251
|
Influence of Defined Hydrophilic Blocks within Oligoaminoamide Copolymers: Compaction versus Shielding of pDNA Nanoparticles. Polymers (Basel) 2017; 9:polym9040142. [PMID: 30970822 PMCID: PMC6432433 DOI: 10.3390/polym9040142] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 01/07/2023] Open
Abstract
Cationic polymers are promising components of the versatile platform of non-viral nucleic acid (NA) delivery agents. For a successful gene delivery system, these NA vehicles need to comprise several functionalities. This work focuses on the modification of oligoaminoamide carriers with hydrophilic oligomer blocks mediating nanoparticle shielding potential, which is necessary to prevent aggregation or dissociation of NA polyplexes in vitro, and hinder opsonization with blood components in vivo. Herein, the shielding agent polyethylene glycol (PEG) in three defined lengths (12, 24, or 48 oxyethylene repeats) is compared with two peptidic shielding blocks composed of four or eight repeats of sequential proline-alanine-serine (PAS). With both types of shielding agents, we found opposing effects of the length of hydrophilic segments on shielding and compaction of formed plasmid DNA (pDNA) nanoparticles. Two-arm oligoaminoamides with 37 cationizable nitrogens linked to 12 oxyethylene units or four PAS repeats resulted in very compact 40⁻50 nm pDNA nanoparticles, whereas longer shielding molecules destabilize the investigated polyplexes. Thus, the balance between sufficiently shielded but still compact and stable particles can be considered a critical optimization parameter for non-viral nucleic acid vehicles based on hydrophilic-cationic block oligomers.
Collapse
|
252
|
Aldrian G, Vaissière A, Konate K, Seisel Q, Vivès E, Fernandez F, Viguier V, Genevois C, Couillaud F, Démèné H, Aggad D, Covinhes A, Barrère-Lemaire S, Deshayes S, Boisguerin P. PEGylation rate influences peptide-based nanoparticles mediated siRNA delivery in vitro and in vivo. J Control Release 2017; 256:79-91. [PMID: 28411182 DOI: 10.1016/j.jconrel.2017.04.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 11/24/2022]
Abstract
Small interfering RNAs (siRNAs) present a strong therapeutic potential because of their ability to inhibit the expression of any desired protein. Recently, we developed the retro-inverso amphipathic RICK peptide as novel non-covalent siRNA carrier. This peptide is able to form nanoparticles (NPs) by self-assembling with the siRNA resulting in the fully siRNA protection based on its protease resistant peptide sequence. With regard to an in vivo application, we investigated here the influence of the polyethylene glycol (PEG) grafting to RICK NPs on their in vitro and in vivo siRNA delivery properties. A detailed structural study shows that PEGylation did not alter the NP formation (only decrease in zeta potential) regardless of the used PEGylation rates. Compared to the native RICK:siRNA NPs, low PEGylation rates (≤20%) of the NPs did not influence their cellular internalization capacity as well as their knock-down specificity (over-expressed or endogenous system) in vitro. Because the behavior of PEGylated NPs could differ in their in vivo application, we analyzed the repartition of fluorescent labeled NPs injected at the one-cell stage in zebrafish embryos as well as their pharmacokinetic (PK) profile after administration to mice. After an intra-cardiac injection of the PEGylated NPs, we could clearly determine that 20% PEG-RICK NPs reduce significantly liver and kidney accumulation. NPs with 20% PEGylation constitutes a modular, easy-to-handle drug delivery system which could be adapted to other types of functional moieties to develop safe and biocompatible delivery systems for the clinical application of RNAi-based cancer therapeutics.
Collapse
Affiliation(s)
- Gudrun Aldrian
- Sys2Diag, CNRS UMR 9005/ALCEDIAG, 1682 Rue de la Valsière, 34184 Montpellier Cedex 4, France
| | - Anaïs Vaissière
- Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Karidia Konate
- Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Quentin Seisel
- Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Eric Vivès
- Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Frédéric Fernandez
- Microscopie Electronique et Analytique, Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Véronique Viguier
- Microscopie Electronique et Analytique, Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Coralie Genevois
- EA 7435 IMOTION (Imagerie moléculaire et thérapies innovantes en oncologie), Université de Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - Franck Couillaud
- EA 7435 IMOTION (Imagerie moléculaire et thérapies innovantes en oncologie), Université de Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - Héléne Démèné
- Centre de Biochimie Structurale, CNRS UMR 5048, Inserm U1054, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France
| | - Dina Aggad
- Institut des Biomolécules Max Mousseron, CNRS UMR 5247, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Aurélie Covinhes
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Inserm U661, Université de Montpellier, 141 Rue de la Cardonille, 34094 Montpellier Cedex 5, France.; Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
| | - Stéphanie Barrère-Lemaire
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Inserm U661, Université de Montpellier, 141 Rue de la Cardonille, 34094 Montpellier Cedex 5, France.; Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne
| | - Sébastien Deshayes
- Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Prisca Boisguerin
- Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293 Montpellier Cedex 5, France.
| |
Collapse
|
253
|
Han N, Pang L, Xu J, Hyun H, Park J, Yeo Y. Development of Surface-Variable Polymeric Nanoparticles for Drug Delivery to Tumors. Mol Pharm 2017; 14:1538-1547. [PMID: 28368124 DOI: 10.1021/acs.molpharmaceut.7b00050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To develop nanoparticle drug carriers that interact with cells specifically in the mildly acidic tumor microenvironment, we produced polymeric nanoparticles modified with amidated TAT peptide via a simple surface modification method. Two types of core poly(lactic-co-glycolic acid) nanoparticles (NL and NP) were prepared with a phospholipid shell as an optional feature and covered with polydopamine that enabled the conjugation of TAT peptide on the surface. Subsequent treatment with acid anhydrides such as cis-aconitic anhydride (CA) and succinic anhydride (SA) converted amines of lysine residues in TAT peptide to β-carboxylic amides, introducing carboxylic groups that undergo pH-dependent protonation and deprotonation. The nanoparticles modified with amidated TAT peptide (NLpT-CA and NPpT-CA) avoided interactions with LS174T colon cancer cells and J774A.1 macrophages at pH 7.4 but restored the ability to interact with LS174T cells at pH 6.5, delivering paclitaxel efficiently to the cells following a brief contact time. In LS174T tumor-bearing nude mice, NPpT-CA showed less accumulation in the lung than NPpT, reflecting the shielding effect of amidation, but tumor accumulation of NPpT and NPpT-CA was equally minimal. Comparison of particle stability and protein corona formation in media containing sera from different species suggests that NPpT-CA has been activated and opsonized in mouse blood to a greater extent than those in bovine serum-containing medium, thus losing the benefits of pH-sensitivity expected from in vitro experiments.
Collapse
Affiliation(s)
- Ning Han
- Department of Industrial and Physical Pharmacy, Purdue University , 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.,Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University , 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Liang Pang
- Department of Industrial and Physical Pharmacy, Purdue University , 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.,Department of Pharmaceutics, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, P. R. China
| | - Jun Xu
- Department of Industrial and Physical Pharmacy, Purdue University , 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Hyesun Hyun
- Department of Industrial and Physical Pharmacy, Purdue University , 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Jinho Park
- Department of Industrial and Physical Pharmacy, Purdue University , 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.,Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company , Indianapolis, Indiana 46285, United States
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University , 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.,Weldon School of Biomedical Engineering, Purdue University , 206 South Martin Jischke Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
254
|
Tatiparti K, Sau S, Kashaw SK, Iyer AK. siRNA Delivery Strategies: A Comprehensive Review of Recent Developments. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E77. [PMID: 28379201 PMCID: PMC5408169 DOI: 10.3390/nano7040077] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/07/2017] [Accepted: 03/31/2017] [Indexed: 01/01/2023]
Abstract
siRNA is a promising therapeutic solution to address gene overexpression or mutations as a post-transcriptional gene regulation process for several pathological conditions such as viral infections, cancer, genetic disorders, and autoimmune disorders like arthritis. This therapeutic method is currently being actively pursued in cancer therapy because siRNA has been found to suppress the oncogenes and address mutations in tumor suppressor genes and elucidate the key molecules in cellular pathways in cancer. It is also effective in personalized gene therapy for several diseases due to its specificity, adaptability, and broad targeting capability. However, naked siRNA is unstable in the bloodstream and cannot efficiently cross cell membranes besides being immunogenic. Therefore, careful design of the delivery systems is essential to fully utilize the potential of this therapeutic solution. This review presents a comprehensive update on the challenges of siRNA delivery and the current strategies used to develop nanoparticulate delivery systems.
Collapse
Affiliation(s)
- Katyayani Tatiparti
- Use-Inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| | - Samaresh Sau
- Use-Inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| | - Sushil Kumar Kashaw
- Use-Inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar 470003, India.
| | - Arun K Iyer
- Use-Inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
255
|
Sun Q, Zhou Z, Qiu N, Shen Y. Rational Design of Cancer Nanomedicine: Nanoproperty Integration and Synchronization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1606628. [PMID: 28234430 DOI: 10.1002/adma.201606628] [Citation(s) in RCA: 728] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/24/2017] [Indexed: 05/21/2023]
Abstract
Current cancer nanomedicines can only mitigate adverse effects but fail to enhance therapeutic efficacies of anticancer drugs. Rational design of next-generation cancer nanomedicines should aim to enhance their therapeutic efficacies. Taking this into account, this review first analyzes the typical cancer-drug-delivery process of an intravenously administered nanomedicine and concludes that the delivery involves a five-step CAPIR cascade and that high efficiency at every step is critical to guarantee high overall therapeutic efficiency. Further analysis shows that the nanoproperties needed in each step for a nanomedicine to maximize its efficiency are different and even opposing in different steps, particularly what the authors call the PEG, surface-charge, size and stability dilemmas. To resolve those dilemmas in order to integrate all needed nanoproperties into one nanomedicine, stability, surface and size nanoproperty transitions (3S transitions for short) are proposed and the reported strategies to realize these transitions are comprehensively summarized. Examples of nanomedicines capable of the 3S transitions are discussed, as are future research directions to design high-performance cancer nanomedicines and their clinical translations.
Collapse
Affiliation(s)
- Qihang Sun
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027, Hangzhou, China
| | - Zhuxian Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027, Hangzhou, China
| | - Nasha Qiu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027, Hangzhou, China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027, Hangzhou, China
| |
Collapse
|
256
|
Yu C, Zhou Q, Xiao F, Li Y, Hu H, Wan Y, Li Z, Yang X. Enhancing Doxorubicin Delivery toward Tumor by Hydroxyethyl Starch-g-Polylactide Partner Nanocarriers. ACS APPLIED MATERIALS & INTERFACES 2017; 9:10481-10493. [PMID: 28266842 DOI: 10.1021/acsami.7b00048] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Doxorubicin (DOX), a kind of wide-spectrum chemotherapeutic drug, can cause severe side effects in clinical use. To enhance its antitumor efficacy while reducing the side effects, two kinds of nanoparticles with desirable compositions and properties were assembled using optimally synthesized hydroxyethyl starch-grafted-polylactide (HES-g-PLA) copolymers and utilized as partner nanocarriers. The large empty HES-g-PLA nanoparticles (mean size, ca. 700 nm), at an optimized dose of 400 mg/kg, were used to block up the reticuloendothelial system in tumor-bearing mice 1.5 h in advance, and the small DOX-loaded HES-g-PLA nanoparticles (mean size, ca. 130 nm) were subsequently applied to the mice. When these partner nanocarriers were administered in this sequential mode, the released DOX had a significantly prolonged plasma half-life time and much slower clearance rate as well as a largely enhanced intratumoral accumulation as compared to free DOX. In vivo antitumor studies demonstrated that the DOX-loaded HES-g-PLA nanoparticles working together with their partner exhibited remarkably enhanced antitumor efficacy in comparison to free DOX. In addition, these HES-g-PLA partner nanocarriers showed negligible damage to the normal organs of the treated mice. Considering safe and efficient antitumor performance of DOX-loaded HES-g-PLA nanoparticles, the newly developed partner nanocarriers in combination with their administration mode have promising potential in clinical cancer chemotherapy.
Collapse
Affiliation(s)
- Chan Yu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, People's Republic of China
| | - Qing Zhou
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, People's Republic of China
| | - Fan Xiao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, People's Republic of China
| | - Yihui Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, People's Republic of China
| | - Hang Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, People's Republic of China
| | - Ying Wan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, People's Republic of China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, People's Republic of China
- Wuhan Institute of Biotechnology , High Tech Road 666, East Lake High Tech Zone, Wuhan 430040, People's Republic of China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, People's Republic of China
| |
Collapse
|
257
|
Guan X, Guo Z, Wang T, Lin L, Chen J, Tian H, Chen X. A pH-Responsive Detachable PEG Shielding Strategy for Gene Delivery System in Cancer Therapy. Biomacromolecules 2017; 18:1342-1349. [PMID: 28272873 DOI: 10.1021/acs.biomac.7b00080] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this study, a pH-responsive detachable polyethylene glycol (PEG) shielding strategy was designed for gene delivery in cancer therapy. Polyethylenimine/DNA complex (PEI/DNA) was in situ shielded by aldehyde group-modified PEG derivatives. The aldehyde groups of PEG could react with the amino groups of PEI by Schiff base reaction. The Schiff base bond was stable in neutral pH but labile in slightly acidic pH, which made the PEG sheddable in tumors. PEG-coated nanoparticles (NPs) had distinct advantages compared to their mPEG counterpart, possessing decreased zeta potential, more compressed size, and enhanced stability. PEG/PEI/DNA NPs showed not only high tumor cell uptake and transfection efficiency in vitro but also efficient accumulation and gene expression in solid tumors in vivo. This pH-responsive detachable PEG shielding system has the potential to be applied to other polycationic nanoparticles that contain amino groups on their surfaces, which will have broad prospects in cancer therapy.
Collapse
Affiliation(s)
- Xiuwen Guan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China.,University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Zhaopei Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Tinghong Wang
- Changchun Chaoyang People's Hospital , Changchun 130022, P. R. China
| | - Lin Lin
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| |
Collapse
|
258
|
Chen J, Guan X, Hu Y, Tian H, Chen X. Peptide-Based and Polypeptide-Based Gene Delivery Systems. Top Curr Chem (Cham) 2017; 375:32. [DOI: 10.1007/s41061-017-0115-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/28/2017] [Indexed: 12/15/2022]
|
259
|
Feng Q, Liu J, Li X, Chen Q, Sun J, Shi X, Ding B, Yu H, Li Y, Jiang X. One-Step Microfluidic Synthesis of Nanocomplex with Tunable Rigidity and Acid-Switchable Surface Charge for Overcoming Drug Resistance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1603109. [PMID: 27943612 DOI: 10.1002/smll.201603109] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/07/2016] [Indexed: 06/06/2023]
Abstract
Multidrug resistance (MDR), is the key reason accounting for the failure of cancer chemotherapy, remains a dramatic challenge for cancer therapy. In this study, the one-step microfluidic fabrication of a rigid pH-sensitive micellar nanocomplex (RPN) with tunable rigidity and acid-switchable surface charge for overcoming MDR by enhancing cellular uptake and lysosome escape is demonstrated. The RPN is composed of a poly(lactic-co-glycolic acid) (PLGA) core and a pH-sensitive copolymer shell, which is of neutral surface charge during blood circulation. Upon internalization of RPN by cancer cells, the pH-responsive shell dissociates inside the acidic lysosomes, while the rigid and positively charged PLGA core improves the lysosomal escape. The cellular uptake and nuclear uptake of doxorubicin (Dox) from Dox-loaded RPN are 1.6 and 2.4 times higher than that from Dox-loaded pH-sensitive micelles (PM) using a Dox-resistant cancer model (MCF-7/ADR, re-designated NCI/ADR-RES) in vitro. Dox-loaded RPN significantly enhances the therapeutic efficacy (92% inhibition of tumor growth) against MCF-7/ADR xenograft tumor in mice, while Dox-loaded PM only inhibits the tumor growth by 36%. RPN avoids the use of complicated synthesis procedure of nanoparticle and the necessary to integrate multiple components, which can facilitate the clinical translation of this novel nanostructure.
Collapse
Affiliation(s)
- Qiang Feng
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianping Liu
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Xuanyu Li
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qinghua Chen
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P. R. China
| | - Jiashu Sun
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xinghua Shi
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P. R. China
| | - Baoquan Ding
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P. R. China
| | - Haijun Yu
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Yaping Li
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
260
|
Li L, Song L, Liu X, Yang X, Li X, He T, Wang N, Yang S, Yu C, Yin T, Wen Y, He Z, Wei X, Su W, Wu Q, Yao S, Gong C, Wei Y. Artificial Virus Delivers CRISPR-Cas9 System for Genome Editing of Cells in Mice. ACS NANO 2017; 11:95-111. [PMID: 28114767 DOI: 10.1021/acsnano.6b04261] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CRISPR-Cas9 has emerged as a versatile genome-editing platform. However, due to the large size of the commonly used CRISPR-Cas9 system, its effective delivery has been a challenge and limits its utility for basic research and therapeutic applications. Herein, a multifunctional nucleus-targeting "core-shell" artificial virus (RRPHC) was constructed for the delivery of CRISPR-Cas9 system. The artificial virus could efficiently load with the CRISPR-Cas9 system, accelerate the endosomal escape, and promote the penetration into the nucleus without additional nuclear-localization signal, thus enabling targeted gene disruption. Notably, the artificial virus is more efficient than SuperFect, Lipofectamine 2000, and Lipofectamine 3000. When loaded with a CRISPR-Cas9 plasmid, it induced higher targeted gene disruption efficacy than that of Lipofectamine 3000. Furthermore, the artificial virus effectively targets the ovarian cancer via dual-receptor-mediated endocytosis and had minimum side effects. When loaded with the Cas9-hMTH1 system targeting MTH1 gene, RRPHC showed effective disruption of MTH1 in vivo. This strategy could be adapted for delivering CRISPR-Cas9 plasmid or other functional nucleic acids in vivo.
Collapse
Affiliation(s)
- Ling Li
- State
Key Laboratory of Biotherapy and Cancer Center,
West China Hospital and Collaborative
Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P. R. China
| | - Linjiang Song
- State
Key Laboratory of Biotherapy and Cancer Center,
West China Hospital and Collaborative
Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P. R. China
| | - Xiaowei Liu
- State
Key Laboratory of Biotherapy and Cancer Center,
West China Hospital and Collaborative
Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P. R. China
| | - Xi Yang
- State
Key Laboratory of Biotherapy and Cancer Center,
West China Hospital and Collaborative
Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P. R. China
| | - Xia Li
- State
Key Laboratory of Biotherapy and Cancer Center,
West China Hospital and Collaborative
Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P. R. China
| | - Tao He
- State
Key Laboratory of Biotherapy and Cancer Center,
West China Hospital and Collaborative
Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P. R. China
| | - Ning Wang
- State
Key Laboratory of Biotherapy and Cancer Center,
West China Hospital and Collaborative
Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P. R. China
| | - Suleixin Yang
- State
Key Laboratory of Biotherapy and Cancer Center,
West China Hospital and Collaborative
Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P. R. China
| | - Chuan Yu
- State
Key Laboratory of Biotherapy and Cancer Center,
West China Hospital and Collaborative
Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P. R. China
| | - Tao Yin
- State
Key Laboratory of Biotherapy and Cancer Center,
West China Hospital and Collaborative
Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P. R. China
| | - Yanzhu Wen
- State
Key Laboratory of Biotherapy and Cancer Center,
West China Hospital and Collaborative
Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P. R. China
| | - Zhiyao He
- State
Key Laboratory of Biotherapy and Cancer Center,
West China Hospital and Collaborative
Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P. R. China
| | - Xiawei Wei
- State
Key Laboratory of Biotherapy and Cancer Center,
West China Hospital and Collaborative
Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P. R. China
| | - Weijun Su
- School
of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Qinjie Wu
- State
Key Laboratory of Biotherapy and Cancer Center,
West China Hospital and Collaborative
Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P. R. China
| | - Shaohua Yao
- State
Key Laboratory of Biotherapy and Cancer Center,
West China Hospital and Collaborative
Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P. R. China
| | - Changyang Gong
- State
Key Laboratory of Biotherapy and Cancer Center,
West China Hospital and Collaborative
Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P. R. China
| | - Yuquan Wei
- State
Key Laboratory of Biotherapy and Cancer Center,
West China Hospital and Collaborative
Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
261
|
Sanchez L, Yi Y, Yu Y. Effect of partial PEGylation on particle uptake by macrophages. NANOSCALE 2017; 9:288-297. [PMID: 27909711 PMCID: PMC6397647 DOI: 10.1039/c6nr07353k] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Controlling the internalization of synthetic particles by immune cells remains a grand challenge for developing successful drug carrier systems. Polyethylene glycol (PEG) is frequently used as a protective coating on particles to evade immune clearance, but it also hinders the interactions of particles with their intended target cells. In this study, we investigate a spatial decoupling strategy, in which PEGs are coated on only one hemisphere of particles, so that the other hemisphere is available for functionalization of cell-targeting ligands without the hindrance effect from the PEGs. The partial coating of PEGs is realized by creating two-faced Janus particles with different surface chemistries on opposite sides. We show that a half-coating of PEGs reduces the macrophage uptake of particles as effectively as a complete coating. Owing to the surface asymmetry, Janus particles that are internalized enter macrophage cells via a combination of ligand-guided phagocytosis and macropinocytosis. By spatially segregating PEGs and ligands for targeting T cells on Janus particles, we demonstrate that the Janus particles bind T cells uni-directionally from the ligand-coated side, bypassing the hindrance from the PEGs on the other hemisphere. The results reveal a new mechanistic understanding on how a spatial coating of PEGs on particles changes the phagocytosis of particles. This study also suggests a new design principle for therapeutic particles - the spatial decoupling of PEGs and cell-targeting moieties reduces the interference between the two functions while attaining the protective effect of PEGs for macrophage evasion.
Collapse
Affiliation(s)
- Lucero Sanchez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | | | | |
Collapse
|
262
|
Hiruta Y, Kanda Y, Katsuyama N, Kanazawa H. Dual temperature- and pH-responsive polymeric micelle for selective and efficient two-step doxorubicin delivery. RSC Adv 2017. [DOI: 10.1039/c7ra03579a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dual responsive polymeric micelle enabled selective intracellular uptake with thermal stimulation and effective release of doxorubicin at acidic endosomal pH.
Collapse
Affiliation(s)
- Yuki Hiruta
- Faculty of Pharmacy
- Keio University
- Minato
- Japan
| | - Yuki Kanda
- Faculty of Pharmacy
- Keio University
- Minato
- Japan
| | | | | |
Collapse
|
263
|
Nakamura T, Noma Y, Sakurai Y, Harashima H. Modifying Cationic Liposomes with Cholesteryl-PEG Prevents Their Aggregation in Human Urine and Enhances Cellular Uptake by Bladder Cancer Cells. Biol Pharm Bull 2017; 40:234-237. [DOI: 10.1248/bpb.b16-00770] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Yosuke Noma
- Faculty of Pharmaceutical Sciences, Hokkaido University
| | - Yu Sakurai
- Faculty of Pharmaceutical Sciences, Hokkaido University
| | | |
Collapse
|
264
|
Sun W, Wang Y, Cai M, Lin L, Chen X, Cao Z, Zhu K, Shuai X. Codelivery of sorafenib and GPC3 siRNA with PEI-modified liposomes for hepatoma therapy. Biomater Sci 2017; 5:2468-2479. [DOI: 10.1039/c7bm00866j] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A novel liposomal system incorporating branched PEI was prepared to efficiently codeliver sorafenib and GPC3 siRNA for hepatocellular carcinoma therapy.
Collapse
Affiliation(s)
- Weitong Sun
- PCFM Lab of Ministry of Education
- School of Materials Science and Engineering
- Sun Yat-Sen University
- Guangzhou
- China
| | - Yong Wang
- PCFM Lab of Ministry of Education
- School of Materials Science and Engineering
- Sun Yat-Sen University
- Guangzhou
- China
| | - Mingyue Cai
- Department of Minimally Invasive Interventional Radiology and Department of Radiology
- The Second Affiliated Hospital of Guangzhou Medical University
- Guangzhou
- China
| | - Liteng Lin
- Department of Minimally Invasive Interventional Radiology and Department of Radiology
- The Second Affiliated Hospital of Guangzhou Medical University
- Guangzhou
- China
| | - Xiaoyan Chen
- PCFM Lab of Ministry of Education
- School of Materials Science and Engineering
- Sun Yat-Sen University
- Guangzhou
- China
| | - Zhong Cao
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology and Department of Radiology
- The Second Affiliated Hospital of Guangzhou Medical University
- Guangzhou
- China
| | - Xintao Shuai
- PCFM Lab of Ministry of Education
- School of Materials Science and Engineering
- Sun Yat-Sen University
- Guangzhou
- China
| |
Collapse
|
265
|
Tan J, Wang H, Xu F, Chen Y, Zhang M, Peng H, Sun X, Shen Y, Huang Y. Poly-γ-glutamic acid-based GGT-targeting and surface camouflage strategy for improving cervical cancer gene therapy. J Mater Chem B 2017; 5:1315-1327. [PMID: 32263599 DOI: 10.1039/c6tb02990f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A γ-PGA-based GGT-targeting and surface camouflage strategy for constructing a ternary layer-by-layer self-assembly gene delivery system.
Collapse
Affiliation(s)
- Jiao Tan
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- China
- West China School of Pharmacy
- Sichuan University
| | - Huiyuan Wang
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- China
| | - Fan Xu
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- China
- Nano Sci-Tech Institute
- University of Science and Technology of China
| | - Yingzhi Chen
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- China
| | - Meng Zhang
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- China
| | - Huige Peng
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- China
| | - Xun Sun
- West China School of Pharmacy
- Sichuan University
- China
| | - Youqing Shen
- College of Chemical and Biological Engineering
- Zhejiang University
- China
| | - Yongzhuo Huang
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- China
| |
Collapse
|
266
|
Dutta A, Dutta D, Sanpui P, Chattopadhyay A. Biomimetically crystallized protease resistant zinc phosphate decorated with gold atomic clusters for bioimaging. Chem Commun (Camb) 2017; 53:1277-1280. [DOI: 10.1039/c6cc09092c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biomimetically crystallized zinc phosphate nanoparticles act as host to protein fragment-stabilized Au nanoclusters for efficient bioimaging.
Collapse
Affiliation(s)
- Anushree Dutta
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- India
| | - Deepanjalee Dutta
- Centre for Nanotechnology
- Indian Institute of Technology Guwahati
- Guwahati
- India
| | - Pallab Sanpui
- Centre for Nanotechnology
- Indian Institute of Technology Guwahati
- Guwahati
- India
| | - Arun Chattopadhyay
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- India
- Centre for Nanotechnology
| |
Collapse
|
267
|
Wang C, Xu L, Xu J, Yang D, Liu B, Gai S, He F, Yang P. Multimodal imaging and photothermal therapy were simultaneously achieved in the core–shell UCNR structure by using single near-infrared light. Dalton Trans 2017; 46:12147-12157. [DOI: 10.1039/c7dt02791e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Core–shell nanostructures consisting of plasmonic materials and lanthanide-doped upconversion nanoparticles (UCNPs) show promising applications in theranostics including bio-imaging, diagnosis and therapy.
Collapse
Affiliation(s)
- Chen Wang
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Liangge Xu
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Jiating Xu
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Bin Liu
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| |
Collapse
|
268
|
Shi J, Zhang H, Chen Z, Xu L, Zhang Z. A multi-functional nanoplatform for efficacy tumor theranostic applications. Asian J Pharm Sci 2016; 12:235-249. [PMID: 32104335 PMCID: PMC7032091 DOI: 10.1016/j.ajps.2016.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/22/2016] [Accepted: 12/07/2016] [Indexed: 02/08/2023] Open
Abstract
Nanomaterials with multiple functions have become more and more popular in the domain of cancer research. MoS2 has a great potential in photothermal therapy, X-ray/CT imaging and drug delivery. In this study, a water soluble MoS2 nanosystem (MoS2-PEG) was synthesized and explored in drug delivery, photothermal therapy (PTT) and X-ray imaging. Doxorubicin (DOX) was loaded onto MoS2-PEG with a high drug loading efficiency (~69%) and obtained a multifunctional drug delivery system (MoS2-PEG/DOX). As the drug delivery, MoS2-PEG/DOX could efficiently cross the cell membranes, and escape from the endosome via NIR light irradiation, lead to more apoptosis in MCF-7 cells, and afford higher antitumor efficacy without obvious toxic effects to normal organs owing to its prolonged blood circulation and 11.6-fold higher DTX uptake of tumor than DOX. Besides, MoS2-PEG/DOX not only served as a drug delivery system, but also as a powerful PTT agent for thermal ablation of tumor and a strong X-ray contrast agent for tumor diagnosis. In the in vitro and in vivo studies, MoS2-PEG/DOX exhibited excellent tumor-targeting efficacy, outstanding synergistic anti-cancer effect of photothermal and chemotherapy and X-ray imaging property, demonstrating that MoS2-PEG/DOX had a great potential for simultaneous diagnosis and photothermal-chemotherapy in cancer treatment.
Collapse
Affiliation(s)
- Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongling Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhaoyang Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lihua Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
269
|
Rui M, Xin Y, Li R, Ge Y, Feng C, Xu X. Targeted Biomimetic Nanoparticles for Synergistic Combination Chemotherapy of Paclitaxel and Doxorubicin. Mol Pharm 2016; 14:107-123. [DOI: 10.1021/acs.molpharmaceut.6b00732] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mengjie Rui
- Department of Pharmaceutics,
School of Pharmacy, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Yuanrong Xin
- Department of Pharmaceutics,
School of Pharmacy, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Ran Li
- Department of Pharmaceutics,
School of Pharmacy, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Yanru Ge
- Department of Pharmaceutics,
School of Pharmacy, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Chunlai Feng
- Department of Pharmaceutics,
School of Pharmacy, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Ximing Xu
- Department of Pharmaceutics,
School of Pharmacy, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| |
Collapse
|
270
|
Zhang T, Zhou S, Hu L, Peng B, Liu Y, Luo X, Song Y, Liu X, Deng Y. Polysialic acid-modifying liposomes for efficient delivery of epirubicin, in-vitro characterization and in-vivo evaluation. Int J Pharm 2016; 515:449-459. [DOI: 10.1016/j.ijpharm.2016.10.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 10/06/2016] [Accepted: 10/23/2016] [Indexed: 12/22/2022]
|
271
|
Palao-Suay R, Aguilar MR, Parra-Ruiz FJ, Maji S, Hoogenboom R, Rohner NA, Thomas SN, Román JS. Enhanced Bioactivity of α-Tocopheryl Succinate Based Block Copolymer Nanoparticles by Reduced Hydrophobicity. Macromol Biosci 2016; 16:1824-1837. [PMID: 27739627 PMCID: PMC5518931 DOI: 10.1002/mabi.201600259] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 09/04/2016] [Indexed: 12/25/2022]
Abstract
Well-structured amphiphilic copolymers are necessary to obtain self-assembled nanoparticles (NPs) based on synthetic polymers. Highly homogeneous and monodispersed macromolecules obtained by controlled polymerization have successfully been used for this purpose. However, disaggregation of the organized macromolecules is desired when a bioactive element, such as α-tocopheryl succinate, is introduced in self-assembled NPs and this element must be exposed or released to exert its action. The aim of this work is to demonstrate that the bioactivity of synthetic NPs based on defined reversible addition-fragmentation chain transfer polymerization copolymers can be enhanced by the introduction of hydrophilic comonomers in the hydrophobic segment. The amphiphilic terpolymers are based on poly(ethylene glycol) (PEG) as hydrophilic block, and a hydrophobic block based on a methacrylic derivative of α-tocopheryl succinate (MTOS) and small amounts of 2-hydroxyethyl methacrylate (HEMA) (PEG-b-poly(MTOS-co-HEMA)). The introduction of HEMA reduces hydrophobicity and introduces "disorder" both in the homogeneous blocks and the compact core of the corresponding NPs. These NPs are able to encapsulate additional α-tocopheryl succinate (α-TOS) with high efficiency and their biological activity is much higher than that described for the unmodified copolymers, proposedly due to more efficient degradation and release of α-TOS, demonstrating the importance of the hydrophilic-hydrophobic balance.
Collapse
Affiliation(s)
- Raquel Palao-Suay
- Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - María Rosa Aguilar
- Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Francisco J Parra-Ruiz
- Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
| | - Samarendra Maji
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000, Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000, Ghent, Belgium
| | - Nathan A Rohner
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, 30332, GA, USA
| | - Susan N Thomas
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, 30332, GA, USA
| | - Julio San Román
- Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
| |
Collapse
|
272
|
Nakamura H, Koziolová E, Chytil P, Tsukigawa K, Fang J, Haratake M, Ulbrich K, Etrych T, Maeda H. Pronounced Cellular Uptake of Pirarubicin versus That of Other Anthracyclines: Comparison of HPMA Copolymer Conjugates of Pirarubicin and Doxorubicin. Mol Pharm 2016; 13:4106-4115. [PMID: 27934482 DOI: 10.1021/acs.molpharmaceut.6b00697] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many conjugates of water-soluble polymers with biologically active molecules were developed during the last two decades. Although, therapeutic effects of these conjugates are affected by the properties of carriers, the properties of the attached drugs appear more important than the same carrier polymer in this case. Pirarubicin (THP), a tetrahydropyranyl derivative of doxorubicin (DOX), demonstrated more rapid cellular internalization and potent cytotoxicity than DOX. Here, we conjugated the THP or DOX to N-(2-hydroxypropyl)methacrylamide copolymer via a hydrazone bond. The polymeric prodrug conjugates, P-THP and P-DOX, respectively, had comparable hydrodynamic sizes and drug loading. Compared with P-DOX, P-THP showed approximately 10 times greater cellular uptake during a 240 min incubation and a cytotoxicity that was more than 10 times higher during a 72-h incubation. A marginal difference was seen in P-THP and P-DOX accumulation in the liver and kidney at 6 h after drug administration, but no significant difference occurred in the tumor drug concentration during 6-24 h after drug administration. Antitumor activity against xenograft human pancreatic tumor (SUIT2) in mice was greater for P-THP than for P-DOX. To sum up, the present study compared the biological behavior of two different drugs, each attached to an N-(2-hydroxypropyl)methacrylamide copolymer carrier, with regard to their uptake by tumor cells, body distribution, accumulation in tumors, cytotoxicity, and antitumor activity in vitro and in vivo. No differences in the tumor cell uptake of the polymer-drug conjugates, P-THP and P-DOX, were observed. In contrast, the intracellular uptake of free THP liberated from the P-THP was 25-30 times higher than that of DOX liberated from P-DOX. This finding indicates that proper selection of the carrier, and especially conjugated active pharmaceutical ingredient (API) are most critical for anticancer activity of the polymer-drug conjugates. THP, in this respect, was found to be a more preferable API for polymer conjugation than DOX. Hence the treatment based on enhanced permeability and retention (EPR) effect that targets more selectively to solid tumors can be best achieved with THP, although both polymer conjugates of DOX and THP exhibited the EPR effects and drug release profiles in acidic pH similarly.
Collapse
Affiliation(s)
- Hideaki Nakamura
- Research Institute for Drug Delivery Science, Sojo University , Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan.,Faculty of Pharmaceutical Sciences, Sojo University , Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan
| | - Eva Koziolová
- Institute of Macromolecular Chemistry, The Czech Academy of Sciences , Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Petr Chytil
- Institute of Macromolecular Chemistry, The Czech Academy of Sciences , Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Kenji Tsukigawa
- Faculty of Pharmaceutical Sciences, Sojo University , Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan
| | - Jun Fang
- Research Institute for Drug Delivery Science, Sojo University , Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan.,Faculty of Pharmaceutical Sciences, Sojo University , Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan
| | - Mamoru Haratake
- Faculty of Pharmaceutical Sciences, Sojo University , Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan
| | - Karel Ulbrich
- Institute of Macromolecular Chemistry, The Czech Academy of Sciences , Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry, The Czech Academy of Sciences , Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Hiroshi Maeda
- Research Institute for Drug Delivery Science, Sojo University , Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan
| |
Collapse
|
273
|
Li Y, Humphries B, Wang Z, Lang S, Huang X, Xiao H, Jiang Y, Yang C. Complex Coacervation-Integrated Hybrid Nanoparticles Increasing Plasmid DNA Delivery Efficiency in Vivo. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30735-30746. [PMID: 27781434 PMCID: PMC6457453 DOI: 10.1021/acsami.6b10306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Many polycation-based gene delivery vehicles have limited in vivo transfection efficiency because of their excessive exterior positive charges and/or PEGylation, both of which could result in premature dissociation and poor cellular uptake and trafficking. Here, we reported novel hybrid PEGylated nanoparticles (HNPs) that are composed of (a) poly(ethylene glycol)-b-poly(aspartate)-adamantane (PEG-P(asp)-Ad) constituting the outer PEG layer to provide colloidal stability; (b) poly(ethylenimine)10K (PEI10K) forming complex coacervate with P(asp) as the cross-linked cage preventing premature dissociation; (c) cyclodextrin-decorated PEI10K (PEI10K-CD) forming the core with reporter plasmid DNA (pDNA). These HNPs exhibited an increased stability and higher in vitro transfection efficiency compared to traditional PEGylated nanoparticles (PEG-NP). Intratumoral injections further demonstrated that HNPs were able to successfully deliver pDNAs into tumors, while PEG-NP and PEI25K had only negligible delivery efficiencies. Moreover, HNPs' in vivo stability and pDNA delivery capability post intravenous injection were also confirmed by live animal bioluminescence and fluorescence image analysis. It is likely that the coacervation integration at the interface of PEI10K-CD/pDNA core and the PEG shell attributed to the significantly improved in vivo transfection efficiency of HNPs over PEG-NP and PEI25K. This study suggests that the HNP has the potential for in vivo gene delivery applications with significantly improved gene transfection efficiency.
Collapse
Affiliation(s)
- Yunfei Li
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Pharmaceutics, Institute of Medicinal Biotechnology, Peking Union Medical College, Beijing 100050, People’s Republic of China
- Department of Toxicology and Cancer Biology and Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Brock Humphries
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, United States
- Cellular and Molecular Biology Graduate Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Zhishan Wang
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Toxicology and Cancer Biology and Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Shuyao Lang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Hua Xiao
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yiguo Jiang
- Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, Guangdong 511436, People’s Republic of China
| | - Chengfeng Yang
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Toxicology and Cancer Biology and Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
- Cellular and Molecular Biology Graduate Program, Michigan State University, East Lansing, Michigan 48824, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
- Corresponding Author Tel: +1-859-323-4641. Fax: +1-859-323-1059.
| |
Collapse
|
274
|
Malhaire H, Gimel JC, Roger E, Benoît JP, Lagarce F. How to design the surface of peptide-loaded nanoparticles for efficient oral bioavailability? Adv Drug Deliv Rev 2016; 106:320-336. [PMID: 27058155 DOI: 10.1016/j.addr.2016.03.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 03/17/2016] [Accepted: 03/28/2016] [Indexed: 01/22/2023]
Abstract
The oral administration of proteins is a current challenge to be faced in the field of therapeutics. There is currently much interest in nanocarriers since they can enhance oral bioavailability. For lack of a clear definition, the key characteristics of nanoparticles have been highlighted. Specific surface area is one of these characteristics and represents a huge source of energy that can be used to control the biological fate of the carrier. The review discusses nanocarrier stability, mucus interaction and absorption through the intestinal epithelium. The protein corona, which has raised interest over the last decade, is also discussed. The universal ideal surface is a myth and over-coated carriers are not a solution either. Besides, common excipients can be useful on several targets. The suitable design should rather take into account the composition, structure and behavior of unmodified nanomaterials.
Collapse
|
275
|
Ni R, Zhou J, Hossain N, Chau Y. Virus-inspired nucleic acid delivery system: Linking virus and viral mimicry. Adv Drug Deliv Rev 2016; 106:3-26. [PMID: 27473931 DOI: 10.1016/j.addr.2016.07.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 07/02/2016] [Accepted: 07/20/2016] [Indexed: 12/21/2022]
Abstract
Targeted delivery of nucleic acids into disease sites of human body has been attempted for decades, but both viral and non-viral vectors are yet to meet our expectations. Safety concerns and low delivery efficiency are the main limitations of viral and non-viral vectors, respectively. The structure of viruses is both ordered and dynamic, and is believed to be the key for effective transfection. Detailed understanding of the physical properties of viruses, their interaction with cellular components, and responses towards cellular environments leading to transfection would inspire the development of safe and effective non-viral vectors. To this goal, this review systematically summarizes distinctive features of viruses that are implied for efficient nucleic acid delivery but not yet fully explored in current non-viral vectors. The assembly and disassembly of viral structures, presentation of viral ligands, and the subcellular targeting of viruses are emphasized. Moreover, we describe the current development of cationic material-based viral mimicry (CVM) and structural viral mimicry (SVM) in these aspects. In light of the discrepancy, we identify future opportunities for rational design of viral mimics for the efficient delivery of DNA and RNA.
Collapse
Affiliation(s)
- Rong Ni
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Junli Zhou
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Naushad Hossain
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ying Chau
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
276
|
Slivac I, Guay D, Mangion M, Champeil J, Gaillet B. Non-viral nucleic acid delivery methods. Expert Opin Biol Ther 2016; 17:105-118. [PMID: 27740858 DOI: 10.1080/14712598.2017.1248941] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Delivery of nucleic acid-based molecules in human cells is a highly studied approach for the treatment of several disorders including monogenic diseases and cancers. Non-viral vectors for DNA and RNA transfer, although in general less efficient than virus-based systems, are particularly well adapted mostly due to the absence of biosafety concerns. Non-viral methods could be classified in two main groups: physical and vector-assisted delivery systems. Both groups comprise several different methods, none of them universally applicable. The choice of the optimal method depends on the predefined objectives and the features of targeted micro-environment. Areas covered: In this review, the authors discuss non-viral techniques and present recent therapeutic achievements in ex vivo and in vivo nucleic acid delivery by most commonly used techniques while emphasizing the role of 'biological particles', namely peptide transduction domains, virus like particles, gesicles and exosomes. Expert opinion: The number of available non-viral transfection techniques used for human therapy increased rapidly, followed by still moderate success in efficacy. The prospects are to be found in design of multifunctional hybrid systems that reflect the viral efficiency. In this respect, biological particles are very promising.
Collapse
Affiliation(s)
- Igor Slivac
- a Faculty of Food Technology and Biotechnology , University of Zagreb , Zagreb , Croatia
| | - David Guay
- b Feldan Therapeutics, Rideau , Quebec , Canada
| | - Mathias Mangion
- c Chemical engineering Department , Université Laval , Québec , Canada
| | - Juliette Champeil
- c Chemical engineering Department , Université Laval , Québec , Canada
| | - Bruno Gaillet
- c Chemical engineering Department , Université Laval , Québec , Canada
| |
Collapse
|
277
|
Guan X, Guo Z, Lin L, Chen J, Tian H, Chen X. Ultrasensitive pH Triggered Charge/Size Dual-Rebound Gene Delivery System. NANO LETTERS 2016; 16:6823-6831. [PMID: 27643629 DOI: 10.1021/acs.nanolett.6b02536] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A facile strategy is developed to construct an ultrasensitive pH triggered charge/size dual-rebound gene delivery system for efficient tumor treatment. The therapeutic gene is complexed by polyethylenimine (PEI) and poly-l-glutamate (PLG), further in situ tightened by aldehyde modified polyethylene glycol (PEG) via Schiff base reaction. The generated Schiff base bonds are stable in neutral pH but cleavable in tumor extracellular pH. This gene delivery system possesses following favorable properties: (1) the tunable gene delivery system is constructed by chemical bench-free "green" and fast process which is favored by clinician, (2) PEG cross-linking shields the surface positive charges and tightens the complex particles, leading to decreased cytotoxicity, improved stability, and prolonged circulation, (3) PEG shielding can be rapidly peeled off by acidic pH as soon as arriving tumors, (4) dual charge/size ultrasensitively rebounding to higher positive potential and bigger size enhances tumor cell uptake efficiency. A series of experiments both in vitro and in vivo are carried out to investigate this gene delivery system in detail. An antiangiogenesis therapeutic gene is carried for the treatment of CT26 tumors in mice, achieving superior antitumor efficacy which is well proved by sufficient biological evidence. The system has great potentials for cancer therapy in the future.
Collapse
Affiliation(s)
- Xiuwen Guan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Zhaopei Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Lin Lin
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| |
Collapse
|
278
|
He Y, Zhou J, Ma S, Nie Y, Yue D, Jiang Q, Wali ARM, Tang JZ, Gu Z. Multi-Responsive "Turn-On" Nanocarriers for Efficient Site-Specific Gene Delivery In Vitro and In Vivo. Adv Healthc Mater 2016; 5:2799-2812. [PMID: 27717282 DOI: 10.1002/adhm.201600710] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/23/2016] [Indexed: 12/19/2022]
Abstract
Systemic gene delivery is a complicated and multistep process that confronts numerous biological barriers. It remains a formidable challenge to exploit a single gene carrier with multiple features to combat all obstacles collectively. Herein, a multi-responsive "turn-on" polyelectrolyte complex (DNA/OEI-SSx /HA-SS-COOH, DSS) delivery system is demonstrated with a sequential self-assembly of disulfide-conjugated oligoethylenimine (OEI-SSx ) and disulfide bond-modified hyaluronic acid envelope (HA-SS-COOH) that can combat multiple biological barriers collectively when administered intravenously. DSS is designed to effectively accumulate at the tumor tissue and to be internalized into tumor cells by recognizing CD44. The multi-responsive "turn-on" DSS can respond to the alterations of hyaluronidases and glutathione at both the tumor site and at the intracellular milieu. Sequential degradation and detachment of the HA-SS-COOH envelope followed by the dissociation of the OEI-SSx/DNA inner core contributes to the activation of the endosomal escape and gene release functions, thus greatly enhancing nuclear gene delivery. A systematic investigation of DSS has revealed that the tumor accumulation ability, internalization, and endosome escape of the DSS nanocarriers, DNA unpacking and nuclear transportation are all remarkably improved by the multi-responsive "turn-on" design resulting in highly efficient gene transfection in vitro and in vivo.
Collapse
Affiliation(s)
- Yiyan He
- National Engineering Research Center for Biomaterials; Sichuan University; 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jie Zhou
- National Engineering Research Center for Biomaterials; Sichuan University; 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Shengnan Ma
- National Engineering Research Center for Biomaterials; Sichuan University; 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Yu Nie
- National Engineering Research Center for Biomaterials; Sichuan University; 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Dong Yue
- National Engineering Research Center for Biomaterials; Sichuan University; 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Qian Jiang
- National Engineering Research Center for Biomaterials; Sichuan University; 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Aisha Roshan Mohamed Wali
- Faculty of Science and Engineering; School of Pharmacy; University of Wolverhampton; Wulfruna Street Wolverhampton WV1 1SB UK
| | - James Zhenggui Tang
- Faculty of Science and Engineering; School of Pharmacy; University of Wolverhampton; Wulfruna Street Wolverhampton WV1 1SB UK
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials; Sichuan University; 29 Wangjiang Road Chengdu 610064 P. R. China
- College of Materials Science and Engineering; Nanjing Tech University; 30 South Puzhu Road 211816 Nanjing P. R. China
| |
Collapse
|
279
|
Askarian S, Abnous K, Ayatollahi S, Farzad SA, Oskuee RK, Ramezani M. PAMAM-pullulan conjugates as targeted gene carriers for liver cell. Carbohydr Polym 2016; 157:929-937. [PMID: 27988010 DOI: 10.1016/j.carbpol.2016.10.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/09/2016] [Accepted: 10/10/2016] [Indexed: 01/07/2023]
Abstract
Targeted nano-carriers are highly needed to promote nucleic acid delivery into the specific cell for therapeutic approaches. Pullulan as a linear carbohydrate has an intrinsic liver targeting property interacting with asialoglycoprotein receptor (ASGPR) found on liver cells. In the present study, we developed polyamidoamine (PAMAM)-pullulan conjugates and investigated their targeting activity in delivering gene into liver cells. The particle size, zeta potential, buffering capacity and ethidium bromide exclusion assays of the conjugates were evaluated. The cytotoxicity and transfection efficiency of new derivatives were assessed following in vitro transfection of HepG2 (receptor positive) and N2A (receptor negative) cell lines. Size of conjugated polymers ranged between 118 and 184 nanometers and their cytotoxicity were similar to PAMAM. Among six produced nanocarriers, G4PU4 and G5PU4 enhanced transfection efficiency in HepG2 cells compared to unmodified PAMAM. Therefore, the PAMAM-pullulan derivatives seem to improve delivery of nucleic acids into the liver cells expressing asialoglycoprotein receptor with minimal transfection in non-targeted cells.
Collapse
Affiliation(s)
- Saeedeh Askarian
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Khalil Abnous
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sara Ayatollahi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sara Amel Farzad
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Reza Kazemi Oskuee
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
280
|
Bastien E, Schneider R, Hackbarth S, Dumas D, Jasniewski J, Röder B, Bezdetnaya L, Lassalle HP. PAMAM G4.5-chlorin e6 dendrimeric nanoparticles for enhanced photodynamic effects. Photochem Photobiol Sci 2016; 14:2203-12. [PMID: 26496965 DOI: 10.1039/c5pp00274e] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
There is currently great interest in the development of efficient and specific carrier delivery platforms for systemic photodynamic therapy. Therefore, we aimed to develop covalent conjugates between the photosensitizer chlorin e6 (Ce6) and PAMAM G4.5 dendrimers. Singlet oxygen generation (SOG) efficiency and fluorescence emission were moderately affected by the covalent binding of the Ce6 to the dendrimer. Compared to free Ce6, PAMAM anchored Ce6 displays a much higher photodynamic effect, which is ascribable to better internalization in a tumor cell model. Intracellular fate and internalization pathway of our different compounds were investigated using specific inhibition conditions and confocal fluorescence microscopy. Free Ce6 was shown to enter the cells by a simple diffusion mechanism, while G4.5-Ce6-PEG internalization was dependent on the caveolae pathway, whereas G4.5-Ce6 was subjected to the clathrin-mediated endocytosis pathway. Subcellular localization of PAMAM anchored Ce6, PEGylated or not, was very similar suggesting that the nanoparticles behave similarly in the cells. As a conclusion, we have demonstrated that PEGylated G4.5 PAMAM-Ce6 dendrimers may offer effective biocompatible nanoparticles for improved photodynamic treatment in a preclinical tumor model.
Collapse
Affiliation(s)
- Estelle Bastien
- Université de Lorraine, Centre de Recherche en Automatique de Nancy, Campus Sciences, Vandœuvre-lès-Nancy, France. and Centre National de la Recherche Scientifique, Centre de Recherche en Automatique de Nancy, France
| | - Raphaël Schneider
- Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, 1 rue Grandville, BP 20451, 54001 Nancy Cedex, France
| | - Steffen Hackbarth
- Institut für Physik, Humboldt, Universität zu Berlin, Newtonstrasse, Berlin, Germany
| | - Dominique Dumas
- Université de Lorraine, Plateforme IBISA d'Imagerie et de Biophysique Cellulaire de Nancy, IMOPA7365, FR3209 BMCT, Centre National de la Recherche Scientifique, Vandœuvre-lès-Nancy, France
| | - Jordane Jasniewski
- Université de Lorraine, Laboratoire d'ingénierie des biomolécues (LIBio), 2 avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, France
| | - Beate Röder
- Institut für Physik, Humboldt, Universität zu Berlin, Newtonstrasse, Berlin, Germany
| | - Lina Bezdetnaya
- Université de Lorraine, Centre de Recherche en Automatique de Nancy, Campus Sciences, Vandœuvre-lès-Nancy, France. and Centre National de la Recherche Scientifique, Centre de Recherche en Automatique de Nancy, France
| | - Henri-Pierre Lassalle
- Université de Lorraine, Centre de Recherche en Automatique de Nancy, Campus Sciences, Vandœuvre-lès-Nancy, France. and Centre National de la Recherche Scientifique, Centre de Recherche en Automatique de Nancy, France
| |
Collapse
|
281
|
Shim G, Yu YH, Lee S, Kim J, Oh YK. Surface-modified liposomes for syndecan 2–targeted delivery of edelfosine. Asian J Pharm Sci 2016. [DOI: 10.1016/j.ajps.2016.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
282
|
Li L, Song L, Yang X, Li X, Wu Y, He T, Wang N, Yang S, Zeng Y, Yang L, Wu Q, Wei Y, Gong C. Multifunctional "core-shell" nanoparticles-based gene delivery for treatment of aggressive melanoma. Biomaterials 2016; 111:124-137. [PMID: 27728812 DOI: 10.1016/j.biomaterials.2016.09.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 02/05/2023]
Abstract
Gene therapy may be a promising and powerful strategy for cancer treatment, but efficient targeted gene delivery in vivo has so far remained challenging. Here, we developed a well-tailored and versatile "core-shell" ternary system (RRPHC) of systemic gene delivery for treatment of aggressive melanoma. The capsid-like "shell" of this system was engineered to mediate depth penetration to tissues, simultaneously target the CD44 receptors and integrin αvβ3 receptors overexpressed on neovasculature and most malignant tumor cells, while the "core" was responsible for nucleus-targeting and effective transfection. The RRPHC ternary complexes enhanced cellular uptake via dual receptor-mediated endocytosis, improved the endosomal escape and significantly promoted the plasmid penetration into the nucleus. Notably, RRPHC ternary complexes exhibited ultra-high gene transfection efficiency (∼100% in B16F10 cells), which surpassed that of commercial transfection agents, PEI 25K, Lipofectamine 2000 and even Lipofectamine 3000. Especially, RRPHC ternary complexes showed excellent serum resistance and remained high gene transfection efficacy (∼100%) even in medium containing 30% serum. In vivo biodistribution imaging demonstrated RRPHC ternary complexes possessed much more accumulation and extensive distribution throughout tumor regions while minimal location in other organs. Furthermore, systemic delivery of the pro-apoptotic mTRAIL gene to tumor xenografts by RRPHC ternary complexes resulted in remarkable inhibition of melanoma, with no systemic toxicity. These results demonstrated that the designed novel RRPHC ternary complexes might be a promising gene delivery system for targeted cancer therapy in vivo.
Collapse
Affiliation(s)
- Ling Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Linjiang Song
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Xi Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Xia Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Yuzhe Wu
- College of Materials, Xiamen University, Xiamen 361005, PR China
| | - Tao He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Ning Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Suleixin Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Yan Zeng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Li Yang
- Carl Zeiss (Shanghai) Co., Ltd., Chengdu Branch, PR China
| | - Qinjie Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China.
| |
Collapse
|
283
|
Liu X, Tan X, Rao R, Ren Y, Li Y, Yang X, Liu W. Self-Assembled PAEEP-PLLA Micelles with Varied Hydrophilic Block Lengths for Tumor Cell Targeting. ACS APPLIED MATERIALS & INTERFACES 2016; 8:23450-23462. [PMID: 27552479 DOI: 10.1021/acsami.6b06346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The properties of hydrophilic shell in micelles significantly affect the interaction between micelles and cells. Compared with frequently used polyethylene glycol (PEG) as the hydrophilic block, polyphosphoesters (PPEs) are superior in functionality, biocompatibility, and degradability. A series of amphiphilic poly(aminoethyl ethylene phosphate)/poly(l-lactide acid) (PAEEP-PLLA) copolymers were synthesized with hydrophilic PAEEP with different chain lengths. The corresponding self-assembled micelles were used for doxorubicin (Dox) entrapment. The length of hydrophilic PAEEP block on the shell affected the structure of micelles. PAEEPm-PLLA168 (m = 130 or 37) polymers formed vesicles, while PAEEPm-PLLA168 (m = 15 or 9) formed large compound micelles (LCMs), suggesting a difference in tumor cell uptake and intracellular trafficking. PAEEP15-PLLA168 polymer showed superiority on cellular uptake amount, intracellular drug release, and cell apoptosis. Lipid rafts and macropinocytosis are the leading endocytic pathways of PAEEP-PLLA micelles. The shape coupling between micelles and cell membrane facilitated cell surface features such as flattened protrusions (membrane protein) and inward-pointing hollows as well as efficient endocytosis. These results suggested that PAEEP-PLLA self-assembled block copolymer micelles may be an excellent drug delivery system for tumor treatment and that the hydrophilic chain length could regulate drug targeting to tumor cells.
Collapse
Affiliation(s)
| | | | | | | | - Yinghuan Li
- College of Pharmaceutical Sciences, Capital Medical University , Beijing 100069, PR China
| | | | | |
Collapse
|
284
|
Sun T, Cui W, Yan M, Qin G, Guo W, Gu H, Liu S, Wu Q. Target Delivery of a Novel Antitumor Organoplatinum(IV)-Substituted Polyoxometalate Complex for Safer and More Effective Colorectal Cancer Therapy In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:7397-7404. [PMID: 27309631 DOI: 10.1002/adma.201601778] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/11/2016] [Indexed: 06/06/2023]
Abstract
An inactive organoplatinum(IV)-substituted polyoxometalate is developed as an efficient and nontoxic prodrug with significant potential for treating human colorectal cancers. Further encapsulation of Pt(IV) -PW11 with DSPE-PEG2000 nanoparticles (NPs) enables targeted delivery and controlled release of inactive prodrug. Such Pt(IV) -PW11 -DSPE-PEG2000 NPs are highly efficient in inhibiting cellular growth of HT29 cells and treating human colorectal cancer in mice, superior to classic cisplatin.
Collapse
Affiliation(s)
- Tiedong Sun
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin, 150080, P. R. China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Wei Cui
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Mei Yan
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Geng Qin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Wei Guo
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin, 150080, P. R. China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Hongxi Gu
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin, 150080, P. R. China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Shaoqin Liu
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin, 150080, P. R. China.
| | - Qiong Wu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, P. R. China.
| |
Collapse
|
285
|
Kim J, Kang Y, Tzeng SY, Green JJ. Synthesis and application of poly(ethylene glycol)-co-poly(β-amino ester) copolymers for small cell lung cancer gene therapy. Acta Biomater 2016; 41:293-301. [PMID: 27262740 DOI: 10.1016/j.actbio.2016.05.040] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/09/2016] [Accepted: 05/31/2016] [Indexed: 01/22/2023]
Abstract
UNLABELLED The design of polymeric nanoparticles for gene therapy requires engineering of polymer structure to overcome multiple barriers, including prolonged colloidal stability during formulation and application. Poly(β-amino ester)s (PBAEs) have been shown effective as polymeric vectors for intracellular DNA delivery, but limited studies have focused on polymer modifications to enhance the stability of PBAE/DNA polyplexes. We developed block copolymers consisting of PBAE oligomer center units and poly(ethylene glycol) (PEG) end units. We fabricated a library of PEG-PBAE polyplexes by blending PEGylated PBAEs of different PEG molecular weights and non-PEGylated PBAEs of different structures at various mass ratios of cationic polymer to anionic DNA. Non-PEGylated PBAE polyplexes aggregated following a 24h incubation in acidic and physiological buffers, presenting a challenge for therapeutic use. In contrast, among 36 PEG-PBAE polyplex formulations evaluated, certain polyplexes maintained a small size under these conditions. These selected polyplexes were further evaluated for transfection in human small cell lung cancer cells (H446) in the presence of serum, and the best formulation transfected ∼40% of these hard-to-transfect cells while preventing polymer-mediated cytotoxicity. When PEG-PBAE polyplex delivered Herpes simplex virus thymidine kinase plasmid in combination with the prodrug ganciclovir, the polyplexes killed significantly more H446 cancer cells (35%) compared to healthy human lung fibroblasts (IMR-90) (15%). These findings indicate that PEG-PBAE polyplexes can maintain particle stability without compromising their therapeutic function for intracellular delivery to human small cell lung cancer cells, demonstrate potential cancer specificity, and have potential as safe materials for small cell lung cancer gene therapy. STATEMENT OF SIGNIFICANCE Many natural and synthetic biomaterials have been investigated as non-viral vectors to deliver nucleic acids for cancer therapy. However, there are multiple hurdles to successful transfection including achieving particle stability, efficient delivery to cancer cells, and low cytotoxicity. In particular, engineering the physicochemical surface properties of a nanoparticle to improve stability is often offset by a decrease in the cellular entry and transfection efficiency. We developed stable polymeric nanoparticles that demonstrate high transfection efficiency by modifying synthetic biodegradable cationic polymers and engineering nanoparticle formulations using a combinatorial approach. The results of this study show the potential of biodegradable surface-modified polymeric nanoparticles as clinically translatable, biomaterial-based vehicles for cancer gene therapy.
Collapse
Affiliation(s)
- Jayoung Kim
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yechan Kang
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Stephany Y Tzeng
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jordan J Green
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Departments of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Materials Science & Engineering, Johns Hopkins University, Baltimore, MD 21231, USA.
| |
Collapse
|
286
|
Photothermal combined gene therapy achieved by polyethyleneimine-grafted oxidized mesoporous carbon nanospheres. Biomaterials 2016; 100:134-42. [DOI: 10.1016/j.biomaterials.2016.05.033] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 05/09/2016] [Accepted: 05/17/2016] [Indexed: 11/19/2022]
|
287
|
Kim HJ, Kim A, Miyata K, Kataoka K. Recent progress in development of siRNA delivery vehicles for cancer therapy. Adv Drug Deliv Rev 2016; 104:61-77. [PMID: 27352638 DOI: 10.1016/j.addr.2016.06.011] [Citation(s) in RCA: 328] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 05/21/2016] [Accepted: 06/16/2016] [Indexed: 12/13/2022]
Abstract
Recent progress in RNA biology has broadened the scope of therapeutic targets of RNA drugs for cancer therapy. However, RNA drugs, typically small interfering RNAs (siRNAs), are rapidly degraded by RNases and filtrated in the kidney, thereby requiring a delivery vehicle for efficient transport to the target cells. To date, various delivery formulations have been developed from cationic lipids, polymers, and/or inorganic nanoparticles for systemic delivery of siRNA to solid tumors. This review describes the current status of clinical trials related to siRNA-based cancer therapy, as well as the remaining issues that need to be overcome to establish a successful therapy. It, then introduces various promising design strategies of delivery vehicles for stable and targeted siRNA delivery, including the prospects for future design.
Collapse
|
288
|
Hu H, Wang X, Lee KI, Ma K, Hu H, Xin JH. Graphene oxide-enhanced sol-gel transition sensitivity and drug release performance of an amphiphilic copolymer-based nanocomposite. Sci Rep 2016; 6:31815. [PMID: 27539298 PMCID: PMC4990926 DOI: 10.1038/srep31815] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/26/2016] [Indexed: 01/20/2023] Open
Abstract
We report the fabrication of a highly sensitive amphiphilic copolymer-based nanocomposite incorporating with graphene oxide (GO), which exhibited a low-intensity UV light-triggered sol-gel transition. Non-cytotoxicity was observed for the composite gels after the GO incorporation. Of particular interest were the microchannels that were formed spontaneously within the GO-incorporated UV-gel, which expedited sustained drug release. Therefore, the present highly UV-sensitive, non-cytotoxic amphiphilic copolymer-based composites is expected to provide enhanced photothermal therapy and chemotherapy by means of GO's unique photothermal properties, as well as through efficient passive targeting resulting from the sol-gel transition characteristic of the copolymer-based system with improved sensitivity, which thus promises the enhanced treatment of patients with cancer and other diseases.
Collapse
Affiliation(s)
- Huawen Hu
- Foshan University, Guangdong, 528000, China
| | - Xiaowen Wang
- The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Ka I Lee
- The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Kaikai Ma
- The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Hong Hu
- The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - John H. Xin
- The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| |
Collapse
|
289
|
Abd Ellah NH, Abouelmagd SA. Surface functionalization of polymeric nanoparticles for tumor drug delivery: approaches and challenges. Expert Opin Drug Deliv 2016; 14:201-214. [DOI: 10.1080/17425247.2016.1213238] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Noura H. Abd Ellah
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Sara A. Abouelmagd
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
290
|
Abouelmagd SA, Ku YJ, Yeo Y. Low molecular weight chitosan-coated polymeric nanoparticles for sustained and pH-sensitive delivery of paclitaxel. J Drug Target 2016; 23:725-35. [PMID: 26453168 DOI: 10.3109/1061186x.2015.1054829] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Low molecular weight chitosan (LMWC) is a promising polymer for surface modification of nanoparticles (NPs), which can impart both stealth effect and electrostatic interaction with cells at mildly acidic pH of tumors. We previously produced LMWC-coated NPs via covalent conjugation to poly(lactic-co-glycolic) acid (PLGA-LMWC NPs). However, this method had several weaknesses including inefficiency and complexity of the production as well as increased hydrophilicity of the polymer matrix, which led to poor drug release control. Here, we used the dopamine polymerization method to produce LMWC-coated NPs (PLGA-pD-LMWC NPs), where the core NPs were prepared with PLGA that served best to load and retain drugs and then functionalized with LMWC via polydopamine layer. The PLGA-pD-LMWC NPs overcame the limitations of PLGA-LMWC NPs while maintaining their advantages. First of all, PLGA-pD-LMWC NPs attenuated the release of paclitaxel to a greater extent than PLGA-LMWC NPs. Moreover, PLGA-pD-LMWC NPs had a pH-dependent surface charge profile and cellular interactions similar to PLGA-LMWC NPs, enabling acid-specific NP-cell interaction and enhanced drug delivery to cells in weakly acidic environment. Although the LMWC layer did not completely prevent protein binding in serum solution, PLGA-pD-LMWC NPs showed less phagocytic uptake than bare PLGA NPs.
Collapse
Affiliation(s)
- Sara A Abouelmagd
- a Department of Industrial and Physical Pharmacy , Purdue University , West Lafayette , IN , USA .,b Department of Pharmaceutics , Faculty of Pharmacy, Assiut University , Assiut , Egypt , and
| | - Youn Jin Ku
- a Department of Industrial and Physical Pharmacy , Purdue University , West Lafayette , IN , USA
| | - Yoon Yeo
- a Department of Industrial and Physical Pharmacy , Purdue University , West Lafayette , IN , USA .,c Weldon School of Biomedical Engineering, Purdue University , West Lafayette , IN , USA
| |
Collapse
|
291
|
Zheng H, Tai CW, Su J, Zou X, Gao F. Ultra-small mesoporous silica nanoparticles as efficient carriers for pH responsive releases of anti-cancer drugs. Dalton Trans 2016; 44:20186-92. [PMID: 26535559 DOI: 10.1039/c5dt03700j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mesoporous silica has emerged as one of the most promising carriers for drug delivery systems. However, the synthesis of ultra-small mesoporous silica nanoparticles (UMSNs) and their application in drug delivery remains a significant challenge. Here, spherical UMSNs (∼25 nm) have been synthesized and tested as drug carriers. Anti-cancer drugs mitoxantrone (MX), doxorubicin (DOX) and methotrexate (MTX) have been utilized as model drugs. The pH-responsive drug delivery system can be constructed based on electrostatic interactions between carriers and drug molecules. The UMSNs could store drugs under physiological conditions and release them under acidic conditions. Different pH-responsive release profiles were obtained in phosphate buffer solutions (PBSs) at the designed pH values (from 4.0 to 7.4). MX and DOX can be used in the pH-responsive delivery system, while MTX cannot be used. Furthermore, we found that the physiological stabilities of these drug molecules in UMSNs are in a decreasing order MX > DOX > MTX, which follows the order of their isoelectric point (pI) values.
Collapse
Affiliation(s)
- Haoquan Zheng
- Berzelii Center EXSELENT on Porous Materials and Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden.
| | - Cheuk-Wai Tai
- Berzelii Center EXSELENT on Porous Materials and Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden.
| | - Jie Su
- Berzelii Center EXSELENT on Porous Materials and Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden.
| | - Xiaodong Zou
- Berzelii Center EXSELENT on Porous Materials and Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden.
| | - Feifei Gao
- Berzelii Center EXSELENT on Porous Materials and Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden.
| |
Collapse
|
292
|
|
293
|
Müller K, Kessel E, Klein PM, Höhn M, Wagner E. Post-PEGylation of siRNA Lipo-oligoamino Amide Polyplexes Using Tetra-glutamylated Folic Acid as Ligand for Receptor-Targeted Delivery. Mol Pharm 2016; 13:2332-45. [DOI: 10.1021/acs.molpharmaceut.6b00102] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Katharina Müller
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Eva Kessel
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany
- Nanosystems Initiative Munich, Schellingstrasse 4, D-80799 Munich, Germany
| | - Philipp M. Klein
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Miriam Höhn
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany
- Nanosystems Initiative Munich, Schellingstrasse 4, D-80799 Munich, Germany
| |
Collapse
|
294
|
Abstract
Molecular medicine opens into a space of novel specific therapeutic agents: intracellularly active drugs such as peptides, proteins or nucleic acids, which are not able to cross cell membranes and enter the intracellular space on their own. Through the development of cell-targeted shuttles for specific delivery, this restriction in delivery has the potential to be converted into an advantage. On the one hand, due to the multiple extra- and intracellular barriers, such carrier systems need to be multifunctional. On the other hand, they must be precise and reproducibly manufactured due to pharmaceutical reasons. Here we review the design of precise sequence-defined delivery carriers, including solid-phase synthesized peptides and nonpeptidic oligomers, or nucleotide-based carriers such as aptamers and origami nanoboxes.
Collapse
|
295
|
Zhao C, Deng H, Xu J, Li S, Zhong L, Shao L, Wu Y, Liang XJ. "Sheddable" PEG-lipid to balance the contradiction of PEGylation between long circulation and poor uptake. NANOSCALE 2016; 8:10832-10842. [PMID: 27167180 DOI: 10.1039/c6nr02174c] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
PEGylated lipids confer longer systemic circulation and tumor accumulation via the enhanced permeability and retention (EPR) effect. However, PEGylation inhibits cellular uptake and subsequent endosomal escape. In order to balance the contradiction between the advantages of long circulation and the disadvantages of poor uptake of PEGylated lipids, we prepared a "sheddable" PEG-lipid micelle system based on the conjugation of PEG and phosphatidyl ethanolamine (DSPE) with a pH sensitive benzoic imine bond. In a physiological environment, the PEG-protected micelles were not readily taken up by the reticuloendothelial system (RES) and could be successfully delivered to tumor tissue by the EPR effect. In a tumor acidic microenvironment, the PEG chains detached from the surfaces of the micelles while the degree of linker cleavage could not cause a significant particle size change, which facilitated the carrier binding to tumor cells and improved the cellular uptake. Subsequently, the "sheddable" PEG-lipid micelles easily internalized into cells and the increased acidity in the lysosomes further promoted drug release. Thus, this "sheddable" PEG-lipid nanocarrier could be a good candidate for effective intracellular drug delivery in cancer chemotherapy.
Collapse
Affiliation(s)
- Caiyan Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China.
| | - Hongzhang Deng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China. and Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Jing Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China.
| | - Shuyi Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China.
| | - Lin Zhong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China.
| | - Leihou Shao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China.
| | - Yan Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China.
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China.
| |
Collapse
|
296
|
Wu M, Wang Q, Zhang D, Liao N, Wu L, Huang A, Liu X. Magnetite nanocluster@poly(dopamine)-PEG@ indocyanine green nanobead with magnetic field-targeting enhanced MR imaging and photothermal therapy in vivo. Colloids Surf B Biointerfaces 2016; 141:467-475. [PMID: 26896652 DOI: 10.1016/j.colsurfb.2016.02.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/19/2016] [Accepted: 02/08/2016] [Indexed: 11/26/2022]
Abstract
Multifunctional nanomaterials with the magnetic resonance imaging (MRI) guided tumor photothermal ablation ability have been extensively applied in biomedical research as one of the most exciting and challenging strategies for cancer treatment. Nevertheless, most of these nanomaterials still suffer from low accumulation in tumor tissues and insufficient photothermal ablation of tumors so far. Here, we report a novel approach to overcome these limitations using a core-shell magnetite nanocluster@poly(dopamine)-PEG@ICG nanobead compositing of magnetite nanocluster core with coating of poly(dopamine), then further conjugating with polyethylene glycol (PEG) and adsorbing indocyanine green (ICG) on the surface. The adsorbed ICG in the nanobead displays a higher photostability and photothermal conversion ability than free ICG, as well as additional photothermal effect rather than magnetite nanocluster and poly(dopamine), which endow the nanobead with enhanced photothermal killing efficiency against cancer cells under near-infrared (NIR) laser irritation. Furthermore, it is proved that these nanobeads have excellent biocompatibility, T2-weighted MR imaging and magnetic field targeting ability. By applying an external magnetic field (MF) focused on the targeted tumor, a magnetic targeting mediated enhanced accumulation is observed at tumor site as proved by a darker T2-weighted MR image. Utilizing the magnetic targeting strategy, enhanced photothermal tumor ablation was achieved under laser irradiation in vivo, which is reflected by the degree of tumor tissue damage and tumor growth delay. Therefore, this nanobead integrates the abilities of magnetic field-targeting, MR imaging and photothermal cancer therapy, and might be a promising theranostic platform for tumor treatment.
Collapse
Affiliation(s)
- Ming Wu
- Department of Pathology, School of Basic Medical Science, Fujian Medical University, Fuzhou 350004, PR China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
| | - Qingtang Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, PR China
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, PR China
| | - Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, PR China
| | - Lingjie Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, PR China
| | - Aimin Huang
- Department of Pathology, School of Basic Medical Science, Fujian Medical University, Fuzhou 350004, PR China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, PR China.
| | - Xiaolong Liu
- Department of Pathology, School of Basic Medical Science, Fujian Medical University, Fuzhou 350004, PR China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; The Liver Center of Fujian Province, Fujian Medical University, Fuzhou 350025, PR China.
| |
Collapse
|
297
|
A dual-targeting drug co-delivery system for tumor chemo- and gene combined therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 64:208-218. [PMID: 27127046 DOI: 10.1016/j.msec.2016.03.083] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/17/2016] [Accepted: 03/23/2016] [Indexed: 11/21/2022]
Abstract
Regulation of gene expression using p53 is a promising strategy for treatment of numerous cancers, and chemotherapeutic drug dichloroacetate (DCA) induces apoptosis and growth inhibition in tumor, without apparent toxicity in normal tissues. Combining DCA and p53 gene could be an effective way to treat tumors. The progress towards broad applications of DCA/p53 combination requires the development of safe and efficient vectors that target to specific cells. In this study, we developed a DSPE-PEG-AA (1,2-distearoryl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol-2000)] ammonium salt-anisamide) modified reconstituted high-density lipoprotein-based DCA/p53-loaded nanoparticles (DSPE-PEG-AA/rHDL/DCA-PEI/p53 complexes), which was fabricated as a drug/gene dual-targeting co-delivery system for potential cancer therapy. Here, DCA-PEI was utilized to effectively condense the p53 plasmid, to incorporate the plasmid into rHDL and to act as an antitumor drug to inhibit tumor cell growth. The DSPE-PEG-AA/rHDL/DCA-PEI/p53 complexes exhibited desirable and homogenous particle size, neutral surface charge and low cytotoxicity for normal cells in vitro. The results of confocal laser scanning microscopy (CLSM) and flow cytometry confirmed that the scavenger receptor class B type I (SR-BI) and sigma receptor mediated dual-targeting function of the complexes inducing efficient cytoplasmic drug delivery and gene transfection in human lung adenocarcinoma cell line A549. And in vivo investigation on nude mice bearing A549 tumor xenografts revealed that DSPE-PEG-AA/rHDL/DCA-PEI/p53 complexes possessed specific tumor targeting and strong antitumor activity. The work described here demonstrated that the DSPE-PEG-AA/rHDL/DCA-PEI/p53 complexes might offer a promising tool for effective cancer therapy.
Collapse
|
298
|
Hu Y, Gong X, Zhang J, Chen F, Fu C, Li P, Zou L, Zhao G. Activated Charge-Reversal Polymeric Nano-System: The Promising Strategy in Drug Delivery for Cancer Therapy. Polymers (Basel) 2016; 8:E99. [PMID: 30979214 PMCID: PMC6432516 DOI: 10.3390/polym8040099] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 01/06/2023] Open
Abstract
Various polymeric nanoparticles (NPs) with optimal size, tumor-targeting functionalization, or microenvironment sensitive characteristics have been designed to solve several limitations of conventional chemotherapy. Nano-sized polymeric drug carrier systems have remarkably great advantages in drug delivery and cancer therapy, which are still plagued with severe deficiencies, especially insufficient cellular uptake. Recently, surface charge of medical NPs has been demonstrated to play an important role in cellular uptake. NPs with positive charge show higher affinity to anionic cell membranes such that with more efficient cellular internalization, but otherwise cause severe aggregation and fast clearance in circulation. Thus, surface charge-reversal NPs, specifically activated at the tumor site, have shown to elegantly resolve the enhanced cellular uptake in cancer cells vs. non-specific protein adsorption dilemma. Herein, this review mainly focuses on the effect of tumor-site activated surface charge reversal NPs on tumor treatment, including the activated mechanisms and various applications in suppressing cancer cells, killing cancer stem cell and overcoming multidrug resistance, with the emphasis on recent research in these fields. With the comprehensive and in-depth understanding of the activated surface charge reversal NPs, this approach might arouse great interest of scientific research on enhanced efficient polymeric nano-carriers in cancer therapy.
Collapse
Affiliation(s)
- Yichen Hu
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu 610106, China.
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China.
| | - Jinming Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Fengqian Chen
- Department of Microbiology & Immunology, MCV Campus School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Chaomei Fu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Liang Zou
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu 610106, China.
| | - Gang Zhao
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
299
|
Novel self-assembled pH-responsive biomimetic nanocarriers for drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 64:346-353. [PMID: 27127063 DOI: 10.1016/j.msec.2016.03.099] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 03/08/2016] [Accepted: 03/29/2016] [Indexed: 12/12/2022]
Abstract
Novel pH-responsive biodegradable biomimetic nanocarriers were prepared by the self-assembly of N-acetyl-l-histidine-phosphorylcholine-chitosan conjugate (NAcHis-PCCs), which was synthesized via Atherton-Todd reaction to couple biomembrane-like phosphorylcholine (PC) groups, and N,N'-carbonyldiimidazole (CDI) coupling reaction to link pH-responsive N-acetyl-l-histidine (NAcHis) moieties to chitosan. In vitro biological assay revealed that NAcHis-PCCs nanoparticles had excellent biocompatibility to avoid adverse biological response mainly owing to their biomimetic PC shell, and DLS results confirmed their pH-responsive behavior in acidic aqueous solution (pH≤6.0). Quercetin (QUE), an anti-inflammatory, antioxidant and potential anti-tumor hydrophobic drug, was effectively loaded in NAcHis-PCCs nanocarriers and showed a pH-triggered release behavior with the enhanced QUE release at acidic pH5.5 compared to neutral pH7.4. The results indicated that pH-responsive biomimetic NAcHis-PCCs nanocarriers might have great potential for site-specific delivery to pathological acidic microenvironment avoiding unfavorable biological response.
Collapse
|
300
|
Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 2016. [DOI: '10.1016/j.addr.2015.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
|