251
|
Abstract
Inflammation contributes to the pathogenesis of most acute and chronic liver diseases. Inflammasomes are multiprotein complexes that can sense danger signals from damaged cells and pathogens and assemble to mediate caspase-1 activation, which proteolytically activates the cytokines IL-1β and IL-18. In contrast to other inflammatory responses, inflammasome activation uniquely requires two signals to induce inflammation, therefore setting an increased threshold. IL-1β, generated upon caspase-1 activation, provides positive feed-forward stimulation for inflammatory cytokines, thereby amplifying inflammation. Inflammasome activation has been studied in different human and experimental liver diseases and has been identified as a major contributor to hepatocyte damage, immune cell activation and amplification of liver inflammation. In this Review, we discuss the different types of inflammasomes, their activation and biological functions in the context of liver injury and disease progression. Specifically, we focus on the triggers of inflammasome activation in alcoholic steatohepatitis and NASH, chronic HCV infection, ischaemia-reperfusion injury and paracetamol-induced liver injury. The application and translation of these discoveries into therapies promises novel approaches in the treatment of inflammation in liver disease.
Collapse
Affiliation(s)
- Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, LRB 215, 364 Plantation Street, Worcester, MA 01605, USA
| | - Jan Petrasek
- Department of Medicine, University of Massachusetts Medical School, LRB 215, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
252
|
Caspase-1: an integral regulator of innate immunity. Semin Immunopathol 2015; 37:419-27. [PMID: 26059719 DOI: 10.1007/s00281-015-0494-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 04/27/2015] [Indexed: 02/07/2023]
Abstract
Caspase-1 is a unique cysteine protease playing central roles in innate immunity. Pathogens, stress, and damage signals induce activation of caspase-1, typically mediated by proximity-induced autoproteolysis in multimeric protein complexes called the inflammasome. Active caspase-1 induces secretion of pro-inflammatory cytokines and mediates pyroptosis, a programmed pro-inflammatory cell death, thereby initiating an immune response finally leading to pathogen clearance. Excessive activation of caspase-1 is the underlying cause for rare diseases such as periodic fever syndromes, and more common disorders, including atherosclerosis, type 2 diabetes, and gout. Beside these well-known pro-inflammatory functions, active caspase-1 also has anti-inflammatory and protective functions contributing to cell survival, reduced inflammatory cytokine signaling, and improved outcomes in mouse models of burn injury or trauma and shock. Furthermore, naturally occurring procaspase-1 variants with reduced or abrogated enzymatic activity mediate enhanced inflammatory signaling and have been associated to autoinflammatory symptoms. Here, we review functions of caspase-1 focusing on anti-inflammatory signaling pathways and discuss the role of enzymatically inactive caspase-1 as disease-promoting factors in autoinflammatory diseases. Moreover, we illustrate differential requirements for autoproteolysis and enzymatic activity in caspase-1 functions.
Collapse
|
253
|
Afonina I, Müller C, Martin S, Beyaert R. Proteolytic Processing of Interleukin-1 Family Cytokines: Variations on a Common Theme. Immunity 2015; 42:991-1004. [DOI: 10.1016/j.immuni.2015.06.003] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Indexed: 12/22/2022]
|
254
|
Kim ML, Chae JJ, Park YH, De Nardo D, Stirzaker RA, Ko HJ, Tye H, Cengia L, DiRago L, Metcalf D, Roberts AW, Kastner DL, Lew AM, Lyras D, Kile BT, Croker BA, Masters SL. Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL-18, not IL-1β. THE JOURNAL OF EXPERIMENTAL MEDICINE 2015. [PMID: 26008898 DOI: 10.1084/jem.20142384)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Gain-of-function mutations that activate the innate immune system can cause systemic autoinflammatory diseases associated with increased IL-1β production. This cytokine is activated identically to IL-18 by an intracellular protein complex known as the inflammasome; however, IL-18 has not yet been specifically implicated in the pathogenesis of hereditary autoinflammatory disorders. We have now identified an autoinflammatory disease in mice driven by IL-18, but not IL-1β, resulting from an inactivating mutation of the actin-depolymerizing cofactor Wdr1. This perturbation of actin polymerization leads to systemic autoinflammation that is reduced when IL-18 is deleted but not when IL-1 signaling is removed. Remarkably, inflammasome activation in mature macrophages is unaltered, but IL-18 production from monocytes is greatly exaggerated, and depletion of monocytes in vivo prevents the disease. Small-molecule inhibition of actin polymerization can remove potential danger signals from the system and prevents monocyte IL-18 production. Finally, we show that the inflammasome sensor of actin dynamics in this system requires caspase-1, apoptosis-associated speck-like protein containing a caspase recruitment domain, and the innate immune receptor pyrin. Previously, perturbation of actin polymerization by pathogens was shown to activate the pyrin inflammasome, so our data now extend this guard hypothesis to host-regulated actin-dependent processes and autoinflammatory disease.
Collapse
Affiliation(s)
- Man Lyang Kim
- Division of Inflammation, Division of Cancer and Hematology, Division of Immunology, and ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jae Jin Chae
- Inflammatory Disease Section, Metabolic, Cardiovascular, and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Yong Hwan Park
- Inflammatory Disease Section, Metabolic, Cardiovascular, and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Dominic De Nardo
- Division of Inflammation, Division of Cancer and Hematology, Division of Immunology, and ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Roslynn A Stirzaker
- Division of Inflammation, Division of Cancer and Hematology, Division of Immunology, and ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Hyun-Ja Ko
- Division of Inflammation, Division of Cancer and Hematology, Division of Immunology, and ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Hazel Tye
- Division of Inflammation, Division of Cancer and Hematology, Division of Immunology, and ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Louise Cengia
- Division of Inflammation, Division of Cancer and Hematology, Division of Immunology, and ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Ladina DiRago
- Division of Inflammation, Division of Cancer and Hematology, Division of Immunology, and ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Donald Metcalf
- Division of Inflammation, Division of Cancer and Hematology, Division of Immunology, and ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andrew W Roberts
- Division of Inflammation, Division of Cancer and Hematology, Division of Immunology, and ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Daniel L Kastner
- Inflammatory Disease Section, Metabolic, Cardiovascular, and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Andrew M Lew
- Division of Inflammation, Division of Cancer and Hematology, Division of Immunology, and ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dena Lyras
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Benjamin T Kile
- Division of Inflammation, Division of Cancer and Hematology, Division of Immunology, and ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ben A Croker
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Seth L Masters
- Division of Inflammation, Division of Cancer and Hematology, Division of Immunology, and ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
255
|
Kim ML, Chae JJ, Park YH, De Nardo D, Stirzaker RA, Ko HJ, Tye H, Cengia L, DiRago L, Metcalf D, Roberts AW, Kastner DL, Lew AM, Lyras D, Kile BT, Croker BA, Masters SL. Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL-18, not IL-1β. ACTA ACUST UNITED AC 2015; 212:927-38. [PMID: 26008898 PMCID: PMC4451132 DOI: 10.1084/jem.20142384] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 04/21/2015] [Indexed: 01/27/2023]
Abstract
Kim et al. identify an autoinflammatory disease in mice that is driven by IL-18, resulting from an inactivating mutation in the actin-depolymerizing cofactor Wdr1. This alteration in actin dynamics is recognized by the pyrin inflammasome and results in exaggerated monocyte IL-18 production, whereas inflammasome activation in mature macrophages is unaltered. Gain-of-function mutations that activate the innate immune system can cause systemic autoinflammatory diseases associated with increased IL-1β production. This cytokine is activated identically to IL-18 by an intracellular protein complex known as the inflammasome; however, IL-18 has not yet been specifically implicated in the pathogenesis of hereditary autoinflammatory disorders. We have now identified an autoinflammatory disease in mice driven by IL-18, but not IL-1β, resulting from an inactivating mutation of the actin-depolymerizing cofactor Wdr1. This perturbation of actin polymerization leads to systemic autoinflammation that is reduced when IL-18 is deleted but not when IL-1 signaling is removed. Remarkably, inflammasome activation in mature macrophages is unaltered, but IL-18 production from monocytes is greatly exaggerated, and depletion of monocytes in vivo prevents the disease. Small-molecule inhibition of actin polymerization can remove potential danger signals from the system and prevents monocyte IL-18 production. Finally, we show that the inflammasome sensor of actin dynamics in this system requires caspase-1, apoptosis-associated speck-like protein containing a caspase recruitment domain, and the innate immune receptor pyrin. Previously, perturbation of actin polymerization by pathogens was shown to activate the pyrin inflammasome, so our data now extend this guard hypothesis to host-regulated actin-dependent processes and autoinflammatory disease.
Collapse
Affiliation(s)
- Man Lyang Kim
- Division of Inflammation, Division of Cancer and Hematology, Division of Immunology, and ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jae Jin Chae
- Inflammatory Disease Section, Metabolic, Cardiovascular, and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Yong Hwan Park
- Inflammatory Disease Section, Metabolic, Cardiovascular, and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Dominic De Nardo
- Division of Inflammation, Division of Cancer and Hematology, Division of Immunology, and ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Roslynn A Stirzaker
- Division of Inflammation, Division of Cancer and Hematology, Division of Immunology, and ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Hyun-Ja Ko
- Division of Inflammation, Division of Cancer and Hematology, Division of Immunology, and ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Hazel Tye
- Division of Inflammation, Division of Cancer and Hematology, Division of Immunology, and ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Louise Cengia
- Division of Inflammation, Division of Cancer and Hematology, Division of Immunology, and ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Ladina DiRago
- Division of Inflammation, Division of Cancer and Hematology, Division of Immunology, and ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Donald Metcalf
- Division of Inflammation, Division of Cancer and Hematology, Division of Immunology, and ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andrew W Roberts
- Division of Inflammation, Division of Cancer and Hematology, Division of Immunology, and ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Daniel L Kastner
- Inflammatory Disease Section, Metabolic, Cardiovascular, and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Andrew M Lew
- Division of Inflammation, Division of Cancer and Hematology, Division of Immunology, and ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dena Lyras
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Benjamin T Kile
- Division of Inflammation, Division of Cancer and Hematology, Division of Immunology, and ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ben A Croker
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Seth L Masters
- Division of Inflammation, Division of Cancer and Hematology, Division of Immunology, and ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
256
|
Nam SY, Kim HY, Yoou MS, Kim AH, Park BJ, Jeong HJ, Kim HM. Anti-inflammatory effects of isoacteoside from Abeliophyllum distichum. Immunopharmacol Immunotoxicol 2015; 37:258-64. [PMID: 25975581 DOI: 10.3109/08923973.2015.1026604] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Isoacteoside, a dihydroxypheynylethyl glycoside, is a major bioactive component of Abeliophyllum distichum (White Forsythia) which is a deciduous shrub native to the south and central areas of Korea. The present study is designed to evaluate the anti-inflammatory activities and underlying mechanisms of isoacteoside in human mast cell line, HMC-1 cells. We isolated isoacteoside from A. distichum. The anti-inflammatory effect of isoacteoside was investigated in HMC-1 cells by studying the following markers: phorbol 12-myristate 13-acetate and calcium ionophore A23187 (PMACI)-induced interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor alpha (TNF-α) secretion and mRNA expression by ELISA and RT-PCR, respectively. In addition, mechanism related to anti-inflammatory was investigated by Western blotting. Isoacteoside significantly suppressed the production and mRNA expression of proinflammatory cytokines including IL-1β, IL-6, IL-8 and TNF-α in PMACI-stimulated HMC-1 cells without cytotoxicity. It was found that anti-inflammatory effects of isoacteoside are mediated by action on caspase-1, mitogen-activated protein kinases (c-Jun N-terminal kinase, p38, extracellular signal-regulated protein kinase) and nuclear factor-kappa B pathways. Taken together, the present findings provide new insights that isoacteoside may be a promising anti-inflammatory agent for inflammatory disorders.
Collapse
Affiliation(s)
- Sun-Young Nam
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University , Seoul , Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
257
|
Human caspase-4 mediates noncanonical inflammasome activation against gram-negative bacterial pathogens. Proc Natl Acad Sci U S A 2015; 112:6688-93. [PMID: 25964352 DOI: 10.1073/pnas.1421699112] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inflammasomes are critical for host defense against bacterial pathogens. In murine macrophages infected by gram-negative bacteria, the canonical inflammasome activates caspase-1 to mediate pyroptotic cell death and release of IL-1 family cytokines. Additionally, a noncanonical inflammasome controlled by caspase-11 induces cell death and IL-1 release. However, humans do not encode caspase-11. Instead, humans encode two putative orthologs: caspase-4 and caspase-5. Whether either ortholog functions similar to caspase-11 is poorly defined. Therefore, we sought to define the inflammatory caspases in primary human macrophages that regulate inflammasome responses to gram-negative bacteria. We find that human macrophages activate inflammasomes specifically in response to diverse gram-negative bacterial pathogens that introduce bacterial products into the host cytosol using specialized secretion systems. In primary human macrophages, IL-1β secretion requires the caspase-1 inflammasome, whereas IL-1α release and cell death are caspase-1-independent. Instead, caspase-4 mediates IL-1α release and cell death. Our findings implicate human caspase-4 as a critical regulator of noncanonical inflammasome activation that initiates defense against bacterial pathogens in primary human macrophages.
Collapse
|
258
|
Cortistatin Inhibits NLRP3 Inflammasome Activation of Cardiac Fibroblasts During Sepsis. J Card Fail 2015; 21:426-433. [DOI: 10.1016/j.cardfail.2015.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 01/16/2015] [Accepted: 01/23/2015] [Indexed: 01/17/2023]
|
259
|
Murine Gammaherpesvirus 68 Pathogenesis Is Independent of Caspase-1 and Caspase-11 in Mice and Impairs Interleukin-1β Production upon Extrinsic Stimulation in Culture. J Virol 2015; 89:6562-74. [PMID: 25855746 DOI: 10.1128/jvi.00658-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/02/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Gammaherpesviruses establish lifelong infections that are associated with the development of cancer. These viruses subvert many aspects of the innate and adaptive immune response of the host. The inflammasome, a macromolecular protein complex that controls inflammatory responses to intracellular danger signals generated by pathogens, is both activated and subverted during human gammaherpesvirus infection in culture. The impact of the inflammasome response on gammaherpesvirus replication and latency in vivo is not known. Caspase-1 is the inflammasome effector protease that cleaves the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18. We infected caspase-1-deficient mice with murine gammaherpesvirus 68 (MHV68) and observed no impact on acute replication in the lung or latency and reactivation from latency in the spleen. This led us to examine the effect of viral infection on inflammasome responses in bone marrow-derived macrophages. We determined that infection of macrophages with MHV68 led to a robust interferon response but failed to activate caspase-1 or induce the secretion of IL-1β. In addition, MHV68 infection led to a reduction in IL-1β production after extrinsic lipopolysaccharide stimulation or upon coinfection with Salmonella enterica serovar Typhimurium. Interestingly, this impairment occurred at the proIL-1β transcript level and was independent of the RTA, the viral lytic replication and transcription activator. Taken together, MHV68 impairs the inflammasome response by inhibiting IL-1β production during the initial stages of infection. IMPORTANCE Gammaherpesviruses persist for the lifetime of the host. To accomplish this, they must evade recognition and clearance by the immune system. The inflammasome consists of proteins that detect foreign molecules in the cell and respond by secreting proinflammatory signaling proteins that recruit immune cells to clear the infection. Unexpectedly, we found that murine gammaherpesvirus pathogenesis was not enhanced in mice lacking caspase-1, a critical inflammasome component. This led us to investigate whether the virus actively impairs the inflammasome response. We found that the inflammasome was not activated upon macrophage cell infection with murine gammaherpesvirus 68. Infection also prevented the host cell inflammasome response to other pathogen-associated molecular patterns, indicated by reduced production of the proinflammatory cytokine IL-1β upon bacterial coinfection. Taken together, murine gammaherpesvirus impairment of the inflammatory cytokine IL-1β in macrophages identifies one mechanism by which the virus may inhibit caspase-1-dependent immune responses in the infected animal.
Collapse
|
260
|
Weinheimer-Haus EM, Mirza RE, Koh TJ. Nod-like receptor protein-3 inflammasome plays an important role during early stages of wound healing. PLoS One 2015; 10:e0119106. [PMID: 25793779 PMCID: PMC4368510 DOI: 10.1371/journal.pone.0119106] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/28/2015] [Indexed: 12/16/2022] Open
Abstract
The Nod-like receptor protein (NLRP)-3 inflammasome/IL-1β pathway is involved in the pathogenesis of various inflammatory skin diseases, but its biological role in wound healing remains to be elucidated. Since inflammation is typically thought to impede healing, we hypothesized that loss of NLRP-3 activity would result in a downregulated inflammatory response and accelerated wound healing. NLRP-3 null mice, caspase-1 null mice and C57Bl/6 wild type control mice (WT) received four 8 mm excisional cutaneous wounds; inflammation and healing were assessed during the early stage of wound healing. Consistent with our hypothesis, wounds from NLRP-3 null and caspase-1 null mice contained lower levels of the pro-inflammatory cytokines IL-1β and TNF-α compared to WT mice and had reduced neutrophil and macrophage accumulation. Contrary to our hypothesis, re-epithelialization, granulation tissue formation, and angiogenesis were delayed in NLRP-3 null mice and caspase-1 null mice compared to WT mice, indicating that NLRP-3 signaling is important for early events in wound healing. Topical treatment of excisional wounds with recombinant IL-1β partially restored granulation tissue formation in wounds of NLRP-3 null mice, confirming the importance of NLRP-3-dependent IL-1β production during early wound healing. Despite the improvement in healing, angiogenesis and levels of the pro-angiogenic growth factor VEGF were further reduced in IL-1β treated wounds, suggesting that IL-1β has a negative effect on angiogenesis and that NLRP-3 promotes angiogenesis in an IL-1β-independent manner. These findings indicate that the NLRP-3 inflammasome contributes to the early inflammatory phase following skin wounding and is important for efficient healing.
Collapse
Affiliation(s)
- Eileen M. Weinheimer-Haus
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Rita E. Mirza
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Timothy J. Koh
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
261
|
Ma BL, Zhou PH, Xie T, Shi L, Qiu B, Wang Q. Inhibition of interleukin-1beta-stimulated dedifferentiation of chondrocytes via controlled release of CrmA from hyaluronic acid-chitosan microspheres. BMC Musculoskelet Disord 2015; 16:61. [PMID: 25888442 PMCID: PMC4384377 DOI: 10.1186/s12891-015-0521-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 03/04/2015] [Indexed: 11/23/2022] Open
Abstract
Background The previous studies indicated that CrmA could ameliorate the interleukin-1β induced osteoarthritis. In this study, we investigated the controlled-released cytokine response modifier A (CrmA) from hyaluronic acid (HA)-chitosan (CS) microspheres to improve interleukin-1β (IL-1β)-stimulated dedifferentiation of chondrocytes. Methods A rat model of osteoarthritis (OA) in vitro was established using 10 ng/ml IL-1β as modulating and chondrocytes inducing agent. HA-CS-CrmA microspheres were added to the medium after IL-1β was co-cultured with freshly isolated rat chondrocytes for 48 hours. The chondrocytes viability and glycosaminoglycan (GAG) content were determined. The level of CrmA secreted was detected by Enzyme-Linked Immunosorbent Assay (ELISA). The protein levels of type II collagen, aggrecan, collagen I and IL-1β were detected using western blotting analyses. Results The CrmA release kinetics were characterized by an initial burst release, which was reduced to a linear release over ten days. The production of GAG and the expression of type II collagen, aggrecan significantly increased compared with the control group, while the expression of collagen I and IL-1β decreased. Conclusions This study demonstrated that HA-CS microspheres containing CrmA could attenuate the degeneration of articular cartilage by maintaining the phenotype of chondrocytes during culture expansion. The suppression of inflammatory cytokines activity within the joint might be one important mechanism of the action of the microspheres in the treatment of OA.
Collapse
Affiliation(s)
- Bei-lei Ma
- Department of Laboratory, Qilu Hospital of Shandong University, 250012, Jinan, China.
| | - Pang-Hu Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, 430060, Wuhan, China.
| | - Ting Xie
- Department of Women Health Care, Hubei Women and Children Hospital, 430070, Wuhan, China.
| | - Lei Shi
- Department of Oncology, Renmin Hospital of Wuhan University, 430060, Wuhan, China.
| | - Bo Qiu
- Department of Orthopedics, Renmin Hospital of Wuhan University, 430060, Wuhan, China.
| | - Qian Wang
- Department of Laboratory, Qilu Hospital of Shandong University, 250012, Jinan, China.
| |
Collapse
|
262
|
Jung SS, Moon JS, Xu JF, Ifedigbo E, Ryter SW, Choi AMK, Nakahira K. Carbon monoxide negatively regulates NLRP3 inflammasome activation in macrophages. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1058-67. [PMID: 25770182 DOI: 10.1152/ajplung.00400.2014] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/08/2015] [Indexed: 01/25/2023] Open
Abstract
Inflammasomes are cytosolic protein complexes that promote the cleavage of caspase-1, which leads to the maturation and secretion of proinflammatory cytokines, including interleukin-1β (IL-1β) and IL-18. Among the known inflammasomes, the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3)-dependent inflammasome is critically involved in the pathogenesis of various acute or chronic inflammatory diseases. Carbon monoxide (CO), a gaseous molecule physiologically produced in cells and tissues during heme catabolism, can act as an anti-inflammatory molecule and a potent negative regulator of Toll-like receptor signaling pathways. To date, the role of CO in inflammasome-mediated immune responses has not been fully investigated. Here, we demonstrated that CO inhibited caspase-1 activation and the secretion of IL-1β and IL-18 in response to lipopolysaccharide (LPS) and ATP treatment in bone marrow-derived macrophages. CO also inhibited IL-18 secretion in response to LPS and nigericin treatment, another NLRP3 inflammasome activation model. In contrast, CO did not suppress IL-18 secretion in response to LPS and poly(dA:dT), an absent in melanoma 2 (AIM2)-mediated inflammasome model. LPS and ATP stimulation induced the formation of complexes between NLRP3 and apoptosis-associated speck-like protein, or NLRP3 and caspase-1. CO treatment inhibited these molecular interactions that were induced by LPS and ATP. Furthermore, CO inhibited mitochondrial ROS generation and the decrease of mitochondrial membrane potential induced by LPS and ATP in macrophages. We also observed that the inhibitory effect of CO on the translocation of mitochondrial DNA into the cytosol was associated with suppression of cytokine secretion. Our results suggest that CO negatively regulates NLRP3 inflammasome activation by preventing mitochondrial dysfunction.
Collapse
Affiliation(s)
- Sung-Soo Jung
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, Department of Internal Medicine, Chungnam National University Medical School Daejeon, Republic of Korea
| | - Jong-Seok Moon
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, New York; and Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, New York, New York
| | - Jin-Fu Xu
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Emeka Ifedigbo
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stefan W Ryter
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, New York; and Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, New York, New York
| | - Augustine M K Choi
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, New York; and Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, New York, New York
| | - Kiichi Nakahira
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, New York; and Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
263
|
Zhu W, Tao L, Quick ML, Joyce JA, Qu JM, Luo ZQ. Sensing cytosolic RpsL by macrophages induces lysosomal cell death and termination of bacterial infection. PLoS Pathog 2015; 11:e1004704. [PMID: 25738962 PMCID: PMC4349785 DOI: 10.1371/journal.ppat.1004704] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/26/2015] [Indexed: 11/18/2022] Open
Abstract
The intracellular bacterial pathogen Legionella pneumophila provokes strong host responses and has proven to be a valuable model for the discovery of novel immunosurveillance pathways. Our previous work revealed that an environmental isolate of L. pneumophila induces a noncanonical form of cell death, leading to restriction of bacterial replication in primary mouse macrophages. Here we show that such restriction also occurs in infections with wild type clinical isolates. Importantly, we found that a lysine to arginine mutation at residue 88 (K88R) in the ribosome protein RpsL that not only confers bacterial resistance to streptomycin, but more importantly, severely attenuated the induction of host cell death and enabled L. pneumophila to replicate in primary mouse macrophages. Although conferring similar resistance to streptomycin, a K43N mutation in RpsL does not allow productive intracellular bacterial replication. Further analysis indicated that RpsL is capable of effectively inducing macrophage death via a pathway involved in lysosomal membrane permeabilization; the K88R mutant elicits similar responses but is less potent. Moreover, cathepsin B, a lysosomal protease that causes cell death after being released into the cytosol upon the loss of membrane integrity, is required for efficient RpsL-induced macrophage death. Furthermore, despite the critical role of cathepsin B in delaying RpsL-induced cell death, macrophages lacking cathepsin B do not support productive intracellular replication of L. pneumophila harboring wild type RpsL. This suggests the involvement of other yet unidentified components in the restriction of bacterial replication. Our results identified RpsL as a regulator in the interactions between bacteria such as L. pneumophila and primary mouse macrophages by triggering unique cellular pathways that restrict intracellular bacterial replication. The death of the host cell during infection can be triggered by one or more microbial molecules; this “live or die” selection provides effective means for the dissection of immune recognition mechanisms as well as for the identification of the microbial molecules responsible for such responses. We found that infection of primary mouse macrophages by Legionella pneumophila strains harboring wild type RpsL, the S12 component of the bacterial ribosome, causes macrophage death by a mechanism independent of the three inflammatory caspases, caspase 1, 7 and 11. Importantly, although both confer resistance to streptomycin at indistinguishable effectiveness, the K88R, but not the K43N mutation in RpsL enables L. pneumophila to replicate in macrophages. Purified RpsL and RpsLK43N physically delivered into macrophages cause cell death by inducing damage to lysosomal membranes and the release of cathepsins. We also found that the lysosomal protease cathepsin B is required for efficient RpsL-induced cell death but its absence is not sufficient for macrophages to support intracellular bacterial replication. Thus, RpsL functions as an immune induction molecule to trigger one or more signaling cascades that leads to lysosomal cell death as well as the termination of bacterial replication.
Collapse
Affiliation(s)
- Wenhan Zhu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Lili Tao
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Department of Pulmonary Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Marsha L. Quick
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Johanna A. Joyce
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Jie-Ming Qu
- Department of Pulmonary Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhao-Qing Luo
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
264
|
Dysregulation of Escherichia coli α-hemolysin expression alters the course of acute and persistent urinary tract infection. Proc Natl Acad Sci U S A 2015; 112:E871-80. [PMID: 25675528 DOI: 10.1073/pnas.1500374112] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections, causing considerable morbidity in females. Infection is highly recurrent despite appropriate antibiotic treatment. Uropathogenic Escherichia coli (UPEC), the most common causative agent of UTIs, invades bladder epithelial cells (BECs) and develops into clonal intracellular bacterial communities (IBCs). Upon maturation, IBCs disperse, with bacteria spreading to neighboring BECs to repeat this cycle. This process allows UPEC to gain a foothold in the face of innate defense mechanisms, including micturition, epithelial exfoliation, and the influx of polymorphonuclear leukocytes. Here, we investigated the mechanism and dynamics of urothelial exfoliation in the early acute stages of infection. We show that UPEC α-hemolysin (HlyA) induces Caspase-1/Caspase-4-dependent inflammatory cell death in human urothelial cells, and we demonstrate that the response regulator (CpxR)-sensor kinase (CpxA) two-component system (CpxRA), which regulates virulence gene expression in response to environmental signals, is critical for fine-tuning HlyA cytotoxicity. Deletion of the cpxR transcriptional response regulator derepresses hlyA expression, leading to enhanced Caspase-1/Caspase-4- and NOD-like receptor family, pyrin domain containing 3-dependent inflammatory cell death in human urothelial cells. In vivo, overexpression of HlyA during acute bladder infection induces more rapid and extensive exfoliation and reduced bladder bacterial burdens. Bladder fitness is restored fully by inhibition of Caspase-1 and Caspase-11, the murine homolog of Caspase-4. Thus, we have discovered that fine-tuning of HlyA expression by the CpxRA system is critical for enhancing UPEC fitness in the urinary bladder. These results have significant implications for our understanding of how UPEC establishes persistent colonization.
Collapse
|
265
|
Non-canonical activation of inflammatory caspases by cytosolic LPS in innate immunity. Curr Opin Immunol 2015; 32:78-83. [PMID: 25621708 DOI: 10.1016/j.coi.2015.01.007] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/05/2015] [Accepted: 01/12/2015] [Indexed: 12/12/2022]
Abstract
Lipopolysaccharide (LPS) is the major component of Gram-negative bacteria cell wall. In innate immunity, extracellular LPS is recognized by Toll-like receptor 4 to stimulate cytokine transcription. Recent studies suggest a 'non-canonical inflammasome' that senses cytoplasmic LPS and activates caspase-11 in mouse macrophages. Unexpectedly, biochemical studies reveal that caspase-11 and its human orthologs caspase-4/caspase-5 are LPS receptors themselves. Direct LPS binding induces caspase-4/caspase-5/caspase-11 oligomerization and activation, triggering cell pyroptosis and anti-bacterial defenses. Caspase-4/caspase-5/caspase-11 recognition of intracellular LPS requires bacterial escape from the vacuole; this process is promoted by interferon-inducible GTPases-mediated lysis of the bacteria-containing vacuole. Non-canonical activation of these inflammatory caspases by LPS not only represents a new paradigm in innate immunity but also critically determines LPS-induced septic shock in mice.
Collapse
|
266
|
Lossi L, Castagna C, Merighi A. Neuronal cell death: an overview of its different forms in central and peripheral neurons. Methods Mol Biol 2015; 1254:1-18. [PMID: 25431053 DOI: 10.1007/978-1-4939-2152-2_1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The discovery of neuronal cell death dates back to the nineteenth century. Nowadays, after a very long period of conceptual difficulties, the notion that cell death is a phenomenon occurring during the entire life course of the nervous system, from neurogenesis to adulthood and senescence, is fully established. The dichotomy between apoptosis, as the prototype of programmed cell death (PCD ), and necrosis, as the prototype of death caused by an external insult, must be carefully reconsidered, as different types of PCD: apoptosis, autophagy, pyroptosis, and oncosis have all been demonstrated in neurons (and glia ). These modes of PCD may be triggered by different stimuli, but share some intracellular pathways such that different types of cell death may affect the same population of neurons according to several intrinsic and extrinsic factors. Therefore, a mixed morphology is often observed also depending on degrees of differentiation, activity, and injury. The main histological and ultrastructural features of the different types of cell death in neurons are described and related to the cellular pathways that are specifically activated in any of these types of PCD.
Collapse
Affiliation(s)
- Laura Lossi
- Department of Veterinary Sciences, University of Torino, Via Leonardo da Vinci 44, 10095, Grugliasco, Torino, Italy
| | | | | |
Collapse
|
267
|
Yang Y, Jiang G, Zhang P, Fan J. Programmed cell death and its role in inflammation. Mil Med Res 2015; 2:12. [PMID: 26045969 PMCID: PMC4455968 DOI: 10.1186/s40779-015-0039-0] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/11/2015] [Indexed: 12/13/2022] Open
Abstract
Cell death plays an important role in the regulation of inflammation and may be the result of inflammation. The maintenance of tissue homeostasis necessitates both the recognition and removal of invading microbial pathogens as well as the clearance of dying cells. In the past few decades, emerging knowledge on cell death and inflammation has enriched our molecular understanding of the signaling pathways that mediate various programs of cell death and multiple types of inflammatory responses. This review provides an overview of the major types of cell death related to inflammation. Modification of cell death pathways is likely to be a logical therapeutic target for inflammatory diseases.
Collapse
Affiliation(s)
- Yong Yang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA ; Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433 China
| | - Gening Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433 China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433 China
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA ; Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240 USA
| |
Collapse
|
268
|
Mastronardi CA, Paz-Filho G, Zanoni M, Molano-González N, Arcos-Burgos M, Licinio J, Wong ML. Temporal gene expression in the hippocampus and peripheral organs to endotoxin-induced systemic inflammatory response in caspase-1-deficient mice. Neuroimmunomodulation 2015; 22:263-73. [PMID: 25633245 PMCID: PMC4710542 DOI: 10.1159/000368310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/05/2014] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Caspase-1 (casp1), a key protease involved in the systemic inflammatory response syndrome (SIRS), controls the brain expression of a set of eight genes: Nos2 and Ptgs2 (nitric oxide synthase 2 and prostaglandin-endoperoxide synthase 2, two inducible enzymes), Cxcl1 and Cxcl10 (C-X-C motif chemokine ligand 1 and ligand 10), Tgtp and Gbp2 (T cell-specific GTPase 1 and guanylate-binding protein 2, two GTPases), Adamts1 (a disintegrin-like and metallopeptidase with thrombospondin type 1 motif, 1, a metalloprotease) and Il1rn (interleukin-1 receptor antagonist). Our objective was to ascertain whether casp1 also controlled the peripheral expression of these genes and, if so, to compare their central versus peripheral patterns of gene expression in immune and endocrine tissues during SIRS. METHODS Wild-type (wt) and casp1 knockout (casp1(-/-)) mice were injected with either saline or a high dose of endotoxin/lipopolysaccharide (LPS; 800 μg/mice i.p.). Saline-injected mice were immediately euthanized after injection, whereas LPS-injected mice were sacrificed 6 and 12 h after LPS administration. Hippocampal, splenic and adrenal gene expressions were determined by real-time PCR. RESULTS Overall, casp1(-/-) mice showed a lower inflammatory response than wt mice. The expression levels of powerful proinflammatory factors such as Nos2 and Ptgs2 was reduced in casp1(-/-) mice. Moreover, a hierarchical clustering analysis aimed at studying patterns of gene coexpression revealed large alterations in the hippocampal pattern of casp1(-/-) mice. Surprisingly, the expression of Adamts1 was increased in the hippocampus and adrenals of casp1(-/-) mice. CONCLUSIONS The resilience of casp1(-/-) mice to SIRS lethality is associated with a lower inflammatory response, loss of hippocampal gene coexpression patterns, and increased hippocampal Adamts1 gene expression. The latter might be beneficial for casp1(-/-) mice, since ADAMTS1 is likely to play a role in neuronal plasticity. The mechanisms described here may help the development of either novel biomarkers or therapeutic targets against SIRS/sepsis.
Collapse
Affiliation(s)
- Claudio Alberto Mastronardi
- Genomics and Predictive Medicine Group, Genome Biology Department, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Gilberto Paz-Filho
- Genomics and Predictive Medicine Group, Genome Biology Department, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Martina Zanoni
- Department of Psychiatry, University of Verona, Verona, Italy
| | - Nicolas Molano-González
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Mauricio Arcos-Burgos
- Genomics and Predictive Medicine Group, Genome Biology Department, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Julio Licinio
- Mind and Brain Theme, South Australian Health and Medical Research Institute and Flinders University of South Australia, Adelaide, Australia
| | - Ma-Li Wong
- Mind and Brain Theme, South Australian Health and Medical Research Institute and Flinders University of South Australia, Adelaide, Australia
| |
Collapse
|
269
|
Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ 2014; 22:526-39. [PMID: 25526085 DOI: 10.1038/cdd.2014.216] [Citation(s) in RCA: 908] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 11/13/2014] [Accepted: 11/19/2014] [Indexed: 12/26/2022] Open
Abstract
Caspases are proteases with a well-defined role in apoptosis. However, increasing evidence indicates multiple functions of caspases outside apoptosis. Caspase-1 and caspase-11 have roles in inflammation and mediating inflammatory cell death by pyroptosis. Similarly, caspase-8 has dual role in cell death, mediating both receptor-mediated apoptosis and in its absence, necroptosis. Caspase-8 also functions in maintenance and homeostasis of the adult T-cell population. Caspase-3 has important roles in tissue differentiation, regeneration and neural development in ways that are distinct and do not involve any apoptotic activity. Several other caspases have demonstrated anti-tumor roles. Notable among them are caspase-2, -8 and -14. However, increased caspase-2 and -8 expression in certain types of tumor has also been linked to promoting tumorigenesis. Increased levels of caspase-3 in tumor cells causes apoptosis and secretion of paracrine factors that promotes compensatory proliferation in surrounding normal tissues, tumor cell repopulation and presents a barrier for effective therapeutic strategies. Besides this caspase-2 has emerged as a unique caspase with potential roles in maintaining genomic stability, metabolism, autophagy and aging. The present review focuses on some of these less studied and emerging functions of mammalian caspases.
Collapse
Affiliation(s)
- S Shalini
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - L Dorstyn
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - S Dawar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - S Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| |
Collapse
|
270
|
Tsutsumi N, Kimura T, Arita K, Ariyoshi M, Ohnishi H, Yamamoto T, Zuo X, Maenaka K, Park EY, Kondo N, Shirakawa M, Tochio H, Kato Z. The structural basis for receptor recognition of human interleukin-18. Nat Commun 2014; 5:5340. [PMID: 25500532 PMCID: PMC4275594 DOI: 10.1038/ncomms6340] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/20/2014] [Indexed: 12/25/2022] Open
Abstract
Interleukin (IL)-18 is a proinflammatory cytokine that belongs to the IL-1 family and plays an important role in inflammation. The uncontrolled release of this cytokine is associated with severe chronic inflammatory disease. IL-18 forms a signalling complex with the IL-18 receptor α (Rα) and β (Rβ) chains at the plasma membrane, which induces multiple inflammatory cytokines. Here, we present a crystal structure of human IL-18 bound to the two receptor extracellular domains. Generally, the receptors' recognition mode for IL-18 is similar to IL-1β; however, certain notable differences were observed. The architecture of the IL-18 receptor second domain (D2) is unique among the other IL-1R family members, which presumably distinguishes them from the IL-1 receptors that exhibit a more promiscuous ligand recognition mode. The structures and associated biochemical and cellular data should aid in developing novel drugs to neutralize IL-18 activity.
Collapse
Affiliation(s)
- Naotaka Tsutsumi
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takeshi Kimura
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Yanagido 1-1, Gifu 501-1194, Japan
| | - Kyohei Arita
- Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama Kanagawa 230-0045, Japan
| | - Mariko Ariyoshi
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Yanagido 1-1, Gifu 501-1194, Japan
| | - Takahiro Yamamoto
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Yanagido 1-1, Gifu 501-1194, Japan
| | - Xiaobing Zuo
- X-Ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, , Kita-12, Nishi-6, Kita-ki, Sapporo 060-0812, Japan
| | - Enoch Y. Park
- Research Institute of Green Science and Technology, Department of Bioscience, Graduate school of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
| | - Naomi Kondo
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Yanagido 1-1, Gifu 501-1194, Japan
- Heisei College of Health Sciences, 180 Kurono, Gifu 501-1131, Japan
| | - Masahiro Shirakawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Core Research of Evolution Science (CREST), Japan Sciences and Technology Agency, Tokyo 102-0076, Japan
| | - Hidehito Tochio
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake, Sakyo-ku, Kyoto 606-8502, Japan
| | - Zenichiro Kato
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Yanagido 1-1, Gifu 501-1194, Japan
- Biomedical Informatics, Medical Information Sciences Division, The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1194, Japan
| |
Collapse
|
271
|
Caspase-1 cleavage of transcription factor GATA4 and regulation of cardiac cell fate. Cell Death Dis 2014; 5:e1566. [PMID: 25501827 PMCID: PMC4649840 DOI: 10.1038/cddis.2014.524] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/23/2014] [Accepted: 10/28/2014] [Indexed: 11/26/2022]
Abstract
Caspase-1 or interleukin-1β (IL-1β) converting enzyme is a pro-inflammatory member of the caspase family. An IL-1β-independent role for caspase-1 in cardiomyocyte cell death and heart failure has emerged but the mechanisms underlying these effects are incompletely understood. Here, we report that transcription factor GATA4, a key regulator of cardiomyocyte survival and adaptive stress response is an in vivo and in vitro substrate for caspase-1. Caspase-1 mediated cleavage of GATA4 generates a truncated protein that retains the ability to bind DNA but lacks transcriptional activation domains and acts as a dominant negative regulator of GATA4. We show that caspase-1 is rapidly activated in cardiomyocyte nuclei treated with the cell death inducing drug Doxorubicin. We also find that inhibition of caspase-1 alone is as effective as complete caspase inhibition at rescuing GATA4 degradation and myocyte cell death. Caspase-1 inhibition of GATA4 transcriptional activity is rescued by HSP70, which binds directly to GATA4 and masks the caspase recognition motif. The data identify a caspase-1 nuclear substrate and suggest a direct role for caspase-1 in transcriptional regulation. This mechanism may underlie the inflammation-independent action of caspase-1 in other organs.
Collapse
|
272
|
Netea MG, van de Veerdonk FL, van der Meer JWM, Dinarello CA, Joosten LAB. Inflammasome-independent regulation of IL-1-family cytokines. Annu Rev Immunol 2014; 33:49-77. [PMID: 25493334 DOI: 10.1146/annurev-immunol-032414-112306] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Induction, production, and release of proinflammatory cytokines are essential steps to establish an effective host defense. Cytokines of the interleukin-1 (IL-1) family induce inflammation and regulate T lymphocyte responses while also displaying homeostatic and metabolic activities. With the exception of the IL-1 receptor antagonist, all IL-1 family cytokines lack a signal peptide and require proteolytic processing into an active molecule. One such unique protease is caspase-1, which is activated by protein platforms called the inflammasomes. However, increasing evidence suggests that inflammasomes and caspase-1 are not the only mechanism for processing IL-1 cytokines. IL-1 cytokines are often released as precursors and require extracellular processing for activity. Here we review the inflammasome-independent enzymatic processes that are able to activate IL-1 cytokines, paying special attention to neutrophil-derived serine proteases, which subsequently induce inflammation and modulate host defense. The inflammasome-independent processing of IL-1 cytokines has important consequences for understanding inflammatory diseases, and it impacts the design of IL-1-based modulatory therapies.
Collapse
|
273
|
You eat what you are: autophagy inhibition as a therapeutic strategy in leukemia. Leukemia 2014; 29:517-25. [PMID: 25541151 DOI: 10.1038/leu.2014.349] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 11/25/2014] [Indexed: 12/13/2022]
Abstract
A deeper understanding of the role of autophagy, literally 'self-eating', in normal and cancer cell biology has emerged over the last few years. Autophagy serves as a vehicle for cells to respond to various stressors including genomic, hypoxic and nutrient stress, and to oppose mechanisms of 'programmed' cell death. Here, we review not only mechanisms of cell death and cell survival but also the early successes in applying autophagy inhibition strategies in solid tumors using the only currently available clinical inhibitor, oral hydroxychloroquine. In acute leukemia, currently available chemotherapy drugs promote cell death and demonstrate clinical benefit, but relapse and subsequent chemotherapy resistance is common. Increasing preclinical data suggest that autophagy is active in leukemia as a means of promoting cell survival in response to chemotherapy. We propose coupling autophagy inhibition strategies with current cytotoxic chemotherapy and discuss synergistic combinations of available anti-leukemic therapies with autophagy inhibition. Furthermore, novel autophagy inhibitors are in development and promise to provide new therapeutic opportunities for patients with leukemia.
Collapse
|
274
|
Blander JM. A long-awaited merger of the pathways mediating host defence and programmed cell death. Nat Rev Immunol 2014; 14:601-18. [PMID: 25145756 DOI: 10.1038/nri3720] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Historically, cell death and inflammation have been closely linked, but the necessary divergence of the fields in the past few decades has enriched our molecular understanding of the signalling pathways that mediate various programmes of cell death and multiple types of inflammatory responses. The fields have now come together again demonstrating a surprising level of integration. Intimate interconnections at multiple levels are revealed between the cell death and inflammatory signal transduction pathways that are mobilized in response to the engagement of pattern recognition receptors during microbial infection. Molecules such as receptor-interacting protein kinase 1 (RIPK1), RIPK3, FAS-associated death domain protein (FADD), FLICE-like inhibitory protein (FLIP) and caspase 8 - which are associated with different forms of cell death - are incorporated into compatible and exceedingly dynamic Toll-like receptor, NOD-like receptor and RIG-I-like receptor signalling modules. These signalling modules have a high capacity to switch from inflammation to cell death, or a programmed execution of both, all in an orchestrated battle for host defence and survival.
Collapse
Affiliation(s)
- J Magarian Blander
- Immunology Institute and Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
275
|
Sharma AA, Jen R, Kan B, Sharma A, Marchant E, Tang A, Gadawski I, Senger C, Skoll A, Turvey SE, Sly LM, Côté HCF, Lavoie PM. Impaired NLRP3 inflammasome activity during fetal development regulates IL-1β production in human monocytes. Eur J Immunol 2014; 45:238-49. [PMID: 25311115 DOI: 10.1002/eji.201444707] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 09/04/2014] [Accepted: 10/08/2014] [Indexed: 02/06/2023]
Abstract
Interleukin-1β (IL-1β) production is impaired in cord blood monocytes. However, the mechanism underlying this developmental attenuation remains unclear. Here, we analyzed the extent of variability within the Toll-like receptor (TLR)/NLRP3 inflammasome pathways in human neonates. We show that immature low CD14 expressing/CD16(pos) monocytes predominate before 33 weeks of gestation, and that these cells lack production of the pro-IL-1β precursor protein upon LPS stimulation. In contrast, high levels of pro-IL-1β are produced within high CD14 expressing monocytes, although these cells are unable to secrete mature IL-1β. The lack of secreted IL-1β in these monocytes parallels a reduction of NLRP3 induction following TLR stimulation resulting in a lack of caspase-1 activity before 29 weeks of gestation, whereas expression of the apoptosis-associated speck-like protein containing a CARD and function of the P2×7 receptor are preserved. Our analyses also reveal a strong inhibitory effect of placental infection on LPS/ATP-induced caspase-1 activity in cord blood monocytes. Lastly, secretion of IL-1β in preterm neonates is restored to adult levels during the neonatal period, indicating rapid maturation of these responses after birth. Collectively, our data highlight important developmental mechanisms regulating IL-1β responses early in gestation, in part due to a downregulation of TLR-mediated NLRP3 expression. Such mechanisms may serve to limit potentially damaging inflammatory responses in a developing fetus.
Collapse
Affiliation(s)
- Ashish A Sharma
- Child & Family Research Institute, Vancouver, BC, Canada; Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
276
|
Zhang W, Xu X, Kao R, Mele T, Kvietys P, Martin CM, Rui T. Cardiac fibroblasts contribute to myocardial dysfunction in mice with sepsis: the role of NLRP3 inflammasome activation. PLoS One 2014; 9:e107639. [PMID: 25216263 PMCID: PMC4162616 DOI: 10.1371/journal.pone.0107639] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 08/11/2014] [Indexed: 01/12/2023] Open
Abstract
Myocardial contractile dysfunction in sepsis is associated with the increased morbidity and mortality. Although the underlying mechanisms of the cardiac depression have not been fully elucidated, an exaggerated inflammatory response is believed to be responsible. Nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome is an intracellular platform that is involved in the maturation and release of interleukin (IL)-1β. The aim of the present study is to evaluate whether sepsis activates NLRP3 inflammasome/caspase-1/IL-1β pathway in cardiac fibroblasts (CFs) and whether this cytokine can subsequently impact the function of cardiomyocytes (cardiac fibroblast-myocyte cross-talk). We show that treatment of CFs with lipopolysaccharide (LPS) induces upregulation of NLRP3, activation of caspase-1, as well as the maturation (activation) and release of IL-1β. In addition, the genetic (small interfering ribonucleic acid [siRNA]) and pharmacological (glyburide) inhibition of the NLRP3 inflammasome in CFs can block this signaling pathway. Furthermore, the inhibition of the NLRP3 inflammasome in cardiac fibroblasts ameliorated the ability of LPS-chalenged CFs to impact cardiomyocyte function as assessed by intracellular cyclic adenosine monophosphate (cAMP) responses in cardiomyocytes. Salient features of this the NLP3 inflammasome/ caspase-1 pathway were confirmed in in vivo models of endotoxemia/sepsis. We found that inhibition of the NLRP3 inflammasome attenuated myocardial dysfunction in mice with LPS and increased the survival rate in mice with feces-induced peritonitis. Our results indicate that the activation of the NLRP3 inflammasome in cardiac fibroblasts is pivotal in the induction of myocardial dysfunction in sepsis.
Collapse
Affiliation(s)
- Wenbo Zhang
- Departments of Medicine and Surgery, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
- Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
| | - Xuemei Xu
- Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
- Critical Care Western, Department of Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Raymond Kao
- Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
- Critical Care Western, Department of Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Tina Mele
- Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
- Critical Care Western, Department of Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Peter Kvietys
- Department of Physiology & Biochemistry, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Claudio M. Martin
- Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
- Critical Care Western, Department of Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Tao Rui
- Departments of Medicine and Surgery, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
- Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
- Critical Care Western, Department of Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Pathology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
277
|
Ogryzko NV, Renshaw SA, Wilson HL. The IL-1 family in fish: swimming through the muddy waters of inflammasome evolution. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:53-62. [PMID: 24690566 DOI: 10.1016/j.dci.2014.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/13/2014] [Accepted: 03/14/2014] [Indexed: 06/03/2023]
Abstract
Inflammatory diseases are a significant burden on global healthcare systems, and tackling these diseases is a major focus of modern medicine. Key to many inflammatory diseases is the cytokine, Interleukin-1 (IL-1). Due to its apical role in initiating the inflammatory response, dysregulated IL-1 signalling results in a number of pathologies. Treatment of inflammatory diseases with anti-IL-1 therapies has offered many therapeutic benefits, however current therapies are protein based, with all the accompanying limitations. The non-conventional pathways involved in IL-1 signalling provide a number of potential therapeutic targets for clinical intervention and this has led to the exploitation of a number of model organisms for the study of IL-1 biology. Murine models have long been used to study IL-1 processing and release, but do not allow direct visualisation in vivo. Recently, fish models have emerged as genetically tractable and optically transparent inflammatory disease models. These models have raised questions on the evolutionary origins of the IL-1 family and the conservation in its processing and activation. Here we review the current understanding of IL-1 evolution in fish and discuss the study of IL-1 processing in these models.
Collapse
Affiliation(s)
- Nikolay V Ogryzko
- Medical Research Council Centre for Developmental and Biomedical Genetics, Firth Court, University of Sheffield, Sheffield, United Kingdom; Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom.
| | - Stephen A Renshaw
- Medical Research Council Centre for Developmental and Biomedical Genetics, Firth Court, University of Sheffield, Sheffield, United Kingdom; Department of Infection and Immunity and MRC Centre for Developmental and Biomedical Genetics, Firth Court, University of Sheffield, Sheffield, United Kingdom
| | - Heather L Wilson
- Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
278
|
Ganesan S, Rathinam VAK, Bossaller L, Army K, Kaiser WJ, Mocarski ES, Dillon CP, Green DR, Mayadas TN, Levitz SM, Hise AG, Silverman N, Fitzgerald KA. Caspase-8 modulates dectin-1 and complement receptor 3-driven IL-1β production in response to β-glucans and the fungal pathogen, Candida albicans. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:2519-2530. [PMID: 25063877 PMCID: PMC4134963 DOI: 10.4049/jimmunol.1400276] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Inflammasomes are central mediators of host defense to a wide range of microbial pathogens. The nucleotide-binding domain and leucine-rich repeat containing family (NLR), pyrin domain-containing 3 (NLRP3) inflammasome plays a key role in triggering caspase-1-dependent IL-1β maturation and resistance to fungal dissemination in Candida albicans infection. β-Glucans are major components of fungal cell walls that trigger IL-1β secretion in both murine and human immune cells. In this study, we sought to determine the contribution of β-glucans to C. albicans-induced inflammasome responses in mouse dendritic cells. We show that the NLRP3-apoptosis-associated speck-like protein containing caspase recruitment domain protein-caspase-1 inflammasome is absolutely critical for IL-1β production in response to β-glucans. Interestingly, we also found that both complement receptor 3 (CR3) and dectin-1 play a crucial role in coordinating β-glucan-induced IL-1β processing as well as a cell death response. In addition to the essential role of caspase-1, we identify an important role for the proapoptotic protease caspase-8 in promoting β-glucan-induced cell death and NLRP3 inflammasome-dependent IL-1β maturation. A strong requirement for CR3 and caspase-8 also was found for NLRP3-dependent IL-1β production in response to heat-killed C. albicans. Taken together, these results define the importance of dectin-1, CR3, and caspase-8, in addition to the canonical NLRP3 inflammasome, in mediating β-glucan- and C. albicans-induced innate responses in dendritic cells. Collectively, these findings establish a novel link between β-glucan recognition receptors and the inflammatory proteases caspase-8 and caspase-1 in coordinating cytokine secretion and cell death in response to immunostimulatory fungal components.
Collapse
Affiliation(s)
- Sandhya Ganesan
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Vijay A K Rathinam
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lukas Bossaller
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | - Kelly Army
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - William J Kaiser
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Edward S Mocarski
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher P Dillon
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tanya N Mayadas
- Center for excellence in Vascular biology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Stuart M Levitz
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Amy G Hise
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
- Department of Medicine, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Neal Silverman
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Katherine A Fitzgerald
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
279
|
Acidosis potentiates the host proinflammatory interleukin-1β response to Pseudomonas aeruginosa infection. Infect Immun 2014; 82:4689-97. [PMID: 25156732 DOI: 10.1128/iai.02024-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Infection by Pseudomonas aeruginosa, and bacteria in general, frequently promotes acidification of the local microenvironment, and this is reinforced by pulmonary exertion and exacerbation. However, the consequence of an acidic environment on the host inflammatory response to P. aeruginosa infection is poorly understood. Here we report that the pivotal cellular and host proinflammatory interleukin-1β (IL-1β) response, which enables host clearance of the infection but can produce collateral inflammatory damage, is increased in response to P. aeruginosa infection within an acidic environment. Synergistic mechanisms that promote increased IL-1β release in response to P. aeruginosa infection in an acidic environment are increased pro-IL-1β induction and increased caspase-1 activity, the latter being dependent upon a functional type III secretion system of the bacteria and the NLRC4 inflammasome of the host. Using an in vivo peritonitis model, we have validated that the IL-1β inflammatory response is increased in mice in response to P. aeruginosa infection within an acidic microenvironment. These data reveal novel insights into the regulation and exacerbation of inflammatory responses to P. aeruginosa.
Collapse
|
280
|
Prescimone T, D'Amico A, Caselli C, Cabiati M, Viglione F, Caruso R, Verde A, Del Ry S, Trivella MG, Giannessi D. Caspase-1 transcripts in failing human heart after mechanical unloading. Cardiovasc Pathol 2014; 24:11-8. [PMID: 25200478 DOI: 10.1016/j.carpath.2014.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/06/2014] [Accepted: 08/06/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Caspase (Casp)-1 has been indicated as a molecular target capable of preventing the progression of cardiovascular diseases, including heart failure (HF), due to its central role in promoting inflammation and cardiomyocyte loss. The aim of this study was to assess whether Left Ventricular Assist Device (LVAD) implantation modifies the inflammatory and apoptotic profile in the heart through the modulation of Casp-1 expression level. METHODS Cardiac tissue was collected from end-stage HF patients before LVAD implant (pre-LVAD group, n=22) and at LVAD removal (post-LVAD, n=6), and from stable HF patients on medical therapy without prior circulatory support (HTx, n=7) at heart transplantation, as control. The cardiac expression of Casp-1, of its inhibitors caspase recruitment domain (CARD) only protein (COP) and CARD family, member 18 (ICEBERG), was evaluated by real-time PCR in the three groups of patients. RESULTS Casp-1 was increased in the pre-LVAD group compared to HTx (p=0.006), while on the contrary the ICEBERG level was significantly decreased in pre-LVAD with respect to HTx patients (p<0.001); no difference in COP expression level was found. CONCLUSIONS This study describes a specific pattern of the Casp-1 system associated with inflammation and apoptosis markers in patients who require LVAD insertion. The inflammation could be the key process regulating, in a negative loop, Casp-1 signaling and its down-stream effects, apoptosis included.
Collapse
Affiliation(s)
- Tommaso Prescimone
- CNR Institute of Clinical Physiology, Laboratory of Cardiovascular Biochemistry, Pisa, Italy
| | | | - Chiara Caselli
- CNR Institute of Clinical Physiology, Laboratory of Cardiovascular Biochemistry, Pisa, Italy
| | - Manuela Cabiati
- CNR Institute of Clinical Physiology, Laboratory of Cardiovascular Biochemistry, Pisa, Italy
| | - Federica Viglione
- CNR Institute of Clinical Physiology, Laboratory of Cardiovascular Biochemistry, Pisa, Italy
| | - Raffaele Caruso
- CNR Institute of Clinical Physiology, Cardiovascular Department, Niguarda Cà Granda Hospital, Milan, Italy
| | - Alessandro Verde
- CardioThoracic and Vascular Department, "A. De Gasperis" Niguarda Ca' Granda Hospital, Milan, Italy
| | - Silvia Del Ry
- CNR Institute of Clinical Physiology, Laboratory of Cardiovascular Biochemistry, Pisa, Italy
| | - Maria Giovanna Trivella
- CNR Institute of Clinical Physiology, Laboratory of Cardiovascular Biochemistry, Pisa, Italy
| | - Daniela Giannessi
- CNR Institute of Clinical Physiology, Laboratory of Cardiovascular Biochemistry, Pisa, Italy.
| |
Collapse
|
281
|
Caspases as the Key Effectors of Inflammatory Responses Against Bacterial Infection. Arch Immunol Ther Exp (Warsz) 2014; 63:1-13. [DOI: 10.1007/s00005-014-0301-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/22/2014] [Indexed: 12/11/2022]
|
282
|
Corridoni D, Arseneau KO, Cifone MG, Cominelli F. The dual role of nod-like receptors in mucosal innate immunity and chronic intestinal inflammation. Front Immunol 2014; 5:317. [PMID: 25071778 PMCID: PMC4090755 DOI: 10.3389/fimmu.2014.00317] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 06/24/2014] [Indexed: 01/11/2023] Open
Abstract
Nucleotide-binding and oligomerization domain NOD-like receptors (NLRs) are highly conserved cytosolic pattern recognition receptors that play, in combination with toll-like receptors, a critical role in innate immunity and inflammation. These proteins are characterized by a central oligomerization domain termed nucleotide-binding domain, and a protein interaction domain containing leucine-rich repeats. Some NLRs, including NOD1 and NOD2, sense the cytosolic presence of conserved bacterial molecular signatures and drive the activation of mitogen-activated protein kinase and the transcription factor NF-κB. A different set of NLRs induces caspase-1 activation through the assembly of large protein complexes known as inflammasomes. Activation of NLR proteins results in secretion of pro-inflammatory cytokines and subsequent inflammatory responses. The critical role of NLRs in innate immunity is underscored by the fact that polymorphisms within their genes are implicated in the development of several immune-mediated diseases, including inflammatory bowel disease. Over the past few years, the role of NLRs in intestinal homeostasis has been highlighted, however the mechanism by which dysfunction in these proteins leads to aberrant inflammation is still the focus of much investigation. The purpose of this review is to systematically evaluate the function of NLRs in mucosal innate immunity and understand how genetic or functional alterations in these components can lead to the disruption of intestinal homeostasis, and the subsequent development of chronic inflammation.
Collapse
Affiliation(s)
- Daniele Corridoni
- Department of Medicine, Case Western Reserve University , Cleveland, OH , USA ; Digestive Health Research Center, Case Western Reserve University , Cleveland, OH , USA
| | - Kristen O Arseneau
- Department of Medicine, Case Western Reserve University , Cleveland, OH , USA ; Digestive Health Research Center, Case Western Reserve University , Cleveland, OH , USA
| | - Maria Grazia Cifone
- Department of Life, Health and Environmental Sciences, University of L'Aquila , L'Aquila , Italy
| | - Fabio Cominelli
- Department of Medicine, Case Western Reserve University , Cleveland, OH , USA ; Digestive Health Research Center, Case Western Reserve University , Cleveland, OH , USA
| |
Collapse
|
283
|
Lage SL, Longo C, Branco LM, da Costa TB, Buzzo CDL, Bortoluci KR. Emerging Concepts about NAIP/NLRC4 Inflammasomes. Front Immunol 2014; 5:309. [PMID: 25071770 PMCID: PMC4078251 DOI: 10.3389/fimmu.2014.00309] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/17/2014] [Indexed: 12/14/2022] Open
Abstract
Neuronal apoptosis inhibitory protein (NAIP)/NOD-like receptor (NLR) containing a caspase activating and recruitment domain (CARD) 4 (NLRC4) inflammasome complexes are activated in response to proteins from virulent bacteria that reach the cell cytosol. Specific NAIP proteins bind to the agonists and then physically associate with NLRC4 to form an inflammasome complex able to recruit and activate pro-caspase-1. NAIP5 and NAIP6 sense flagellin, component of flagella from motile bacteria, whereas NAIP1 and NAIP2 detect needle and rod components from bacterial type III secretion systems, respectively. Active caspase-1 mediates the maturation and secretion of the pro-inflammatory cytokines, IL-1β and IL-18, and is responsible for the induction of pyroptosis, a pro-inflammatory form of cell death. In addition to these well-known effector mechanisms, novel roles have been described for NAIP/NLRC4 inflammasomes, such as phagosomal maturation, activation of inducible nitric oxide synthase, regulation of autophagy, secretion of inflammatory mediators, antibody production, activation of T cells, among others. These effector mechanisms mediated by NAIP/NLRC4 inflammasomes have been extensively studied in the context of resistance of infections and the potential of their agonists has been exploited in therapeutic strategies to non-infectious pathologies, such as tumor protection. Thus, this review will discuss current knowledge about the activation of NAIP/NLRC4 inflammasomes and their effector mechanisms.
Collapse
Affiliation(s)
- Silvia Lucena Lage
- Centro de Terapia Celular e Molecular (CTC-Mol), Universidade Federal de São Paulo , São Paulo , Brazil
| | - Carla Longo
- Centro de Terapia Celular e Molecular (CTC-Mol), Universidade Federal de São Paulo , São Paulo , Brazil ; Departamento de Ciências Biológicas, Universidade Federal de São Paulo , São Paulo , Brazil
| | - Laura Migliari Branco
- Centro de Terapia Celular e Molecular (CTC-Mol), Universidade Federal de São Paulo , São Paulo , Brazil
| | - Thaís Boccia da Costa
- Centro de Terapia Celular e Molecular (CTC-Mol), Universidade Federal de São Paulo , São Paulo , Brazil
| | - Carina de Lima Buzzo
- Centro de Terapia Celular e Molecular (CTC-Mol), Universidade Federal de São Paulo , São Paulo , Brazil
| | - Karina Ramalho Bortoluci
- Centro de Terapia Celular e Molecular (CTC-Mol), Universidade Federal de São Paulo , São Paulo , Brazil ; Departamento de Ciências Biológicas, Universidade Federal de São Paulo , São Paulo , Brazil
| |
Collapse
|
284
|
IQGAP1 is important for activation of caspase-1 in macrophages and is targeted by Yersinia pestis type III effector YopM. mBio 2014; 5:e01402-14. [PMID: 24987096 PMCID: PMC4161239 DOI: 10.1128/mbio.01402-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
YopM is a leucine-rich repeat (LRR)-containing effector in several Yersinia species, including Yersinia pestis and Y. pseudotuberculosis. Different Yersinia strains encode distinct YopM isoforms with variable numbers of LRRs but conserved C-terminal tails. A 15-LRR isoform in Y. pseudotuberculosis YPIII was recently shown to bind and inhibit caspase-1 via a YLTD motif in LRR 10, and attenuation of YopM− YPIII was reversed in mice lacking caspase-1, indicating that caspase-1 inhibition is a major virulence function of YopMYPIII. To determine if other YopM proteins inhibit caspase-1, we utilized Y. pseudotuberculosis strains natively expressing a 21-LRR isoform lacking the YLTD motif (YopM32777) or ectopically expressing a Y. pestis 15-LRR version with a functional (YopMKIM) or inactivated (YopMKIM D271A) YLTD motif. Results of mouse and macrophage infections with these strains showed that YopM32777, YopMKIM, and YopMKIM D271A inhibit caspase-1 activation, indicating that the YLTD motif is dispensable for this activity. Analysis of YopMKIM deletion variants revealed that LRRs 6 to 15 and the C-terminal tail are required to inhibit caspase-1 activation. YopM32777, YopMKIM, and YopMKIM deletion variants were purified, and binding partners in macrophage lysates were identified. Caspase-1 bound to YopMKIM but not YopM32777. Additionally, YopMKIM bound IQGAP1 and the use of Iqgap1−/− macrophages revealed that this scaffolding protein is important for caspase-1 activation upon infection with YopM−Y. pseudotuberculosis. Thus, while multiple YopM isoforms inhibit caspase-1 activation, their variable LRR domains bind different host proteins to perform this function and the LRRs of YopMKIM target IQGAP1, a novel regulator of caspase-1, in macrophages. Activation of caspase-1, mediated by macromolecular complexes termed inflammasomes, is important for innate immune defense against pathogens. Pathogens can, in turn, subvert caspase-1-dependent responses through the action of effector proteins. For example, the Yersinia effector YopM inhibits caspase-1 activation by arresting inflammasome formation. This caspase-1 inhibitory activity has been studied in a specific YopM isoform, and in this case, the protein was shown to act as a pseudosubstrate to bind and inhibit caspase-1. Different Yersinia strains encode distinct YopM isoforms, many of which lack the pseudosubstrate motif. We studied additional isoforms and found that these YopM proteins inhibit caspase-1 activation independently of a pseudosubstrate motif. We also identified IQGAP1 as a novel binding partner of the Yersinia pestis YopMKIM isoform and demonstrated that IQGAP1 is important for caspase-1 activation in macrophages infected with Yersinia. Thus, this study reveals new insights into inflammasome regulation during Yersinia infection.
Collapse
|
285
|
Kajiwara Y, Schiff T, Voloudakis G, Gama Sosa MA, Elder G, Bozdagi O, Buxbaum JD. A critical role for human caspase-4 in endotoxin sensitivity. THE JOURNAL OF IMMUNOLOGY 2014; 193:335-43. [PMID: 24879791 DOI: 10.4049/jimmunol.1303424] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Response to endotoxins is an important part of the organismal reaction to Gram-negative bacteria and plays a critical role in sepsis and septic shock, as well as other conditions such as metabolic endotoxemia. Humans are generally more sensitive to endotoxins when compared with experimental animals such as mice. Inflammatory caspases mediate endotoxin-induced IL-1β secretion and lethality in mice, and caspase-4 is an inflammatory caspase that is found in the human, and not mouse, genome. To test whether caspase-4 is involved in endotoxin sensitivity, we developed a transgenic mouse expressing human caspase-4 in its genomic context. Caspase-4 transgenic mice exhibited significantly higher endotoxin sensitivity, as measured by enhanced cytokine secretion and lethality following LPS challenge. Using bone marrow-derived macrophages, we then observed that caspase-4 can support activation of caspase-1 and secretion of IL-1β and IL-18 in response to priming signals (LPS or Pam3CSK4) alone, without the need for second signals to stimulate the assembly of the inflammasome. These findings indicate that the regulation of caspase-1 activity by human caspase-4 could represent a unique mechanism in humans, as compared with laboratory rodents, and may partially explain the higher sensitivity to endotoxins observed in humans. Regulation of the expression, activation, or activity of caspase-4 therefore represents targets for systemic inflammatory response syndrome, sepsis, septic shock, and related disorders.
Collapse
Affiliation(s)
- Yuji Kajiwara
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | - Georgios Voloudakis
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Miguel A Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029; General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468
| | - Gregory Elder
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029; Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ozlem Bozdagi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Joseph D Buxbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
286
|
Connolly PF, Jäger R, Fearnhead HO. New roles for old enzymes: killer caspases as the engine of cell behavior changes. Front Physiol 2014; 5:149. [PMID: 24795644 PMCID: PMC3997007 DOI: 10.3389/fphys.2014.00149] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/28/2014] [Indexed: 12/31/2022] Open
Abstract
It has become increasingly clear that caspases, far from being merely cell death effectors, have a much wider range of functions within the cell. These functions are as diverse as signal transduction and cytoskeletal remodeling, and caspases are now known to have an essential role in cell proliferation, migration, and differentiation. There is also evidence that apoptotic cells themselves can direct the behavior of nearby cells through the caspase-dependent secretion of paracrine signaling factors. In some processes, including the differentiation of skeletal muscle myoblasts, both caspase activation in differentiating cells as well as signaling from apoptotic cells has been reported. Here, we review the non-apoptotic outcomes of caspase activity in a range of different model systems and attempt to integrate this knowledge.
Collapse
Affiliation(s)
- Patrick F Connolly
- Pharmacology and Therapeutics, National University of Ireland Galway Galway, Ireland
| | - Richard Jäger
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences Rheinbach, Germany
| | - Howard O Fearnhead
- Pharmacology and Therapeutics, National University of Ireland Galway Galway, Ireland
| |
Collapse
|
287
|
Heymann MC, Winkler S, Luksch H, Flecks S, Franke M, Ruß S, Ozen S, Yilmaz E, Klein C, Kallinich T, Lindemann D, Brenner S, Ganser G, Roesler J, Rösen-Wolff A, Hofmann SR. Human procaspase-1 variants with decreased enzymatic activity are associated with febrile episodes and may contribute to inflammation via RIP2 and NF-κB signaling. THE JOURNAL OF IMMUNOLOGY 2014; 192:4379-85. [PMID: 24706726 DOI: 10.4049/jimmunol.1203524] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The proinflammatory enzyme caspase-1 plays an important role in the innate immune system and is involved in a variety of inflammatory conditions. Rare naturally occurring human variants of the caspase-1 gene (CASP1) lead to different protein expression and structure and to decreased or absent enzymatic activity. Paradoxically, a significant number of patients with such variants suffer from febrile episodes despite decreased IL-1β production and secretion. In this study, we investigate how variant (pro)caspase-1 can possibly contribute to inflammation. In a transfection model, such variant procaspase-1 binds receptor interacting protein kinase 2 (RIP2) via Caspase activation and recruitment domain (CARD)/CARD interaction and thereby activates NF-κB, whereas wild-type procaspase-1 reduces intracellular RIP2 levels by enzymatic cleavage and release into the supernatant. We approach the protein interactions by coimmunoprecipitation and confocal microscopy and show that NF-κB activation is inhibited by anti-RIP2-short hairpin RNA and by the expression of a RIP2 CARD-only protein. In conclusion, variant procaspase-1 binds RIP2 and thereby activates NF-κB. This pathway could possibly contribute to proinflammatory signaling.
Collapse
Affiliation(s)
- Michael C Heymann
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Medizinische Fakultät der Technischen Universität Dresden, 01307 Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
288
|
Doi T, Doi S, Nakashima A, Ueno T, Yokoyama Y, Kohno N, Masaki T. Mizoribine ameliorates renal injury and hypertension along with the attenuation of renal caspase-1 expression in aldosterone-salt-treated rats. PLoS One 2014; 9:e93513. [PMID: 24695748 PMCID: PMC3973594 DOI: 10.1371/journal.pone.0093513] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 03/07/2014] [Indexed: 12/01/2022] Open
Abstract
Aldosterone-salt treatment induces not only hypertension but also extensive inflammation that contributes to fibrosis in the rat kidney. However, the mechanism underlying aldosterone-salt-induced renal inflammation remains unclear. Pyroptosis has recently been identified as a new type of cell death that is accompanied by the activation of inflammatory cytokines. We hypothesized that aldosterone-salt treatment could induce inflammation through pyroptosis and that mizoribine, an effective immunosuppressant, would ameliorate the renal inflammation that would otherwise cause renal fibrosis. Ten days after recovery from left uninephrectomy, rats were given drinking water with 1% sodium chloride. The animals were divided into three groups (n = 7 per group): (1) vehicle infusion group, (2) aldosterone infusion group, or (3) aldosterone infusion plus oral mizoribine group. Aldosterone-salt treatment increased the expression of the nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3 and caspase-1, and also increased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells. However, the oral administration of mizoribine attenuated these alterations. Furthermore, mizoribine inhibited hypertension and renal fibrosis, and also attenuated the aldosterone-induced expression of serum/glucocorticoid-regulated kinase and α epithelial sodium channel. These results suggest that caspase-1 activation plays an important role in the development of inflammation induced by aldosterone-salt treatment and that it functions as an anti-inflammatory strategy that protects against renal injury and hypertension.
Collapse
Affiliation(s)
- Toshiki Doi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Shigehiro Doi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Ayumu Nakashima
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Toshinori Ueno
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Yukio Yokoyama
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Nobuoki Kohno
- Department of Molecular and Internal Medicine, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
289
|
Exline MC, Justiniano S, Hollyfield JL, Berhe F, Besecker BY, Das S, Wewers MD, Sarkar A. Microvesicular caspase-1 mediates lymphocyte apoptosis in sepsis. PLoS One 2014; 9:e90968. [PMID: 24643116 PMCID: PMC3958341 DOI: 10.1371/journal.pone.0090968] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/05/2014] [Indexed: 12/11/2022] Open
Abstract
Objective Immune dysregulation during sepsis is poorly understood, however, lymphocyte apoptosis has been shown to correlate with poor outcomes in septic patients. The inflammasome, a molecular complex which includes caspase-1, is essential to the innate immune response to infection and also important in sepsis induced apoptosis. Our group has recently demonstrated that endotoxin-stimulated monocytes release microvesicles (MVs) containing caspase-1 that are capable of inducing apoptosis. We sought to determine if MVs containing caspase-1 are being released into the blood during human sepsis and induce apoptosis.. Design Single-center cohort study Measurements 50 critically ill patients were screened within 24 hours of admission to the intensive care unit and classified as either a septic or a critically ill control. Circulatory MVs were isolated and analyzed for the presence of caspase-1 and the ability to induce lymphocyte apoptosis. Patients remaining in the ICU for 48 hours had repeated measurement of caspase-1 activity on ICU day 3. Main Results Septic patients had higher microvesicular caspase-1 activity 0.05 (0.04, 0.07) AFU versus 0.0 AFU (0, 0.02) (p<0.001) on day 1 and this persisted on day 3, 0.12 (0.1, 0.2) versus 0.02 (0, 0.1) (p<0.001). MVs isolated from septic patients on day 1 were able to induce apoptosis in healthy donor lymphocytes compared with critically ill control patients (17.8±9.2% versus 4.3±2.6% apoptotic cells, p<0.001) and depletion of MVs greatly diminished this apoptotic signal. Inhibition of caspase-1 or the disruption of MV integrity abolished the ability to induce apoptosis. Conclusion These findings suggest that microvesicular caspase-1 is important in the host response to sepsis, at least in part, via its ability to induce lymphocyte apoptosis. The ability of microvesicles to induce apoptosis requires active caspase-1 and intact microvesicles.
Collapse
Affiliation(s)
- Matthew C. Exline
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Steven Justiniano
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Jennifer L. Hollyfield
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Freweine Berhe
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Beth Y. Besecker
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Srabani Das
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Mark D. Wewers
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Anasuya Sarkar
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
290
|
Peptidases from latex of Carica candamarcensis upregulate COX-2 and IL-1 mRNA transcripts against Salmonella enterica ser. Typhimurium-mediated inflammation. Mediators Inflamm 2014; 2014:819731. [PMID: 24757289 PMCID: PMC3976864 DOI: 10.1155/2014/819731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/09/2014] [Accepted: 01/24/2014] [Indexed: 11/18/2022] Open
Abstract
The immunomodulatory properties of a mixture of cysteine peptidases (P1G10) obtained from the fruit lattice of Carica candamarcensis were investigated. P1G10 was obtained from fresh latex samples by chromatography in a Sephadex column and initially administered to Swiss mice (n = 5; 1 or 10 mg/kg) via i.p. After 30 min, the mice were injected with carrageenan (0.5 mg/mouse) or heat-killed S. Typhimurium (10(7) CFU/mL; 100°C/30 min) into the peritoneal cavity. Afterwards, two animal groups were i.p. administered with P1G10 (n = 6; 1, 5, or 10 mg/Kg) or PBS 24 hours prior to challenge with live S. Typhimurium (10(7) CFU/mL). P1G10 stimulated the proliferation of circulating neutrophils and lymphocytes, 6 h after injection of carrageenan or heat-killed bacteria, respectively. Furthermore, survival after infection was dose-dependent and reached 60% of the animal group. On the other hand, control mice died 1-3 days after infection. The examination of mRNA transcripts in liver cells 24 h after infection confirmed fold variation increases of 5.8 and 4.8 times on average for IL-1 and COX-2, respectively, in P1G10 pretreated mice but not for TNF-α, IL-10, γ-IFN and iNOS, for which the results were comparable to untreated animals. These data are discussed in light of previous reports.
Collapse
|
291
|
Berghe TV, Demon D, Bogaert P, Vandendriessche B, Goethals A, Depuydt B, Vuylsteke M, Roelandt R, Van Wonterghem E, Vandenbroecke J, Choi SM, Meyer E, Krautwald S, Declercq W, Takahashi N, Cauwels A, Vandenabeele P. Simultaneous Targeting of IL-1 and IL-18 Is Required for Protection against Inflammatory and Septic Shock. Am J Respir Crit Care Med 2014; 189:282-91. [DOI: 10.1164/rccm.201308-1535oc] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
292
|
Hu Z, Murakami T, Suzuki K, Tamura H, Kuwahara-Arai K, Iba T, Nagaoka I. Antimicrobial cathelicidin peptide LL-37 inhibits the LPS/ATP-induced pyroptosis of macrophages by dual mechanism. PLoS One 2014; 9:e85765. [PMID: 24454930 PMCID: PMC3894207 DOI: 10.1371/journal.pone.0085765] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/01/2013] [Indexed: 12/22/2022] Open
Abstract
Pyroptosis is a caspase-1 dependent cell death, associated with proinflammatory cytokine production, and is considered to play a crucial role in sepsis. Pyroptosis is induced by the two distinct stimuli, microbial PAMPs (pathogen associated molecular patterns) and endogenous DAMPs (damage associated molecular patterns). Importantly, cathelicidin-related AMPs (antimicrobial peptides) have a role in innate immune defense. Notably, human cathelicidin LL-37 exhibits the protective effect on the septic animal models. Thus, in this study, to elucidate the mechanism for the protective action of LL-37 on sepsis, we utilized LPS (lipopolysaccharide) and ATP (adenosine triphosphate) as a PAMP and a DAMP, respectively, and examined the effect of LL-37 on the LPS/ATP-induced pyroptosis of macrophage-like J774 cells. The data indicated that the stimulation of J774 cells with LPS and ATP induces the features of pyroptosis, including the expression of IL-1β mRNA and protein, activation of caspase-1, inflammasome formation and cell death. Moreover, LL-37 inhibits the LPS/ATP-induced IL-1β expression, caspase-1 activation, inflammasome formation, as well as cell death. Notably, LL-37 suppressed the LPS binding to target cells and ATP-induced/P2X7-mediated caspase-1 activation. Together these observations suggest that LL-37 potently inhibits the LPS/ATP-induced pyroptosis by both neutralizing the action of LPS and inhibiting the response of P2X7 to ATP. Thus, the present finding may provide a novel insight into the modulation of sepsis utilizing LL-37 with a dual action on the LPS binding and P2X7 activation.
Collapse
Affiliation(s)
- Zhongshuang Hu
- Department of Host Defense and Biochemical Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Taisuke Murakami
- Department of Host Defense and Biochemical Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kaori Suzuki
- Department of Host Defense and Biochemical Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroshi Tamura
- Department of Host Defense and Biochemical Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kyoko Kuwahara-Arai
- Department of Bacteriology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Isao Nagaoka
- Department of Host Defense and Biochemical Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|
293
|
Gaide O, Hoffman HM. Insight into the inflammasome and caspase-activating mechanisms. Expert Rev Clin Immunol 2014; 4:61-77. [DOI: 10.1586/1744666x.4.1.61] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
294
|
Iversen L, Johansen C. Inflammasomes and inflammatory caspases in skin inflammation. Expert Rev Mol Diagn 2014; 8:697-705. [DOI: 10.1586/14737159.8.6.697] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
295
|
Croker BA, O'Donnell JA, Gerlic M. Pyroptotic death storms and cytopenia. Curr Opin Immunol 2013; 26:128-37. [PMID: 24556409 DOI: 10.1016/j.coi.2013.12.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 11/13/2013] [Accepted: 12/02/2013] [Indexed: 12/12/2022]
Abstract
For over two decades, we have embraced the cytokine storm theory to explain sepsis, severe sepsis and septic shock. The failure of numerous large-scale clinical trials, which aimed to treat sepsis by neutralizing inflammatory cytokines and LPS, indicates that alternative pathophysiological mechanisms are likely to account for sepsis and the associated immune suppression in patients with severe infection. Recent insights that extricate pyroptotic death from inflammatory cytokine production in vivo have highlighted a need to investigate the consequences of apoptotic and non-apoptotic death in contributing to cytopenia and immune suppression. In this review, we will focus on the biochemical and cellular mechanisms controlling pyroptosis, a Caspase-1/11 dependent form of cell death during infection.
Collapse
Affiliation(s)
- Ben A Croker
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.
| | - Joanne A O'Donnell
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Motti Gerlic
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| |
Collapse
|
296
|
Tavares AH, Magalhães KG, Almeida RDN, Correa R, Burgel PH, Bocca AL. NLRP3 inflammasome activation by Paracoccidioides brasiliensis. PLoS Negl Trop Dis 2013; 7:e2595. [PMID: 24340123 PMCID: PMC3855149 DOI: 10.1371/journal.pntd.0002595] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 10/31/2013] [Indexed: 12/11/2022] Open
Abstract
Paracoccidioides brasiliensis is the etiologic agent of paracoccidioidomycosis (PCM), the most prevalent systemic mycosis that is geographically confined to Latin America. The pro-inflammatory cytokine IL-1β that is mainly derived from the activation of the cytoplasmic multiprotein complex inflammasome is an essential host factor against opportunistic fungal infections; however, its role in infection with a primary fungal pathogen, such as P. brasiliensis, is not well understood. In this study, we found that murine bone marrow-derived dendritic cells responded to P. brasiliensis yeast cells infection by releasing IL-1β in a spleen tyrosine kinase (Syk), caspase-1 and NOD-like receptor (NLR) family member NLRP3 dependent manner. In addition, P. brasiliensis-induced NLRP3 inflammasome activation was dependent on potassium (K+) efflux, reactive oxygen species production, phagolysosomal acidification and cathepsin B release. Finally, using mice lacking the IL-1 receptor, we demonstrated that IL-1β signaling has an important role in killing P. brasiliensis by murine macrophages. Altogether, our results demonstrate that the NLRP3 inflammasome senses and responds to P. brasiliensis yeast cells infection and plays an important role in host defense against this fungus. Paracoccidioidomycosis is a systemic disease that has an important mortality and morbidity impact in Latin America. It mainly affects rural workers of Argentina, Colombia, Venezuela and Brazil. Upon host infection, one of the most important aspects that contribute to the disease outcome is the initial interaction of the Paracoccidioides brasiliensis fungus with the phagocytic cells and the induction of the inflammatory process. Among several inflammatory mediators, the cytokine interleukin-1β is of pivotal importance in this complex process. Here, we demonstrate that P. brasiliensis is sensed by the NLRP3 inflammasome, a cytoplasmatic multiprotein complex that lead to the processing and secretion of IL-1β. In addition, we described the intracellular perturbations that may be associated with NLRP3 activation such as potassium efflux, production of reactive oxygen species, and lysosomal damage. Finally, our work provides evidence for the protective role of IL-1β during fungal infection of murine macrophages.
Collapse
Affiliation(s)
- Aldo Henrique Tavares
- Faculdade de Ceilândia, Universidade de Brasília, Brasília, Distrito Federal, Brasil
- Laboratorio de Imunologia Aplicada, Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, Distrito Federal, Brasil
- * E-mail: .
| | - Kelly Grace Magalhães
- Laboratorio de Imunologia e Inflamação, Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, Distrito Federal, Brasil
| | - Raquel Das Neves Almeida
- Laboratorio de Imunologia e Inflamação, Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, Distrito Federal, Brasil
| | - Rafael Correa
- Laboratorio de Imunologia e Inflamação, Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, Distrito Federal, Brasil
| | - Pedro Henrique Burgel
- Laboratorio de Imunologia Aplicada, Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, Distrito Federal, Brasil
| | - Anamélia Lorenzetti Bocca
- Laboratorio de Imunologia Aplicada, Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, Distrito Federal, Brasil
| |
Collapse
|
297
|
Yoshinaga K, PrabhuDas M, Davies C, White K, Caron K, Golos T, Fazleabas A, Paria B, Mor G, Paul S, Ye X, Dey SK, Spencer T, Roberts RM. Interdisciplinary collaborative team for blastocyst implantation research: inception and perspectives. Am J Reprod Immunol 2013; 71:1-11. [PMID: 24286196 DOI: 10.1111/aji.12173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Koji Yoshinaga
- Fertility and Infertility Branch, NICHD, NIH, DHHS, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
298
|
Wen H, Miao EA, Ting JPY. Mechanisms of NOD-like receptor-associated inflammasome activation. Immunity 2013; 39:432-41. [PMID: 24054327 DOI: 10.1016/j.immuni.2013.08.037] [Citation(s) in RCA: 322] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Indexed: 02/08/2023]
Abstract
A major function of a subfamily of NLR (nucleotide-binding domain, leucine-rich repeat containing, or NOD-like receptor) proteins is in inflammasome activation, which has been implicated in a multitude of disease models and human diseases. This work will highlight key progress in understanding the mechanisms that activate the best-studied NLRs (NLRP3, NLRC4, NAIP, and NLRP1) and in uncovering inflammasome NLRs.
Collapse
Affiliation(s)
- Haitao Wen
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
299
|
Viganò E, Mortellaro A. Caspase-11: the driving factor for noncanonical inflammasomes. Eur J Immunol 2013; 43:2240-5. [PMID: 24037676 DOI: 10.1002/eji.201343800] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/26/2013] [Accepted: 07/26/2013] [Indexed: 01/12/2023]
Abstract
Inflammasomes are large multiprotein platforms that mediate the processing of caspase-1, which in turn promotes the maturation and release of IL-1β and IL-18 in response to microbial and danger signals. While the canonical pathway of inflammasome activation has been known for some time, a novel mechanism of noncanonical inflammasome activation mediated by caspase-11 was more recently identified. This pathway engages caspase-11 to trigger both caspase-1-dependent and -independent production of the inflammatory cytokines IL-1β, IL-18, and IL-1α, as well as to promote pyroptosis, a form of genetically programmed cell death that is associated with the release of such cytokines. In this review, we gather together studies on both the mechanisms and implications of caspase-11-mediated noncanonical inflammasome activation, and discuss the emerging importance of this pathway in regulating host defense against intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Elena Viganò
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | | |
Collapse
|
300
|
Lappas M. Caspase-1 activation is increased with human labour in foetal membranes and myometrium and mediates infection-induced interleukin-1β secretion. Am J Reprod Immunol 2013; 71:189-201. [PMID: 24238269 DOI: 10.1111/aji.12174] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/11/2013] [Indexed: 12/21/2022] Open
Abstract
PROBLEM Interleukin-1β (IL-1β) is a pro-inflammatory cytokine that is involved in human parturition, especially in the context of infection-induced preterm birth. Caspase-1 is a key component of inflammasomes, which are activated upon infection to trigger the maturation of IL-1β. METHOD OF STUDY To determine the effect of human labour on caspase-1 activation in human foetal membranes and myometrium. In addition, the mechanisms by which inflammasome activation regulates IL-1β production were also be assessed. RESULTS Higher caspase-1 gene and protein expression were detected in foetal membranes myometrium obtained from term labouring women when compared with samples taken from non labouring women. Lipopolysaccharide induced the transcription and secretion of IL-1β from foetal membranes and myometrium; both events were dependent on nuclear factor kappa B (NF-κB). However, levels of extracellular IL-1β were greatly increased by subsequent treatment with the potassium-proton ionophore Adenosine triphosphate (ATP) or nigericin; an effect that was dependent on active caspase-1. Additionally, ATP induced IL-1β secretion via the purinergic P2X7 receptor, whereas the pannexin-1 channel was required for nigericin induced IL-1β secretion. CONCLUSION Taken together, these results demonstrate that caspase-1 activation is increased with human labour in foetal membranes and myometrium, and is required for infection-induced IL-1β secretion.
Collapse
Affiliation(s)
- Martha Lappas
- Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Vic., Australia; Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Vic., Australia
| |
Collapse
|