251
|
Microbiological, Biochemical, and Functional Aspects of Fermented Vegetable and Fruit Beverages. J CHEM-NY 2020. [DOI: 10.1155/2020/5790432] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years, the request for the functional beverages that promote health and wellness has increased. In fact, fermented juices are an excellent delivering means for bioactive components. Their production is of crucial importance to supply probiotics, in particular, for people with particulars needs like dairy-product allergic consumers and vegetarians. This review focuses on recent findings regarding the microbial composition and the health benefits of fermented fruit and vegetable beverages by lactic acid bacteria, kefir grains, and SCOBY as well as discussing the metabolites resulting from these fermentations process. Moreover, limits that could restrain their production at the industrial level and solutions that have been proposed to overcome these constraints are also reviewed.
Collapse
|
252
|
Szutowska J, Rybicka I, Pawlak-Lemańska K, Gwiazdowska D. Spontaneously fermented curly kale juice: Microbiological quality, nutritional composition, antioxidant, and antimicrobial properties. J Food Sci 2020; 85:1248-1255. [PMID: 32144763 DOI: 10.1111/1750-3841.15080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/05/2019] [Accepted: 01/24/2020] [Indexed: 11/29/2022]
Abstract
Nondairy fermented products, such as fruit and vegetable juices, are gaining popularity among consumers worldwide for health-related and economic reasons. The purpose of this study was to determine the changes in microbiological quality; antimicrobial and antioxidant activity; and phenolic, vitamin C, minerals, and cadmium content occurring during spontaneous fermentation of curly kale juice. The fermentation process contributed to a significant growth of lactic acid bacteria, enterococci, and yeasts, while no pathogens of Escherichia coli and Salmonella spp. were observed. The antimicrobial properties of the obtained juice improved during fermentation for all indicator microorganisms. Total phenolic content and antioxidant activity increased from 48 to 116 mg gallic acid equivalent/100 mL and from 4.5 to 6.8 mM Trolox/100 mL, respectively, while the content of vitamin C decreased. The results indicated that 100 mL of juice provided a significant contribution to the recommended mineral intake. Moreover, the content of heavy metal Cd was within acceptable limit (6 µg/kg). Overall, our findings indicate that fermented curly kale juice may become popular in the functional food sector, especially among vegetarians and consumers with lactose intolerance or allergy to milk proteins. PRACTICAL APPLICATION: As the market for fermented fruit and vegetable products grows, new plant materials rich in biologically active compounds are being sought. Considering the high demand for sauerkraut, the fermentation of other cruciferous vegetables seems interesting. One example is curly kale, which has been classified as "superfood" due to its numerous beneficial health properties, such as strong antioxidant activity, high vitamins, and minerals content. In addition, a market niche exists due to a lack of fermented green curly kale products on the market, making our study particularly relevant.
Collapse
Affiliation(s)
- Julia Szutowska
- Dept. of Natural Science and Quality Assurance, Inst. of Quality Science, Poznan Univ. of Economics and Business, Al. Niepodległości 10, 61-875, Poznań, Poland
| | - Iga Rybicka
- Dept. of Technology and Instrumental Analysis, Inst. of Quality Science, Poznan Univ. of Economics and Business, Al. Niepodległości 10, 61-875, Poznań, Poland
| | - Katarzyna Pawlak-Lemańska
- Dept. of Technology and Instrumental Analysis, Inst. of Quality Science, Poznan Univ. of Economics and Business, Al. Niepodległości 10, 61-875, Poznań, Poland
| | - Daniela Gwiazdowska
- Dept. of Natural Science and Quality Assurance, Inst. of Quality Science, Poznan Univ. of Economics and Business, Al. Niepodległości 10, 61-875, Poznań, Poland
| |
Collapse
|
253
|
Antioxidant and Anti-Inflammatory Activities of the Crude Extracts of Raw and Fermented Tomato Pomace and Their Correlations with Aglycate-Polyphenols. Antioxidants (Basel) 2020; 9:antiox9020179. [PMID: 32098217 PMCID: PMC7070286 DOI: 10.3390/antiox9020179] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
Two tomato pomace (TP) were studied as feedstocks to obtain extracts that are rich in polyphenols. TPs prompt degradation impairs biomass safety, thus naturally present microflora were tested to perform conservation, and own lactic bacteria became predominant after 60 days of treatment. The extracts of TPs and TPs fermented (TPF) were chemically characterized and tested for antioxidant and anti-inflammatory activities. Flavonoids and phenolic acids were classed as aglycone-polyphenols (A-PP), the most bioactive polyphenol fraction. Fermentation led to a reduction of the A-PP amount, but no significant change in composition. Antioxidant power increased, despite the A-PP reduction, for the presence of fermentation metabolites having aromatic-substituent. TP and TPF both have anti-inflammatory properties that were strictly dependent upon the A-PP content. Fermentation preserved the anti-inflammatory activity and the Partial Least Square (PLS) identified as the most active molecules naringenin chalcone, kaempferol, gallic acid, and cinnamic acid, together with the definition of the active dose.
Collapse
|
254
|
Czyżowska A, Siemianowska K, Śniadowska M, Nowak A. Bioactive Compounds and Microbial Quality of Stored Fermented Red Beetroots and Red Beetroot Juice. POL J FOOD NUTR SCI 2020. [DOI: 10.31883/pjfns/116611] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
255
|
Abstract
Numerous traditional low-alcohol fermented beverages produced from fruit or vegetables are described around the world. Fruit and vegetables and lactic fermented products both present nutritional benefits, which give reasons for the recent expansion of non-dairy lactic fermented juices on the market. In addition, fruit and vegetable juices are new carriers for probiotic bacteria. Specific phenotypic traits of lactic acid bacteria (LAB) are required so that LAB can effectively grow in fruit or vegetable juices, increase their safety and improve their sensory and nutritional quality. From the diversity of microbiota of spontaneous fermentations, autochthonous starters can be selected, and their higher performance than allochthonous LAB was demonstrated. Achieving long-term storage and constant high quality of these beverages requires additional processing steps, such as heat treatment. Alternatives to conventional treatments are investigated as they can better preserve nutritional properties, extract bioactive compounds and promote the growth and metabolism of LAB. Specific processing approaches were shown to increase probiotic viability of fruit and vegetable juices. More knowledge on the metabolic activity of lactic acid bacterium consortium in fruit or vegetable juices has become a bottleneck for the understanding and the prediction of changes in bioactive compounds for functional beverages development. Hopefully, the recent developments of metabolomics and methods to describe enzymatic machinery can result in the reconstruction of fermentative pathways.
Collapse
|
256
|
Fermentation in fish and by-products processing: an overview of current research and future prospects. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2019.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
257
|
Leneveu-Jenvrin C, Quentin B, Assemat S, Hoarau M, Meile JC, Remize F. Changes of Quality of Minimally-Processed Pineapple ( Ananas comosus, var. 'Queen Victoria') during Cold Storage: Fungi in the Leading Role. Microorganisms 2020; 8:microorganisms8020185. [PMID: 32012867 PMCID: PMC7074791 DOI: 10.3390/microorganisms8020185] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/20/2020] [Accepted: 01/27/2020] [Indexed: 11/16/2022] Open
Abstract
Minimally-processed pineapple stored under refrigerated conditions is highly perishable. We aimed to characterize the evolution of physicochemical, sensory and microbiological quality during cold storage. Pineapple batches were sampled from several locations in Reunion Island and then minimally processed. In the processing step, the variability of firmness and counts of yeasts and molds were observed. Moreover, correlations between the sampling season and pH and b* color component, as well as between fungal population and b* parameter were observed. During storage, the visual aspect of pineapple cuts changed to brown and shiny, whereas olfactive descriptors shifted from fruity descriptors and fresh to fermented, alcoholic and milky. The values for pH, TA and TSS did not significantly vary according to storage time. A decrease in firmness and C* color parameter was observed. Yeast and mold counts were significantly higher after 7 days of storage. The diversity in yeasts and molds was mainly dependent on the considered batches observed from PCR-DGGE profiles. Fungal species were isolated from spoiled pineapple cuts. The implication of Penicilllium citrtrinum, Talaromyces amestolkiae, Rhodotorula mucilaginosa, Saccharomyces cerevisiae, and Meyerozyma caribbica in the spoilage of minimally-processed pineapple cuts was further demonstrated.
Collapse
Affiliation(s)
- Charlène Leneveu-Jenvrin
- QualiSud, Univ de La Réunion, CIRAD, Univ Montpellier, Montpellier SupAgro, Univ d’Avignon, 2 rue J. Wetzell, F-97490 Sainte Clotilde, France; (B.Q.); (F.R.)
- Correspondence:
| | - Baptiste Quentin
- QualiSud, Univ de La Réunion, CIRAD, Univ Montpellier, Montpellier SupAgro, Univ d’Avignon, 2 rue J. Wetzell, F-97490 Sainte Clotilde, France; (B.Q.); (F.R.)
| | - Sophie Assemat
- CIRAD, UMR QualiSud, F-97410 Saint Pierre, La Réunion, France; (S.A.); (M.H.); jean-christophe. (J.-C.M.)
- QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ d’Avignon, Univ de La Réunion, F-34000 Montpellier, France
| | - Mathilde Hoarau
- CIRAD, UMR QualiSud, F-97410 Saint Pierre, La Réunion, France; (S.A.); (M.H.); jean-christophe. (J.-C.M.)
- QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ d’Avignon, Univ de La Réunion, F-34000 Montpellier, France
| | - Jean-Christophe Meile
- CIRAD, UMR QualiSud, F-97410 Saint Pierre, La Réunion, France; (S.A.); (M.H.); jean-christophe. (J.-C.M.)
- QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ d’Avignon, Univ de La Réunion, F-34000 Montpellier, France
| | - Fabienne Remize
- QualiSud, Univ de La Réunion, CIRAD, Univ Montpellier, Montpellier SupAgro, Univ d’Avignon, 2 rue J. Wetzell, F-97490 Sainte Clotilde, France; (B.Q.); (F.R.)
| |
Collapse
|
258
|
Processed Fruiting Bodies of Lentinus edodes as a Source of Biologically Active Polysaccharides. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10020470] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Water soluble polysaccharides (WSP) were isolated from Lentinus edodes fruiting bodies. The mushrooms were previously subjected to various processing techniques which included blanching, boiling, and fermenting with lactic acid bacteria. Therefore, the impact of processing on the content and biological activities of WSP was established. Non-processed fruiting bodies contained 10.70 ± 0.09 mg/g fw. Boiling caused ~12% decrease in the amount of WSP, while blanched and fermented mushrooms showed ~6% decline. Fourier transform infrared spectroscopy analysis (FTIR) confirmed the presence of β-glycosidic links, whereas due to size exclusion chromatography 216 kDa and 11 kDa molecules were detected. WSP exhibited antioxidant potential in FRAP (ferric ion reducing antioxidant power) and ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) assays. Cytotoxic properties were determined on MCF-7 and T47D human breast cell lines using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) test. Both biological activities decreased as the result of boiling and fermenting.
Collapse
|
259
|
Augustin M, Sanguansri L, Fox E, Cobiac L, Cole M. Recovery of wasted fruit and vegetables for improving sustainable diets. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
260
|
Sun X, Acquah C, Aluko RE, Udenigwe CC. Considering food matrix and gastrointestinal effects in enhancing bioactive peptide absorption and bioavailability. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103680] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
261
|
Szutowska J. Functional properties of lactic acid bacteria in fermented fruit and vegetable juices: a systematic literature review. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-019-03425-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
262
|
|
263
|
Holkem AT, Neto EJS, Nakayama M, Souza CJF, Thomazini M, Gallo FA, da Silva MP, de Queiroz Bomdespacho L, Luciano CG, Moraes ICF, Petrus RR, Favaro-Trindade CS. Sugarcane Juice with Co-encapsulated Bifidobacterium animalis subsp. lactis BLC1 and Proanthocyanidin-Rich Cinnamon Extract. Probiotics Antimicrob Proteins 2019; 12:1179-1192. [PMID: 31709506 DOI: 10.1007/s12602-019-09605-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Bioactive compounds are sensitive to many factors, and they can alter the sensory characteristics of foods. Microencapsulation could be a tool to provide protection and allow the addition of bioactives in new matrices, such as sugarcane juice. This study focused on producing and evaluating the potential function of probiotics and proanthocyanidin-rich cinnamon extract (PRCE), both in free and encapsulated forms when added to sugarcane juice. The pure sugarcane juice treatment T1 was compared with other sugarcane juices to which bioactive compounds had been added; T2, a non-encapsulated Bifidobacterium animalis subsp. lactis (BLC1); T3, a non-encapsulated BLC1 and PRCE; T4, BLC1 microcapsules; and T5, with BLC1 and PRCE microcapsules. The samples were morphologically, physicochemically, rheologically, and sensorially characterized. Samples were also evaluated regarding the viability of BLC1 during the juice's storage at 4 °C. It was possible to produce probiotic sugarcane juice with non-encapsulated BLC1, but not with the addition of free PRCE, which in its free form reduced the viability of this microorganism to < 1 log CFU/mL after 7 days. The microcapsules were effective to protect BLC1 during juice storage and to maintain high contents of phenolic and proanthocyanidin compounds, although the products containing these had their viscosity altered and were less accepted than either the control or those with non-encapsulated BLC1.
Collapse
Affiliation(s)
- Augusto Tasch Holkem
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, CP 23, Pirassununga, São Paulo, CEP 13535 900, Brazil
| | - Edmur José Santos Neto
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, CP 23, Pirassununga, São Paulo, CEP 13535 900, Brazil
| | - Megumi Nakayama
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, CP 23, Pirassununga, São Paulo, CEP 13535 900, Brazil
| | - Clitor J F Souza
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, CP 23, Pirassununga, São Paulo, CEP 13535 900, Brazil.,Faculdade de Engenharia, Pós-graduação em Ciência e Tecnologia de Alimentos, Universidade Federal da Grande Dourados, PO Box 533, Dourados, 79804-970, Brazil
| | - Marcelo Thomazini
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, CP 23, Pirassununga, São Paulo, CEP 13535 900, Brazil
| | - Fabio Augusto Gallo
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, CP 23, Pirassununga, São Paulo, CEP 13535 900, Brazil
| | - Marluci Palazzolli da Silva
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, CP 23, Pirassununga, São Paulo, CEP 13535 900, Brazil
| | - Laura de Queiroz Bomdespacho
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, CP 23, Pirassununga, São Paulo, CEP 13535 900, Brazil
| | - Carla Giovana Luciano
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, CP 23, Pirassununga, São Paulo, CEP 13535 900, Brazil
| | - Izabel Cristina Freitas Moraes
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, CP 23, Pirassununga, São Paulo, CEP 13535 900, Brazil
| | - Rodrigo Rodrigues Petrus
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, CP 23, Pirassununga, São Paulo, CEP 13535 900, Brazil
| | - Carmen S Favaro-Trindade
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, CP 23, Pirassununga, São Paulo, CEP 13535 900, Brazil.
| |
Collapse
|
264
|
|
265
|
Xu M, Ran L, Chen N, Fan X, Ren D, Yi L. Polarity-dependent extraction of flavonoids from citrus peel waste using a tailor-made deep eutectic solvent. Food Chem 2019; 297:124970. [DOI: 10.1016/j.foodchem.2019.124970] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/21/2019] [Accepted: 06/09/2019] [Indexed: 10/26/2022]
|
266
|
Ethnobotanical dataset on local edible fruits in North Sulawesi, Indonesia. Data Brief 2019; 27:104681. [PMID: 31720333 PMCID: PMC6838372 DOI: 10.1016/j.dib.2019.104681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/04/2019] [Accepted: 10/11/2019] [Indexed: 11/23/2022] Open
Abstract
This dataset describes the knowledge of local people in North Sulawesi on local edible fruits which can be eaten raw or used as medicine. North Sulawesi is located in the Wallacea zone [1,2] and has a high biodiversity of local fruits that are not yet fully exploited. Fruits are available as rich sources of vitamins, fibres, minerals, and phytochemicals [3] for local people's diet and health. Ethnobotany was used to collect data for the documentation of local knowledge on the existence, the use, and conservation practices of local fruits using semi-structured and structured interviews and questionnaire. There were 27 recorded families of local edible fruits, predominated by Myrtaceae and Anacardiaceae. Some fruits were found abundantly, but some were rarely found, especially those which were endemic to North Sulawesi. The fruit trees were mostly self-grown, and the fruits were eaten by the community themselves. In general, they were well aware of the types of local fruits that could be eaten raw. Knowledge of local fruits were passed on from generation to generation. Most people claimed that local fruits which could be eaten raw were also used for medicine and maintaining health. Most of the local fruits used as medicines were not made as medicinal preparations, but eaten raw or cooked. However, most people did not know exactly about the efficacy of the fruits. Types of diseases that were claimed to be cured by using local fruit among others were sprue, high cholesterol and digestive disorders. The possibility of future youth generations to consume these fruits was very high, according to most people. But they were worried that the younger generation in the future would prefer imported fruits. The community in general knew that these local fruits needed to be conserved, but they did not yet know how to maintain the existence of these local fruits in the future, apart from their current practices.
Collapse
|
267
|
James A, Wang Y. Characterization, health benefits and applications of fruits and vegetable probiotics. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2019.1652693] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Armachius James
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, P.R. China
| | - Yousheng Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, P.R. China
| |
Collapse
|
268
|
Souza EL, Lundgren GA, Oliveira KÁR, Berger LRR, Magnani M. An Analysis of the Published Literature on the Effects of Edible Coatings Formed by Polysaccharides and Essential Oils on Postharvest Microbial Control and Overall Quality of Fruit. Compr Rev Food Sci Food Saf 2019; 18:1947-1967. [DOI: 10.1111/1541-4337.12498] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/29/2019] [Accepted: 08/27/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Evandro L. Souza
- Laboratory of Food Microbiology, Dept. of Nutrition, Health Sciences CenterFederal Univ. of Paraíba João Pessoa Brazil
| | - Giovanna A. Lundgren
- Laboratory of Food Microbiology, Dept. of Nutrition, Health Sciences CenterFederal Univ. of Paraíba João Pessoa Brazil
| | - Kataryne Á. R. Oliveira
- Laboratory of Food Microbiology, Dept. of Nutrition, Health Sciences CenterFederal Univ. of Paraíba João Pessoa Brazil
| | - Lúcia R. R. Berger
- Laboratory of Food Microbiology, Dept. of Nutrition, Health Sciences CenterFederal Univ. of Paraíba João Pessoa Brazil
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Dept. of Food EngineeringFederal Univ. of Paraíba João Pessoa Brazil
| |
Collapse
|
269
|
Leneveu-Jenvrin C, Charles F, Barba FJ, Remize F. Role of biological control agents and physical treatments in maintaining the quality of fresh and minimally-processed fruit and vegetables. Crit Rev Food Sci Nutr 2019; 60:2837-2855. [PMID: 31547681 DOI: 10.1080/10408398.2019.1664979] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fruit and vegetables are an important part of human diets and provide multiple health benefits. However, due to the short shelf-life of fresh and minimally-processed fruit and vegetables, significant losses occur throughout the food distribution chain. Shelf-life extension requires preserving both the quality and safety of food products. The quality of fruit and vegetables, either fresh or fresh-cut, depends on many factors and can be determined by analytical or sensory evaluation methods. Among the various technologies used to maintain the quality and increase shelf-life of fresh and minimally-processed fruit and vegetables, biological control is a promising approach. Biological control refers to postharvest control of pathogens using microbial cultures. With respect to application of biological control for increasing the shelf-life of food, the term biopreservation is favored, although the approach is identical. The methods for screening and development of biocontrol agents differ greatly according to their intended application, but the efficacy of all current approaches following scale-up to commercial conditions is recognized as insufficient. The combination of biological and physical methods to maintain quality has the potential to overcome the limitations of current approaches. This review compares biocontrol and biopreservation approaches, alone and in combination with physical methods. The recent increase in the use of meta-omics approaches and other innovative technologies, has led to the emergence of new strategies to increase the shelf-life of fruit and vegetables, which are also discussed herein.
Collapse
Affiliation(s)
- Charlène Leneveu-Jenvrin
- QualiSud, Université de La Réunion, CIRAD, Université Montpellier, Montpellier SupAgro, Université d'Avignon, Sainte Clotilde, France
| | - Florence Charles
- QualiSud, Université d'Avignon, CIRAD, Université Montpellier, Montpellier SupAgro, Université de La Réunion, Avignon, France
| | - Francisco J Barba
- Faculty of Pharmacy, Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, Burjassot, València, Spain
| | - Fabienne Remize
- QualiSud, Université de La Réunion, CIRAD, Université Montpellier, Montpellier SupAgro, Université d'Avignon, Sainte Clotilde, France
| |
Collapse
|
270
|
Deciphering the microbiome shift during fermentation of medicinal plants. Sci Rep 2019; 9:13461. [PMID: 31530872 PMCID: PMC6748931 DOI: 10.1038/s41598-019-49799-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 08/27/2019] [Indexed: 12/20/2022] Open
Abstract
The importance of the human-microbiome relationship for positive health outcomes has become more apparent over the last decade. Influencing the gut microbiome via modification of diet represents a possibility of maintaining a healthy gut flora. Fermented food and lactic acid bacteria (LAB) display a preventive way to inhibit microbial dysbioses and diseases, but their ecology on plants is poorly understood. We characterized the microbiome of medicinal plants (Matricaria chamomilla L. and Calendula officinalis L.) using 16S rRNA gene profiling from leaves that were fermented over a six-week time course. The unfermented samples were characterized by a distinct phyllosphere microbiome, while the endosphere revealed a high similarity. During fermentation, significant microbial shifts were observed, whereby LAB were enhanced in all approaches but never numerically dominated. Among the LAB, Enterococcaceae were identified as the most dominant family in both plants. M. chamomilla community had higher relative abundances of Lactobacillaceae and Carnobacteriaceae, while C. officinalis showed a higher presence of Leuconostocaceae and Streptococcaceae. The natural leaf microbiome and the indigenous LAB communities of field-grown Asteraceae medicinal plants are plant-specific and habitat-specific and are subjected to significant shifts during fermentation. Leaf surfaces as well as leaf endospheres were identified as sources for biopreservative LAB.
Collapse
|
271
|
Dilberger B, Passon M, Asseburg H, Silaidos CV, Schmitt F, Schmiedl T, Schieber A, Eckert GP. Polyphenols and Metabolites Enhance Survival in Rodents and Nematodes-Impact of Mitochondria. Nutrients 2019; 11:E1886. [PMID: 31412639 PMCID: PMC6723680 DOI: 10.3390/nu11081886] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 12/13/2022] Open
Abstract
(1) Background: Polyphenols (PP) play an important role in the prevention of non-communicable diseases and may contribute to healthy aging. To investigate the molecular and cellular aspects of PP metabolites on longevity with a focus on mitochondrial function, we applied a pre-fermented mixture of polyphenols (Rechtsregulat®, RR) to rodents and nematodes. (2) Methods: The lifespans of Navar Medical Research Institute (NMRI) mice and C. elegans were recorded. The heat-stress resistance (37 °C) of C. elegans N2 was measured using nucleic staining. Respiration and membrane potential (ΔΨm) were measured in isolated mitochondria. The energetic metabolites adenosine triphosphate (ATP), lactate, and pyruvate were determined in lysates. Expression levels of longevity related genes were determined using quantitative real time polymerase chain reaction (qRT-PCR). Phenolic compounds were identified using ultra high performance liquid chromatography-diode array detection-Iontrap-multiple stage mass spectrometry (UHPLC-DAD-Iontrap-MSn). (3) Results: Several phenolic metabolites including protocatechuic acid (PCA) were identified in RR. Feeding of mice with RR resulted in a significantly increased lifespan. Heat-stress resistance (RR *** p = 0.0006; PCA **** p < 0.0001), median lifespan (NMRI: RR ** p = 0.0035; C. elegans RR * p = 0.0279; PCA **** p < 0.0001), and activity of mitochondrial respiratory chain complexes (RR *-** p = 0.0237 - 0.0052; PCA * p = 0.019 - 0.0208) of C. elegans were significantly increased after incubation with RR (10%) or PCA (780 µM). PCA significantly improved nematodes ΔΨm (* p = 0.02058) and ATP levels (* p = 0.029). RR significantly up-regulated lactate levels, indicating enhanced glycolysis. The expression levels of longevity related genes daf-16, sir-2.1, and skn-1 were significantly upregulated after PCA, and partially after RR administration. (4) Conclusion: Phenolic metabolites such as PCA have the potential to enhance health and lifespan and mitochondrial function, and thus may contribute to healthy aging.
Collapse
Affiliation(s)
- Benjamin Dilberger
- Laboratory for Nutrition in Prevention and Therapy, Institute of Nutritional Sciences, Biomedical Research Center Seltersberg (BFS), Justus-Liebig-University of Giessen, Schubertstr. 81, 35392 Giessen, Germany
| | - Maike Passon
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Endenicher Allee 19b, 53115 Bonn, Germany
| | - Heike Asseburg
- Laboratory for Nutrition in Prevention and Therapy, Institute of Nutritional Sciences, Biomedical Research Center Seltersberg (BFS), Justus-Liebig-University of Giessen, Schubertstr. 81, 35392 Giessen, Germany
| | - Carmina V Silaidos
- Laboratory for Nutrition in Prevention and Therapy, Institute of Nutritional Sciences, Biomedical Research Center Seltersberg (BFS), Justus-Liebig-University of Giessen, Schubertstr. 81, 35392 Giessen, Germany
| | - Fabian Schmitt
- Laboratory for Nutrition in Prevention and Therapy, Institute of Nutritional Sciences, Biomedical Research Center Seltersberg (BFS), Justus-Liebig-University of Giessen, Schubertstr. 81, 35392 Giessen, Germany
| | - Tommy Schmiedl
- Laboratory for Nutrition in Prevention and Therapy, Institute of Nutritional Sciences, Biomedical Research Center Seltersberg (BFS), Justus-Liebig-University of Giessen, Schubertstr. 81, 35392 Giessen, Germany
| | - Andreas Schieber
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Endenicher Allee 19b, 53115 Bonn, Germany
| | - Gunter P Eckert
- Laboratory for Nutrition in Prevention and Therapy, Institute of Nutritional Sciences, Biomedical Research Center Seltersberg (BFS), Justus-Liebig-University of Giessen, Schubertstr. 81, 35392 Giessen, Germany.
| |
Collapse
|
272
|
Omedi JO, Huang W, Zheng J. Effect of sourdough lactic acid bacteria fermentation on phenolic acid release and antifungal activity in pitaya fruit substrate. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
273
|
Gies M, Descalzo AM, Servent A, Dhuique-Mayer C. Incorporation and stability of carotenoids in a functional fermented maize yogurt-like product containing phytosterols. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
274
|
Dynamic variation in biochemical properties and prebiotic activities of polysaccharides from longan pulp during fermentation process. Int J Biol Macromol 2019; 132:915-921. [DOI: 10.1016/j.ijbiomac.2019.04.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/24/2019] [Accepted: 04/04/2019] [Indexed: 12/25/2022]
|
275
|
Safety and Microbiological Quality. FERMENTATION 2019. [DOI: 10.3390/fermentation5020050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Food fermentation aims, primarily, to increase the shelf life of perishable foodstuffs [...]
Collapse
|
276
|
López-Hortas L, Conde E, Falqué E, Domínguez H, Torres MD. Preparation of Hydrogels Composed of Bioactive Compounds from Aqueous Phase of Artichoke Obtained by MHG Technique. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02301-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
277
|
Melini F, Melini V, Luziatelli F, Ficca AG, Ruzzi M. Health-Promoting Components in Fermented Foods: An Up-to-Date Systematic Review. Nutrients 2019; 11:E1189. [PMID: 31137859 PMCID: PMC6567126 DOI: 10.3390/nu11051189] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023] Open
Abstract
Fermented foods have long been produced according to knowledge passed down from generation to generation and with no understanding of the potential role of the microorganism(s) involved in the process. However, the scientific and technological revolution in Western countries made fermentation turn from a household to a controlled process suitable for industrial scale production systems intended for the mass marketplace. The aim of this paper is to provide an up-to-date review of the latest studies which investigated the health-promoting components forming upon fermentation of the main food matrices, in order to contribute to understanding their important role in healthy diets and relevance in national dietary recommendations worldwide. Formation of antioxidant, bioactive, anti-hypertensive, anti-diabetic, and FODMAP-reducing components in fermented foods are mainly presented and discussed. Fermentation was found to increase antioxidant activity of milks, cereals, fruit and vegetables, meat and fish. Anti-hypertensive peptides are detected in fermented milk and cereals. Changes in vitamin content are mainly observed in fermented milk and fruits. Fermented milk and fruit juice were found to have probiotic activity. Other effects such as anti-diabetic properties, FODMAP reduction, and changes in fatty acid profile are peculiar of specific food categories.
Collapse
Affiliation(s)
- Francesca Melini
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, I-00178 Rome, Italy.
| | - Valentina Melini
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, I-00178 Rome, Italy.
| | - Francesca Luziatelli
- Department for Innovation in Biological, Agrofood and Forest systems (DIBAF), University of Tuscia, via C. de Lellis, snc, I-01100 Viterbo, Italy.
| | - Anna Grazia Ficca
- Department for Innovation in Biological, Agrofood and Forest systems (DIBAF), University of Tuscia, via C. de Lellis, snc, I-01100 Viterbo, Italy.
| | - Maurizio Ruzzi
- Department for Innovation in Biological, Agrofood and Forest systems (DIBAF), University of Tuscia, via C. de Lellis, snc, I-01100 Viterbo, Italy.
| |
Collapse
|
278
|
Chin YX, Mi Y, Cao WX, Lim PE, Xue CH, Tang QJ. A Pilot Study on Anti-Obesity Mechanisms of Kappaphycus Alvarezii: The Role of Native κ-Carrageenan and the Leftover Sans-Carrageenan Fraction. Nutrients 2019; 11:E1133. [PMID: 31117266 PMCID: PMC6566674 DOI: 10.3390/nu11051133] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 12/15/2022] Open
Abstract
Kappaphycus is a commercially important edible red alga widely cultivated for carrageenan production. Here, we aimed to investigate the anti-obesity mechanism of Kappaphycus alvarezii by comparing the effects of whole seaweed (T), extracted native κ-carrageenan (CGN), and the leftover fraction sans-carrageenan (SCGN) supplementations (5%, w/w) on diet-induced obese C57BL/6J mice. A high-fat diet induced both a raised body fat percentage and serum cholesterol level, increased adipocytes size, abnormal levels of adipocytokines, and promoted gut dysbiosis. Our results showed that, overall, both CGN and SCGN were more effective in reversing obesity and related metabolic syndromes to normal levels than T. Furthermore, these findings suggested that CGN- and SCGN-modulated gut dysbiosis induced by a high-fat diet, which may play an influencing role in adiponectin dysregulation. Our data also showed some evidence that CGN and SCGN have distinct effects on selected genes involved in lipid metabolism. In conclusion, both κ-carrageenan and SCGN have novel anti-obesity potential with possible different mechanisms of action.
Collapse
Affiliation(s)
- Yao Xian Chin
- Human Health Research Laboratory, College of Food Science and Engineering, University of China, Qingdao 266003, Shandong, China.
| | - Ye Mi
- Human Health Research Laboratory, College of Food Science and Engineering, University of China, Qingdao 266003, Shandong, China.
| | - Wan Xiu Cao
- Human Health Research Laboratory, College of Food Science and Engineering, University of China, Qingdao 266003, Shandong, China.
| | - Phaik Eem Lim
- Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Chang Hu Xue
- Human Health Research Laboratory, College of Food Science and Engineering, University of China, Qingdao 266003, Shandong, China.
| | - Qing Juan Tang
- Human Health Research Laboratory, College of Food Science and Engineering, University of China, Qingdao 266003, Shandong, China.
| |
Collapse
|
279
|
Jakubczyk A, Karaś M, Złotek U, Szymanowska U, Baraniak B, Bochnak J. Peptides obtained from fermented faba bean seeds (Vicia faba) as potential inhibitors of an enzyme involved in the pathogenesis of metabolic syndrome. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
280
|
Huang J, Guo X, Xu T, Fan L, Zhou X, Wu S. Ionic deep eutectic solvents for the extraction and separation of natural products. J Chromatogr A 2019; 1598:1-19. [PMID: 31005289 DOI: 10.1016/j.chroma.2019.03.046] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/27/2022]
Abstract
Room ionic liquids (ILs) used as green solvents have received considerable attention and wide application in different research and industrial fields, such as chemistry, biology, catalysis, energy, and even environmental sciences. Recently, a new class of sustainable solvents named deep eutectic solvents (DESs) have been developed, which share the promising solvent characteristics of ILs, such as thermal and chemical stability, low vapor pressure and design ability. In addition, the major advantages of DESs over ILs are their lower prices and easier preparation. Therefore, DESs have been considered to be a potential alternative to replace conventional organic solvents and ILs. Currently, the developed DESs may be classified into ionic and nonionic liquids. Typically, choline chloride (ChCl)/urea (1:2) is an ionic DES, while glucose/sucrose (1:1) is a nonionic DES. Although several reviews have covered advancements in DESs, in this review, we aim to provide a general insight into DESs, particularly ionic DESs, like choline-based DES, in terms of their preparation and application in the extraction of natural products (NPs) mainly from traditional Chinese medicines and the recovery of extracted compounds from their extracts. Additionally, various factors affecting the extraction efficiency of DESs are discussed.
Collapse
Affiliation(s)
- Jie Huang
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Xiuyun Guo
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Tianyi Xu
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Lanyan Fan
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Xinpeng Zhou
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Shihua Wu
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China.
| |
Collapse
|
281
|
Siroli L, Camprini L, Pisano MB, Patrignani F, Lanciotti R. Volatile Molecule Profiles and Anti- Listeria monocytogenes Activity of Nisin Producers Lactococcus lactis Strains in Vegetable Drinks. Front Microbiol 2019; 10:563. [PMID: 30972045 PMCID: PMC6443959 DOI: 10.3389/fmicb.2019.00563] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 03/05/2019] [Indexed: 12/03/2022] Open
Abstract
This work aimed to evaluate the potential of 15 nisin producing Lactococcus lactis strains, isolated from dairy products, for the fermentation of soymilk and carrot juice. In particular, the acidification and the production of nisin in the food matrices were recorded. Moreover, three strains (LBG2, FBG1P, and 3LC39), that showed the most promising results were further scrutinized for their anti-Listeria monocytogenes activity and volatile molecules profile during fermentation of soymilk and carrot juice. Lactococcus lactis strains LBG2, FBG1P, and 3LC39 resulted the most interesting ones, showing rapid growth and acidification on both food matrices. The higher amounts of nisin were detected in soymilk samples fermented by the strain LBG2 after 24 and 48 h (26.4 mg/L). Furthermore, the rapid acidification combined with the production of nisin resulted in a strong anti-Listeria activity, reducing the pathogen loads below the detection limit, in carrot juice samples fermented by the strains LBG2 and FBG1P and in soymilk by the strain LBG2. The fermentation increased the presence of volatile molecules such as aldehydes and ketones with a positive impact on the organoleptic profile of both the fermented products. These results highlighted the interesting potential of three nisin producing L. lactis strains for the production of fermented carrot juice and soymilk. In fact, the fermentation by lactic acid bacteria, combined or not with other mild technologies, represents a good strategy for the microbiological stabilization of these products. Furthermore, the increase of molecules with a positive sensory impact, such as aldehydes and ketones, in the fermented products suggests a possible improvement of their organoleptic characteristics.
Collapse
Affiliation(s)
- Lorenzo Siroli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Cesena, Italy
| | - Lucia Camprini
- Interdepartmental Center for Industrial Agri-food Research, University of Bologna, Cesena, Italy
| | - Maria Barbara Pisano
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Cesena, Italy
- Interdepartmental Center for Industrial Agri-food Research, University of Bologna, Cesena, Italy
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Cesena, Italy
- Interdepartmental Center for Industrial Agri-food Research, University of Bologna, Cesena, Italy
| |
Collapse
|
282
|
Gao H, Wen JJ, Hu JL, Nie QX, Chen HH, Xiong T, Nie SP, Xie MY. Fermented Momordica charantia L. juice modulates hyperglycemia, lipid profile, and gut microbiota in type 2 diabetic rats. Food Res Int 2019; 121:367-378. [PMID: 31108759 DOI: 10.1016/j.foodres.2019.03.055] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/15/2019] [Accepted: 03/25/2019] [Indexed: 12/28/2022]
Abstract
The effect of Lactobacillus plantarum-fermentation on the anti-diabetic functionality of Momordica charantia was examined using a high-fat-diet and low-dose streptozocin-induced type 2 diabetic rat model. Fermented Momordica charantia juice (FMCJ) administration mitigated the hyperglycemia, hyperinsulinemia, hyperlipidemia, and oxidative stress in diabetic rats more favorably than the non-fermented counterpart. Treatments with FMCJ improved ergosterols and lysomonomethyl-phosphatidylethanolamines metabolisms more effectively. Supplement of FMCJ regulated the composition of the gut microbiota, such as increased the abundance of Bacteroides caecigallinarum, Oscillibacter ruminantium, Bacteroides thetaiotaomicron, Prevotella loescheii, Prevotella oralis, and Prevotella melaninogenica, in diabetic rats compared with untreated diabetic rats. Moreover, FMCJ-treated diabetic rats exhibited higher concentrations of acetic acid, propionic acid, butyric acid, total short-chain fatty acids and lower pH values in colonic contents than that in non-fermented juice-treated rats. These results demonstrated that Lactobacillus plantarum-fermentation enhanced the anti-diabetic property of MC juice by favoring the regulation of gut microbiota and the production of SCFAs.
Collapse
Affiliation(s)
- He Gao
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Jia-Jia Wen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Jie-Lun Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Qi-Xing Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Hai-Hong Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Tao Xiong
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China.
| |
Collapse
|
283
|
Effect of Fermentation on Enhancing the Nutraceutical Properties of Arthrospira platensis (Spirulina). FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5010028] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Arthrospira platensis (spirulina), a filamentous fresh-water planktonic cyanobacterium, possesses diverse biological activities and a unique nutritional profile, due to its high content of valuable nutrients. This study aimed to further improve the bioactive profile of spirulina, by fermenting it with the lactic acid bacterium Lactobacillus plantarum. In vitro comparison of the total phenolic content (TPC), C-phycocyanin, free methionine, DPPH radical scavenging capacity, ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC) and protein fragmentation via SDS-PAGE in untreated versus 12 to 72 h fermented spirulina is reported here. After 36 h fermentation, TPC was enhanced by 112%, FRAP by 85% and ORAC by 36%. After 24 h, the DPPH radical scavenging capacity increased 60%, while the free methionine content increased by 94%, after 72 h. Past 36 h of fermentation, the total antioxidant capacity (TAC) diminished, possibly due to deterioration of the heat-sensitive antioxidants. However, protein fragmentation and free methionine content increased, linearly, with the fermentation time. Cyanobacterial peptides and other bioactive compounds trapped within the spirulina cell wall are released during fermentation and have a significant potential as a functional ingredient in nutraceuticals and pharmaceuticals, in addition to their nutritive value.
Collapse
|
284
|
Wahls TL, Chenard CA, Snetselaar LG. Review of Two Popular Eating Plans within the Multiple Sclerosis Community: Low Saturated Fat and Modified Paleolithic. Nutrients 2019; 11:E352. [PMID: 30736445 PMCID: PMC6412750 DOI: 10.3390/nu11020352] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 02/06/2023] Open
Abstract
The precise etiology of multiple sclerosis (MS) is unknown but epidemiologic evidence suggests this immune-mediated, neurodegenerative condition is the result of a complex interaction between genes and lifetime environmental exposures. Diet choices are modifiable environmental factors that may influence MS disease activity. Two diets promoted for MS, low saturated fat Swank and modified Paleolithic Wahls Elimination (WahlsElim), are currently being investigated for their effect on MS-related fatigue and quality of life (NCT02914964). Dr. Swank theorized restriction of saturated fat would reduce vascular dysfunction in the central nervous system (CNS). Dr. Wahls initially theorized that detailed guidance to increase intake of specific foodstuffs would facilitate increased intake of nutrients key to neuronal health (Wahls™ diet). Dr. Wahls further theorized restriction of lectins would reduce intestinal permeability and CNS inflammation (WahlsElim version). The purpose of this paper is to review the published research of the low saturated fat (Swank) and the modified Paleolithic (Wahls™) diets and the rationale for the structure of the Swank diet and low lectin version of the Wahls™ diet (WahlsElim) being investigated in the clinical trial.
Collapse
Affiliation(s)
- Terry L Wahls
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Catherine A Chenard
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Linda G Snetselaar
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
285
|
Tenore GC, Caruso D, Buonomo G, D'Avino M, Ciampaglia R, Maisto M, Schisano C, Bocchino B, Novellino E. Lactofermented Annurca Apple Puree as a Functional Food Indicated for the Control of Plasma Lipid and Oxidative Amine Levels: Results from a Randomised Clinical Trial. Nutrients 2019; 11:nu11010122. [PMID: 30634393 PMCID: PMC6356833 DOI: 10.3390/nu11010122] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/26/2018] [Accepted: 12/31/2018] [Indexed: 02/04/2023] Open
Abstract
Atherosclerotic cardiovascular diseases are preferential targets of healthy diet and preventive medicine partially through strategies to improve lipid profile and counteract oxidative metabolites. Ninety individuals with cardiovascular disease (CVD) risk factors were randomized (1:1:1 ratio) to three arms, according to a four-week run-in, eight-week intervention, and four-week follow up study, testing the effects of a lactofermented Annurca apple puree (lfAAP), compared to unfermented apple puree (AAP) or probiotic alone (LAB) on plasma lipid profile and trimethylamine-N-oxide (TMAO) levels. By comparing the treatments, data indicated for the subjects tested with lfAAP a higher variation of the following serum parameters, in respect to the other treatment groups: high density lipoprotein cholesterol (HDL-C), +61.8% (p = 0.0095); and TMAO levels, −63.1% (p = 0.0042). The present study would suggest lfAAP as an effective functional food for beneficial control of plasma HDL-C and TMAO levels.
Collapse
Affiliation(s)
- Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy.
| | - Domenico Caruso
- Department of Internal Medicine, Hospital Cardarelli, Via Antonio Cardarelli, 80131 Naples, Italy.
| | - Giuseppe Buonomo
- Coop. Samnium Medica, Viale C. Colombo, 18, 82037 Benevento, Italy.
| | - Maria D'Avino
- Department of Internal Medicine, Hospital Cardarelli, Via Antonio Cardarelli, 80131 Naples, Italy.
| | - Roberto Ciampaglia
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy.
| | - Maria Maisto
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy.
| | - Connie Schisano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy.
| | - Bruno Bocchino
- UCCP (Unità Complessa Cure Primarie), Via Manzoni, San Giorgio del Sannio, 82100 Benevento, Italy.
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
286
|
Radzki W, Ziaja‐Sołtys M, Nowak J, Topolska J, Bogucka‐Kocka A, Sławińska A, Michalak‐Majewska M, Jabłońska‐Ryś E, Kuczumow A. Impact of processing on polysaccharides obtained from button mushroom (
Agaricus bisporus
). Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Wojciech Radzki
- Department of Fruits, Vegetables and Mushrooms Technology University of Life Sciences in Lublin Lublin 20‐704 Poland
| | - Marta Ziaja‐Sołtys
- Department of Biology and Genetics Medical University of Lublin Lublin 20‐093 Poland
| | - Jakub Nowak
- Institute of Environmental Engineering Lublin Catholic University Stalowa Wola 37‐450 Poland
| | - Jolanta Topolska
- Department of Biology and Genetics Medical University of Lublin Lublin 20‐093 Poland
| | - Anna Bogucka‐Kocka
- Department of Biology and Genetics Medical University of Lublin Lublin 20‐093 Poland
| | - Aneta Sławińska
- Department of Fruits, Vegetables and Mushrooms Technology University of Life Sciences in Lublin Lublin 20‐704 Poland
| | - Monika Michalak‐Majewska
- Department of Fruits, Vegetables and Mushrooms Technology University of Life Sciences in Lublin Lublin 20‐704 Poland
| | - Ewa Jabłońska‐Ryś
- Department of Fruits, Vegetables and Mushrooms Technology University of Life Sciences in Lublin Lublin 20‐704 Poland
| | - Andrzej Kuczumow
- Institute of Environmental Engineering Lublin Catholic University Stalowa Wola 37‐450 Poland
| |
Collapse
|
287
|
|
288
|
Huang S, Rabah H, Ferret-Bernard S, Le Normand L, Gaucher F, Guerin S, Nogret I, Le Loir Y, Chen XD, Jan G, Boudry G, Jeantet R. Propionic fermentation by the probiotic Propionibacterium freudenreichii to functionalize whey. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.11.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
289
|
Nutritional and Microbiological Quality of Tiger Nut Tubers (Cyperus esculentus), Derived Plant-Based and Lactic Fermented Beverages. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation5010003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tiger nut (Cyperus esculentus) is a tuber that can be consumed raw or processed into beverages. Its nutritional composition shows a high content of lipid and dietary fiber, close to those of nuts, and a high content of starch, like in other tubers. Tiger nuts also contain high levels of phosphorus, calcium, and phenolic compounds, which contribute to their antioxidant activity. From those characteristics, tiger nuts and derived beverages are particularly relevant to limit food insecurity in regions where the plant can grow. In Europe and United States, the tiger nut derived beverages are of high interest as alternatives to milk and for gluten-free diets. Fermentation or addition of probiotic cultures to tiger nut beverages has proven the ability of lactic acid bacteria to acidify the beverages. Preliminary sensory assays concluded that acceptable products are obtained. In the absence of pasteurization, the safety of tiger nut-based beverages is not warranted. In spite of fermentation, some foodborne pathogens or mycotoxigenic fungi have been observed in fermented beverages. Further studies are required to select a tailored bacterial cocktail which would effectively dominate endogenous flora, preserve bioactive compounds and result in a well-accepted beverage.
Collapse
|
290
|
Gaglio R, Gentile C, Bonanno A, Vintaloro L, Perrone A, Mazza F, Barbaccia P, Settanni L, Di Grigoli A. Effect of saffron addition on the microbiological, physicochemical, antioxidant and sensory characteristics of yoghurt. INT J DAIRY TECHNOL 2018. [DOI: 10.1111/1471-0307.12569] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Raimondo Gaglio
- Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF) Università degli Studi di Palermo Viale delle Scienze 4 Palermo 90128 Italy
| | - Carla Gentile
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) Università degli Studi di Palermo Viale delle Scienze Palermo 90128 Italy
| | - Adriana Bonanno
- Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF) Università degli Studi di Palermo Viale delle Scienze 4 Palermo 90128 Italy
| | - Lucia Vintaloro
- Sezione Operativa Periferica di Assistenza Tecnica no. 65 – Corleone Ente Sviluppo Agricolo Via Libertà 203 Palermo 90143 Italy
| | - Anna Perrone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) Università degli Studi di Palermo Viale delle Scienze Palermo 90128 Italy
| | - Francesca Mazza
- Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF) Università degli Studi di Palermo Viale delle Scienze 4 Palermo 90128 Italy
| | - Pietro Barbaccia
- Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF) Università degli Studi di Palermo Viale delle Scienze 4 Palermo 90128 Italy
| | - Luca Settanni
- Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF) Università degli Studi di Palermo Viale delle Scienze 4 Palermo 90128 Italy
| | - Antonino Di Grigoli
- Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF) Università degli Studi di Palermo Viale delle Scienze 4 Palermo 90128 Italy
| |
Collapse
|
291
|
Zhang ZH, Fan ST, Huang DF, Yu Q, Liu XZ, Li C, Wang S, Xiong T, Nie SP, Xie MY. Effect of Lactobacillus plantarum NCU116 Fermentation on Asparagus officinalis Polysaccharide: Characterization, Antioxidative, and Immunoregulatory Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10703-10711. [PMID: 30251849 DOI: 10.1021/acs.jafc.8b03220] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Lactic acid fermentation represents a novel method to produce bioactive functional ingredients, including polysaccharides. In this work, a selected lactic acid bacteria strain NCU116 was used to ferment Asparagus officinalis (asparagus) pulps. Two polysaccharides were subsequently separated from both unprocessed and fermented asparagus pulps, namely, asparagus polysaccharide (AOP) and fermented-AOP (F-AOP). The physicochemical and bioactive properties of AOP and F-AOP were characterized and investigated. High-performance anion-exchange chromatography showed that fermentation increased the proportions of rhamnose, galacturonic acid, and glucuronic acid in polysaccharides by 46.70, 114.09, and 12.75‰, respectively. High-performance size-exclusion chromatography revealed that fermentation decreased the average molecular weight from 181.3 kDa (AOP) to 152.8 kDa (F-AOP). Moreover, the fermentation reduced the particle size and changed the rheology property. In vitro, F-AOP displayed superior free radical scavenging properties compared to AOP, using 2,2-diphenyl-1-picryhydrazyl, hydroxyl, and superoxide anion radical scavenging assays. In vivo, F-AOP administration dose-dependently promoted a gradual shift from Th17-dominant acute inflammatory response (IL-17 and RORγt) to Th1-dominant defensive immune response (IFN-γ and T-bet). These results indicated that the Lactobacillus plantarum NCU116 fermentation was practical and useful to obtain promising bioactive polysaccharides.
Collapse
Affiliation(s)
- Zhi-Hong Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang 330047 , China
| | - Song-Tao Fan
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang 330047 , China
| | - Dan-Fei Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang 330047 , China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang 330047 , China
| | - Xiao-Zhen Liu
- Dongguan University of Technology , Dongguan 523808 , China
| | - Chang Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang 330047 , China
| | - Sunan Wang
- Canadian Food and Wine Institute , Niagara College , 135 Taylor Road , Niagara-on-the-Lake , Ontario L0S 1J0 , Canada
| | - Tao Xiong
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang 330047 , China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang 330047 , China
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang 330047 , China
| |
Collapse
|
292
|
Gao H, Wen JJ, Hu JL, Nie QX, Chen HH, Xiong T, Nie SP, Xie MY. Polysaccharide from fermented Momordica charantia L. with Lactobacillus plantarum NCU116 ameliorates type 2 diabetes in rats. Carbohydr Polym 2018; 201:624-633. [PMID: 30241862 DOI: 10.1016/j.carbpol.2018.08.075] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022]
Abstract
The influence of Lactobacillus plantarum-fermentation on the structure and anti-diabetic effects of Momordica charantia polysaccharides were evaluated. High-fat diet and streptozotocin-induced type 2 diabetic rats were administrated with polysaccharides from fermented and non-fermented Momordica charantia (FP and NFP) for 4 weeks. Fermentation affected the physicochemical characterization, monosaccharide composition, molecular weight, and viscosity of Momordica charantia polysaccharides. Treatment with FP significantly ameliorated hyperglycemia, hyperinsulinemia, hyperlipidemia, and oxidative stress in diabetic rats compared with NFP. Moreover, the diversity and abundance of gut microbiota (Lactococcus laudensis and Prevotella loescheii) in diabetic rats were notably increased by treatment with FP in comparison to NFP. Meanwhile, FP-treated diabetic rats exhibited more colonic short-chain fatty acids (SCFAs) and lower pH values than that in NFP-treated rats. Overall, Lactobacillus plantarum-fermentation could enhance the anti-diabetes effects of Momordica charantia polysaccharides in rats by modifying the structure of polysaccharides to optimize gut microbiota and heighten the production of SCFAs.
Collapse
Affiliation(s)
- He Gao
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, 330047, China.
| | - Jia-Jia Wen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, 330047, China.
| | - Jie-Lun Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, 330047, China.
| | - Qi-Xing Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, 330047, China.
| | - Hai-Hong Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, 330047, China.
| | - Tao Xiong
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, 330047, China.
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, 330047, China.
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
293
|
Chung HJ, Sim JH, Min TS, Choi HK. Metabolomics and Lipidomics Approaches in the Science of Probiotics: A Review. J Med Food 2018; 21:1086-1095. [PMID: 30004273 DOI: 10.1089/jmf.2017.4175] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The intestinal microflora plays important roles in the health of the host, such as nutrient processing and the modulation of intestinal immune responses. The constituents of the diet greatly affect the composition of the microbiota and its metabolites. The human intestinal microbiota is made up of around 100 trillion microbial cells encompassing at least 300 species. Consuming probiotics may lead to changes in the intestinal microflora that influence host health. Metabolomics is a powerful tool for revealing metabolic changes in biofluids, tissues, and organs of hosts induced by the consumption of probiotics, and lipidomics in particular is a technical approach that focuses on the analysis of lipids in various cells and biofluids. Metabolomics and lipidomics have been used to investigate intracellular and extracellular metabolites as well as for the nontargeted profiling and fingerprinting of metabolites. Based on metabolomics and lipidomics investigations, we reviewed the effects of consuming probiotics on metabolic profiles in controlled intestinal environments. We also discuss the associations between metabolic changes and human diseases after consuming probiotics in uncontrolled intestinal environments. In addition, we review the metabolic changes that take place within the food matrix during probiotic fermentation.
Collapse
Affiliation(s)
- Hyuk-Jin Chung
- 1 College of Pharmacy, Chung-Ang University , Seoul, Korea.,2 Korea Yakult Co., Ltd. , Yongin, Korea
| | | | - Tae-Sun Min
- 3 Faculty of Biotechnology, SARI, Jeju National University , Jeju, Korea
| | | |
Collapse
|
294
|
Zhou X, Du L, Shi R, Chen Z, Zhou Y, Li Z. Early-life food nutrition, microbiota maturation and immune development shape life-long health. Crit Rev Food Sci Nutr 2018; 59:S30-S38. [PMID: 29874476 DOI: 10.1080/10408398.2018.1485628] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The current knowledge about early-life nutrition and environmental factors that affect the interaction between the symbiotic microbiota and the host immune system has demonstrated novel regulatory target for treating allergic diseases, autoimmune disorders and metabolic syndrome. Various kinds of food nutrients (such as dietary fiber, starch, polyphenols and proteins) can provide energy resources for both intestinal microbiota and the host. The indigestible food components are fermented by the indigenous gut microbiota to produce diverse metabolites, including short-chain fatty acids, bile acids and trimethylamine-N-oxide, which can regulate the host metabolized physiology, immunity homeostasis and health state. Therefore it is commonly believed early-life perturbation of the microbial community structure and the dietary nutrition interference on the child mucosal immunity contribute to the whole life susceptibility to chronic diseases. In all, the combined interrelationship between food ingredients nutrition, intestinal microbiota configurations and host system immunity provides new therapeutic targets to treat various kinds of pathogenic inflammations and chronic diseases.
Collapse
Affiliation(s)
- Xiaoli Zhou
- a Shanghai Institute of Technology , Shanghai , China
| | - Lina Du
- a Shanghai Institute of Technology , Shanghai , China
| | - Ronghua Shi
- a Shanghai Institute of Technology , Shanghai , China
| | - Zhidong Chen
- a Shanghai Institute of Technology , Shanghai , China
| | - Yiming Zhou
- a Shanghai Institute of Technology , Shanghai , China
| | - Zongjie Li
- a Shanghai Institute of Technology , Shanghai , China
| |
Collapse
|
295
|
Site-specific hydrolysis of chlorogenic acids by selected Lactobacillus species. Food Res Int 2018; 109:426-432. [DOI: 10.1016/j.foodres.2018.04.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/26/2018] [Accepted: 04/23/2018] [Indexed: 11/23/2022]
|
296
|
Zhang X, Wu H, Zhang L, Sun Q. Horseradish peroxidase-mediated synthesis of an antioxidant gallic acid- g-chitosan derivative and its preservation application in cherry tomatoes. RSC Adv 2018; 8:20363-20371. [PMID: 35541661 PMCID: PMC9080819 DOI: 10.1039/c8ra02632g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/23/2018] [Indexed: 11/21/2022] Open
Abstract
Owing to their good solubility and film-forming properties, phenolic acid-g-chitosan derivatives can be used for preservation of fruits and vegetables. However, the chemical synthesis used for the preparation of these derivatives poses a great challenge to food safety. In this study, a method involving horseradish peroxidase catalysis was used to prepare a gallic acid-g-chitosan derivative. The grafting mechanism was studied. Then, the derivative's ability to scavenge free radicals and its preserving application in cherry tomatoes were evaluated. The results indicated that the reaction for horseradish peroxidase catalysis occurred between the amino group of chitosan and the carboxyl group of gallic acid. After enzymatic grafting, the gallic acid-g-chitosan derivative possessed excellent antioxidant abilities in scavenging DPPH, hydroxyl, and superoxide anion radicals. When the derivative was used for the preservation of cherry tomatoes, the results showed that it could effectively protect the ascorbate-glutathione cycle and antioxidant enzyme system of cherry tomatoes and inhibit enzymatic browning. In addition, since this derivative delayed the postharvest senescence of cherry tomatoes, the aroma compounds remain relatively constant throughout the storage period.
Collapse
Affiliation(s)
- Xiao Zhang
- College of Food Science and Engineering, Qingdao Agricultural University Qingdao 266109 Shandong People's Republic of China +86 13583273291
| | - Hao Wu
- College of Food Science and Engineering, Qingdao Agricultural University Qingdao 266109 Shandong People's Republic of China +86 13583273291
| | - Linan Zhang
- Marine Science and Engineering College, Qingdao Agricultural University Qingdao 266109 Shandong People's Republic of China +86 17854233253
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University Qingdao 266109 Shandong People's Republic of China +86 13583273291
| |
Collapse
|
297
|
Ivanović M, Alañón ME, Arráez-Román D, Segura-Carretero A. Enhanced and green extraction of bioactive compounds from Lippia citriodora by tailor-made natural deep eutectic solvents. Food Res Int 2018; 111:67-76. [PMID: 30007731 DOI: 10.1016/j.foodres.2018.05.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 11/27/2022]
Abstract
Natural deep eutectic solvents (NADESs) have been postulated as alternative green solvents for the isolation of valuable bioactive compounds from Lippia citriodora. Thus, 11 different NADESs, based on choline chloride (ChCl) as the hydrogen bond acceptor in combination with different hydrogen bond donors (organic acids, polyalcohols, sugars, and urea) were tested. According to the results obtained, ChCl-lactic acid exhibited the highest extraction yield for iridoids, 7.25 mg g-1, phenylpropanoids, 17.23 mg g-1, and flavonoids, 9.02 mg g-1 being significantly greater than phenylpropanoid and flavonoid yields, 15.63 and 5.43 mg g-1 respectively, extracted with methanol as conventional solvent. Subsequently, in order to optimise the most influential microwave assisted extraction (MAE) parameters, a Box-Behnken design paired with a response surface methodology were implemented. Temperature and water content showed a strong effect on the extraction of polyphenol sub-classes, while the effect of irradiation time was less noticeable on extraction yields. Temperature of 63.68 °C, a water content of 32.19% and a microwave irrdiation time of 17.08 min were the optimum conditions provided by the statistical program. The use of NADESs showed potential to facilitate the design and customisation of green tailor-made solvents which have greater extraction capacity than conventional organic solvents.
Collapse
Affiliation(s)
- M Ivanović
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain; Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| | - M E Alañón
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain; Area of Food Technology, Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha. Avda. Camilo José Cela, 10, 13071 Ciudad Real, Spain; Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. Del Conocimiento 37, Bioregión Building, 18016 Granada, Spain.
| | - D Arráez-Román
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain; Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. Del Conocimiento 37, Bioregión Building, 18016 Granada, Spain.
| | - A Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain; Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. Del Conocimiento 37, Bioregión Building, 18016 Granada, Spain
| |
Collapse
|