced precipitates. Metal-induced aggregation of A beta was studied in the presence of purified apolipoprotein E2, apolipoprotein E3, and apolipoprotein E4 under conditions that approximate the physiological concentrations and ratios of these proteins. In the presence of all three APOE isoforms, zinc-induced aggregation of A beta was attenuated, while precipitation with copper was enhanced. Consistent with the increased risk for AD associated with the epsilon 4 allele of APOE, metal-induced aggregation of A beta was highest for both zinc and copper in the presence of apolipoprotein E4. Our data are consistent with a role for APOE as an in vivo molecular chaperone for A beta.
Collapse
Affiliation(s)
- R D Moir
- Genetics and Aging Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129-2060, USA
| | | | | | | | | | | | | | | |
Collapse
|
299
|
Fukuda H, Shimizu T, Nakajima M, Mori H, Shirasawa T. Synthesis, aggregation, and neurotoxicity of the Alzheimer's Abeta1-42 amyloid peptide and its isoaspartyl isomers. Bioorg Med Chem Lett 1999; 9:953-6. [PMID: 10230618 DOI: 10.1016/s0960-894x(99)00121-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Amyloid Abeta1-42 peptide (Abeta1-42) and its isomers with an isoaspartyl residue at position 7 or 23 [Abeta1-42(isoAsp7) and Abeta1-42(isoAsp23)] were synthesized in high purity by the Fmoc-solid phase technique, followed by HPLC on a silica-based reversed-phase column under the basic conditions. Importantly, Abeta1-42(isoAsp23) aggregated more strongly than native Abeta1-42 and showed significant neurotoxicity, while the aggregation ability and neurotoxicity of Abeta1-42(isoAsp7) was weak. This suggests that the isomerization of the aspartyl residues plays an important role in fibril formation in Alzheimer's disease.
Collapse
|
300
|
Storey E, Cappai R. The amyloid precursor protein of Alzheimer's disease and the Abeta peptide. Neuropathol Appl Neurobiol 1999; 25:81-97. [PMID: 10215996 DOI: 10.1046/j.1365-2990.1999.00164.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease is characterized by the accumulation of beta amyloid peptides in plaques and vessel walls and by the intraneuronal accumulation of paired helical filaments composed of hyperphosphorylated tau. In this review, we concentrate on the biology of amyloid precursor protein, and on the central role of amyloid in the pathogenesis of Alzheimer's disease. Amyloid precursor protein (APP) is part of a super-family of transmembrane and secreted proteins. It appears to have a number of roles, including regulation of haemostasis and mediation of neuroprotection. APP also has potentially important metal and heparin-binding properties, and the current challenge is to synthesize all these varied activities into a coherent view of its function. Cleavage of amyloid precursor protein by beta-and gamma-secretases results in the generation of the Abeta (betaA4) peptide, whereas alpha-secretase cleaves within the Abeta sequence and prevents formation from APP. Recent findings indicate that the site of gamma-secretase cleavage is critical to the development of amyloid deposits; Abeta1-42 is much more amyloidogenic than Abeta1-40. Abeta1-42 formation is favoured by mutations in the two presenilin genes (PS1 and PS2), and by the commonest amyloid precursor protein mutations. Transgenic mouse models of Alzheimer's disease incorporating various mutations in the presenilin gene now exist, and have shown amyloid accumulation and cognitive impairment. Neurofibrillary tangles have not been reproduced in these models, however. While aggregated Abeta is neurotoxic, perhaps via an oxidative mechanism, the relationship between such toxicity and neurofibrillary tangle formation remains a subject of ongoing research.
Collapse
Affiliation(s)
- E Storey
- Van Cleef/Roet Centre for Nervous Diseases, Monash University (Alfred Hospital Campus), Prahran, Victoria, Australia
| | | |
Collapse
|