251
|
Xin W, Schuebel KE, Jair KW, Cimbro R, De Biase LM, Goldman D, Bonci A. Ventral midbrain astrocytes display unique physiological features and sensitivity to dopamine D2 receptor signaling. Neuropsychopharmacology 2019; 44:344-355. [PMID: 30054584 PMCID: PMC6300565 DOI: 10.1038/s41386-018-0151-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/16/2018] [Accepted: 07/01/2018] [Indexed: 12/26/2022]
Abstract
Astrocytes are ubiquitous CNS cells that support tissue homeostasis through ion buffering, neurotransmitter recycling, and regulation of CNS vasculature. Yet, despite the essential functional roles they fill, very little is known about the physiology of astrocytes in the ventral midbrain, a region that houses dopamine-releasing neurons and is critical for reward learning and motivated behaviors. Here, using a combination of whole-transcriptome sequencing, histology, slice electrophysiology, and calcium imaging, we performed the first functional and molecular profiling of ventral midbrain astrocytes and observed numerous differences between these cells and their telencephalic counterparts, both in their gene expression profile and in their physiological properties. Ventral midbrain astrocytes have very low membrane resistance and inward-rectifying potassium channel-mediated current, and are extensively coupled to surrounding oligodendrocytes through gap junctions. They exhibit calcium responses to glutamate but are relatively insensitive to norepinephrine. In addition, their calcium activity can be dynamically modulated by dopamine D2 receptor signaling. Taken together, these data indicate that ventral midbrain astrocytes are physiologically distinct from astrocytes in cortex and hippocampus. This work provides new insights into the extent of functional astrocyte heterogeneity within the adult brain and establishes the foundation for examining the impact of regional astrocyte differences on dopamine neuron function and susceptibility to degeneration.
Collapse
Affiliation(s)
- Wendy Xin
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA. .,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Kornel E. Schuebel
- 0000 0001 2297 5165grid.94365.3dLaboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20852 USA
| | - Kam-wing Jair
- 0000 0001 2297 5165grid.94365.3dLaboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20852 USA
| | - Raffaello Cimbro
- 0000 0001 2171 9311grid.21107.35Department of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD 21224 USA
| | - Lindsay M. De Biase
- 0000 0001 2297 5165grid.94365.3dIntramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224 USA
| | - David Goldman
- 0000 0001 2297 5165grid.94365.3dLaboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20852 USA
| | - Antonello Bonci
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA. .,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Department of Neuroscience, Georgetown University Medical Center, School of Medicine, Washington, DC, USA. .,Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
252
|
|
253
|
Verkhratsky A, Parpura V, Rodriguez-Arellano JJ, Zorec R. Astroglia in Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1175:273-324. [PMID: 31583592 DOI: 10.1007/978-981-13-9913-8_11] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease is the most common cause of dementia. Cellular changes in the brains of the patients suffering from Alzheimer's disease occur well in advance of the clinical symptoms. At the cellular level, the most dramatic is a demise of neurones. As astroglial cells carry out homeostatic functions of the brain, it is certain that these cells are at least in part a cause of Alzheimer's disease. Historically, Alois Alzheimer himself has recognised this at the dawn of the disease description. However, the role of astroglia in this disease has been understudied. In this chapter, we summarise the various aspects of glial contribution to this disease and outline the potential of using these cells in prevention (exercise and environmental enrichment) and intervention of this devastating disease.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK. .,Faculty of Health and Medical Sciences, Center for Basic and Translational Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark. .,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA.,University of Rijeka, Rijeka, Croatia
| | - Jose Julio Rodriguez-Arellano
- BioCruces Health Research Institute, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,Department of Neuroscience, The University of the Basque Country UPV/EHU, Plaza de Cruces 12, 48903, Barakaldo, Bizkaia, Spain
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Celica BIOMEDICAL, Ljubljana, Slovenia
| |
Collapse
|
254
|
Gebhardt C, Mosienko V, Alenina N, Albrecht D. Priming of LTP in amygdala and hippocampus by prior paired pulse facilitation paradigm in mice lacking brain serotonin. Hippocampus 2018; 29:610-618. [PMID: 30457189 DOI: 10.1002/hipo.23055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 10/08/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023]
Abstract
This study focuses on analyzing long-term potentiation (LTP) changes in the lateral nucleus of the amygdala (LA) and in the CA1 region of the hippocampus in slices derived from mice deficient in tryptophan hydroxylase 2 (TPH2-/- ), the rate-limiting enzyme for 5-HT synthesis in the brain. We found a reduced LTP in both brain structures in TPH2-/- mice. However, we found no changes in the magnitude of LTP in TPH2-/- mice compared to wildtype mice when it was preceded by a paired pulse protocol. Whereas the magnitude of long-term depression (LTD) did not differ between wildtype and TPH2-/- mice, priming synapses by LTD-induction facilitated subsequent CA1-LTP in wildtype mice to a greater extent than in TPH2-/- mice. In the LA we found no differences between the genotypes in this protocol of metaplasticity. These data show that, unlike exogenous 5-HT application, lack of 5-HT in the brain impairs cellular mechanisms responsible for induction of LTP. It is supposed that suppression of LTP observed in TPH2-/- mice might be compensated by mechanisms of metaplasticity induced by paired pulse stimulation or low frequency stimulation before the induction of LTP.
Collapse
Affiliation(s)
- Christine Gebhardt
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Valentina Mosienko
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Natalia Alenina
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Doris Albrecht
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
255
|
Mederos S, González-Arias C, Perea G. Astrocyte-Neuron Networks: A Multilane Highway of Signaling for Homeostatic Brain Function. Front Synaptic Neurosci 2018; 10:45. [PMID: 30542276 PMCID: PMC6277918 DOI: 10.3389/fnsyn.2018.00045] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 11/12/2018] [Indexed: 12/22/2022] Open
Abstract
Research on glial cells over the past 30 years has confirmed the critical role of astrocytes in pathophysiological brain states. However, most of our knowledge about astrocyte physiology and of the interactions between astrocytes and neurons is based on the premises that astrocytes constitute a homogeneous cell type, without considering the particular properties of the circuits or brain nuclei in which the astrocytes are located. Therefore, we argue that more-sophisticated experiments are required to elucidate the specific features of astrocytes in different brain regions, and even within different layers of a particular circuit. Thus, in addition to considering the diverse mechanisms used by astrocytes to communicate with neurons and synaptic partners, it is necessary to take into account the cellular heterogeneity that likely contributes to the outcomes of astrocyte-neuron signaling. In this review article, we briefly summarize the current data regarding the anatomical, molecular and functional properties of astrocyte-neuron communication, as well as the heterogeneity within this communication.
Collapse
Affiliation(s)
- Sara Mederos
- Department of Functional and Systems Neurobiology, Instituto Cajal (IC), CSIC, Madrid, Spain
| | - Candela González-Arias
- Department of Functional and Systems Neurobiology, Instituto Cajal (IC), CSIC, Madrid, Spain
| | - Gertrudis Perea
- Department of Functional and Systems Neurobiology, Instituto Cajal (IC), CSIC, Madrid, Spain
| |
Collapse
|
256
|
Sonoda K, Matsui T, Bito H, Ohki K. Astrocytes in the mouse visual cortex reliably respond to visual stimulation. Biochem Biophys Res Commun 2018; 505:1216-1222. [DOI: 10.1016/j.bbrc.2018.10.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/05/2018] [Indexed: 01/28/2023]
|
257
|
Heuser K, Nome CG, Pettersen KH, Åbjørsbråten KS, Jensen V, Tang W, Sprengel R, Taubøll E, Nagelhus EA, Enger R. Ca2+ Signals in Astrocytes Facilitate Spread of Epileptiform Activity. Cereb Cortex 2018; 28:4036-4048. [PMID: 30169757 PMCID: PMC6188565 DOI: 10.1093/cercor/bhy196] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/29/2018] [Accepted: 07/21/2018] [Indexed: 01/04/2023] Open
Abstract
Epileptic seizures are associated with increased astrocytic Ca2+ signaling, but the fine spatiotemporal kinetics of the ictal astrocyte-neuron interplay remains elusive. By using 2-photon imaging of awake head-fixed mice with chronic hippocampal windows we demonstrate that astrocytic Ca2+ signals precede neuronal Ca2+ elevations during the initial bout of kainate-induced seizures. On average, astrocytic Ca2+ elevations preceded neuronal activity in CA1 by about 8 s. In subsequent bouts of epileptic seizures, astrocytes and neurons were activated simultaneously. The initial astrocytic Ca2+ elevation was abolished in mice lacking the type 2 inositol-1,4,5-trisphosphate-receptor (Itpr2-/-). Furthermore, we found that Itpr2-/- mice exhibited 60% less epileptiform activity compared with wild-type mice when assessed by telemetric EEG monitoring. In both genotypes we also demonstrate that spreading depression waves may play a part in seizure termination. Our findings imply a role for astrocytic Ca2+ signals in ictogenesis.
Collapse
Affiliation(s)
- Kjell Heuser
- Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Cecilie G Nome
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Klas H Pettersen
- Letten Centre and GliaLab, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Knut S Åbjørsbråten
- Letten Centre and GliaLab, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Vidar Jensen
- Letten Centre and GliaLab, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Wannan Tang
- Letten Centre and GliaLab, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Rolf Sprengel
- Max Planck Research Group “Molecular Neurobiology” at the Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Erik Taubøll
- Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Erlend A Nagelhus
- Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Letten Centre and GliaLab, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Rune Enger
- Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Letten Centre and GliaLab, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
258
|
Tran CHT, Peringod G, Gordon GR. Astrocytes Integrate Behavioral State and Vascular Signals during Functional Hyperemia. Neuron 2018; 100:1133-1148.e3. [PMID: 30482689 DOI: 10.1016/j.neuron.2018.09.045] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 06/25/2018] [Accepted: 09/24/2018] [Indexed: 01/17/2023]
Abstract
Dynamic changes in astrocyte free Ca2+ regulate synaptic signaling and local blood flow. Although astrocytes are poised to integrate signals from synapses and the vasculature to perform their functional roles, it remains unclear what dictates astrocyte responses during neurovascular coupling under realistic conditions. We examined peri-arteriole and peri-capillary astrocytes in the barrel cortex of active mice in response to sensory stimulation or volitional behaviors. We observed an AMPA and NMDA receptor-dependent elevation in astrocyte endfoot Ca2+ that followed functional hyperemia onset. This delayed astrocyte Ca2+ signal was dependent on the animal's action at the time of measurement as well as a neurovascular pathway that linked to endothelial-derived nitric oxide. A similar elevation in endfoot Ca2+ was evoked using vascular chemogenetics or optogenetics, and opto-stimulated dilation recruited the same nitric oxide pathway as functional hyperemia. These data show that behavioral state and microvasculature influence astrocyte Ca2+ in active mice. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Cam Ha T Tran
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Govind Peringod
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Grant R Gordon
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
259
|
Bar El Y, Kanner S, Barzilai A, Hanein Y. Activity changes in neuron-astrocyte networks in culture under the effect of norepinephrine. PLoS One 2018; 13:e0203761. [PMID: 30332429 PMCID: PMC6192555 DOI: 10.1371/journal.pone.0203761] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/27/2018] [Indexed: 11/26/2022] Open
Abstract
The concerted activity of neuron-glia networks is responsible for the fascinating dynamics of brain functions. Although these networks have been extensively investigated using a variety of experimental (in vivo and in vitro) and theoretical models, the manner by which neuron-glia networks interact is not fully understood. In particular, how neuromodulators influence network-level signaling between neurons and astrocytes was poorly addressed. In this work, we investigated global effects of the neuromodulator norepinephrine (NE) on neuron-astrocyte network communication in co-cultures of neurons and astrocytes and in isolated astrocyte networks. Electrical stimulation was used to activate the neuron-astrocyte glutamate-mediated pathway. Our results showed dramatic changes in network activity under applied global perturbations. Under neuromodulation, there was a marked rise in calcium signaling in astrocytes, neuronal spontaneous activity was reduced, and the communication between neuron-astrocyte networks was perturbed. Moreover, in the presence of NE, we observed two astrocyte behaviors based on their coupling to neurons. There were also morphological changes in astrocytes upon application of NE, suggesting a physical cause underlies the change in signaling. Our results shed light on the role of NE in controlling sleep-wake cycles.
Collapse
Affiliation(s)
- Yasmin Bar El
- School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv, Israel
| | - Sivan Kanner
- Department of Neurobiology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Ari Barzilai
- Department of Neurobiology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Yael Hanein
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
- School of Electrical Engineering, Tel-Aviv University, Tel-Aviv, Israel
- * E-mail:
| |
Collapse
|
260
|
Okubo Y, Kanemaru K, Suzuki J, Kobayashi K, Hirose K, Iino M. Inositol 1,4,5-trisphosphate receptor type 2-independent Ca2+
release from the endoplasmic reticulum in astrocytes. Glia 2018; 67:113-124. [DOI: 10.1002/glia.23531] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Yohei Okubo
- Department of Pharmacology; Graduate School of Medicine, The University of Tokyo; Tokyo Japan
| | - Kazunori Kanemaru
- Department of Pharmacology; Graduate School of Medicine, The University of Tokyo; Tokyo Japan
- Department of Cellular and Molecular Pharmacology; Nihon University School of Medicine; Tokyo Japan
| | - Junji Suzuki
- Department of Physiology; University of California San Francisco; San Francisco California
| | - Kenta Kobayashi
- Section of Viral Vector Development; National Institute for Physiological Sciences; Okazaki Japan
- The Graduate University for Advanced Studies (SOKENDAI); Hayama Japan
| | - Kenzo Hirose
- Department of Neurobiology; Graduate School of Medicine, The University of Tokyo; Tokyo Japan
| | - Masamitsu Iino
- Department of Cellular and Molecular Pharmacology; Nihon University School of Medicine; Tokyo Japan
| |
Collapse
|
261
|
Norepinephrine induces rapid and long-lasting phosphorylation and redistribution of connexin 43 in cortical astrocytes. Biochem Biophys Res Commun 2018; 504:690-697. [DOI: 10.1016/j.bbrc.2018.09.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/05/2018] [Indexed: 11/21/2022]
|
262
|
Zénon A, Solopchuk O, Pezzulo G. An information-theoretic perspective on the costs of cognition. Neuropsychologia 2018; 123:5-18. [PMID: 30268880 DOI: 10.1016/j.neuropsychologia.2018.09.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 08/10/2018] [Accepted: 09/19/2018] [Indexed: 01/06/2023]
Abstract
In statistics and machine learning, model accuracy is traded off with complexity, which can be viewed as the amount of information extracted from the data. Here, we discuss how cognitive costs can be expressed in terms of similar information costs, i.e. as a function of the amount of information required to update a person's prior knowledge (or internal model) to effectively solve a task. We then examine the theoretical consequences that ensue from this assumption. This framework naturally explains why some tasks - for example, unfamiliar or dual tasks - are costly and permits to quantify these costs using information-theoretic measures. Finally, we discuss brain implementation of this principle and show that subjective cognitive costs can originate either from local or global capacity limitations on information processing or from increased rate of metabolic alterations. These views shed light on the potential adaptive value of cost-avoidance mechanisms.
Collapse
Affiliation(s)
- Alexandre Zénon
- Institut de Neuroscience Cognitive et Intégrative d'Aquitaine, Université de Bordeaux, France; Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium.
| | - Oleg Solopchuk
- Institut de Neuroscience Cognitive et Intégrative d'Aquitaine, Université de Bordeaux, France; Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Via San Martino della Battaglia 44, 00185 Rome, Italy
| |
Collapse
|
263
|
Ma L, Jongbloets BC, Xiong WH, Melander JB, Qin M, Lameyer TJ, Harrison MF, Zemelman BV, Mao T, Zhong H. A Highly Sensitive A-Kinase Activity Reporter for Imaging Neuromodulatory Events in Awake Mice. Neuron 2018; 99:665-679.e5. [PMID: 30100256 PMCID: PMC6152931 DOI: 10.1016/j.neuron.2018.07.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/01/2018] [Accepted: 07/11/2018] [Indexed: 01/01/2023]
Abstract
Neuromodulation imposes powerful control over brain function, and cAMP-dependent protein kinase (PKA) is a central downstream mediator of multiple neuromodulators. Although genetically encoded PKA sensors have been developed, single-cell imaging of PKA activity in living mice has not been established. Here, we used two-photon fluorescence lifetime imaging microscopy (2pFLIM) to visualize genetically encoded PKA sensors in response to the neuromodulators norepinephrine and dopamine. We screened available PKA sensors for 2pFLIM and further developed a variant (named tAKARα) with increased sensitivity and a broadened dynamic range. This sensor allowed detection of PKA activation by norepinephrine at physiologically relevant concentrations and kinetics, and by optogenetically released dopamine. In vivo longitudinal 2pFLIM imaging of tAKARα tracked bidirectional PKA activities in individual neurons in awake mice and revealed neuromodulatory PKA events that were associated with wakefulness, pharmacological manipulation, and locomotion. This new sensor combined with 2pFLIM will enable interrogation of neuromodulation-induced PKA signaling in awake animals. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Lei Ma
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Bart C Jongbloets
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Wei-Hong Xiong
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Joshua B Melander
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Maozhen Qin
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Tess J Lameyer
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Madeleine F Harrison
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712, USA
| | - Boris V Zemelman
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712, USA
| | - Tianyi Mao
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Haining Zhong
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
264
|
Zorec R, Županc TA, Verkhratsky A. Astrogliopathology in the infectious insults of the brain. Neurosci Lett 2018; 689:56-62. [PMID: 30096375 DOI: 10.1016/j.neulet.2018.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 12/28/2022]
Abstract
Astroglia, a heterogeneous type of neuroglia, play key homeostatic functions in the central nervous system (CNS) and represent an important defence system. Impaired homeostatic capacity of astrocytes manifests in diseases and this is mirrored in various astrocyte-based pathological features including reactive astrogliosis, astrodegeneration with astroglial atrophy and pathological remodelling of astrocytes. All of these manifestations are most prominently associated with infectious insults, mediated by bacteria, protozoa and viruses. Here we focus onto neurotropic viruses such as tick-borne encephalitis (TBEV) and Zika virus (ZIKV), both belonging to Flaviviridae and both causing severe neurological impairments. We argue that astrocytes provide a route through which neurotropic infectious agents attack the CNS, since they are anatomically associated with the blood-brain barrier and exhibit aerobic glycolysis, a metabolic specialisation of highly morphologically dynamic cells, which may provide a suitable metabolic milieu for proliferation of infectious agents, including viral bodies.
Collapse
Affiliation(s)
- Robert Zorec
- University of Ljubljana, Institute of Pathophysiology, Laboratory of Neuroendocrinology and Molecular Cell Physiology, Zaloska cesta 4, SI-1000, Ljubljana, Slovenia; Celica, BIOMEDICAL, Technology Park 24, 1000 Ljubljana, Slovenia
| | - Tatjana Avšič Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| | - Alexei Verkhratsky
- University of Ljubljana, Institute of Pathophysiology, Laboratory of Neuroendocrinology and Molecular Cell Physiology, Zaloska cesta 4, SI-1000, Ljubljana, Slovenia; Celica, BIOMEDICAL, Technology Park 24, 1000 Ljubljana, Slovenia; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain.
| |
Collapse
|
265
|
Stobart JL, Ferrari KD, Barrett MJP, Stobart MJ, Looser ZJ, Saab AS, Weber B. Long-term In Vivo Calcium Imaging of Astrocytes Reveals Distinct Cellular Compartment Responses to Sensory Stimulation. Cereb Cortex 2018; 28:184-198. [PMID: 28968832 DOI: 10.1093/cercor/bhw366] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/02/2016] [Indexed: 01/28/2023] Open
Abstract
Localized, heterogeneous calcium transients occur throughout astrocytes, but the characteristics and long-term stability of these signals, particularly in response to sensory stimulation, remain unknown. Here, we used a genetically encoded calcium indicator and an activity-based image analysis scheme to monitor astrocyte calcium activity in vivo. We found that different subcellular compartments (processes, somata, and endfeet) displayed distinct signaling characteristics. Closer examination of individual signals showed that sensory stimulation elevated the number of specific types of calcium peaks within astrocyte processes and somata, in a cortical layer-dependent manner, and that the signals became more synchronous upon sensory stimulation. Although mice genetically lacking astrocytic IP3R-dependent calcium signaling (Ip3r2-/-) had fewer signal peaks, the response to sensory stimulation was sustained, suggesting other calcium pathways are also involved. Long-term imaging of astrocyte populations revealed that all compartments reliably responded to stimulation over several months, but that the location of the response within processes may vary. These previously unknown characteristics of subcellular astrocyte calcium signals provide new insights into how astrocytes may encode local neuronal circuit activity.
Collapse
Affiliation(s)
- Jillian L Stobart
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland.,Neuroscience Center, University and ETH Zurich, CH-8057 Zurich, Switzerland
| | - Kim David Ferrari
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland.,Neuroscience Center, University and ETH Zurich, CH-8057 Zurich, Switzerland
| | - Matthew J P Barrett
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland.,Neuroscience Center, University and ETH Zurich, CH-8057 Zurich, Switzerland
| | - Michael J Stobart
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland.,Neuroscience Center, University and ETH Zurich, CH-8057 Zurich, Switzerland
| | - Zoe J Looser
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland.,Neuroscience Center, University and ETH Zurich, CH-8057 Zurich, Switzerland
| | - Aiman S Saab
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland.,Neuroscience Center, University and ETH Zurich, CH-8057 Zurich, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland.,Neuroscience Center, University and ETH Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
266
|
Pak RW, Kang J, Valentine H, Loew LM, Thorek DLJ, Boctor EM, Wong DF, Kang JU. Voltage-sensitive dye delivery through the blood brain barrier using adenosine receptor agonist regadenoson. BIOMEDICAL OPTICS EXPRESS 2018; 9:3915-3922. [PMID: 30338164 PMCID: PMC6191611 DOI: 10.1364/boe.9.003915] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/14/2018] [Accepted: 07/23/2018] [Indexed: 05/27/2023]
Abstract
Optical imaging of brain activity has mostly employed genetically manipulated mice, which cannot be translated to clinical human usage. Observation of brain activity directly is challenging due to the difficulty in delivering dyes and other agents through the blood brain barrier (BBB). Using fluorescence imaging, we have demonstrated the feasibility of delivering the near-infrared voltage-sensitive dye (VSD) IR-780 perchlorate to the brain tissue through pharmacological techniques, via an adenosine agonist (regadenoson). Comparison of VSD fluorescence of mouse brains without and with regadenoson showed significantly increased residence time of the fluorescence signal in the latter case, indicative of VSD diffusion into the brain tissue. Dose and timing of regadenoson were varied to optimize BBB permeability for VSD delivery.
Collapse
Affiliation(s)
- Rebecca W. Pak
- Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeeun Kang
- Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Heather Valentine
- Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leslie M. Loew
- R.D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Daniel L. J. Thorek
- Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emad M. Boctor
- Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dean F. Wong
- Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jin U. Kang
- Electrical and Computer Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
| |
Collapse
|
267
|
Leanza G, Gulino R, Zorec R. Noradrenergic Hypothesis Linking Neurodegeneration-Based Cognitive Decline and Astroglia. Front Mol Neurosci 2018; 11:254. [PMID: 30100866 PMCID: PMC6072880 DOI: 10.3389/fnmol.2018.00254] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/05/2018] [Indexed: 12/31/2022] Open
Abstract
In the past, manipulation of the cholinergic system was seen as the most likely therapeutic for neurodegeneration-based cognitive decline in Alzheimer's disease (AD) (Whitehouse et al., 1982). However, targeting the noradrenergic system also seems a promising strategy, since more recent studies revealed that in post-mortem tissue from patients with AD and other neurodegenerative disorders there is a robust correlation between cognitive decline and loss of neurons from the Locus coeruleus (LC), a system with diffuse noradrenaline (NA) innervation in the central nervous system (CNS). Therefore, the hypothesis has been considered that increasing NA signaling in the CNS will prevent, or at least halt the progression of neurodegeneration and cognitive decline. A hallmark of the age- and neurodegeneration-related cognitive decline is reduced neurogenesis. We here discuss noradrenergic dysfunction in AD-related cognitive decline in humans and its potential involvement in AD pathology and disease progression. We also focus on animal models to allow the validation of the noradrenergic hypothesis of AD, including those based upon the immunotoxin-mediated ablation of LC based on saporin, a protein synthesis interfering agent, which offers selective and graded demise of LC neurons, Finally, we address how astrocytes, an abundant and functionally heterogeneous cell type of neuroglia maintaining homeostasis, may participate in the regulation of neurogenesis, a new strategy for preventing LC neuron loss.
Collapse
Affiliation(s)
- Giampiero Leanza
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
268
|
Kim JH, Lukowicz A, Qu W, Johnson A, Cvetanovic M. Astroglia contribute to the pathogenesis of spinocerebellar ataxia Type 1 (SCA1) in a biphasic, stage-of-disease specific manner. Glia 2018; 66:1972-1987. [PMID: 30043530 DOI: 10.1002/glia.23451] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 12/22/2022]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a fatal, dominantly inherited neurodegenerative disease caused by the expansion of CAG repeats in the Ataxin-1 (ATXN1) gene. SCA1 is characterized by balance and coordination deficits due to the predominant loss of Purkinje neurons in the cerebellum. We previously demonstrated that cerebellar astrogliosis beings during the early stages of SCA1, prior to onset of motor deficits and loss of Purkinje neurons. We communicate here that cerebellar astrogliosis contributes to SCA1 pathogenesis in a biphasic, stage of disease dependent manner. We modulated astrogliosis by selectively reducing pro-inflammatory transcriptional regulator nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signaling in astroglia via a Cre-lox mouse genetic approach. Our results indicate that inhibition of astroglial NF-κB signaling, prior to motor deficit onset, exacerbates disease severity. This is suggestive of a neuroprotective role mediated by astroglia during early stage SCA1. In contrast, inhibition of astroglial NF-κB signaling during late stage of disease ameliorated motor deficits, indicating a potentially harmful role of astroglia late in SCA1. These results indicate that astrogliosis may have a critical and dual role in disease. If so, our results imply that anti-inflammatory astroglia-based therapeutic approaches may need to consider disease progression to achieve therapeutic efficacy.
Collapse
Affiliation(s)
- Joo Hyun Kim
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota 2101 6th Street SE, Minneapolis, Minnesota
| | - Abigail Lukowicz
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota 2101 6th Street SE, Minneapolis, Minnesota
| | - Wenhui Qu
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota 2101 6th Street SE, Minneapolis, Minnesota
| | - Andrea Johnson
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota 2101 6th Street SE, Minneapolis, Minnesota
| | - Marija Cvetanovic
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota 2101 6th Street SE, Minneapolis, Minnesota
| |
Collapse
|
269
|
Lalo U, Bogdanov A, Pankratov Y. Diversity of Astroglial Effects on Aging- and Experience-Related Cortical Metaplasticity. Front Mol Neurosci 2018; 11:239. [PMID: 30057525 PMCID: PMC6053488 DOI: 10.3389/fnmol.2018.00239] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/21/2018] [Indexed: 11/13/2022] Open
Abstract
Activity-dependent regulation of synaptic plasticity, or metaplasticity, plays a key role in the adaptation of neuronal networks to physiological and biochemical changes in aging brain. There is a growing evidence that experience-related alterations in the mechanisms of synaptic plasticity can underlie beneficial effects of physical exercise and caloric restriction (CR) on brain health and cognition. Astrocytes, which form neuro-vascular interface and can modulate synaptic plasticity by release of gliotransmitters, attract an increasing attention as important element of brain metaplasticity. We investigated the age- and experience-related alterations in astroglial calcium signaling and stimulus-dependence of long-term synaptic plasticity in the neocortex of mice exposed to the mild CR and environmental enrichment (EE) which included ad libitum physical exercise. We found out that astrocytic Ca2+-signaling underwent considerable age-related decline but EE and CR enhanced astroglial signaling, in particular mediated by noradrenaline (NA) and endocannabinoid receptors. The release of ATP and D-Serine from astrocytes followed the same trends of age-related declined and EE-induced increase. Our data also showed that astrocyte-derived ATP and D-Serine can have diverse effects on the threshold and magnitude of long-term changes in the strength of neocortical synapses; these effects were age-dependent. The CR- and EE-induced enhancement of astroglial Ca2+-signaling had more stronger effect on synaptic plasticity in the old (14–18 months) than in the young (2–5 months) wild-type (WT) mice. The effects of CR and EE on synaptic plasticity were significantly altered in both young and aged dnSNARE mice. Combined, our data suggest astrocyte-neuron interactions are important for dynamic regulation of cortical synaptic plasticity. This interaction can significantly decline with aging and thus contributes to the age-related cognitive impairment. On another hand, experience-related increase in the astroglial Ca2+-signaling can ameliorate the age-related decline.
Collapse
Affiliation(s)
- Ulyana Lalo
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Alexander Bogdanov
- Institute for Chemistry and Biology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Yuriy Pankratov
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
270
|
Ferro A, Qu W, Lukowicz A, Svedberg D, Johnson A, Cvetanovic M. Inhibition of NF-κB signaling in IKKβF/F;LysM Cre mice causes motor deficits but does not alter pathogenesis of Spinocerebellar ataxia type 1. PLoS One 2018; 13:e0200013. [PMID: 29975753 PMCID: PMC6033432 DOI: 10.1371/journal.pone.0200013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/18/2018] [Indexed: 12/21/2022] Open
Abstract
Spinocerebellar Ataxia type 1 (SCA1) is a fatal neurodegenerative genetic disease that is characterized by pronounced neuronal loss and gliosis in the cerebellum. We have previously demonstrated microglial activation, measured as an increase in microglial density in cerebellar cortex and an increase in the production of pro-inflammatory cytokines, including tumor necrosis factor alpha (TNF-α), in the cerebellum of the ATXN1[82Q] transgenic mouse model of SCA1. To examine the role of activated state of microglia in SCA1, we used a Cre-Lox approach with IKKβF/F;LysM Cre mice intended to reduce inflammatory NF-κB signaling, selectively in microglia. ATXN1[82Q];IKKβF/F;LysM Cre mice showed reduced cerebellar microglial density and production of TNFα compared to ATXN1[82Q] mice, yet reducing NF-κB did not ameliorate motor impairments and cerebellar cellular pathologies. Unexpectedly, at 12 weeks of age, control IKKβF/F;LysM Cre mice showed motor deficits equal to ATXN1[82Q] mice that were dissociated from any obvious neurodegenerative changes in the cerebellum, but were rather associated with a developmental impairment that presented as a retention of climbing fiber synaptic terminals on the soma of Purkinje neurons. These results indicate that NF-κB signaling is required for increase in microglial numbers and TNF-α production in the cerebella of ATXN1[82Q] mouse model of SCA1. Furthermore, these results elucidate a novel role of canonical NF-κB signaling in pruning of surplus synapses on Purkinje neurons in the cerebellum during development.
Collapse
Affiliation(s)
- Austin Ferro
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Wenhui Qu
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Abigail Lukowicz
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Daniel Svedberg
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Andrea Johnson
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
271
|
Abstract
Glial cell types were classified less than 100 years ago by del Rio-Hortega. For instance, he correctly surmised that microglia in pathologic central nervous system (CNS) were "voracious monsters" that helped clean the tissue. Although these historical predictions were remarkably accurate, innovative technologies have revealed novel molecular, cellular, and dynamic physiologic aspects of CNS glia. In this review, we integrate recent findings regarding the roles of glia and glial interactions in healthy and injured spinal cord. The three major glial cell types are considered in healthy CNS and after spinal cord injury (SCI). Astrocytes, which in the healthy CNS regulate neurotransmitter and neurovascular dynamics, respond to SCI by becoming reactive and forming a glial scar that limits pathology and plasticity. Microglia, which in the healthy CNS scan for infection/damage, respond to SCI by promoting axon growth and remyelination-but also with hyperactivation and cytotoxic effects. Oligodendrocytes and their precursors, which in healthy tissue speed axon conduction and support axonal function, respond to SCI by differentiating and producing myelin, but are susceptible to death. Thus, post-SCI responses of each glial cell can simultaneously stimulate and stifle repair. Interestingly, potential therapies could also target interactions between these cells. Astrocyte-microglia cross-talk creates a feed-forward loop, so shifting the response of either cell could amplify repair. Astrocytes, microglia, and oligodendrocytes/precursors also influence post-SCI cell survival, differentiation, and remyelination, as well as axon sparing. Therefore, optimizing post-SCI responses of glial cells-and interactions between these CNS cells-could benefit neuroprotection, axon plasticity, and functional recovery.
Collapse
Affiliation(s)
- Andrew D Gaudet
- Department of Psychology and Neuroscience, University of Colorado Boulder, Muenzinger D244 | 345 UCB, Boulder, CO, 80309, USA.
- Center for Neuroscience, University of Colorado Boulder, Muenzinger D244 | 345 UCB, Boulder, CO, 80309, USA.
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
272
|
Lia A, Zonta M, Requie LM, Carmignoto G. Dynamic interactions between GABAergic and astrocytic networks. Neurosci Lett 2018; 689:14-20. [PMID: 29908949 DOI: 10.1016/j.neulet.2018.06.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 10/28/2022]
Abstract
Brain network activity derives from the concerted action of different cell populations. Together with interneurons, astrocytes play fundamental roles in shaping the inhibition in brain circuitries and modulating neuronal transmission. In this review, we summarize past and recent findings that reveal in neural networks the importance of the interaction between GABAergic signaling and astrocytes and discuss its physiological and pathological relevance.
Collapse
Affiliation(s)
- Annamaria Lia
- University of Padua, Department of Biomedical Sciences, Padua, Italy; CNR, Neuroscience Institute, Padua, Italy
| | - Micaela Zonta
- University of Padua, Department of Biomedical Sciences, Padua, Italy; CNR, Neuroscience Institute, Padua, Italy.
| | - Linda Maria Requie
- University of Padua, Department of Biomedical Sciences, Padua, Italy; CNR, Neuroscience Institute, Padua, Italy
| | - Giorgio Carmignoto
- University of Padua, Department of Biomedical Sciences, Padua, Italy; CNR, Neuroscience Institute, Padua, Italy
| |
Collapse
|
273
|
Barros LF, Bolaños JP, Bonvento G, Bouzier-Sore AK, Brown A, Hirrlinger J, Kasparov S, Kirchhoff F, Murphy AN, Pellerin L, Robinson MB, Weber B. Current technical approaches to brain energy metabolism. Glia 2018; 66:1138-1159. [PMID: 29110344 PMCID: PMC5903992 DOI: 10.1002/glia.23248] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/14/2017] [Accepted: 10/04/2017] [Indexed: 12/19/2022]
Abstract
Neuroscience is a technology-driven discipline and brain energy metabolism is no exception. Once satisfied with mapping metabolic pathways at organ level, we are now looking to learn what it is exactly that metabolic enzymes and transporters do and when, where do they reside, how are they regulated, and how do they relate to the specific functions of neurons, glial cells, and their subcellular domains and organelles, in different areas of the brain. Moreover, we aim to quantify the fluxes of metabolites within and between cells. Energy metabolism is not just a necessity for proper cell function and viability but plays specific roles in higher brain functions such as memory processing and behavior, whose mechanisms need to be understood at all hierarchical levels, from isolated proteins to whole subjects, in both health and disease. To this aim, the field takes advantage of diverse disciplines including anatomy, histology, physiology, biochemistry, bioenergetics, cellular biology, molecular biology, developmental biology, neurology, and mathematical modeling. This article presents a well-referenced synopsis of the technical side of brain energy metabolism research. Detail and jargon are avoided whenever possible and emphasis is given to comparative strengths, limitations, and weaknesses, information that is often not available in regular articles.
Collapse
Affiliation(s)
- L Felipe Barros
- Centro de Estudios Científicos (CECs), Valdivia, 5110466, Chile
| | - Juan P Bolaños
- Instituto de Biologia Funcional y Genomica-CSIC, Universidad de Salamanca, CIBERFES, Salamanca, 37007, Spain
| | - Gilles Bonvento
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut de Biologie François Jacob, Molecular Imaging Research Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Anne-Karine Bouzier-Sore
- Centre de Résonance Magnétique des Systèmes Biologiques UMR 5536, CNRS-Université Bordeaux 146 rue Léo-Saignat, Bordeaux, France
| | - Angus Brown
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Johannes Hirrlinger
- Carl Ludwig Institute of Physiology, University of Leipzig, Liebigstr. 27, D-04103, Leipzig, Germany
- Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, Göttingen, D-37075, Germany
| | - Sergey Kasparov
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, BS8 1TD, United Kingdom
- Baltic Federal University, Kalinigrad, Russian Federation
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Building 48, Homburg, 66421, Germany
| | - Anne N Murphy
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093
| | - Luc Pellerin
- Département de Physiologie, 7 rue du Bugnon, Lausanne, CH1005, Switzerland
| | - Michael B Robinson
- Department of Pediatrics, and Department of Systems Pharmacology and Translational Therapeutics, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
| |
Collapse
|
274
|
Vardjan N, Chowdhury HH, Horvat A, Velebit J, Malnar M, Muhič M, Kreft M, Krivec ŠG, Bobnar ST, Miš K, Pirkmajer S, Offermanns S, Henriksen G, Storm-Mathisen J, Bergersen LH, Zorec R. Enhancement of Astroglial Aerobic Glycolysis by Extracellular Lactate-Mediated Increase in cAMP. Front Mol Neurosci 2018; 11:148. [PMID: 29867342 PMCID: PMC5953330 DOI: 10.3389/fnmol.2018.00148] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/16/2018] [Indexed: 11/13/2022] Open
Abstract
Besides being a neuronal fuel, L-lactate is also a signal in the brain. Whether extracellular L-lactate affects brain metabolism, in particular astrocytes, abundant neuroglial cells, which produce L-lactate in aerobic glycolysis, is unclear. Recent studies suggested that astrocytes express low levels of the L-lactate GPR81 receptor (EC50 ≈ 5 mM) that is in fat cells part of an autocrine loop, in which the Gi-protein mediates reduction of cytosolic cyclic adenosine monophosphate (cAMP). To study whether a similar signaling loop is present in astrocytes, affecting aerobic glycolysis, we measured the cytosolic levels of cAMP, D-glucose and L-lactate in single astrocytes using fluorescence resonance energy transfer (FRET)-based nanosensors. In contrast to the situation in fat cells, stimulation by extracellular L-lactate and the selective GPR81 agonists, 3-chloro-5-hydroxybenzoic acid (3Cl-5OH-BA) or 4-methyl-N-(5-(2-(4-methylpiperazin-1-yl)-2-oxoethyl)-4-(2-thienyl)-1,3-thiazol-2-yl)cyclohexanecarboxamide (Compound 2), like adrenergic stimulation, elevated intracellular cAMP and L-lactate in astrocytes, which was reduced by the inhibition of adenylate cyclase. Surprisingly, 3Cl-5OH-BA and Compound 2 increased cytosolic cAMP also in GPR81-knock out astrocytes, indicating that the effect is GPR81-independent and mediated by a novel, yet unidentified, excitatory L-lactate receptor-like mechanism in astrocytes that enhances aerobic glycolysis and L-lactate production via a positive feedback mechanism.
Collapse
Affiliation(s)
- Nina Vardjan
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| | - Helena H Chowdhury
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| | - Anemari Horvat
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jelena Velebit
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| | - Maja Malnar
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| | - Marko Muhič
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Kreft
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia.,Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Špela G Krivec
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| | - Saša T Bobnar
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| | - Katarina Miš
- Laboratory for Molecular Neurobiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Sergej Pirkmajer
- Laboratory for Molecular Neurobiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Gjermund Henriksen
- Nuclear and Energy Physics, Department of Physics, The Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.,Norwegian Medical Cyclotron Centre Ltd., Oslo, Norway
| | - Jon Storm-Mathisen
- Division of Anatomy, Department of Molecular Medicine, CMBN/SERTA Healthy Brain Ageing Centre, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Linda H Bergersen
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.,Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Robert Zorec
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
275
|
Stobart JL, Ferrari KD, Barrett MJP, Glück C, Stobart MJ, Zuend M, Weber B. Cortical Circuit Activity Evokes Rapid Astrocyte Calcium Signals on a Similar Timescale to Neurons. Neuron 2018; 98:726-735.e4. [PMID: 29706581 DOI: 10.1016/j.neuron.2018.03.050] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/12/2018] [Accepted: 03/30/2018] [Indexed: 12/22/2022]
Abstract
Sensory stimulation evokes intracellular calcium signals in astrocytes; however, the timing of these signals is disputed. Here, we used novel combinations of genetically encoded calcium indicators for concurrent two-photon imaging of cortical astrocytes and neurons in awake mice during whisker deflection. We identified calcium responses in both astrocyte processes and endfeet that rapidly followed neuronal events (∼120 ms after). These fast astrocyte responses were largely independent of IP3R2-mediated signaling and known neuromodulator activity (acetylcholine, serotonin, and norepinephrine), suggesting that they are evoked by local synaptic activity. The existence of such rapid signals implies that astrocytes are fast enough to play a role in synaptic modulation and neurovascular coupling. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Jillian L Stobart
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Neuroscience Center, University and ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Kim David Ferrari
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Neuroscience Center, University and ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Matthew J P Barrett
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Neuroscience Center, University and ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Chaim Glück
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Neuroscience Center, University and ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Michael J Stobart
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Neuroscience Center, University and ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Marc Zuend
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Neuroscience Center, University and ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Neuroscience Center, University and ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
276
|
Zorec R, Parpura V, Verkhratsky A. Preventing neurodegeneration by adrenergic astroglial excitation. FEBS J 2018; 285:3645-3656. [PMID: 29630772 DOI: 10.1111/febs.14456] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/17/2018] [Accepted: 03/28/2018] [Indexed: 01/22/2023]
Abstract
Impairment of the main noradrenergic nucleus of the human brain, the locus coeruleus (LC), which has been discovered in 1784, represents one of defining factors of neurodegenerative diseases progression. Projections of LC neurons release noradrenaline/norepinephrine (NA), which stimulates astrocytes, homeostatic neuroglial cells enriched with adrenergic receptors. There is a direct correlation between the reduction in noradrenergic innervations and cognitive decline associated with ageing and neurodegenerative diseases. It is, therefore, hypothesized that the resilience of LC neurons to degeneration influences the neural reserve that in turn determines cognitive decline. Deficits in the noradrenergic innervation of the brain might be reversed or restrained by increasing the activity of existing LC neurons, transplanting noradrenergic neurons, and/or using drugs that mimic the activity of NA on astroglia. Here, these strategies are discussed with the aim to understand how astrocytes integrate neuronal network activity in the brain information processing in health and disease.
Collapse
Affiliation(s)
- Robert Zorec
- Laboratory of Neuroendocrinology and Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Slovenia.,Celica, BIOMEDICAL, Ljubljana, Slovenia
| | - Vladimir Parpura
- Department of Neurobiology, Civitan International Research Center and Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, Atomic Force Microscopy & Nanotechnology Laboratories, University of Alabama, Birmingham, AL, USA
| | - Alexei Verkhratsky
- Laboratory of Neuroendocrinology and Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Slovenia.,Celica, BIOMEDICAL, Ljubljana, Slovenia.,Faculty of Biology, Medicine and Health, The University of Manchester, UK.,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain
| |
Collapse
|
277
|
Locomotor activity modulates associative learning in mouse cerebellum. Nat Neurosci 2018; 21:725-735. [PMID: 29662214 PMCID: PMC5923878 DOI: 10.1038/s41593-018-0129-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/01/2018] [Indexed: 11/26/2022]
Abstract
Changes in behavioral state can profoundly influence brain function. Here we show that behavioral state modulates performance in delay eyeblink conditioning, a cerebellum-dependent form of associative learning. Increased locomotor speed in head-fixed mice drove earlier onset of learning and trial-by-trial enhancement of learned responses that were dissociable from changes in arousal and independent of sensory modality. Eyelid responses evoked by optogenetic stimulation of mossy fiber inputs to the cerebellum, but not at sites downstream, were positively modulated by ongoing locomotion. Substituting prolonged, low-intensity optogenetic mossy fiber stimulation for locomotion was sufficient to enhance conditioned responses. Our results suggest that locomotor activity modulates delay eyeblink conditioning through increased activation of the mossy fiber pathway within the cerebellum. Taken together, these results provide evidence for a novel role for behavioral state modulation in associative learning and suggest a potential mechanism through which engaging in movement can improve an individual’s ability to learn.
Collapse
|
278
|
Manninen T, Havela R, Linne ML. Computational Models for Calcium-Mediated Astrocyte Functions. Front Comput Neurosci 2018; 12:14. [PMID: 29670517 PMCID: PMC5893839 DOI: 10.3389/fncom.2018.00014] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 02/28/2018] [Indexed: 12/16/2022] Open
Abstract
The computational neuroscience field has heavily concentrated on the modeling of neuronal functions, largely ignoring other brain cells, including one type of glial cell, the astrocytes. Despite the short history of modeling astrocytic functions, we were delighted about the hundreds of models developed so far to study the role of astrocytes, most often in calcium dynamics, synchronization, information transfer, and plasticity in vitro, but also in vascular events, hyperexcitability, and homeostasis. Our goal here is to present the state-of-the-art in computational modeling of astrocytes in order to facilitate better understanding of the functions and dynamics of astrocytes in the brain. Due to the large number of models, we concentrated on a hundred models that include biophysical descriptions for calcium signaling and dynamics in astrocytes. We categorized the models into four groups: single astrocyte models, astrocyte network models, neuron-astrocyte synapse models, and neuron-astrocyte network models to ease their use in future modeling projects. We characterized the models based on which earlier models were used for building the models and which type of biological entities were described in the astrocyte models. Features of the models were compared and contrasted so that similarities and differences were more readily apparent. We discovered that most of the models were basically generated from a small set of previously published models with small variations. However, neither citations to all the previous models with similar core structure nor explanations of what was built on top of the previous models were provided, which made it possible, in some cases, to have the same models published several times without an explicit intention to make new predictions about the roles of astrocytes in brain functions. Furthermore, only a few of the models are available online which makes it difficult to reproduce the simulation results and further develop the models. Thus, we would like to emphasize that only via reproducible research are we able to build better computational models for astrocytes, which truly advance science. Our study is the first to characterize in detail the biophysical and biochemical mechanisms that have been modeled for astrocytes.
Collapse
Affiliation(s)
- Tiina Manninen
- Computational Neuroscience Group, BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| | | | - Marja-Leena Linne
- Computational Neuroscience Group, BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| |
Collapse
|
279
|
Wigren HK, Porkka-Heiskanen T. Novel concepts in sleep regulation. Acta Physiol (Oxf) 2018; 222:e13017. [PMID: 29253320 DOI: 10.1111/apha.13017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
Abstract
Knowledge regarding the cellular mechanisms of sleep regulation is accumulating rapidly. In addition to neurones, also non-neuronal brain cells (astrocytes and microglia) are emerging as potential players. New techniques, particularly optogenetics and designed receptors activated by artificial ligands (DREADD), have provided also sleep research with important additional tools to study the effect of either silencing or activating specific neuronal groups/neuronal networks by opening or shutting ion channels on cells. The advantages of these strategies are the possibility to genetically target specific cell populations and the possibility to either activate or inhibit them with inducing light signal into the brain. Studies probing circuits of NREM and REM sleep regulation, as well as their role in memory consolidation, have been conducted recently. In addition, fundamentally new thoughts and potential mechanisms have been introduced to the field. The role of non-neuronal tissues in the regulation of many brain functions has become evident. These non-neuronal cells, particularly astrocytes, integrate large number of neurones, and it has been suggested that one of their functions is to integrate the (neural) activity in larger brain areas-a feature that is one of the prominent features of also the state of sleep.
Collapse
Affiliation(s)
- H.-K. Wigren
- Department of Physiology; University of Helsinki; Helsinki Finland
| | | |
Collapse
|
280
|
Busse L. The influence of locomotion on sensory processing and its underlying neuronal circuits. ACTA ACUST UNITED AC 2018. [DOI: 10.1515/nf-2017-a046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractProcessing of sensory information can be modulated in both cortex and thalamus by behavioral context, such as locomotion. During active behaviors, coding of sensory stimuli and perception are improved, in particular during physical activity of moderate intensity. These locomotion-related modulations seem to arise from a combination of mechanisms, including neuromodulation, the recruitment of inhibitory interneurons, and specific top-down or motor-related inputs. The application of new experimental methods in mice during walking under head-fixation on treadmills made it possible to study the circuit and cellular basis underlying modulations by behavioral context with unprecedented detail. This article reviews the current state of these studies and highlights some important open questions.
Collapse
Affiliation(s)
- Laura Busse
- Division of Neurobiology, Department Biology II, LMU Munich, Germany; Bernstein Center for Computational Neuroscience Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany, Phone: 49 (0) 89 218074305
| |
Collapse
|
281
|
Kozlowska K, Spooner CJ, Palmer DM, Harris A, Korgaonkar MS, Scher S, Williams LM. "Motoring in idle": The default mode and somatomotor networks are overactive in children and adolescents with functional neurological symptoms. Neuroimage Clin 2018; 18:730-743. [PMID: 29876262 PMCID: PMC5987846 DOI: 10.1016/j.nicl.2018.02.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/19/2018] [Accepted: 02/02/2018] [Indexed: 12/20/2022]
Abstract
Objective Children and adolescents with functional neurological symptom disorder (FND) present with diverse neurological symptoms not explained by a disease process. Functional neurological symptoms have been conceptualized as somatoform dissociation, a disruption of the brain's intrinsic organization and reversion to a more primitive level of function. We used EEG to investigate neural function and functional brain organization in children/adolescents with FND. Method EEG was recorded in the resting eyes-open condition in 57 patients (aged 8.5-18 years) and 57 age- and sex-matched healthy controls. Using a topographical map, EEG power data were quantified for regions of interest that define the default mode network (DMN), salience network, and somatomotor network. Source localization was examined using low-resolution brain electromagnetic tomography (LORETA). The contributions of chronic pain and arousal as moderators of differences in EEG power were also examined. Results Children/adolescents with FND had excessive theta and delta power in electrode clusters corresponding to the DMN-both anteriorly (dorsomedial prefrontal cortex [dmFPC]) and posteriorly (posterior cingulate cortex [PCC], precuneus, and lateral parietal cortex)-and in the premotor/supplementary motor area (SMA) region. There was a trend toward increased theta and delta power in the salience network. LORETA showed activation across all three networks in all power bands and localized neural sources to the dorsal anterior cingulate cortex/dmPFC, mid cingulate cortex, PCC/precuneus, and SMA. Pain and arousal contributed to slow wave power increases in all three networks. Conclusions These findings suggest that children and adolescents with FND are characterized by overactivation of intrinsic resting brain networks involved in threat detection, energy regulation, and preparation for action.
Collapse
Affiliation(s)
- Kasia Kozlowska
- The Children's Hospital at Westmead, Psychological Medicine, Locked Bag 4001, Westmead, NSW 2145, Australia; The Brain Dynamics Centre, Westmead Institute for Medical Research, 176 Hawkesbury Rd, Westmead, NSW 2145, Australia; The University of Sydney, Sydney, Australia.
| | | | - Donna M Palmer
- The Brain Dynamics Centre, Westmead Institute for Medical Research, 176 Hawkesbury Rd, Westmead, NSW 2145, Australia; The University of Sydney, Sydney, Australia.
| | - Anthony Harris
- The Brain Dynamics Centre, Westmead Institute for Medical Research, 176 Hawkesbury Rd, Westmead, NSW 2145, Australia; The University of Sydney, Sydney, Australia; Westmead Hospital Psychiatry Department, Darcy Rd, Westmead, NSW 2145, Australia.
| | - Mayuresh S Korgaonkar
- The Brain Dynamics Centre, Westmead Institute for Medical Research, 176 Hawkesbury Rd, Westmead, NSW 2145, Australia; The University of Sydney, Sydney, Australia.
| | - Stephen Scher
- The University of Sydney, Sydney, Australia; Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA.
| | - Leanne M Williams
- Psychiatry and Behavioral Sciences, Stanford University, VA Palo Alto (Sierra-Pacific MIRECC) 401 Quarry Rd, United States.
| |
Collapse
|
282
|
Neurovascular dysfunction in dementia - human cellular models and molecular mechanisms. Clin Sci (Lond) 2018; 132:399-418. [PMID: 29444850 DOI: 10.1042/cs20160720] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/15/2018] [Accepted: 01/19/2018] [Indexed: 02/08/2023]
Abstract
From the earliest stages of development, when cerebral angiogenesis and neurogenesis are entwined, to the end of life, the interplay between vascular and neural systems of the brain is critical in health and disease. Cerebral microvascular endothelial cells constitute the blood-brain barrier and in concert with pericytes or smooth muscle cells, glia and neurons, integrate into a functional neurovascular unit (NVU). This multicellular NVU maintains homoeostasis of the brain's microenvironment by restricting the entry of systemic pathogens and neurotoxins as well as meeting the metabolic demands of neural activity. Recent evidence of cerebral microvascular pathologies in vascular diseases and dementia, including Alzheimer's disease, has challenged the notion that vascular events are merely the consequence of neuronal pathology. This review focuses on molecular mechanisms of neurovascular dysfunction in dementia and outlines currently employed in vitro models to decode such mechanisms. Deciphering neurovascular crosstalk is likely to be more important in understanding the molecular mechanisms of disease than previously anticipated and may offer novel therapeutic opportunities for dementia and related conditions.
Collapse
|
283
|
Sleep Deprivation Distinctly Alters Glutamate Transporter 1 Apposition and Excitatory Transmission to Orexin and MCH Neurons. J Neurosci 2018; 38:2505-2518. [PMID: 29431649 DOI: 10.1523/jneurosci.2179-17.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 11/21/2022] Open
Abstract
Glutamate transporter 1 (GLT1) is the main astrocytic transporter that shapes glutamatergic transmission in the brain. However, whether this transporter modulates sleep-wake regulatory neurons is unknown. Using quantitative immunohistochemical analysis, we assessed perisomatic GLT1 apposition with sleep-wake neurons in the male rat following 6 h sleep deprivation (SD) or following 6 h undisturbed conditions when animals were mostly asleep (Rest). We found that SD decreased perisomatic GLT1 apposition with wake-promoting orexin neurons in the lateral hypothalamus compared with Rest. Reduced GLT1 apposition was associated with tonic presynaptic inhibition of excitatory transmission to these neurons due to the activation of Group III metabotropic glutamate receptors, an effect mimicked by a GLT1 inhibitor in the Rest condition. In contrast, SD resulted in increased GLT1 apposition with sleep-promoting melanin-concentrating hormone (MCH) neurons in the lateral hypothalamus. Functionally, this decreased the postsynaptic response of MCH neurons to high-frequency synaptic activation without changing presynaptic glutamate release. The changes in GLT1 apposition with orexin and MCH neurons were reversed after 3 h of sleep opportunity following 6 h SD. These SD effects were specific to orexin and MCH neurons, as no change in GLT1 apposition was seen in basal forebrain cholinergic or parvalbumin-positive GABA neurons. Thus, within a single hypothalamic area, GLT1 differentially regulates excitatory transmission to wake- and sleep-promoting neurons depending on sleep history. These processes may constitute novel astrocyte-mediated homeostatic mechanisms controlling sleep-wake behavior.SIGNIFICANCE STATEMENT Sleep-wake cycles are regulated by the alternate activation of sleep- and wake-promoting neurons. Whether and how astrocytes can regulate this reciprocal neuronal activity are unclear. Here we report that, within the lateral hypothalamus, where functionally opposite wake-promoting orexin neurons and sleep-promoting melanin-concentrating hormone neurons codistribute, the glutamate transporter GLT1, mainly present on astrocytes, distinctly modulates excitatory transmission in a cell-type-specific manner and according to sleep history. Specifically, GLT1 is reduced around the somata of orexin neurons while increased around melanin-concentrating hormone neurons following sleep deprivation, resulting in different forms of synaptic plasticity. Thus, astrocytes can fine-tune the excitability of functionally discrete neurons via glutamate transport, which may represent novel regulatory mechanisms for sleep.
Collapse
|
284
|
Cartarozzi LP, Rieder P, Bai X, Scheller A, Oliveira ALRD, Kirchhoff F. In vivo two-photon imaging of motoneurons and adjacent glia in the ventral spinal cord. J Neurosci Methods 2018; 299:8-15. [PMID: 29408351 DOI: 10.1016/j.jneumeth.2018.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/11/2018] [Accepted: 01/28/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND Interactions between motoneurons and glial cells are pivotal to regulate and maintain functional states and synaptic connectivity in the spinal cord. In vivo two-photon imaging of the nervous system provided novel and unexpected knowledge about structural and physiological changes in the grey matter of the forebrain and in the dorsal white matter of the spinal cord. NEW METHOD Here, we describe a novel experimental strategy to investigate the spinal grey matter, i.e. the ventral horn motoneurons and their adjacent glial cells by employing in vivo two-photon laser-scanning microscopy (2P-LSM) in anesthetized transgenic mice. RESULTS After retrograde tracer labelling in transgenic mice with cell-specific expression of fluorescent proteins and surgical exposure of the lumbar intumescence groups of motoneurons could be visualized deeply localized in the ventral horn. In this region, morphological responses of microglial cells to ATP could be recorded for an hour. In addition, using in mice with expression of GCaMP3 in astrocytes, physiological Ca2+ signals could be recorded after local noradrenalin application. COMPARISON WITH EXISTING METHODS Previous in vivo imaging protocols were restricted to the superficial dorsal white matter or upper layers of the dorsal horn. Here, we modified a multi-step procedure originally established for a root-crush injury. We adapted it to simultaneously visualize motoneurons and adjacent glial cells in living animals. CONCLUSION A modified surgery approach is presented to visualize fluorescently labelled motoneurons and glial cells at a depth of more than 200 μm in the grey matter ventral horn of the mouse spinal cord.
Collapse
Affiliation(s)
- Luciana Politti Cartarozzi
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421 Homburg, Germany; Laboratory of Nerve Regeneration, State University of Campinas - UNICAMP, Cidade Universitária "Zeferino Vaz", Rua Monteiro Lobato, 255, 13083970 - Campinas-SP, Brazil
| | - Phillip Rieder
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421 Homburg, Germany
| | - Xianshu Bai
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421 Homburg, Germany
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421 Homburg, Germany
| | - Alexandre Leite Rodrigues de Oliveira
- Laboratory of Nerve Regeneration, State University of Campinas - UNICAMP, Cidade Universitária "Zeferino Vaz", Rua Monteiro Lobato, 255, 13083970 - Campinas-SP, Brazil.
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421 Homburg, Germany.
| |
Collapse
|
285
|
Covelo A, Araque A. Neuronal activity determines distinct gliotransmitter release from a single astrocyte. eLife 2018; 7:32237. [PMID: 29380725 PMCID: PMC5790377 DOI: 10.7554/elife.32237] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/23/2018] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence indicates that astrocytes are actively involved in brain function by regulating synaptic activity and plasticity. Different gliotransmitters, such as glutamate, ATP, GABA or D-serine, released form astrocytes have been shown to induce different forms of synaptic regulation. However, whether a single astrocyte may release different gliotransmitters is unknown. Here we show that mouse hippocampal astrocytes activated by endogenous (neuron-released endocannabinoids or GABA) or exogenous (single astrocyte Ca2+ uncaging) stimuli modulate putative single CA3-CA1 hippocampal synapses. The astrocyte-mediated synaptic modulation was biphasic and consisted of an initial glutamate-mediated potentiation followed by a purinergic-mediated depression of neurotransmitter release. The temporal dynamic properties of this biphasic synaptic regulation depended on the firing frequency and duration of the neuronal activity that stimulated astrocytes. Present results indicate that single astrocytes can decode neuronal activity and, in response, release distinct gliotransmitters to differentially regulate neurotransmission at putative single synapses.
Collapse
Affiliation(s)
- Ana Covelo
- Department of Neuroscience, University of Minnesota, Minneapolis, United States
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, United States
| |
Collapse
|
286
|
Brain-state dependent astrocytic Ca 2+ signals are coupled to both positive and negative BOLD-fMRI signals. Proc Natl Acad Sci U S A 2018; 115:E1647-E1656. [PMID: 29382752 DOI: 10.1073/pnas.1711692115] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Astrocytic Ca2+-mediated gliovascular interactions regulate the neurovascular network in situ and in vivo. However, it is difficult to measure directly both the astrocytic activity and fMRI to relate the various forms of blood-oxygen-level-dependent (BOLD) signaling to brain states under normal and pathological conditions. In this study, fMRI and GCaMP-mediated Ca2+ optical fiber recordings revealed distinct evoked astrocytic Ca2+ signals that were coupled with positive BOLD signals and intrinsic astrocytic Ca2+ signals that were coupled with negative BOLD signals. Both evoked and intrinsic astrocytic calcium signal could occur concurrently or respectively during stimulation. The intrinsic astrocytic calcium signal can be detected globally in multiple cortical sites in contrast to the evoked astrocytic calcium signal only detected at the activated cortical region. Unlike propagating Ca2+ waves in spreading depolarization/depression, the intrinsic Ca2+ spikes occurred simultaneously in both hemispheres and were initiated upon the activation of the central thalamus and midbrain reticular formation. The occurrence of the intrinsic astrocytic calcium signal is strongly coincident with an increased EEG power level of the brain resting-state fluctuation. These results demonstrate highly correlated astrocytic Ca2+ spikes with bidirectional fMRI signals based on the thalamic regulation of cortical states, depicting a brain-state dependency of both astrocytic Ca2+ and BOLD fMRI signals.
Collapse
|
287
|
Mariotti L, Losi G, Lia A, Melone M, Chiavegato A, Gómez-Gonzalo M, Sessolo M, Bovetti S, Forli A, Zonta M, Requie LM, Marcon I, Pugliese A, Viollet C, Bettler B, Fellin T, Conti F, Carmignoto G. Interneuron-specific signaling evokes distinctive somatostatin-mediated responses in adult cortical astrocytes. Nat Commun 2018; 9:82. [PMID: 29311610 PMCID: PMC5758790 DOI: 10.1038/s41467-017-02642-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 12/14/2017] [Indexed: 12/25/2022] Open
Abstract
The signaling diversity of GABAergic interneurons to post-synaptic neurons is crucial to generate the functional heterogeneity that characterizes brain circuits. Whether this diversity applies to other brain cells, such as the glial cells astrocytes, remains unexplored. Using optogenetics and two-photon functional imaging in the adult mouse neocortex, we here reveal that parvalbumin- and somatostatin-expressing interneurons, two key interneuron classes in the brain, differentially signal to astrocytes inducing weak and robust GABAB receptor-mediated Ca2+ elevations, respectively. Furthermore, the astrocyte response depresses upon parvalbumin interneuron repetitive stimulations and potentiates upon somatostatin interneuron repetitive stimulations, revealing a distinguished astrocyte plasticity. Remarkably, the potentiated response crucially depends on the neuropeptide somatostatin, released by somatostatin interneurons, which activates somatostatin receptors at astrocytic processes. Our study unveils, in the living brain, a hitherto unidentified signaling specificity between interneuron subtypes and astrocytes opening a new perspective into the role of astrocytes as non-neuronal components of inhibitory circuits.
Collapse
Affiliation(s)
- Letizia Mariotti
- Neuroscience Institute, National Research Council (CNR), 35121, Padova, Italy.,Department of Biomedical Sciences, Università degli Studi di Padova, 35121, Padova, Italy
| | - Gabriele Losi
- Neuroscience Institute, National Research Council (CNR), 35121, Padova, Italy.,Department of Biomedical Sciences, Università degli Studi di Padova, 35121, Padova, Italy
| | - Annamaria Lia
- Neuroscience Institute, National Research Council (CNR), 35121, Padova, Italy.,Department of Biomedical Sciences, Università degli Studi di Padova, 35121, Padova, Italy
| | - Marcello Melone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy.,Center for Neurobiology of Aging, INRCA IRCCS, 60121, Ancona, Italy
| | - Angela Chiavegato
- Department of Biomedical Sciences, Università degli Studi di Padova, 35121, Padova, Italy
| | - Marta Gómez-Gonzalo
- Neuroscience Institute, National Research Council (CNR), 35121, Padova, Italy.,Department of Biomedical Sciences, Università degli Studi di Padova, 35121, Padova, Italy
| | - Michele Sessolo
- Neuroscience Institute, National Research Council (CNR), 35121, Padova, Italy.,Department of Biomedical Sciences, Università degli Studi di Padova, 35121, Padova, Italy
| | - Serena Bovetti
- Optical Approches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Angelo Forli
- Optical Approches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Micaela Zonta
- Neuroscience Institute, National Research Council (CNR), 35121, Padova, Italy.,Department of Biomedical Sciences, Università degli Studi di Padova, 35121, Padova, Italy
| | - Linda Maria Requie
- Neuroscience Institute, National Research Council (CNR), 35121, Padova, Italy.,Department of Biomedical Sciences, Università degli Studi di Padova, 35121, Padova, Italy
| | - Iacopo Marcon
- Neuroscience Institute, National Research Council (CNR), 35121, Padova, Italy.,Department of Biomedical Sciences, Università degli Studi di Padova, 35121, Padova, Italy
| | - Arianna Pugliese
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy
| | - Cécile Viollet
- Inserm UMR894, Center for Psychiatry and Neuroscience, Université Paris-Descartes, 75014, Paris, France
| | - Bernhard Bettler
- Departement of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Tommaso Fellin
- Optical Approches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Fiorenzo Conti
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy.,Center for Neurobiology of Aging, INRCA IRCCS, 60121, Ancona, Italy.,Foundation for Molecular Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy
| | - Giorgio Carmignoto
- Neuroscience Institute, National Research Council (CNR), 35121, Padova, Italy. .,Department of Biomedical Sciences, Università degli Studi di Padova, 35121, Padova, Italy.
| |
Collapse
|
288
|
De Cicco V, Tramonti Fantozzi MP, Cataldo E, Barresi M, Bruschini L, Faraguna U, Manzoni D. Trigeminal, Visceral and Vestibular Inputs May Improve Cognitive Functions by Acting through the Locus Coeruleus and the Ascending Reticular Activating System: A New Hypothesis. Front Neuroanat 2018; 11:130. [PMID: 29358907 PMCID: PMC5766640 DOI: 10.3389/fnana.2017.00130] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/15/2017] [Indexed: 12/25/2022] Open
Abstract
It is known that sensory signals sustain the background discharge of the ascending reticular activating system (ARAS) which includes the noradrenergic locus coeruleus (LC) neurons and controls the level of attention and alertness. Moreover, LC neurons influence brain metabolic activity, gene expression and brain inflammatory processes. As a consequence of the sensory control of ARAS/LC, stimulation of a sensory channel may potential influence neuronal activity and trophic state all over the brain, supporting cognitive functions and exerting a neuroprotective action. On the other hand, an imbalance of the same input on the two sides may lead to an asymmetric hemispheric excitability, leading to an impairment in cognitive functions. Among the inputs that may drive LC neurons and ARAS, those arising from the trigeminal region, from visceral organs and, possibly, from the vestibular system seem to be particularly relevant in regulating their activity. The trigeminal, visceral and vestibular control of ARAS/LC activity may explain why these input signals: (1) affect sensorimotor and cognitive functions which are not directly related to their specific informational content; and (2) are effective in relieving the symptoms of some brain pathologies, thus prompting peripheral activation of these input systems as a complementary approach for the treatment of cognitive impairments and neurodegenerative disorders.
Collapse
Affiliation(s)
- Vincenzo De Cicco
- Laboratory of Sensorimotor Integration, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Maria P Tramonti Fantozzi
- Laboratory of Sensorimotor Integration, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | | | - Massimo Barresi
- Institut des Maladie Neurodégénératives, University of Bordeaux, Bordeaux, France
| | - Luca Bruschini
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Ugo Faraguna
- Laboratory of Sensorimotor Integration, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy.,Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Diego Manzoni
- Laboratory of Sensorimotor Integration, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
289
|
Role of Purinergic Receptor P2Y1 in Spatiotemporal Ca 2+ Dynamics in Astrocytes. J Neurosci 2018; 38:1383-1395. [PMID: 29305530 DOI: 10.1523/jneurosci.2625-17.2017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/06/2017] [Accepted: 12/18/2017] [Indexed: 01/08/2023] Open
Abstract
Fine processes of astrocytes enwrap synapses and are well positioned to sense neuronal information via synaptic transmission. In rodents, astrocyte processes sense synaptic transmission via Gq-protein coupled receptors (GqPCR), including the P2Y1 receptor (P2Y1R), to generate Ca2+ signals. Astrocytes display numerous spontaneous microdomain Ca2+ signals; however, it is not clear whether such signals are due to local synaptic transmission and/or in what timeframe astrocytes sense local synaptic transmission. To ask whether GqPCRs mediate microdomain Ca2+ signals, we engineered mice (both sexes) to specifically overexpress P2Y1Rs in astrocytes, and we visualized Ca2+ signals via a genetically encoded Ca2+ indicator, GCaMP6f, in astrocytes from adult mice. Astrocytes overexpressing P2Y1Rs showed significantly larger Ca2+ signals in response to exogenously applied ligand and to repetitive electrical stimulation of axons compared with controls. However, we found no evidence of increased microdomain Ca2+ signals. Instead, Ca2+ waves appeared and propagated to occupy areas that were up to 80-fold larger than microdomain Ca2+ signals. These Ca2+ waves accounted for only 2% of total Ca2+ events, but they were 1.9-fold larger and 2.9-fold longer in duration than microdomain Ca2+ signals at processes. Ca2+ waves did not require action potentials for their generation and occurred in a probenecid-sensitive manner, indicating that the endogenous ligand for P2Y1R is elevated independently of synaptic transmission. Our data suggest that spontaneous microdomain Ca2+ signals occur independently of P2Y1R activation and that astrocytes may not encode neuronal information in response to synaptic transmission at a point source of neurotransmitter release.SIGNIFICANCE STATEMENT Astrocytes are thought to enwrap synapses with their processes to receive neuronal information via Gq-protein coupled receptors (GqPCRs). Astrocyte processes display numerous microdomain Ca2+ signals that occur spontaneously. To determine whether GqPCRs play a role in microdomain Ca2+ signals and the timeframe in which astrocytes sense neuronal information, we engineered mice whose astrocytes specifically overexpress the P2Y1 receptor, a major GqPCR in astrocytes. We found that overexpression of P2Y1 receptors in astrocytes did not increase microdomain Ca2+ signals in astrocyte processes but caused Ca2+ wavelike signals. Our data indicate that spontaneous microdomain Ca2+ signals do not require activation of P2Y1 receptors.
Collapse
|
290
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
291
|
Astrocytes as a target of transcranial direct current stimulation (tDCS) to treat depression. Neurosci Res 2018; 126:15-21. [DOI: 10.1016/j.neures.2017.08.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 12/24/2022]
|
292
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 1077] [Impact Index Per Article: 153.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
293
|
Kujawski S, Słomko J, Tafil-Klawe M, Zawadka-Kunikowska M, Szrajda J, Newton JL, Zalewski P, Klawe JJ. The impact of total sleep deprivation upon cognitive functioning in firefighters. Neuropsychiatr Dis Treat 2018; 14:1171-1181. [PMID: 29773948 PMCID: PMC5947110 DOI: 10.2147/ndt.s156501] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION Firefighters as a profession are required to maintain high levels of attention for prolonged periods. However, total sleep deprivation (TSD) could influence negatively upon performance, particularly when the task is prolonged and repetitive. PURPOSE The aim of this study is to examine the influence of TSD on cognitive functioning in a group of firefighters. SUBJECTS AND METHODS Sixty volunteers who were active male fire brigade officers were examined with a computerized battery test that consisted of simple reaction time (SRT) (repeated three times), choice reaction time, visual attention test, and delayed matching to sample. Six series of measurements were undertaken over a period of TSD. RESULTS Performance in the second attempt in SRT test was significantly worse in terms of increased number of errors and, consequently, decreased number of correct responses during TSD. In contrast, the choice reaction time number of correct responses as well as the visual attention test reaction time for all and correct responses significantly improved compared to initial time points. CONCLUSION The study has confirmed that subjects committed significantly more errors and, consequently, noted a smaller number of correct responses in the second attempt of SRT test. However, the remaining results showed reversed direction of TSD influence. TSD potentially leads to worse performance in a relatively easy task in a group of firefighters. Errors during repetitive tasks in firefighting routines could potentially translate into catastrophic consequences.
Collapse
Affiliation(s)
- Sławomir Kujawski
- Department of Hygiene, Epidemiology and Ergonomics, Nicolaus Copernicus University, Toruń, Poland
| | - Joanna Słomko
- Department of Hygiene, Epidemiology and Ergonomics, Nicolaus Copernicus University, Toruń, Poland
| | | | | | - Justyna Szrajda
- Department of Hygiene, Epidemiology and Ergonomics, Nicolaus Copernicus University, Toruń, Poland
| | - Julia L Newton
- Institute for Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle-upon-Tyne, UK
| | - Paweł Zalewski
- Department of Hygiene, Epidemiology and Ergonomics, Nicolaus Copernicus University, Toruń, Poland
| | - Jacek J Klawe
- Department of Hygiene, Epidemiology and Ergonomics, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
294
|
Heterogeneity and function of hippocampal macroglia. Cell Tissue Res 2017; 373:653-670. [PMID: 29204745 DOI: 10.1007/s00441-017-2746-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/16/2017] [Indexed: 12/26/2022]
Abstract
The contribution of glial cells to normal and impaired hippocampal function is increasingly being recognized, although important questions as to the mechanisms that these cells use for their crosstalk with neurons and capillaries are still unanswered or lead to controversy. Astrocytes in the hippocampus are morphologically variable and a single cell contacts with its processes more than 100,000 synapses. They predominantly express inward rectifier K+ channels and transporters serving homeostatic function but may also release gliotransmitters to modify neuronal signaling and brain circulation. Intracellular Ca2+ transients are key events in the interaction of astrocytes with neurons and the vasculature. Hippocampal NG2 glia represent a population of cells with proliferative capacity throughout adulthood. Intriguingly, they receive direct synaptic input from pyramidal neurons and interneurons and express a multitude of ion channels and receptors. Despite in-depth knowledge about the features of these transmembrane proteins, the physiological impact of NG2 glial cells and their synaptic input remain nebulous. Because of the low abundance of oligodendrocytes in the hippocampus, limited information is available about their specific properties. Given the multitude of signaling molecules expressed by the various types of hippocampal glial cells (and because of space constraints), we focus, in this review, on those properties that are considered key for the interaction of the respective cell type with its neighborhood.
Collapse
|
295
|
Papouin T, Dunphy J, Tolman M, Foley JC, Haydon PG. Astrocytic control of synaptic function. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0154. [PMID: 28093548 DOI: 10.1098/rstb.2016.0154] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2016] [Indexed: 12/19/2022] Open
Abstract
Astrocytes intimately interact with synapses, both morphologically and, as evidenced in the past 20 years, at the functional level. Ultrathin astrocytic processes contact and sometimes enwrap the synaptic elements, sense synaptic transmission and shape or alter the synaptic signal by releasing signalling molecules. Yet, the consequences of such interactions in terms of information processing in the brain remain very elusive. This is largely due to two major constraints: (i) the exquisitely complex, dynamic and ultrathin nature of distal astrocytic processes that renders their investigation highly challenging and (ii) our lack of understanding of how information is encoded by local and global fluctuations of intracellular calcium concentrations in astrocytes. Here, we will review the existing anatomical and functional evidence of local interactions between astrocytes and synapses, and how it underlies a role for astrocytes in the computation of synaptic information.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.
Collapse
Affiliation(s)
- Thomas Papouin
- Neuroscience Department, Tufts University, Boston, MA 02111, USA
| | - Jaclyn Dunphy
- Neuroscience Department, Tufts University, Boston, MA 02111, USA
| | - Michaela Tolman
- Neuroscience Department, Tufts University, Boston, MA 02111, USA
| | - Jeannine C Foley
- Neurobiology Department, Harvard Medical School, Boston, MA 02115, USA
| | - Philip G Haydon
- Neuroscience Department, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
296
|
Abstract
Astrocytes are an abundant and evolutionarily conserved central nervous system cell type. Despite decades of evidence that astrocytes are integral to neural circuit function, it seems as though astrocytic and neuronal biology continue to advance in parallel to each other, to the detriment of both. Recent advances in molecular biology and optical imaging are being applied to astrocytes in new and exciting ways but without fully considering their unique biology. From this perspective, we explore the reasons that astrocytes remain enigmatic, arguing that their responses to neuronal and environmental cues shape form and function in dynamic ways. Here, we provide a roadmap for future experiments to explore the nature of astrocytes in situ.
Collapse
Affiliation(s)
- Kira E Poskanzer
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143; .,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, California 94143
| | - Anna V Molofsky
- Weill Institute for Neurosciences, University of California, San Francisco, California 94143; .,Department of Psychiatry, University of California, San Francisco, California 94143
| |
Collapse
|
297
|
Coutinho-Budd JC, Sheehan AE, Freeman MR. The secreted neurotrophin Spätzle 3 promotes glial morphogenesis and supports neuronal survival and function. Genes Dev 2017; 31:2023-2038. [PMID: 29138279 PMCID: PMC5733495 DOI: 10.1101/gad.305888.117] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/20/2017] [Indexed: 10/27/2022]
Abstract
Most glial functions depend on establishing intimate morphological relationships with neurons. Significant progress has been made in understanding neuron-glia signaling at synaptic and axonal contacts, but how glia support neuronal cell bodies is unclear. Here we explored the growth and functions of Drosophila cortex glia (which associate almost exclusively with neuronal cell bodies) to understand glia-soma interactions. We show that cortex glia tile with one another and with astrocytes to establish unique central nervous system (CNS) spatial domains that actively restrict glial growth, and selective ablation of cortex glia causes animal lethality. In an RNAi-based screen, we identified αSNAP (soluble NSF [N-ethylmalemeide-sensitive factor] attachment protein α) and several components of vesicle fusion and recycling machinery as essential for the maintenance of cortex glial morphology and continued contact with neurons. Interestingly, loss of the secreted neurotrophin Spätzle 3 (Spz3) phenocopied αSNAP phenotypes, which included loss of glial ensheathment of neuron cell bodies, increased neuronal cell death, and defects in animal behavior. Rescue experiments suggest that Spz3 can exert these effects only over very short distances. This work identifies essential roles for glial ensheathment of neuronal cell bodies in CNS homeostasis as well as Spz3 as a novel signaling factor required for maintenance of cortex glial morphology and neuron-glia contact.
Collapse
Affiliation(s)
- Jaeda C Coutinho-Budd
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Amy E Sheehan
- Vollum Institute, Oregon Health and Sciences University, Portland, Oregon 97239, USA
| | - Marc R Freeman
- Vollum Institute, Oregon Health and Sciences University, Portland, Oregon 97239, USA
| |
Collapse
|
298
|
Cell Biology of Astrocyte-Synapse Interactions. Neuron 2017; 96:697-708. [PMID: 29096081 DOI: 10.1016/j.neuron.2017.09.056] [Citation(s) in RCA: 695] [Impact Index Per Article: 86.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 09/24/2017] [Accepted: 09/28/2017] [Indexed: 12/25/2022]
Abstract
Astrocytes, the most abundant glial cells in the mammalian brain, are critical regulators of brain development and physiology through dynamic and often bidirectional interactions with neuronal synapses. Despite the clear importance of astrocytes for the establishment and maintenance of proper synaptic connectivity, our understanding of their role in brain function is still in its infancy. We propose that this is at least in part due to large gaps in our knowledge of the cell biology of astrocytes and the mechanisms they use to interact with synapses. In this review, we summarize some of the seminal findings that yield important insight into the cellular and molecular basis of astrocyte-neuron communication, focusing on the role of astrocytes in the development and remodeling of synapses. Furthermore, we pose some pressing questions that need to be addressed to advance our mechanistic understanding of the role of astrocytes in regulating synaptic development.
Collapse
|
299
|
Shen W, Nikolic L, Meunier C, Pfrieger F, Audinat E. An autocrine purinergic signaling controls astrocyte-induced neuronal excitation. Sci Rep 2017; 7:11280. [PMID: 28900295 PMCID: PMC5595839 DOI: 10.1038/s41598-017-11793-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/29/2017] [Indexed: 12/30/2022] Open
Abstract
Astrocyte-derived gliotransmitters glutamate and ATP modulate neuronal activity. It remains unclear, however, how astrocytes control the release and coordinate the actions of these gliotransmitters. Using transgenic expression of the light-sensitive channelrhodopsin 2 (ChR2) in astrocytes, we observed that photostimulation reliably increases action potential firing of hippocampal pyramidal neurons. This excitation relies primarily on a calcium-dependent glutamate release by astrocytes that activates neuronal extra-synaptic NMDA receptors. Remarkably, our results show that ChR2-induced Ca2+ increase and subsequent glutamate release are amplified by ATP/ADP-mediated autocrine activation of P2Y1 receptors on astrocytes. Thus, neuronal excitation is promoted by a synergistic action of glutamatergic and autocrine purinergic signaling in astrocytes. This new mechanism may be particularly relevant for pathological conditions in which ATP extracellular concentration is increased and acts as a major danger signal.
Collapse
Affiliation(s)
- Weida Shen
- Inserm U1128, Paris Descartes University, 75006, Paris, France
| | | | - Claire Meunier
- Inserm U1128, Paris Descartes University, 75006, Paris, France
| | - Frank Pfrieger
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 67084, Strasbourg, France
| | - Etienne Audinat
- Inserm U1128, Paris Descartes University, 75006, Paris, France.
| |
Collapse
|
300
|
Eto K, Kim SK, Takeda I, Nabekura J. The roles of cortical astrocytes in chronic pain and other brain pathologies. Neurosci Res 2017; 126:3-8. [PMID: 28870605 DOI: 10.1016/j.neures.2017.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/01/2017] [Accepted: 08/18/2017] [Indexed: 01/21/2023]
Abstract
Astrocytes are the most abundant cell type in the brain. Several decades ago, they were considered to be only support cells in the central nervous system. Recent studies using advanced technologies have clarified that astrocytes play more active roles in regulating neuronal function and remodeling synaptic structures by releasing molecules called gliotransmitters. In addition to various physiological functions, astrocytes are activated under disease conditions, such as chronic pain, releasing molecules that in turn cause reorganization of the central nervous system microstructure and disrupt behavior in pathological conditions. In the present review, we summarize cortical astrocyte function in chronic pain and other neurological disorders and discuss the role of astrocytes in brain pathologies.
Collapse
Affiliation(s)
- Kei Eto
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, The Graduate School for Advanced Studies, Hayama, Kanagawa 240-0193, Japan
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ikuko Takeda
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, The Graduate School for Advanced Studies, Hayama, Kanagawa 240-0193, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo 102-0076, Japan.
| |
Collapse
|