251
|
Allemailem KS, Almatroudi A, Alrumaihi F, Almatroodi SA, Alkurbi MO, Basfar GT, Rahmani AH, Khan AA. Novel Approaches of Dysregulating Lysosome Functions in Cancer Cells by Specific Drugs and Its Nanoformulations: A Smart Approach of Modern Therapeutics. Int J Nanomedicine 2021; 16:5065-5098. [PMID: 34345172 PMCID: PMC8324981 DOI: 10.2147/ijn.s321343] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/08/2021] [Indexed: 01/18/2023] Open
Abstract
The smart strategy of cancer cells to bypass the caspase-dependent apoptotic pathway has led to the discovery of novel anti-cancer approaches including the targeting of lysosomes. Recent discoveries observed that lysosomes perform far beyond just recycling of cellular waste, as these organelles are metabolically very active and mediate several signalling pathways to sense the cellular metabolic status. These organelles also play a significant role in mediating the immune system functions. Thus, direct or indirect lysosome-targeting with different drugs can be considered a novel therapeutic approach in different disease including cancer. Recently, some anticancer lysosomotropic drugs (eg, nortriptyline, siramesine, desipramine) and their nanoformulations have been engineered to specifically accumulate within these organelles. These drugs can enhance lysosome membrane permeabilization (LMP) or disrupt the activity of resident enzymes and protein complexes, like v-ATPase and mTORC1. Other anticancer drugs like doxorubicin, quinacrine, chloroquine and DQ661 have also been used which act through multi-target points. In addition, autophagy inhibitors, ferroptosis inducers and fluorescent probes have also been used as novel theranostic agents. Several lysosome-specific drug nanoformulations like mixed charge and peptide conjugated gold nanoparticles (AuNPs), Au-ZnO hybrid NPs, TPP-PEG-biotin NPs, octadecyl-rhodamine-B and cationic liposomes, etc. have been synthesized by diverse methods. These nanoformulations can target cathepsins, glucose-regulated protein 78, or other lysosome specific proteins in different cancers. The specific targeting of cancer cell lysosomes with drug nanoformulations is quite recent and faces tremendous challenges like toxicity concerns to normal tissues, which may be resolved in future research. The anticancer applications of these nanoformulations have led them up to various stages of clinical trials. Here in this review article, we present the recent updates about the lysosome ultrastructure, its cross-talk with other organelles, and the novel strategies of targeting this organelle in tumor cells as a recent innovative approach of cancer management.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammad O Alkurbi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghaiyda Talal Basfar
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
252
|
Abstract
Terpenoids are the largest class of natural products, most of which are derived from plants. Amongst their numerous biological properties, their anti-tumor effects are of interest for they are extremely diverse which include anti-proliferative, apoptotic, anti-angiogenic, and anti-metastatic activities. Recently, several in vitro and in vivo studies have been dedicated to understanding the 'terpenoid induced autophagy' phenomenon in cancer cells. Light has already been shed on the intricacy of apoptosis and autophagy relationship. This latter crosstalk is driven by the delicate balance between activating or silencing of certain proteins whereby the outcome is expressed via interrelated signaling pathways. In this review, we focus on nine of the most studied terpenoids and on their cell death and autophagic activity. These terpenoids are grouped in three classes: sesquiterpenoid (artemisinin, parthenolide), diterpenoids (oridonin, triptolide), and triterpenoids (alisol, betulinic acid, oleanolic acid, platycodin D, and ursolic acid). We have selected these nine terpenoids among others as they belong to the different major classes of terpenoids and our extensive search of the literature indicated that they were the most studied in terms of autophagy in cancer. These terpenoids alone demonstrate the complexity by which these secondary metabolites induce autophagy via complex signaling pathways such as MAPK/ERK/JNK, PI3K/AKT/mTOR, AMPK, NF-kB, and reactive oxygen species. Moreover, induction of autophagy can be either destructive or protective in tumor cells. Nevertheless, should this phenomenon be well understood, we ought to be able to exploit it to create novel therapies and design more effective regimens in the management and treatment of cancer.
Collapse
|
253
|
Du J, Wang X, Li Y, Ren X, Zhou Y, Hu W, Zhou C, Jing Q, Yang C, Wang L, Li H, Fang L, Zhou Y, Tong X, Wang Y. DHA exhibits synergistic therapeutic efficacy with cisplatin to induce ferroptosis in pancreatic ductal adenocarcinoma via modulation of iron metabolism. Cell Death Dis 2021; 12:705. [PMID: 34262021 PMCID: PMC8280115 DOI: 10.1038/s41419-021-03996-y] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely lethal cancer with limited treatment options. Cisplatin (DDP) is used as a mainstay of chemotherapeutic agents in combination with other drugs or radiotherapy for PDAC therapy. However, DDP exhibits severe side-effects that can lead to discontinuation of therapy, and the acquired drug resistance of tumor cells presents serious clinical obstacles. Therefore, it is imperative to develop a more effective and less toxic therapeutic strategy. We and others have previously discovered that dihydroartemisinin (DHA) represents a safe and promising therapeutic agent to preferentially induce cancer cell ferroptosis. In the present study, we find that DHA could intensively strengthen the cytotoxicity of DDP and significantly reduce its effective concentrations both in vitro and in vivo. Combination of DHA and DDP synergistically inhibits the proliferation and induces DNA damage of PDAC cells. Mechanically, the combinative treatment impairs mitochondrial homeostasis, characterized by destroyed mitochondrial morphology, decreased respiratory capacity, reduced ATP production, and accumulated mitochondria-derived ROS. Further studies show that ferroptosis contributes to the cytotoxic effects in PDAC cells under the challenge of DHA and DDP, together with catastrophic accumulation of free iron and unrestricted lipid peroxidation. Moreover, pharmacologic depleting of the free iron reservoir or reconstituted expression of FTH contributes to the tolerance of DHA/DDP-induced ferroptosis, while iron addition accelerates the ferroptotic cell death. In summary, these results provide experimental evidence that DHA acts synergistically with DDP and renders PDAC cells vulnerable to ferroptosis, which may act as a promising therapeutic strategy.
Collapse
Affiliation(s)
- Jing Du
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xu Wang
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou first people's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Xueying Ren
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yi Zhou
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Wanye Hu
- Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Chaoting Zhou
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Qiangan Jing
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Chen Yang
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Luyang Wang
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Huanjuan Li
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Lijuan Fang
- Department of Laboratory Medicine, Hangzhou Ninth People's Hospital, Hangzhou, Zhejiang, 310014, China
| | - Yonglie Zhou
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| | - Xiangmin Tong
- Laboratory Medicine Center, Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
- Bengbu Medical College, Bengbu, Anhui, 233000, China.
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
- Phase I Clinical Research Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| | - Ying Wang
- Bengbu Medical College, Bengbu, Anhui, 233000, China.
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
- Phase I Clinical Research Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
254
|
Kamarya Y, Lijie X, Jinyao L. Chemical Constituents and their Anti-Tumor Mechanism of Plants from Artemisia. Anticancer Agents Med Chem 2021; 22:1838-1844. [PMID: 34238198 DOI: 10.2174/1871520621666210708125230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/16/2021] [Accepted: 05/23/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND At present, chemotherapy is still the main treatment method for cancer, but its side effects and multidrug resistance limit the therapeutic effect seriously. Now the screening of anti-tumor drugs with higher efficiency and lower toxicity from natural products is one of the important research directions for oncotherapy. Artemisia has a variety of anti-tumor constituents, which can exert its anti-tumor effect by inducing tumor cell apoptosis, inhibiting tumor angiogenesis, arresting cell cycle, accelerating iron ion-mediated oxidative damage, etc. Objective: This paper will provide a focused, up-to-date and comprehensive overview of the anti-tumor active constituents and their mechanisms of plants in Artemisia. METHOD The relevant information about Artemisia and its bioactive components comes from scientific databases (such as PubMed, Web of Science, Science Direct). RESULTS Here we have discussed the present situation and mechanism of bioactive components of Artemisia in anti-tumor. The application prospect of active components of Artemisia in cancer prevention and treatment was investigated. CONCLUSION The information summarized in this review may provide new ideas for the follow-up treatment of cancer and contribute to the development of new, effective, multi-side effects and fewer side effects of antineoplastic drugs.
Collapse
Affiliation(s)
- Yasin Kamarya
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xia Lijie
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Li Jinyao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
255
|
Abstract
Tremendous progress has been made in the field of ferroptosis since this regulated cell death process was first named in 2012. Ferroptosis is initiated upon redox imbalance and driven by excessive phospholipid peroxidation. Levels of multiple intracellular nutrients (iron, selenium, vitamin E and coenzyme Q10) are intimately related to the cellular antioxidant system and participate in the regulation of ferroptosis. Dietary intake of monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) regulates ferroptosis by directly modifying the fatty acid composition in cell membranes. In addition, amino acids and glucose (energy stress) manipulate the ferroptosis pathway through the nutrient-sensitive kinases mechanistic target of rapamycin complex 1 (mTORC1) and AMP-activated protein kinase (AMPK). Understanding the molecular interaction between nutrient signals and ferroptosis sensors might help in the identification of the roles of ferroptosis in normal physiology and in the development of novel pharmacological targets for the treatment of ferroptosis-related diseases.
Collapse
|
256
|
Tu G, Peng W, Cai Q, Zhao Z, Peng X, He B, Zhang P, Shi S, Tao Y, Wang X. Construction and validation of a 15-gene ferroptosis signature in lung adenocarcinoma. PeerJ 2021; 9:e11687. [PMID: 34277151 PMCID: PMC8272465 DOI: 10.7717/peerj.11687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022] Open
Abstract
Background Ferroptosis is a novel form of programmed cell death characterized by the excessive accumulation of intracellular iron and an increase in reactive oxygen species. Emerging studies have shown that ferroptosis plays a vital role in the progression of lung adenocarcinoma, but the effect of ferroptosis-related genes on prognosis has been poorly studied. The purpose of this study was to explore the prognostic value of ferroptosis-related genes. Methods Lung adenocarcinoma samples were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The least absolute shrinkage and selection operator (LASSO) Cox regression algorithm was used to establish a predictive signature for risk stratification. Kaplan–Meier (K–M) survival analysis and receiver operating characteristic (ROC) curve analysis were conducted to evaluate the signature. We further explored the potential correlation between the risk score model and tumor immune status. Results A 15-gene ferroptosis signature was constructed to classify patients into different risk groups. The overall survival (OS) of patients in the high-risk group was significantly shorter than that of patients in the low-risk group. The signature could predict OS independent of other risk factors. Single-sample gene set enrichment analysis (ssGSEA) identified the difference in immune status between the two groups. Patients in the high-risk group had stronger immune suppression, especially in the antigen presentation process. Conclusions The 15-gene ferroptosis signature identified in this study could be a potential biomarker for prognosis prediction in lung adenocarcinoma. Targeting ferroptosis might be a promising therapeutic alternative for lung adenocarcinoma.
Collapse
Affiliation(s)
- Guangxu Tu
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weilin Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qidong Cai
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenyu Zhao
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiong Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Boxue He
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pengfei Zhang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuai Shi
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Xiang Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
257
|
Qin Y, Qiao Y, Wang D, Tang C, Yan G. Ferritinophagy and ferroptosis in cardiovascular disease: Mechanisms and potential applications. Biomed Pharmacother 2021; 141:111872. [PMID: 34246187 DOI: 10.1016/j.biopha.2021.111872] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 02/09/2023] Open
Abstract
Ferroptosis is a type of regulated cell death driven by iron dependent accumulation of cellular reactive oxygen species (ROS) when glutathione (GSH)-dependent lipid peroxidation repair systems are compromised. Nuclear receptor co-activator 4 (NCOA4)-mediated selective autophagy of ferritin, termed ferritinophagy, involves the regulation of ferroptosis. Emerging evidence has revealed that ferritinophagy and ferroptosis exert a significant role in the occurrence and development of cardiovascular disease. In the present review, we aimed to present a brief overview of ferritinophagy and ferroptosis focusing on the underlying mechanism and regulations involved. We summarize and discuss relevant research progress on the role of ferritinophagy and ferroptosis in cardiovascular diseases accompanied with potential applications of ferritinophagy and ferroptosis modulators in the treatment of ferroptosis-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Yuhan Qin
- Department of Cardiology, Zhongda hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou district, Nanjing 210009, PR China
| | - Yong Qiao
- Department of Cardiology, Zhongda hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou district, Nanjing 210009, PR China
| | - Dong Wang
- Department of Cardiology, Zhongda hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou district, Nanjing 210009, PR China
| | - Chengchun Tang
- Department of Cardiology, Zhongda hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou district, Nanjing 210009, PR China.
| | - Gaoliang Yan
- Department of Cardiology, Zhongda hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou district, Nanjing 210009, PR China.
| |
Collapse
|
258
|
Wang HH, Ma JN, Zhan XR. Circular RNA Circ_0067934 Attenuates Ferroptosis of Thyroid Cancer Cells by miR-545-3p/SLC7A11 Signaling. Front Endocrinol (Lausanne) 2021; 12:670031. [PMID: 34290668 PMCID: PMC8287831 DOI: 10.3389/fendo.2021.670031] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/18/2021] [Indexed: 12/26/2022] Open
Abstract
Ferroptosis is an emerging programmed cell death distinguished from apoptosis and autophagy and plays essential roles in tumorigenesis. Thyroid cancer is a prevalent endocrine tumor, but the molecular mechanism of ferroptosis during thyroid cancer development remains unclear. Here, we identified the critical function of circular RNA circ_0067934 in repressing ferroptosis of thyroid cancer cells. Our data showed that the ferroptosis activator erastin decreased thyroid cancer cell viabilities, while the circ_0067934 shRNA further attenuated erastin-inhibited cell viabilities. The silencing of circ_0067934 enhanced the levels of ferroptosis-related markers, including Fe2+, iron, and ROS in the cells. The knockdown of circ_0067934 induced thyroid cancer cell apoptosis and repressed thyroid cancer cell proliferation in vitro and in vivo. Circ_0067934 upregulated the expression of the ferroptosis-negative regulator SLC7A11 by sponging and inhibiting miR-545-3p in thyroid cancer cells. The overexpression of SLC7A11 or the inhibitor of miR-545-3p reversed circ_0067934 silencing-regulated thyroid cancer cell proliferation. Therefore, we concluded that Circ_0067934 attenuated ferroptosis of thyroid cancer cells by miR-545-3p/SLC7A11 signaling. Circ_0067934 may serve as a potential therapeutic target by regulating ferroptosis for the treatment of thyroid cancer.
Collapse
Affiliation(s)
- Hui-Hui Wang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Endocrinology, Qiqihar First Hospital, Qiqihar, China
- Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, China
| | - Jia-Ni Ma
- Department of Endocrinology, Qiqihar First Hospital, Qiqihar, China
| | - Xiao-Rong Zhan
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Endocrinology, Qiqihar First Hospital, Qiqihar, China
| |
Collapse
|
259
|
Sha W, Hu F, Xi Y, Chu Y, Bu S. Mechanism of Ferroptosis and Its Role in Type 2 Diabetes Mellitus. J Diabetes Res 2021; 2021:9999612. [PMID: 34258295 PMCID: PMC8257355 DOI: 10.1155/2021/9999612] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
Ferroptosis is a novel form of nonapoptotic regulated cell death (RCD). It features iron-dependent lipid peroxide accumulation accompanied by inadequate redox enzymes, especially glutathione peroxidase 4 (GPX4). RAS-selective lethal 3 (RSL3), erastin, and ferroptosis inducing 56 (FIN56) induce ferroptosis via different manners targeting GPX4 function. Acyl-CoA synthetase long-chain family 4 (ACSL4), lysophosphatidylcholine acyltransferase 3 (LPCAT3), and lipoxygenases (LOXs) participate in the production of lipid peroxides. Heat shock protein family B member 1 (HSPB1) and nuclear receptor coactivator 4 (NCOA4) regulate iron homeostasis preventing ferroptosis caused by the high concentration of intracellular iron. Ferroptosis is ubiquitous in our body as it exists in both physiologic and pathogenic processes. It is involved in glucose-stimulated insulin secretion (GSIS) impairment and arsenic-induced pancreatic damage in the pathogenesis of diabetes. Moreover, iron and the iron-sulfur (Fe-S) cluster influence each other, causing mitochondrial iron accumulation, more reactive oxygen species (ROS) production, endoplasmic reticulum (ER) stress, failure in biosynthesis of insulin, and ferroptosis in β-cells. In addition, ferroptosis also engages in the pathogenesis of diabetic complications such as myocardial ischemia and diabetic cardiomyopathy (DCM). In this review, we summarize the mechanism of ferroptosis and especially its association with type 2 diabetes mellitus (T2DM).
Collapse
Affiliation(s)
- Wenxin Sha
- Diabetes Research Center, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Fei Hu
- Diabetes Research Center, School of Medicine, Ningbo University, Ningbo 315211, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi 315300, China
| | - Yang Xi
- Diabetes Research Center, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Yudong Chu
- Diabetes Research Center, School of Medicine, Ningbo University, Ningbo 315211, China
- Department of Nephrology, Ningbo Medical Center Lihuili Hospital, Ningbo 315100, China
| | - Shizhong Bu
- Diabetes Research Center, School of Medicine, Ningbo University, Ningbo 315211, China
| |
Collapse
|
260
|
Huang H, He Q, Guo B, Xu X, Wu Y, Li X. Progress in Redirecting Antiparasitic Drugs for Cancer Treatment. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2747-2767. [PMID: 34188451 PMCID: PMC8235938 DOI: 10.2147/dddt.s308973] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022]
Abstract
Drug repurposing is a feasible strategy in developing novel medications. Regarding the cancer field, scientists are continuously making efforts to redirect conventional drugs into cancer treatment. This approach aims at exploring new applications in the existing agents. Antiparasitic medications, including artemisinin derivatives (ARTs), quinine-related compounds, niclosamide, ivermectin, albendazole derivatives, nitazoxanide and pyrimethamine, have been deeply investigated and widely applied in treating various parasitic diseases for a long time. Generally, their pharmacokinetic and pharmacodynamic properties are well understood, while the side effects are roughly acceptable. Scientists noticed that some of these agents have anticancer potentials and explored the underlying mechanisms to achieve drug repurposing. Recent studies show that these agents inhibit cancer progression via multiple interesting ways, inducing ferroptosis induction, autophagy regulation, mitochondrial disturbance, immunoregulation, and metabolic disruption. In this review, we summarize the recent advancement in uncovering antiparasitic drugs' anticancer properties from the perspective of their pharmacological targets. Instead of paying attention to the previously discovered mechanisms, we focus more on newly emerging ones that are worth noticing. While most investigations are focusing on the mechanisms of their antiparasitic effect, more in vivo exploration in clinical trials in the future is necessary. Moreover, we also paid attention to what limits the clinical application of these agents. For some of these agents like ARTs and niclosamide, drug modification, novel delivery system invention, or drug combination are strongly recommended for future exploration.
Collapse
Affiliation(s)
- Haoyang Huang
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Qing He
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, 510080, People's Republic of China.,CAEA Center of Excellence on Nuclear Technology Applications for Insect Control, Beijing, 100048, People's Republic of China
| | - Binghua Guo
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Xudong Xu
- Department of Clinical Medicine, School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yinjuan Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, 510080, People's Republic of China.,CAEA Center of Excellence on Nuclear Technology Applications for Insect Control, Beijing, 100048, People's Republic of China
| | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, 510080, People's Republic of China.,CAEA Center of Excellence on Nuclear Technology Applications for Insect Control, Beijing, 100048, People's Republic of China
| |
Collapse
|
261
|
Zhi Y, Gao L, Wang B, Ren W, Liang KX, Zhi K. Ferroptosis Holds Novel Promise in Treatment of Cancer Mediated by Non-coding RNAs. Front Cell Dev Biol 2021; 9:686906. [PMID: 34235152 PMCID: PMC8255676 DOI: 10.3389/fcell.2021.686906] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022] Open
Abstract
Ferroptosis is a newly identified form of regulated cell death that is associated with iron metabolism and oxidative stress. As a physiological mechanism, ferroptosis selectively removes cancer cells by regulating the expression of vital chemical molecules. Current findings on regulation of ferroptosis have largely focused on the function of non-coding RNAs (ncRNAs), especially microRNAs (miRNAs), in mediating ferroptotic cell death, while the sponging effect of circular RNAs (circRNAs) has not been widely studied. In this review, we discuss the molecular regulation of ferroptosis and highlight the value of circRNAs in controlling ferroptosis and carcinogenesis. Herein, we deliberate future role of this emerging form of regulated cell death in cancer therapeutics and predict the progression and prognosis of oncogenesis in future clinical therapy.
Collapse
Affiliation(s)
- Yuan Zhi
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Stomatology, Central South University, Changsha, China
| | - Ling Gao
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Baisheng Wang
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital and School of Stomatology, Central South University, Changsha, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kristina Xiao Liang
- Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
| | - Keqian Zhi
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
262
|
Luo J, Odaka Y, Huang Z, Cheng B, Liu W, Li L, Shang C, Zhang C, Wu Y, Luo Y, Yang S, Houghton PJ, Guo X, Huang S. Dihydroartemisinin Inhibits mTORC1 Signaling by Activating the AMPK Pathway in Rhabdomyosarcoma Tumor Cells. Cells 2021; 10:cells10061363. [PMID: 34205996 PMCID: PMC8226784 DOI: 10.3390/cells10061363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 02/05/2023] Open
Abstract
Dihydroartemisinin (DHA), an anti-malarial drug, has been shown to possess potent anticancer activity, partly by inhibiting the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) signaling. However, how DHA inhibits mTORC1 is still unknown. Here, using rhabdomyosarcoma (RMS) as a model, we found that DHA reduced cell proliferation and viability in RMS cells, but not those in normal cells, which was associated with inhibition of mTORC1. Mechanistically, DHA did not bind to mTOR or FK506 binding protein 12 (FKBP12). In addition, DHA neither inhibited insulin-like growth factor-1 receptor (IGF-1R), phosphoinositide 3-kinase (PI3K), and extracellular signal-regulated kinase ½ (Erk1/2), nor activated phosphatase and tensin homolog (PTEN) in the cells. Rather, DHA activated AMP-activated protein kinase (AMPK). Pharmacological inhibition of AMPK, ectopic expression dominant negative or kinase-dead AMPK, or knockdown of AMPKα attenuated the inhibitory effect of DHA on mTORC1 in the cells. Additionally, DHA was able to induce dissociation of regulatory-associated protein of mTOR (raptor) from mTOR and inhibit mTORC1 activity. Moreover, treatment with artesunate, a prodrug of DHA, dose-dependently inhibited tumor growth and concurrently activated AMPK and suppressed mTORC1 in RMS xenografts. The results indicated that DHA inhibits mTORC1 by activating AMPK in tumor cells. Our finding supports that DHA or artesunate has a great potential to be repositioned for treatment of RMS.
Collapse
Affiliation(s)
- Jun Luo
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; (J.L.); (Y.O.); (Z.H.); (B.C.); (W.L.); (L.L.); (C.S.); (C.Z.); (Y.W.); (Y.L.)
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yoshinobu Odaka
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; (J.L.); (Y.O.); (Z.H.); (B.C.); (W.L.); (L.L.); (C.S.); (C.Z.); (Y.W.); (Y.L.)
| | - Zhu Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; (J.L.); (Y.O.); (Z.H.); (B.C.); (W.L.); (L.L.); (C.S.); (C.Z.); (Y.W.); (Y.L.)
- Research Center of Aquatic Organism Conservation and Water Ecosystem Restoration in Anhui Province, Anqing Normal University, Anqing 246011, China
| | - Bing Cheng
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; (J.L.); (Y.O.); (Z.H.); (B.C.); (W.L.); (L.L.); (C.S.); (C.Z.); (Y.W.); (Y.L.)
| | - Wang Liu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; (J.L.); (Y.O.); (Z.H.); (B.C.); (W.L.); (L.L.); (C.S.); (C.Z.); (Y.W.); (Y.L.)
| | - Lin Li
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; (J.L.); (Y.O.); (Z.H.); (B.C.); (W.L.); (L.L.); (C.S.); (C.Z.); (Y.W.); (Y.L.)
| | - Chaowei Shang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; (J.L.); (Y.O.); (Z.H.); (B.C.); (W.L.); (L.L.); (C.S.); (C.Z.); (Y.W.); (Y.L.)
| | - Chao Zhang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; (J.L.); (Y.O.); (Z.H.); (B.C.); (W.L.); (L.L.); (C.S.); (C.Z.); (Y.W.); (Y.L.)
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
- Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Yang Wu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; (J.L.); (Y.O.); (Z.H.); (B.C.); (W.L.); (L.L.); (C.S.); (C.Z.); (Y.W.); (Y.L.)
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Yan Luo
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; (J.L.); (Y.O.); (Z.H.); (B.C.); (W.L.); (L.L.); (C.S.); (C.Z.); (Y.W.); (Y.L.)
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Peter J. Houghton
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229-3000, USA;
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (X.G.); (S.H.); Tel.: +86-20-38295980 (X.G.); +1-318-675-7759 (S.H.)
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; (J.L.); (Y.O.); (Z.H.); (B.C.); (W.L.); (L.L.); (C.S.); (C.Z.); (Y.W.); (Y.L.)
- Department of Hematology and Oncology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
- Correspondence: (X.G.); (S.H.); Tel.: +86-20-38295980 (X.G.); +1-318-675-7759 (S.H.)
| |
Collapse
|
263
|
Different types of cell death in vascular diseases. Mol Biol Rep 2021; 48:4687-4702. [PMID: 34013393 DOI: 10.1007/s11033-021-06402-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/08/2021] [Indexed: 10/21/2022]
Abstract
In a mature organism, tissue homeostasis is regulated by cell division and cell demise as the two major physiological procedures. There is increasing evidence that deregulation of these processes is important in the pathogenicity of main diseases, including myocardial infarction, stroke, atherosclerosis, and inflammatory diseases. Therefore, there are ongoing efforts to discover modulating factors of the cell cycle and cell demise planners aiming at shaping innovative therapeutically modalities to the therapy of such diseases. Although the life of a cell is terminated by several modes of action, a few cell deaths exist-some of which resemble apoptosis and/or necrosis, and most of them are different from one another-that contribute to a wide range of functions to either support or disrupt the homoeostasis. Even in normal physiological conditions, cell life is severe within the cardiovascular system. Cells are persistently undergoing stretch, contraction, injurious metabolic byproducts, and hemodynamic forces, and a few of cells sustain decade-long lifetimes. The duration of vascular disease causes further exposure of vascular cells to a novel range of offences, most of which induce cell death. There is growing evidence on consequences of direct damage to a cell, as well as on responses of adjacent and infiltrating cells, which also have an effect on the pathology. In this study, by focusing on different pathways of cell death in different vascular diseases, an attempt is made to open a new perspective on the therapeutic goals associated with cell death in these diseases.
Collapse
|
264
|
Vara‐Pérez M, Rossi M, Van den Haute C, Maes H, Sassano ML, Venkataramani V, Michalke B, Romano E, Rillaerts K, Garg AD, Schepkens C, Bosisio FM, Wouters J, Oliveira AI, Vangheluwe P, Annaert W, Swinnen JV, Colet JM, van den Oord JJ, Fendt S, Mazzone M, Agostinis P. BNIP3 promotes HIF-1α-driven melanoma growth by curbing intracellular iron homeostasis. EMBO J 2021; 40:e106214. [PMID: 33932034 PMCID: PMC8126921 DOI: 10.15252/embj.2020106214] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
BNIP3 is a mitophagy receptor with context-dependent roles in cancer, but whether and how it modulates melanoma growth in vivo remains unknown. Here, we found that elevated BNIP3 levels correlated with poorer melanoma patient's survival and depletion of BNIP3 in B16-F10 melanoma cells compromised tumor growth in vivo. BNIP3 depletion halted mitophagy and enforced a PHD2-mediated downregulation of HIF-1α and its glycolytic program both in vitro and in vivo. Mechanistically, we found that BNIP3-deprived melanoma cells displayed increased intracellular iron levels caused by heightened NCOA4-mediated ferritinophagy, which fostered PHD2-mediated HIF-1α destabilization. These effects were not phenocopied by ATG5 or NIX silencing. Restoring HIF-1α levels in BNIP3-depleted melanoma cells rescued their metabolic phenotype and tumor growth in vivo, but did not affect NCOA4 turnover, underscoring that these BNIP3 effects are not secondary to HIF-1α. These results unravel an unexpected role of BNIP3 as upstream regulator of the pro-tumorigenic HIF-1α glycolytic program in melanoma cells.
Collapse
Affiliation(s)
- Mónica Vara‐Pérez
- Cell Death Research and Therapy GroupDepartment of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Cancer Biology ResearchLeuvenBelgium
| | - Matteo Rossi
- VIB Center for Cancer Biology ResearchLeuvenBelgium
- Laboratory of Cellular Metabolism and Metabolic RegulationDepartment of OncologyKU Leuven and Leuven Cancer Institute (LKI)LeuvenBelgium
| | - Chris Van den Haute
- Research Group for Neurobiology and Gene TherapyDepartment of NeurosciencesKU LeuvenLeuvenBelgium
- Leuven Viral Vector CoreDepartment of NeurosciencesKU LeuvenLeuvenBelgium
| | - Hannelore Maes
- Cell Death Research and Therapy GroupDepartment of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | - Maria Livia Sassano
- Cell Death Research and Therapy GroupDepartment of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Cancer Biology ResearchLeuvenBelgium
| | - Vivek Venkataramani
- Institute of PathologyUniversity Medical Center Göttingen (UMG)GöttingenGermany
| | - Bernhard Michalke
- Helmholtz Zentrum München GmbH – German Research Center for Environmental HealthResearch Unit Analytical BioGeoChemistryNeuherbergGermany
| | - Erminia Romano
- Cell Death Research and Therapy GroupDepartment of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | - Kristine Rillaerts
- Cell Death Research and Therapy GroupDepartment of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Cancer Biology ResearchLeuvenBelgium
| | - Abhishek D Garg
- Cell Death Research and Therapy GroupDepartment of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | - Corentin Schepkens
- Laboratory of Lipid Metabolism and CancerDepartment of OncologyKU LeuvenLeuvenBelgium
- Human Biology and Toxicology UnitUniversity of MonsMonsBelgium
| | - Francesca M Bosisio
- Laboratory of Translational Cell and Tissue ResearchDepartment of Imaging and PathologyKU LeuvenLeuvenBelgium
| | - Jasper Wouters
- Laboratory of Translational Cell and Tissue ResearchDepartment of Imaging and PathologyKU LeuvenLeuvenBelgium
| | - Ana Isabel Oliveira
- VIB Center for Cancer Biology ResearchLeuvenBelgium
- Laboratory of Tumor Inflammation and AngiogenesisDepartment of OncologyKU LeuvenLeuvenBelgium
| | - Peter Vangheluwe
- Laboratory of Cellular Transport SystemsDepartment of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | - Wim Annaert
- Laboratory for Membrane TraffickingDepartment of NeurosciencesKU LeuvenLeuvenBelgium
- VIB Center for Brain and Disease ResearchLeuvenBelgium
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and CancerDepartment of OncologyKU LeuvenLeuvenBelgium
| | | | - Joost J van den Oord
- Laboratory of Translational Cell and Tissue ResearchDepartment of Imaging and PathologyKU LeuvenLeuvenBelgium
| | - Sarah‐Maria Fendt
- VIB Center for Cancer Biology ResearchLeuvenBelgium
- Laboratory of Cellular Metabolism and Metabolic RegulationDepartment of OncologyKU Leuven and Leuven Cancer Institute (LKI)LeuvenBelgium
| | - Massimiliano Mazzone
- VIB Center for Cancer Biology ResearchLeuvenBelgium
- Laboratory of Tumor Inflammation and AngiogenesisDepartment of OncologyKU LeuvenLeuvenBelgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy GroupDepartment of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Cancer Biology ResearchLeuvenBelgium
| |
Collapse
|
265
|
Xie B, Guo Y. Molecular mechanism of cell ferroptosis and research progress in regulation of ferroptosis by noncoding RNAs in tumor cells. Cell Death Dis 2021; 7:101. [PMID: 33980834 PMCID: PMC8115351 DOI: 10.1038/s41420-021-00483-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/26/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
Ferroptosis is a newly identified form of nonapoptotic regulated cell death characterized by iron-dependent accumulation of lipid reactive oxygen species. Morphologically and biochemically different from known types of cell death and apoptosis, ferroptosis promotes nervous system diseases, renal failure, ischemia-reperfusion injury, and the treatment of tumors. It could be induced by several mechanisms, including inhibition of glutathione peroxidase 4, lack of cysteine, and peroxidation of polyunsaturated fatty acids, but could be inhibited by iron chelators, lipophilic antioxidants, and some specific inhibitors. Ferroptosis is found to be closely related to the tumorigenesis, invasion, and metastasis of tumors. Noncoding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs), microRNAs, and circular RNAs, do not encode proteins. NcRNAs are found to be capable of regulating the molecular mechanism of ferroptosis in tumor cells post transcription. Ferroptosis provides a new method for cancer treatment. Although several studies have confirmed the important role of ferroptosis in cancer treatment, its specific affecting mechanism is unclear. Here we reviewed the molecular mechanism of ferroptosis in tumor cells and the relationship between ferroptosis and the three important ncRNAs.
Collapse
Affiliation(s)
- Bumin Xie
- grid.417009.b0000 0004 1758 4591Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150 China
| | - Yuan Guo
- grid.417009.b0000 0004 1758 4591Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150 China
| |
Collapse
|
266
|
The Cross-Link between Ferroptosis and Kidney Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6654887. [PMID: 34007403 PMCID: PMC8110383 DOI: 10.1155/2021/6654887] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/31/2021] [Accepted: 04/15/2021] [Indexed: 02/08/2023]
Abstract
Acute and chronic kidney injuries result from structural dysfunction and metabolic disorders of the kidney in various etiologies, which significantly affect human survival and social wealth. Nephropathies are often accompanied by various forms of cell death and complex microenvironments. In recent decades, the study of kidney diseases and the traditional forms of cell death have improved. Nontraditional forms of cell death, represented by ferroptosis and necroptosis, have been discovered in the field of kidney diseases, which have reshuffled the role of traditional cell death in nephropathies. Although interactions between ferroptosis and acute kidney injury (AKI) have been continuously explored, studies on ferroptosis and chronic kidney disease (CKD) remain limited. Here, we have reviewed the therapeutic significance of ferroptosis in AKI and anticipated the curative potential of ferroptosis for CKD in the hope of providing insights into ferroptosis and CKD.
Collapse
|
267
|
Qin X, Zhang J, Wang B, Xu G, Yang X, Zou Z, Yu C. Ferritinophagy is involved in the zinc oxide nanoparticles-induced ferroptosis of vascular endothelial cells. Autophagy 2021; 17:4266-4285. [PMID: 33843441 PMCID: PMC8726675 DOI: 10.1080/15548627.2021.1911016] [Citation(s) in RCA: 245] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Zinc oxide nanoparticles (ZnONPs) hold great promise for biomedical applications. Previous studies have revealed that ZnONPs exposure can induce toxicity in endothelial cells, but the underlying mechanisms have not been fully elucidated. In this study, we report that ZnONPs can induce ferroptosis of both HUVECs and EA.hy926 cells, as evidenced by the elevation of intracellular iron levels, lipid peroxidation and cell death in a dose- and time-dependent manner. In addition, both the lipid reactive oxygen species (ROS) scavenger ferrostatin-1 and the iron chelator deferiprone attenuated ZnONPs-induced cell death. Intriguingly, we found that ZnONPs-induced ferroptosis is macroautophagy/autophagy-dependent, because the inhibition of autophagy with a pharmacological inhibitor or by ATG5 gene knockout profoundly mitigated ZnONPs-induced ferroptosis. We further demonstrated that NCOA4 (nuclear receptor coactivator 4)-mediated ferritinophagy (autophagic degradation of the major intracellular iron storage protein ferritin) was required for the ferroptosis induced by ZnONPs, by showing that NCOA4 knockdown can reduce the intracellular iron level and lipid peroxidation, and subsequently alleviate ZnONPs-induced cell death. Furthermore, we showed that ROS originating from mitochondria (mtROS) probably activated the AMPK-ULK1 axis to trigger ferritinophagy. Most importantly, pulmonary ZnONPs exposure caused vascular inflammation and ferritinophagy in mice, and ferrostatin-1 supplementation significantly reversed the vascular injury induced by pulmonary ZnONPs exposure. Overall, our study indicates that ferroptosis is a novel mechanism for ZnONPs-induced endothelial cytotoxicity, and that NCOA4-mediated ferritinophagy is required for ZnONPs-induced ferroptotic cell death.
Collapse
Affiliation(s)
- Xia Qin
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jun Zhang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Bin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ge Xu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xi Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhen Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China.,Dongsheng Lung‑Brain Diseases Joint Lab, Chongqing Medical University, Chongqing, People's Republic of China.,Lead Contact
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
268
|
Chen X, Yu C, Kang R, Kroemer G, Tang D. Cellular degradation systems in ferroptosis. Cell Death Differ 2021; 28:1135-1148. [PMID: 33462411 PMCID: PMC8027807 DOI: 10.1038/s41418-020-00728-1] [Citation(s) in RCA: 365] [Impact Index Per Article: 91.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/14/2020] [Accepted: 12/27/2020] [Indexed: 01/30/2023] Open
Abstract
In eukaryotic cells, macromolecular homeostasis requires selective degradation of damaged units by the ubiquitin-proteasome system (UPS) and autophagy. Thus, dysfunctional degradation systems contribute to multiple pathological processes. Ferroptosis is a type of iron-dependent oxidative cell death driven by lipid peroxidation. Various antioxidant systems, especially the system xc--glutathione-GPX4 axis, play a significant role in preventing lipid peroxidation-mediated ferroptosis. The endosomal sorting complex required for transport-III (ESCRT-III)-dependent membrane fission machinery counteracts ferroptosis by repairing membrane damage. Moreover, cellular degradation systems play a dual role in regulating the ferroptotic response, depending on the cargo they degrade. The key ferroptosis repressors, such as SLC7A11 and GPX4, are degraded by the UPS. In contrast, the overactivation of selective autophagy, including ferritinophagy, lipophagy, clockophagy and chaperone-mediated autophagy, promotes ferroptotic death by degrading ferritin, lipid droplets, circadian proteins, and GPX4, respectively. Autophagy modulators (e.g., BECN1, STING1/TMEM173, CTSB, HMGB1, PEBP1, MTOR, AMPK, and DUSP1) also determine the ferroptotic response in a context-dependent manner. In this review, we provide an updated overview of the signals and mechanisms of the degradation system regulating ferroptosis, opening new horizons for disease treatment strategies.
Collapse
Affiliation(s)
- Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation; The Third Affiliated Hospital; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
- Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 511436, China
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Chunhua Yu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94800, Villejuif, France.
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015, Paris, France.
- Suzhou Institute for Systems Biology, Chinese Academy of Sciences, Suzhou, China.
- Department of Women's and Children's Health, Karolinska University Hospital, 17176, Stockholm, Sweden.
| | - Daolin Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation; The Third Affiliated Hospital; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
269
|
Shi Z, Zhang L, Zheng J, Sun H, Shao C. Ferroptosis: Biochemistry and Biology in Cancers. Front Oncol 2021; 11:579286. [PMID: 33868986 PMCID: PMC8047310 DOI: 10.3389/fonc.2021.579286] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
The challenge of eradicating cancer is that cancer cells possess diverse mechanisms to protect themselves from clinical strategies. Recently, ferroptosis has been shown to exhibit appreciable anti-tumor activity that could be harnessed for cancer therapy in the future. Ferroptosis is an iron-dependent form of regulated cell death that is characterized by the oxidization of polyunsaturated fatty acids (PUFAs) and accumulation of lipid peroxides. Ferroptosis has been closely correlated with numerous biological processes, such as amino acid metabolism, glutathione metabolism, iron metabolism, and lipid metabolism, as well as key regulators including GPX4, FSP1, NRF2, and p53. Although ferroptosis could be involved in killing various cancer cells, multiple aspects of this phenomenon remain unresolved. In this review, we summarize the biochemistry and biology of ferroptosis in diverse cancers and discuss the potential mechanisms of ferroptosis, which might pave the way for guiding cancer therapeutics.
Collapse
Affiliation(s)
- Zhiyuan Shi
- Department of Urology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Lei Zhang
- School of Public Health, Xiamen Univerisity, Xiamen, China
| | - Jianzhong Zheng
- Department of Urology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Huimin Sun
- Clinical Central Research Core, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Chen Shao
- Department of Urology, Xiang'an Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
270
|
Zheng K, Dong Y, Yang R, Liang Y, Wu H, He Z. Regulation of ferroptosis by bioactive phytochemicals: Implications for medical nutritional therapy. Pharmacol Res 2021; 168:105580. [PMID: 33781874 DOI: 10.1016/j.phrs.2021.105580] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022]
Abstract
Ferroptosis is an iron- and lipotoxicity-dependent regulated cell death that has been implicated in various diseases, such as cancer, neurodegeneration and stroke. The biosynthesis of phospholipids, coenzyme Q10, and glutathione, and the metabolism of iron, amino acids and polyunsaturated fatty acid, are tightly associated with cellular sensitivity to ferroptosis. Up to now, only limited drugs targeting ferroptosis have been documented and exploring novel effective ferroptosis-modulating compound is needed. Natural bioactive products are conventional resources for drug discovery, and some of them have been clinically used against cancers and neurodegenerative diseases as dietary supplements or pharmaceutic agents. Notably, increasing evidence demonstrates that natural compounds, such as saponins, flavonoids and isothiocyanates, can either induce or inhibit ferroptosis, further expanding their therapeutic potentials. In this review, we highlight current advances of the emerging molecular mechanisms and disease relevance of ferroptosis. We also systematically summarize the regulatory effects of natural phytochemicals on ferroptosis, and clearly indicate that saponins, terpenoids and alkaloids induce ROS- and ferritinophagy-dependent ferroptosis, whereas flavonoids and polyphenols modulate iron metabolism and nuclear factor erythroid 2-related factor 2 (NRF2) signaling to inhibit ferroptosis. Finally, we explore their clinical applications in ferroptosis-related diseases, which may facilitate the development of their dietary usages as nutraceuticals.
Collapse
Affiliation(s)
- Kai Zheng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, PR China.
| | - Yun Dong
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Rong Yang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Youfang Liang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Haiqiang Wu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Zhendan He
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
271
|
Xia Y, Chen J, Yu Y, Wu F, Shen X, Qiu C, Zhang T, Hong L, Zheng P, Shao R, Xu C, Wu F, Chen W, Xie C, Cui R, Zou P. Compensatory combination of mTOR and TrxR inhibitors to cause oxidative stress and regression of tumors. Am J Cancer Res 2021; 11:4335-4350. [PMID: 33754064 PMCID: PMC7977446 DOI: 10.7150/thno.52077] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/31/2021] [Indexed: 01/19/2023] Open
Abstract
Background: Cancer is a leading cause of death worldwide. Extensive research over decades has led to the development of therapies that inhibit oncogenic signaling pathways. The mammalian target of rapamycin (mTOR) signaling pathway plays an important role in the development of many cancers. Several mTOR inhibitors are approved for the treatment of cancers. However, the anticancer efficacies of mTOR inhibitor monotherapy are still limited. Methods: Western blot was used to detect the expression of indicated molecules. Thioredoxin reductase (TrxR) activity in cells was determined by the endpoint insulin reduction assay. Immunofluorescence staining was used to analyze precise location and expression of target proteins. Nude mice were used for xenograft tumor models. Results: We identified a synergistic lethal interaction of mTOR and TrxR inhibitors and elucidated the underlying molecular mechanisms of this synergism. We demonstrated that mTOR and TrxR inhibitors cooperated to induce cell death by triggering oxidative stress, which led to activation of autophagy, endoplasmic reticulum (ER) stress and c-Jun N-terminal Kinase (JNK) signaling pathway in cancer cells. Remarkably, we found that auranofin (AF) combined with everolimus significantly suppressed tumor growth in HCT116 and SGC-7901 xenograft models with no significant signs of toxicity. Conclusion: Our findings identify a promising therapeutic combination for cancer and has important implications for developing mTOR inhibitor-based combination treatments.
Collapse
|
272
|
Weber S, Parmon A, Kurrle N, Schnütgen F, Serve H. The Clinical Significance of Iron Overload and Iron Metabolism in Myelodysplastic Syndrome and Acute Myeloid Leukemia. Front Immunol 2021; 11:627662. [PMID: 33679722 PMCID: PMC7933218 DOI: 10.3389/fimmu.2020.627662] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Myelodysplasticsyndrome (MDS) and acute myeloid leukemia (AML) are clonal hematopoietic stem cell diseases leading to an insufficient formation of functional blood cells. Disease-immanent factors as insufficient erythropoiesis and treatment-related factors as recurrent treatment with red blood cell transfusions frequently lead to systemic iron overload in MDS and AML patients. In addition, alterations of function and expression of proteins associated with iron metabolism are increasingly recognized to be pathogenetic factors and potential vulnerabilities of these diseases. Iron is known to be involved in multiple intracellular and extracellular processes. It is essential for cell metabolism as well as for cell proliferation and closely linked to the formation of reactive oxygen species. Therefore, iron can influence the course of clonal myeloid disorders, the leukemic environment and the occurrence as well as the defense of infections. Imbalances of iron homeostasis may induce cell death of normal but also of malignant cells. New potential treatment strategies utilizing the importance of the iron homeostasis include iron chelation, modulation of proteins involved in iron metabolism, induction of leukemic cell death via ferroptosis and exploitation of iron proteins for the delivery of antileukemic drugs. Here, we provide an overview of some of the latest findings about the function, the prognostic impact and potential treatment strategies of iron in patients with MDS and AML.
Collapse
Affiliation(s)
- Sarah Weber
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anastasia Parmon
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Nina Kurrle
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Frank Schnütgen
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Hubert Serve
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
273
|
Yan HF, Zou T, Tuo QZ, Xu S, Li H, Belaidi AA, Lei P. Ferroptosis: mechanisms and links with diseases. Signal Transduct Target Ther 2021; 6:49. [PMID: 33536413 PMCID: PMC7858612 DOI: 10.1038/s41392-020-00428-9] [Citation(s) in RCA: 749] [Impact Index Per Article: 187.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/03/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Ferroptosis is an iron-dependent cell death, which is different from apoptosis, necrosis, autophagy, and other forms of cell death. The process of ferroptotic cell death is defined by the accumulation of lethal lipid species derived from the peroxidation of lipids, which can be prevented by iron chelators (e.g., deferiprone, deferoxamine) and small lipophilic antioxidants (e.g., ferrostatin, liproxstatin). This review summarizes current knowledge about the regulatory mechanism of ferroptosis and its association with several pathways, including iron, lipid, and cysteine metabolism. We have further discussed the contribution of ferroptosis to the pathogenesis of several diseases such as cancer, ischemia/reperfusion, and various neurodegenerative diseases (e.g., Alzheimer's disease and Parkinson's disease), and evaluated the therapeutic applications of ferroptosis inhibitors in clinics.
Collapse
Affiliation(s)
- Hong-Fa Yan
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Center for Biotherapy, 610041, Chengdu, China
| | - Ting Zou
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 610041, Chengdu, China
| | - Qing-Zhang Tuo
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Center for Biotherapy, 610041, Chengdu, China
| | - Shuo Xu
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Center for Biotherapy, 610041, Chengdu, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 610041, Chengdu, China
| | - Hua Li
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 610041, Chengdu, China
| | - Abdel Ali Belaidi
- Melbourne Dementia Research Centre and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Center for Biotherapy, 610041, Chengdu, China.
| |
Collapse
|
274
|
Shao F, Li Y, Hu W, Yu J, Wu H, Ying K, Xia J, Du J. Downregulation of CISD2 Has Prognostic Value in Non-Small Cell Lung Cancer and Inhibits the Tumorigenesis by Inducing Mitochondrial Dysfunction. Front Oncol 2021; 10:595524. [PMID: 33598426 PMCID: PMC7882736 DOI: 10.3389/fonc.2020.595524] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/08/2020] [Indexed: 01/19/2023] Open
Abstract
CISD2, a NEET protein that coordinates 2Fe-2S clusters through its CDGSH domain, is critical for normal development and iron homeostasis. CISD2 plays an important role in Fe-S cluster transfer and promotes cancer proliferation. However, its specific role in the development of non-small cell lung cancer (NSCLC) remains unclear. Bioinformatics of pan-cancer analysis from The Cancer Genome Atlas show that CISD2 has an aberrant expression in most types of human cancers. Moreover, CISD2 expression is associated with a higher hazard ratio and exhibits significantly poorer overall survival in lung adenocarcinoma (LUAD), uveal melanoma, head and neck squamous cell carcinoma, brain lower grade glioma, kidney chromophobe, and liver hepatocellular carcinoma. Further investigation revealed that CISD2 is highly expressed in LUAD and LUSC, which is associated with clinical pathological stages. In addition, survival data collected from GSE31210 and GSE13213, two datasets from the NCBI Gene Expression Omnibus, also confirmed that high CISD2 expression is associated with unfavorable survival in patients with LUAD. A cell-based assay indicated that the knockdown of CISD2 inhibited proliferation, invasion, and migration in A549 cells. Additionally, CISD2 knockdown accelerated the accumulation of cellular and mitochondrial reactive oxygen species, destroying the mitochondrial morphology and function. Moreover, CISD2 inhibition activated the iron starvation response, thus, accelerating iron accumulation in A549 cells. Pretreatment with DFO, the iron chelator, blocked mitochondrial dysfunction in CISD2-knockdown cells. Collectively, the present study provides novel insights into the regulatory role of CISD2 in NSCLC and presents a potential target to improve antitumor activity based on oxidative stress.
Collapse
Affiliation(s)
- Fangchun Shao
- Department of Respiratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yanchun Li
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Wanye Hu
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jiaqi Yu
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - HengYu Wu
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Kejing Ying
- Department of Respiratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Xia
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jing Du
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
275
|
Kalinina EV, Gavriliuk LA. Glutathione Synthesis in Cancer Cells. BIOCHEMISTRY (MOSCOW) 2021; 85:895-907. [PMID: 33045950 DOI: 10.1134/s0006297920080052] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tripeptide GSH is associated not only with the control and maintenance of redox cell homeostasis, but also with the processes of detoxification, proliferation, cell differentiation, and regulation of cell death. Disruptions in GSH synthesis and changes in the GSH/GSSG ratio are common for many pathological conditions, including malignant neoplasms. Numerous data indicate the importance of GSH and the GSH/GSSG ratio in the regulation of tumor cell viability, in the initiation of tumor development, progression, and drug resistance. However, control of the mechanism of GSH synthesis in malignant tumors remains poorly understood. This review discusses the features of GSH synthesis and its regulation in tumor cells. The role of GSH in the mechanisms of apoptosis, necroptosis, ferroptosis, and autophagy is considered.
Collapse
Affiliation(s)
- E V Kalinina
- Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia.
| | - L A Gavriliuk
- Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| |
Collapse
|
276
|
Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and health implications. Cell Res 2021; 31:107-125. [PMID: 33268902 PMCID: PMC8026611 DOI: 10.1038/s41422-020-00441-1] [Citation(s) in RCA: 2203] [Impact Index Per Article: 550.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
Cell death can be executed through different subroutines. Since the description of ferroptosis as an iron-dependent form of non-apoptotic cell death in 2012, there has been mounting interest in the process and function of ferroptosis. Ferroptosis can occur through two major pathways, the extrinsic or transporter-dependent pathway and the intrinsic or enzyme-regulated pathway. Ferroptosis is caused by a redox imbalance between the production of oxidants and antioxidants, which is driven by the abnormal expression and activity of multiple redox-active enzymes that produce or detoxify free radicals and lipid oxidation products. Accordingly, ferroptosis is precisely regulated at multiple levels, including epigenetic, transcriptional, posttranscriptional and posttranslational layers. The transcription factor NFE2L2 plays a central role in upregulating anti-ferroptotic defense, whereas selective autophagy may promote ferroptotic death. Here, we review current knowledge on the integrated molecular machinery of ferroptosis and describe how dysregulated ferroptosis is involved in cancer, neurodegeneration, tissue injury, inflammation, and infection.
Collapse
Affiliation(s)
- Daolin Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation; The Third Affiliated Hospital; Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation; The Third Affiliated Hospital; Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Guido Kroemer
- Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, 94800, France.
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, 75015, France.
- Suzhou Institute for Systems Biology, Chinese Academy of Sciences, Suzhou, Jiangsu, China.
- Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, 17176, Sweden.
| |
Collapse
|
277
|
Chen X, Kang R, Kroemer G, Tang D. Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol 2021; 18:280-296. [PMID: 33514910 DOI: 10.1038/s41571-020-00462-0] [Citation(s) in RCA: 1627] [Impact Index Per Article: 406.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2020] [Indexed: 02/07/2023]
Abstract
The discovery of regulated cell death processes has enabled advances in cancer treatment. In the past decade, ferroptosis, an iron-dependent form of regulated cell death driven by excessive lipid peroxidation, has been implicated in the development and therapeutic responses of various types of tumours. Experimental reagents (such as erastin and RSL3), approved drugs (for example, sorafenib, sulfasalazine, statins and artemisinin), ionizing radiation and cytokines (such as IFNγ and TGFβ1) can induce ferroptosis and suppress tumour growth. However, ferroptotic damage can trigger inflammation-associated immunosuppression in the tumour microenvironment, thus favouring tumour growth. The extent to which ferroptosis affects tumour biology is unclear, although several studies have found important correlations between mutations in cancer-relevant genes (for example, RAS and TP53), in genes encoding proteins involved in stress response pathways (such as NFE2L2 signalling, autophagy and hypoxia) and the epithelial-to-mesenchymal transition, and responses to treatments that activate ferroptosis. Herein, we present the key molecular mechanisms of ferroptosis, describe the crosstalk between ferroptosis and tumour-associated signalling pathways, and discuss the potential applications of ferroptosis in the context of systemic therapy, radiotherapy and immunotherapy.
Collapse
Affiliation(s)
- Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France. .,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France. .,Suzhou Institute for Systems Biology, Chinese Academy of Sciences, Suzhou, China. .,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| | - Daolin Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China. .,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
278
|
Natural Products as Inducers of Non-Canonical Cell Death: A Weapon against Cancer. Cancers (Basel) 2021; 13:cancers13020304. [PMID: 33467668 PMCID: PMC7830727 DOI: 10.3390/cancers13020304] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Anticancer therapeutic approaches based solely on apoptosis induction are often unsuccessful due to the activation of resistance mechanisms. The identification and characterization of compounds capable of triggering non-apoptotic, also called non-canonical cell death pathways, could represent an important strategy that may integrate or offer alternative approaches to the current anticancer therapies. In this review, we critically discuss the promotion of ferroptosis, necroptosis, and pyroptosis by natural compounds as a new anticancer strategy. Abstract Apoptosis has been considered the main mechanism induced by cancer chemotherapeutic drugs for a long time. This paradigm is currently evolving and changing, as increasing evidence pointed out that antitumor agents could trigger various non-canonical or non-apoptotic cell death types. A considerable number of antitumor drugs derive from natural sources, both in their naturally occurring form or as synthetic derivatives. Therefore, it is not surprising that several natural compounds have been explored for their ability to induce non-canonical cell death. The aim of this review is to highlight the potential antitumor effects of natural products as ferroptosis, necroptosis, or pyroptosis inducers. Natural products have proven to be promising non-canonical cell death inducers, capable of overcoming cancer cells resistance to apoptosis. However, as discussed in this review, they often lack a full characterization of their antitumor activity together with an in-depth investigation of their toxicological profile.
Collapse
|
279
|
Role of ferritinophagy in cystine deprivation-induced cell death in glioblastoma cells. Biochem Biophys Res Commun 2021; 539:56-63. [PMID: 33421769 DOI: 10.1016/j.bbrc.2020.12.075] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 12/11/2022]
Abstract
Ferroptosis is a form of cell death caused by iron-dependent lipid peroxidation. Cancer cells increase cystine uptake for the synthesis of glutathione (GSH), which is used by glutathione peroxidase 4 to reduce lipid peroxides. Here, we report that cystine deprivation in glioblastoma cells, but not inhibition of GSH synthesis by l-buthionine sulfoximine (BSO), induces ferroptosis. We found that cystine deprivation decreased the protein levels of ferritin heavy chain FTH1, whereas it was increased by BSO treatment. The lysosome inhibitor bafilomycin A1 or deletion of nuclear receptor coactivator 4 (NCOA4) inhibited cystine deprivation-induced decrease in FTH1 protein levels and cell death. In addition, cystine deprivation induced microtubule-associated protein light chain 3 (LC3)-II protein accumulation, suggesting that cystine deprivation induces ferritinophagy. BSO causes cell death when glioblastoma cells are treated with iron inducers, ferrous ammonium sulfate or hemin. On the other hand, cystine deprivation-induced degradation of FTH1 and cell death required glutamine. This study suggests that ferritinophagy, in addition to GSH depletion, plays an important role in cystine deprivation-induced ferroptosis in glioblastoma cells.
Collapse
|
280
|
Zhang YY, Ni ZJ, Elam E, Zhang F, Thakur K, Wang S, Zhang JG, Wei ZJ. Juglone, a novel activator of ferroptosis, induces cell death in endometrial carcinoma Ishikawa cells. Food Funct 2021; 12:4947-4959. [PMID: 34100505 DOI: 10.1039/d1fo00790d] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ferroptosis is a novel iron-dependent cell death pathway mainly caused by an abnormal redox state and associated with various diseases including cancer. Recently, much attention has been paid to natural compounds that are involved in its activation and inhibition. This is the first ever study to demonstrate the role of juglone isolated from Carya cathayensis green peel in inducing autophagy and inhibiting endometrial cancer (EC) cell migration. Subsequently, Fe2+ accumulation, lipid peroxidation, GSH depletion, the upregulation of HMOX1, and heme degradation to Fe2+ were reported. Juglone was involved in inducing autophagy and inhibiting cell migration and endoplasmic reticulum stress, which are the new hallmarks of cancer treatment. Collectively, our data indicate that juglone as a functional food ingredient induces the programmed cell death of EC cells by activating oxidative stress and suggest a novel therapeutic approach for the treatment and prevention of EC.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China. and Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China.
| | - Zhi-Jing Ni
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China.
| | - Elnur Elam
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China.
| | - Fan Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China. and Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China.
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China. and Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China.
| | - Shaoyun Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, People's Republic of China.
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China. and Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China. and Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China.
| |
Collapse
|
281
|
Lu X, Efferth T. Repurposing of artemisinin-type drugs for the treatment of acute leukemia. Semin Cancer Biol 2021; 68:291-312. [DOI: 10.1016/j.semcancer.2020.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/19/2022]
|
282
|
Chen S, Chen Y, Zhang Y, Kuang X, Liu Y, Guo M, Ma L, Zhang D, Li Q. Iron Metabolism and Ferroptosis in Epilepsy. Front Neurosci 2020; 14:601193. [PMID: 33424539 PMCID: PMC7793792 DOI: 10.3389/fnins.2020.601193] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is a disease characterized by recurrent, episodic, and transient central nervous system (CNS) dysfunction resulting from an excessive synchronous discharge of brain neurons. It is characterized by diverse etiology, complex pathogenesis, and difficult treatment. In addition, most epileptic patients exhibit social cognitive impairment and psychological impairment. Iron is an essential trace element for human growth and development and is also involved in a variety of redox reactions in organisms. However, abnormal iron metabolism is associated with several neurological disorders, including hemorrhagic post-stroke epilepsy and post-traumatic epilepsy (PTE). Moreover, ferroptosis is also considered a new form of regulation of cell death, which is attributed to severe lipid peroxidation caused by the production of reactive oxygen species (ROS) and iron overload found in various neurological diseases, including epilepsy. Therefore, this review summarizes the study on iron metabolism and ferroptosis in epilepsy, in order to elucidate the correlation between iron and epilepsy. It also provides a novel method for the treatment, prevention, and research of epilepsy, to control epileptic seizures and reduce nerve injury after the epileptic seizure.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Yongmin Chen
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Yukang Zhang
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Xi Kuang
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Hainan Health Vocational College, Haikou, China
| | - Yan Liu
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Department of Rehabilitation, Hainan Cancer Hospital, Haikou, China
| | - Meiwen Guo
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Lin Ma
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Daqi Zhang
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Qifu Li
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| |
Collapse
|
283
|
Zhu L, Chen X, Zhu Y, Qin J, Niu T, Ding Y, Xiao Y, Jiang Y, Liu K, Lu J, Yang W, Qiao Y, Jin G, Ma J, Dong Z, Zhao J. Dihydroartemisinin Inhibits the Proliferation of Esophageal Squamous Cell Carcinoma Partially by Targeting AKT1 and p70S6K. Front Pharmacol 2020; 11:587470. [PMID: 33658929 PMCID: PMC7919191 DOI: 10.3389/fphar.2020.587470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022] Open
Abstract
Dihydroartemisinin (DHA), a sesquiterpene lactone with endoperoxide bridge, is one of the derivatives of artemisinin. In addition to having good antimalarial properties, DHA exhibits anticancer effects including against malignant solid tumors. However, the mechanism by which DHA inhibits the progression of esophageal cancer, especially esophageal squamous cell carcinoma (ESCC), is unclear. In this study, DHA was found to inhibit the proliferation of ESCC, and the underlying molecular mechanisms were explored. DHA inhibited ESCC cells proliferation and anchorage-independent growth. Flow cytometry analysis revealed that DHA significantly blocked cell cycle in the G1 phase. The results of human phospho-kinase array revealed that DHA downregulated the levels of p70S6KT389 and p70S6KT421/S424. Furthermore, the levels of mTORS2448, p70S6KT389, p70S6KT421/S424 and RPS6S235/S236 were decreased after DHA treatment in KYSE30 and KYSE150 cells. We then explored the proteins targeted by DHA to inhibit the mTOR-p70S6K-RPS6 pathway. Results of the in vitro kinase assay revealed that DHA significantly inhibited phosphorylation of mTORS2448 by binding to AKT1 and p70S6K kinases. In vivo, DHA inhibited the tumor growth of ESCC patient-derived xenografts and weakened p-mTOR, p-p70S6K, and p-RPS6 expression in tumor tissues. Altogether, our results indicate that DHA has antiproliferative effects in ESCC cells and can downregulate mTOR cascade pathway partially by binding to AKT1 and p70S6K. Thus, DHA has considerable potential for the prevention or treatment of ESCC.
Collapse
Affiliation(s)
- Lili Zhu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinhuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Yanyan Zhu
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jiace Qin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Tingting Niu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Yongwei Ding
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Yang Xiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Yanan Jiang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China.,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Wanjing Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Yan Qiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Ge Jin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Junfen Ma
- Department of Clinical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Ziming Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Jimin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
284
|
Li Z, Chen L, Chen C, Zhou Y, Hu D, Yang J, Chen Y, Zhuo W, Mao M, Zhang X, Xu L, Wang L, Zhou J. Targeting ferroptosis in breast cancer. Biomark Res 2020; 8:58. [PMID: 33292585 PMCID: PMC7643412 DOI: 10.1186/s40364-020-00230-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Ferroptosis is a recently discovered distinct type of regulated cell death caused by the accumulation of lipid-based ROS. Metabolism and expression of specific genes affect the occurrence of ferroptosis, making it a promising therapeutic target to manage cancer. Here, we describe the current status of ferroptosis studies in breast cancer and trace the key regulators of ferroptosis back to previous studies. We also compare ferroptosis to common regulated cell death patterns and discuss the sensitivity to ferroptosis in different subtypes of breast cancer. We propose that viewing ferroptosis-related studies from a historical angle will accelerate the development of ferroptosis-based biomarkers and therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Zhaoqing Li
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 310009 Hangzhou, Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Lini Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Cong Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Yulu Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Dengdi Hu
- Cixi People’s Hospital Medical and Health Group, 315300 Ningbo, Zhejiang China
| | - Jingjing Yang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Wenying Zhuo
- Cixi People’s Hospital Medical and Health Group, 315300 Ningbo, Zhejiang China
| | - Misha Mao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Xun Zhang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Ling Xu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| |
Collapse
|
285
|
Mancuso RI, Foglio MA, Olalla Saad ST. Artemisinin-type drugs for the treatment of hematological malignancies. Cancer Chemother Pharmacol 2020; 87:1-22. [PMID: 33141328 DOI: 10.1007/s00280-020-04170-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/06/2020] [Indexed: 12/19/2022]
Abstract
Qinghaosu, known as artemisinin (ARS), has been for over two millennia, one of the most common herbs prescribed in traditional Chinese medicine (TCM). ARS was developed as an antimalarial drug and currently belongs to the established standard treatments of malaria as a combination therapy worldwide. In addition to the antimalarial bioactivity of ARS, anticancer activities have been shown both in vitro and in vivo. Like other natural products, ARS acts in a multi-specific manner also against hematological malignancies. The chemical structure of ARS is a sesquiterpene lactone, which contains an endoperoxide bridge essential for activity. The main mechanism of action of ARS and its derivatives (artesunate, dihydroartemisinin, artemether) toward leukemia, multiple myeloma, and lymphoma cells comprises oxidative stress response, inhibition of proliferation, induction of various types of cell death as apoptosis, autophagy, ferroptosis, inhibition of angiogenesis, and signal transducers, as NF-κB, MYC, amongst others. Therefore, new pharmaceutically active compounds, dimers, trimers, and hybrid molecules, could enhance the existing therapeutic alternatives in combating hematologic malignancies. Owing to the high potency and good tolerance without side effects of ARS-type drugs, combination therapies with standard chemotherapies could be applied in the future after further clinical trials in hematological malignancies.
Collapse
Affiliation(s)
- R I Mancuso
- Hematology and Hemotherapy Center, University of Campinas, HEMOCENTRO UNICAMP, Campinas, São Paulo, Brazil
| | - M A Foglio
- Faculty of Pharmaceutical Science, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - S T Olalla Saad
- Hematology and Hemotherapy Center, University of Campinas, HEMOCENTRO UNICAMP, Campinas, São Paulo, Brazil.
| |
Collapse
|
286
|
Xu C, Zhang H, Mu L, Yang X. Artemisinins as Anticancer Drugs: Novel Therapeutic Approaches, Molecular Mechanisms, and Clinical Trials. Front Pharmacol 2020; 11:529881. [PMID: 33117153 PMCID: PMC7573816 DOI: 10.3389/fphar.2020.529881] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Artemisinin and its derivatives have shown broad-spectrum antitumor activities in vitro and in vivo. Furthermore, outcomes from a limited number of clinical trials provide encouraging evidence for their excellent antitumor activities. However, some problems such as poor solubility, toxicity and controversial mechanisms of action hamper their use as effective antitumor agents in the clinic. In order to accelerate the use of ARTs in the clinic, researchers have recently developed novel therapeutic approaches including developing novel derivatives, manufacturing novel nano-formulations, and combining ARTs with other drugs for cancer therapy. The related mechanisms of action were explored. This review describes ARTs used to induce non-apoptotic cell death containing oncosis, autophagy, and ferroptosis. Moreover, it highlights the ARTs-caused effects on cancer metabolism, immunosuppression and cancer stem cells and discusses clinical trials of ARTs used to treat cancer. The review provides additional insight into the molecular mechanism of action of ARTs and their considerable clinical potential.
Collapse
Affiliation(s)
- Cangcang Xu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Huihui Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Lingli Mu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
287
|
Alu A, Han X, Ma X, Wu M, Wei Y, Wei X. The role of lysosome in regulated necrosis. Acta Pharm Sin B 2020; 10:1880-1903. [PMID: 33163342 PMCID: PMC7606114 DOI: 10.1016/j.apsb.2020.07.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/29/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Lysosome is a ubiquitous acidic organelle fundamental for the turnover of unwanted cellular molecules, particles, and organelles. Currently, the pivotal role of lysosome in regulating cell death is drawing great attention. Over the past decades, we largely focused on how lysosome influences apoptosis and autophagic cell death. However, extensive studies showed that lysosome is also prerequisite for the execution of regulated necrosis (RN). Different types of RN have been uncovered, among which, necroptosis, ferroptosis, and pyroptosis are under the most intensive investigation. It becomes a hot topic nowadays to target RN as a therapeutic intervention, since it is important in many patho/physiological settings and contributing to numerous diseases. It is promising to target lysosome to control the occurrence of RN thus altering the outcomes of diseases. Therefore, we aim to give an introduction about the common factors influencing lysosomal stability and then summarize the current knowledge on the role of lysosome in the execution of RN, especially in that of necroptosis, ferroptosis, and pyroptosis.
Collapse
Affiliation(s)
- Aqu Alu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuejiao Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Wu
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
288
|
Wu Y, Yu C, Luo M, Cen C, Qiu J, Zhang S, Hu K. Ferroptosis in Cancer Treatment: Another Way to Rome. Front Oncol 2020; 10:571127. [PMID: 33102227 PMCID: PMC7546896 DOI: 10.3389/fonc.2020.571127] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
Ferroptosis is a newly described type of programmed cell death and intensively related to both maintaining homeostasis and the development of diseases, especially cancers. Inducing ferroptosis leads to mitochondrial dysfunction and toxic lipid peroxidation in cells, which plays a pivotal role in suppressing cancer growth and progression. Here, we reviewed the existing studies about the molecular mechanisms of ferroptosis involved in different antitumor treatments, such as chemotherapy, targeted therapy, radiotherapy, and immunotherapy. We focused in particular on the distinct combinatorial therapeutic effects such as the synergistic sensitization effect and the drug-resistance reversal achieved when using ferroptosis inducers with conventional cancer therapy. Finally, we discussed the challenges and opportunities in clinical applications of ferroptosis. The application of nanotechnolgy and other novel technologies may provide a new direction in ferroptosis-driven cancer therapies.
Collapse
Affiliation(s)
- Yinan Wu
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengcheng Yu
- Department of Orthopedics, The Second Affiliated Hospital, College of Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Luo
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Cen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Jili Qiu
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Suzhan Zhang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaimin Hu
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
289
|
Malami I, Bunza AM, Alhassan AM, Muhammad A, Abubakar IB, Yunusa A, Waziri PM, Etti IC. Dihydroartemisinin as a potential drug candidate for cancer therapy: a structural-based virtual screening for multitarget profiling. J Biomol Struct Dyn 2020; 40:1347-1362. [PMID: 32964804 DOI: 10.1080/07391102.2020.1824811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cancer is a rapidly growing non-communicable disease worldwide that is responsible for high mortality rates, which account for 9.6 million death in 2018. Dihydroartemisinin (DHA) is an active metabolite of artemisinin, an active principle present in the Chinese medicinal plant Artemisia annua used for malaria treatment. Dihydroartemisinin possesses remarkable and selective anticancer properties however the underlying mechanism of the antitumor effects of DHA from the structural point of view is still not yet elucidated. In the present study, we employed molecular docking simulation techniques using Autodock suits to access the binding properties of dihydroartemisinin to multiple protein targets implicated in cancer pathogenesis. Its potential targets with comprehensive pharmacophore were predicted using a PharmMapper database. The co-crystallised structures of the protein were obtained from a Protein Data Bank and prepared for molecular docking simulation. Out of the 24 selected protein targets, DHA has shown about 29% excellent binding to the targets compared to their co-crystallised ligand. Additionally, 75% of the targets identified for dihydroartemisinin binding are protein kinases, and 25% are non-protein kinases. Hydroxyl functional group of dihydroartemisinin contributed to 58.5% of the total hydrogen interactions, while pyran (12.2%), endoperoxide (9.8%), and oxepane (19.5%) contributed to the remaining hydrogen bonding. The present findings have elucidated the possible antitumor properties of dihydroartemisinin through the structural-based virtual studies, which provides a lead to a safe and effective anticancer agent useful for cancer therapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ibrahim Malami
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria.,Centre for Advanced Medical Research and Training (CAMRET), Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Aisha Muktar Bunza
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Alhassan Muhammad Alhassan
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Aliyu Muhammad
- Department of Biochemistry, Faculty of life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | | | - Abdulmajeed Yunusa
- Department of Pharmacology and Therapeutics, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Peter M Waziri
- Department of Biochemistry, Kaduna State University, Kaduna, Nigeria
| | - Imaobong C Etti
- Department of Pharmacology and Toxicology, University of Uyo, Uyo, Nigeria
| |
Collapse
|
290
|
Grignano E, Birsen R, Chapuis N, Bouscary D. From Iron Chelation to Overload as a Therapeutic Strategy to Induce Ferroptosis in Leukemic Cells. Front Oncol 2020; 10:586530. [PMID: 33042852 PMCID: PMC7530268 DOI: 10.3389/fonc.2020.586530] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/18/2020] [Indexed: 12/20/2022] Open
Abstract
Despite its crucial importance in numerous physiological processes, iron also causes oxidative stress and damage which can promote the growth and proliferation of leukemic cells. Iron metabolism is strictly regulated and the related therapeutic approaches to date have been to restrict iron availability to tumor cells. However, since a new form of iron-catalyzed cell death has been described, termed ferroptosis, and subsequently better understood, iron excess is thought to represent an opportunity to selectively kill leukemic cells and spare normal hematopoietic cells, based on their differential iron needs. This review summarizes the physiology of iron metabolism and its deregulation in leukemia, the known ferrotoposis pathways, and therapeutic strategies to target the altered iron metabolism in leukemia for the purposes of initiating ferroptosis in these cancer cells.
Collapse
Affiliation(s)
- Eric Grignano
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France.,Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Service d'Hématologie clinique, Hôpital Cochin, Paris, France
| | - Rudy Birsen
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France.,Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Service d'Hématologie clinique, Hôpital Cochin, Paris, France
| | - Nicolas Chapuis
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France.,Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Service d'Hématologie biologique, Hôpital Cochin, Paris, France
| | - Didier Bouscary
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France.,Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Service d'Hématologie clinique, Hôpital Cochin, Paris, France
| |
Collapse
|
291
|
Li B, Yang L, Peng X, Fan Q, Wei S, Yang S, Li X, Jin H, Wu B, Huang M, Tang S, Liu J, Li H. Emerging mechanisms and applications of ferroptosis in the treatment of resistant cancers. Biomed Pharmacother 2020; 130:110710. [PMID: 33568263 DOI: 10.1016/j.biopha.2020.110710] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 02/09/2023] Open
Abstract
The development of chemotherapy drugs has promoted anticancer treatment, but the effect on tumours is not clear because of treatment resistance; thus, it is necessary to further understand the mechanism of cell death to explore new therapeutic targets. As a new type of programmed cell death, ferroptosis is increasingly being targeted in the treatment of many cancers with clinical drugs and experimental compounds. Ferroptosis is stimulated in tumours with inherently high levels of ferrous ions by a reaction with abundant polyunsaturated fatty acids and the inhibition of antioxidant enzymes, which can overcome treatment resistance in cancers mainly through GPX4. In this review, we focus on the intrinsic cellular regulators against ferroptosis in cancer resistance, such as GPX4, NRF2 and the thioredoxin system. We summarize the application of novel compounds and drugs to circumvent treatment resistance. We also introduce the application of nanoparticles for the treatment of resistant cancers. In conclusion, targeting ferroptosis represents a considerable strategy for resistant cancer treatment.
Collapse
Affiliation(s)
- Bowen Li
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Liang Yang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Xueqiang Peng
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Qin Fan
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Shibo Wei
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Shuo Yang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Xinyu Li
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Hongyuan Jin
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Bo Wu
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Mingyao Huang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Shilei Tang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Jingang Liu
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Hangyu Li
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China.
| |
Collapse
|
292
|
The Application of Ferroptosis in Diseases. Pharmacol Res 2020; 159:104919. [DOI: 10.1016/j.phrs.2020.104919] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 01/17/2023]
|
293
|
Affiliation(s)
- Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation; the Third Affiliated Hospital; School of Basic Medical Sciences; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jingbo Li
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Daolin Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation; the Third Affiliated Hospital; School of Basic Medical Sciences; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
294
|
Zhong Y, Tian F, Ma H, Wang H, Yang W, Liu Z, Liao A. FTY720 induces ferroptosis and autophagy via PP2A/AMPK pathway in multiple myeloma cells. Life Sci 2020; 260:118077. [PMID: 32810509 DOI: 10.1016/j.lfs.2020.118077] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022]
Abstract
AIMS Multiple myeloma (MM) is the second hematological plasma cell malignany and sensitive to fingolimod (FTY720), a novel immunosuppressant. Previous study shows FTY720-induced apoptosis and autophagy can cause cell death in MM cells, however, the high death rate cannot fully be explained. The study aims to investigate further mechanism of how FTY720 kills MM cells. MATERIALS AND METHODS Experiments are performed on 25 human primary cell samples and two MM cell lines by flow cytometry, fluorescence microscopy, and transmission electron microscopy. Expressions of relative factors are tested by qRT-PCR or western blot. KEY FINDINGS Ferroptosis-specific inhibitors, deferoxamine mesylate (DFOM) and ferropstatin-1 (Fer-1), reverse FTY720-induced cell death in MM cells. Glutathione peroxidase 4 (GPX4) and soluble carrier family 7 member 11 (SLC7A11), key regulators of ferroptosis, are highly expressed in primary MM cells and can be decreased by FTY720 at the mRNA and protein level in MM cells. In addition, FTY720 induces other characteristic changes of ferroptosis. Furthermore, FTY720 can dephosphorylate AMP-activated protein kinase subunit ɑ (AMPKɑ) at the Thr172 site by activating protein phosphatase 2A (PP2A) and reduce the expression of phosphorylated eukaryotic elongation factor 2 (eEF2), finally cause MM cell death. Using LB-100, a PP2A inhibitor, AICAR, an agonist of AMPK, and bafilomycin A1 (Baf-A1), an autophagy inhibitor, we discover that FTY720 induces ferroptosis and autophagy through the PP2A/AMPK pathway, and ferroptosis and autophagy can reinforce each other. SIGNIFICANCE These results provide a new perspective on the treatment of MM.
Collapse
Affiliation(s)
- Yuan Zhong
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fei Tian
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huanxin Ma
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huihan Wang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Yang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhuogang Liu
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Aijun Liao
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
295
|
Yu R, Jin L, Li F, Fujimoto M, Wei Q, Lin Z, Ren X, Jin Q, Li H, Meng F, Jin G. Dihydroartemisinin inhibits melanoma by regulating CTL/Treg anti-tumor immunity and STAT3-mediated apoptosis via IL-10 dependent manner. J Dermatol Sci 2020; 99:193-202. [PMID: 32859456 DOI: 10.1016/j.jdermsci.2020.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND It has been shown that dihydroartemisinin (DHA) is effective in the treatment of malaria. Recently studies have demonstrated that DHA also regulates tumor cell growth, angiogenesis, T cell differentiation and generation. However, how DHA affects melanoma development remains poorly defined. OBJECTIVES To investigate the effects of DHA on the proliferation and migration of melanoma in vivo and in vitro, and to explore its possible mechanism. METHODS B16F10 cells and melanoma-bearing BALB/c mice were used to investigate the effects of DHA on melanoma. RESULTS DHA had inhibitory effect on melanoma proliferation in a time-and dose-dependent manner. Treatment of DHA attenuated melanoma severity and histopathological changes in BALB/c mice. DHA also inhibited melanoma invasion, migration, and community formation in a dose-dependent manner. Flow cytometry revealed a significant increase in IFN-γ+CD8+ T cells in the DHA groups. In tumor microenvironment and spleen, DHA induced expansion of CD8+CTL, while, CD4+CD25+Foxp3+ regulatory T (Treg) cells and IL-10+CD4+CD25+ T cells were normalized by DHA treatment. DHA diminished expression of IL-10 and IL-6, and increased the expression of IFN-γ in the tumor and spleen. Moreover, DHA administration significantly promoted the mitochondrial apoptosis of melanoma by regulating the STAT3 pathway. CONCLUSION DHA induces mitochondrial apoptosis and alters cytokines expression by inhibiting the phosphorylation of STAT3. DHA improves anti-tumor immunity in mice through controlling CD8+CTL function by counteracting IL-10-dependent Treg cells suppression, which promises to be an alternative drug for melanoma.
Collapse
Affiliation(s)
- Ran Yu
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Linbo Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Fangfang Li
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Manabu Fujimoto
- Department of Dermatology, Graduate School of Medicine, Osaka University, Laboratory of Cutaneous Immunology, Osaka UniversityImmunology Frontier Research Center, Osaka, Japan
| | - Qiang Wei
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Zhenhua Lin
- Department of Pathology, Yanbian University Medical College, Yanji, China
| | - Xiangshan Ren
- Department of Pathology, Yanbian University Medical College, Yanji, China
| | - Quanxin Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Honghua Li
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Fanping Meng
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Guihua Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China.
| |
Collapse
|
296
|
Zhang Z, Guo M, Li Y, Shen M, Kong D, Shao J, Ding H, Tan S, Chen A, Zhang F, Zheng S. RNA-binding protein ZFP36/TTP protects against ferroptosis by regulating autophagy signaling pathway in hepatic stellate cells. Autophagy 2020; 16:1482-1505. [PMID: 31679460 PMCID: PMC7469536 DOI: 10.1080/15548627.2019.1687985] [Citation(s) in RCA: 321] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Ferroptosis is a recently discovered form of programmed cell death, but its regulatory mechanisms remain poorly understood. Here, we show that the RNA-binding protein ZFP36/TTP (ZFP36 ring finger protein) plays a crucial role in regulating ferroptosis in hepatic stellate cells (HSCs). Upon exposure to ferroptosis-inducing compounds, the ubiquitin ligase FBXW7/CDC4 (F-box and WD repeat domain containing 7) decreased ZFP36 protein expression by recognizing SFSGLPS motif. FBXW7 plasmid contributed to classical ferroptotic events, whereas ZFP36 plasmid impaired FBXW7 plasmid-induced HSC ferroptosis. Interestingly, ZFP36 plasmid inhibited macroautophagy/autophagy activation by destabilizing ATG16L1 (autophagy related 16 like 1) mRNA. ATG16L1 plasmid eliminated the inhibitory action of ZFP36 plasmid on ferroptosis, and FBXW7 plasmid enhanced the effect of ATG16L1 plasmid on autophagy. Importantly, ZFP36 plasmid promoted ATG16L1 mRNA decay via binding to the AU-rich elements (AREs) within the 3'-untranslated region. The internal mutation of the ARE region abrogated the ZFP36-mediated ATG16L1 mRNA instability, and prevented ZFP36 plasmid-mediated ferroptosis resistance. In mice, treatment with erastin and sorafenib alleviated murine liver fibrosis by inducing HSC ferroptosis. HSC-specific overexpression of Zfp36 impaired erastin- or sorafenib-induced HSC ferroptosis. Noteworthy, we analyzed the effect of sorafenib on HSC ferroptosis in fibrotic patients with hepatocellular carcinoma receiving sorafenib monotherapy. Attractively, sorafenib monotherapy led to ZFP36 downregulation, ferritinophagy activation, and ferroptosis induction in human HSCs. Overall, these results revealed novel molecular mechanisms and signaling pathways of ferroptosis, and also identified ZFP36-autophagy-dependent ferroptosis as a potential target for the treatment of liver fibrosis. ABBREVIATIONS ARE: AU-rich elements; ATG: autophagy related; BECN1: beclin 1; CHX: cycloheximide; COL1A1: collagen type I alpha 1 chain; ELAVL1/HuR: ELAV like RNA binding protein 1; FBXW7/CDC4: F-box and WD repeat domain containing 7; FN1: fibronectin 1; FTH1: ferritin heavy chain 1; GPX4/PHGPx: glutathione peroxidase 4; GSH: glutathione; HCC: hepatocellular carcinoma; HSC: hepatic stellate cell; LSEC: liver sinusoidal endothelial cell; MAP1LC3A: microtubule associated protein 1 light chain 3 alpha; MDA: malondialdehyde; NCOA4: nuclear receptor coactivator 4; PTGS2/COX2: prostaglandin-endoperoxide synthase 2; RBP: RNA-binding protein; ROS: reactive oxygen species; SLC7A11/xCT: solute carrier family 7 member 11; SQSTM1/p62: sequestosome 1; TNF: tumor necrosis factor; TP53/p53: tumor protein p53; UTR: untranslated region; ZFP36/TTP: ZFP36 ring finger protein.
Collapse
Affiliation(s)
- Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mei Guo
- Department of Pathogenic biology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Yujia Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Min Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Desong Kong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hai Ding
- Department of Integrated TCM and Western Medicine, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Shanzhong Tan
- Department of Integrated TCM and Western Medicine, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, St Louis, USA
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
297
|
Lin X, Ping J, Wen Y, Wu Y. The Mechanism of Ferroptosis and Applications in Tumor Treatment. Front Pharmacol 2020; 11:1061. [PMID: 32774303 PMCID: PMC7388725 DOI: 10.3389/fphar.2020.01061] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/30/2020] [Indexed: 01/17/2023] Open
Abstract
Iron-dependent ferroptosis is a new form of cell death in recent years, which is driven by lipid peroxidation. The lethal lipid accumulation caused by glutathione depletion or inactivation of glutathione peroxidase 4 (GPX4) is characteristic of the ferroptosis process. In recent years, with the in-depth study of ferroptosis, various types of diseases have been reported to be related to ferroptosis. In other words, ferroptosis, which has attracted widespread attention in the fields of biochemistry, oncology, and especially materials science, can undoubtedly provide a new way for patients. This review introduces the relevant mechanisms of ferroptosis, the relationship between ferroptosis and various cancers, as well as the application of ferroptosis in tumor treatment. We also sorted out the genes and drugs that regulate ferroptosis. Moreover, small molecule compound-induced ferroptosis has a strong inhibitory effect on tumor growth in a drug-resistant environment, which can enhance the sensitivity of chemotherapeutic drugs, suggesting that ferroptosis is very important in the treatment of tumor drug resistance, but the details are still unclear. How to use ferroptosis to fight cancer, and how to prevent drug-resistant tumor cells have become the focus and direction of research. At the end of the article, some existing problems related to ferroptosis are summarized for future research.
Collapse
Affiliation(s)
- Xinyue Lin
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jieyi Ping
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yi Wen
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yan Wu
- School of Medicine, Jiangsu University, Zhenjiang, China.,Gynecology, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
298
|
Zhang Z, Zhou L, Xie N, Nice EC, Zhang T, Cui Y, Huang C. Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduct Target Ther 2020; 5:113. [PMID: 32616710 PMCID: PMC7331117 DOI: 10.1038/s41392-020-00213-8] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Ever present hurdles for the discovery of new drugs for cancer therapy have necessitated the development of the alternative strategy of drug repurposing, the development of old drugs for new therapeutic purposes. This strategy with a cost-effective way offers a rare opportunity for the treatment of human neoplastic disease, facilitating rapid clinical translation. With an increased understanding of the hallmarks of cancer and the development of various data-driven approaches, drug repurposing further promotes the holistic productivity of drug discovery and reasonably focuses on target-defined antineoplastic compounds. The "treasure trove" of non-oncology drugs should not be ignored since they could target not only known but also hitherto unknown vulnerabilities of cancer. Indeed, different from targeted drugs, these old generic drugs, usually used in a multi-target strategy may bring benefit to patients. In this review, aiming to demonstrate the full potential of drug repurposing, we present various promising repurposed non-oncology drugs for clinical cancer management and classify these candidates into their proposed administration for either mono- or drug combination therapy. We also summarize approaches used for drug repurposing and discuss the main barriers to its uptake.
Collapse
Affiliation(s)
- Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Tao Zhang
- The School of Biological Science and Technology, Chengdu Medical College, 610083, Chengdu, China.
- Department of Oncology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, Sichuan, China.
| | - Yongping Cui
- Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, and Cancer Institute, Shenzhen Bay Laboratory Shenzhen, 518035, Shenzhen, China.
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
299
|
Homma T, Kobayashi S, Fujii J. Cysteine preservation confers resistance to glutathione-depleted cells against ferroptosis via CDGSH iron sulphur domain-containing proteins (CISDs). Free Radic Res 2020; 54:397-407. [DOI: 10.1080/10715762.2020.1780229] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Sho Kobayashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| |
Collapse
|
300
|
Shen Y, Zhang B, Su Y, Badshah SA, Wang X, Li X, Xue Y, Xie L, Wang Z, Yang Z, Zhang G, Shang P. Iron Promotes Dihydroartemisinin Cytotoxicity via ROS Production and Blockade of Autophagic Flux via Lysosomal Damage in Osteosarcoma. Front Pharmacol 2020; 11:444. [PMID: 32431605 PMCID: PMC7214747 DOI: 10.3389/fphar.2020.00444] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 03/20/2020] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma cellular iron concentration is higher than that in normal bone cells and other cell types. High levels of cellular iron help catalyze the Fenton reaction to produce reactive oxygen species (ROS), which promotes cancer cell proliferation. Dihydroartemisinin (DHA), a classic anti-malarial drug, kills plasmodium through iron-dependent ROS generation. In this research, we observed the anti-osteosarcoma effects and mechanisms of DHA. We found that DHA induced ROS production, caused mitochondrial damage, and activated autophagy via stimulation of the ROS/Erk1/2 pathway. As the storage site for a pool of ferrous iron, lysosomes are often the key organelles affected by drugs targeting iron. In this study, we observed that DHA induced lysosomal superoxide production, leading lysosomal membrane permeabilization (LMP), and autophagic flux blockage. By reducing or increasing cellular iron using deferoxamine (DFO) or ferric ammonium citrate (FAC), respectively, we found that DHA inhibited osteosarcoma in an iron-dependent manner. Therefore, iron may be a potential adjuvant for DHA in osteosarcoma treatment.
Collapse
Affiliation(s)
- Ying Shen
- Research and Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, China
- School of Life Science, Northwestern Polytechnical University, Xi’an, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, School of Life Science, Northwestern Polytechnical University, Xi’an, China
| | - Bin Zhang
- Research and Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, China
- School of Life Science, Northwestern Polytechnical University, Xi’an, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, School of Life Science, Northwestern Polytechnical University, Xi’an, China
| | - Yanwei Su
- Research and Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, China
- School of Life Science, Northwestern Polytechnical University, Xi’an, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, School of Life Science, Northwestern Polytechnical University, Xi’an, China
| | - Shaikh Atik Badshah
- Research and Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, School of Life Science, Northwestern Polytechnical University, Xi’an, China
| | - Xiaofei Wang
- Biomedical Experimental Center, Xi’an Jiaotong University, Xi’an, China
| | - Xin Li
- Research and Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, China
- School of Life Science, Northwestern Polytechnical University, Xi’an, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, School of Life Science, Northwestern Polytechnical University, Xi’an, China
| | - Yanru Xue
- Research and Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, China
- School of Life Science, Northwestern Polytechnical University, Xi’an, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, School of Life Science, Northwestern Polytechnical University, Xi’an, China
| | - Li Xie
- School of Life Science, Northwestern Polytechnical University, Xi’an, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, School of Life Science, Northwestern Polytechnical University, Xi’an, China
| | - Zhe Wang
- School of Life Science, Northwestern Polytechnical University, Xi’an, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, School of Life Science, Northwestern Polytechnical University, Xi’an, China
| | - Zhouqi Yang
- School of Life Science, Northwestern Polytechnical University, Xi’an, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, School of Life Science, Northwestern Polytechnical University, Xi’an, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases (TMBJ), Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Peng Shang
- Research and Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, School of Life Science, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|