251
|
Thuenauer R, Müller SK, Römer W. Pathways of protein and lipid receptor-mediated transcytosis in drug delivery. Expert Opin Drug Deliv 2016; 14:341-351. [DOI: 10.1080/17425247.2016.1220364] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
252
|
Mosley GL, Nguyen P, Wu BM, Kamei DT. Development of quantitative radioactive methodologies on paper to determine important lateral-flow immunoassay parameters. LAB ON A CHIP 2016; 16:2871-81. [PMID: 27364421 DOI: 10.1039/c6lc00518g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The lateral-flow immunoassay (LFA) is a well-established diagnostic technology that has recently seen significant advancements due in part to the rapidly expanding fields of paper diagnostics and paper-fluidics. As LFA-based diagnostics become more complex, it becomes increasingly important to quantitatively determine important parameters during the design and evaluation process. However, current experimental methods for determining these parameters have certain limitations when applied to LFA systems. In this work, we describe our novel methods of combining paper and radioactive measurements to determine nanoprobe molarity, the number of antibodies per nanoprobe, and the forward and reverse rate constants for nanoprobe binding to immobilized target on the LFA test line. Using a model LFA system that detects for the presence of the protein transferrin (Tf), we demonstrate the application of our methods, which involve quantitative experimentation and mathematical modeling. We also compare the results of our rate constant experiments with traditional experiments to demonstrate how our methods more appropriately capture the influence of the LFA environment on the binding interaction. Our novel experimental approaches can therefore more efficiently guide the research process for LFA design, leading to more rapid advancement of the field of paper-based diagnostics.
Collapse
Affiliation(s)
- Garrett L Mosley
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
253
|
Feijóo-Bandín S, García-Vence M, García-Rúa V, Roselló-Lletí E, Portolés M, Rivera M, González-Juanatey JR, Lago F. Two-pore channels (TPCs): Novel voltage-gated ion channels with pleiotropic functions. Channels (Austin) 2016; 11:20-33. [PMID: 27440385 DOI: 10.1080/19336950.2016.1213929] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Two-pore channels (TPC1-3) comprise a subfamily of the eukaryotic voltage-gated ion channels (VGICs) superfamily that are mainly expressed in acidic stores in plants and animals. TPCS are widespread across the animal kingdom, with primates, mice and rats lacking TPC3, and mainly act as Ca+ and Na+ channels, although it was also suggested that they could be permeable to other ions. Nowadays, TPCs have been related to the development of different diseases, including Parkinson´s disease, obesity or myocardial ischemia. Due to this, their study has raised the interest of the scientific community to try to understand their mechanism of action in order to be able to develop an efficient drug that could regulate TPCs activity. In this review, we will provide an updated view regarding TPCs structure, function and activation, as well as their role in different pathophysiological processes.
Collapse
Affiliation(s)
- Sandra Feijóo-Bandín
- a Cellular and Molecular Cardiology Research Unit and Department of Cardiology , Institute of Biomedical Research and University Clinical Hospital , Santiago de Compostela , Spain
| | - María García-Vence
- a Cellular and Molecular Cardiology Research Unit and Department of Cardiology , Institute of Biomedical Research and University Clinical Hospital , Santiago de Compostela , Spain
| | - Vanessa García-Rúa
- a Cellular and Molecular Cardiology Research Unit and Department of Cardiology , Institute of Biomedical Research and University Clinical Hospital , Santiago de Compostela , Spain
| | - Esther Roselló-Lletí
- b Cardiocirculatory Unit, Health Institute of La Fe University Hospital , Valencia , Spain
| | - Manuel Portolés
- b Cardiocirculatory Unit, Health Institute of La Fe University Hospital , Valencia , Spain
| | - Miguel Rivera
- b Cardiocirculatory Unit, Health Institute of La Fe University Hospital , Valencia , Spain
| | - José Ramón González-Juanatey
- a Cellular and Molecular Cardiology Research Unit and Department of Cardiology , Institute of Biomedical Research and University Clinical Hospital , Santiago de Compostela , Spain
| | - Francisca Lago
- a Cellular and Molecular Cardiology Research Unit and Department of Cardiology , Institute of Biomedical Research and University Clinical Hospital , Santiago de Compostela , Spain
| |
Collapse
|
254
|
Movassaghian S, Xie Y, Hildebrandt C, Rosati R, Li Y, Kim NH, Conti DS, da Rocha SRP, Yang ZQ, Merkel OM. Post-Transcriptional Regulation of the GASC1 Oncogene with Active Tumor-Targeted siRNA-Nanoparticles. Mol Pharm 2016; 13:2605-21. [PMID: 27223606 DOI: 10.1021/acs.molpharmaceut.5b00948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Basal-like breast cancer (BLBC) accounts for the most aggressive types of breast cancer, marked by high rates of relapse and poor prognoses and with no effective clinical therapy yet. Therefore, investigation of new targets and treatment strategies is more than necessary. Here, we identified a receptor that can be targeted in BLBC for efficient and specific siRNA mediated gene knockdown of therapeutically relevant genes such as the histone demethylase GASC1, which is involved in multiple signaling pathways leading to tumorigenesis. Breast cancer and healthy breast cell lines were compared regarding transferrin receptor (TfR) expression via flow cytometry and transferrin binding assays. Nanobioconjugates made of low molecular weight polyethylenimine (LMW-PEI) and transferrin (Tf) were synthesized to contain a bioreducible disulfide bond. siRNA complexation was characterized by condensation assays and dynamic light scattering. Cytotoxicity, transfection efficiency, and the targeting specificity of the conjugates were investigated in TfR positive and negative healthy breast and breast cancer cell lines by flow cytometry, confocal microscopy, RT-PCR, and Western blot. Breast cancer cell lines revealed a significantly higher TfR expression than healthy breast cells. The conjugates efficiently condensed siRNA into particles with 45 nm size at low polymer concentrations, showed no apparent toxicity on different breast cancer cell lines, and had significantly greater transfection and gene knockdown activity on mRNA and protein levels than PEI/siRNA leading to targeted and therapeutic growth inhibition post GASC1 knockdown. The synthesized nanobioconjugates improved the efficiency of gene transfer and targeting specificity in transferrin receptor positive cells but not in cells with basal receptor expression. Therefore, these materials in combination with our newly identified siRNA sequences are promising candidates for therapeutic targeting of hard-to-treat BLBC and are currently further investigated regarding in vivo targeting efficacy and biocompatibility.
Collapse
Affiliation(s)
- Sara Movassaghian
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University , Detroit, Michigan 48201, United States.,Department of Oncology, Karmanos Cancer Institute, Wayne State University , Detroit, Michigan 48201, United States
| | - Yuran Xie
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University , Detroit, Michigan 48201, United States
| | - Claudia Hildebrandt
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University , Detroit, Michigan 48201, United States.,Department of Pharmaceutics and Biopharmaceutics, Kiel University , 24118 Kiel, Germany
| | - Rayna Rosati
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University , Detroit, Michigan 48201, United States.,Department of Oncology, Karmanos Cancer Institute, Wayne State University , Detroit, Michigan 48201, United States
| | - Ying Li
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University , Detroit, Michigan 48201, United States
| | - Na Hyung Kim
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University , Detroit, Michigan 48201, United States
| | - Denise S Conti
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University , Detroit, Michigan 48202, United States
| | - Sandro R P da Rocha
- Department of Pharmaceutics, College of Pharmacy, Virginia Commonwealth University , Richmond, Virginia 23298, United States.,Department of Chemical and Life Science Engineering, Virginia Commonwealth University , Richmond, Virginia 23284, United States
| | - Zeng-Quan Yang
- Department of Oncology, Karmanos Cancer Institute, Wayne State University , Detroit, Michigan 48201, United States
| | - Olivia M Merkel
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University , Detroit, Michigan 48201, United States.,Department of Oncology, Karmanos Cancer Institute, Wayne State University , Detroit, Michigan 48201, United States.,Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München , 80539 Munich, Germany
| |
Collapse
|
255
|
Patak J, Zhang-James Y, Faraone SV. Endosomal system genetics and autism spectrum disorders: A literature review. Neurosci Biobehav Rev 2016; 65:95-112. [PMID: 27048963 PMCID: PMC4866511 DOI: 10.1016/j.neubiorev.2016.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/25/2016] [Accepted: 03/27/2016] [Indexed: 01/01/2023]
Abstract
Autism spectrum disorders (ASDs) are a group of debilitating neurodevelopmental disorders thought to have genetic etiology, due to their high heritability. The endosomal system has become increasingly implicated in ASD pathophysiology. In an attempt to summarize the association between endosomal system genes and ASDs we performed a systematic review of the literature. We searched PubMed for relevant articles. Simons Foundation Autism Research Initiative (SFARI) gene database was used to exclude articles regarding genes with less than minimal evidence for association with ASDs. Our search retained 55 articles reviewed in two categories: genes that regulate and genes that are regulated by the endosomal system. Our review shows that the endosomal system is a novel pathway implicated in ASDs as well as other neuropsychiatric disorders. It plays a central role in aspects of cellular physiology on which neurons and glial cells are particularly reliant, due to their unique metabolic and functional demands. The system shows potential for biomarkers and pharmacological intervention and thus more research into this pathway is warranted.
Collapse
Affiliation(s)
- Jameson Patak
- Dept. of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, United States.
| | - Yanli Zhang-James
- Dept of Psychiatry, Upstate Medical University, Syracuse, NY, United States.
| | - Stephen V Faraone
- Dept. of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, United States; Dept of Psychiatry, Upstate Medical University, Syracuse, NY, United States; K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
256
|
Levina A, Pham THN, Lay PA. Binding of Chromium(III) to Transferrin Could Be Involved in Detoxification of Dietary Chromium(III) Rather than Transport of an Essential Trace Element. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Aviva Levina
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| | - T. H. Nguyen Pham
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| | - Peter A. Lay
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
257
|
Levina A, Pham THN, Lay PA. Binding of Chromium(III) to Transferrin Could Be Involved in Detoxification of Dietary Chromium(III) Rather than Transport of an Essential Trace Element. Angew Chem Int Ed Engl 2016; 55:8104-7. [DOI: 10.1002/anie.201602996] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Aviva Levina
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| | - T. H. Nguyen Pham
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| | - Peter A. Lay
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
258
|
Tanabe K. Image-based compound profiling reveals a dual inhibitor of tyrosine kinase and microtubule polymerization. Sci Rep 2016; 6:25095. [PMID: 27117592 PMCID: PMC4846875 DOI: 10.1038/srep25095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/11/2016] [Indexed: 12/31/2022] Open
Abstract
Small-molecule compounds are widely used as biological research tools and therapeutic drugs. Therefore, uncovering novel targets of these compounds should provide insights that are valuable in both basic and clinical studies. I developed a method for image-based compound profiling by quantitating the effects of compounds on signal transduction and vesicle trafficking of epidermal growth factor receptor (EGFR). Using six signal transduction molecules and two markers of vesicle trafficking, 570 image features were obtained and subjected to multivariate analysis. Fourteen compounds that affected EGFR or its pathways were classified into four clusters, based on their phenotypic features. Surprisingly, one EGFR inhibitor (CAS 879127-07-8) was classified into the same cluster as nocodazole, a microtubule depolymerizer. In fact, this compound directly depolymerized microtubules. These results indicate that CAS 879127-07-8 could be used as a chemical probe to investigate both the EGFR pathway and microtubule dynamics. The image-based multivariate analysis developed herein has potential as a powerful tool for discovering unexpected drug properties.
Collapse
Affiliation(s)
- Kenji Tanabe
- Medical Research Institute, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| |
Collapse
|
259
|
McGarvey JC, Xiao K, Bowman SL, Mamonova T, Zhang Q, Bisello A, Sneddon WB, Ardura JA, Jean-Alphonse F, Vilardaga JP, Puthenveedu MA, Friedman PA. Actin-Sorting Nexin 27 (SNX27)-Retromer Complex Mediates Rapid Parathyroid Hormone Receptor Recycling. J Biol Chem 2016; 291:10986-1002. [PMID: 27008860 DOI: 10.1074/jbc.m115.697045] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Indexed: 01/14/2023] Open
Abstract
The G protein-coupled parathyroid hormone receptor (PTHR) regulates mineral-ion homeostasis and bone remodeling. Upon parathyroid hormone (PTH) stimulation, the PTHR internalizes into early endosomes and subsequently traffics to the retromer complex, a sorting platform on early endosomes that promotes recycling of surface receptors. The C terminus of the PTHR contains a type I PDZ ligand that binds PDZ domain-containing proteins. Mass spectrometry identified sorting nexin 27 (SNX27) in isolated endosomes as a PTHR binding partner. PTH treatment enriched endosomal PTHR. SNX27 contains a PDZ domain and serves as a cargo selector for the retromer complex. VPS26, VPS29, and VPS35 retromer subunits were isolated with PTHR in endosomes from cells stimulated with PTH. Molecular dynamics and protein binding studies establish that PTHR and SNX27 interactions depend on the PDZ recognition motif in PTHR and the PDZ domain of SNX27. Depletion of either SNX27 or VPS35 or actin depolymerization decreased the rate of PTHR recycling following agonist stimulation. Mutating the PDZ ligand of PTHR abolished the interaction with SNX27 but did not affect the overall rate of recycling, suggesting that PTHR may directly engage the retromer complex. Coimmunoprecipitation and overlay experiments show that both intact and mutated PTHR bind retromer through the VPS26 protomer and sequentially assemble a ternary complex with PTHR and SNX27. SNX27-independent recycling may involve N-ethylmaleimide-sensitive factor, which binds both PDZ intact and mutant PTHRs. We conclude that PTHR recycles rapidly through at least two pathways, one involving the ASRT complex of actin, SNX27, and retromer and another possibly involving N-ethylmaleimide-sensitive factor.
Collapse
Affiliation(s)
- Jennifer C McGarvey
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, and
| | - Kunhong Xiao
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, and
| | - Shanna L Bowman
- the Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Tatyana Mamonova
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, and
| | - Qiangmin Zhang
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, and
| | - Alessandro Bisello
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, and
| | - W Bruce Sneddon
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, and
| | - Juan A Ardura
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, and
| | - Frederic Jean-Alphonse
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, and
| | - Jean-Pierre Vilardaga
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, and
| | - Manojkumar A Puthenveedu
- the Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Peter A Friedman
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, and the Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and
| |
Collapse
|
260
|
Merlot AM, Sahni S, Lane DJR, Fordham AM, Pantarat N, Hibbs DE, Richardson V, Doddareddy MR, Ong JA, Huang MLH, Richardson DR, Kalinowski DS. Potentiating the cellular targeting and anti-tumor activity of Dp44mT via binding to human serum albumin: two saturable mechanisms of Dp44mT uptake by cells. Oncotarget 2016; 6:10374-98. [PMID: 25848850 PMCID: PMC4496362 DOI: 10.18632/oncotarget.3606] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 02/14/2015] [Indexed: 12/31/2022] Open
Abstract
Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) demonstrates potent anti-cancer activity. We previously demonstrated that 14C-Dp44mT enters and targets cells through a carrier/receptor-mediated uptake process. Despite structural similarity, 2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (Bp4eT) and pyridoxal isonicotinoyl hydrazone (PIH) enter cells via passive diffusion. Considering albumin alters the uptake of many drugs, we examined the effect of human serum albumin (HSA) on the cellular uptake of Dp44mT, Bp4eT and PIH. Chelator-HSA binding studies demonstrated the following order of relative affinity: Bp4eT≈PIH>Dp44mT. Interestingly, HSA decreased Bp4eT and PIH uptake, potentially due to its high affinity for the ligands. In contrast, HSA markedly stimulated Dp44mT uptake by cells, with two saturable uptake mechanisms identified. The first mechanism saturated at 5-10 μM (Bmax:1.20±0.04 × 107 molecules/cell; Kd:33±3 μM) and was consistent with a previously identified Dp44mT receptor/carrier. The second mechanism was of lower affinity, but higher capacity (Bmax:2.90±0.12 × 107 molecules/cell; Kd:65±6 μM), becoming saturated at 100 μM and was only evident in the presence of HSA. This second saturable Dp44mT uptake process was inhibited by excess HSA and had characteristics suggesting it was mediated by a specific binding site. Significantly, the HSA-mediated increase in the targeting of Dp44mT to cancer cells potentiated apoptosis and could be important for enhancing efficacy.
Collapse
Affiliation(s)
- Angelica M Merlot
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Sumit Sahni
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Darius J R Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Ashleigh M Fordham
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Namfon Pantarat
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - David E Hibbs
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Vera Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | | | - Jennifer A Ong
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Michael L H Huang
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
261
|
Clifford RJ, Maryon EB, Kaplan JH. Dynamic internalization and recycling of a metal ion transporter: Cu homeostasis and CTR1, the human Cu⁺ uptake system. J Cell Sci 2016; 129:1711-21. [PMID: 26945057 DOI: 10.1242/jcs.173351] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 03/02/2016] [Indexed: 01/01/2023] Open
Abstract
Cu ion (Cu) entry into human cells is mediated by CTR1 (also known as SLC31A1), the high-affinity Cu transporter. When extracellular Cu is raised, the cell is protected against excess accumulation by rapid internalization of the transporter. When Cu is lowered, the transporter returns to the membrane. We show in HEK293 cells overexpressing CTR1 that expression of either the C-terminal domain of AP180 (also known as SNAP91), a clathrin-coat assembly protein that sequesters clathrin, or a dominant-negative mutant of dynamin, decreases Cu-induced endocytosis of CTR1, as does a dynamin inhibitor and clathrin knockdown using siRNA. Utilizing imaging, siRNA techniques and a new high-throughput assay for endocytosis employing CLIP-tag methodology, we show that internalized CTR1 accumulates in early sorting endosomes and recycling compartments (containing Rab5 and EEA1), but not in late endosomes or lysosomal pathways. Using live cell fluorescence, we find that upon extracellular Cu removal CTR1 recycles to the cell surface through the slower-recycling Rab11-mediated pathway. These processes enable cells to dynamically alter transporter levels at the plasma membrane and acutely modulate entry as a safeguard against excess cellular Cu.
Collapse
Affiliation(s)
- Rebecca J Clifford
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL 60607, USA
| | - Edward B Maryon
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL 60607, USA
| | - Jack H Kaplan
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL 60607, USA
| |
Collapse
|
262
|
Onnis A, Finetti F, Baldari CT. Vesicular Trafficking to the Immune Synapse: How to Assemble Receptor-Tailored Pathways from a Basic Building Set. Front Immunol 2016; 7:50. [PMID: 26913036 PMCID: PMC4753310 DOI: 10.3389/fimmu.2016.00050] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/01/2016] [Indexed: 12/20/2022] Open
Abstract
The signals that orchestrate T-cell activation are coordinated within a highly organized interface with the antigen-presenting cell (APC), known as the immune synapse (IS). IS assembly depends on T-cell antigen receptor engagement by a specific peptide antigen-major histocompatibility complex ligand. This primary event leads to polarized trafficking of receptors and signaling mediators associated with recycling endosomes to the cellular interface, which contributes to IS assembly as well as signal termination and favors information transfer from T cells to APCs. Here, we will review recent advances on the vesicular pathways implicated in IS assembly and maintenance, focusing on the spatiotemporal regulation of the traffic of specific receptors by Rab GTPases. Based on accumulating evidence that the IS is a functional homolog of the primary cilium, which coordinates several central signaling pathways in ciliated cells, we will also discuss the similarities in the mechanisms regulating vesicular trafficking to these specialized membrane domains.
Collapse
Affiliation(s)
- Anna Onnis
- Department of Life Sciences, University of Siena , Siena , Italy
| | | | - Cosima T Baldari
- Department of Life Sciences, University of Siena , Siena , Italy
| |
Collapse
|
263
|
Zhao H, Wang S, Nguyen SN, Elci SG, Kaltashov IA. Evaluation of Nonferrous Metals as Potential In Vivo Tracers of Transferrin-Based Therapeutics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:211-9. [PMID: 26392277 PMCID: PMC4724545 DOI: 10.1007/s13361-015-1267-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 05/10/2023]
Abstract
Transferrin (Tf) is a promising candidate for targeted drug delivery. While development of such products is impossible without the ability to monitor biodistribution of Tf-drug conjugates in tissues and reliable measurements of their levels in blood and other biological fluids, the presence of very abundant endogenous Tf presents a significant impediment to such efforts. Several noncognate metals have been evaluated in this work as possible tracers of exogenous transferrin in complex biological matrices using inductively coupled plasma mass spectrometry (ICP MS) as a detection tool. Placing Ni(II) on a His-tag of recombinant Tf resulted in formation of a marginally stable protein-metal complex, which readily transfers the metal to ubiquitous physiological scavengers, such as serum albumin. An alternative strategy targeted iron-binding pockets of Tf, where cognate Fe(III) was replaced by metal ions known to bind this protein. Both Ga(III) and In(III) were evaluated, with the latter being vastly superior as a tracer (stronger binding to Tf unaffected by the presence of metal scavengers and the retained ability to associate with Tf receptor). Spiking serum with indium-loaded Tf followed by ICP MS detection demonstrated that protein quantities as low as 0.04 nM can be readily detected in animal blood. Combining laser ablation with ICP MS detection allows distribution of exogenous Tf to be mapped within animal tissue cross-sections with spatial resolution exceeding 100 μm. The method can be readily extended to a range of other therapeutics where metalloproteins are used as either carriers or payloads. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Hanwei Zhao
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, 01003, USA
| | - Shunhai Wang
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, 01003, USA
| | - Son N Nguyen
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, 01003, USA
| | - S Gokhan Elci
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, 01003, USA
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
264
|
Pons M, Izquierdo I, Andreu-Carbó M, Garrido G, Planagumà J, Muriel O, Geli MI, Aragay AM. Regulation of chemokine receptor CCR2 recycling by filamin a phosphorylation. J Cell Sci 2016; 130:490-501. [DOI: 10.1242/jcs.193821] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/18/2016] [Indexed: 12/20/2022] Open
Abstract
Proper endosomal trafficking of ligand-activated G protein-coupled receptors (GPCRs) is essential to spatiotemporally tune their physiological responses. For the monocyte chemoattractant receptor 2 (CCR2B), endocytic recycling is important to sustain monocyte migration; while filamin A (FLNa) is essential for CCL2-induced monocyte migration. Here, we analyze the role of FLNa in the trafficking of CCR2B along the endocytic pathway. In FLNa knockdown cells, activated CCR2B accumulated in enlarged EEA-1-positive endosomes, which exhibited slow movement and fast fluorescence recovery, suggesting an imbalance between receptor entry and exit rates. Utilizing super-resolution microscopy, we observed that FLNa-GFP, CCR2B and β2-adrenergic receptor (β2AR) were present in actin-enriched endosomal microdomains. Depletion of FLNa decreased CCR2B association with these microdomains and concomitantly delayed CCR2B endosomal traffic, without apparently affecting the number of microdomains. Interestingly, CCR2B and β2AR signaling induced phosphorylation of FLNa at S2152 and this phosphorylation event was contributes to sustain receptor recycling. Thus, our data strongly suggest that CCR2B and β2AR signals to FLNa to stimulate its endocytosis and recycling to the plasma membrane.
Collapse
Affiliation(s)
- Mònica Pons
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain
| | - Ismael Izquierdo
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain
| | - Mireia Andreu-Carbó
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain
| | - Georgina Garrido
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain
- Present addresse: Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
| | - Jesús Planagumà
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Present addresse: Department of Neuroimmunology, IDIBAPS, Barcelona, Spain
| | - Olivia Muriel
- Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - M. Isabel Geli
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain
| | - Anna M. Aragay
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain
| |
Collapse
|
265
|
Tillotson BJ, Goulatis LI, Parenti I, Duxbury E, Shusta EV. Engineering an Anti-Transferrin Receptor ScFv for pH-Sensitive Binding Leads to Increased Intracellular Accumulation. PLoS One 2015; 10:e0145820. [PMID: 26713870 PMCID: PMC4694649 DOI: 10.1371/journal.pone.0145820] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 12/09/2015] [Indexed: 11/18/2022] Open
Abstract
The equilibrium binding affinity of receptor-ligand or antibody-antigen pairs may be modulated by protonation of histidine side-chains, and such pH-dependent mechanisms play important roles in biological systems, affecting molecular uptake and trafficking. Here, we aimed to manipulate cellular transport of single-chain antibodies (scFvs) against the transferrin receptor (TfR) by engineering pH-dependent antigen binding. An anti-TfR scFv was subjected to histidine saturation mutagenesis of a single CDR. By employing yeast surface display with a pH-dependent screening pressure, scFvs having markedly increased dissociation from TfR at pH 5.5 were identified. The pH-sensitivity generally resulted from a central cluster of histidine residues in CDRH1. When soluble, pH-sensitive, scFv clone M16 was dosed onto live cells, the internalized fraction was 2.6-fold greater than scFvs that lacked pH-sensitive binding and the increase was dependent on endosomal acidification. Differences in the intracellular distribution of M16 were also observed consistent with an intracellular decoupling of the scFv M16-TfR complex. Engineered pH-sensitive TfR binding could prove important for increasing the effectiveness of TfR-targeted antibodies seeking to exploit endocytosis or transcytosis for drug delivery purposes.
Collapse
Affiliation(s)
- Benjamin J. Tillotson
- University of Wisconsin-Madison, Dept. of Chemical and Biological Engineering, Madison, WI, United States of America
| | - Loukas I. Goulatis
- University of Wisconsin-Madison, Dept. of Chemical and Biological Engineering, Madison, WI, United States of America
| | - Isabelle Parenti
- University of Wisconsin-Madison, Dept. of Chemical and Biological Engineering, Madison, WI, United States of America
| | - Elizabeth Duxbury
- University of Wisconsin-Madison, Dept. of Chemical and Biological Engineering, Madison, WI, United States of America
| | - Eric V. Shusta
- University of Wisconsin-Madison, Dept. of Chemical and Biological Engineering, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
266
|
Patrussi L, Baldari CT. The Rab GTPase Rab8 as a shared regulator of ciliogenesis and immune synapse assembly: From a conserved pathway to diverse cellular structures. Small GTPases 2015; 7:16-20. [PMID: 26587735 DOI: 10.1080/21541248.2015.1111852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Rab GTPases, which form the largest branch of the Ras GTPase superfamily, regulate almost every step of vesicle-mediated trafficking. Among them, Rab8 is an essential participant in primary cilium formation. In a report recently published in the Journal of Cell Science, Finetti and colleagues identify Rab8 as a novel player in vesicular traffic in the non-ciliated T lymphocytes, which contributes to the assembly of the specialized signaling platform known as the immune synapse. By interacting with the v-SNARE VAMP-3, Rab8 is indeed responsible for the final docking/fusion step in T cell receptor (TCR) recycling to the immune synapse. A second important take-home message which comes to light from this work is that VAMP-3 also interacts with Rab8 at the base of the cilium in NIH-3T3 cells, where it regulates ciliary growth and targeting of Smoothened at the plasma membrane. Hence the data presented in this report, in addition to identifying Rab8 as a novel player in vesicular traffic to the immune synapse, reveal how both ciliated and non-ciliated cells take advantage of a conserved pathway to build highly specific cellular structures.
Collapse
Affiliation(s)
- Laura Patrussi
- a Department of Life Sciences , University of Siena , Siena , Italy
| | - Cosima T Baldari
- a Department of Life Sciences , University of Siena , Siena , Italy
| |
Collapse
|
267
|
Szwed M, Kania KD, Jozwiak Z. Assessment of pro-apoptotic activity of doxorubicin-transferrin conjugate in cells derived from human solid tumors. Int J Biochem Cell Biol 2015; 70:57-67. [PMID: 26520467 DOI: 10.1016/j.biocel.2015.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 09/11/2015] [Accepted: 10/18/2015] [Indexed: 02/09/2023]
Abstract
Conjugates of anthracyclines are a new possibility for anticancer agent delivery, which seems to be a very promising alternative to the currently used cancer treatment strategies. In our study, we investigated the ability of a doxorubicin-transferrin (DOX-TRF) conjugate to induce cell death in two solid tumor cell lines: non-small cell lung cancer (A549) and hepatocellular liver carcinoma (HepG2). The observed effects of the DOX-TRF conjugate on these cell cultures were compared with those of free doxorubicin (DOX), a widely used antineoplastic therapeutic agent. Our results provided direct evidence that the investigated conjugate is considerably more cytotoxic to the examined human cancer cell lines than is DOX alone. Moreover, we confirmed that the antitumor efficacy of DOX-TRF conjugate is related to its apoptosis-inducing ability, which was shown during measurements of typical features of programmed cell death. In solid tumor cell lines, the DOX-TRF conjugate induced changes in cellular morphology, mitochondrial membrane potential and caspases-3 and -9 activities. Furthermore, all of the analyzed hallmarks of apoptosis were confirmed by the oligonucleosomal DNA fragmentation assay and by a real-time PCR quantitative study, which displayed the superiority of the conjugate-induced programmed cell death over free drug-triggered cell death.
Collapse
Affiliation(s)
- Marzena Szwed
- Department of Thermobiology, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Street, 90-236 Lodz, Poland.
| | - Katarzyna Dominika Kania
- Laboratory of Transcriptional Regulation, Institute for Medical Biology, PAS, Lodowa 106 Street, 93-232 Lodz, Poland.
| | - Zofia Jozwiak
- Department of Thermobiology, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Street, 90-236 Lodz, Poland.
| |
Collapse
|
268
|
Lee BS, Yip AT, Thach AV, Rodriguez AR, Deming TJ, Kamei DT. The targeted delivery of doxorubicin with transferrin-conjugated block copolypeptide vesicles. Int J Pharm 2015; 496:903-11. [PMID: 26456252 DOI: 10.1016/j.ijpharm.2015.10.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/10/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
We previously investigated the intracellular trafficking properties of our novel poly(l-glutamate)60-b-poly(l-leucine)20 (E60L20) vesicles (EL vesicles) conjugated to transferrin (Tf). In this study, we expand upon our previous work by investigating the drug encapsulation, release, and efficacy properties of our novel EL vesicles for the first time. After polyethylene glycol (PEG) was conjugated to the vesicles for steric stability, doxorubicin (DOX) was successfully encapsulated in the vesicles using a modified pH-ammonium sulfate gradient method. Tf was subsequently conjugated to the vesicles to provide active targeting to cancer cells and a mode of internalization into the cells. These Tf-conjugated, DOX-loaded, PEGylated EL (Tf-DPEL) vesicles exhibited colloidal stability and were within the allowable size range for passive and active targeting. A mathematical model was then derived to predict drug release from the Tf-DPEL vesicles by considering diffusive and convective mass transfer of DOX. Our mathematical model reasonably predicted our experimentally measured release profile with no fitted parameters, suggesting that the model could be used in the future to manipulate drug carrier properties to alter drug release profiles. Finally, an in vitro cytotoxicity assay was used to demonstrate that the Tf-DPEL vesicles exhibited enhanced drug carrier efficacy in comparison to its non-targeted counterpart.
Collapse
Affiliation(s)
- Brian S Lee
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, 5121 Engineering V, Los Angeles, CA 90095, United States
| | - Allison T Yip
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, 5121 Engineering V, Los Angeles, CA 90095, United States
| | - Alison V Thach
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, 5121 Engineering V, Los Angeles, CA 90095, United States
| | - April R Rodriguez
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, 5121 Engineering V, Los Angeles, CA 90095, United States
| | - Timothy J Deming
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, 5121 Engineering V, Los Angeles, CA 90095, United States
| | - Daniel T Kamei
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, 5121 Engineering V, Los Angeles, CA 90095, United States.
| |
Collapse
|
269
|
de Souza LB, Ong HL, Liu X, Ambudkar IS. Fast endocytic recycling determines TRPC1–STIM1 clustering in ER–PM junctions and plasma membrane function of the channel. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2709-21. [DOI: 10.1016/j.bbamcr.2015.07.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 12/27/2022]
|
270
|
Chen Y, Cohen SM. Investigating the Selectivity of Metalloenzyme Inhibitors in the Presence of Competing Metalloproteins. ChemMedChem 2015; 10:1733-8. [PMID: 26412596 PMCID: PMC4658394 DOI: 10.1002/cmdc.201500293] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Indexed: 01/01/2023]
Abstract
Metalloprotein inhibitors (MPi) are an important class of therapeutics for the treatment of a variety of diseases, including hypertension, cancer, and HIV/AIDS. However, despite their clinical success, there is an apprehension that MPi may be less selective than other small-molecule therapeutics and more prone to inhibit off-target metalloenzymes. We examined the issue of MPi specificity by investigating the selectivity of a variety of MPi against a representative panel of metalloenzymes in the presence of competing metalloproteins (metallothionein, myoglobin, carbonic anhydrase, and transferrin). Our findings reveal that a wide variety of MPi do not exhibit a decrease in inhibitory activity in the presence of large excesses of competing metalloproteins, suggesting that the competing proteins do not titrate the MPi away from its intended target. This study represents a rudimentary but important means to mimic the biological milieu, which contains other metalloproteins that could compete the MPi away from its target. The strategy used in this study may be a useful approach to examine the selectivity of other MPi in development.
Collapse
Affiliation(s)
- Yao Chen
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093 (USA)
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093 (USA).
| |
Collapse
|
271
|
Dikshit N, Bist P, Fenlon SN, Pulloor NK, Chua CEL, Scidmore MA, Carlyon JA, Tang BL, Chen SL, Sukumaran B. Intracellular Uropathogenic E. coli Exploits Host Rab35 for Iron Acquisition and Survival within Urinary Bladder Cells. PLoS Pathog 2015; 11:e1005083. [PMID: 26248231 PMCID: PMC4527590 DOI: 10.1371/journal.ppat.1005083] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 07/14/2015] [Indexed: 11/18/2022] Open
Abstract
Recurrent urinary tract infections (UTIs) caused by uropathogenic E. coli (UPEC) are common and morbid infections with limited therapeutic options. Previous studies have demonstrated that persistent intracellular infection of bladder epithelial cells (BEC) by UPEC contributes to recurrent UTI in mouse models of infection. However, the mechanisms employed by UPEC to survive within BEC are incompletely understood. In this study we aimed to understand the role of host vesicular trafficking proteins in the intracellular survival of UPEC. Using a cell culture model of intracellular UPEC infection, we found that the small GTPase Rab35 facilitates UPEC survival in UPEC-containing vacuoles (UCV) within BEC. Rab35 plays a role in endosomal recycling of transferrin receptor (TfR), the key protein responsible for transferrin-mediated cellular iron uptake. UPEC enhance the expression of both Rab35 and TfR and recruit these proteins to the UCV, thereby supplying UPEC with the essential nutrient iron. Accordingly, Rab35 or TfR depleted cells showed significantly lower intracellular iron levels and reduced ability to support UPEC survival. In the absence of Rab35, UPEC are preferentially trafficked to degradative lysosomes and killed. Furthermore, in an in vivo murine model of persistent intracellular infection, Rab35 also colocalizes with intracellular UPEC. We propose a model in which UPEC subverts two different vesicular trafficking pathways (endosomal recycling and degradative lysosomal fusion) by modulating Rab35, thereby simultaneously enhancing iron acquisition and avoiding lysosomal degradation of the UCV within bladder epithelial cells. Our findings reveal a novel survival mechanism of intracellular UPEC and suggest a potential avenue for therapeutic intervention against recurrent UTI.
Collapse
Affiliation(s)
- Neha Dikshit
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| | - Pradeep Bist
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| | - Shannon N Fenlon
- Infectious Diseases Group, Genome Institute of Singapore, Singapore; Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | | | - Christelle En Lin Chua
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Marci A Scidmore
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Swaine L Chen
- Infectious Diseases Group, Genome Institute of Singapore, Singapore; Department of Medicine, Division of Infectious Diseases, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bindu Sukumaran
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| |
Collapse
|
272
|
Saha S, Prakash V, Halder S, Chakraborty K, Krishnan Y. A pH-independent DNA nanodevice for quantifying chloride transport in organelles of living cells. NATURE NANOTECHNOLOGY 2015; 10:645-51. [PMID: 26098226 DOI: 10.1038/nnano.2015.130] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 05/22/2015] [Indexed: 05/24/2023]
Abstract
The concentration of chloride ions in the cytoplasm and subcellular organelles of living cells spans a wide range (5-130 mM), and is tightly regulated by intracellular chloride channels or transporters. Chloride-sensitive protein reporters have been used to study the role of these chloride regulators, but they are limited to a small range of chloride concentrations and are pH-sensitive. Here, we show that a DNA nanodevice can precisely measure the activity and location of subcellular chloride channels and transporters in living cells in a pH-independent manner. The DNA nanodevice, called Clensor, is composed of sensing, normalizing and targeting modules, and is designed to localize within organelles along the endolysosomal pathway. It allows fluorescent, ratiometric sensing of chloride ions across the entire physiological regime. We used Clensor to quantitate the resting chloride concentration in the lumen of acidic organelles in Drosophila melanogaster. We showed that lumenal lysosomal chloride, which is implicated in various lysosomal storage diseases, is regulated by the intracellular chloride transporter DmClC-b.
Collapse
Affiliation(s)
- Sonali Saha
- National Centre for Biological Sciences, TIFR, GKVK, Bellary Road, Bangalore 560065, India
| | - Ved Prakash
- Department of Chemistry, University of Chicago, 929E, 57th Street, E305A, GCIS, Chicago, Illinois 60637, USA
| | - Saheli Halder
- National Centre for Biological Sciences, TIFR, GKVK, Bellary Road, Bangalore 560065, India
| | - Kasturi Chakraborty
- Department of Chemistry, University of Chicago, 929E, 57th Street, E305A, GCIS, Chicago, Illinois 60637, USA
| | - Yamuna Krishnan
- 1] National Centre for Biological Sciences, TIFR, GKVK, Bellary Road, Bangalore 560065, India [2] Department of Chemistry, University of Chicago, 929E, 57th Street, E305A, GCIS, Chicago, Illinois 60637, USA
| |
Collapse
|
273
|
Hackett BA, Yasunaga A, Panda D, Tartell MA, Hopkins KC, Hensley SE, Cherry S. RNASEK is required for internalization of diverse acid-dependent viruses. Proc Natl Acad Sci U S A 2015; 112:7797-802. [PMID: 26056282 PMCID: PMC4485095 DOI: 10.1073/pnas.1424098112] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viruses must gain entry into cells to establish infection. In general, viruses enter either at the plasma membrane or from intracellular endosomal compartments. Viruses that use endosomal pathways are dependent on the cellular factors that control this process; however, these genes have proven to be essential for endogenous cargo uptake, and thus are of limited value for therapeutic intervention. The identification of genes that are selectively required for viral uptake would make appealing drug targets, as their inhibition would block an early step in the life cycle of diverse viruses. At this time, we lack pan-antiviral therapeutics, in part because of our lack of knowledge of such cellular factors. RNAi screening has begun to reveal previously unknown genes that play roles in viral infection. We identified dRNASEK in two genome-wide RNAi screens performed in Drosophila cells against West Nile and Rift Valley Fever viruses. Here we found that ribonuclease kappa (RNASEK) is essential for the infection of human cells by divergent and unrelated positive- and negative-strand-enveloped viruses from the Flaviviridae, Togaviridae, Bunyaviridae, and Orthomyxoviridae families that all enter cells from endosomal compartments. In contrast, RNASEK was dispensable for viruses, including parainfluenza virus 5 and Coxsackie B virus, that enter at the plasma membrane. RNASEK is dispensable for attachment but is required for uptake of these acid-dependent viruses. Furthermore, this requirement appears specific, as general endocytic uptake of transferrin is unaffected in RNASEK-depleted cells. Therefore, RNASEK is a potential host cell Achilles' heel for viral infection.
Collapse
Affiliation(s)
- Brent A Hackett
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Ari Yasunaga
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Debasis Panda
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Michael A Tartell
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Kaycie C Hopkins
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | | | - Sara Cherry
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104;
| |
Collapse
|
274
|
Kubo K, Kobayashi M, Nozaki S, Yagi C, Hatsuzawa K, Katoh Y, Shin HW, Takahashi S, Nakayama K. SNAP23/25 and VAMP2 mediate exocytic event of transferrin receptor-containing recycling vesicles. Biol Open 2015; 4:910-20. [PMID: 26092867 PMCID: PMC4571095 DOI: 10.1242/bio.012146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We recently showed that Rab11 is involved not only in formation of recycling vesicles containing the transferrin (Tfn)–transferrin receptor (TfnR) complex at perinuclear recycling endosomes but also in tethering of recycling vesicles to the plasma membrane (PM) in concert with the exocyst tethering complex. We here aimed at identifying SNARE proteins responsible for fusion of Tfn–TfnR-containing recycling vesicles with the PM, downstream of the exocyst. We showed that exocyst subunits, Sec6 and Sec8, can interact with SNAP23 and SNAP25, both of which are PM-localizing Qbc-SNAREs, and that depletion of SNAP23 and/or SNAP25 in HeLa cells suppresses fusion of Tfn–TfnR-containing vesicles with the PM, leading to accumulation of the vesicles at the cell periphery. We also found that VAMP2, an R-SNARE, is colocalized with endocytosed Tfn on punctate endosomal structures, and that its depletion in HeLa cells suppresses recycling vesicle exocytosis. These observations indicate that fusion of recycling vesicles with the PM downstream of the exocyst is mediated by SNAP23/25 and VAMP2, and provide novel insight into non-neuronal roles of VAMP2 and SNAP25.
Collapse
Affiliation(s)
- Keiji Kubo
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Minako Kobayashi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shohei Nozaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Chikako Yagi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kiyotaka Hatsuzawa
- Division of Molecular Biology, Tottori University School of Life Science, Yonago, Tottori 683-8503, Japan
| | - Yohei Katoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hye-Won Shin
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Senye Takahashi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
275
|
Batista CM, Kessler RL, Eger I, Soares MJ. Trypanosoma cruzi Intracellular Amastigotes Isolated by Nitrogen Decompression Are Capable of Endocytosis and Cargo Storage in Reservosomes. PLoS One 2015; 10:e0130165. [PMID: 26057131 PMCID: PMC4461355 DOI: 10.1371/journal.pone.0130165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/18/2015] [Indexed: 11/19/2022] Open
Abstract
Epimastigote forms of Trypanosoma cruzi (the etiologic agent of Chagas disease) internalize and store extracellular macromolecules in lysosome-related organelles (LROs) called reservosomes, which are positive for the cysteine protease cruzipain. Despite the importance of endocytosis for cell proliferation, macromolecule internalization remains poorly understood in the most clinically relevant proliferative form, the intracellular amastigotes found in mammalian hosts. The main obstacle was the lack of a simple method to isolate viable intracellular amastigotes from host cells. In this work we describe the fast and efficient isolation of viable intracellular amastigotes by nitrogen decompression (cavitation), which allowed the analysis of amastigote endocytosis, with direct visualization of internalized cargo inside the cells. The method routinely yielded 5x107 amastigotes—with typical shape and positive for the amastigote marker Ssp4—from 5x106 infected Vero cells (48h post-infection). We could visualize the endocytosis of fluorescently-labeled transferrin and albumin by isolated intracellular amastigotes using immunofluorescence microscopy; however, only transferrin endocytosis was detected by flow cytometry (and was also analyzed by western blotting), suggesting that amastigotes internalized relatively low levels of albumin. Transferrin binding to the surface of amastigotes (at 4°C) and its uptake (at 37°C) were confirmed by binding dissociation assays using acetic acid. Importantly, both transferrin and albumin co-localized with cruzipain in amastigote LROs. Our data show that isolated T. cruzi intracellular amastigotes actively ingest macromolecules from the environment and store them in cruzipain-positive LROs functionally related to epimastigote reservosomes.
Collapse
Affiliation(s)
- Cassiano Martin Batista
- Laboratório de Biologia Celular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil
- * E-mail:
| | - Rafael Luis Kessler
- Laboratório de Genômica Funcional, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil
| | - Iriane Eger
- Laboratório de Biologia Celular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Maurilio José Soares
- Laboratório de Biologia Celular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil
| |
Collapse
|
276
|
Kempf N, Didier P, Postupalenko V, Bucher B, Mély Y. Internalization mechanism of neuropeptide Y bound to its Y1receptor investigated by high resolution microscopy. Methods Appl Fluoresc 2015; 3:025004. [DOI: 10.1088/2050-6120/3/2/025004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
277
|
Pereira P, Pedrosa SS, Wymant JM, Sayers E, Correia A, Vilanova M, Jones AT, Gama FM. siRNA Inhibition of Endocytic Pathways to Characterize the Cellular Uptake Mechanisms of Folate-Functionalized Glycol Chitosan Nanogels. Mol Pharm 2015; 12:1970-9. [DOI: 10.1021/mp500785t] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Paula Pereira
- Institute
for Biotechnology and Bioengineering, Centre of Biological Engineering,
Campus de Gualtar, University of Minho, Braga 4710-05, Portugal
| | - Sílvia S. Pedrosa
- Institute
for Biotechnology and Bioengineering, Centre of Biological Engineering,
Campus de Gualtar, University of Minho, Braga 4710-05, Portugal
| | - Jennifer M. Wymant
- Cardiff
School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, Cardiff CF10 3NB, Wales
| | - Edward Sayers
- Cardiff
School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, Cardiff CF10 3NB, Wales
| | - Alexandra Correia
- Institute of Molecular
and Cell Biology, Rua Campo Alegre, Porto 4099-003, Portugal
| | - Manuel Vilanova
- Institute of Molecular
and Cell Biology, Rua Campo Alegre, Porto 4099-003, Portugal
- Abel
Salazar Biomedical Sciences Institute, University of Porto, Rua de Jorge
Viterbo Ferreira No. 228, Porto 4050-313, Portugal
| | - Arwyn T. Jones
- Cardiff
School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, Cardiff CF10 3NB, Wales
| | - Francisco M. Gama
- Institute
for Biotechnology and Bioengineering, Centre of Biological Engineering,
Campus de Gualtar, University of Minho, Braga 4710-05, Portugal
| |
Collapse
|
278
|
Bauereiss A, Welzel O, Jung J, Grosse-Holz S, Lelental N, Lewczuk P, Wenzel EM, Kornhuber J, Groemer TW. Surface Trafficking of APP and BACE in Live Cells. Traffic 2015; 16:655-75. [PMID: 25712587 PMCID: PMC6680167 DOI: 10.1111/tra.12270] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 02/06/2015] [Accepted: 02/09/2015] [Indexed: 12/22/2022]
Abstract
Amyloid‐β (Aβ)‐peptide, the major constituent of the plaques that develop during Alzheimer's disease, is generated via the cleavage of Aβ precursor protein (APP) by β‐site APP‐cleaving enzyme (BACE). Using live‐cell imaging of APP and BACE labeled with pH‐sensitive proteins, we could detect the release events of APP and BACE and their distinct kinetics. We provide kinetic evidence for the cleavage of APP by α‐secretase on the cellular surface after exocytosis. Furthermore, simultaneous dual‐color evanescent field illumination revealed that the two proteins are trafficked to the surface in separate compartments. Perturbing the membrane lipid composition resulted in a reduced frequency of exocytosis and affected BACE more strongly than APP. We propose that surface fusion frequency is a key factor regulating the aggregation of APP and BACE in the same membrane compartment and that this process can be modulated via pharmacological intervention.
Collapse
Affiliation(s)
- Anna Bauereiss
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Oliver Welzel
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Jasmin Jung
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Simon Grosse-Holz
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Natalia Lelental
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Eva M Wenzel
- Institute for Cancer Research, Department of Biochemistry, The Norwegian Radium Hospital, Montebello, N-0310, Oslo, Norway
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Teja W Groemer
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| |
Collapse
|
279
|
Chellan P, Sadler PJ. The elements of life and medicines. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:20140182. [PMID: 25666066 PMCID: PMC4342972 DOI: 10.1098/rsta.2014.0182] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Which elements are essential for human life? Here we make an element-by-element journey through the periodic table and attempt to assess whether elements are essential or not, and if they are, whether there is a relevant code for them in the human genome. There are many difficulties such as the human biochemistry of several so-called essential elements is not well understood, and it is not clear how we should classify elements that are involved in the destruction of invading microorganisms, or elements which are essential for microorganisms with which we live in symbiosis. In general, genes do not code for the elements themselves, but for specific chemical species, i.e. for the element, its oxidation state, type and number of coordinated ligands, and the coordination geometry. Today, the biological periodic table is in a position somewhat similar to Mendeleev's chemical periodic table of 1869: there are gaps and we need to do more research to fill them. The periodic table also offers potential for novel therapeutic and diagnostic agents, based on not only essential elements, but also non-essential elements, and on radionuclides. Although the potential for inorganic chemistry in medicine was realized more than 2000 years ago, this area of research is still in its infancy. Future advances in the design of inorganic drugs require more knowledge of their mechanism of action, including target sites and metabolism. Temporal speciation of elements in their biological environments at the atomic level is a major challenge, for which new methods are urgently needed.
Collapse
Affiliation(s)
- Prinessa Chellan
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
280
|
Konzen K, Brey R, Guilmette R. Early blood plutonium retention in nonhuman primates compared to the NCRP 156 wound biokinetic model. HEALTH PHYSICS 2015; 108:383-387. [PMID: 25627953 DOI: 10.1097/hp.0000000000000209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Data from animal experiments are relied upon for understanding the biokinetics of contaminant retention and excretion where insufficient human data exist. Records involving nonhuman primate experiments performed from 1973 to 1987 were collected and compiled by researchers at the Lawrence Berkeley Laboratory. These records included early blood samples that were taken after soluble plutonium was administered via intramuscular, subcutaneous, or intravenous injection. Samples were collected as early as 5 min post injection with several samples collected during the first few weeks. The NCRP 156 biokinetic model was developed primarily from animal experiments due to insufficient human data not influenced by chelation therapy. This work compared the NCRP 156 biokinetic model default transfer rate constants to the early blood excretion data from nonhuman primate experiments for 238Pu. These results indicated that the blood content of nonhuman primates exhibited "moderate" retention properties for simulated wound conditions. Additionally, there was no evidence of long-term retention of plutonium in the whole blood samples, confirming that plutonium was not incorporated within blood cells. Particle solubility characteristics should be considered for wounds when using the NCRP 156 wound biokinetic model.
Collapse
Affiliation(s)
- Kevin Konzen
- *Department of Nuclear Engineering and Health Physics, Idaho State University, 921 South 8th Avenue, Stop 8060, Pocatello, ID 83209-8060; †Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive, Albuquerque, NM 87108
| | | | | |
Collapse
|
281
|
Tillotson BJ, Lajoie JM, Shusta EV. Yeast Display-Based Antibody Affinity Maturation Using Detergent-Solubilized Cell Lysates. Methods Mol Biol 2015; 1319:65-78. [PMID: 26060070 PMCID: PMC5076467 DOI: 10.1007/978-1-4939-2748-7_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
It is often desired to identify or engineer antibodies that target membrane proteins (MPs). However, due to their inherent insolubility in aqueous solutions, MPs are often incompatible with in vitro antibody discovery and optimization platforms. Recently, we adapted yeast display technology to accommodate detergent-solubilized cell lysates as sources of MP antigens. The following protocol details the incorporation of cell lysates into a kinetic screen designed to obtain antibodies with improved affinity via slowed dissociation from an MP antigen.
Collapse
Affiliation(s)
| | | | - Eric V. Shusta
- To whom correspondence should be addressed: Eric V. Shusta, Department of Chemical and Biological Engineering, University of Wisconsin – Madison, 3631 Engineering Hall, 1415 Engineering Dr., Madison, WI 53706, , Ph: (608) 265-5103, Fax: (608) 262-5434
| |
Collapse
|
282
|
Akamatsu R, Ishida-Kitagawa N, Aoyama T, Oka C, Kawaichi M. BNIP-2 binds phosphatidylserine, localizes to vesicles, and is transported by kinesin-1. Genes Cells 2014; 20:135-52. [PMID: 25472445 DOI: 10.1111/gtc.12209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 10/19/2014] [Indexed: 11/30/2022]
Abstract
BNIP-2 shows high homology with the Cayman ataxia protein, caytaxin, which functions as a kinesin-1 adapter bridging cargos and kinesin light chains (KLCs). BNIP-2 is known to induce cell shape changes when over-expressed in culture cells, but its physiological functions are mostly unknown. BNIP-2 interacts with KLC through the conserved WED motif in the N-terminal region of BNIP-2. Interaction with KLC and transportation by kinesin-1 are essential for over-expressed BNIP-2 to elongate cells and induce cellular processes. Endogenous BNIP-2 localizes to the Golgi apparatus, early and recycling endosomes and mitochondria, aligned with microtubules, and moves at a speed compatible with kinesin-1 transportation. The CRAL-TRIO domain of BNIP-2 specifically interacts with phosphatidylserine, and the vesicular localization of BNIP-2 requires interaction with this phospholipid. BNIP-2 mutants which do not bind phosphatidylserine do not induce morphological changes in cells. These data show that similar to caytaxin, BNIP-2 is a kinesin-1 adapter involved in vesicular transportation in the cytoplasm and that association with cargos depends on interaction of the CRAL-TRIO domain with membrane phosphatidylserine.
Collapse
Affiliation(s)
- Rie Akamatsu
- Laboratory of Gene Function in Animals, Nara Institute of Science and Technology, 9816-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | | | | | | | | |
Collapse
|
283
|
Szwed M, Kania KD, Jozwiak Z. Changes in the activity of antioxidant barrier after treatment of K562 and CCRF-CEM cell lines with doxorubicin-transferrin conjugate. Biochimie 2014; 107 Pt B:358-66. [PMID: 25312849 DOI: 10.1016/j.biochi.2014.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 10/03/2014] [Indexed: 01/03/2023]
Abstract
Doxorubicin (DOX), one of the oldest member of the anthracycline antibiotics, has been administered for over 50 years to patients with leukemias and solid tumors. However, the high unspecified DOX toxicity, related to reactive oxygen species (ROS), affects its limitation in clinical application. Therefore we proposed the usage of human transferrin as a doxorubicin carrier in order to improve the quality of doxorubicin application in conventional chemotherapy. In this study we continue our investigations related to the mechanism of the toxicity of doxorubicin-transferrin (DOX-TRF) conjugate in human leukemia cells. Consequently, we are now concentrating on the influence of this compound on the antioxidative system in K562 and CCRF-CEM cell lines (chronic erythromyeloblastoid leukemia and acute lymphoblastic leukemia cells, respectively). We carried out a neutral red cytotoxicity assay, reduced (GSH) and total (GSH + GSSG) glutathione content, alterations in the activity of catalase and enzymes responsible for maintaining glutathione in reduced form. Exposure of leukemia cells to the investigated anticancer agents caused a time-dependent depletion of intracellular GSH, accompanied by an increase of catalase activity. Moreover, analysis of GSH-related enzymes showed a significant increase in the activities of thioredoxin reductase and glutathione peroxidase after DOX-TRF application. In contrast, glutathione reductase activity was reduced by conjugate treatment to 50%. Significant differences between the pro-oxidative actions of the investigated anticancer compounds were observed in RT-PCR experiments, which confirmed that changes in the activity of catalase and GSH-related enzymes are strictly correlated with their gene transcription changes.
Collapse
Affiliation(s)
- Marzena Szwed
- Department of Thermobiology, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Street, 90-236 Lodz, Poland.
| | - Katarzyna D Kania
- Laboratory of Transcriptional Regulation, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Łódź, Poland
| | - Zofia Jozwiak
- Department of Thermobiology, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Street, 90-236 Lodz, Poland
| |
Collapse
|
284
|
Lajoie JM, Shusta EV. Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier. Annu Rev Pharmacol Toxicol 2014; 55:613-31. [PMID: 25340933 DOI: 10.1146/annurev-pharmtox-010814-124852] [Citation(s) in RCA: 273] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Biologics are an emerging class of medicines with substantial promise to treat neurological disorders such as Alzheimer's disease, stroke, and multiple sclerosis. However, the blood-brain barrier (BBB) presents a formidable obstacle that appreciably limits brain uptake and hence the therapeutic potential of biologics following intravenous administration. One promising strategy for overcoming the BBB to deliver biologics is the targeting of endogenous receptor-mediated transport (RMT) systems that employ vesicular trafficking to transport ligands across the BBB endothelium. If a biologic is modified with an appropriate targeting ligand, it can gain improved access to the brain via RMT. Various RMT-targeting strategies have been developed over the past 20 years, and this review explores exciting recent advances, emphasizing studies that show brain targeting in vivo.
Collapse
Affiliation(s)
- Jason M Lajoie
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706;
| | | |
Collapse
|
285
|
Lane DJR, Richardson DR. The active role of vitamin C in mammalian iron metabolism: much more than just enhanced iron absorption! Free Radic Biol Med 2014; 75:69-83. [PMID: 25048971 DOI: 10.1016/j.freeradbiomed.2014.07.007] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/04/2014] [Accepted: 07/08/2014] [Indexed: 01/18/2023]
Abstract
Ascorbate is a cofactor in numerous metabolic reactions. Humans cannot synthesize ascorbate owing to inactivation of the gene encoding the enzyme l-gulono-γ-lactone oxidase, which is essential for ascorbate synthesis. Accumulating evidence strongly suggests that in addition to the known ability of dietary ascorbate to enhance nonheme iron absorption in the gut, ascorbate within mammalian systems can regulate cellular iron uptake and metabolism. Ascorbate modulates iron metabolism by stimulating ferritin synthesis, inhibiting lysosomal ferritin degradation, and decreasing cellular iron efflux. Furthermore, ascorbate cycling across the plasma membrane is responsible for ascorbate-stimulated iron uptake from low-molecular-weight iron-citrate complexes, which are prominent in the plasma of individuals with iron-overload disorders. Importantly, this iron-uptake pathway is of particular relevance to astrocyte brain iron metabolism and tissue iron loading in disorders such as hereditary hemochromatosis and β-thalassemia. Recent evidence also indicates that ascorbate is a novel modulator of the classical transferrin-iron uptake pathway, which provides almost all iron for cellular demands and erythropoiesis under physiological conditions. Ascorbate acts to stimulate transferrin-dependent iron uptake by an intracellular reductive mechanism, strongly suggesting that it may act to stimulate iron mobilization from the endosome. The ability of ascorbate to regulate transferrin iron uptake could help explain the metabolic defect that contributes to ascorbate-deficiency-induced anemia.
Collapse
Affiliation(s)
- Darius J R Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia.
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
286
|
Márquez MG, Brandán YR, Guaytima EDV, Paván CH, Favale NO, Sterin-Speziale NB. Physiologically induced restructuring of focal adhesions causes mobilization of vinculin by a vesicular endocytic recycling pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2991-3003. [PMID: 25241342 DOI: 10.1016/j.bbamcr.2014.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 09/11/2014] [Accepted: 09/13/2014] [Indexed: 11/19/2022]
Abstract
In epithelial cells, vinculin is enriched in cell adhesion structures but is in equilibrium with a large cytosolic pool. It is accepted that when cells adhere to the extracellular matrix, a part of the soluble cytosolic pool of vinculin is recruited to specialized sites on the plasma membrane called focal adhesions (FAs) by binding to plasma membrane phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2). We have previously shown that bradykinin (BK) induces both a reversible dissipation of vinculin from FAs, by the phospholipase C (PLC)-mediated hydrolysis of PtdIns(4,5)P2, and the concomitant internalization of vinculin. Here, by using an immunomagnetic method, we isolated vinculin-containing vesicles induced by BK stimulation. By analyzing the presence of proteins involved in vesicle traffic, we suggest that vinculin can be delivered in the site of FA reassembly by a vesicular endocytic recycling pathway. We also observed the formation of vesicle-like structures containing vinculin in the cytosol of cells treated with lipid membrane-affecting agents, which caused dissipation of FAs due to their deleterious effect on membrane microdomains where FAs are inserted. However, these vesicles did not contain markers of the recycling endosomal compartment. Vinculin localization in vesicles has not been reported before, and this finding challenges the prevailing model of vinculin distribution in the cytosol. We conclude that the endocytic recycling pathway of vinculin could represent a physiological mechanism to reuse the internalized vinculin to reassembly new FAs, which occurs after long time of BK stimulation, but not after treatment with membrane-affecting agents.
Collapse
Affiliation(s)
- María Gabriela Márquez
- Instituto de Investigaciones en Ciencias de la Salud Humana (IICSHUM), Universidad Nacional de La Rioja, Av. Luis Vernet 1000, 5300 La Rioja, Argentina; Instituto de Química y Físico-Química Biológica (IQUIFIB)-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Yamila Romina Brandán
- Instituto de Investigaciones en Ciencias de la Salud Humana (IICSHUM), Universidad Nacional de La Rioja, Av. Luis Vernet 1000, 5300 La Rioja, Argentina; Instituto de Química y Físico-Química Biológica (IQUIFIB)-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Edith Del Valle Guaytima
- Instituto de Investigaciones en Ciencias de la Salud Humana (IICSHUM), Universidad Nacional de La Rioja, Av. Luis Vernet 1000, 5300 La Rioja, Argentina; Instituto de Química y Físico-Química Biológica (IQUIFIB)-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Carlos Humberto Paván
- Instituto de Química y Físico-Química Biológica (IQUIFIB)-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Nicolás Octavio Favale
- Instituto de Química y Físico-Química Biológica (IQUIFIB)-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina; Cátedra de Biología Celular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Norma B Sterin-Speziale
- Instituto de Química y Físico-Química Biológica (IQUIFIB)-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina.
| |
Collapse
|
287
|
Nath S, Munsie LN, Truant R. A huntingtin-mediated fast stress response halting endosomal trafficking is defective in Huntington's disease. Hum Mol Genet 2014; 24:450-62. [PMID: 25205111 DOI: 10.1093/hmg/ddu460] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cellular stress is a normal part of the aging process and is especially relevant in neurodegenerative disease. Canonical stress responses, such as the heat shock response, activate following exposure to stress and restore proteostasis through the action of isomerases and chaperones within the cytosol. Through live-cell imaging, we demonstrate involvement of the Huntington's disease (HD) protein, huntingtin, in a rapid cell stress response that lies temporally upstream of canonical stress responses. This response is characterized by the formation of distinct cytosolic puncta and reversible localization of huntingtin to early endosomes. The formation of these puncta, which we have termed huntingtin stress bodies (HSBs), is associated with arrest of early-to-recycling and early-to-late endosomal trafficking. The critical domains for this response have been mapped to two regions of huntingtin flanking the polyglutamine tract, and we observe polyglutamine-expanded huntingtin-expressing cells to be defective in their ability to recover from this stress response. We propose that HSB formation rapidly diverts high ATP use from vesicular trafficking during stress, thus mobilizing canonical stress responses without relying on increased energy metabolism, and that restoration from this response is defective in HD.
Collapse
Affiliation(s)
- Siddharth Nath
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote School of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada L8N 3Z5 and
| | - Lise N Munsie
- Centre for Applied Neurogenetics, University of British Columbia, Vancouver, BC, Canada V6T 2B5
| | - Ray Truant
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote School of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada L8N 3Z5 and
| |
Collapse
|
288
|
Hughes AL, Friedman R. Evolutionary diversification of the vertebrate transferrin multi-gene family. Immunogenetics 2014; 66:651-61. [PMID: 25142446 DOI: 10.1007/s00251-014-0798-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/13/2014] [Indexed: 01/07/2023]
Abstract
In a phylogenetic analysis of vertebrate transferrins (TFs), six major clades (subfamilies) were identified: (a) S, the mammalian serotransferrins; (b) ICA, the mammalian inhibitor of carbonic anhydrase (ICA) homologs; (c) L, the mammalian lactoferrins; (d) O, the ovotransferrins of birds and reptiles; (e) M, the melanotransferrins of bony fishes, amphibians, reptiles, birds, and mammals; and (f) M-like, a newly identified TF subfamily found in bony fishes, amphibians, reptiles, and birds. A phylogenetic tree based on the joint alignment of N-lobes and C-lobes supported the hypothesis that three separate events of internal duplication occurred in vertebrate TFs: (a) in the common ancestor of the M subfamily, (b) in the common ancestor of the M-like subfamily, and (c) in the common ancestor of other vertebrate TFs. The S, ICA, and L subfamilies were found only in placental mammals, and the phylogenetic analysis supported the hypothesis that these three subfamilies arose by gene duplication after the divergence of placental mammals from marsupials. The M-like subfamily was unusual in several respects, including the presence of a uniquely high proportion of clade-specific conserved residues, including distinctive but conserved residues in the sites homologous to those functioning in carbonate binding of human serotransferrin. The M-like family also showed an unusually high proportion of cationic residues in the positively charged region corresponding to human lactoferrampin, suggesting a distinctive role of this region in the M-like subfamily, perhaps in antimicrobial defense.
Collapse
Affiliation(s)
- Austin L Hughes
- Department of Biological Sciences, Coker Life Sciences Building, University of South Carolina, 715 Sumter St. Columbia, Columbia, SC, 29208, USA,
| | | |
Collapse
|
289
|
Spillmann CM, Naciri J, Algar WR, Medintz IL, Delehanty JB. Multifunctional liquid crystal nanoparticles for intracellular fluorescent imaging and drug delivery. ACS NANO 2014; 8:6986-6997. [PMID: 24979226 DOI: 10.1021/nn501816z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A continuing goal of nanoparticle (NP)-mediated drug delivery (NMDD) is the simultaneous improvement of drug efficacy coupled with tracking of the intracellular fate of the nanoparticle delivery vehicle and its drug cargo. Here, we present a robust multifunctional liquid crystal NP (LCNP)-based delivery system that affords facile intracellular fate tracking coupled with the efficient delivery and modulation of the anticancer therapeutic doxorubicin (Dox), employed here as a model drug cargo. The LCNPs consist of (1) a liquid crystal cross-linking agent, (2) a homologue of the organic chromophore perylene, and (3) a polymerizable surfactant containing a carboxylate headgroup. The NP core provides an environment to both incorporate fluorescent dye for spectrally tuned particle tracking and encapsulation of amphiphilic and/or hydrophobic agents for intracellular delivery. The carboxylate head groups enable conjugation to biologicals to facilitate the cellular uptake of the particles. Upon functionalization of the NPs with transferrin, we show the ability to differentially label the recycling endocytic pathway in HEK 293T/17 cells in a time-resolved manner with minimal cytotoxicity and with superior dye photostability compared to traditional organic fluorophores. Further, when passively loaded with Dox, the NPs mediate the rapid uptake and subsequent sustained release of Dox from within endocytic vesicles. We demonstrate the ability of the LCNPs to simultaneously serve as both an efficient delivery vehicle for Dox as well as a modulator of the drug's cytotoxicity. Specifically, the delivery of Dox as a LCNP conjugate results in a ∼40-fold improvement in its IC50 compared to free Dox in solution. Cumulatively, our results demonstrate the utility of the LCNPs as an effective nanomaterial for simultaneous cellular imaging, tracking, and delivery of drug cargos.
Collapse
Affiliation(s)
- Christopher M Spillmann
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory , 4555 Overlook Avenue Southwest, Washington, D.C., 20375, United States
| | | | | | | | | |
Collapse
|
290
|
Uptake of Helicobacter pylori vesicles is facilitated by clathrin-dependent and clathrin-independent endocytic pathways. mBio 2014; 5:e00979-14. [PMID: 24846379 PMCID: PMC4030451 DOI: 10.1128/mbio.00979-14] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacteria shed a diverse set of outer membrane vesicles that function as transport vehicles to deliver effector molecules and virulence factors to host cells. Helicobacter pylori is a gastric pathogen that infects half of the world’s population, and in some individuals the infection progresses into peptic ulcer disease or gastric cancer. Here we report that intact vesicles from H. pylori are internalized by clathrin-dependent endocytosis and further dynamin-dependent processes, as well as in a cholesterol-sensitive manner. We analyzed the uptake of H. pylori vesicles by gastric epithelial cells using a method that we refer to as quantification of internalized substances (qIS). The qIS assay is based on a near-infrared dye with a cleavable linker that enables the specific quantification of internalized substances after exposure to reducing conditions. Both chemical inhibition and RNA interference in combination with the qIS assay showed that H. pylori vesicles enter gastric epithelial cells via both clathrin-mediated endocytosis and additional endocytic processes that are dependent on dynamin. Confocal microscopy revealed that H. pylori vesicles colocalized with clathrin and dynamin II and with markers of subsequent endosomal and lysosomal trafficking. Interestingly, however, knockdown of components required for caveolae had no significant effect on internalization and knockdown of components required for clathrin-independent carrier (CLIC) endocytosis increased internalization of H. pylori vesicles. Furthermore, uptake of vesicles by both clathrin-dependent and -independent pathways was sensitive to depletion, but not sequestering, of cholesterol in the host cell membrane suggesting that membrane fluidity influences the efficiency of H. pylori vesicle uptake. Bacterial vesicles act as long-distance tools to deliver toxins and effector molecules to host cells. Vesicles can cause a variety of host cell responses via cell surface-induced cell signaling or internalization. Vesicles of diverse bacterial species enter host cells via different endocytic pathways or via membrane fusion. With the combination of a fluorescence-based quantification assay that quantifies internalized vesicles in a large number of cells and either chemical inhibition or RNA interference, we show that clathrin-mediated endocytosis is the major pathway for uptake of Helicobacter pylori vesicles and that lipid microdomains of the host cell membrane affect uptake of vesicles via clathrin-independent pathways. Our results provide important insights about membrane fluidity and its important role in the complex process that directs the H. pylori vesicle to a specific endocytic pathway. Understanding the mechanisms that operate in vesicle-host interactions is important to fully recognize the impact of vesicles in pathogenesis.
Collapse
|
291
|
Mukhopadhyay A, Quiroz JA, Wolkoff AW. Rab1a regulates sorting of early endocytic vesicles. Am J Physiol Gastrointest Liver Physiol 2014; 306:G412-24. [PMID: 24407591 PMCID: PMC3949023 DOI: 10.1152/ajpgi.00118.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We previously reported that Rab1a is associated with asialoorosomucoid (ASOR)-containing early endocytic vesicles, where it is required for their microtubule-based motility. In Rab1a knockdown (KD) cell lines, ASOR failed to segregate from its receptor and, consequently, did not reach lysosomes for degradation, indicating a defect in early endosome sorting. Although Rab1 is required for Golgi/endoplasmic reticulum trafficking, this process was unaffected, likely due to retained expression of Rab1b in these cells. The present study shows that Rab1a has a more general role in endocytic vesicle processing that extends to EGF and transferrin (Tfn) trafficking. Compared with results in control Huh7 cells, EGF accumulated in aggregates within Rab1a KD cells, failing to reach lysosomal compartments. Tfn, a prototypical example of recycling cargo, accumulated in a Rab11-mediated slow-recycling compartment in Rab1a KD cells, in contrast to control cells, which sort Tfn into a fast-recycling Rab4 compartment. These data indicate that Rab1a is an important regulator of early endosome sorting for multiple cargo species. The effectors and accessory proteins recruited by Rab1a to early endocytic vesicles include the minus-end-directed kinesin motor KifC1, while others remain to be discovered.
Collapse
Affiliation(s)
- Aparna Mukhopadhyay
- 1Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York; ,2Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York;
| | - Jose A. Quiroz
- 4Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Allan W. Wolkoff
- 1Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York; ,2Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York; ,3Division of Gastroenterology and Liver Diseases, Albert Einstein College of Medicine, Bronx, New York; and
| |
Collapse
|
292
|
Tortorella S, Karagiannis TC. Transferrin Receptor-Mediated Endocytosis: A Useful Target for Cancer Therapy. J Membr Biol 2014; 247:291-307. [DOI: 10.1007/s00232-014-9637-0] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/11/2014] [Indexed: 12/19/2022]
|
293
|
Bomberger JM, Coutermarsh BA, Barnaby RL, Sato JD, Chapline MC, Stanton BA. Serum and glucocorticoid-inducible kinase1 increases plasma membrane wt-CFTR in human airway epithelial cells by inhibiting its endocytic retrieval. PLoS One 2014; 9:e89599. [PMID: 24586903 PMCID: PMC3931797 DOI: 10.1371/journal.pone.0089599] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 01/23/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chloride (Cl) secretion by the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) located in the apical membrane of respiratory epithelial cells plays a critical role in maintenance of the airway surface liquid and mucociliary clearance of pathogens. Previously, we and others have shown that the serum and glucocorticoid-inducible kinase-1 (SGK1) increases wild type CFTR (wt-CFTR) mediated Cl transport in Xenopus oocytes by increasing the amount of wt-CFTR protein in the plasma membrane. However, the effect of SGK1 on the membrane abundance of wt-CFTR in airway epithelial cells has not been examined, and the mechanism whereby SGK1 increases membrane wt-CFTR has also not been examined. Thus, the goal of this study was to elucidate the mechanism whereby SGK1 regulates the membrane abundance of wt-CFTR in human airway epithelial cells. METHODS AND RESULTS We report that elevated levels of SGK1, induced by dexamethasone, increase plasma membrane abundance of wt-CFTR. Reduction of SGK1 expression by siRNA (siSGK1) and inhibition of SGK1 activity by the SGK inhibitor GSK 650394 abrogated the ability of dexamethasone to increase plasma membrane wt-CFTR. Overexpression of a constitutively active SGK1 (SGK1-S422D) increased plasma membrane abundance of wt-CFTR. To understand the mechanism whereby SGK1 increased plasma membrane wt-CFTR, we examined the effects of siSGK1 and SGK1-S442D on the endocytic retrieval of wt-CFTR. While siSGK1 increased wt-CFTR endocytosis, SGK1-S442D inhibited CFTR endocytosis. Neither siSGK1 nor SGK1-S442D altered the recycling of endocytosed wt-CFTR back to the plasma membrane. By contrast, SGK1 increased the endocytosis of the epidermal growth factor receptor (EGFR). CONCLUSION This study demonstrates for the first time that SGK1 selectively increases wt-CFTR in the plasma membrane of human airway epithelia cells by inhibiting its endocytic retrieval from the membrane.
Collapse
Affiliation(s)
- Jennifer M. Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Bonita A. Coutermarsh
- Department of Microbiology and Immunology and of Physiology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Roxanna L. Barnaby
- Department of Microbiology and Immunology and of Physiology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - J. Denry Sato
- Mt. Desert Island Biological Laboratory, Salisbury Cove, Maine, United States of America
| | - M. Christine Chapline
- Mt. Desert Island Biological Laboratory, Salisbury Cove, Maine, United States of America
| | - Bruce A. Stanton
- Department of Microbiology and Immunology and of Physiology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Mt. Desert Island Biological Laboratory, Salisbury Cove, Maine, United States of America
- * E-mail:
| |
Collapse
|
294
|
Finetti F, Patrussi L, Masi G, Onnis A, Galgano D, Lucherini OM, Pazour GJ, Baldari CT. Specific recycling receptors are targeted to the immune synapse by the intraflagellar transport system. J Cell Sci 2014; 127:1924-37. [PMID: 24554435 DOI: 10.1242/jcs.139337] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
T cell activation requires sustained signaling at the immune synapse, a specialized interface with the antigen-presenting cell (APC) that assembles following T cell antigen receptor (TCR) engagement by major histocompatibility complex (MHC)-bound peptide. Central to sustained signaling is the continuous recruitment of TCRs to the immune synapse. These TCRs are partly mobilized from an endosomal pool by polarized recycling. We have identified IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, as a central regulator of TCR recycling to the immune synapse. Here, we have investigated the interplay of IFT20 with the Rab GTPase network that controls recycling. We found that IFT20 forms a complex with Rab5 and the TCR on early endosomes. IFT20 knockdown (IFT20KD) resulted in a block in the recycling pathway, leading to a build-up of recycling TCRs in Rab5(+) endosomes. Recycling of the transferrin receptor (TfR), but not of CXCR4, was disrupted by IFT20 deficiency. The IFT components IFT52 and IFT57 were found to act together with IFT20 to regulate TCR and TfR recycling. The results provide novel insights into the mechanisms that control TCR recycling and immune synapse assembly, and underscore the trafficking-related function of the IFT system beyond ciliogenesis.
Collapse
Affiliation(s)
- Francesca Finetti
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
295
|
Reversible and efficient activation of HIV-1 cell entry by a tyrosine-sulfated peptide dissects endocytic entry and inhibitor mechanisms. J Virol 2014; 88:4304-18. [PMID: 24478426 DOI: 10.1128/jvi.03447-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED HIV-1 membranes contain gp120-gp41 trimers. Binding of gp120 to CD4 and a coreceptor (CCR5 or CXCR4) reduces the constraint on metastable gp41, enabling a series of conformational changes that cause membrane fusion. An analytic difficulty occurs because these steps occur slowly and asynchronously within cohorts of adsorbed virions. We previously isolated HIV-1JRCSF variants that efficiently use CCR5 mutants severely damaged in the tyrosine-sulfated amino terminus or extracellular loop 2. Surprisingly, both independent adaptations included gp120 mutations S298N, F313L, and N403S, supporting other evidence that they function by weakening gp120's grip on gp41 rather than by altering gp120 binding to specific CCR5 sites. Although several natural HIV-1 isolates reportedly use CCR5(Δ18) (CCR5 with a deletion of 18 N-terminal amino acids, including the tyrosine-sulfated region) when the soluble tyrosine-sulfated peptide is present, we show that HIV-1JRCSF with the adaptive mutations [HIV-1JRCSF(Ad)] functions approximately 100 times more efficiently and that coreceptor activation is reversible, enabling synchronous efficient entry control under physiological conditions. This system revealed that three-stranded gp41 folding intermediates susceptible to the inhibitor enfuvirtide form slowly and asynchronously on cell surface virions but resolve rapidly, with virions generally forming only one target. Adsorbed virions asynchronously and transiently become competent for entry at 37°C but are inactivated if the CCR5 peptide is absent during their window of opportunity. This competency is conferred by endocytosis, which results in inactivation if the peptide is absent. For both wild-type and adapted HIV-1 isolates, early gp41 refolding steps obligatorily occur on cell surfaces, whereas the final step(s) is endosomal. This system powerfully dissects HIV-1 entry and inhibitor mechanisms. IMPORTANCE We present a powerful means to reversibly and efficiently activate or terminate HIV-1 entry by adding or removing a tyrosine-sulfated CCR5 peptide from the culture medium. This system uses stable cell clones and a variant of HIV-1JRCSF with three adaptive mutations. It enabled us to show that CCR5 coreceptor activation is rapidly reversible and to dissect aspects of entry that had previously been relatively intractable. Our analyses elucidate enfuvirtide (T-20) function and suggest that HIV-1 virions form only one nonredundant membrane fusion complex on cell surfaces. Additionally, we obtained novel and conclusive evidence that HIV-1 entry occurs in an assembly line manner, with some steps obligatorily occurring on cell surfaces and with final membrane fusion occurring in endosomes. Our results were confirmed for wild-type HIV-1. Thus, our paper provides major methodological and mechanistic insights about HIV-1 infection.
Collapse
|
296
|
Darwich Z, Klymchenko AS, Dujardin D, Mély Y. Imaging lipid order changes in endosome membranes of live cells by using a Nile Red-based membrane probe. RSC Adv 2014. [DOI: 10.1039/c3ra47181k] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Changes in the composition of endosome membranes during endocytosis can be imaged in live cells with the NR12S membrane probe.
Collapse
Affiliation(s)
- Zeinab Darwich
- Laboratoire de Biophotonique et Pharmacologie
- UMR 7213 CNRS
- Université de Strasbourg
- Faculté de Pharmacie
- 67401 ILLKIRCH Cedex, France
| | - Andrey S. Klymchenko
- Laboratoire de Biophotonique et Pharmacologie
- UMR 7213 CNRS
- Université de Strasbourg
- Faculté de Pharmacie
- 67401 ILLKIRCH Cedex, France
| | - Denis Dujardin
- Laboratoire de Biophotonique et Pharmacologie
- UMR 7213 CNRS
- Université de Strasbourg
- Faculté de Pharmacie
- 67401 ILLKIRCH Cedex, France
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie
- UMR 7213 CNRS
- Université de Strasbourg
- Faculté de Pharmacie
- 67401 ILLKIRCH Cedex, France
| |
Collapse
|
297
|
Levina A, Lay PA. Influence of an anti-metastatic ruthenium(iii) prodrug on extracellular protein–protein interactions: studies by bio-layer interferometry. Inorg Chem Front 2014. [DOI: 10.1039/c3qi00054k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
298
|
Entry of a recombinant, full-length, atoxic tetanus neurotoxin into Neuro-2a cells. Infect Immun 2013; 82:873-81. [PMID: 24478100 DOI: 10.1128/iai.01539-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Tetanus neurotoxin (TeNT) and botulinum neurotoxin (BoNT) are clostridial neurotoxins (CNTs) responsible for the paralytic diseases tetanus and botulism, respectively. CNTs are AB toxins with an N-terminal zinc-metalloprotease light chain that is linked by a disulfide bond to a C-terminal heavy chain that includes a translocation domain and a receptor-binding domain (HCR). Current models predict that the HCR defines how CNTs enter and traffic in neurons. Recent studies implicate that domains outside the HCR contribute to CNT trafficking in neurons. In the current study, a recombinant, full-length TeNT derivative, TeNT(RY), was engineered to analyze TeNT cell entry. TeNT(RY) was atoxic in a mouse challenge model. Using Neuro-2a cells, a mouse neuroblastoma cell line, TeNT HCR (HCR/T) and TeNT(RY) were found to bind gangliosides with similar affinities and specificities, consistent with the HCR domain containing receptor binding function. Temporal studies showed that HCR/T and TeNT(RY) entered Neuro-2a cells slower than the HCR of BoNT/A (HCR/A), transferrin, and cholera toxin B. Intracellular localization showed that neither HCR/T nor TeNT(RY) localized with HCR/A or synaptic vesicle protein 2, the protein receptor for HCR/A. HCR/T and TeNT(RY) exhibited only partial intracellular colocalization, indicating that regions outside the HCR contribute to the intracellular TeNT trafficking. TeNT may require this complex functional entry organization to target neurons in the central nervous system.
Collapse
|
299
|
Lu Y, Zhang Z, Sun D, Sweeney ST, Gao FB. Syntaxin 13, a genetic modifier of mutant CHMP2B in frontotemporal dementia, is required for autophagosome maturation. Mol Cell 2013; 52:264-71. [PMID: 24095276 DOI: 10.1016/j.molcel.2013.08.041] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/08/2013] [Accepted: 08/06/2013] [Indexed: 10/26/2022]
Abstract
Phagophore maturation is a key step in the macroautophagy pathway, which is critical in many important physiological and pathological processes. Here we identified Drosophila N-ethylmaleimide-sensitive fusion protein 2 (dNSF2) and soluble NSF attachment protein (Snap) as strong genetic modifiers of mutant CHMP2B, an ESCRT-III component that causes frontotemporal dementia and autophagosome accumulation. Among several SNAP receptor (SNARE) genes, Drosophila syntaxin 13 (syx13) exhibited a strong genetic interaction with mutant CHMP2B. Knockdown of syntaxin 13 (STX13) or its binding partner Vti1a in mammalian cells caused LC3-positive puncta to accumulate and blocks autophagic flux. STX13 was present on LC3-positive phagophores induced by rapamycin and was highly enriched on multilamellar structures induced by dysfunctional ESCRT-III. Loss of STX13 also caused the accumulation of Atg5-positive puncta and the formation of multilamellar structures. These results suggest that STX13 is a genetic modifier of ESCRT-III dysfunction and participates in the maturation of phagophores into closed autophagosomes.
Collapse
Affiliation(s)
- Yubing Lu
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, 01605 USA
| | - Zhijun Zhang
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, 01605 USA
| | - Danqiong Sun
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Sean T Sweeney
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, 01605 USA
| |
Collapse
|
300
|
Carlsson MC, Bengtson P, Cucak H, Leffler H. Galectin-3 guides intracellular trafficking of some human serotransferrin glycoforms. J Biol Chem 2013; 288:28398-408. [PMID: 23926108 PMCID: PMC3784757 DOI: 10.1074/jbc.m113.487793] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/06/2013] [Indexed: 11/06/2022] Open
Abstract
Transferrin internalization via clathrin-mediated endocytosis and subsequent recycling after iron delivery has been extensively studied. Here we demonstrate a previously unrecognized parameter regulating this recycling, the binding of galectin-3 to particular glycoforms of transferrin. Two fractions of transferrin, separated by affinity chromatography based on their binding or not to galectin-3, are targeted to kinetically different endocytic pathways in HFL-1 cells expressing galectin-3 but not in SKBR3 cells lacking galectin-3; the SKBR3 cells, however, can acquire the ability to target these transferrin glycoforms differently after preloading with exogenously added galectin-3. In all, this study provides the first evidence of a functional role for transferrin glycans, in intracellular trafficking after uptake. Moreover, the galectin-3-bound glycoform increased in cancer, suggesting a pathophysiological regulation. These are novel aspects of transferrin cell biology, which has previously considered only a degree of iron loading, but not other forms of heterogeneity.
Collapse
Affiliation(s)
- Michael C. Carlsson
- From the Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine and
| | - Per Bengtson
- the Division of Clinical Chemistry and Pharmacology, 221 00 Lund University, Lund, Sweden
| | - Helena Cucak
- From the Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine and
| | - Hakon Leffler
- From the Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine and
| |
Collapse
|