251
|
Ghosh A, DiMusto PD, Ehrlichman LK, Sadiq O, McEvoy B, Futchko JS, Henke PK, Eliason JL, Upchurch GR. The role of extracellular signal-related kinase during abdominal aortic aneurysm formation. J Am Coll Surg 2012; 215:668-680.e1. [PMID: 22917644 DOI: 10.1016/j.jamcollsurg.2012.06.414] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/22/2012] [Accepted: 06/27/2012] [Indexed: 12/30/2022]
Abstract
BACKGROUND It is hypothesized that activation of extracellular signal-related kinase (ERK) is critical in activating matrix metalloproteinases (MMPs) during abdominal aortic aneurysm (AAA) formation. STUDY DESIGN C57BL/6 male mice underwent either elastase or heat-inactivated elastase aortic perfusion (n = 9 per group). Mouse aortic smooth muscle cells were transfected with ERK-1 and 2 siRNA along with or without elastase treatment. Mouse and human aortic tissue were analyzed by Western blots, zymograms, and immunohistochemistry, and statistical analysis was done using Graphpad and Image J softwares. RESULTS Western blot and immunohistochemistry documented increased phospho-mitogen-activated protein kinase kinase-1/2 (pMEK-1/2; 153%, p = 0.270 by Western) and pERK (171%, p = 0.004 by Western blot) in the elastase perfused aortas. Male ERK-1(-/-) mice underwent elastase perfusion, and aortic diameter was determined at day 14. ERK-1(-/-) mice failed to develop AAA, and histologic analysis depicted intact collagen and elastin fibers in the aortas. Zymography of aortas of elastase-treated ERK-1(-/-) mice showed lower levels of proMMP2 (p < 0.005) and active MMP2 (p < 0.0001), as well as proMMP9 (p = 0.037) compared with C57BL/6 mice. siRNA transfection of ERK-1 and -2 significantly reduced formation of pro- and active MMP2 (p < 0.01 for both isoforms) in aortic smooth muscle cells treated with elastase in vitro. Human AAA tissue had significantly elevated levels of pMEK-1/2 (150%, p = 0.014) and pERK (159%, p = 0.013) compared with control tissues. CONCLUSIONS The MAPK (mitogen-activated protein kinase)/ERK pathway is an important modulator of MMPs during AAA formation. Targeting the ERK pathway by reagents that inhibit either the expression or phosphorylation of ERK isoforms could be a potential therapy to prevent AAA formation.
Collapse
Affiliation(s)
- Abhijit Ghosh
- Section of Vascular Surgery, Department of Surgery, Jobst Vascular Research Laboratories, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
252
|
De La Garza EM, Binkley PA, Ganapathy M, Krishnegowda NK, Tekmal RR, Schenken RS, Kirma NB. Raf-1, a potential therapeutic target, mediates early steps in endometriosis lesion development by endometrial epithelial and stromal cells. Endocrinology 2012; 153:3911-21. [PMID: 22619359 DOI: 10.1210/en.2011-1879] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Endometriosis is a hormone-sensitive gynecological disorder characterized by the benign growth of endometrial-like tissue in the pelvic cavity. Endometriotic lesions composed of endometrial stromal cells (ESC) and glandular epithelial cells (EEC) are thought to arise from menstrual endometrial tissue reaching the pelvic cavity via retrograde menstruation. The cause of endometriotic lesion formation is still not clear. Recent evidence suggest that cytokines may play a role in the early development of endometriosis lesions. Because cytokines and growth factors signal via the v-raf-1 murine leukemia viral oncogene homolog 1 (Raf-1) kinase pathway, we have examined the role of Raf-1 in early steps of endometriosis lesion formation, specifically attachment of endometrial cells to peritoneal mesothelial cells (PMC) and invasion of endometrial cells through PMC (trans-mesothelial invasion). Raf-1 antagonist GW5074 decreased attachment to PMC and trans-mesothelial invasion by primary EEC and ESC. Raf-1 also mediated TGFβ-induced trans-mesothelial invasion by the established, low-invasive EEC line EM42. TGFβ treatment of EEC resulted in Raf-1 phosphorylation at S338 and phosphorylation of ERK, suggesting that TGFβ activates Raf-1 signaling in these cells. GW5074 had little effect on ESC proliferation but inhibited EEC growth significantly under reduced serum conditions. Antagonizing Raf-1 activity and expression via GW5074 and specific Raf-1 small interfering RNA, respectively, did not alter EEC resistance to growth inhibition by TGFβ. Raf-1 inhibition blocked induction of EEC growth by epidermal growth factor. Our data suggest that Raf-1 may mediate pathologic steps involved in early endometriosis lesion formation and may be a mediator of TGFβ and epidermal growth factor actions in endometriosis.
Collapse
Affiliation(s)
- Elizabeth M De La Garza
- Department of Obstetrics and Gynecology, University of Texas Health Science Centre at San Antonio, San Antonio, Texas 78229, USA
| | | | | | | | | | | | | |
Collapse
|
253
|
Sulzmaier FJ, Valmiki MKG, Nelson DA, Caliva MJ, Geerts D, Matter ML, White EP, Ramos JW. PEA-15 potentiates H-Ras-mediated epithelial cell transformation through phospholipase D. Oncogene 2012; 31:3547-60. [PMID: 22105357 PMCID: PMC3295902 DOI: 10.1038/onc.2011.514] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 09/18/2011] [Accepted: 10/09/2011] [Indexed: 01/22/2023]
Abstract
The small GTPase H-Ras is a proto-oncogene that activates a variety of different pathways including the extracellular-signal-regulated kinase (ERK)/mitogen-activated protein kinase pathway. H-Ras is mutated in many human malignancies, and these mutations cause the protein to be constitutively active. Phosphoprotein enriched in astrocytes, 15 kDa (PEA-15) blocks ERK-dependent gene transcription and inhibits proliferation by sequestering ERK in the cytoplasm. We therefore investigated whether PEA-15 influences H-Ras-mediated transformation. We found that PEA-15 does not block H-Ras-activated proliferation when H-Ras is constitutively active. We show instead that in H-Ras-transformed mouse kidney epithelial cells, co-expression of PEA-15 resulted in enhanced soft agar colony growth and increased tumor growth in vivo. Overexpression of both H-Ras and PEA-15 resulted in accelerated G1/S cell cycle transition and increased activation of the ERK signaling pathway. PEA-15 mediated these effects through activation of its binding partner phospholipase D1 (PLD1). Inhibition of PLD1 or interference with PEA-15/PLD1 binding blocked PEA-15's ability to increase ERK activation. Our findings reveal a novel mechanism by which PEA-15 positively regulates Ras/ERK signaling and increases the proliferation of H-Ras-transformed epithelial cells through enhanced PLD1 expression and activation. Thus, our work provides a surprising mechanism by which PEA-15 augments H-Ras-driven transformation. These data reveal that PEA-15 not only suppresses ERK signaling and tumorigenesis but also alternatively enhances tumorigenesis in the context of active Ras.
Collapse
Affiliation(s)
- F J Sulzmaier
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | | | | | | | | | | | | | | |
Collapse
|
254
|
Breshears LM, Schlievert PM, Peterson ML. A disintegrin and metalloproteinase 17 (ADAM17) and epidermal growth factor receptor (EGFR) signaling drive the epithelial response to Staphylococcus aureus toxic shock syndrome toxin-1 (TSST-1). J Biol Chem 2012; 287:32578-87. [PMID: 22833676 DOI: 10.1074/jbc.m112.352534] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Staphylococcal superantigens (SAgs), such as toxic shock syndrome toxin-1 (TSST-1), are the main cause of toxic shock syndrome (TSS). SAgs deregulate the host immune system after penetrating epithelial barriers such as the vaginal mucosa. In response to TSST-1, human vaginal epithelial cells (HVECs) produce cytokines and undergo morphological changes. The epithelial signaling mechanisms employed by SAgs remain largely unknown and are the focus of the work presented here. Analysis of published microarray data identified a network of genes up-regulated by HVECs in response to TSST-1 that includes the sheddase, a disintegrin and metalloproteinase 17 (ADAM17). Investigation revealed that the ADAM17 proteolytic targets, amphiregulin (AREG), transforming growth factor α (TGFα), syndecan-1 (SDC1), and tumor necrosis factor receptor 1 (TNFR1), are shed from HVECs in response to TSST-1. TAPI-1 (an ADAM inhibitor) completely abrogates all observed shedding and the production of the cytokine interleukin-8 (IL-8). Knock-down studies show that ADAM17, but not the closely related ADAM10, is required for AREG, TGFα, and TNFR1 shedding. Both ADAM10 and ADAM17 contribute to SDC1 shedding and IL-8 production by HVECs in response to TSST-1. EGFR signaling is critical for up-regulation of IL-8 at the transcriptional level in response to TSST-1 and is also necessary for AREG, TGFα, and TNFR1 shedding. A model is proposed describing the interactions of TSST-1, ADAMs, and the EGFR that lead to establishment of a proinflammatory positive feedback loop in epithelial cells and demonstrate a role for SAgs in the initial stages of disease.
Collapse
Affiliation(s)
- Laura M Breshears
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
255
|
Chen YN, Huang TF, Chang CH, Hsu CC, Lin KT, Wang SW, Peng HC, Chung CH. Antirestenosis effect of butein in the neointima formation progression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:6832-6838. [PMID: 22690754 DOI: 10.1021/jf300771x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The development of restenosis involves migration and hyperproliferation of vascular smooth muscle cells (VSMCs). Platelet-derived growth factor (PDGF) is one of the major factors. Butein modulates inflammatory pathways and affects the proliferation and invasion of the tumor. We investigated the hypothesis that butein might prevent the restenosis process via a similar pathway. Our results demonstrated that butein inhibited PDGF-induced VSMC proliferation and migration as determined by BrdU proliferation and two-dimensional migration scratch assay. Butein also concentration-dependently repressed PDGF-induced phosphorylation of PDGF-receptor β, mitogen-activated protein kinases, phosphoinositide 3-kinase/Akt, and phopholipase Cγ/c-Src in VSMCs. In addition, in vivo results showed that butein attenuated neointima formation in balloon-injured rat carotid arteries. These results indicate that butein may inhibit PDGF-induced VSMC proliferation and migration, resulting in attenuation of neointima formation after percutaneous transluminal coronary angioplasty. Our study demonstrates for the first time that systemic administration of butein is able to reduce neointima formation after vascular injury.
Collapse
Affiliation(s)
- Yen-Nien Chen
- Department of Pharmacology, Tzu Chi University , Hualien, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
256
|
Tagaya Y, Miura A, Okada S, Ohshima K, Mori M. Nucleobindin-2 is a positive modulator of EGF-dependent signals leading to enhancement of cell growth and suppression of adipocyte differentiation. Endocrinology 2012; 153:3308-19. [PMID: 22514047 DOI: 10.1210/en.2011-2154] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nucleobindin-2 is a 420-amino-acid EF-hand calcium-binding protein that undergoes proteolytic processing to generate an 82-amino-acid amino-terminal peptide termed nesfatin-1. To determine whether nucleobindin-2 has any biological function, nucleobindin-2 was either overexpressed or knocked down by short hairpin RNA in cultured CHO cells expressing the human insulin and epidermal growth factor (EGF) receptors (CHO/IE) and in 3T3-L1 cells. Reduction in nucleobindin-2 expression inhibited EGF-stimulated MAPK kinase (S217/S221) and Erk phosphorylation (T202/Y204). In contrast, there was no significant effect on EGF-stimulated EGF receptor phosphorylation, EGF receptor internalization, or 52-kDa Shc and c-Raf phosphorylation. Although kinase suppressor of Ras-1 and protein phosphatase 2A expression was not changed, intracellular calcium concentrations and PP2A activity was significantly increased in nucleobindin-2 knocked-down cells. Concomitant with these alterations in EGF-stimulated signaling, cell proliferation was significantly reduced in nucleobindin-2 knocked-down cells. Moreover, reduced nucleobindin-2 expression in 3T3-L1 preadipocytes resulted in a greater extent of 3T3-L1 cell adipocyte differentiation. Taken together, these data indicate that nucleobindin-2 regulates EGF-stimulated MAPK kinase/Erk signaling, cell proliferation, and adipocyte differentiation.
Collapse
Affiliation(s)
- Yuko Tagaya
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | | | | | | | | |
Collapse
|
257
|
Higashi K, Hasegawa M, Yokoyama C, Tachibana T, Mitsui S, Saito K. Dermokine-β impairs ERK signaling through direct binding to GRP78. FEBS Lett 2012; 586:2300-5. [PMID: 22735594 DOI: 10.1016/j.febslet.2012.06.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/02/2012] [Accepted: 06/10/2012] [Indexed: 01/23/2023]
Abstract
Dermokine-β is abundant in stratified epithelia and in differentiating cultured keratinocytes. In this study, we investigated the role of dermokine-β in differentiation of keratinocytes. Treatment of keratinocytes or skin tumor cells with dermokine-β attenuated phosphorylation of extracellular-signal-regulated kinase (ERK). Exposure of cells to dermokine-β, as well as its carboxyl-terminus domain peptide, interrupted phosphorylation of ERK and stimulated dermokine gene expression. Inhibition of ERK signaling by its specific inhibitor also increased dermokine expression level. A combination of chemical cross-linking and immunoprecipitation, followed by proteomics analyses, identified glucose-regulated protein 78 (GRP78) as a dermokine-β-associated protein. Blockage of GRP78 expression by a specific siRNA abrogated actions of dermokine-β. These findings provide novel insights into the physiological significance of dermokine-β in the epidermis.
Collapse
Affiliation(s)
- Kiyoshi Higashi
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka 554-8558, Japan.
| | | | | | | | | | | |
Collapse
|
258
|
Sulzmaier F, Opoku-Ansah J, Ramos JW. Phosphorylation is the switch that turns PEA-15 from tumor suppressor to tumor promoter. Small GTPases 2012; 3:173-7. [PMID: 22694972 DOI: 10.4161/sgtp.20021] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abnormal ERK signaling is implicated in many human diseases including cancer. This signaling cascade is a good target for the therapy of certain malignancies because of its important role in regulating cell proliferation and survival. The small phosphoprotein PEA-15 is a potent regulator of the ERK signaling cascade, and, by acting on this pathway, has been described to have both tumor-suppressor and tumor-promoter functions. However, the exact mechanism by which PEA-15 drives the outcome one way or the other remains unclear. We propose that the cellular environment is crucial in determining PEA-15 protein function by affecting the protein's phosphorylation state. We hypothesize that only unphosphorylated PEA-15 can act as a tumor-suppressor and that phosphorylation alters the interaction with binding partners to promote tumor development. In order to use PEA-15 as a prognostic marker or therapeutic target it is therefore important to evaluate its phosphorylation status.
Collapse
Affiliation(s)
- Florian Sulzmaier
- Cancer Biology Program, University of Hawai'i Cancer Center, University of Hawai'i at Manoa, Honolulu, HI, USA
| | | | | |
Collapse
|
259
|
Goupil E, Wisehart V, Khoury E, Zimmerman B, Jaffal S, Hébert TE, Laporte SA. Biasing the prostaglandin F2α receptor responses toward EGFR-dependent transactivation of MAPK. Mol Endocrinol 2012; 26:1189-202. [PMID: 22638073 DOI: 10.1210/me.2011-1245] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The G protein-coupled prostaglandin F2α (PGF2α) receptor [F prostanoid (FP) receptor] has been implicated in many physiological events including cardiovascular, respiratory, immune, reproductive, and endocrine responses. Binding of PGF2α to FP receptor elicits inositol production and protein kinase C-dependent MAPK activation through Gα(q) coupling. Here we report that AL-8810, previously characterized as an orthosteric antagonist of PGF2α-dependent, Gα(q)-mediated signaling, potently activates ERK1/2 in a protein kinase C-independent manner. Rather, AL-8810 promoted ERK1/2 activation via an epidermal growth factor receptor transactivation mechanism in both human embryonic kidney 293 cells and in the MG-63 osteoblast-like cells, which express endogenous FP receptors. Neither AL-8810- nor PGF2α-mediated stimulation of FP receptor promoted association with β-arrestins, suggesting that MAPK activation induced by these ligands is independent of β-arrestin's signaling scaffold functions. Interestingly, the spatiotemporal activation of ERK1/2 promoted by AL-8810 and PGF2α showed almost completely opposite responses in the nucleus and the cytosol. Finally, using [(3)H]thymidine incorporation, we noted differential regulation of PGF2α- and AL-8810-induced cell proliferation in MG-63 cells. This study reveals, for the first time, the signaling biased nature of FP receptor orthosteric ligands toward MAPK signaling. Our findings on the specific patterns of ERK1/2 activation promoted by FP receptor ligands may help dissect the distinct roles of MAPK in FP receptor-dependent physiological responses.
Collapse
Affiliation(s)
- Eugénie Goupil
- Polypeptide Hormone Laboratory, Division of Endocrinology, Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada H3A 2B2
| | | | | | | | | | | | | |
Collapse
|
260
|
Heo JI, Oh SJ, Kho YJ, Kim JH, Kang HJ, Park SH, Kim HS, Shin JY, Kim MJ, Kim M, Kim SC, Park JB, Kim J, Lee JY. ATM mediates interdependent activation of p53 and ERK through formation of a ternary complex with p-p53 and p-ERK in response to DNA damage. Mol Biol Rep 2012; 39:8007-14. [PMID: 22576881 DOI: 10.1007/s11033-012-1647-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 04/16/2012] [Indexed: 12/27/2022]
Abstract
DNA damage in eukaryotic cells induces signaling pathways mediated by the ATM, p53 and ERK proteins, but the interactions between these pathways are not completely known. To address this issue, we performed a time course analysis in human embryonic fibroblast cells treated with DNA-damaging agents. DNA damage induced the phosphorylation of p53 at Ser 15 (p-p53) and the phosphorylation of ERK (p-ERK). Inhibition of p53 by a dominant negative mutant or in p53(-/-) fibroblast cells abolished ERK phosphorylation. ERK inhibitor prevented p53 phosphorylation, indicating that phosphorylations of p53 and p-ERK are interdependent each other. A time course analysis showed that ATM interacted with p-p53 and p-ERK in early time (0.5 h) and interaction between ATM-bound p-p53 and p-ERK or ATM-bound p-ERK and p-p53 occurred in late time (3 h) of DNA damage. These results indicate that ATM mediates interdependent activation of p53 and ERK through formation of a ternary complex between p-p53 and p-ERK in response to DNA damage to cause growth arrest.
Collapse
Affiliation(s)
- Jee-In Heo
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Gangwon-do 200-702, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
261
|
Yang K, Cao F, Sheikh AM, Malik M, Wen G, Wei H, Ted Brown W, Li X. Up-regulation of Ras/Raf/ERK1/2 signaling impairs cultured neuronal cell migration, neurogenesis, synapse formation, and dendritic spine development. Brain Struct Funct 2012; 218:669-82. [PMID: 22555958 DOI: 10.1007/s00429-012-0420-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 04/18/2012] [Indexed: 11/26/2022]
Abstract
The Ras/Raf/ERK1/2 signaling pathway controls many cellular responses such as cell proliferation, migration, differentiation, and death. In the nervous system, emerging evidence also points to a death-promoting role for ERK1/2 in both in vitro and in vivo models of neuronal death. Recent studies have suggested that abnormal apoptosis in the central nervous system may be involved in the pathogenesis of autism. Two studies reported that both a microdeletion and microduplication on chromosome 16, which includes the MAPK3 gene that encodes ERK1, are associated with autism. In addition, our recent work showed that Ras/Raf/ERK1/2 signaling activities were significantly up-regulated in the frontal cortex of autistic individuals and in the BTBR murine model of autism. To further investigate how Ras/Raf/ERK1/2 up-regulation may lead to the development of autism, we developed a cellular model of Raf/ERK up-regulation by over-expressing c-Raf in cultured cortical neurons (CNs) and cerebellar granule cells (CGCs). We found that Raf/ERK up-regulation stimulates the migration of both CNs and CGCs, and impairs the formation of excitatory synapses in CNs. In addition, we found that Raf/ERK up-regulation inhibits the development of mature dendritic spines in CNs. Investigating the possible mechanisms through which Raf/ERK up-regulation affects excitatory synapse formation and dendritic spine development, we discovered that Raf/ERK up-regulation suppresses the development and maturation of CNs. Together, these results suggest that the up-regulation of the Raf/ERK signaling pathway may contribute to the pathogenesis of autism through both its impairment of cortical neuron development and causing neural circuit imbalances.
Collapse
Affiliation(s)
- Kun Yang
- Department of Neurochemistry, NY State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, New York, NY, 10314, USA
| | | | | | | | | | | | | | | |
Collapse
|
262
|
Emerging roles for TNIP1 in regulating post-receptor signaling. Cytokine Growth Factor Rev 2012; 23:109-18. [PMID: 22542476 DOI: 10.1016/j.cytogfr.2012.04.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/29/2012] [Accepted: 04/06/2012] [Indexed: 02/08/2023]
Abstract
A vast number of cellular processes and signaling pathways are regulated by various receptors, ranging from transmembrane to nuclear receptors. These receptor-mediated processes are modulated by a diverse set of regulatory proteins. TNFα-induced protein 3-interacting protein 1 is such a protein that inhibits both transduction by transmembrane receptors, such as TNFα-receptor, EGF-R, and TLR, and nuclear receptors' PPAR and RAR activity. These receptors play key roles in regulating inflammation and inflammatory diseases. A growing number of references have implicated TNIP1 through GWAS and expression studies in chronic inflammatory diseases such as psoriasis and rheumatoid arthritis, although TNIP1s exact role has yet been determined. In this review, we aim to integrate the current knowledge of TNIP1s functions with the diseases in which it has been associated to potentially elucidate the role this regulator has in promoting or alleviating these inflammatory diseases.
Collapse
|
263
|
Parikh N, Shuck RL, Nguyen TA, Herron A, Donehower LA. Mouse tissues that undergo neoplastic progression after K-Ras activation are distinguished by nuclear translocation of phospho-Erk1/2 and robust tumor suppressor responses. Mol Cancer Res 2012; 10:845-55. [PMID: 22532587 DOI: 10.1158/1541-7786.mcr-12-0089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mutation of K-Ras is a frequent oncogenic event in human cancers, particularly cancers of lungs, pancreas, and colon. It remains unclear why some tissues are more susceptible to Ras-induced transformation than others. Here, we globally activated a mutant oncogenic K-Ras allele (K-Ras(G12D)) in mice and examined the tissue-specific effects of this activation on cancer pathobiology, Ras signaling, tumor suppressor, DNA damage, and inflammatory responses. Within 5 to 6 weeks of oncogenic Ras activation, mice develop oral and gastric papillomas, lung adenomas, and hematopoietic hyperproliferation and turn moribund. The oral, gastric, and lung premalignant lesions display activated extracellular signal-regulated kinases (Erk)1/2 and NF-κB signaling as well as activated tumor suppressor and DNA damage responses. Other organs such as pancreas, liver, and small intestine do not exhibit neoplastic progression within 6 weeks following K-Ras(G12D) activation and do not show a potent tumor suppressor response. Even though robust Erk1/2 signaling is activated in all the tissues examined, the pErk1/2 distribution remains largely cytoplasmic in K-Ras(G12D)-refractory tissues (pancreas, liver, and intestines) as opposed to a predominantly nuclear localization in K-Ras(G12D)-induced neoplasms of lung, oral, and gastric mucosa. The downstream targets of Ras signaling, pElk-1 and c-Myc, are elevated in K-Ras(G12D)-induced neoplastic lesions but not in K-Ras(G12D)-refractory tissues. We propose that oncogenic K-Ras-refractory tissues delay oncogenic progression by spatially limiting the efficacy of Ras/Raf/Erk1/2 signaling, whereas K-Ras-responsive tissues exhibit activated Ras/Raf/Erk1/2 signaling, rapidly form premalignant tumors, and activate potent antitumor responses that effectively prevent further malignant progression.
Collapse
Affiliation(s)
- Neha Parikh
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
264
|
Kim JH, Lee ER, Jeon K, Choi HY, Lim H, Kim SJ, Chae HJ, Park SH, Kim S, Seo YR, Kim JH, Cho SG. Role of BI-1 (TEGT)-mediated ERK1/2 activation in mitochondria-mediated apoptosis and splenomegaly in BI-1 transgenic mice. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:876-88. [DOI: 10.1016/j.bbamcr.2012.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 01/22/2012] [Accepted: 01/23/2012] [Indexed: 12/30/2022]
|
265
|
Oncogenic KRAS and BRAF activation of the MEK/ERK signaling pathway promotes expression of dual-specificity phosphatase 4 (DUSP4/MKP2) resulting in nuclear ERK1/2 inhibition. Oncogene 2012; 32:564-76. [PMID: 22430215 DOI: 10.1038/onc.2012.88] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gain-of-function mutations in KRAS and BRAF genes are found in up to 50% of colorectal cancers. These mutations result in the activation of the BRAF/MEK signaling pathway culminating in the stimulation of ERK1/2 mitogen-activated protein kinases. Upon activation, ERK1/2 translocate from the cytoplasm to the nucleus. This process has been shown to be required for the induction of many cellular responses, although the molecular mechanisms regulating ERK nuclear function, especially under oncogenic stimulation, remain to be explored. Herein, we examined the spatiotemporal regulation of ERK1/2 activity upon oncogenic activation of KRAS(G12V) and BRAF(V600E) in normal intestinal epithelial crypt cells (IECs). Results demonstrate that expression of these oncogenes markedly stimulated ERK1/2 activities and morphologically transformed IECs. Importantly however, ERK phosphorylation was not observed in the nucleus, but restricted to the cytoplasm of KRAS(G12V)- and BRAF(V600E)-transformed IECs. The absence of nuclear ERK phosphorylation was due to a vanadate-sensitive phosphatase activity. Nuclear ERK dephosphorylation was found to be tightly correlated with the rapid expression of DUSP4 phosphatase induced in an MEK-dependent manner. In addition, MEK-dependent phosphorylation of T361, T363, S390 and S395 residues highly stabilized DUSP4 protein. Finally, in human colorectal cancer cells, ERK1/2 activities were also confined to the cytoplasm and treatment with pervanadate reactivated ERK1/2 in the nucleus. Accordingly, DUSP4 mRNAs were found to be highly expressed, in an MEK-dependent manner, in all colorectal cancer cells analyzed. These findings indicate that DUSP4 functions as part of a negative feedback mechanism in the control of the duration and magnitude of nuclear ERK activation during intestinal tumorigenesis.
Collapse
|
266
|
Siddle K. Molecular basis of signaling specificity of insulin and IGF receptors: neglected corners and recent advances. Front Endocrinol (Lausanne) 2012; 3:34. [PMID: 22649417 PMCID: PMC3355962 DOI: 10.3389/fendo.2012.00034] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 02/13/2012] [Indexed: 12/15/2022] Open
Abstract
Insulin and insulin-like growth factor (IGF) receptors utilize common phosphoinositide 3-kinase/Akt and Ras/extracellular signal-regulated kinase signaling pathways to mediate a broad spectrum of "metabolic" and "mitogenic" responses. Specificity of insulin and IGF action in vivo must in part reflect expression of receptors and responsive pathways in different tissues but it is widely assumed that it is also determined by the ligand binding and signaling mechanisms of the receptors. This review focuses on receptor-proximal events in insulin/IGF signaling and examines their contribution to specificity of downstream responses. Insulin and IGF receptors may differ subtly in the efficiency with which they recruit their major substrates (IRS-1 and IRS-2 and Shc) and this could influence effectiveness of signaling to "metabolic" and "mitogenic" responses. Other substrates (Grb2-associated binder, downstream of kinases, SH2Bs, Crk), scaffolds (RACK1, β-arrestins, cytohesins), and pathways (non-receptor tyrosine kinases, phosphoinositide kinases, reactive oxygen species) have been less widely studied. Some of these components appear to be specifically involved in "metabolic" or "mitogenic" signaling but it has not been shown that this reflects receptor-preferential interaction. Very few receptor-specific interactions have been characterized, and their roles in signaling are unclear. Signaling specificity might also be imparted by differences in intracellular trafficking or feedback regulation of receptors, but few studies have directly addressed this possibility. Although published data are not wholly conclusive, no evidence has yet emerged for signaling mechanisms that are specifically engaged by insulin receptors but not IGF receptors or vice versa, and there is only limited evidence for differential activation of signaling mechanisms that are common to both receptors. Cellular context, rather than intrinsic receptor activity, therefore appears to be the major determinant of whether responses to insulin and IGFs are perceived as "metabolic" or "mitogenic."
Collapse
Affiliation(s)
- Kenneth Siddle
- University of Cambridge Metabolic Research Laboratories and Department of Clinical Biochemistry, Institute of Metabolic Science, Addenbrooke's Hospital Cambridge, UK.
| |
Collapse
|
267
|
|
268
|
Nagajyothi F, Desruisseaux MS, Machado FS, Upadhya R, Zhao D, Schwartz GJ, Teixeira MM, Albanese C, Lisanti MP, Chua SC, Weiss LM, Scherer PE, Tanowitz HB. Response of adipose tissue to early infection with Trypanosoma cruzi (Brazil strain). J Infect Dis 2012; 205:830-40. [PMID: 22293433 DOI: 10.1093/infdis/jir840] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Brown adipose tissue (BAT) and white adipose tissue (WAT) and adipocytes are targets of Trypanosoma cruzi infection. Adipose tissue obtained from CD-1 mice 15 days after infection, an early stage of infection revealed a high parasite load. There was a significant increase in macrophages in infected adipose tissue and a reduction in lipid accumulation, adipocyte size, and fat mass and increased expression of lipolytic enzymes. Infection increased levels of Toll-like receptor (TLR) 4 and TLR9 and in the expression of components of the mitogen-activated protein kinase pathway. Protein and messenger RNA (mRNA) levels of peroxisome proliferator-activated receptor γ were increased in WAT, whereas protein and mRNA levels of adiponectin were significantly reduced in BAT and WAT. The mRNA levels of cytokines, chemokines, and their receptors were increased. Nuclear Factor Kappa B levels were increased in BAT, whereas Iκκ-γ levels increased in WAT. Adipose tissue is an early target of T. cruzi infection.
Collapse
Affiliation(s)
- Fnu Nagajyothi
- Department of Pathology, Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
269
|
Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 2012; 24:981-90. [PMID: 22286106 DOI: 10.1016/j.cellsig.2012.01.008] [Citation(s) in RCA: 3047] [Impact Index Per Article: 234.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 01/13/2012] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are generated during mitochondrial oxidative metabolism as well as in cellular response to xenobiotics, cytokines, and bacterial invasion. Oxidative stress refers to the imbalance due to excess ROS or oxidants over the capability of the cell to mount an effective antioxidant response. Oxidative stress results in macromolecular damage and is implicated in various disease states such as atherosclerosis, diabetes, cancer, neurodegeneration, and aging. Paradoxically, accumulating evidence indicates that ROS also serve as critical signaling molecules in cell proliferation and survival. While there is a large body of research demonstrating the general effect of oxidative stress on signaling pathways, less is known about the initial and direct regulation of signaling molecules by ROS, or what we term the "oxidative interface." Cellular ROS sensing and metabolism are tightly regulated by a variety of proteins involved in the redox (reduction/oxidation) mechanism. This review focuses on the molecular mechanisms through which ROS directly interact with critical signaling molecules to initiate signaling in a broad variety of cellular processes, such as proliferation and survival (MAP kinases, PI3 kinase, PTEN, and protein tyrosine phosphatases), ROS homeostasis and antioxidant gene regulation (thioredoxin, peroxiredoxin, Ref-1, and Nrf-2), mitochondrial oxidative stress, apoptosis, and aging (p66Shc), iron homeostasis through iron-sulfur cluster proteins (IRE-IRP), and ATM-regulated DNA damage response.
Collapse
|
270
|
McGonnell IM, Grigoriadis AE, Lam EWF, Price JS, Sunters A. A specific role for phosphoinositide 3-kinase and AKT in osteoblasts? Front Endocrinol (Lausanne) 2012; 3:88. [PMID: 22833734 PMCID: PMC3400941 DOI: 10.3389/fendo.2012.00088] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 06/29/2012] [Indexed: 12/25/2022] Open
Abstract
The phosphoinositide 3-kinase and AKT (protein kinase B) signaling pathway (PI3K/AKT) plays a central role in the control of cell survival, growth, and proliferation throughout the body. With regard to bone, and particularly in osteoblasts, there is an increasing amount of evidence that the many signaling molecules exert some of their bone-specific effects in part via selectively activating some of the generic effects of the PI3K/AKT pathway in osteoblasts. There is further data demonstrating that PI3K/AKT has the capacity to specifically cross-talk with other signaling pathways and transcriptional networks controlling bone cells' development in order to fine-tune the osteoblast phenotype. There is also evidence that perturbations in the PI3K/AKT pathway may well be responsible for certain bone pathologies. In this review, we discuss some of these findings and suggest that the PI3K/AKT pathway is a central nexus in the extensive network of extracellular signaling pathways that control the osteoblast.
Collapse
Affiliation(s)
- Imelda M. McGonnell
- Department of Veterinary Basic Sciences, The Royal Veterinary College,London, UK
| | - Agamemnon E. Grigoriadis
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, Guy’s Hospital,London, UK
| | - Eric W.-F. Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital,London, UK
| | - Joanna S. Price
- School of Veterinary Sciences, University of Bristol,Bristol, UK
| | - Andrew Sunters
- Department of Veterinary Basic Sciences, The Royal Veterinary College,London, UK
- *Correspondence: Andrew Sunters, Department of Veterinary Basic Sciences, The Royal Veterinary College, Royal College Street, Camden, London NW1 0TU, UK. e-mail:
| |
Collapse
|
271
|
Pierobon M, Wulfkuhle J, Liotta LA, Petricoin EF. Development and Clinical Implementation of Reverse Phase Protein Microarrays for Protein Network Activation Mapping: Personalized Cancer Therapy. SYSTEMS BIOLOGY IN CANCER RESEARCH AND DRUG DISCOVERY 2012:309-323. [DOI: 10.1007/978-94-007-4819-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
272
|
Scott E, Zhang QG, Wang R, Vadlamudi R, Brann D. Estrogen neuroprotection and the critical period hypothesis. Front Neuroendocrinol 2012; 33:85-104. [PMID: 22079780 PMCID: PMC3288697 DOI: 10.1016/j.yfrne.2011.10.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/21/2011] [Accepted: 10/24/2011] [Indexed: 12/15/2022]
Abstract
17β-Estradiol (estradiol or E2) is implicated as a neuroprotective factor in a variety of neurodegenerative disorders. This review focuses on the mechanisms underlying E2 neuroprotection in cerebral ischemia, as well as emerging evidence from basic science and clinical studies, which suggests that there is a "critical period" for estradiol's beneficial effect in the brain. Potential mechanisms underlying the critical period are discussed, as are the neurological consequences of long-term E2 deprivation (LTED) in animals and in humans after natural menopause or surgical menopause. We also summarize the major clinical trials concerning postmenopausal hormone therapy (HT), comparing their outcomes with respect to cardiovascular and neurological disease and discussing their relevance to the critical period hypothesis. Finally, potential caveats, controversies and future directions for the field are highlighted and discussed throughout the review.
Collapse
Affiliation(s)
- Erin Scott
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Quan-guang Zhang
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Ruimin Wang
- Experimental and Research Center, Hebei United University, 57 South Jian-she Road, Tangshan, Hebei, 063600, PR China
| | - Ratna Vadlamudi
- Department of Obstetrics & Gynecology, University of Texas Health Science Center at San Antonio, Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Darrell Brann
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA 30912, USA
| |
Collapse
|
273
|
Chen L, Ackerman R, Guo AM. 20-HETE in neovascularization. Prostaglandins Other Lipid Mediat 2011; 98:63-8. [PMID: 22227460 DOI: 10.1016/j.prostaglandins.2011.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/09/2011] [Accepted: 12/19/2011] [Indexed: 12/18/2022]
Abstract
Cytochrome P450 4A/F (CYP4A/F) converts arachidonic acid (AA) to 20-HETE by ω-hydroxylation. The contribution of 20-HETE to the regulation of myogenic response, blood pressure, and mitogenic actions has been well summarized. This review focuses on the emerging role of 20-HETE in physiological and pathological vascularization. 20-HETE has been shown to regulate vascular smooth muscle cells (VSMC) and endothelial cells (EC) by affecting their proliferation, migration, survival, and tube formation. Furthermore, the proliferation, migration, secretion of proangiogenic molecules (such as HIF-1α, VEGF, SDF-1α), and tube formation of endothelial progenitor cells (EPC) are stimulated by 20-HETE. These effects are mediated through c-Src- and EGFR-mediated downstream signaling pathways, including MAPK and PI3K/Akt pathways, eNOS uncoupling, and NOX/ROS system activation. Therefore, the CYP4A/F-20-HETE system may be a therapeutic target for the treatment of abnormal angiogenic diseases.
Collapse
Affiliation(s)
- Li Chen
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | |
Collapse
|
274
|
The vaccinia virus O1 protein is required for sustained activation of extracellular signal-regulated kinase 1/2 and promotes viral virulence. J Virol 2011; 86:2323-36. [PMID: 22171261 DOI: 10.1128/jvi.06166-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Sustained activation of the Raf/MEK/extracellular signal-regulated kinase (ERK) pathway in infected cells has been shown to be crucial for full replication efficiency of orthopoxviruses in cell culture. In infected cells, this pathway is mainly activated by the vaccinia virus growth factor (VGF), an epidermal growth factor (EGF)-like protein. We show here that chorioallantois vaccinia virus Ankara (CVA), but not modified vaccinia virus Ankara (MVA), induced sustained activation of extracellular signal-regulated kinase 1/2 (ERK1/2) in infected human 293 cells, although both viruses direct secretion of functional VGF. A CVA mutant lacking the O1L gene (CVA-ΔO1L) demonstrated that the O1 protein was required for sustained upregulation of the ERK1/2 pathway in 293 cells as well as in other mammalian cell lines. The highly conserved orthopoxvirus O1L gene encodes a predicted 78-kDa protein with a hitherto-unknown function. CVA-ΔO1L showed reduced plaque size and an attenuated cytopathic effect (CPE) in infected cell cultures and reduced virulence and spread from lungs to ovaries in intranasally infected BALB/c mice. Reinsertion of an intact O1L gene into MVA, which in its original form harbors a fragmented O1L open reading frame (ORF), restored ERK1/2 activation in 293 cells but did not increase replication and spread of MVA in human or other mammalian cell lines. Thus, the O1 protein was crucial for sustained ERK1/2 activation in CVA- and MVA-infected human cells, complementing the autocrine function of VGF, and enhanced virulence in vivo.
Collapse
|
275
|
Bartholomeusz C, Oishi T, Saso H, Akar U, Liu P, Kondo K, Kazansky A, Krishnamurthy S, Lee J, Esteva FJ, Kigawa J, Ueno NT. MEK1/2 inhibitor selumetinib (AZD6244) inhibits growth of ovarian clear cell carcinoma in a PEA-15-dependent manner in a mouse xenograft model. Mol Cancer Ther 2011; 11:360-9. [PMID: 22144664 DOI: 10.1158/1535-7163.mct-11-0400] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Clear cell carcinoma (CCC) of the ovary tends to show resistance to standard chemotherapy, which results in poor survival for patients with CCC. Developing a novel therapeutic strategy is imperative to improve patient prognosis. Epidermal growth factor receptor (EGFR) is frequently expressed in epithelial ovarian cancer. One of the major downstream targets of the EGFR signaling cascade is extracellular signal-related kinase (ERK). PEA-15, a 15-kDa phosphoprotein, can sequester ERK in the cytoplasm. MEK1/2 plays a central role in integrating mitogenic signals into the ERK pathway. We tested the hypothesis that inhibition of the EGFR-ERK pathway suppresses tumorigenicity in CCC, and we investigated the role of PEA-15 in ERK-targeted therapy in CCC. We screened a panel of 4 CCC cell lines (RMG-I, SMOV-2, OVTOKO, and KOC-7c) and observed that the EGFR tyrosine kinase inhibitor erlotinib inhibited cell proliferation of EGFR-overexpressing CCC cell lines through partial dependence on the MEK/ERK pathway. Furthermore, erlotinib-sensitive cell lines were also sensitive to the MEK inhibitor selumetinib (AZD6244), which is under clinical development. Knockdown of PEA-15 expression resulted in reversal of selumetinib-sensitive cells to resistant cells, implying that PEA-15 contributes to selumetinib sensitivity. Both selumetinib and erlotinib significantly suppressed tumor growth (P < 0.0001) in a CCC xenograft model. However, selumetinib was better tolerated; erlotinib-treated mice exhibited significant toxic effects (marked weight loss and severe skin peeling) at high doses. Our findings indicate that the MEK-ERK pathway is a potential target for EGFR-overexpressing CCC and indicate that selumetinib and erlotinib are worth exploring as therapeutic agents for CCC.
Collapse
Affiliation(s)
- Chandra Bartholomeusz
- Breast Cancer Translational Research Laboratory, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
276
|
Abstract
Signal transduction plays a key role in regulating important functions in both multicellular and unicellular organisms and largely controls the manner in which cells respond to stimuli. Signal transduction pathways coordinate the functions in different type of cells in animals and control the growth and differentiation in unicellular organisms. Intracellular signal transduction pathways are largely activated by second messenger molecules. Trypanosoma cruzi has a complex life cycle involving four morphogenetic stages with various second messenger systems able to regulate its growth and differentiation. Signal transduction often alters the status of phosphorylation in target proteins and thus alters the activities of these proteins. In this review, two major signal transduction pathways, cyclic AMP-dependent pathway and mitogen-activated protein kinase pathway, are discussed. Protein phosphatases are also discussed due to their importance in dephosphorylating target proteins and terminating signal transduction. Understanding of the unique pathways in this pathogen may lead to the development of novel therapeutic agents.
Collapse
Affiliation(s)
- Huan Huang
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
277
|
Zündorf G, Reiser G. The phosphorylation status of extracellular-regulated kinase 1/2 in astrocytes and neurons from rat hippocampus determines the thrombin-induced calcium release and ROS generation. J Neurochem 2011; 119:1194-204. [PMID: 21988180 DOI: 10.1111/j.1471-4159.2011.07527.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Challenge of protease-activated receptors induces cytosolic Ca(2+) concentration ([Ca(2+) ](c)) increase, mitogen-activated protein kinase activation and reactive oxygen species (ROS) formation with a bandwidth of responses in individual cells. We detected in this study in situ the thrombin-induced [Ca(2+) ](c) rise and ROS formation in dissociated hippocampal astrocytes and neurons in a mixed culture. In identified cells, single cell responses were correlated with extracellular-regulated kinase (ERK)1/2 phosphorylation level. On average, in astrocytes, thrombin induced a transient [Ca(2+) ](c) rise with concentration-dependent increase in amplitude and extrusion rate and high ERK1/2 phosphorylation level. Correlation analysis of [Ca(2+) ](c) response characteristics of single astrocytes reveals that astrocytes with nuclear phosphoERK1/2 localization have a smaller Ca(2+) amplitude and extrusion rate compared with cells with a cytosolic phosphoERK1/2 localization. In naive neurons, without thrombin challenge, variable ERK1/2 phosphorylation patterns are observed. ROS were detected by hydroethidine. Only in neurons with increased ERK1/2 phosphorylation level, we see sustained intracellular rise in fluorescence of the dye lasting over several minutes. ROS formation was abolished by pre-incubation with the NADPH oxidase inhibitor apocynin. Additionally, thrombin induced an immediate, transient hydroethidine fluorescence increase. This was interpreted as NADPH oxidase-mediated O(2) (•-) -release into the extracellular milieu, because it was decreased by pre-incubation with apocynin, and could be eluted by superfusion. In conclusion, the phosphorylation status of ERK1/2 determines the thrombin-dependent [Ca(2+) ](c) increase and ROS formation and, thus, influences the capacity of thrombin to regulate neuroprotection or neurodegeneration.
Collapse
Affiliation(s)
- Gregor Zündorf
- Institut für Neurobiochemie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | | |
Collapse
|
278
|
Zhou C, Lu L, Tan S, Jiang S, Chen YH. HIV-1 glycoprotein 41 ectodomain induces activation of the CD74 protein-mediated extracellular signal-regulated kinase/mitogen-activated protein kinase pathway to enhance viral infection. J Biol Chem 2011; 286:44869-77. [PMID: 22039051 DOI: 10.1074/jbc.m111.267393] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Besides mediating the viral entry process, the human immunodeficiency virus (HIV-1) envelope protein gp41 can bind to many host cell components and regulate cell functions. Using a yeast two-hybrid system, we screened a human bone marrow cDNA library and identified a novel gp41-binding protein, CD74 (the MHC class II-associated invariant chain). Here, we report possible biological effects mediated by interaction between gp41 and CD74. We found that HIV-1 gp41 could bind directly to host CD74 in HIV-1-infected cells, and the peptide 6358 derived from gp41 loop region (aa 597-611) could effectively block the gp41-CD74 interaction. As a result of this binding, recombinant soluble gp41 and gp41 peptide 6358 activated the CD74-mediated ERK/MAPK pathway and significantly enhanced HIV-1 infection in vitro. Conversely, the enhancing effect could be suppressed by the recombinant CD74 extracellular domain. These results reveal a novel mechanism underlying gp41 mediation of HIV-1 infection and replication.
Collapse
Affiliation(s)
- Chang Zhou
- Laboratory of Immunology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | |
Collapse
|
279
|
Lim JH, Liu Y, Reineke E, Kao HY. Mitogen-activated protein kinase extracellular signal-regulated kinase 2 phosphorylates and promotes Pin1 protein-dependent promyelocytic leukemia protein turnover. J Biol Chem 2011; 286:44403-11. [PMID: 22033920 DOI: 10.1074/jbc.m111.289512] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The promyelocytic leukemia (PML) protein is a tumor suppressor that has an important role in several cellular processes, including apoptosis, viral infection, DNA damage repair, cell cycle regulation, and senescence. PML is an essential component of sub-nuclear structures called PML nuclear bodies (NBs). Our laboratory has previously demonstrated that the peptidyl-prolyl cis-trans isomerase, Pin1, binds and targets PML for degradation in a phosphorylation-dependent manner. To further elucidate the mechanisms underlying Pin1-mediated PML degradation, we aimed to identify one or more factors that promote PML phosphorylation. Here we show that treatment with U0126, an inhibitor of the ERK2 upstream kinases MEK1/2, leads to an increase in PML protein accumulation and an inhibition of the interaction between Pin1 and PML in MDA-MB-231 breast cancer cells. Consistent with this observation, phosphorylated ERK2 partially co-localized with PML NBs. Although U0126 up-regulated exogenous wild-type PML levels, it did not have an effect on the steady-state level of a mutant form of PML that is defective in binding Pin1. In addition, exogenous wild-type, but not Pin1 binding-defective PML protein expression levels were decreased by overexpression of ERK2. In contrast, knockdown of ERK2 by siRNA resulted in an increase in PML protein levels and an increase in the formation of PML NBs. Using phospho-specific antibodies, we identified Ser-403 and Ser-505 as the ERK2 targets that promote Pin1-mediated PML degradation. Finally, we demonstrated that EGF induced activation of ERK and interaction between PML and phosphorylated ERK resulting in a decrease in PML protein levels. Taken together, our results support a model in which Pin1 promotes PML degradation in an ERK2-dependent manner.
Collapse
Affiliation(s)
- Jun Hee Lim
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4935, USA
| | | | | | | |
Collapse
|
280
|
Ichihara A, Jinnin M, Yamane K, Fujisawa A, Sakai K, Masuguchi S, Fukushima S, Maruo K, Ihn H. microRNA-mediated keratinocyte hyperproliferation in psoriasis vulgaris. Br J Dermatol 2011; 165:1003-10. [PMID: 21711342 DOI: 10.1111/j.1365-2133.2011.10497.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Psoriasis is a chronic inflammatory skin disease characterized by intense proliferation and abnormal differentiation of keratinocytes, although the pathogenesis is still not completely clarified. OBJECTIVES We investigated the mechanism of keratinocyte proliferation seen in psoriasis, focusing on microRNA (miRNA). MATERIALS AND METHODS miRNAs were extracted from tissues and sera of psoriasis, atopic dermatitis and healthy control. To determine pathogenic miRNAs, we performed miRNA polymerase chain reaction (PCR) array analysis. The results were confirmed with quantitative real-time PCR, in situ hybridization, immunohistochemistry, transient transfection of siRNA and inhibitor in cultured keratinocytes and Western blotting. RESULTS PCR array analysis using tissue miRNA demonstrated miR-424 level was markedly decreased in psoriasis skin in vivo. Protein expression of mitogen-activated protein kinase kinase 1 (MEK1) or cyclin E1, predicted target genes of miR-424, was increased in psoriatic skin, although their mRNA levels were not. The transfection of specific inhibitor of miR-424 in normal human keratinocytes led to upregulation of MEK1 or cyclin E1 protein, and resulted in increased cell proliferation. On the other hand, cell number was significantly decreased when cells were transfected with siRNA for MEK1 or cyclin E1. Furthermore, we first investigated serum miRNA levels in psoriasis. Although not significant, serum miR-424 concentration tended to be decreased in patients with psoriasis compared with healthy controls. CONCLUSIONS Decreased miR-424 expression and subsequently increased MEK1 or cyclin E1 may play a key role in the pathogenesis of psoriasis. Investigation of the regulatory mechanisms of keratinocyte proliferation by miRNA may lead to new treatments and a disease activity marker.
Collapse
Affiliation(s)
- A Ichihara
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
281
|
Huang H, Ma YF, Bao Y, Lee H, Lisanti MP, Tanowitz HB, Weiss LM. Molecular cloning and characterization of mitogen-activated protein kinase 2 in Toxoplasma gondii. Cell Cycle 2011; 10:3519-26. [PMID: 22030559 DOI: 10.4161/cc.10.20.17791] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways are major signal transduction systems by which eukaryotic cells convert environmental cues to intracellular events, such as cell proliferation and differentiation. Toxoplasma gondii is an obligate intracellular protozoan that is both a human and animal pathogen. This Apicomplexan causes significant morbidity and mortality in immune-competent and immune-compromised hosts. In humans, the most common manifestations of T. gondii infections are chorioretinitis in congenital infection and encephalitis in immune-compromised patients, such as patients with advanced AIDS. We have identified a T. gondii homolog of the MAPK family that we have called TgMAPK2. Sequence analyses demonstrated that TgMAPK2 has homology with lower eukaryotic ERK2 but has significant differences from mammalian ERK2. TgMAPK2 has an open reading frame of 2,037 bp, 678 amino acids, and its molecular weight is 73.1 kDa. It contains the typical 12 subdomains of a MAPK and has a TDY motif in the dual phosphorylation and activation subdomains. This suggests that TgMAPK2 may play an important role in stress response. recombinant TgMAPK2 was catalytically active and was not inhibited by a human ERK2 inhibitor, FR180204. A partial TgMAPK2 lacking the ATP-binding motifs GxGxxGxV was successfully regulated by a ligand-controlled destabilization domain (ddFKBP) expression vector system in T. gondii. Since TgMAPK2 is significantly different from its mammalian counterpart, it may be useful as a drug target. This work establishes a foundation for further study for this unique kinase.
Collapse
Affiliation(s)
- Huan Huang
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | | | | | |
Collapse
|
282
|
Chattergoon NN, Giraud GD, Louey S, Stork P, Fowden AL, Thornburg KL. Thyroid hormone drives fetal cardiomyocyte maturation. FASEB J 2011; 26:397-408. [PMID: 21974928 DOI: 10.1096/fj.10-179895] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tri-iodo-l-thyronine (T(3)) suppresses the proliferation of near-term serum-stimulated fetal ovine cardiomyocytes in vitro. Thus, we hypothesized that T(3) is a major stimulant of cardiomyocyte maturation in vivo. We studied 3 groups of sheep fetuses on gestational days 125-130 (term ∼145 d): a T(3)-infusion group, to mimic fetal term levels (plasma T(3) levels increased from ∼0.1 to ∼1.0 ng/ml; t(1/2)∼24 h); a thyroidectomized group, to produce low thyroid hormone levels; and a vehicle-infusion group, to serve as intact controls. At 130 d of gestation, sections of left ventricular freewall were harvested, and the remaining myocardium was enzymatically dissociated. Proteins involved in cell cycle regulation (p21, cyclin D1), proliferation (ERK), and hypertrophy (mTOR) were measured in left ventricular tissue. Evidence that elevated T(3) augmented the maturation rate of cardiomyocytes included 14% increased width, 31% increase in binucleation, 39% reduction in proliferation, 150% reduction in cyclin D1 protein, and 500% increase in p21 protein. Increased expression of phospho-mTOR, ANP, and SERCA2a also suggests that T(3) promotes maturation and hypertrophy of fetal cardiomyocytes. Thyroidectomized fetuses had reduced cell cycle activity and binucleation. These findings support the hypothesis that T(3) is a prime driver of prenatal cardiomyocyte maturation.
Collapse
|
283
|
Maglio M, Mazzarella G, Barone MV, Gianfrani C, Pogna N, Gazza L, Stefanile R, Camarca A, Colicchio B, Nanayakkara M, Miele E, Iaquinto G, Giardullo N, Maurano F, Santoro P, Troncone R, Auricchio S. Immunogenicity of two oat varieties, in relation to their safety for celiac patients. Scand J Gastroenterol 2011; 46:1194-1205. [PMID: 21843037 DOI: 10.3109/00365521.2011.603159] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Most of the recent studies suggest that oats are well tolerated by celiac disease (CD) patients. However, it is still possible that different oat cultivars may display different biological properties relevant for CD pathogenesis. We aimed to investigate biological and immunological properties of two oat varieties, Avena genziana and Avena potenza, in relation to their safety for CD patients. MATERIAL AND METHODS Phosphorylation of extracellular signal-regulated kinase (ERK) and trans-epithelial electrical resistance (TEER) were evaluated in CaCo-2 cells treated with peptic-tryptic (PT) digests from the two oats and from gliadin (PTG). With the same PT-digests, duodenal biopsies from 22 CD patients were treated in vitro for 24 h and density of CD25+ cells in lamina propria and of intraepithelial CD3+ T cells was measured, as well as crypt cell proliferation and epithelial expression of interleukin 15. Finally, interferon γ (IFN-γ) production was measured as evidence of gliadin-specific T-cell activation by PT-digests. RESULTS In contrast to PTG, oats PT-digests were not able to induce significant increase in ERK phosphorylation and decrease in TEER in CaCo-2 cells. In the organ culture system, oats PT-digests, unlike PTG, did not induce significant increase in crypt enterocyte proliferation, increase in interleukin 15 expression or in lamina propria CD25+ cells. Nevertheless Avena potenza increased intraepithelial T-cell density, while Avena genziana-induced IFN-γ production in 3/8 CD intestinal T cell lines. CONCLUSIONS Our data show that Avena genziana and Avena potenza do not display in vitro activities related to CD pathogenesis. Some T-cell reactivity could be below the threshold for clinical relevance.
Collapse
Affiliation(s)
- Mariantonia Maglio
- Department of Pediatrics, European Laboratory for the Investigation of Food Induced Diseases-ELFID, University Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
284
|
Fukui N, Ikeda Y, Tanaka N, Wake M, Yamaguchi T, Mitomi H, Ishida S, Furukawa H, Hamada Y, Miyamoto Y, Sawabe M, Tashiro T, Katsuragawa Y, Tohma S. αvβ5 integrin promotes dedifferentiation of monolayer-cultured articular chondrocytes. ACTA ACUST UNITED AC 2011; 63:1938-49. [PMID: 21425129 DOI: 10.1002/art.30351] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE When cultured in monolayers, articular chondrocytes undergo an obvious phenotypic change. Although the involvement of integrins has been suggested, the exact mechanisms of the change have not been determined. This study was undertaken to clarify the mechanisms underlying the loss of chondrocyte phenotype early after plating. METHODS Primary cultured human articular chondrocytes were used for the experiments. Involvement of respective integrins in the phenotypic change was investigated in RNA interference (RNAi) experiments. A signaling pathway involved in the change was identified in experiments using specific inhibitors and adenoviruses encoding mutated genes involved in the pathway. Adenoviruses carrying mutated GTPases were used to determine the involvement of small GTPases in the process. RESULTS In monolayer-cultured chondrocytes, suppression of αv or β5 integrin expression by RNAi inhibited morphologic changes in the cells and increased (or prevented a reduction in) the expression of various cartilage matrix genes. Consistent results were obtained in experiments using a blocking antibody and a synthetic inhibitor of αvβ5 integrin. The decrease in cartilage matrix gene expression in chondrocytes after plating was mediated by ERK signaling, which was promoted primarily by αvβ5 integrin. In articular chondrocytes, the affinity of αvβ5 integrin for ligands was regulated by the small GTPase R-Ras. R-Ras was gradually activated in monolayer-cultured chondrocytes after plating, which caused a gradual decline in cartilage matrix gene expression through enhanced αvβ5 integrin activation and the subsequent increase in ERK signaling. CONCLUSION Our findings indicate that αvβ5 integrin may be involved in the change that occurs in monolayer-cultured chondrocytes after plating.
Collapse
Affiliation(s)
- Naoshi Fukui
- National Hospital Organization Sagamihara Hospital, Sagamihara, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
285
|
Appel S, Morgan KG. Scaffolding proteins and non-proliferative functions of ERK1/2. Commun Integr Biol 2011; 3:354-6. [PMID: 20798825 DOI: 10.4161/cib.3.4.11832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 03/15/2010] [Indexed: 01/09/2023] Open
Abstract
Studies of ERK1/2 generally focus on the regulation of nuclear ERK1/2 function mainly related to proliferation, whereas less attention has been drawn to the role ERK1/2 plays in the cytosol. Scaffolding proteins for ERK1/2 have been shown to control the time point and also the intracellular location of ERK1/2 activation. Hence, by concentrating ERK1/2 within subcellular compartments, scaffolding proteins restrict the substrate specificity of ERK1/2 and thus optimize the cell response for specific signal transduction programs in order to manipulate specific cellular functions. We have presented evidence that the F-actin binding protein calponin represents a new type of ERK1/2 scaffold, controlling the activation of a subfraction of ERK1/2 which is connected solely to contractile and/or migratory events in a cell.
Collapse
Affiliation(s)
- Sarah Appel
- Department of Health Sciences; Boston University; Boston, MA USA
| | | |
Collapse
|
286
|
Zhang LY, Zhou YY, Chen F, Wang B, Li J, Deng YW, Liu WD, Wang ZG, Li YW, Li DZ, Lv GH, Yin BL. Taurine inhibits serum deprivation-induced osteoblast apoptosis via the taurine transporter/ERK signaling pathway. Braz J Med Biol Res 2011; 44:618-23. [DOI: 10.1590/s0100-879x2011007500078] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 06/01/2011] [Indexed: 01/17/2023] Open
|
287
|
Prevoo B, Miller DS, van de Water FM, Wever KE, Russel FGM, Flik G, Masereeuw R. Rapid, nongenomic stimulation of multidrug resistance protein 2 (Mrp2) activity by glucocorticoids in renal proximal tubule. J Pharmacol Exp Ther 2011; 338:362-71. [PMID: 21515814 PMCID: PMC3126637 DOI: 10.1124/jpet.111.179689] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 04/21/2011] [Indexed: 12/21/2022] Open
Abstract
In renal proximal tubule, multidrug resistance protein 2 (Mrp2) actively transports many organic anions into urine, including drugs and metabolic wastes. Upon exposure to nephrotoxicants or during endotoxemia, both Mrp2 activity and expression are up-regulated. This may result from induced de novo synthesis of Mrp2 or post-transcriptional events involving specific signaling pathways. Here, we investigated glucocorticoid signaling to Mrp2 in killifish renal proximal tubules, a model system in which transport activity can be measured using a fluorescent substrate and confocal imaging. Exposure of tubules to dexamethasone rapidly increased Mrp2-mediated fluorescein methotrexate transport. Other glucocorticoid receptor (GR) ligands, cortisol and triamcinolone acetonide, also stimulated Mrp2-mediated transport. The GR antagonist, mifepristone 17β-hydroxy-11β-[4-dimethylamino phenyl]-17α-[1-propynyl]estra-4,9-dien-3-one (RU486), abolished stimulation by all three ligands, whereas the mineralocorticoid receptor antagonist, spironolactone, was ineffective. Consistent with action through a nongenomic mechanism, dexamethasone stimulation of Mrp2-mediated transport was insensitive to cycloheximide and actinomycin D, and immunohistochemistry revealed no alterations in Mrp2 expression at the luminal membrane. (9S-(9α,10β,12α))-2,3,9,10,11,12-hexahydro-10-hydroxy-10-(methoxycarbonyl)-9-methyl-9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6]benzodiazocin-1-one (K252a), an inhibitor of the tyrosine receptor kinase subfamily, reduced the dexamethasone effect, as did the specific hepatocyte growth factor receptor (c-Met) tyrosine kinase inhibitor, (2R)-1-[[5-[(Z)-[5-[[(2,6-dichlorophenyl)methyl]sulfonyl]-1,2-dihydro-2-oxo-3H-indol-3-ylidene]methyl]-2,4-dimethyl-1H-pyrrol-3-yl]carbonyl]-2-(1-pyrrolidinylmethyl)pyrrolidine (PHA-665752). Hepatocyte growth factor (HGF), an endogenous ligand for c-Met, stimulated Mrp2-mediated transport. This effect was reversed by PHA-665752 but not by RU486. Inhibition of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK 1/2) also abolished the effects of dexamethasone and HGF. Our results disclose a novel mechanism by which glucocorticoids acting through GR, c-Met, and MEK1/2 cause rapid, nongenomic stimulation of Mrp2-mediated transport in renal proximal tubules. This up-regulation may be nephroprotective, enhancing efflux of metabolic wastes and toxicants during cell and tissue stress.
Collapse
Affiliation(s)
- Brigitte Prevoo
- Department of Pharmacology and Toxicology, Radboud University Nijmegen Medical Centre/Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
288
|
Maïga O, Philippe M, Kotelevets L, Chastre E, Benadda S, Pidard D, Vranckx R, Walch L. Identification of mitogen-activated protein/extracellular signal-responsive kinase kinase 2 as a novel partner of the scaffolding protein human homolog of disc-large. FEBS J 2011; 278:2655-65. [PMID: 21615688 DOI: 10.1111/j.1742-4658.2011.08192.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Human disc-large homolog (hDlg), also known as synapse-associated protein 97, is a scaffold protein, a member of the membrane-associated guanylate kinase family, implicated in neuronal synapses and epithelial-epithelial cell junctions whose expression and function remains poorly characterized in most tissues, particularly in the vasculature. In human vascular tissues, hDlg is highly expressed in smooth muscle cells (VSMCs). Using the yeast two-hybrid system to screen a human aorta cDNA library, we identified mitogen-activated protein/extracellular signal-responsive kinase (ERK) kinase (MEK)2, a member of the ERK cascade, as an hDlg binding partner. Site-directed mutagenesis showed a major involvement of the PSD-95, disc-large, ZO-1 domain-2 of hDlg and the C-terminal sequence RTAV of MEK2 in this interaction. Coimmunoprecipitation assays in both human VSMCs and human embryonic kidney 293 cells, demonstrated that endogenous hDlg physically interacts with MEK2 but not with MEK1. Confocal microscopy suggested a colocalization of the two proteins at the inner layer of the plasma membrane of confluent human embryonic kidney 293 cells, and in a perinuclear area in human VSMCs. Additionally, hDlg also associates with the endoplasmic reticulum and microtubules in these latter cells. Taken together, these findings allow us to hypothesize that hDlg acts as a MEK2-specific scaffold protein for the ERK signaling pathway, and may improve our understanding of how scaffold proteins, such as hDlg, differentially tune MEK1/MEK2 signaling and cell responses.
Collapse
|
289
|
Chiu HC, Chou DL, Huang CT, Lin WH, Lien TW, Yen KJ, Hsu JTA. Suppression of Stat3 activity sensitizes gefitinib-resistant non small cell lung cancer cells. Biochem Pharmacol 2011; 81:1263-70. [DOI: 10.1016/j.bcp.2011.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 12/25/2022]
|
290
|
Hunter I, Mascall KS, Ramos JW, Nixon GF. A phospholipase Cγ1-activated pathway regulates transcription in human vascular smooth muscle cells. Cardiovasc Res 2011; 90:557-64. [PMID: 21285289 PMCID: PMC3096307 DOI: 10.1093/cvr/cvr039] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/25/2011] [Accepted: 01/28/2011] [Indexed: 12/21/2022] Open
Abstract
AIMS Growth factor-induced repression of smooth muscle (SM) cell marker genes is an integral part of vascular SM (VSM) cell proliferation. This is partly regulated via translocation of extracellular signal-regulated kinase 1/2 (ERK1/2) to the nucleus which activates the transcription factor Elk-1. The mediators involved in ERK1/2 nuclear translocation in VSM cells are unknown. The aim of this study is to examine the mechanisms which regulate growth factor-induced nuclear translocation of ERK1/2 and gene expression in VSM cells. METHODS AND RESULTS In cultured human VSM cells, phospholipase C (PLC)γ1 expression was required for platelet-derived growth factor (PDGF)-induced ERK1/2 nuclear translocation, Elk-1 phosphorylation, and subsequent repression of SM α-actin gene expression. The mechanisms of a role for PLCγ1 in ERK1/2 nuclear localization were further examined by investigating interacting proteins. The ERK1/2-binding phosphoprotein, protein enriched in astrocytes-15 (PEA-15), was phosphorylated by PDGF and this phosphorylation required activation of PLCγ1. In cells pre-treated with PEA-15 siRNA, ERK1/2 distribution significantly increased in the nucleus and resulted in decreased SM α-actin expression and increased VSM cell proliferation. Overexpression of PEA-15 increased ERK1/2 localization in the cytoplasm. The regulatory role of PEA-15 phosphorylation was assessed. In VSM cells overexpressing a non-phosphorylatable form of PEA-15, PDGF-induced ERK1/2 nuclear localization was inhibited. CONCLUSION These results suggest that PEA-15 phosphorylation by PLCγ1 is required for PDGF-induced ERK1/2 nuclear translocation. This represents an important level of phenotypic control by directly affecting Elk-1-dependent transcription and ultimately SM cell marker protein expression in VSM cells.
Collapse
Affiliation(s)
- Irene Hunter
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Keith S. Mascall
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Joe W. Ramos
- Cancer Research Center of Hawaii, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Graeme F. Nixon
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
291
|
Wang Y, Yang F, Fu Y, Huang X, Wang W, Jiang X, Gritsenko MA, Zhao R, Monore ME, Pertz OC, Purvine SO, Orton DJ, Jacobs JM, Camp DG, Smith RD, Klemke RL. Spatial phosphoprotein profiling reveals a compartmentalized extracellular signal-regulated kinase switch governing neurite growth and retraction. J Biol Chem 2011; 286:18190-201. [PMID: 21454597 PMCID: PMC3093891 DOI: 10.1074/jbc.m111.236133] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 03/24/2011] [Indexed: 01/01/2023] Open
Abstract
Brain development and spinal cord regeneration require neurite sprouting and growth cone navigation in response to extension and collapsing factors present in the extracellular environment. These external guidance cues control neurite growth cone extension and retraction processes through intracellular protein phosphorylation of numerous cytoskeletal, adhesion, and polarity complex signaling proteins. However, the complex kinase/substrate signaling networks that mediate neuritogenesis have not been investigated. Here, we compare the neurite phosphoproteome under growth and retraction conditions using neurite purification methodology combined with mass spectrometry. More than 4000 non-redundant phosphorylation sites from 1883 proteins have been annotated and mapped to signaling pathways that control kinase/phosphatase networks, cytoskeleton remodeling, and axon/dendrite specification. Comprehensive informatics and functional studies revealed a compartmentalized ERK activation/deactivation cytoskeletal switch that governs neurite growth and retraction, respectively. Our findings provide the first system-wide analysis of the phosphoprotein signaling networks that enable neurite growth and retraction and reveal an important molecular switch that governs neuritogenesis.
Collapse
Affiliation(s)
- Yingchun Wang
- From the Department of Pathology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093
- the State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Feng Yang
- the Biological Sciences Division, Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, and
| | - Yi Fu
- the State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiahe Huang
- the State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Wang
- From the Department of Pathology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093
- the State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinning Jiang
- From the Department of Pathology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093
| | - Marina A. Gritsenko
- the Biological Sciences Division, Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, and
| | - Rui Zhao
- the Biological Sciences Division, Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, and
| | - Matthew E. Monore
- the Biological Sciences Division, Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, and
| | - Olivier C. Pertz
- From the Department of Pathology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093
| | - Samuel O. Purvine
- the Biological Sciences Division, Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, and
| | - Daniel J. Orton
- the Biological Sciences Division, Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, and
| | - Jon M. Jacobs
- the Biological Sciences Division, Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, and
| | - David G. Camp
- the Biological Sciences Division, Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, and
| | - Richard D. Smith
- the Biological Sciences Division, Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, and
| | - Richard L. Klemke
- From the Department of Pathology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
292
|
German CL, Sauer BM, Howe CL. The STAT3 beacon: IL-6 recurrently activates STAT 3 from endosomal structures. Exp Cell Res 2011; 317:1955-69. [PMID: 21619877 DOI: 10.1016/j.yexcr.2011.05.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 05/10/2011] [Accepted: 05/10/2011] [Indexed: 01/12/2023]
Abstract
Endocytic trafficking plays an important role in signal transduction. Signal transducer and activator of transcription 3 (STAT3) and mitogen-activate protein kinase (MAPK) have both been localized to endosomal structures and are dependent upon endocytosis for downstream function. While the dependence of MAPK signaling upon endosomes has been well characterized, the involvement of endosomes in regulating STAT3 signaling has not been defined. Consequently, this study evaluated the role of endosomes in the initiation, modulation, amplification and persistence of interleukin-6(IL-6)-induced STAT3 signal transduction and transcription, and utilized IL-6-induced MAPK signaling as a comparator. Using pharmacologic treatment and temperature control of endocytic trafficking, pulse-chase treatments and in vitro kinase assays, STAT3 was found to interact with endosomes in a markedly different fashion than MAPK. STAT3 was activated by direct interaction with internal structures upstream of the late endosome following IL-6 exposure and persistent STAT3 signaling depended upon recurrent activation from endocytic structures. Further, STAT3 subcellular localization was not dependent upon endocytic trafficking. Instead, STAT3 transiently interacted with endosomes and relocated to the nucleus by an endosome-independent mechanism. Finally, endocytic trafficking played a central role in regulating STAT3 serine 727 phosphorylation through crosstalk with the MAPK signaling system. Together, these data reveal endosomes as central to the genesis, course and outcome of STAT3 signal transduction and transcription.
Collapse
Affiliation(s)
- Christopher L German
- Program in Molecular Neuroscience, Mayo Clinic College of Medicine, 200 First ST SW, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
293
|
Xu K, Yu FSX. Impaired epithelial wound healing and EGFR signaling pathways in the corneas of diabetic rats. Invest Ophthalmol Vis Sci 2011; 52:3301-8. [PMID: 21330660 DOI: 10.1167/iovs.10-5670] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PURPOSE. The purpose of the study was to investigate the effects of hyperglycemia on EGFR (epidermal growth factor receptor)-mediated wound response and signal transduction in the corneal epithelium of rats with type I diabetes mellitus (DM). METHODS. Corneal epithelia were removed from streptozotocin (STZ)- and weight-matched normal rats. Wound healing was monitored by fluorescein staining at 24 or 48 hours after epithelial debridement. Phosphorylation of EGFR, AKT, ERK, and BAD was determined by Western blot analysis. The distribution of phospho-AKT and proliferating cell nuclear antigen (PCNA) in rat corneas was examined by immunohistochemistry. Cell death was evaluated by TUNEL staining. RESULTS. A significant delay in corneal epithelial wound healing was observed 48 hours after wounding in the diabetic rats compared with the weight-matched control rats. In the DM rat corneas, epithelial cells demonstrated diminished responses to wounding, as assessed by the phosphorylation of EGFR and its downstream signaling molecules, AKT and ERK. Furthermore, although the distribution pattern of phospho-AKT suggested a role for AKT in epithelial migration and proliferation in the normoglycemic rat corneas, it was abrogated in the healing epithelia of the DM rats. Consistent with impaired AKT activity, the number of PCNA-stained cells was also greatly reduced in the healing corneas of the diabetic rats. Finally, decreases in pBAD (Ser(136) and Ser(112)) and increases in TUNEL-positive cells were observed in both the uninjured and healing corneal epithelia of the DM rats, but not of the control rats. CONCLUSIONS. In the corneas of SZT rats, EGFR-PI3K-AKT and ERK, as well as their downstream BAD signaling pathways in migratory epithelium, were altered, resulting in increased apoptosis, decreased cell proliferation, and delayed wound closure.
Collapse
Affiliation(s)
- Keping Xu
- Departments of Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan
| | | |
Collapse
|
294
|
Guo Y, Zhang X, Meng J, Wang ZY. An anticancer agent icaritin induces sustained activation of the extracellular signal-regulated kinase (ERK) pathway and inhibits growth of breast cancer cells. Eur J Pharmacol 2011; 658:114-22. [PMID: 21376032 PMCID: PMC3071461 DOI: 10.1016/j.ejphar.2011.02.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 12/07/2010] [Accepted: 02/06/2011] [Indexed: 01/16/2023]
Abstract
Icaritin, a prenylflavonoid derivative from Epimedium Genus, regulates many cellular processes. However, the function and the underlying mechanisms of icaritin in breast cancer cell growth have not been well established. Here, we report that icaritin strongly inhibited the growth of breast cancer MDA-MB-453 and MCF7 cells. At concentrations of 2-3 μM, icaritin induced cell cycle arrest at the G(2)/M phase accompanied by a down-regulation of the expression levels of the G(2)/M regulatory proteins such as cyclinB, cdc2 and cdc25C. Icaritin at concentrations of 4-5 μM, however, induced apoptotic cell death characterized by the accumulation of the annexin V- and propidium iodide-positive cells, cleavage of poly ADP-ribose polymerase (PARP) and down-regulation of the Bcl-2 expression. In addition, icaritin also induced a sustained phosphorylation of extracellular signal-regulated kinase (ERK) in these breast cancer cells. U0126, a specific ERK activation inhibitor, abrogated icaritin-induced G2/M cell cycle arrest and cell apoptosis. Icaritin more potently inhibited growth of the breast cancer stem/progenitor cells compared to anti-estrogen tamoxifen. Our results indicate that icaritin is a potent growth inhibitor for breast cancer cells and provide a rationale for preclinical and clinical evaluations of icaritin for breast cancer therapy.
Collapse
Affiliation(s)
- YuMing Guo
- Department of Medical Microbiology and Immunology, Creighton University Medical School, 2500 California Plaza, Omaha, NE 68178, USA
| | | | | | | |
Collapse
|
295
|
Zhang Y, Qu XJ, Liu YP, Hou KZ, Liu J. Treatment with β-elemene inhibits ERK activation and down-regulates GST-π expression in human gastric cancer cell line SGC7901/Adr. Shijie Huaren Xiaohua Zazhi 2011; 19:1394-1397. [DOI: 10.11569/wcjd.v19.i13.1394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of treatment with β-elemene on the activation of extracellular signal-regulated kinase (ERK) and expression of glutathione transferase-π (GST-π) in human gastric cancer cell line SGC7901/Adr.
METHODS: After SGC7901/Adr cells were treated with different concentrations of β-elemene for different durations, cell proliferation was measured by MTT assay, and protein expression was detected by Western blot. All experimental data were analyzed with the SPSS 13.0 software package.
RESULTS: β-elemene inhibited the proliferation of SGC7901/Adr cells in a time-dependent manner. The half maximal inhibitory concentrations of β-elemene at 24, 48, and 72 h in SGC7901/Adr cells were 53.48, 28.78 and 14.78 mg/L, respectively. In untreated control cells, ERK was basically phosphorylated. Treatment with β-elemene (50 mg/L) for 24 h significantly decreased the expression of phosphorylated ERK and GST-π in SGC7901/Adr cells.
CONCLUSION: β-elemene could inhibit the activation of the ERK signaling pathway and thereby down-regulate the expression of GST-π in SGC7901/Adr cells.
Collapse
|
296
|
Ponza P, Yocawibun P, Sittikankaew K, Hiransuchalert R, Yamano K, Klinbunga S. Molecular cloning and expression analysis of the Mitogen-activating protein kinase 1 (MAPK1) gene and protein during ovarian development of the giant tiger shrimp Penaeus monodon. Mol Reprod Dev 2011; 78:347-60. [PMID: 21542048 DOI: 10.1002/mrd.21310] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 03/10/2011] [Indexed: 11/06/2022]
Abstract
Isolation and characterization of genes and/or proteins differentially expressed in ovaries are necessary for understanding ovarian development in the giant tiger shrimp (Penaeus monodon). In this study, the full-length cDNA of P. monodon mitogen-activating protein kinase 1 (PmMAPK1) was characterized. PmMAPK1 was 1,398 bp in length containing an open reading frame of 1,098 bp that corresponded to a polypeptide of 365 amino acids. PmMAPK1 was more abundantly expressed in ovaries than in testes of P. monodon. Quantitative real-time PCR revealed differential expression levels of PmMAPK1 mRNA during ovarian development of intact broodstock, where it peaked in early cortical rod (stage III) ovaries (P < 0.05) and slightly decreased afterwards (P > 0.05). Likewise, the expression level of PmMAPK1 in early cortical rod and mature (IV) ovaries was significantly greater than that in previtellogenic (I) and vitellogenic (II) ovaries of eyestalk-ablated broodstock (P < 0.05). The PmMAPK1 transcript was localized in ooplasm of previtellogenic oocytes. In intact broodstock, the expression of the PmMAPK1 protein was clearly increased from previtellogenic ovaries in subsequent stages of ovarian development (P < 0.05). In contrast, the level of ovarian PmMAPK1 protein was comparable during oogenesis in eyestalk-ablated broodstock (P > 0.05). The PmMAPK1 protein was localized in ooplasm of previtellogenic and vitellogenic oocytes. It was also detected around the nuclear membrane of early cortical rod oocytes in both intact and eyestalk-ablated broodstock. Results indicated that PmMAPK1 gene products seem to play functional roles in the development and maturation of oocytes/ovaries in P. monodon.
Collapse
Affiliation(s)
- Pattareeya Ponza
- Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Klong Luang, Pathumthani, Thailand
| | | | | | | | | | | |
Collapse
|
297
|
Lu J, Zhao J, Zhao J, Ma J, Liu K, Yang H, Huang Y, Qin Z, Bai R, Li P, Yan W, Zhao M, Dong Z. VEGF-A-induced immature DCs not mature DCs differentiation into endothelial-like cells through ERK1/2-dependent pathway. Cell Biochem Funct 2011; 29:294-302. [DOI: 10.1002/cbf.1752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/14/2011] [Accepted: 02/18/2011] [Indexed: 11/08/2022]
|
298
|
Shearn CT, Fritz KS, Reigan P, Petersen DR. Modification of Akt2 by 4-Hydroxynonenal Inhibits Insulin-Dependent Akt Signaling in HepG2 Cells. Biochemistry 2011; 50:3984-96. [DOI: 10.1021/bi200029w] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- C. T. Shearn
- Department of Pharmaceutical Sciences, University of Colorado—Denver, Aurora, Colorado 80045, United States
| | - K. S. Fritz
- Department of Pharmaceutical Sciences, University of Colorado—Denver, Aurora, Colorado 80045, United States
| | - P. Reigan
- Department of Pharmaceutical Sciences, University of Colorado—Denver, Aurora, Colorado 80045, United States
| | - Dennis R. Petersen
- Department of Pharmaceutical Sciences, University of Colorado—Denver, Aurora, Colorado 80045, United States
| |
Collapse
|
299
|
Zhang P, Hu X, Xu X, Chen Y, Bache RJ. Dimethylarginine dimethylaminohydrolase 1 modulates endothelial cell growth through nitric oxide and Akt. Arterioscler Thromb Vasc Biol 2011; 31:890-7. [PMID: 21212404 PMCID: PMC3064458 DOI: 10.1161/atvbaha.110.215640] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 12/21/2010] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Dimethylarginine dimethylaminohydrolase 1 (DDAH1) modulates NO production by degrading the endogenous nitric oxide (NO) synthase (NOS) inhibitors asymmetrical dimethylarginine (ADMA) and L-NG-monomethyl arginine (L-NMMA). This study examined whether, in addition to degrading ADMA, DDAH1 exerts ADMA-independent effects that influence endothelial function. METHODS AND RESULTS Using selective gene silencing of DDAH1 with small interfering RNA and overexpression of DDAH1 in human umbilical vein endothelial cells, we found that DDAH1 acts to promote endothelial cell proliferation, migration, and tube formation by Akt phosphorylation, as well as through the traditional role of degrading ADMA. Incubation of human umbilical vein endothelial cells with the NOS inhibitors l-NG-nitro-arginine methyl ester (L-NAME) or ADMA, the soluble guanylyl cyclase inhibitor 1H-(1,2,4)oxadiazolo-(4,3-2)quinoxalin-1-one, or the cGMP analog 8-(4-Chlorophenylthio)-cGMP had no effect on phosphorylated (p)-Akt(Ser473), indicating that the increase in p-Akt(Ser473) produced by DDAH1 was independent of the NO-cGMP signaling pathway. DDAH1 formed a protein complex with Ras, and DDAH1 overexpression increased Ras activity. The Ras inhibitor manumycin-A or dominant-negative Ras significantly attenuated the DDAH1-induced increase in p-Akt(Ser473). Furthermore, DDAH1 knockout impaired endothelial sprouting from cultured aortic rings, and overexpression of constitutively active Akt or DDAH1 rescued endothelial sprouting in the aortic rings from these mice. CONCLUSIONS DDAH1 exerts a unique role in activating Akt that affects endothelial function independently of degrading endogenous NOS inhibitors.
Collapse
Affiliation(s)
- Ping Zhang
- Division of Cardiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
300
|
Triptolide inhibits rat vascular smooth muscle cell proliferation and cell cycle progression via attenuation of ERK1/2 and Rb phosphorylation. Exp Mol Pathol 2011; 90:137-42. [DOI: 10.1016/j.yexmp.2010.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 12/06/2010] [Indexed: 01/31/2023]
|