251
|
Li Z, Ren Q, Zhou Z, Cai Z, Wang B, Han J, Zhang L. Discovery of the first-in-class dual PPARδ/γ partial agonist for the treatment of metabolic syndrome. Eur J Med Chem 2021; 225:113807. [PMID: 34455359 DOI: 10.1016/j.ejmech.2021.113807] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/29/2022]
Abstract
The peroxisome proliferator-activated receptors (PPARs) exert vital function in the regulation of energy metabolism, which were considered as promising targets of metabolic syndrome. Until now, PPARδ/γ dual agonist is rarely reported, and thereby the pharmacologic action of PPARδ/γ dual agonist is still unclear. In this study, we identified a dual PPARδ/γ partial agonist 6 (ZLY06) based on the cyclization strategy of PPARα/δ dual agonist GFT505. ZLY06 revealed excellent pharmacokinetic profiles suitable for oral medication. Moreover, ZLY06 markedly improved glucolipid metabolism without weight gain, and alleviated fatty liver by promoting the β-oxidation of fatty acid and inhibiting hepatic lipogenesis. In contrast, weight gain and hepatic steatosis were observed in Rosiglitazone, a widely used PPARγ full agonist. All of these results indicated that ZLY06 exhibits potential benefits on metabolic syndrome, while no adverse effects related to PPARγ full agonist.
Collapse
Affiliation(s)
- Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Qiang Ren
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Zongtao Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Zongyu Cai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Bin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jing Han
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
252
|
Lei W, Li X, Li L, Huang M, Cao Y, Sun X, Jiang M, Zhang B, Zhang H. Compound Danshen Dripping Pill ameliorates post ischemic myocardial inflammation through synergistically regulating MAPK, PI3K/AKT and PPAR signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114438. [PMID: 34390798 DOI: 10.1016/j.jep.2021.114438] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/13/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Compound Danshen Dripping Pill (CDDP), composed of Salvia miltiorrhiza Bunge, Panax notoginseng (Burkill) F.H. Chen and Borneol, is a famous traditional Chinese medicine formula which has made great achievements in the treatment of ischemic heart disease, but the profound mechanism of CDDP improving post ischemic myocardial inflammation hasn't been clearly discussed. AIM OF THE STUDY The aim of this study was to explore the biological mechanism of constituents in CDDP synergistically improving post ischemic myocardial inflammation. MATERIALS AND METHODS The pharmacologic studies were applied to assess the cardio protection effect of CDDP in acute myocardial ischemic rats. To identify the anti-inflammatory ingredients in CDDP, an ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry combined with a dual-luciferase reporter assay for NF-κB inhibition were used. The network pharmacology and molecular docking assay were adopted to predict targets of anti-inflammatory ingredients and then the regulation effects of these active components on their targets were also verified. RESULTS Our results indicated that CDDP exerted an excellent cardio protection effect by reversing echocardiographic abnormalities, attenuating histopathological lesion, ameliorating circulating myocardial markers and inflammation cytokines. Tanshinol, salvianolic acid B (Sal B), tanshinone IIA (Tan IIA) and notoginsenoside R1 (NGR1) were the pivotal anti-inflammatory ingredients in CDDP. The anti-inflammatory mechanism is that tanshinol and Sal B respectively targeted on PPARγ and JNK, while Tan IIA worked on AKT1 and NGR1 bound to PI3K. CONCLUSIONS Our results firstly demonstrated that CDDP effectively ameliorated post ischemic myocardial inflammation through simultaneously modulating MAPK, PI3K/AKT and PPAR pathways in a multi-components synergetic manner.
Collapse
Affiliation(s)
- Wei Lei
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District,Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiao Li
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District,Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Li
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District,Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ming Huang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District,Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Cao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District,Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xingyi Sun
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District,Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Boli Zhang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District,Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District,Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
253
|
Ye Q, Zeng X, Cai S, Qiao S, Zeng X. Mechanisms of lipid metabolism in uterine receptivity and embryo development. Trends Endocrinol Metab 2021; 32:1015-1030. [PMID: 34625374 DOI: 10.1016/j.tem.2021.09.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/19/2021] [Accepted: 09/06/2021] [Indexed: 02/05/2023]
Abstract
Metabolic regulation plays important roles in embryo development and uterine receptivity during early pregnancy, ultimately influencing pregnancy efficiency in mammals. The important roles of lipid metabolism during early pregnancy have not been fully understood. Here, we described the regulatory roles of phospholipid, sphingolipid, and cholesterol metabolism on early embryo development, implantation, and uterine receptivity through production of cannabinoids, prostaglandins, lysophosphatidic acid, sphingosine-1-phosphate, and steroid hormones. Moreover, the impacts of lipids and fatty acids on embryo development potential and the related epigenetic modifications are also discussed. This review aims to elucidate the modulations of lipid metabolism on uterine receptivity and embryo development, contributing to novel strategies to establish dietary balanced lipids and fatty acids for reducing early embryo loss.
Collapse
Affiliation(s)
- Qianhong Ye
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, P. R. China; Beijing Key Laboratory of Biofeed Additives, Beijing 100193, P. R. China
| | - Xiangzhou Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, P. R. China; Beijing Key Laboratory of Biofeed Additives, Beijing 100193, P. R. China
| | - Shuang Cai
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, P. R. China; Beijing Key Laboratory of Biofeed Additives, Beijing 100193, P. R. China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, P. R. China; Beijing Key Laboratory of Biofeed Additives, Beijing 100193, P. R. China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, P. R. China; Beijing Key Laboratory of Biofeed Additives, Beijing 100193, P. R. China.
| |
Collapse
|
254
|
Papadopoulou E, Stratakis N, Basagaña X, Brantsæter AL, Casas M, Fossati S, Gražulevičienė R, Småstuen Haug L, Heude B, Maitre L, McEachan RRC, Robinson O, Roumeliotaki T, Sabidó E, Borràs E, Urquiza J, Vafeiadi M, Zhao Y, Slama R, Wright J, Conti DV, Vrijheid M, Chatzi L. Prenatal and postnatal exposure to PFAS and cardiometabolic factors and inflammation status in children from six European cohorts. ENVIRONMENT INTERNATIONAL 2021; 157:106853. [PMID: 34500361 PMCID: PMC11847598 DOI: 10.1016/j.envint.2021.106853] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 05/14/2023]
Abstract
Developing children are particularly vulnerable to the effects of exposure to per- and polyfluoroalkyl substances (PFAS), a group of endocrine disrupting chemicals. We hypothesized that early life exposure to PFASs is associated with poor metabolic health in children. We studied the association between prenatal and postnatal PFASs mixture exposure and cardiometabolic health in children, and the role of inflammatory proteins. In 1,101 mothers-child pairs from the Human Early Life Exposome project, we measured the concentrations of PFAS in blood collected in pregnancy and at 8 years (range = 6-12 years). We applied Bayesian Kernel Machine regression (BKMR) to estimate the associations between exposure to PFAS mixture and the cardiometabolic factors as age and sex- specific z-scores of waist circumference (WC), systolic and diastolic blood pressures (BP), and concentrations of triglycerides (TG), high-density lipoprotein (HDL-C) and low-density lipoprotein (LDL-C) cholesterol. We measured thirty six inflammatory biomarkers in child plasma and examined the underlying role of inflammatory status for the exposure-outcome association by integrating the three panels into a network. Exposure to the PFAS mixture was positively associated with HDL-C and systolic BP, and negatively associated with WC, LDL-C and TG. When we examined the independent effects of the individual chemicals in the mixture, prenatal PFHxS was negatively associated with HDL-C and prenatal PFNA was positively associated with WC and these were opposing directions from the overall mixture. Further, the network consisted of five distinct communities connected with positive and negative correlations. The selected inflammatory biomarkers were positively, while the postnatal PFAS were negatively related with the included cardiometabolic factors, and only prenatal PFOA was positively related with the pro-inflammatory cytokine IL-1beta and WC. Our study supports that prenatal, rather than postnatal, PFAS exposure might contribute to an unfavorable lipidemic profile and adiposity in childhood.
Collapse
Affiliation(s)
| | - Nikos Stratakis
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA; Department of Complex Genetics and Epidemiology, CAPHRI School for Public Health and Primary Care, University of Maastricht, Maastricht, the Netherlands
| | - Xavier Basagaña
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Maribel Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - Serena Fossati
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | | | | | - Barbara Heude
- Centre for Research in Epidemiology and Statistics, INSERM, Université de Paris, INRAe, Paris, France
| | - Léa Maitre
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - Rosemary R C McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Oliver Robinson
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, UK
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Eduard Sabidó
- Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eva Borràs
- Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jose Urquiza
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Yinqi Zhao
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Rémy Slama
- Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Inserm, CNRS, University Grenoble Alpes, Institute of Advanced Biosciences, Joint research center (U1209), La Tronche, Grenoble, France
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - David V Conti
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - Lida Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| |
Collapse
|
255
|
Chen Q, Bao L, Lv L, Xie F, Zhou X, Zhang H, Zhang G. Schisandrin B regulates macrophage polarization and alleviates liver fibrosis via activation of PPARγ. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1500. [PMID: 34805362 PMCID: PMC8573433 DOI: 10.21037/atm-21-4602] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/27/2021] [Indexed: 11/11/2022]
Abstract
Background Schisandrin B (Sch B), the main ingredient of Schisandra chinensis, displays many bioactivities. This study aimed to identify the drug target of Sch B against liver fibrosis and describe the related molecular mechanisms. Methods The effects of Sch B on liver fibrosis and macrophage polarization was investigated in vivo and in vitro. Furthermore, we analyzed the regulatory effect of Sch B on peroxisome proliferator-activated receptor gamma (PPARγ). Results Our data showed that Sch B dramatically alleviated liver inflammation and fibrosis and inhibited macrophage activation via PPARγ. Sch B binds with PPARγ by molecular docking. Immunofluorescence double staining showed that PPARγ was mainly expressed in macrophages rather than hepatic stellate cells (HSCs) in liver fibrosis. Importantly, Sch B strongly inhibited macrophage polarization in fibrotic livers compared with the model group. Further, the results revealed that Sch B efficiently inhibited macrophage polarization and also decreased the levels of inflammatory cytokines in vitro. Knockdown of PPARγ by small interfering RNA (siRNA) inhibited the effect of Sch B on macrophage polarization. Mechanistically, Sch B regulated macrophage polarization through inhibition of the nuclear factor (NF)-κB signaling pathway via PPARγ both in vivo and in vitro. Conclusions These results suggested that Sch B alleviated carbon tetrachloride (CCl4)-induced liver inflammation and fibrosis by inhibiting macrophage polarization via targeting PPARγ.
Collapse
Affiliation(s)
- Qingshan Chen
- Department of Pharmacy, Third Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Leilei Bao
- Department of Pharmacy, Third Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Lei Lv
- Department of Pharmacy, Third Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Fangyuan Xie
- Department of Pharmacy, Third Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Xuwei Zhou
- Department of Basic Medicine, Fudan University School of Medicine, Shanghai, China
| | - Hai Zhang
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, Tong Ji University School of Medicine, Shanghai, China
| | - Guoqing Zhang
- Department of Pharmacy, Third Affiliated Hospital of Naval Military Medical University, Shanghai, China
| |
Collapse
|
256
|
de Souza Basso B, Haute GV, Ortega-Ribera M, Luft C, Antunes GL, Bastos MS, Carlessi LP, Levorse VG, Cassel E, Donadio MVF, Santarém ER, Gracia-Sancho J, Rodrigues de Oliveira J. Methoxyeugenol deactivates hepatic stellate cells and attenuates liver fibrosis and inflammation through a PPAR-ɣ and NF-kB mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114433. [PMID: 34280502 DOI: 10.1016/j.jep.2021.114433] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/02/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Studies have shown interest in nutraceuticals for the prevention of liver diseases. Methoxyeugenol, is a molecule found in foods, such as nutmeg (Myristica fragrans Houtt.) and Brazilian red propolis. These two sources of methoxyeugenol, propolis and nutmeg, are used in folk medicine for the treatment of hepatic and gastrointestinal disorders, although little is known about their effects on the prevention of liver fibrosis. Natural PPAR (Peroxisome proliferator-activated receptor) agonists would represent unique molecules for therapy, considering the lack of therapeutics to treat liver fibrosis in chronic liver disease. Thus, investigation on new alternatives are necessary, including the search for natural compounds from renewable and sustainable sources. Liver fibrosis is a pathological process characterized by an exacerbated cicatricial response in the hepatic tissue, which compromises liver function. Therefore, inhibition of HSC (hepatic stellate cell) activation and hepatocyte damage are considered major strategies for the development of new anti-fibrotic treatments. AIM OF THE STUDY This study aimed to investigate the effects of methoxyeugenol treatment on HSC phenotype modulation in human and murine cells, hepatocyte damage prevention, and protective effects in vivo, in order to evaluate its therapeutic potential for liver fibrosis prevention. METHODS We investigated the effects of methoxyeugenol in (i) in vitro models using human and murine HSC and hepatocytes, and (ii) in vivo models of CCl4 (carbon tetrachloride) -induced liver fibrosis in mice. RESULTS We herein report that methoxyeugenol decreases HSC activation through the activation of PPAR-ɣ, ultimately inducing a quiescent phenotype highlighted by an increase in lipid droplets, loss of contraction ability, and a decrease in the proliferative rate and mRNA expression of fibroblast markers. In addition, methoxyeugenol prevented hepatocytes from oxidative stress damage. Moreover, in mice submitted to chronic liver disease through CCl4 administration, methoxyeugenol decreased the inflammatory profile, liver fibrosis, mRNA expression of fibrotic genes, and the inflammatory pathway signaled by NF-kB (Nuclear factor kappa B). CONCLUSION We propose methoxyeugenol as a novel and potential therapeutic approach to treat chronic liver disease and fibrosis.
Collapse
Affiliation(s)
- Bruno de Souza Basso
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul PUCRS, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Gabriela Viegas Haute
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Martí Ortega-Ribera
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Lab, IDIBAPS Biomedical Research Institute - CIBEREHD, Barcelona, Spain
| | - Carolina Luft
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Géssica Luana Antunes
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Matheus Scherer Bastos
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Leonardo Pfeiff Carlessi
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Vitor Giancarlo Levorse
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Eduardo Cassel
- School of Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Márcio Vinícius Fagundes Donadio
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Eliane Romanato Santarém
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Lab, IDIBAPS Biomedical Research Institute - CIBEREHD, Barcelona, Spain
| | - Jarbas Rodrigues de Oliveira
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
257
|
García A, Vila L, Marín P, Bernabeu Á, Villarroel-Vicente C, Hennuyer N, Staels B, Franck X, Figadère B, Cabedo N, Cortes D. Synthesis of 2-Prenylated Alkoxylated Benzopyrans by Horner-Wadsworth-Emmons Olefination with PPARα/γ Agonist Activity. ACS Med Chem Lett 2021; 12:1783-1786. [PMID: 34795868 DOI: 10.1021/acsmedchemlett.1c00400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023] Open
Abstract
We have synthesized series of 2-prenylated benzopyrans as analogues of the natural polycerasoidol, a dual PPARα/γ agonist with anti-inflammatory effects. The prenylated side chain consists of five or nine carbons with an α-alkoxy-α,β-unsaturated ester moiety. Prenylation was introduced via the Grignard reaction, followed by Johnson-Claisen rearrangement, and the α-alkoxy-α,β-unsaturated ester moiety was introduced by the Horner-Wadsworth-Emmons reaction. Synthetic derivatives showed high efficacy to activate both hPPARα and hPPARγ as dual PPARα/γ agonists. These prenylated benzopyrans emerge as lead compounds potentially useful for preventing cardiometabolic diseases.
Collapse
Affiliation(s)
- Ainhoa García
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, 46100 Burjassot, Valencia, Spain
| | - Laura Vila
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, 46100 Burjassot, Valencia, Spain
- Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, 46010 Valencia, Spain
| | - Paloma Marín
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, 46100 Burjassot, Valencia, Spain
| | - Álvaro Bernabeu
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, 46100 Burjassot, Valencia, Spain
| | - Carlos Villarroel-Vicente
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, 46100 Burjassot, Valencia, Spain
- Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, 46010 Valencia, Spain
| | - Nathalie Hennuyer
- Université Lille, Inserm, CHU Lille, Institut Pasteur Lille, U1011-EGID, 59000 Lille, France
| | - Bart Staels
- Université Lille, Inserm, CHU Lille, Institut Pasteur Lille, U1011-EGID, 59000 Lille, France
| | - Xavier Franck
- Normandie Univ, CNRS, INSA Rouen, UNIROUEN, COBRA (UMR6014 & FR 3038), 76000 Rouen, France
| | - Bruno Figadère
- BioCIS, CNRS, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Nuria Cabedo
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, 46100 Burjassot, Valencia, Spain
- Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, 46010 Valencia, Spain
| | - Diego Cortes
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
258
|
Wang Z, Chen WD, Wang YD. Nuclear receptors: a bridge linking the gut microbiome and the host. Mol Med 2021; 27:144. [PMID: 34740314 PMCID: PMC8570027 DOI: 10.1186/s10020-021-00407-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Background The gut microbiome is the totality of microorganisms, bacteria, viruses, protozoa, and fungi within the gastrointestinal tract. The gut microbiome plays key roles in various physiological and pathological processes through regulating varieties of metabolic factors such as short-chain fatty acids, bile acids and amino acids. Nuclear receptors, as metabolic mediators, act as a series of intermediates between the microbiome and the host and help the microbiome regulate diverse processes in the host. Recently, nuclear receptors such as farnesoid X receptor, peroxisome proliferator-activated receptors, aryl hydrocarbon receptor and vitamin D receptor have been identified as key regulators of the microbiome-host crosstalk. These nuclear receptors regulate metabolic processes, immune activity, autophagy, non-alcoholic and alcoholic fatty liver disease, inflammatory bowel disease, cancer, obesity, and type-2 diabetes. Conclusion In this review, we have summarized the functions of the nuclear receptors in the gut microbiome-host axis in different physiological and pathological conditions, indicating that the nuclear receptors may be the good targets for treatment of different diseases through the crosstalk with the gut microbiome.
Collapse
Affiliation(s)
- Zixuan Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Wei-Dong Chen
- Key Laboratory of Molecular Pathology, Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, Inner Mongolia, People's Republic of China. .,School of Medicine, Key Laboratory of Receptors-Mediated Gene Regulation, The People' Hospital of Hebi, Henan University, Henan, People's Republic of China.
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China.
| |
Collapse
|
259
|
Atkinson SP. A preview of selected articles. Stem Cells Transl Med 2021. [DOI: 10.1002/sct3.13034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
260
|
Boeing T, Speca S, de Souza P, Mena AM, Bertin B, Desreumax P, Mota da Silva L, Faloni de Andrade S, Dubuqoy L. The PPARγ-dependent effect of flavonoid luteolin against damage induced by the chemotherapeutic irinotecan in human intestinal cells. Chem Biol Interact 2021; 351:109712. [PMID: 34699766 DOI: 10.1016/j.cbi.2021.109712] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/01/2021] [Accepted: 10/20/2021] [Indexed: 01/25/2023]
Abstract
Irinotecan (CPT-11) is one of the main agents used to treat colorectal cancer; unfortunately, it is associated with increased intestinal mucositis developing. Luteolin has been shown to prevent damage induced by this chemotherapeutic in mice; thus, in this research, we have investigated luteolin's action mechanism in human intestinal epithelial cells. The potential of luteolin in reducing inflammation and oxidative stress induced by irinotecan in Caco-2 cells was evaluated by PCR through mRNA expression of inflammatory and oxidative genes and by ELISA at the protein level. To assess whether luteolin's ability to control irinotecan-induced damage occurs in a PPARγ dependent manner, experiments were performed on PPARγ downregulated cells. Irinotecan downregulated PPARγ expression and upregulated inflammatory and oxidative genes, while luteolin upregulated PPARγ, HO-1, SOD and decreased expression of IL-1β and iNOS. Interestingly, when the cells were co-stimulated with luteolin and irinotecan, the flavonoid reversed the inflammation and oxidative imbalance evoked by the chemotherapeutic. However, when these experiments were performed in cells downregulated for PPARγ, luteolin lost the capacity to increase PPARγ and reverse the effect of irinotecan in all tested genes, except by IL-1β. The present study showed that the protective effect of luteolin against irinotecan is PPARγ dependent.
Collapse
Affiliation(s)
- Thaise Boeing
- Postgraduate Program in Pharmaceutical Sciences (PPGCF), Nucleus for Chemical-Pharmaceutical Investigations (NIQFAR), University of Vale do Itajaí (UNIVALI), Itajaí-SC, Brazil; Université Lille 2, CHRU de Lille, Inserm, Lille Inflammation Research International Center (LIRIC), U995, Lille, France.
| | - Silvia Speca
- Université Lille 2, CHRU de Lille, Inserm, Lille Inflammation Research International Center (LIRIC), U995, Lille, France
| | - Priscila de Souza
- Postgraduate Program in Pharmaceutical Sciences (PPGCF), Nucleus for Chemical-Pharmaceutical Investigations (NIQFAR), University of Vale do Itajaí (UNIVALI), Itajaí-SC, Brazil
| | - Anthony Martin Mena
- Université Lille 2, CHRU de Lille, Inserm, Lille Inflammation Research International Center (LIRIC), U995, Lille, France
| | - Benjamin Bertin
- Université Lille 2, CHRU de Lille, Inserm, Lille Inflammation Research International Center (LIRIC), U995, Lille, France
| | - Pierre Desreumax
- Université Lille 2, CHRU de Lille, Inserm, Lille Inflammation Research International Center (LIRIC), U995, Lille, France
| | - Luisa Mota da Silva
- Postgraduate Program in Pharmaceutical Sciences (PPGCF), Nucleus for Chemical-Pharmaceutical Investigations (NIQFAR), University of Vale do Itajaí (UNIVALI), Itajaí-SC, Brazil
| | - Sérgio Faloni de Andrade
- Postgraduate Program in Pharmaceutical Sciences (PPGCF), Nucleus for Chemical-Pharmaceutical Investigations (NIQFAR), University of Vale do Itajaí (UNIVALI), Itajaí-SC, Brazil; CBIOS, Research Center for Biosciences and Health Technologies, Universidade Lusófona, Lisboa, Portugal
| | - Laurent Dubuqoy
- Université Lille 2, CHRU de Lille, Inserm, Lille Inflammation Research International Center (LIRIC), U995, Lille, France
| |
Collapse
|
261
|
An Insight into Anti-Inflammatory Activities and Inflammation Related Diseases of Anthocyanins: A Review of Both In Vivo and In Vitro Investigations. Int J Mol Sci 2021; 22:ijms222011076. [PMID: 34681733 PMCID: PMC8540239 DOI: 10.3390/ijms222011076] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Anthocyanin is a type of flavonoid pigment widely present in fruits and vegetables. It can not only be used as natural pigment, but also has a variety of health functions, for instance, anti-oxidant, anti-inflammatory, anti-tumor, and neuroprotective activities. Persistent proinflammatory status is a major factor in the development, progression, and complications of chronic diseases. Not surprisingly, there are thus many food ingredients that can potentially affect inflammation related diseases and many studies have shown that anthocyanins play an important role in inflammatory pathways. In this paper, the inflammation related diseases (such as, obesity, diabetes, cardiovascular disease, and cancer) of anthocyanins are introduced, and the anti-inflammatory effect of anthocyanins is emphatically introduced. Moreover, the anti-inflammatory mechanism of anthocyanins is elaborated from the aspects of NF-κB, toll like receptor, MAPKs, NO, and ROS and the main efficacy of anthocyanins in inflammation and related diseases is determined. In conclusion, this review aims to get a clear insight into the role of anthocyanins in inflammation related diseases.
Collapse
|
262
|
Chi T, Wang M, Wang X, Yang K, Xie F, Liao Z, Wei P. PPAR-γ Modulators as Current and Potential Cancer Treatments. Front Oncol 2021; 11:737776. [PMID: 34631571 PMCID: PMC8495261 DOI: 10.3389/fonc.2021.737776] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Worldwide, cancer has become one of the leading causes of mortality. Peroxisome Proliferator-Activated Receptors (PPARs) is a family of critical sensors of lipids as well as regulators of diverse metabolic pathways. They are also equipped with the capability to promote eNOS activation, regulate immunity and inflammation response. Aside from the established properties, emerging discoveries are also made in PPAR's functions in the cancer field. All considerations are given, there exists great potential in PPAR modulators which may hold in the management of cancers. In particular, PPAR-γ, the most expressed subtype in adipose tissues with two isoforms of different tissue distribution, has been proven to be able to inhibit cell proliferation, induce cell cycle termination and apoptosis of multiple cancer cells, promote intercellular adhesion, and cripple the inflamed state of tumor microenvironment, both on transcriptional and protein level. However, despite the multi-functionalities, the safety of PPAR-γ modulators is still of clinical concern in terms of dosage, drug interactions, cancer types and stages, etc. This review aims to consolidate the functions of PPAR-γ, the current and potential applications of PPAR-γ modulators, and the challenges in applying PPAR-γ modulators to cancer treatment, in both laboratory and clinical settings. We sincerely hope to provide a comprehensive perspective on the prospect of PPAR-γ applicability in the field of cancer treatment.
Collapse
Affiliation(s)
- Tiange Chi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,First Clinical Medical School, Beijing University of Chinese Medicine, Beijing, China
| | - Mina Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Department of Acupuncture and Moxibustion, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xu Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ke Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Feiyu Xie
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Oncology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Zehuan Liao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Peng Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
263
|
Repurposing Peroxisome Proliferator-Activated Receptor Agonists in Neurological and Psychiatric Disorders. Pharmaceuticals (Basel) 2021; 14:ph14101025. [PMID: 34681249 PMCID: PMC8538250 DOI: 10.3390/ph14101025] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Common pathophysiological mechanisms have emerged for different neurological and neuropsychiatric conditions. In particular, mechanisms of oxidative stress, immuno-inflammation, and altered metabolic pathways converge and cause neuronal and non-neuronal maladaptative phenomena, which underlie multifaceted brain disorders. The peroxisome proliferator-activated receptors (PPARs) are nuclear receptors modulating, among others, anti-inflammatory and neuroprotective genes in diverse tissues. Both endogenous and synthetic PPAR agonists are approved treatments for metabolic and systemic disorders, such as diabetes, fatty liver disease, and dyslipidemia(s), showing high tolerability and safety profiles. Considering that some PPAR-acting drugs permeate through the blood-brain barrier, the possibility to extend their scope from the periphery to central nervous system has gained interest in recent years. Here, we review preclinical and clinical evidence that PPARs possibly exert a neuroprotective role, thereby providing a rationale for repurposing PPAR-targeting drugs to counteract several diseases affecting the central nervous system.
Collapse
|
264
|
Zhao Z, Bai Y, Tian H, Shi B, Li X, Luo Y, Wang J, Hu J, Abbas Raza SH. Interference with ACSL1 gene in bovine adipocytes: Transcriptome profiling of circRNA related to unsaturated fatty acid production. Genomics 2021; 113:3967-3977. [PMID: 34601049 DOI: 10.1016/j.ygeno.2021.09.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 07/23/2021] [Accepted: 09/27/2021] [Indexed: 01/12/2023]
Abstract
Long-chain acyl-CoA synthetase 1 (ACSL1) is a member of the acyl-CoA synthetase family that plays a vital role in lipid metabolism. We have previously shown that the ACSL1 gene regulates the composition of unsaturated fatty acids (UFAs) in bovine skeletal muscle, which in turn regulates the fatty acid synthesis and the generation of lipid droplets. Here, we used RNA-Seq to screen circRNAs that regulated the expression of ACSL1 gene and other UFA synthesis-related genes by RNA interference and noninterference in bovine adipocytes. The results of KEGG pathway analysis showed that the parental genes of differentially expressed (DE)-circRNAs were primarily enriched in the adipocytokine signaling pathway. The prediction results showed that novel_circ_0004855, novel_circ_0001507, novel_circ_0001731, novel_circ_0005276, novel_circ_0002060, novel_circ_0005405 and novel_circ_0004254 regulated UFA synthesis-related genes by interacting with the related miRNAs. These results could help expand our knowledge of the molecular mechanisms of circRNAs in the regulation of UFA synthesis in bovine adipocytes.
Collapse
Affiliation(s)
- Zhidong Zhao
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanbin Bai
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Hongshan Tian
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Bingang Shi
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xupeng Li
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuzhu Luo
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiqing Wang
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiang Hu
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
265
|
Porcuna J, Mínguez-Martínez J, Ricote M. The PPARα and PPARγ Epigenetic Landscape in Cancer and Immune and Metabolic Disorders. Int J Mol Sci 2021; 22:ijms221910573. [PMID: 34638914 PMCID: PMC8508752 DOI: 10.3390/ijms221910573] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-modulated nuclear receptors that play pivotal roles in nutrient sensing, metabolism, and lipid-related processes. Correct control of their target genes requires tight regulation of the expression of different PPAR isoforms in each tissue, and the dysregulation of PPAR-dependent transcriptional programs is linked to disorders, such as metabolic and immune diseases or cancer. Several PPAR regulators and PPAR-regulated factors are epigenetic effectors, including non-coding RNAs, epigenetic enzymes, histone modifiers, and DNA methyltransferases. In this review, we examine advances in PPARα and PPARγ-related epigenetic regulation in metabolic disorders, including obesity and diabetes, immune disorders, such as sclerosis and lupus, and a variety of cancers, providing new insights into the possible therapeutic exploitation of PPAR epigenetic modulation.
Collapse
|
266
|
Yin X, Liu W, Chen H, Qi C, Chen H, Niu H, Yang J, Kwok KWH, Dong W. Effects of ferulic acid on muscle development and intestinal microbiota of zebrafish. J Anim Physiol Anim Nutr (Berl) 2021; 106:429-440. [PMID: 34580932 DOI: 10.1111/jpn.13631] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022]
Abstract
Ferulic acid (FA) is one of a common ingredients in Chinese herbal medicine. FA has the interesting property of promoting growth and improving meat quality in livestock, but the mechanism is not understood. This study evaluated both safety and mechanism of efficacy in zebrafish model. At 15 μg/mL or above, FA led to pericardial oedema and delayed growth in zebrafish embryos. Dietary FA promoted growth and feed assimilation in male adult zebrafish. Genes related to myogenic development (myod1, myog and myf5) were significantly upregulated by FA and muscle fibre width in skeletal muscle was increased. At 20 µg/g, FA significantly increased number of goblet cells in zebrafish intestinal tissue, and gut microbiota composition also changed. Based on 16s rRNA gene sequences, 20 μg/g FA decreased Firmicutes and increased Bacteroides. 20 μg/g FA also stimulated the expression of PPAR-α, a gene associated with fat metabolism, and decreased the expression of PPAR-β and PPAR-γ. These gene expression changes were beneficial to fatty acid synthesis and metabolism and decreased fat deposition. Our overall results indicated that FA can be a safe growth promotor in fish particularly in skeletal muscles.
Collapse
Affiliation(s)
- Xiaoyu Yin
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Wuyun Liu
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China.,Department of Forage Nutrition and Chemistry, College of Animal Husbandry Biotechnology, National Agricultural University of Mongolia, Ulaanbaatar, Mongolia
| | - Hao Chen
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Chelimuge Qi
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Hongsong Chen
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Huaxin Niu
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Jingfeng Yang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Kevin W H Kwok
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.,Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| |
Collapse
|
267
|
Giroud M, Jodeleit H, Prentice KJ, Bartelt A. Adipocyte function and the development of cardiometabolic disease. J Physiol 2021; 600:1189-1208. [PMID: 34555180 DOI: 10.1113/jp281979] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/31/2021] [Indexed: 11/08/2022] Open
Abstract
Obesity is a medical disorder caused by multiple mechanisms of dysregulated energy balance. A major consequence of obesity is an increased risk to develop diabetes, diabetic complications and cardiovascular disease. While a better understanding of the molecular mechanisms linking obesity, insulin resistance and cardiovascular disease is needed, translational research of the human pathology is hampered by the available cellular and rodent model systems. Major barriers are the species-specific differences in energy balance, vascular biology and adipose tissue physiology, especially related to white and brown adipocytes, and adipose tissue browning. In rodents, non-shivering thermogenesis is responsible for a large part of energy expenditure, but humans possess much less thermogenic fat, which means temperature is an important variable in translational research. Mouse models with predisposition to dyslipidaemia housed at thermoneutrality and fed a high-fat diet more closely reflect human physiology. Also, adipocytes play a key role in the endocrine regulation of cardiovascular function. Adipocytes secrete a variety of hormones, lipid mediators and other metabolites that directly influence the local microenvironment as well as distant tissues. This is specifically apparent in perivascular depots, where adipocytes modulate vascular function and inflammation. Altogether, these mechanisms highlight the critical role of adipocytes in the development of cardiometabolic disease.
Collapse
Affiliation(s)
- Maude Giroud
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany.,Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany
| | - Henrika Jodeleit
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Bavaria, Germany
| | - Kacey J Prentice
- Department of Molecular Metabolism & Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany.,Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Bavaria, Germany.,Department of Molecular Metabolism & Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
268
|
Li J, Wan Y, Zheng Z, Zhang H, Li Y, Guo X, Li K, Li D. Maternal n-3 polyunsaturated fatty acids restructure gut microbiota of offspring mice and decrease their susceptibility to mammary gland cancer. Food Funct 2021; 12:8154-8168. [PMID: 34291263 DOI: 10.1039/d1fo00906k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Our previous studies have revealed that a maternal diet rich in n-3 polyunsaturated fatty acids (PUFAs) is associated with decreased mammary cancer risk in offspring. However, the underlying mechanism remains unclear. The present study aimed to investigate the possible mechanism by which maternal n-3 PUFAs decrease the mammary cancer risk of offspring in terms of gut microbiota. C57BL/6 pregnant mice were fed a control standard chow (CON), fish oil supplemented diet (n-3 Sup-FO), flaxseed oil supplemented diet (n-3 Sup-FSO) or n-3 PUFA deficient diet (n-3 Def) (n = 10) throughout gestation and lactation. After weaning, all offspring were fed a AIN-93G diet. The tumor incidence and volume were significantly increased in n-3 Def offspring compared with the other groups. Maternal n-3 PUFA supplementation resulted in a significantly increased α-diversity of the gut microbiota in n-3 Sup-FO and n-3 Sup-FSO offspring compared with that in n-3 Def offspring. The relative abundances of Akkermansia, Lactobacillus and Mucispirillum observed in adult offspring of both the n-3 Sup-FO and n-3 Sup-FSO groups were higher than those observed in the control group, whereas the maternal n-3 Def diet was associated with decreased abundances of Lactobacillus, Bifidobacterium and Barnesiella in 7-week-old offspring. The levels of the pro-inflammatory factors IL-1β, IL-6 and TNF-α were significantly lower in n-3 PUFA supplemented offspring than in n-3 Def offspring. In addition, the abundance of Mucispirillum was positively associated with the concentration of the anti-inflammatory factor IL-10, whereas the abundances of Bifidobacterium and Akkermansia were negatively associated with IL-1β and IL-6, respectively. Based on the bacterial composition of the gut microbiota, metabolites were predicted and the results showed that arachidonic acid metabolism and the MAPK signaling pathways were more enriched, while the butyric acid metabolic pathway was less enriched in offspring of the n-3 Def group than in those of the other three groups. Our findings suggest that decreased pro-inflammatory factors and changed gut microbiota are associated with the protective effects of maternal n-3 PUFAs against offspring's mammary tumorigenesis.
Collapse
Affiliation(s)
- Jiaomei Li
- Institute of Nutrition and Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | | | | | | | | | | | | | | |
Collapse
|
269
|
Repurposing Small Molecules to Target PPAR-γ as New Therapies for Peripheral Nerve Injuries. Biomolecules 2021; 11:biom11091301. [PMID: 34572514 PMCID: PMC8465622 DOI: 10.3390/biom11091301] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/08/2021] [Accepted: 08/14/2021] [Indexed: 12/21/2022] Open
Abstract
The slow rate of neuronal regeneration that follows peripheral nerve repair results in poor recovery, particularly where reinnervation of muscles is delayed, leading to atrophy and permanent loss of function. There is a clear clinical need to develop drug treatments that can accelerate nerve regeneration safely, restoring connections before the target tissues deteriorate irreversibly. The identification that the Rho/Rho-associated kinase (ROCK) pathway acts to limit neuronal growth rate is a promising advancement towards the development of drugs. Targeting Rho or ROCK directly can act to suppress the activity of this pathway; however, the pathway can also be modulated through the activation of upstream receptors; one of particular interest being peroxisome proliferator-activated receptor gamma (PPAR-γ). The connection between the PPAR-γ receptor and the Rho/ROCK pathway is the suppression of the conversion of inactive guanosine diphosphate (GDP)-Rho to active guanosine triphosphate GTP-Rho, resulting in the suppression of Rho/ROCK activity. PPAR-γ is known for its role in cellular metabolism that leads to cell growth and differentiation. However, more recently there has been a growing interest in targeting PPAR-γ in peripheral nerve injury (PNI). The localisation and expression of PPAR-γ in neural cells following a PNI has been reported and further in vitro and in vivo studies have shown that delivering PPAR-γ agonists following injury promotes nerve regeneration, leading to improvements in functional recovery. This review explores the potential of repurposing PPAR-γ agonists to treat PNI and their prospective translation to the clinic.
Collapse
|
270
|
Zhuang L, Mao Y, Liu Z, Li C, Jin Q, Lu L, Tao R, Yan X, Chen K. FABP3 Deficiency Exacerbates Metabolic Derangement in Cardiac Hypertrophy and Heart Failure via PPARα Pathway. Front Cardiovasc Med 2021; 8:722908. [PMID: 34458345 PMCID: PMC8387950 DOI: 10.3389/fcvm.2021.722908] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Cardiac hypertrophy was accompanied by various cardiovascular diseases (CVDs), and due to the high global incidence and mortality of CVDs, it has become increasingly critical to characterize the pathogenesis of cardiac hypertrophy. We aimed to determine the metabolic roles of fatty acid binding protein 3 (FABP3) on transverse aortic constriction (TAC)-induced cardiac hypertrophy. Methods and Results: Transverse aortic constriction or Ang II treatment markedly upregulated Fabp3 expression. Notably, Fabp3 ablation aggravated TAC-induced cardiac hypertrophy and cardiac dysfunction. Multi-omics analysis revealed that Fabp3-deficient hearts exhibited disrupted metabolic signatures characterized by increased glycolysis, toxic lipid accumulation, and compromised fatty acid oxidation and ATP production under hypertrophic stimuli. Mechanistically, FABP3 mediated metabolic reprogramming by directly interacting with PPARα, which prevented its degradation and synergistically modulated its transcriptional activity on Mlycd and Gck. Finally, treatment with the PPARα agonist, fenofibrate, rescued the pro-hypertrophic effects of Fabp3 deficiency. Conclusions: Collectively, these findings reveal the indispensable roles of the FABP3-PPARα axis on metabolic homeostasis and the development of hypertrophy, which sheds new light on the treatment of hypertrophy.
Collapse
Affiliation(s)
- Lingfang Zhuang
- Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ye Mao
- Department of Health Management Center, Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zizhu Liu
- Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenni Li
- Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Jin
- Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Lu
- Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Tao
- Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxiang Yan
- Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kang Chen
- Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
271
|
Nie H, Wang Y, Yang X, Liao Z, He X, Zhou J, Ou C. Clinical Significance and Integrative Analysis of the SMC Family in Hepatocellular Carcinoma. Front Med (Lausanne) 2021; 8:727965. [PMID: 34527684 PMCID: PMC8437102 DOI: 10.3389/fmed.2021.727965] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
Worldwide, hepatocellular carcinoma (HCC) is one of the most malignant cancers with poor prognosis. The structural maintenance of chromosomes (SMC) gene family has been shown to play important roles in human cancers. Nevertheless, the role of SMC members in HCC is not well-understood. In this study, we comprehensively explored the role of the SMC family in HCC using a series of bioinformatic analysis tools. Studies have demonstrated that the mRNA expression levels of SMC1A, SMC1B, SMC2, SMC4, and SMC6 are significantly overexpressed in HCC, and the protein levels of SMC1A, SMC2, SMC3, SMC4, SMC5, and SMC6 are similarly elevated. Moreover, HCC patients with high SMC2 and SMC4 expression levels exhibit poor survival. Using KEGG and GO analyses, we analyzed the enrichment of gene expression in the biological functions and pathways of the SMC family in HCC. Immune infiltration analysis revealed that the expression of the SMC family is closely associated with B cells, CD4+ T cells, CD8+ T cells, macrophages, neutrophils, and DCs. In conclusion, our findings will enhance a more thorough understanding of the SMC family in HCC progression and provide new directions for the diagnosis and treatment of HCC in the future.
Collapse
Affiliation(s)
- Hui Nie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yutong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Xuejie Yang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiming Liao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
272
|
Chen G. The Interactions of Insulin and Vitamin A Signaling Systems for the Regulation of Hepatic Glucose and Lipid Metabolism. Cells 2021; 10:2160. [PMID: 34440929 PMCID: PMC8393264 DOI: 10.3390/cells10082160] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
The pandemics of obesity and type 2 diabetes have become a concern of public health. Nutrition plays a key role in these concerns. Insulin as an anabolic hormonal was discovered exactly 100 years ago due to its activity in controlling blood glucose level. Vitamin A (VA), a lipophilic micronutrient, has been shown to regulate glucose and fat metabolism. VA's physiological roles are mainly mediated by its metabolite, retinoic acid (RA), which activates retinoic acid receptors (RARs) and retinoid X receptors (RXRs), which are two transcription factors. The VA status and activations of RARs and RXRs by RA and synthetic agonists have shown to affect the glucose and lipid metabolism in animal models. Both insulin and RA signaling systems regulate the expression levels of genes involved in the regulation of hepatic glucose and lipid metabolism. Interactions of insulin and RA signaling systems have been observed. This review is aimed at summarizing the history of diabetes, insulin and VA signaling systems; the effects of VA status and activation of RARs and RXRs on metabolism and RAR and RXR phosphorylation; and possible interactions of insulin and RA in the regulation of hepatic genes for glucose and lipid metabolism. In addition, some future research perspectives for understanding of nutrient and hormone interactions are provided.
Collapse
Affiliation(s)
- Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| |
Collapse
|
273
|
Tahri-Joutey M, Andreoletti P, Surapureddi S, Nasser B, Cherkaoui-Malki M, Latruffe N. Mechanisms Mediating the Regulation of Peroxisomal Fatty Acid Beta-Oxidation by PPARα. Int J Mol Sci 2021; 22:ijms22168969. [PMID: 34445672 PMCID: PMC8396561 DOI: 10.3390/ijms22168969] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 12/12/2022] Open
Abstract
In mammalian cells, two cellular organelles, mitochondria and peroxisomes, share the ability to degrade fatty acid chains. Although each organelle harbors its own fatty acid β-oxidation pathway, a distinct mitochondrial system feeds the oxidative phosphorylation pathway for ATP synthesis. At the same time, the peroxisomal β-oxidation pathway participates in cellular thermogenesis. A scientific milestone in 1965 helped discover the hepatomegaly effect in rat liver by clofibrate, subsequently identified as a peroxisome proliferator in rodents and an activator of the peroxisomal fatty acid β-oxidation pathway. These peroxisome proliferators were later identified as activating ligands of Peroxisome Proliferator-Activated Receptor α (PPARα), cloned in 1990. The ligand-activated heterodimer PPARα/RXRα recognizes a DNA sequence, called PPRE (Peroxisome Proliferator Response Element), corresponding to two half-consensus hexanucleotide motifs, AGGTCA, separated by one nucleotide. Accordingly, the assembled complex containing PPRE/PPARα/RXRα/ligands/Coregulators controls the expression of the genes involved in liver peroxisomal fatty acid β-oxidation. This review mobilizes a considerable number of findings that discuss miscellaneous axes, covering the detailed expression pattern of PPARα in species and tissues, the lessons from several PPARα KO mouse models and the modulation of PPARα function by dietary micronutrients.
Collapse
Affiliation(s)
- Mounia Tahri-Joutey
- Bio-PeroxIL Laboratory, University of Bourgogne Franche-Comté, 21000 Dijon, France; (M.T.-J.); (P.A.); (M.C.-M.)
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences & Techniques, University Hassan I, BP 577, 26000 Settat, Morocco;
| | - Pierre Andreoletti
- Bio-PeroxIL Laboratory, University of Bourgogne Franche-Comté, 21000 Dijon, France; (M.T.-J.); (P.A.); (M.C.-M.)
| | - Sailesh Surapureddi
- Office of Pollution Prevention and Toxics, United States Environmental Protection Agency, Washington, DC 20460, USA;
| | - Boubker Nasser
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences & Techniques, University Hassan I, BP 577, 26000 Settat, Morocco;
| | - Mustapha Cherkaoui-Malki
- Bio-PeroxIL Laboratory, University of Bourgogne Franche-Comté, 21000 Dijon, France; (M.T.-J.); (P.A.); (M.C.-M.)
| | - Norbert Latruffe
- Bio-PeroxIL Laboratory, University of Bourgogne Franche-Comté, 21000 Dijon, France; (M.T.-J.); (P.A.); (M.C.-M.)
- Correspondence:
| |
Collapse
|
274
|
Resveratrol and Quercetin as Regulators of Inflammatory and Purinergic Receptors to Attenuate Liver Damage Associated to Metabolic Syndrome. Int J Mol Sci 2021; 22:ijms22168939. [PMID: 34445644 PMCID: PMC8396326 DOI: 10.3390/ijms22168939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 12/17/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is considered a manifestation of metabolic syndrome (MS) and is characterized by the accumulation of triglycerides and a varying degree of hepatic injury, inflammation, and repair. Moreover, peroxisome-proliferator-activated receptors (PPARs) play a critical role in the pathophysiological processes in the liver. There is extensive evidence of the beneficial effect of polyphenols such as resveratrol (RSV) and quercetin (QRC) on the treatment of liver pathology; however, the mechanisms underlying their beneficial effects have not been fully elucidated. In this work, we show that the mechanisms underlying the beneficial effects of RSV and QRC against inflammation in liver damage in our MS model are due to the activation of novel pathways which have not been previously described such as the downregulation of the expression of toll-like receptor 4 (TLR4), neutrophil elastase (NE) and purinergic receptor P2Y2. This downregulation leads to a decrease in apoptosis and hepatic fibrosis with no changes in hepatocyte proliferation. In addition, PPAR alpha and gamma expression were altered in MS but their expression was not affected by the treatment with the natural compounds. The improvement of liver damage by the administration of polyphenols was reflected in the normalization of serum transaminase activities.
Collapse
|
275
|
Jia W, Ma J, Miao H, Wang C, Wang X, Li Q, Lu W, Yang J, Zhang L, Yang J, Wang G, Zhang X, Zhang M, Sun L, Yu X, Du J, Shi B, Xiao C, Zhu D, Liu H, Zhong L, Xu C, Xu Q, Liang G, Zhang Y, Li G, Gu M, Liu J, Yuan G, Yan Z, Yan D, Ye S, Zhang F, Ning Z, Cao H, Pan D, Yao H, Lu X, Ji L. Chiglitazar monotherapy with sitagliptin as an active comparator in patients with type 2 diabetes: a randomized, double-blind, phase 3 trial (CMAS). Sci Bull (Beijing) 2021; 66:1581-1590. [PMID: 36654287 DOI: 10.1016/j.scib.2021.02.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 09/13/2020] [Accepted: 02/05/2021] [Indexed: 02/03/2023]
Abstract
Chiglitazar (Carfloglitazar) is a novel peroxisome proliferator-activated receptor (PPAR) pan-agonist that has shown promising effects on glycemic control and lipid regulation in patients with type 2 diabetes. In this randomized phase 3 trial, we compared the efficacy and safety of chiglitazar with sitagliptin in patients with type 2 diabetes who had insufficient glycemic control despite a strict diet and exercise regimen. Eligible patients were randomized (1:1:1) to receive chiglitazar 32 mg (n = 245), chiglitazar 48 mg (n = 246), or sitagliptin 100 mg (n = 248) once daily for 24 weeks. The primary endpoint was the change in glycosylated hemoglobin A1C (HbA1c) from baseline at week 24 with the non-inferiority of chiglitazar over sitagliptin. Both chiglitazar and sitagliptin significantly reduced HbA1c at week 24 with values of -1.40%, -1.47%, and -1.39% for chiglitazar 32 mg, chiglitazar 48 mg, and sitagliptin 100 mg, respectively. Chiglitazar 32 and 48 mg were both non-inferior to sitagliptin 100 mg, with mean differences of -0.04% (95% confidential interval (CI) -0.22 to 0.15) and -0.08% (95% CI -0.27 to 0.10), respectively. Compared with sitagliptin, greater reduction in fasting and 2-h postprandial plasma glucose and fasting insulin was observed with chiglitazar. Overall adverse event rates were similar between the groups. A small increase in mild edema in the chiglitazar 48 mg group and slight weight gain in both chiglitazar groups were reported. The overall results demonstrated that chiglitazar possesses good efficacy and safety profile in patients with type 2 diabetes inadequately controlled with lifestyle interventions, thereby providing adequate supporting evidence for using this PPAR pan-agonist as a treatment option for type 2 diabetes.
Collapse
Affiliation(s)
- Weiping Jia
- Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai 200233, China.
| | - Jianhua Ma
- Nanjing First Hospital, Nanjing 210029, China
| | - Heng Miao
- The Second Hospital Affiliated to Nanjing Medical University, Nanjing 210011, China
| | - Changjiang Wang
- The First Hospital Affiliated to Anhui Medical University, Hefei 230031, China
| | - Xiaoyue Wang
- The First People's Hospital of Yueyang, Yueyang 414000, China
| | - Quanmin Li
- PLA Rocket Force Characteristic Medical Center, Beijing 100085, China
| | - Weiping Lu
- Huai'an First People's Hospital, Huai'an 223300, China
| | - Jialin Yang
- The Central Hospital of Minhang District of Shanghai, Shanghai 201100, China
| | - Lihui Zhang
- The Second Hospital of Heibei Medical University, Shijiazhuang 050000, China
| | - Jinkui Yang
- Beijing Tongren Hospital Affiliated to Capital Medical University, Beijing 100730, China
| | - Guixia Wang
- The First Hospital of Jilin University, Changchun 130021, China
| | - Xiuzhen Zhang
- Tongji Hospital of Tongji University, Shanghai 200092, China
| | - Min Zhang
- The Qingpu Branch of Zhongshan Hospital Affiliate to Fudan University, Shanghai 201700, China
| | - Li Sun
- Siping Central People's Hospital, Siping 136000, China
| | - Xuefeng Yu
- Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jianling Du
- The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Bingyin Shi
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Changqing Xiao
- The First Affiliated Hospital of Guangxi Medical University (The Western Hospital), Nanning 530021, China
| | - Dalong Zhu
- Gulou Hospital Affiliated to Nanjing Medical University, Nanjing 210008, China
| | - Hong Liu
- The First Affiliated Hospital of Guangxi Medical University (The Eastern Hospital), Nanning 530021, China
| | - Liyong Zhong
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Chun Xu
- The General Hospital of the Chinese People's Armed Police Forces, Beijing 100022, China
| | - Qi Xu
- The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | | | - Ying Zhang
- The Third Hospital Affiliated to Guangzhou Medical College, Guangzhou 510150, China
| | | | - Mingyu Gu
- Shanghai First People's Hospital, Shanghai 200080, China
| | - Jun Liu
- Shanghai 5th People's Hospital, Shanghai 200040, China
| | - Guoyue Yuan
- The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Zhaoli Yan
- The Affiliated Hospital of Inner Mongolia, Hohhot 000306, China
| | - Dewen Yan
- Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Shandong Ye
- Anhui Provincial Hospital, Hefei 518035, China
| | - Fan Zhang
- Beijing University Shenzhen Hospital, Shenzhen 518036, China
| | - Zhiqiang Ning
- Shenzhen Chipscreen Biosciences, Ltd., Shenzhen 518057, China
| | - Haixiang Cao
- Shenzhen Chipscreen Biosciences, Ltd., Shenzhen 518057, China
| | - Desi Pan
- Shenzhen Chipscreen Biosciences, Ltd., Shenzhen 518057, China
| | - He Yao
- Shenzhen Chipscreen Biosciences, Ltd., Shenzhen 518057, China
| | - Xianping Lu
- Shenzhen Chipscreen Biosciences, Ltd., Shenzhen 518057, China
| | - Linong Ji
- Peking University People's Hospital, Beijing 100044, China.
| |
Collapse
|
276
|
Abstract
Introduction: Hepatic stellate cells (HSCs) are essential for physiological homeostasis of the liver extracellular matrix (ECM). Excessive transdifferentiation of HSC from a quiescent to an activated phenotype contributes to disrupt this balance and can lead to liver fibrosis. Accumulating evidence has suggested that nuclear receptors (NRs) are involved in the regulation of HSC activation, proliferation, and function. Therefore, these NRs may be therapeutic targets to balance ECM homeostasis and inhibit HSC activation in liver fibrosis.Areas covered: In this review, the authors summarized the recent progress in the understanding of the regulatory role of NRs in HSCs and their potential as drug targets in liver fibrosis.Expert opinion: NRs are still potential therapy targets for inhibiting HSCs activation and liver fibrosis. However, the development of NRs agonists or antagonists to inhibit HSCs requires fully consideration of systemic effects.
Collapse
Affiliation(s)
- Shiyun Pu
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of TCM, Chengdu, China
| | - Hongjing Zhou
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of TCM, Chengdu, China
| | - Yan Liu
- Department of Interventional Therapy, Chengdu Fifth People's Hospital, Chengdu University of TCM, Chengdu, China
| | - Jiao Liu
- Department of Interventional Therapy, Chengdu Fifth People's Hospital, Chengdu University of TCM, Chengdu, China
- Department of Hepatobiliary Surgery, Chengdu Fifth People's Hospital, Chengdu University of TCM, Chengdu, China
| | - Yuanxin Guo
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of TCM, Chengdu, China
| | - Houfeng Zhou
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of TCM, Chengdu, China
| |
Collapse
|
277
|
Noise-Induced Cochlear Damage Involves PPAR Down-Regulation through the Interplay between Oxidative Stress and Inflammation. Antioxidants (Basel) 2021; 10:antiox10081188. [PMID: 34439436 PMCID: PMC8388985 DOI: 10.3390/antiox10081188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
The cross-talk between oxidative stress and inflammation seems to play a key role in noise-induced hearing loss. Several studies have addressed the role of PPAR receptors in mediating antioxidant and anti-inflammatory effects and, although its protective activity has been demonstrated in several tissues, less is known about how PPARs could be involved in cochlear dysfunction induced by noise exposure. In this study, we used an in vivo model of noise-induced hearing loss to investigate how oxidative stress and inflammation participate in cochlear dysfunction through PPAR signaling pathways. Specifically, we found a progressive decrease in PPAR expression in the cochlea after acoustic trauma, paralleled by an increase in oxidative stress and inflammation. By comparing an antioxidant (Q-ter) and an anti-inflammatory (Anakinra) treatment, we demonstrated that oxidative stress is the primary element of damage in noise-induced cochlear injury and that increased inflammation can be considered a consequence of PPAR down-regulation induced by ROS production. Indeed, by decreasing oxidative stress, PPARs returned to control values, reactivating the negative control on inflammation in a feedback loop.
Collapse
|
278
|
Wei Z, Chen G, Hu T, Mo X, Hou X, Cao K, Wang L, Pan Z, Wu Q, Li X, Ye F, Zouboulis CC, Ju Q. Resveratrol ameliorates lipid accumulation and inflammation in human SZ95 sebocytes via the AMPK signaling pathways in vitro. J Dermatol Sci 2021; 103:156-166. [PMID: 34334258 DOI: 10.1016/j.jdermsci.2021.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/30/2021] [Accepted: 07/23/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Acne vulgaris is a prevalent skin disease lacking effective and well-tolerated treatment. An earlier study indicated that resveratrol (RVT) has therapeutic effects in acne patients through unknown mechanisms. OBJECTIVES To evaluate the effects of RVT on linoleic acid (LA)-induced lipogenesis and peptidoglycan (PGN)-induced inflammation in cultured SZ95 sebocytes in vitro, and to investigate the underlying mechanisms. METHODS RNA-sequencing was used to analyze the whole transcriptome. Nile red staining was used to detect intracellular neutral lipids, whereas lipidomics was used to investigate changes in the lipid profile in sebocytes. Interleukin (IL)-1β and IL-6 mRNA and protein levels were assessed through quantitative real-time PCR and Enzyme-linked immunosorbent assay, respectively. Western blot was used to evaluate the expression of lipogenesis-related proteins, the inflammatory signaling pathway, and the AMP-activated protein kinase (AMPK) pathway. Further, specific small interfering RNA (siRNA) was used to knockdown sirtuin-1 (SIRT1) expression. RESULTS RVT inhibited the lipogenesis-related pathway and nuclear factor-kappa B (NF-κB) signaling pathway in SZ95 sebocytes. It also downregulated LA-induced lipogenesis, the expression of lipid-related proteins, and the contents of unsaturated fatty acids. Besides, RVT promoted SIRT1 expression and deacetylation of the NF-κB p65 subunit, thereby lowering IL-1β and IL-6 secretion under PGN induction. Furthermore, pretreatment with AMPK inhibitor Compound C abolished RVT-mediated sebosuppressive and anti-inflammation effects. Meanwhile,SIRT1 silencing abrogated the anti-inflammatory potential of RVT. CONCLUSION In human SZ95 sebocytes, RVT exhibits sebosuppressive and anti-inflammatory effects partially through the AMPK pathway, which may justify the role of RVT treatment in acne vulgaris.
Collapse
Affiliation(s)
- Ziyu Wei
- Department of Dermatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, PR China
| | - Guangjie Chen
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiaotong University, Shanghai, PR China
| | - Tingting Hu
- Department of Dermatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, PR China
| | - Xiaohui Mo
- Department of Dermatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, PR China
| | - Xiaoxiao Hou
- Department of Dermatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, PR China
| | - Ke Cao
- Department of Dermatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, PR China
| | - Lanqi Wang
- Department of Dermatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, PR China
| | - Zhanyan Pan
- Department of Dermatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, PR China
| | - Qiong Wu
- Department of Dermatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, PR China
| | - Xin Li
- Department of Dermatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, PR China
| | - Feng Ye
- Department of Dermatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, PR China
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - Qiang Ju
- Department of Dermatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, PR China.
| |
Collapse
|
279
|
Yang J, He L, Gao M, Xiao F, Zhang F, Wang S, Shu Y, Ye X, Qu W, Li L, Wei H. Collagen β(1-O) galactosyltransferase 2 deficiency contributes to lipodystrophy and aggravates NAFLD related to HMW adiponectin in mice. Metabolism 2021; 120:154777. [PMID: 33865898 DOI: 10.1016/j.metabol.2021.154777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/03/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022]
Abstract
AIM Our previous results showed that Colgalt1 knock-out resulted in fetal death on day E11.5, and collagen secretion was retarded. This study aimed to elucidate the role of Collagen β(1-O) galactosyltransferase 2 (Colgalt2) in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). METHODS Colgalt2-/- mice were fed a high-fat diet (HFD) or methionine-and choline-deficient diet (MCD). Nanopore long-read RNA-Seq analysis of liver tissues was used to profile genomic variation. In vitro, hepatocyte steatosis and differentiation of primary pre-adipocytes were induced. RESULTS Colgalt2-/- mice exhibited lipodystrophy, increased body weight, and hepatic lipid accumulation at 6 weeks of age. Colgalt2 deficiency aggravated hepatic steatosis in mice fed an HFD or a standard laboratory chow diet. Colgalt2 deficiency promotes steatohepatitis in MCD-fed mice. In HFD mice, Colgalt2 deficiency caused lipodystrophy and decreased plasma HMW, total adiponectin, and leptin levels. Colgalt2 deficiency also reduced circulating HMW/Total adiponectin in mice fed a HFD diet without differences of adiponectin mRNA and protein level in WT and Colgalt2-/- mice. The nanopore long-read RNA-Seq analysis results revealed transcriptional changes in the adiponectin receptor downstream signaling pathway and lipogenic genes, including the AMPK signaling pathway, adipocytokine signaling pathway, and lipid metabolism (Cidea, Cidec, CD36, and PPARγ). Colgalt2 deficiency did not promote lipid accumulation in OA-induced HepG2 cells or primary hepatocytes. However, Colgalt2 deficiency inhibited adipogenesis and reduced PPARγ, adipogenesis-related transcription factors, and expression during adipocyte differentiation. CONCLUSIONS In mice, Colgalt2 deficiency contributes to lipodystrophy and promotes NAFLD related to HMW adiponectin. These results suggest that Colgalt2 could be a novel and promising therapeutic strategy for the treatment of NAFLD.
Collapse
Affiliation(s)
- Junru Yang
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lingling He
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Meixin Gao
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Fan Xiao
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Fuyang Zhang
- Department of Gastroenterology, Peking University Ditan Teaching Hospital, Beijing, China
| | - Shiwei Wang
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yang Shu
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaohui Ye
- Department of Gastroenterology, Beijing Huaxin Hospital, the First Affiliated Hospital of Tsinghua University, Beijing, China
| | - Wenzheng Qu
- Biomarker Technologies Corporation, Beijing, China
| | - Liying Li
- Department of Cell Biology, Capital Medical University, Beijing, China.
| | - Hongshan Wei
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China; Department of Gastroenterology, Peking University Ditan Teaching Hospital, Beijing, China.
| |
Collapse
|
280
|
Cellular mechanisms and recommended drug-based therapeutic options in diabetic cardiomyopathy. Pharmacol Ther 2021; 228:107920. [PMID: 34171330 DOI: 10.1016/j.pharmthera.2021.107920] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022]
Abstract
Diabetes mellitus (DM) is associated with a specific cardiac phenotype characterized by structural and functional alterations. This so-called diabetic cardiomyopathy (DM CM) is clinically relevant as patients with DM show high incidence of heart failure. Mechanistically, several parameters interact on the cardiomyocyte level leading to increased inflammation, apoptosis, reactive oxygen species and altered calcium signaling. This in turn provokes functional myocardial changes that might inter alia play into the worsened clinical outcome in DM patients. Therefore, efficient therapeutic options are urgently needed. This review focuses on mechanistic effects of currently recommended antidiabetic treatment and heart failure therapy for DM CM.
Collapse
|
281
|
Design and antiproliferative and antioxidant activities of furan-based thiosemicarbazides and 1,2,4-triazoles: their structure-activity relationship and SwissADME predictions. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02756-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
282
|
Upregulated PPARG2 facilitates interaction with demethylated AKAP12 gene promoter and suppresses proliferation in prostate cancer. Cell Death Dis 2021; 12:528. [PMID: 34023860 PMCID: PMC8141057 DOI: 10.1038/s41419-021-03820-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
Prostate cancer (PCA) is one of the most common male genitourinary tumors. However, the molecular mechanisms involved in the occurrence and progression of PCA have not been fully clarified. The present study aimed to investigate the biological function and molecular mechanism of the nuclear receptor peroxisome proliferator-activated receptor gamma 2 (PPARG2) in PCA. Our results revealed that PPARG2 was downregulated in PCA, and overexpression of PPARG2 inhibited cell migration, colony formation, invasion and induced cell cycle arrest of PCA cells in vitro. In addition, PPARG2 overexpression modulated the activation of the Akt signaling pathway, as well as inhibited tumor growth in vivo. Moreover, mechanistic analysis revealed that PPARG2 overexpression induced increased expression level of miR-200b-3p, which targeted 3′ UTR of the downstream targets DNMT3A/3B, and facilitated interaction with demethylated AKAP12 gene promoter and suppressed cell proliferation in PCA. Our findings provided the first evidence for a novel PPARG2-AKAP12 axis mediated epigenetic regulatory network. The study identified a molecular mechanism involving an epigenetic modification that could be possibly targeted as an antitumoral strategy against prostate cancer.
Collapse
|
283
|
Effect of a novel thiazole derivative and its complex with a polymeric carrier on stability of DNA in human breast cancer cells. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
284
|
PPARγ transcription effect on naturally occurring O-prenyl cinnamaldehydes and cinnamyl alcohol derivatives. Future Med Chem 2021; 13:1175-1183. [PMID: 34013764 DOI: 10.4155/fmc-2021-0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background: PPARγ is known to be a key regulator of metabolism and storage of lipids and glucose and to be implicated in the pathology of severe syndromes like obesity, diabetes, atherosclerosis and cancer. Methods: As a continuation of the authors' studies on oxyprenylated secondary metabolites as effective PPARγ agonists, the authors describe herein the chemical synthesis of natural O-prenyl cinnamaldehydes and cinnamyl alcohols and preliminary data on their in vitro effects on PPARγ transcription. Results: Among the panel of eight compounds tested, three - namely, (2E)-3-(4-((E)3,7-dimethylocta-2,6-dienyloxy)-3-methoxyphenyl)acrylaldehyde, (2E)-3-(4-((E)3,7-dimethylocta-2,6-dienyloxy)-3-methoxyphenyl)prop-2-en-1-ol and boropinal A - exerted activity in a dose-dependent manner. Conclusion: O-prenyl cinnamaldehydes and cinnamyl alcohols have the potential to effectively interact with PPARγ receptor.
Collapse
|
285
|
Microglia: A Potential Drug Target for Traumatic Axonal Injury. Neural Plast 2021; 2021:5554824. [PMID: 34093701 PMCID: PMC8163545 DOI: 10.1155/2021/5554824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
Traumatic axonal injury (TAI) is a major cause of death and disability among patients with severe traumatic brain injury (TBI); however, no effective therapies have been developed to treat this disorder. Neuroinflammation accompanying microglial activation after TBI is likely to be an important factor in TAI. In this review, we summarize the current research in this field, and recent studies suggest that microglial activation plays an important role in TAI development. We discuss several drugs and therapies that may aid TAI recovery by modulating the microglial phenotype following TBI. Based on the findings of recent studies, we conclude that the promotion of active microglia to the M2 phenotype is a potential drug target for the treatment of TAI.
Collapse
|
286
|
Natural products and analogs as preventive agents for metabolic syndrome via peroxisome proliferator-activated receptors: An overview. Eur J Med Chem 2021; 221:113535. [PMID: 33992930 DOI: 10.1016/j.ejmech.2021.113535] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/19/2021] [Accepted: 05/01/2021] [Indexed: 12/20/2022]
Abstract
Natural products and synthetic analogs have drawn much attention as potential therapeutical drugs to treat metabolic syndrome. We reviewed the underlying mechanisms of 32 natural products and analogs with potential pharmacological effects in vitro, and especially in rodent models and/or patients, that usually act on the PPAR pathway, along with other molecular targets. Recent outstanding total syntheses or semisyntheses of these lead compounds are stated. In general, they can activate the transcriptional activity of PPARα, PPARγ, PPARα/γ, PPARβ/δ, PPARα/δ, PPARγ/δ and panPPAR as weak, partial agonists or selective PPARγ modulators (SPPARγM), which may be useful for managing obesity, type 2 diabetes (T2D), dyslipidemia and non-fatty liver disease (NAFLD). Terpenoids is the largest group of compounds that act as potential modulators on PPARs and are comprised from small lipophilic cannabinoids to lipophilic pentacyclic triterpenes and polar saponins. Shikimates-phenylpropanoids include polar heterocyclic flavonoids and phenolic compounds containing at least one C3-C6 unit and usually a double bond on the propyl chain. Quercetin (19), resveratrol (24) and curcumin (27), stand out from this group for exhibiting beneficial effects on patients. Alkaloids, the minor group of potential modulators on PPARs, include berberine (30), which has been widely explored in preclinical and clinical studies for its potential beneficial effects on T2D and dyslipidemia. However, large-scale clinical trials may be warranted for the promising compounds.
Collapse
|
287
|
Targeting Energy Expenditure-Drugs for Obesity Treatment. Pharmaceuticals (Basel) 2021; 14:ph14050435. [PMID: 34066399 PMCID: PMC8148206 DOI: 10.3390/ph14050435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/18/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Obesity and overweight are associated with lethal diseases. In this context, obese and overweight individuals infected by COVID-19 are at greater risk of dying. Obesity is treated by three main pharmaceutical approaches, namely suppressing appetite, reducing energy intake by impairing absorption, and increasing energy expenditure. Most compounds used for the latter were first envisaged for other medical uses. However, several candidates are now being developed explicitly for targeting obesity by increasing energy expenditure. This review analyzes the compounds that show anti-obesity activity exerted through the energy expenditure pathway. They are classified on the basis of their development status: FDA-approved, Withdrawn, Clinical Trials, and Under Development. The chemical nature, target, mechanisms of action, and description of the current stage of development are described for each one.
Collapse
|
288
|
Zhou Y, Guo Y, Zhu Y, Sun Y, Li W, Li Z, Wei L. Dual PPARγ/ɑ agonist oroxyloside suppresses cell cycle progression by glycolipid metabolism switch-mediated increase of reactive oxygen species levels. Free Radic Biol Med 2021; 167:205-217. [PMID: 33713839 DOI: 10.1016/j.freeradbiomed.2021.02.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/26/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022]
Abstract
Cancer cells prefers to rely on aerobic glycolysis than pyruvate oxidation to meet the high demand of energy for rapidly proliferation. Peroxisome proliferator-activated receptors (PPARs) are a kind of important ligand-inducible transcription factors and play crucial roles in glucose and lipid metabolism. Careful designing of novel agonists for PPARs, may show improvement with the side effects and also increase the therapeutic value for cancer and other metabolic disorder diseases. Compared with normal human liver cells, lower expression or acitivity of PPARs is observed in hepatocellular carcinoma (HCC). In this study, we show that oroxyloside (OAG) is a new dual agonist of PPARγ/ɑ, and inhibits cell proliferation of HCC based on metabolic switch. Via both PPAR-dependent and PPAR-independent regulations on glycolipid metabolic enzymes, OAG shuts down the catabolism of glucose and promotes fatty acids oxidation to generate acetyl-CoA for TCA cycle and oxidative phosphorylation. The metabolic switch induced by OAG results in a marked increase of reactive oxygen species (ROS) levels, leading to rapid dephosphorylation of RB and cell-cycle arrest in G1 phase. Pyruvate dehydrogenase kinase 4 (PDK4) and β-Oxidation are required for the suppression of cell cycle progression by OAG. Together, our findings provide a new drug candidate and a viable therapeutic strategy for HCC based on metabolic reprogram.
Collapse
Affiliation(s)
- Yuxin Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, PR China
| | - Yongjian Guo
- School of Biopharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, PR China
| | - Yejin Zhu
- School of Medicine & Holistic Integrative Medcine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, PR China
| | - Yuening Sun
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, PR China
| | - Wei Li
- Research Center of Basic Medical College, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, PR China
| | - Zhiyu Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, PR China
| | - Libin Wei
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, PR China.
| |
Collapse
|
289
|
Bioactivity profiling of per- and polyfluoroalkyl substances (PFAS) identifies potential toxicity pathways related to molecular structure. Toxicology 2021; 457:152789. [PMID: 33887376 DOI: 10.1016/j.tox.2021.152789] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/31/2021] [Accepted: 04/16/2021] [Indexed: 01/09/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a broad class of hundreds of fluorinated chemicals with environmental health concerns due to their widespread presence and persistence in the environment. Several of these chemicals have been comprehensively studied for experimental toxicity, environmental fate and exposure, and human epidemiology; however, most chemicals have limited or no data available. To inform methods for prioritizing these data-poor chemicals for detailed toxicity studies, we evaluated 142 PFAS using an in vitro screening platform consisting of two multiplexed transactivation assays encompassing 81 diverse transcription factor activities and tested in concentration-response format ranging from 137 nM to 300 μM. Results showed activity for various nuclear receptors, including three known PFAS targets--specifically estrogen receptor alpha and peroxisome proliferator receptors alpha and gamma. We also report activity against the retinoid X receptor beta, the key heterodimeric partner of type II, non-steroidal nuclear receptors. Additional activities were found against the pregnane X receptor, nuclear receptor related-1 protein, and nuclear factor erythroid 2-related factor 2, a sensor of oxidative stress. Using orthogonal assay approaches, we confirmed activity of representative PFAS against several of these targets. Finally, we identified key PFAS structural features associated with nuclear receptor activity that can inform future predictive models for use in prioritizing chemicals for risk assessment and in the design of new structures devoid of biological activity.
Collapse
|
290
|
Yang C, Zhu B, Ye S, Fu Z, Li J. Isomer-Specific Effects of cis-9, trans-11- and trans-10, cis-12-CLA on Immune Regulation in Ruminal Epithelial Cells. Animals (Basel) 2021; 11:ani11041169. [PMID: 33921651 PMCID: PMC8072642 DOI: 10.3390/ani11041169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The significant contribution of rumen microbiota to the balance of the innate immunity of rumen epithelium has been extensively verified. As the natural rumen microbial metabolites, information regarding the immunoprotective effects of different conjugated linoleic acid (CLA) isomers on ruminal epithelial cells (RECs) is limited. In this study, the 100 μM trans-10,cis-12-CLA exerted better anti-inflammatory effects than the cis-9,trans-11-CLA by significantly downregulating the expression of genes related to inflammation, cell proliferation and migration in RECs upon lipopolysaccharide (LPS) stimulation. The trans-10,cis-12-CLA, but not cis-9,trans-11-CLA, significantly suppressed the biological signals of gene ontology (GO) terms’ response to lipopolysaccharide, the regulation of signal transduction and cytokine production and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways NF-κB, chemokine, NOD-like receptor, Hippo, PI3K-Akt, TGF-β and Rap1 signaling in RECs upon LPS stimulation. Furthermore, pretreatment with trans-10,cis-12-CLA significantly reduced the expression of lipogenic genes and the biosynthesis of the unsaturated fatty acid pathway in RECs compared with the LPS group, however, cis-9,trans-11-CLA exhibited the opposite results. These results suggest the distinct isomer differences of CLA in the regulation of inflammatory responses and adipocytokine signaling in RECs and will provide important references for determining their target use in the future. Abstract In this study, we used transcriptomics and qPCR to investigate the potential immunoprotective effects of different conjugated linoleic acid (CLA) isomers, the natural rumen microbial metabolites, on lipopolysaccharide (LPS)-induced inflammation of ruminal epithelial cells (RECs) in vitro. The results showed that 100 μM trans-10,cis-12-CLA exerted higher anti-inflammatory effects than cis-9,trans-11-CLA by significantly downregulating the expression of genes related to inflammation, cell proliferation and migration in RECs upon LPS stimulation. Transcriptomic analyses further indicated that pretreatment with trans-10,cis-12-CLA, but not cis-9,trans-11-CLA, significantly suppressed the biological signals of GO terms’ response to LPS, the regulation of signal transduction and cytokine production and KEGG pathways NF-κB, chemokine, NOD-like receptor, Hippo, PI3K-Akt, TGF-β and Rap1 signaling in RECs upon LPS stimulation. Furthermore, pretreatment with trans-10,cis-12-CLA significantly reduced the expression of lipogenic genes and the biosynthesis of the unsaturated fatty acid pathway in RECs compared with the LPS group, however, cis-9,trans-11-CLA exhibited the opposite results. These results suggest the distinct isomer differences of CLA in the regulation of inflammatory responses and adipocytokine signaling in RECs and will provide important references for determining their target use in the future.
Collapse
Affiliation(s)
- Chunlei Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; (C.Y.); (B.Z.); (S.Y.)
| | - Binna Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; (C.Y.); (B.Z.); (S.Y.)
| | - Shijie Ye
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; (C.Y.); (B.Z.); (S.Y.)
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; (C.Y.); (B.Z.); (S.Y.)
- Correspondence: (Z.F.); (J.L.)
| | - Jinjun Li
- Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: (Z.F.); (J.L.)
| |
Collapse
|
291
|
Variants and expression changes in PPAR-encoding genes display no significant association with schizophrenia. Biosci Rep 2021; 40:225746. [PMID: 32643760 PMCID: PMC7374279 DOI: 10.1042/bsr20201083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 01/01/2023] Open
Abstract
A few studies suggested the contribution of PPARs to the etiology of schizophrenia (SCZ). However, it is still not clear whether variants in PPAR-encoding genes have a direct association with SCZ. The potential linkage between SCZ and the variants within PPAR encoding genes (PPARA, PPARD, and PPARG) was tested in a large cohort genome-wide association study (GWAS). Then, a mega-analysis was conducted using 14 gene expression profiling experiments in various human brain regions. Finally, the expression levels of the three PPAR-encoding genes were quantified in early-onset SCZ patients. Only one PPARG polymorphisms, rs62242085, presented a minor frequency deviation in the SCZ cohort (P-value = 0.035). None of the PPAR-encoding genes presented significant expression change within the brain regions profiled in 14 datasets acquired from different populations (P-value > 0.14) or in the whole blood of early-onset overall SCZ patients (P-value > 0.22). However, compared with healthy female controls, female early-onset SCZ patients presented a moderate but significant decrease in the expression level of PPARD (LFC = −0.55; P-value = 0.02) and a strong, but non-significant decrease in expression of PPARG (LFC = −1.30; P-value = 0.13). Our results do not support a significant association between variants in PPAR-encoding genes and SCZ, but suggest a necessity to explore the role of PPARD and PPARG in early SCZ phenotypes, specifically in females.
Collapse
|
292
|
Bichiou H, Bouabid C, Rabhi I, Guizani-Tabbane L. Transcription Factors Interplay Orchestrates the Immune-Metabolic Response of Leishmania Infected Macrophages. Front Cell Infect Microbiol 2021; 11:660415. [PMID: 33898331 PMCID: PMC8058464 DOI: 10.3389/fcimb.2021.660415] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
Leishmaniasis is a group of heterogenous diseases considered as an important public health problem in several countries. This neglected disease is caused by over 20 parasite species of the protozoa belonging to the Leishmania genus and is spread by the bite of a female phlebotomine sandfly. Depending on the parasite specie and the immune status of the patient, leishmaniasis can present a wide spectrum of clinical manifestations. As an obligate intracellular parasite, Leishmania colonize phagocytic cells, mainly the macrophages that orchestrate the host immune response and determine the fate of the infection. Once inside macrophages, Leishmania triggers different signaling pathways that regulate the immune and metabolic response of the host cells. Various transcription factors regulate such immune-metabolic responses and the associated leishmanicidal and inflammatory reaction against the invading parasite. In this review, we will highlight the most important transcription factors involved in these responses, their interactions and their impact on the establishment and the progression of the immune response along with their effect on the physiopathology of the disease.
Collapse
Affiliation(s)
- Haifa Bichiou
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (PMBB), Institut Pasteur de Tunis, Tunis, Tunisia.,Faculty of Sciences of Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Cyrine Bouabid
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (PMBB), Institut Pasteur de Tunis, Tunis, Tunisia.,Faculty of Sciences of Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Imen Rabhi
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (PMBB), Institut Pasteur de Tunis, Tunis, Tunisia.,Biotechnology Department, Higher Institute of Biotechnology at Sidi-Thabet (ISBST), Biotechpole Sidi-Thabet- University of Manouba, Tunis, Tunisia
| | - Lamia Guizani-Tabbane
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (PMBB), Institut Pasteur de Tunis, Tunis, Tunisia
| |
Collapse
|
293
|
Iannotti FA, Vitale RM. The Endocannabinoid System and PPARs: Focus on Their Signalling Crosstalk, Action and Transcriptional Regulation. Cells 2021; 10:586. [PMID: 33799988 PMCID: PMC8001692 DOI: 10.3390/cells10030586] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear receptors including PPARα, PPARγ, and PPARβ/δ, acting as transcription factors to regulate the expression of a plethora of target genes involved in metabolism, immune reaction, cell differentiation, and a variety of other cellular changes and adaptive responses. PPARs are activated by a large number of both endogenous and exogenous lipid molecules, including phyto- and endo-cannabinoids, as well as endocannabinoid-like compounds. In this view, they can be considered an extension of the endocannabinoid system. Besides being directly activated by cannabinoids, PPARs are also indirectly modulated by receptors and enzymes regulating the activity and metabolism of endocannabinoids, and, vice versa, the expression of these receptors and enzymes may be regulated by PPARs. In this review, we provide an overview of the crosstalk between cannabinoids and PPARs, and the importance of their reciprocal regulation and modulation by common ligands, including those belonging to the extended endocannabinoid system (or "endocannabinoidome") in the control of major physiological and pathophysiological functions.
Collapse
Affiliation(s)
- Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Rosa Maria Vitale
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| |
Collapse
|
294
|
Oskarsson A, Rosenmai AK, Mandava G, Johannisson A, Holmes A, Tröger R, Lundqvist J. Assessment of source and treated water quality in seven drinking water treatment plants by in vitro bioassays - Oxidative stress and antiandrogenic effects after artificial infiltration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:144001. [PMID: 33338789 DOI: 10.1016/j.scitotenv.2020.144001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Drinking water quality and treatment efficacy was investigated in seven drinking water treatment plants (DWTPs), using water from the river Göta Älv, which also is a recipient of treated sewage water. A panel of cell-based bioassays was used, including measurements of receptor activity of aryl hydrocarbon (AhR), estrogen (ER), androgen (AR), peroxisome proliferator-activated receptor alpha (PPARα) as well as induction of oxidative stress (Nrf2) and micronuclei formation. Grab water samples were concentrated by solid phase extraction (SPE) and water samples were analyzed at a relative enrichment factor of 50. High activities of AhR, ER and AR antagonism were present in WWTP outlets along the river. Inlet water from the river exhibited AhR and AR antagonistic activities. AhR activity was removed by DWTPs using granulated activated carbon (GAC) and artificial infiltration. AR antagonistic activity was removed by the treatment plants, except the artificial infiltration plant, which actually increased the activity. Furthermore, treated drinking water from the DWTP using artificial infiltration exhibited high Nrf2 activity, which was not found in any of the other water samples. Nrf2 activity was found in water from eight of the 13 abstraction wells, collecting water from the artificial infiltration. No genotoxic activity was detected at non-cytotoxic concentrations. No Nrf2 or AR antagonistic activities were detected in the inlet or outlet water after the DWTP had been replaced by a new plant, using membrane ultrafiltration and GAC. Neither target chemical analysis, nor chemical analysis according to the drinking water regulation, detected any presence of chemicals, which could be responsible of the prominent effects on oxidative stress and AR antagonistic activity in the drinking water samples. Thus, bioanalysis is a useful tool for detection of unknown hazards in drinking water and for assessment of drinking water treatments.
Collapse
Affiliation(s)
- Agneta Oskarsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden.
| | - Anna Kjerstine Rosenmai
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden
| | - Geeta Mandava
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden
| | - Anders Johannisson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, SE-750 07 Uppsala, Sweden
| | - Andrew Holmes
- Kungälv Drinking Water Treatment Plant, Filaregatan 15, SE-442 81 Kungälv, Sweden
| | - Rikard Tröger
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, SE-750 07 Uppsala, Sweden
| | - Johan Lundqvist
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden
| |
Collapse
|
295
|
Liver Cancer: Therapeutic Challenges and the Importance of Experimental Models. Can J Gastroenterol Hepatol 2021; 2021:8837811. [PMID: 33728291 PMCID: PMC7937489 DOI: 10.1155/2021/8837811] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/16/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is one of the main causes of death related to cancer worldwide; its etiology is related with infections by C or B hepatitis virus, alcohol consumption, smoking, obesity, nonalcoholic fatty liver disease, diabetes, and iron overload, among other causes. Several kinds of primary liver cancer occur, but we will focus on hepatocellular carcinoma (HCC). Numerous cellular signaling pathways are implicated in hepatocarcinogenesis, including YAP-HIPPO, Wnt-β-catenin, and nuclear factor-κB (NF-κB); these in turn are considered novel therapeutic targets. In this review, the role of lipid metabolism regulated by peroxisome proliferator-activated receptor gamma (PPARγ) in the development of HCC will also be discussed. Moreover, recent evidence has been obtained regarding the participation of epigenetic changes such as acetylation and methylation of histones and DNA methylation in the development of HCC. In this review, we provide detailed and current information about these topics. Experimental models represent useful tools for studying the different stages of liver cancer and help to develop new pharmacologic treatments. Each model in vivo and in vitro has several characteristics and advantages to offer for the study of this disease. Finally, the main therapies approved for the treatment of HCC patients, first- and second-line therapies, are described in this review. We also describe a novel option, pirfenidone, which due to its pharmacological properties could be considered in the future as a therapeutic option for HCC treatment.
Collapse
|
296
|
He T, Yang J, Liu P, Xu L, Lü Q, Tan Q. [Research progress of adipose-derived stem cells in skin scar prevention and treatment]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:234-240. [PMID: 33624480 DOI: 10.7507/1002-1892.202007083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To review the research progress of adipose-derived stem cells (ADSCs) in skin scar prevention and treatment. Methods The related literature was extensively reviewed and analyzed. The recent in vitroand in vivo experiments and clinical studies on the role of ADSCs in skin scar prevention and treatment, and the possible mechanisms and biomaterials to optimize the effect of ADSCs were summarized. Results As demonstrated by in vitro and in vivo experiments and clinical studies, ADSCs participate in the whole process of skin wound healing and may prevent and treat skin scars by reducing inflammation, promoting angiogenesis, or inhibiting (muscle) fibroblasts activity to reduce collagen deposition through the p38/mitogen-activated protein kinase, peroxisome proliferator activated receptor γ, transforming growth factor β 1/Smads pathways. Moreover, bioengineered materials such as hydrogel from acellular porcine adipose tissue, porcine small-intestine submucosa, and poly (3-hydroxybutyrate-co-hydroxyvalerate) scaffold may further enhance the efficacy of ADSCs in preventing and treating skin scars. Conclusion Remarkable progress has been made in the application of ADSCs in skin scar prevention and treatment. While, further studies are still needed to explore the application methods of ADSCs in the clinic.
Collapse
Affiliation(s)
- Tao He
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China;Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Jiqiao Yang
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Pengcheng Liu
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China;Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Li Xu
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China;Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Qing Lü
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Qiuwen Tan
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China;Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| |
Collapse
|
297
|
Zhu YD, Guan XQ, Chen J, Peng S, Finel M, Zhao YY, Wang RM, Bi HC, Lei M, Wang DD, Ge GB. Neobavaisoflavone Induces Bilirubin Metabolizing Enzyme UGT1A1 via PPARα and PPARγ. Front Pharmacol 2021; 11:628314. [PMID: 33628187 PMCID: PMC7897654 DOI: 10.3389/fphar.2020.628314] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/24/2020] [Indexed: 12/30/2022] Open
Abstract
UDP-glucuronosyltransferase 1A1 (UGT1A1) is an essential enzyme in mammals that is responsible for detoxification and metabolic clearance of the endogenous toxin bilirubin and a variety of xenobiotics, including some crucial therapeutic drugs. Discovery of potent and safe UGT1A1 inducers will provide an alternative therapy for ameliorating hyperbilirubinaemia and drug-induced hepatoxicity. This study aims to find efficacious UGT1A1 inducer(s) from natural flavonoids, and to reveal the mechanism involved in up-regulating of this key conjugative enzyme by the flavonoid(s) with strong UGT1A1 induction activity. Among all the tested flavonoids, neobavaisoflavone (NBIF) displayed the most potent UGT1A1 induction activity, while its inductive effects were confirmed by both western blot and glucuronidation activity assays. A panel of nuclear receptor reporter assays demonstrated that NBIF activated PPARα and PPARγ in a dose-dependent manner. Meanwhile, we also found that NBIF could up-regulate the expression of PPARα and PPARγ in hepatic cells, suggesting that the induction of UGT1A1 by NBIF was mainly mediated by PPARs. In silico simulations showed that NBIF could stably bind on pocket II of PPARα and PPARγ. Collectively, our results demonstrated that NBIF is a natural inducer of UGT1A1, while this agent induced UGT1A1 mainly via activating and up-regulating PPARα and PPARγ. These findings suggested that NBIF can be used as a promising lead compound for the development of more efficacious UGT1A1 inducers to treat hyperbilirubinaemia and UGT1A1-associated drug toxicities.
Collapse
Affiliation(s)
- Ya-Di Zhu
- Trauma Emergency Center, The Seventh Affiliated People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Qing Guan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sheng Peng
- Trauma Emergency Center, The Seventh Affiliated People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Moshe Finel
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Ying-Yuan Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rui-Min Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hui-Chang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ming Lei
- Trauma Emergency Center, The Seventh Affiliated People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan-Dan Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
298
|
Yuxin L, Chen L, Xiaoxia L, Yue L, Junjie L, Youzhu L, Huiliang Z, Qicai L. Research Progress on the Relationship between Obesity-Inflammation-Aromatase Axis and Male Infertility. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6612796. [PMID: 33628365 PMCID: PMC7884171 DOI: 10.1155/2021/6612796] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/04/2021] [Accepted: 01/30/2021] [Indexed: 01/10/2023]
Abstract
Aromatase is a key enzyme in the transformation of androgen into estrogen. Its high expression will destroy the hormonal balance in the male body, and the excessive transformation of androgen into estrogen in the body will further damage the spermatogenic function of the testis, affect the normal development of the sperm, and cause spermatogenic disturbance. Adipose tissue has a high expression of aromatase and shows high enzymatic activity and ability to convert estrogen. Adipose tissue is the most estrogen-producing nongonadal tissue in the body because of its large size, accounting for about 20% of the body mass in healthy adults. PPARγ is recognized as the key adipose differentiation in the transcriptional regulation of the transcription factor. In the process of adipocyte differentiation, PPARγ regulate the expression of aromatase. The increase of aromatase is associated with the inflammatory response in adipose tissue caused by obesity. After obesity, the increase of proinflammatory factors in adipocytes will lead to enhanced transcription of the CYP19 gene encoding aromatase in adipocytes, which in turn will lead to increased expression of aromatase in adipocytes. This article reviews the regulation of male sterility from the angle of the "obesity-inflammation-aromatase" axis.
Collapse
Affiliation(s)
- Liu Yuxin
- School of Medical Technology and Engineering, Fujian Medical University, China
| | - Lin Chen
- Center of Reproductive Medicine, The First Affiliated Hospital of Fujian Medical University, China
| | - Luo Xiaoxia
- School of Medical Technology and Engineering, Fujian Medical University, China
| | - Luo Yue
- School of Medical Technology and Engineering, Fujian Medical University, China
| | - Lai Junjie
- School of Medical Technology and Engineering, Fujian Medical University, China
| | - Li Youzhu
- Center of Reproductive Medicine, The First Affiliated Hospital of Xiamen University, China
| | - Zhou Huiliang
- Center of Reproductive Medicine, The First Affiliated Hospital of Fujian Medical University, China
| | - Liu Qicai
- Center of Reproductive Medicine, The First Affiliated Hospital of Fujian Medical University, China
| |
Collapse
|
299
|
DOCK4 Is a Platinum-Chemosensitive and Prognostic-Related Biomarker in Ovarian Cancer. PPAR Res 2021; 2021:6629842. [PMID: 33613670 PMCID: PMC7878079 DOI: 10.1155/2021/6629842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/07/2021] [Accepted: 01/21/2021] [Indexed: 12/18/2022] Open
Abstract
Ovarian carcinoma (OV) is a lethal gynecological malignancy. Most OV patients develop resistance to platinum-based chemotherapy and recurrence. Peroxisome proliferator-activated receptors (PPARs) are the ligand activating transcription factor of the nuclear receptor superfamily. PPARs as important transcriptional regulators regulate important physiological processes such as lipid metabolism, inflammation, and wound healing. Several reports point out that PPARs can also have an effect on the sensitivity of tumor cells to platinum-based chemotherapy drugs. However, the role of PPAR-target related genes (PPAR-TRGs) in chemotherapeutic resistance of OV remains unclear. The present study is aimed at optimizing candidate genes by integrating platinum-chemotherapy expression data and PPAR family genes with their targets. The gene expression profiles were obtained from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) database. A total of 4 genes (AP2A2, DOCK4, HSDL2, and PDK4) were the candidate differentially expressed genes (DEGs) of PPAR-TRGs with platinum chemosensitivity. After conducting numerous survival analyses using different cohorts, we found that only the upexpression of DOCK4 has important significance with the poor prognosis of OV patients. Meanwhile, DOCK4 is detected in plasma and enriched in neutrophil and monocyte cells of the blood. We further found that there were significant correlations between DOCK4 expression and the levels of CD4+ T cell infiltration, dendritic cell infiltration, and neutrophil infiltration in OV. In addition, we verified the expression level of DOCK4 in OV cell lines treated with platinum drugs and found that DOCK4 is potentially responsive to platinum drugs. In conclusion, DOCK4 is potentially associated with immune cell infiltration and represents a valuable prognostic biomarker in ovarian cancer patients.
Collapse
|
300
|
Liu J, Qiu J, Zhang Z, Zhou L, Li Y, Ding D, Zhang Y, Zou D, Wang D, Zhou Q, Lang T. SOX4 maintains the stemness of cancer cells via transcriptionally enhancing HDAC1 revealed by comparative proteomics study. Cell Biosci 2021; 11:23. [PMID: 33482915 PMCID: PMC7821488 DOI: 10.1186/s13578-021-00539-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/11/2021] [Indexed: 12/20/2022] Open
Abstract
Background Cancer stem cells (CSCs) are the root of human cancer development and the major cause of treatment failure. Aberrant elevation of SOX4, a member of SOX (SRY-related HMG-box) family transcription factors, has been identified in many types of human cancer and promotes cancer development. However, the role of SOX4 in CSCs, especially at a proteome-wide level, has remained elusive. The aim of this study is to investigate the effect of SOX4 on the stemness of CSCs and reveal the underlying mechanisms by identification of SOX4-induced proteome changes through proteomics study. Results Overexpression of SOX4 promotes sphere formation and self-renewal of colorectal cancer cells in vitro and in vivo and elevates the expression levels of CSCs markers. Through iTRAQ-based quantitative proteomics analysis, 215 differentially expressed proteins (128 upregulated, 87 downregulated) in SOX4-overexpressing HCT-116 spheres were identified. The bioinformatic analysis highlighted the importance of HDAC1 as the fundamental roles of its impacted pathways in stem cell maintenance, including Wnt, Notch, cell cycle, and transcriptional misregulation in cancer. The mechanistic study showed that SOX4 directly binds to the promoter of HDAC1, promotes HDAC1 transcription, thereby supporting the stemness of colorectal cancer cells. HDAC1 hallmarks colorectal cancer stem cells and depletion of HDAC1 abolished the stimulatory effect of SOX4. Furthermore, SOX4-HDAC1 axis is conserved in multiple types of cancer. Conclusions The results of this study reveal SOX4-induced proteome changes in HCT-116 spheres and demonstrates that transcriptional activation of HDAC1 is the primary mechanism underlying SOX4 maintaining CSCs. This finding suggests that HDAC1 is a potential drug target for eradicating SOX4-driven human CSCs.
Collapse
Affiliation(s)
- Jingshu Liu
- College of Bioengineering, Chongqing University, 400044, Chongqing, People's Republic of China.,Department of Gynecologic Oncology, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China.,Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, 400044, Chongqing, People's Republic of China
| | - Jiangfeng Qiu
- Department of Gastrointestinal Surgery, Renji Hospital Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, People's Republic of China
| | - Zhiqi Zhang
- Department of General Surgery, School of Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University, 200081, Shanghai, People's Republic of China
| | - Lei Zhou
- Singapore Eye Research Institute, The academia, 20 College Road, Discovery Tower Level 6, 169856, Singapore, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Research Program, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Yunzhe Li
- College of Bioengineering, Chongqing University, 400044, Chongqing, People's Republic of China.,Department of Gynecologic Oncology, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China
| | - Dongyan Ding
- College of Bioengineering, Chongqing University, 400044, Chongqing, People's Republic of China.,Department of Gynecologic Oncology, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China
| | - Yang Zhang
- Laboratory Department, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China
| | - Dongling Zou
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China
| | - Dong Wang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China
| | - Qi Zhou
- College of Bioengineering, Chongqing University, 400044, Chongqing, People's Republic of China. .,Department of Gynecologic Oncology, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China. .,Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China. .,Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, 400044, Chongqing, People's Republic of China.
| | - Tingyuan Lang
- College of Bioengineering, Chongqing University, 400044, Chongqing, People's Republic of China. .,Department of Gynecologic Oncology, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China. .,Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China. .,Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, 400044, Chongqing, People's Republic of China.
| |
Collapse
|