251
|
Ouhammouch M, Dewhurst RE, Hausner W, Thomm M, Geiduschek EP. Activation of archaeal transcription by recruitment of the TATA-binding protein. Proc Natl Acad Sci U S A 2003; 100:5097-102. [PMID: 12692306 PMCID: PMC154304 DOI: 10.1073/pnas.0837150100] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hyperthermophilic archaeon Methanococcus jannaschii encodes two putative transcription regulators, Ptr1 and Ptr2, that are members of the Lrp/AsnC family of bacterial transcription regulators. In contrast, this archaeon's RNA polymerase and core transcription factors are of eukaryotic type. Using the M. jannaschii high-temperature in vitro transcription system, we show that Ptr2 is a potent transcriptional activator, and that it conveys its stimulatory effects on its cognate eukaryal-type transcription machinery from an upstream activating region composed of two Ptr2-binding sites. Transcriptional activation is generated, at least in part, by Ptr2-mediated recruitment of the TATA-binding protein to the promoter.
Collapse
Affiliation(s)
- Mohamed Ouhammouch
- Center for Molecular Genetics and Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | |
Collapse
|
252
|
Abstract
Transcription in eukaryotic cells requires the remodeling of chromatin and the assembly of functional preinitiation complexes (PICs), which contain the general transcription factors (GTFs), RNA polymerase II (Pol II), and coactivators. Genetic and biochemical studies have implicated the multisubunit Mediator coactivator complex (Med) as a critical component of the PIC, a direct target of activators, and a checkpoint for regulated gene expression during differentiation, development (reviewed in ), signaling, and oncogenesis. In this report, we show that a complex containing the activator GAL4-VP16, Med, and TFIID/TFIIA (DA) recruits pol II and the remaining GTFs to a model promoter in vitro. A preassembled DAMed complex bypasses the requirement for an activator. We also demonstrate that coordinated assembly of DAMed is essential to establishing a functional PIC. We conclude that the DAMed complex generates a platform that supports activated levels of PIC assembly and transcription.
Collapse
Affiliation(s)
- Kristina M Johnson
- Department of Biological Chemistry, UCLA School of Medicine, Box 1737, Los Angeles, CA 90095-1737, USA
| | | |
Collapse
|
253
|
Abstract
Gene transcription is repetitive, enabling the synthesis of multiple copies of identical RNA molecules from the same template. The cyclic process of RNA synthesis from active genes, referred to as transcription reinitiation, contributes significantly to the level of RNAs in living cells. Contrary to the perception that multiple transcription cycles are a mere iteration of mechanistically identical steps, a large body of evidence indicates that, in most transcription systems, reinitiation involves highly specific and regulated pathways. These pathways influence the availability for reinitiation of template DNA and/or transcription proteins, and represent an important yet poorly characterized aspect of gene regulation.
Collapse
Affiliation(s)
- Giorgio Dieci
- Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, Italy.
| | | |
Collapse
|
254
|
Dion V, Coulombe B. Interactions of a DNA-bound transcriptional activator with the TBP-TFIIA-TFIIB-promoter quaternary complex. J Biol Chem 2003; 278:11495-501. [PMID: 12538582 PMCID: PMC4492720 DOI: 10.1074/jbc.m211938200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Site-specific protein-DNA photo-cross-linking was used to show that, when bound to its cognate site at various distances upstream of the TATA element, the chimeric transcriptional activator GAL4-VP16 can physically interact with a TATA box-binding protein (TBP)- transcription factor IIA (TFIIA)-TFIIB complex assembled on the TATA element. This result implies DNA bending and looping of promoter DNA as a result of the physical interaction between GAL4-VP16 and an interface of the TBP-TFIIA-TFIIB complex. This protein-protein interaction on promoter DNA minimally requires the presence of one GAL4 binding site and the formation of a quaternary complex containing TBP, TFIIB, and TFIIA on the TATA element. Notably, the topology of the TBP-TFIIA-TFIIB-promoter complex is not altered significantly by the interaction with DNA-bound activators. We also show that the ability of GAL4-VP16 to activate transcription through a single GAL4 binding site varies according to its precise location and orientation relative to the TATA element and that it can approach the efficiency obtained with multiple binding sites. Taken together, our results indicate that the spatial positioning of the DNA-bound activation domain is important for efficient activation, possibly by maximizing its interactions with the transcriptional machinery including the TBP-TFIIA-TFIIB-promoter quaternary complex.
Collapse
Affiliation(s)
- Valérie Dion
- Laboratory of Gene Transcription, Institut de Recherches Cliniques de Montréal, Montréal, Quebec H2W 1R7, Canada
| | | |
Collapse
|
255
|
Ranish JA, Yi EC, Leslie DM, Purvine SO, Goodlett DR, Eng J, Aebersold R. The study of macromolecular complexes by quantitative proteomics. Nat Genet 2003; 33:349-55. [PMID: 12590263 DOI: 10.1038/ng1101] [Citation(s) in RCA: 303] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2002] [Accepted: 01/19/2003] [Indexed: 11/08/2022]
Abstract
We describe a generic strategy for determining the specific composition, changes in the composition, and changes in the abundance of protein complexes. It is based on the use of isotope-coded affinity tag (ICAT) reagents and mass spectrometry to compare the relative abundances of tryptic peptides derived from suitable pairs of purified or partially purified protein complexes. In a first application, the genuine protein components of a large RNA polymerase II (Pol II) preinitiation complex (PIC) were distinguished from a background of co-purifying proteins by comparing the relative abundances of peptides derived from a control sample and the specific complex that was purified from nuclear extracts by a single-step promoter DNA affinity procedure. In a second application, peptides derived from immunopurified STE12 protein complexes isolated from yeast cells in different states were used to detect quantitative changes in the abundance of the complexes, and to detect dynamic changes in the composition of the samples. The use of quantitative mass spectrometry to guide identification of specific complex components in partially purified samples, and to detect quantitative changes in the abundance and composition of protein complexes, provides the researcher with powerful new tools for the comprehensive analysis of macromolecular complexes.
Collapse
Affiliation(s)
- Jeffrey A Ranish
- Institute for Systems Biology, 1441 North 34th Street, Seattle, Washington 98103-8904, USA
| | | | | | | | | | | | | |
Collapse
|
256
|
Yu Y, Eriksson P, Bhoite LT, Stillman DJ. Regulation of TATA-binding protein binding by the SAGA complex and the Nhp6 high-mobility group protein. Mol Cell Biol 2003; 23:1910-21. [PMID: 12612066 PMCID: PMC149471 DOI: 10.1128/mcb.23.6.1910-1921.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional activation of the yeast HO gene involves the sequential action of DNA-binding and chromatin-modifying factors. Here we examine the role of the SAGA complex and the Nhp6 architectural transcription factor in HO regulation. Our data suggest that these factors regulate binding of the TATA-binding protein (TBP) to the promoter. A gcn5 mutation, eliminating the histone acetyltransferase present in SAGA, reduces the transcription of HO, but expression is restored in a gcn5 spt3 double mutant. We conclude that the major role of Gcn5 in HO activation is to overcome repression by Spt3. Spt3 is also part of SAGA, and thus two proteins in the same regulatory complex can have opposing roles in transcriptional regulation. Chromatin immunoprecipitation experiments show that TBP binding to HO is very weak in wild-type cells but markedly increased in an spt3 mutant, indicating that Spt3 reduces HO expression by inhibiting TBP binding. In contrast, it has been shown previously that Spt3 stimulates TBP binding to the GAL1 promoter as well as GAL1 expression, and thus, Spt3 regulates these promoters differently. We also find genetic interactions between TBP and either Gcn5 or the high-mobility-group protein Nhp6, including multicopy suppression and synthetic lethality. These results suggest that, while Spt3 acts to inhibit TBP interaction with the HO promoter, Gcn5 and Nhp6 act to promote TBP binding. The result of these interactions is to limit TBP binding and HO expression to a short period within the cell cycle. Furthermore, the synthetic lethality resulting from combining a gcn5 mutation with specific TBP point mutations can be suppressed by the overexpression of transcription factor IIA (TFIIA), suggesting that histone acetylation by Gcn5 can stimulate transcription by promoting the formation of a TBP/TFIIA complex.
Collapse
Affiliation(s)
- Yaxin Yu
- Department of Pathology, University of Utah Health Sciences Center, 30 North 1900 East, Salt Lake City, UT 84132-2501, USA
| | | | | | | |
Collapse
|
257
|
Acevedo ML, Kraus WL. Mediator and p300/CBP-steroid receptor coactivator complexes have distinct roles, but function synergistically, during estrogen receptor alpha-dependent transcription with chromatin templates. Mol Cell Biol 2003; 23:335-48. [PMID: 12482985 PMCID: PMC140681 DOI: 10.1128/mcb.23.1.335-348.2003] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ligand-dependent transcriptional activation by nuclear receptors involves the recruitment of various coactivators to the promoters of hormone-regulated genes assembled into chromatin. Nuclear receptor coactivators include histone acetyltransferase complexes, such as p300/CBP-steroid receptor coactivator (SRC), as well as the multisubunit mediator complexes ("Mediator"), which may help recruit RNA polymerase II to the promoter. We have used a biochemical approach, including an in vitro chromatin assembly and transcription system, to examine the functional role for Mediator in the transcriptional activity of estrogen receptor alpha (ERalpha) with chromatin templates, as well as functional interplay between Mediator and p300/CBP during ERalpha-dependent transcription. Using three different approaches to functionally inactivate Mediator (immunoneutralization, immunodepletion, and inhibitory polypeptides), we find that Mediator is required for maximal transcriptional activation by ligand-activated ERalpha. In addition, we demonstrate synergism between Mediator and p300/CBP-SRC during ERalpha-dependent transcription with chromatin templates, but not with naked DNA. This synergism is important for promoting the formation of a stable transcription preinitiation complex leading to the initiation of transcription. Interestingly, we find that Mediator has an additional distinct role during ERalpha-dependent transcription not shared by p300/CBP-SRC: namely, to promote preinitiation complex formation for subsequent rounds of transcription reinitiation. These results suggest that one functional consequence of Mediator-ERalpha interactions is the stimulation of multiple cycles of transcription reinitiation. Collectively, our results indicate an important role for Mediator, as well as its functional interplay with p300/CBP-SRC, in the enhancement of ERalpha-dependent transcription with chromatin templates.
Collapse
Affiliation(s)
- Mari Luz Acevedo
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
258
|
Sandaltzopoulos R, Becker PB. Analysis of Activator-Dependent Transcription Reinitiation In Vitro. Methods Enzymol 2003; 370:487-501. [PMID: 14712670 DOI: 10.1016/s0076-6879(03)70042-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- Raphael Sandaltzopoulos
- Department of Molecular Biology, Democritus University of Thrace, University Hospital at Dragana, G-68100 Alexandroupolis, Greece
| | | |
Collapse
|
259
|
Reeves WM, Hahn S. Activator-independent functions of the yeast mediator sin4 complex in preinitiation complex formation and transcription reinitiation. Mol Cell Biol 2003; 23:349-58. [PMID: 12482986 PMCID: PMC140685 DOI: 10.1128/mcb.23.1.349-358.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA polymerase II (Pol II) Mediator plays an essential role in both basal and activated transcription. Previously, subunits of the Sin4 Mediator complex (Sin4, Pgd1, Gal11, and Med2) have been implicated in both positive and negative transcriptional regulation. Furthermore, it was proposed that this subcomplex constitutes an activator-binding domain. A yeast nuclear-extract system was used to investigate the biochemical role of the Sin4 complex. In contrast to previous findings, we found at least two general activator-independent roles for the Sin4 complex. First, mutations in sin4 and pgd1 destabilized the Pol II-Med complex, leading to a reduced rate and extent of preinitiation complex (PIC) formation both in the presence and absence of activators. Although reduced in amount compared with the wild type, PICs that are formed lacking the Sin4 complex are stable and can initiate transcription normally. Second, mutation of pgd1 causes partial disruption of the Sin4 complex and leads to a defect in transcription reinitiation. This defect is caused by dissociation of mutant Mediator from promoters after initiation, leading to nonfunctional Scaffold complexes. These results show that function of the Sin4 complex is not essential for transcription activation in a crude in vitro system but that it plays key roles in the general transcription mechanism.
Collapse
Affiliation(s)
- Wendy M Reeves
- Molecular and Cellular Biology Program, University of Washington, Seattle 98105, USA
| | | |
Collapse
|
260
|
Abstract
RNA polymerase II transcribes most eukaryotic genes. Its catalytic subunit was tagged with green fluorescent protein and expressed in Chinese hamster cells bearing a mutation in the same subunit; it complemented the defect and so was functional. Photobleaching revealed two kinetic fractions of polymerase in living nuclei: approximately 75% moved rapidly, but approximately 25% was transiently immobile (association t1/2 approximately 20 min) and transcriptionally active, as incubation with 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole eliminated it. No immobile but inactive fraction was detected, providing little support for the existence of a stable holoenzyme, or the slow stepwise assembly of a preinitiation complex on promoters or the nuclear substructure. Actinomycin D decreased the rapidly moving fraction, suggesting that engaged polymerases stall at intercalated molecules while others initiate. When wild-type cells containing only the endogenous enzyme were incubated with [3H]uridine, nascent transcripts became saturated with tritium with similar kinetics (t1/2 approximately 14 min). These data are consistent with a polymerase being mobile for one half to five sixths of a transcription cycle, and rapid assembly into the preinitiation complex. Then, most expressed transcription units would spend significant times unassociated with engaged polymerases.
Collapse
Affiliation(s)
- Hiroshi Kimura
- Sir William Dunn School of Pathology, Oxford OX1 3RE, UK
| | | | | |
Collapse
|
261
|
Ma B, Hernandez N. Redundant cooperative interactions for assembly of a human U6 transcription initiation complex. Mol Cell Biol 2002; 22:8067-78. [PMID: 12391172 PMCID: PMC134731 DOI: 10.1128/mcb.22.22.8067-8078.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The core human U6 promoter consists of a proximal sequence element (PSE) located upstream of a TATA box. The PSE is recognized by the snRNA-activating protein complex (SNAP(c)), which consists of five types of subunits, SNAP190, SNAP50, SNAP45, SNAP43, and SNAP19. The TATA box is recognized by TATA box binding protein (TBP). In addition, basal U6 transcription requires the SANT domain protein Bdp1 and the transcription factor IIB-related factor Brf2. SNAP(c) and mini-SNAP(c), which consists of just SNAP43, SNAP50, and the N-terminal third of SNAP190, bind cooperatively with TBP to the core U6 promoter. By generating complexes smaller than mini-SNAP(c), we have identified a 50-amino-acid region within SNAP190 that is (i) required for cooperative binding with TBP in the context of mini-SNAP(c) and (ii) sufficient for cooperative binding with TBP when fused to a heterologous DNA binding domain. We show that derivatives of mini-SNAP(c) lacking this region are active for transcription and that with such complexes, TBP can still be recruited to the U6 promoter through cooperative interactions with Brf2. Our results identify complexes smaller than mini-SNAP(c) that are transcriptionally active and show that there are at least two redundant mechanisms to stably recruit TBP to the U6 transcription initiation complex.
Collapse
Affiliation(s)
- Beicong Ma
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
262
|
Martianov I, Viville S, Davidson I. RNA polymerase II transcription in murine cells lacking the TATA binding protein. Science 2002; 298:1036-9. [PMID: 12411709 DOI: 10.1126/science.1076327] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Inactivation of the murine TATA binding protein (TBP) gene by homologous recombination leads to growth arrest and apoptosis at the embryonic blastocyst stage. However, after loss of TBP, RNA polymerase II (pol II) remains in a transcriptionally active phosphorylation state, and in situ run-on experiments showed high levels of pol II transcription comparable to those of wild-type cells. In contrast, pol I and pol III transcription was arrested. Our results show a differential dependency of the RNA polymerases on TBP and provide evidence for TBP-independent pol II transcriptional mechanisms that allow reinitiation and maintenance of gene transcription in vivo.
Collapse
Affiliation(s)
- Igor Martianov
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, B.P. 163, 67404 Illkirch Cédex, Communauté Urbaine de Strasbourg, France
| | | | | |
Collapse
|
263
|
Young ET, Kacherovsky N, Van Riper K. Snf1 protein kinase regulates Adr1 binding to chromatin but not transcription activation. J Biol Chem 2002; 277:38095-103. [PMID: 12167649 DOI: 10.1074/jbc.m206158200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast transcriptional activator Adr1 controls the expression of genes required for ethanol, glycerol, and fatty acid utilization. We show that Adr1 acts directly on the promoters of ADH2, ACS1, GUT1, CTA1, and POT1 using chromatin immunoprecipitation assays. The yeast homolog of the AMP-activated protein kinase, Snf1, promotes Adr1 chromatin binding in the absence of glucose, and the protein phosphatase complex, Glc7.Reg1, represses its binding in the presence of glucose. A post-translational process is implicated in the regulation of Adr1 binding activity. Chromatin binding by Adr1 is not the only step in ADH2 transcription that is regulated by glucose repression. Adr1 can bind to chromatin in repressed conditions in the presence of hyperacetylated histones. To study steps subsequent to promoter binding we utilized miniAdr1 transcription factors to characterize Adr1-dependent transcription in vitro. Yeast nuclear extracts prepared from glucose-repressed and glucose-derepressed cells are equally capable of supporting miniAdr1-dependent transcription and pre-initiation complex formation. Nuclear extracts prepared from a snf1 mutant support miniAdr1-dependent transcription but are partially defective in the formation of pre-initiation complexes with Mediator components being particularly depleted. We conclude that Snf1 regulates Adr1-dependent transcription primarily at the level of chromatin binding.
Collapse
Affiliation(s)
- Elton T Young
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350, USA.
| | | | | |
Collapse
|
264
|
Quinn PG. Mechanisms of basal and kinase-inducible transcription activation by CREB. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 72:269-305. [PMID: 12206454 DOI: 10.1016/s0079-6603(02)72072-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The cAMP response element (CRE)-binding protein (CREB) stimulates basal transcription of CRE-containing genes and mediates induction of transcription upon phosphorylation by protein kinases. The basal activity of CREB maps to a carboxy-terminal constitutive activation domain (CAD), whereas phosphorylation and inducibility map to a central, kinase-inducible domain (KID). The CAD interacts with and recruits the promoter recognition factor TFIID through an interaction with a specific TATA-binding-protein-associated factor (TAF), dTAFII110/ hTAFII135. Interaction between the TAF and the CAD is mediated by a central cluster of hydrophobic amino acids, mutation of which disrupts TAF binding, polymerase recruitment, and transcription activation. Assessment of the contributions of the CAD and KID to recruitment of the polymerase complex versus enhancement of subsequent reaction steps (isomerization, promoter clearance, and reinitiation) showed that the CAD and P-KID act in a concerted mechanism to stimulate transcription. The CAD, but not the KID, mediated recruitment of a complex containing components of a transcription initiation complex, including pol II, IIB, and IID. However, the CAD was relatively ineffective in stimulating subsequent steps in the reaction mechanism. In contrast, phosphorylation of the KID in CREB effectively stimulated isomerization of the recruited polymerase complex and multiple-round transcription. A model for the activation of transcription by phosphorylated CREB is proposed, in which the polymerase is recruited by interaction of the CAD with TFIID and the recruited polymerase is activated further by phosphorylation of the KID in CREB.
Collapse
Affiliation(s)
- Patrick G Quinn
- Department of Cellular and Molecular Physiology, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033, USA
| |
Collapse
|
265
|
Myers LC, Lacomis L, Erdjument-Bromage H, Tempst P. The yeast capping enzyme represses RNA polymerase II transcription. Mol Cell 2002; 10:883-94. [PMID: 12419231 DOI: 10.1016/s1097-2765(02)00644-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using a highly pure transcription system derived from Saccharomyces cerevisiae, we have purified an activity in yeast whole-cell extracts that represses RNA polymerase II transcription. Mechanistic studies suggest that this repressor specifically targets transcriptional reinitiation. The two polypeptides that constitute the repressor have been identified as Ceg1p and Cet1p, the two subunits of the yeast pre-mRNA capping enzyme. A purified recombinant capping enzyme is able to reconstitute repressor activity. Cet1p is necessary for and capable of this repression. Transcriptional run-on experiments indicate that the capping enzyme also serves as a repressor in vivo. Efficient pre-mRNA capping relies on interactions between the capping enzyme and transcription apparatus. Repression by the capping enzyme suggests a bidirectional flow of information between capping and transcription.
Collapse
Affiliation(s)
- Lawrence C Myers
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA.
| | | | | | | |
Collapse
|
266
|
Upadhyaya AB, Khan M, Mou TC, Junker M, Gray DM, DeJong J. The germ cell-specific transcription factor ALF. Structural properties and stabilization of the TATA-binding protein (TBP)-DNA complex. J Biol Chem 2002; 277:34208-16. [PMID: 12107178 DOI: 10.1074/jbc.m204808200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The assembly and stability of the RNA polymerase II transcription preinitiation complex on a eukaryotic core promoter involves the effects of TFIIA on the interaction between TATA-binding protein (TBP) and DNA. To extend our understanding of these interactions, we characterized properties of ALF, a germ cell-specific TFIIA-like factor. ALF was able to stabilize the binding of TBP to DNA, but it could not stabilize TBP mutants A184E, N189E, E191R, and R205E nor could it facilitate binding of the TBP-like factor TRF2/TLF to a consensus TATA element. However, phosphorylation of ALF with casein kinase II resulted in the partial restoration of complex formation using mutant TBPs. Studies of ALF-TBP complexes formed on the Adenovirus Major Late (AdML) promoter revealed protection of the TATA box and upstream sequences from -38 to -20 (top strand) and -40 to -22 (bottom strand). The half-life and apparent K(D) of this complex was determined to be 650 min and 4.8 +/- 2.7 nm, respectively. The presence of ALF or TFIIA did not significantly alter the ability of TBP to bind TATA elements from several testis-specific genes. Finally, analysis of the distinct, nonhomologous internal regions of ALF and TFIIAalpha/beta using circular dichroism spectroscopy provided the first evidence to suggest that these domains are unordered, a result consistent with other genetic and biochemical properties. Overall, the results show that while the sequence and regulation of the ALF gene are distinct from its somatic cell counterpart TFIIAalpha/beta, the TFIIAgamma-dependent interactions of these factors with TBP are nearly indistinguishable in vitro. Thus, a role for ALF in the assembly and stabilization of initiation complexes in germ cells is likely to be similar or identical to the role of TFIIA in somatic cells.
Collapse
Affiliation(s)
- Ashok B Upadhyaya
- Department of Molecular and Cell Biology, University of Texas at Dallas, 2601 N. Floyd Road, Richardson, TX 75080, USA
| | | | | | | | | | | |
Collapse
|
267
|
Kobor MS, Greenblatt J. Regulation of transcription elongation by phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:261-275. [PMID: 12213657 DOI: 10.1016/s0167-4781(02)00457-8] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The synthesis of mRNA by RNA polymerase II (RNAPII) is a multistep process that is regulated by different mechanisms. One important aspect of transcriptional regulation is phosphorylation of components of the transcription apparatus. The phosphorylation state of RNAPII carboxy-terminal domain (CTD) is controlled by a variety of protein kinases and at least one protein phosphatase. We discuss emerging genetic and biochemical evidence that points to a role of these factors not only in transcription initiation but also in elongation and possibly termination. In addition, we review phosphorylation events involving some of the general transcription factors (GTFs) and other regulatory proteins. As an interesting example, we describe the modulation of transcription associated kinases and phosphatase by the HIV Tat protein. We focus on bringing together recent findings and propose a revised model for the RNAPII phosphorylation cycle.
Collapse
Affiliation(s)
- Michael S Kobor
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
268
|
Ainbinder E, Revach M, Wolstein O, Moshonov S, Diamant N, Dikstein R. Mechanism of rapid transcriptional induction of tumor necrosis factor alpha-responsive genes by NF-kappaB. Mol Cell Biol 2002; 22:6354-62. [PMID: 12192035 PMCID: PMC135646 DOI: 10.1128/mcb.22.18.6354-6362.2002] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NF-kappaB induces the expression of genes involved in immune response, apoptosis, inflammation, and the cell cycle. Certain NF-kappaB-responsive genes are activated rapidly after the cell is stimulated by cytokines and other extracellular signals. However, the mechanism by which these genes are activated is not entirely understood. Here we report that even though NF-kappaB interacts directly with TAF(II)s, induction of NF-kappaB by tumor necrosis factor alpha (TNF-alpha) does not enhance TFIID recruitment and preinitiation complex formation on some NF-kappaB-responsive promoters. These promoters are bound by the transcription apparatus prior to TNF-alpha stimulus. Using the immediate-early TNF-alpha-responsive gene A20 as a prototype promoter, we found that the constitutive association of the general transcription apparatus is mediated by Sp1 and that this is crucial for rapid transcriptional induction by NF-kappaB. In vitro transcription assays confirmed that NF-kappaB plays a postinitiation role since it enhances the transcription reinitiation rate whereas Sp1 is required for the initiation step. Thus, the consecutive effects of Sp1 and NF-kappaB on the transcription process underlie the mechanism of their synergy and allow rapid transcriptional induction in response to cytokines.
Collapse
Affiliation(s)
- Elena Ainbinder
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
269
|
Davis JA, Takagi Y, Kornberg RD, Asturias FA. Structure of the yeast RNA polymerase II holoenzyme: Mediator conformation and polymerase interaction. Mol Cell 2002; 10:409-15. [PMID: 12191485 DOI: 10.1016/s1097-2765(02)00598-1] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The holoenzyme formed by RNA polymerase II (RNAPII) and the Mediator complex is the target of transcriptional regulators in vivo. A three-dimensional structure of the yeast holoenzyme has been generated from electron microscopic images of single holoenzyme particles. Extensive changes in Mediator conformation required for interaction with RNAPII have been modeled by correlating the polymerase-bound and free Mediator structures. Determination of the precise orientation of the RNAPII in the holoenzyme indicates that Mediator contacts are centered on the RNAPII Rpb3/Rpb11 heterodimer, the eukaryotic homolog of the alpha(2) homodimer involved in transcription regulation in prokaryotes. Implications for the possible mechanism of transcription regulation by Mediator are discussed.
Collapse
Affiliation(s)
- Joshua A Davis
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
270
|
Abstract
Activators, chromatin-modifying enzymes, and basal transcription factors unite to activate genes, but are recruited in a precise order to promoters. The timing of the activation of transcription and the ordered recruitment of factors to promoters are the engines which, at the right moment and for the right length of time, drive the transcriptional regulation of each gene throughout the life of a cell.
Collapse
Affiliation(s)
- Maria Pia Cosma
- Telethon Institute of Genetics and Medicine, via P. Castellino 111, 80131 Naples, Italy.
| |
Collapse
|
271
|
Malik S, Wallberg AE, Kang YK, Roeder RG. TRAP/SMCC/mediator-dependent transcriptional activation from DNA and chromatin templates by orphan nuclear receptor hepatocyte nuclear factor 4. Mol Cell Biol 2002; 22:5626-37. [PMID: 12101254 PMCID: PMC133960 DOI: 10.1128/mcb.22.15.5626-5637.2002] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The orphan nuclear receptor hepatocyte nuclear factor 4 (HNF-4) regulates the expression of many liver-specific genes both during development and in the adult animal. Towards understanding the molecular mechanisms by which HNF-4 functions, we have established in vitro transcription systems that faithfully recapitulate HNF-4 activity. Here we have focused on the coactivator requirements for HNF-4, especially for the multicomponent TRAP/SMCC/Mediator complex that has emerged as the central regulatory module of the transcription apparatus. Using a system that has been reconstituted from purified transcription factors, as well as one consisting of unfractionated nuclear extract from which TRAP/SMCC/Mediator has been depleted by specific antibodies, we demonstrate a strong dependence of HNF-4 function on this coactivator. Importantly, we further show a TRAP/SMCC/Mediator-dependence for HNF-4 transcriptional activation from chromatin templates. The latter involves cooperation with the histone acetyltransferase-containing coactivator p300, in accord with a synergistic mode of action of the two divergent coactivators. We also show that HNF-4 and TRAP/SMCC/Mediator can interact physically. This interaction likely involves primary HNF-4 activation function 2 (AF-2)-dependent interactions with the TRAP220 subunit of TRAP/SMCC/Mediator and secondary (AF-2-independent) interactions with TRAP170/RGR1. Finally, recruitment experiments using immobilized templates strongly suggest that the functional consequences of the physical interaction probably are manifested at a postrecruitment step in the activation pathway.
Collapse
Affiliation(s)
- Sohail Malik
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
272
|
Johnson KM, Wang J, Smallwood A, Arayata C, Carey M. TFIID and human mediator coactivator complexes assemble cooperatively on promoter DNA. Genes Dev 2002; 16:1852-63. [PMID: 12130544 PMCID: PMC186393 DOI: 10.1101/gad.995702] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Activator-mediated transcription complex assembly on templates lacking chromatin requires the interaction of activators with two major coactivator complexes: TFIID and mediator. Here we employed immobilized template assays to correlate transcriptional activation with mediator and TFIID recruitment. In reactions reconstituted with purified proteins, we found that activator, TFIID, and mediator engage in reciprocal cooperative interactions to form a complex on promoter DNA. Preassembly of the coactivator complex accelerates the rate of transcription in a cell-free system depleted of TFIID and mediator. Our data argue that this coactivator complex is an intermediate in the assembly of an active transcription complex. Furthermore, the reciprocity of the interactions demonstrates that the complex could in principle be nucleated with either TFIID or mediator, implying that alternative pathways could be utilized to generate diversity in the way activators function in vivo.
Collapse
Affiliation(s)
- Kristina M Johnson
- Department of Biological Chemistry, University of California, Los Angeles School of Medicine, Los Angeles, California 90095-1737, USA
| | | | | | | | | |
Collapse
|
273
|
de la Cera T, Herrero P, Moreno-Herrero F, Chaves RS, Moreno F. Mediator factor Med8p interacts with the hexokinase 2: implication in the glucose signalling pathway of Saccharomyces cerevisiae. J Mol Biol 2002; 319:703-14. [PMID: 12054864 DOI: 10.1016/s0022-2836(02)00377-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In the presence of glucose the protein hexokinase 2 (Hxk2p), normally resident in the cytosol, is translocated to the nucleus where it impairs the activation of transcription of the glucose-repressed genes HXK1, GLK1 and SUC2, and promotes the activation of transcription of the glucose-induced genes HXK2 and HXT1. Here, we demonstrate the involvement of an heptameric motif, named the MED8 site, in the direct binding of the mediator protein Med8p, either as a monomer or as a homodimer. Because this site was previously involved in the Hxk2p-dependent glucose-induced regulation of gene transcription, we tested whether Hxk2p interacts with Med8p. Our results show that Hxk2 and Med8 proteins are physically associated and that this Hxk2p-Med8p interaction is of physiological significance because both proteins have been found interacting together in a cluster with DNA fragments containing the MED8 site. We conclude that Hxk2p operates through the MED8 site, by interacting with Med8p, in the glucose signal transduction pathway of Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- T de la Cera
- Departamento de Bioquímica y Biología Molecular, Inst. Univ. de Biotoecn. de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | | | | | | | | |
Collapse
|
274
|
Abstract
Coactivators are diverse and multifunctional proteins that act downstream of DNA-binding activators to stimulate transcription. Recent studies elucidate the temporal sequence in which coactivators are recruited to target promoters, and how their enzymatic properties and molecular interactions culminate in transcriptional initiation.
Collapse
Affiliation(s)
- Mark Featherstone
- McGill Cancer Centre, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
275
|
Cheung E, Zarifyan AS, Kraus WL. Histone H1 represses estrogen receptor alpha transcriptional activity by selectively inhibiting receptor-mediated transcription initiation. Mol Cell Biol 2002; 22:2463-71. [PMID: 11909941 PMCID: PMC133703 DOI: 10.1128/mcb.22.8.2463-2471.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromatin is the physiological template for many nuclear processes in eukaryotes, including transcription by RNA polymerase II. In vivo, chromatin is assembled from genomic DNA, core histones, linker histones such as histone H1, and nonhistone chromatin-associated proteins. Histone H1 is thought to act as a general repressor of transcription by promoting the compaction of chromatin into higher-order structures. We have used a biochemical approach, including an in vitro chromatin assembly and transcription system, to examine the effects of histone H1 on estrogen receptor alpha (ER alpha)-mediated transcription with chromatin templates. We show that histone H1 acts as a potent repressor of ligand- and coactivator-regulated transcription by ER alpha. Histone H1 exerts its repressive effect without inhibiting the sequence-specific binding of ER alpha to chromatin or the overall extent of targeted acetylation of nucleosomal histones by the coactivator p300. Instead, histone H1 acts by blocking a specific step in the ER alpha-dependent transcription process, namely, transcription initiation, without affecting transcription reinitiation. Together, our data indicate that histone H1 acts selectively to reduce the overall level of productive transcription initiation by restricting promoter accessibility and preventing the ER alpha-dependent formation of a stable transcription pre-initiation complex.
Collapse
Affiliation(s)
- Edwin Cheung
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
276
|
Pokholok DK, Hannett NM, Young RA. Exchange of RNA polymerase II initiation and elongation factors during gene expression in vivo. Mol Cell 2002; 9:799-809. [PMID: 11983171 DOI: 10.1016/s1097-2765(02)00502-6] [Citation(s) in RCA: 260] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We have systematically explored the in vivo occupancy of promoters and open reading frames by components of the RNA polymerase II transcription initiation and elongation apparatuses in yeast. RNA polymerase II, Mediator, and the general transcription factors (GTFs) were recruited to all promoters tested upon gene activation. RNA polymerase II, TFIIS, Spt5, and, unexpectedly, the Paf1/Cdc73 complex, were found associated with open reading frames. The presence of the Paf1/Cdc73 complex on ORFs in vivo suggests a novel function for this complex in elongation. Elongator was not detected under any conditions tested, and further analysis revealed that the majority of elongator is cytoplasmic. These results suggest a revised model for transcription initiation and elongation apparatuses in living cells.
Collapse
Affiliation(s)
- Dmitry K Pokholok
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | | | |
Collapse
|
277
|
Abstract
Overcoming local DNA rigidity is required to perform three-dimensional DNA-protein configuration at promoter regions. The abundant architectural nonhistone chromosomal HMG box proteins are nonsequence-specific; however, they have been established to specifically recognize distorted DNA. Using transient transfection to overexpress two different members of the HMGB-1/2 family of DNA architectural factors, we demonstrate that these proteins provide a general enhancement in reporter gene expression irrespective of the promoter being considered. Evidences are also provided indicating that stimulation may not be achieved by recruitment of the proteins by regulatory factors or as a consequence of major chromatin unfolding as previously suggested. Interestingly, the influence of the HMG box proteins under study was overridden when the promoters were either induced or stimulated by Trichostatin A (TSA) but recovered upon extended induction period. These results also support the concept that the architectural role of these proteins can contribute to the preinitiation complex assembly required for basal transcription, but to a much lesser extent to the poised promoter scaffolding characteristic of activated transcription.
Collapse
Affiliation(s)
- Stéphane Veilleux
- Département de Biochimie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | | |
Collapse
|
278
|
Martin RG, Gillette WK, Martin NI, Rosner JL. Complex formation between activator and RNA polymerase as the basis for transcriptional activation by MarA and SoxS in Escherichia coli. Mol Microbiol 2002; 43:355-70. [PMID: 11985714 DOI: 10.1046/j.1365-2958.2002.02748.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transcriptional activation in Escherichia coli is generally considered to proceed via the formation of an activator-DNA-RNA polymerase (RNP) ternary complex. Although the order of assembly of the three elements is thermodynamically irrelevant, a prevalent idea is that the activator-DNA complex is formed first, and recruitment of RNP to the binary complex occurs subsequently. We show here that the closely related activators, MarA, SoxS and Rob, which activate the same family of genes, are capable of forming complexes with RNP core or holoenzyme in the absence of DNA. In addition, we find that the ternary MarA-DNA-RNP and SoxS-DNA-RNP complexes are more stable than the corresponding Rob-DNA-RNP complex, although the binary Rob-DNA complex is often more stable than the corresponding MarA- or SoxS-DNA complexes. These results may help to explain certain puzzling aspects of the MarA/SoxS/Rob system. We suggest that activator-RNP complexes scan the chromosome and bind promoters of the regulon more efficiently than either RNP or the activators alone.
Collapse
Affiliation(s)
- Robert G Martin
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0560, USA.
| | | | | | | |
Collapse
|
279
|
Christova R, Oelgeschläger T. Association of human TFIID-promoter complexes with silenced mitotic chromatin in vivo. Nat Cell Biol 2002; 4:79-82. [PMID: 11744923 DOI: 10.1038/ncb733] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
When eukaryotic cells enter mitosis, transcription is abruptly silenced. Earlier studies indicated that most transcription factors and RNA polymerase II (RNAP II) are displaced when chromatin is condensed into mitotic chromosomes. A more recent study suggested that hitherto unidentified factors might 'bookmark' previously active genes for rapid reactivation after cell division. Here we used chromatin immunoprecipitation (ChIP) assays to examine the association of TFIID, TFIIB, NC2 and RNAP II with various gene promoters in asynchronous and mitotic human cell populations. We show that TFIID and TFIIB can remain associated with active gene promoters during mitosis whereas RNA polymerase II is displaced, and also that NC2, originally identified as ubiquitous repressor of transcription, is associated with active gene promoters in asynchronous cell populations and is displaced from some, but not all, genes in mitotic cells. Consistent with the remarkable stability of TFIID-promoter complexes observed in vitro, our data suggest that these complexes can withstand condensation of chromatin into transcriptionally silent chromosomes. Stable TFIID-promoter complexes are therefore implicated in the propagation of cell-type-specific gene expression patterns through cell division.
Collapse
Affiliation(s)
- Rossitza Christova
- Eukaryotic Gene Regulation Laboratory, Marie Curie Research Institute, The Chart, Oxted, Surrey RH8 0TL, UK
| | | |
Collapse
|
280
|
Ferguson HA, Kugel JF, Goodrich JA. Kinetic and mechanistic analysis of the RNA polymerase II transcrption reaction at the human interleukin-2 promoter. J Mol Biol 2001; 314:993-1006. [PMID: 11743717 DOI: 10.1006/jmbi.2000.5215] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interleukin-2 (IL-2) is a cytokine critical for the proper stimulation of T-cells during the mammalian immune response. Shortly after T-cell stimulation, transcription of the IL-2 gene is upregulated. Here, we studied the kinetic mechanism of basal transcription at the IL-2 promoter using a human in vitro RNA polymerase II transcription system. We experimentally divided the transcription reaction into discrete steps, including preinitiation complex formation, initiation, escape commitment, and promoter escape. Using pre-steady state approaches, we measured the rate at which each of these steps occurs. We found that the rate of functional preinitiation complex formation limits the overall rate of transcription at the IL-2 promoter under the conditions described here. Furthermore, we found that the recruitment of TFIIF and RNA polymerase II to a TFIID/TFIIA/TFIIB/promoter complex dictates the rate of preinitiation complex formation. The rate of synthesis of 28 nt RNA from preinitiation complexes was rapid compared to the rate of preinitiation complex formation. Moreover, we found that the synthesis of a four nucleotide RNA was necessary and sufficient to rapidly complete the escape commitment step of transcription at the IL-2 promoter. Comparative experiments with the adenovirus major late promoter revealed that, while the overall mechanism of transcription is the same at the two promoters, promoter sequence and/or architecture dictate the rate of promoter escape. We present a kinetic model for a single round of basal transcription at the IL-2 promoter that provides insight into mechanisms by which the IL-2 gene is transcriptionally regulated.
Collapse
Affiliation(s)
- H A Ferguson
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Campus Box 215, Boulder, CO.80309-0215, USA
| | | | | |
Collapse
|
281
|
Zhou M, Nekhai S, Bharucha DC, Kumar A, Ge H, Price DH, Egly JM, Brady JN. TFIIH inhibits CDK9 phosphorylation during human immunodeficiency virus type 1 transcription. J Biol Chem 2001; 276:44633-40. [PMID: 11572868 DOI: 10.1074/jbc.m107466200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tat stimulates human immunodeficiency virus, type 1 (HIV-1), transcription elongation by recruitment of the human transcription elongation factor P-TEFb, consisting of CDK9 and cyclin T1, to the TAR RNA structure. It has been demonstrated further that CDK9 phosphorylation is required for high affinity binding of Tat/P-TEFb to the TAR RNA structure and that the state of P-TEFb phosphorylation may regulate Tat transactivation. We now demonstrate that CDK9 phosphorylation is uniquely regulated in the HIV-1 preinitiation and elongation complexes. The presence of TFIIH in the HIV-1 preinitiation complex inhibits CDK9 phosphorylation. As TFIIH is released from the elongation complex between +14 and +36, CDK9 phosphorylation is observed. In contrast to the activity in the "soluble" complex, phosphorylation of CDK9 is increased by the presence of Tat in the transcription complexes. Consistent with these observations, we have demonstrated that purified TFIIH directly inhibits CDK9 autophosphorylation. By using recombinant TFIIH subcomplexes, our results suggest that the XPB subunit of TFIIH is responsible for this inhibition of CDK9 phosphorylation. Interestingly, our results further suggest that the phosphorylated form of CDK9 is the active kinase for RNA polymerase II carboxyl-terminal domain phosphorylation.
Collapse
Affiliation(s)
- M Zhou
- Virus Tumor Biology Section, Basic Research Laboratory, Division of Basic Sciences, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
282
|
Kang JS, Kim SH, Hwang MS, Han SJ, Lee YC, Kim YJ. The structural and functional organization of the yeast mediator complex. J Biol Chem 2001; 276:42003-10. [PMID: 11555651 DOI: 10.1074/jbc.m105961200] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Mediator complex of Saccharomyces cerevisiae is required for diverse aspects of transcription by RNA polymerase II (pol II). Mediator is composed of two functionally distinct subcomplexes, Rgr1 and Srb4. To identify the structures and functions of each subcomplex, we expressed recombinant proteins for each subunit and assayed their interactions with each other and with basal transcription proteins. The Rgr1 subcomplex is composed of the Gal11 module, which binds activators, and the Med9/10 module. The Med9/10 module is required for both transcriptional activation and repression, and these activities appear to be carried out by two submodules. Proteins in the Med9 submodule interact physically and genetically with Srb10/11, suggesting that the Med9 submodule mediates the repression of pol II. Purified recombinant Srb4 subcomplex stimulated basal transcription of pol II but had little effect on activated transcription and phosphorylation of the C-terminal domain of the Rpb1 subunit of pol II. Both subcomplexes of Mediator interacted with a distinct set of basal transcription factors and pol II. The modular organization of Mediator and the associated functions suggest that the Mediator complex may recruit and/or stabilize the preinitiation complex through several points of contact with transcriptional regulators and basal transcription factors.
Collapse
Affiliation(s)
- J S Kang
- National Creative Research Center for Genome Regulation, Department of Biochemistry, Yonsei University, Seoul 120-749, Korea
| | | | | | | | | | | |
Collapse
|
283
|
Mittler G, Kremmer E, Timmers HT, Meisterernst M. Novel critical role of a human Mediator complex for basal RNA polymerase II transcription. EMBO Rep 2001; 2:808-13. [PMID: 11559591 PMCID: PMC1084041 DOI: 10.1093/embo-reports/kve186] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Human Mediator complexes have been described as important bridging factors that enhance the effect of activators in purified systems and in chromatin. Here we report a novel basal function of a human Mediator complex. A monoclonal antibody was generated that depleted the majority of Mediator components from crude cell extracts. The removal of human Mediator abolished transcription by RNA polymerase II. This was observed on all genes tested, on TATA-containing and TATA-less promoters, both in the presence and absence of activators. To identify the relevant complex a combined biochemical and immunopurification protocol was applied. Two variants termed Mediator and basal Mediator were functionally and structurally distinguished. Basal Mediator function relies on additional constraints, which is reflected in the observation that it is essential in crude but not in purified systems. We conclude that basal Mediator is a novel general transcription factor of RNA polymerase II.
Collapse
Affiliation(s)
- G Mittler
- Institute of Molecular Immunology, Department for Gene Expression, GSF-National Research Center for Environment and Health, Marchionini-Strasse 25, D-81377 München, Germany
| | | | | | | |
Collapse
|
284
|
Bhoite LT, Yu Y, Stillman DJ. The Swi5 activator recruits the Mediator complex to the HO promoter without RNA polymerase II. Genes Dev 2001; 15:2457-69. [PMID: 11562354 PMCID: PMC312787 DOI: 10.1101/gad.921601] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Regulation of HO gene expression in the yeast Saccharomyces cerevisiae is intricately orchestrated by an assortment of gene-specific DNA-binding and non-DNA binding regulators. Binding of the early G1 transcription factor Swi5 to the distal URS1 element of the HO promoter initiates a cascade of events through recruitment of the Swi/Snf and SAGA complexes. In late G1, binding of transcription factor SBF to promoter proximal sequences results in the timely expression of HO. In this work we describe an important additional layer of complexity to the current model by identifying a connection between Swi5 and the Mediator/RNA polymerase II holoenzyme complex. We show that Swi5 recruits Mediator to HO by specific interaction with the Gal11 module of the Mediator complex. Importantly, binding of both the Gal11 and Srb4 mediator components to the upstream region of HO is independent of the SBF factor. Swi/Snf is required for Mediator binding, and genetic suppression experiments suggest that Swi/Snf and Mediator act in the same genetic pathway of HO activation. Experiments examining the kinetics of binding show that Mediator binds to HO promoter elements 1.5 kb upstream of the transcription start site in early G1, but this binding occurs without RNA Pol II. RNA Pol II does not bind to HO until late G1, when HO is actively transcribed, and binding occurs exclusively to the TATA region.
Collapse
Affiliation(s)
- L T Bhoite
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA
| | | | | |
Collapse
|
285
|
Winkler GS, Petrakis TG, Ethelberg S, Tokunaga M, Erdjument-Bromage H, Tempst P, Svejstrup JQ. RNA polymerase II elongator holoenzyme is composed of two discrete subcomplexes. J Biol Chem 2001; 276:32743-9. [PMID: 11435442 DOI: 10.1074/jbc.m105303200] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elongator is a histone acetyltransferase complex that associates with the elongating form of RNA polymerase II. We purified Elongator to virtual homogeneity via a rapid three-step procedure based largely on affinity chromatography. The purified factor, holo-Elongator, is a labile six-subunit factor composed of two discrete subcomplexes: one comprised of the previously identified Elp1, Elp2, and Elp3 proteins and another comprised of three novel polypeptides, termed Elp4, Elp5, and Elp6. Disruption of the yeast genes encoding the new Elongator proteins confers phenotypes indistinguishable from those previously described for the other elp mutants, and concomitant disruption of genes encoding proteins in either subcomplex does not confer new phenotypes. Taken together, our results indicate that holo-Elongator is a functional entity in vitro as well as in vivo. Metazoan homologues of Elp1 and Elp3 have previously been reported. We cloned the human homologue of yeast ELP4 and show that this gene is ubiquitously expressed in human tissues.
Collapse
Affiliation(s)
- G S Winkler
- Mechanisms of Gene Transcription Laboratory, Imperial Cancer Research Fund, Clare Hall Laboratories, Blanche Lane, South Mimms, Herts, EN6 3LD, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
286
|
Gawlas K, Stunnenberg HG. Differential transcription of the orphan receptor RORbeta in nuclear extracts derived from Neuro2A and HeLa cells. Nucleic Acids Res 2001; 29:3424-32. [PMID: 11504880 PMCID: PMC55847 DOI: 10.1093/nar/29.16.3424] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
An important model system for studying the process leading to productive transcription is provided by the superfamily of nuclear receptors, which are for the most part ligand-controlled transcription factors. Over the past years several 'orphan' nuclear receptors have been isolated for which no ligand has yet been identified. Very little is known about how these 'orphan' receptors regulate transcription. In this study we have analysed the biochemical and transcriptional properties of the neuronally expressed orphan nuclear receptor RORbeta (NR1F2) and compared them with the retinoic acid receptor heterodimer RXRalpha-RARalpha (NR2B1-NR1B1) and Gal-VP16 in vitro. Although RORbeta binds to its DNA-binding sites with comparatively low affinity, it efficiently directs transcription in nuclear extracts derived from a neuronal cell line, Neuro2A, but not in nuclear extracts from non-neuronal HeLa cells. In contrast, RXRalpha-RARalpha and the acidic transcription factor Gal-VP16 support transcription in Neuro2A and HeLa nuclear extracts equally efficiently. These observations point to a different (co)factor requirement for transactivation by members of the NR1 subfamily of nuclear receptors.
Collapse
Affiliation(s)
- K Gawlas
- Department of Molecular Biology, NCMLS, University of Nijmegen, Geert Grooteplein Zuid 26, 6525 GA Nijmegen, The Netherlands
| | | |
Collapse
|
287
|
Stewart JJ, Stargell LA. The stability of the TFIIA-TBP-DNA complex is dependent on the sequence of the TATAAA element. J Biol Chem 2001; 276:30078-84. [PMID: 11402056 DOI: 10.1074/jbc.m105276200] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To determine the mechanistic differences between canonical and noncanonical TATA elements, we compared the functional activity of two sequences: TATAAA (canonical) and CATAAA (noncanonical). The TATAAA element can support high levels of transcription in vivo, whereas the CATAAA element is severely defective for this function. This dramatic functional difference is not likely to be due to a difference in TBP (TATA-binding protein) binding efficiency because protein-DNA complex studies in vitro indicate little difference between the two DNA sequences in the formation and stability of the TBP-DNA complex. In addition, the binding and stability of the TFIIB-TBP-DNA complex is similar for the two elements. In striking contrast, the TFIIA-TBP-DNA complex is significantly less stable on the CATAAA element when compared with the TATAAA element. A role for TFIIA in distinguishing between TATAAA and CATAAA in vivo was tested by fusing a subunit of TFIIA to TBP. We found that fusion of TFIIA to TBP dramatically increases transcription from CATAAA in yeast cells. Taken together, these results indicate that the stability of the TFIIA-TBP complex depends strongly on the sequence of the core promoter element and that the TFIIA-TBP complex plays an important function in recognizing optimal promoters in vivo.
Collapse
Affiliation(s)
- J J Stewart
- Pacific Biomedical Research Center, University of Hawaii, Honolulu, Hawaii 96813, USA
| | | |
Collapse
|
288
|
Abstract
Using an immobilized template assay, we observed two steps in assembly of the yeast RNA polymerase I (Pol I) preinitiation complex: stable binding of upstream activating factor (UAF) followed by recruitment of Pol I-Rrn3p and core factor (CF). Pol I is required for stable association of CF with the promoter and can be recruited in the absence of Rrn3p. Upon transcription initiation, Pol I-Rrn3p and CF dissociate from the promoter while UAF remains behind. These findings support a novel model in which the Pol I basal machinery cycles on and off the promoter with each round of transcription. This model accounts for previous observations that rRNA synthesis may be controlled by regulating both promoter accessibility and polymerase activity.
Collapse
Affiliation(s)
- P Aprikian
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | |
Collapse
|
289
|
Abstract
Gene expression is controlled by interactions between activators and coactivators. These interactions in turn are regulated by signaling pathways and by chromatin remodeling events. Recent studies indicate that the final arbiter of gene regulation is a coactivator scaffold at the promoter.
Collapse
Affiliation(s)
- K M Johnson
- Department of Biological Chemistry, UCLA School of Medicine, 10833 LeConte Avenue, Los Angeles, California 90095-1737, USA
| | | | | |
Collapse
|
290
|
Park JM, Werner J, Kim JM, Lis JT, Kim YJ. Mediator, not holoenzyme, is directly recruited to the heat shock promoter by HSF upon heat shock. Mol Cell 2001; 8:9-19. [PMID: 11511356 DOI: 10.1016/s1097-2765(01)00296-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Activators of RNA polymerase II (Pol II) transcription have been shown to bind several coactivators and basal factors in vitro. Whether such interactions play a primary regulatory role in recruiting these factors to activator-associated chromosomal target sites in living cells remains unclear. Here, we show that upon heat shock the Pol II-free form of Mediator is rapidly recruited to HSF binding sites. Unlike the TAFs and Pol II, the interaction between Mediator and HSF on chromosomal loci is direct and mechanistically separable from the preinitiation complex assembly step. Therefore, the activator-Mediator interaction likely underlies the initiation of signal transfer from enhancer-bound activators to the basal transcription machinery.
Collapse
Affiliation(s)
- J M Park
- National Creative Research Initiative Center for Genome Regulation, Department of Biochemistry, Yonsei University, 120-749, Seoul, South Korea
| | | | | | | | | |
Collapse
|
291
|
Abstract
The Mediator complex is essential for basal and regulated expression of nearly all RNA polymerase II-dependent genes in the Saccharomyces cerevisiae genome. Mediator acts as a bridge, conveying regulatory information from enhancers and other control elements to the promoter. It is now clear that Mediator-like complexes also exist in higher eukaryotic cells and that they have an important role in metazoan transcriptional regulation. However, the exact mechanism of Mediator-dependent transcriptional regulation remains unclear. We review here some recent advances in our understanding of Mediator structure and function. We also discuss a model to account for the functional and evolutionary relationship between yeast and metazoan Mediators. As an appendix to this review, we have created a database, MEDB, in which we have compiled information about all the S. cerevisiae Mediator subunits and their homologues in other eukaryotic cells (http://bio.lundberg.gu.se/medb/).
Collapse
Affiliation(s)
- C M Gustafsson
- Department of Medical Nutrition, Karolinska Institute, Novum, S-141 86 Huddinge, Sweden.
| | | |
Collapse
|
292
|
Abstract
Over the past decade, various components of the transcription machinery have been identified as potential targets for activators. Recently, metazoan versions of yeast Mediator have been isolated and found to act as key coactivators to many transcription factors. Recent work has defined the composition, function and biology of metazoan mediator complexes, which has led us to propose a new nomenclature for the variously named versions of the mediator complex.
Collapse
Affiliation(s)
- C Rachez
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
293
|
Cosma MP, Panizza S, Nasmyth K. Cdk1 triggers association of RNA polymerase to cell cycle promoters only after recruitment of the mediator by SBF. Mol Cell 2001; 7:1213-20. [PMID: 11430824 DOI: 10.1016/s1097-2765(01)00266-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Activation of HO in yeast involves recruitment of transcription factors in two waves. The first is triggered by inactivation of Cdk1 at the end of mitosis, which promotes import into the nucleus of the Swi5 transcription factor. Swi5 recruits the Swi/Snf chromatin-remodeling complex, which then facilitates recruitment of the SAGA histone acetylase, which in turn permits the binding of the SBF transcription factor. We show here that SBF then recruits the SRB/mediator complex and that this process occurs in the absence of Cdk1 activity. The second wave is triggered by reactivation of Cdk1, which leads to recruitment of PolII, TFIIB, and TFIIH. RNA polymerase is, therefore, recruited to HO in two steps and not as a holoenzyme. A similar sequence of events occurs at other SBF-regulated promoters, such as CLN1, CLN2, and PCL1.
Collapse
Affiliation(s)
- M P Cosma
- Research Institute of Molecular Pathology, A-1030, Vienna, Austria
| | | | | |
Collapse
|
294
|
Balbín M, Fueyo A, Knäuper V, López JM, Alvarez J, Sánchez LM, Quesada V, Bordallo J, Murphy G, López-Otín C. Identification and enzymatic characterization of two diverging murine counterparts of human interstitial collagenase (MMP-1) expressed at sites of embryo implantation. J Biol Chem 2001; 276:10253-62. [PMID: 11113146 DOI: 10.1074/jbc.m009586200] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Remodeling of fibrillar collagen in mouse tissues has been widely attributed to the activity of collagenase-3 (matrix metalloproteinase-13 (MMP-13)), the main collagenase identified in this species. This proposal has been largely based on the repeatedly unproductive attempts to detect the presence in murine tissues of interstitial collagenase (MMP-1), a major collagenase in many species, including humans. In this work, we have performed an extensive screening of murine genomic and cDNA libraries using as probe the full-length cDNA for human MMP-1. We report the identification of two novel members of the MMP gene family which are contained within the cluster of MMP genes located at murine chromosome 9. The isolated cDNAs contain open reading frames of 464 and 463 amino acids and are 82% identical, displaying all structural features characteristic of archetypal MMPs. Comparison for sequence similarities revealed that the highest percentage of identities was found with human interstitial collagenase (MMP-1). The new proteins were tentatively called Mcol-A and Mcol-B (Murine collagenase-like A and B). Analysis of the enzymatic activity of the recombinant proteins revealed that both are catalytically autoactivable but only Mcol-A is able to degrade synthetic peptides and type I and II fibrillar collagen. Both Mcol-A and Mcol-B genes are located in the A1-A2 region of mouse chromosome 9, Mcol-A occupying a position syntenic to the human MMP-1 locus at 11q22. Analysis of the expression of these novel MMPs in murine tissues revealed their predominant presence during mouse embryogenesis, particularly in mouse trophoblast giant cells. According to their structural and functional characteristics, we propose that at least one of these novel members of the MMP family, Mcol-A, may play roles as interstitial collagenase in murine tissues and could represent a true orthologue of human MMP-1.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Chromosome Mapping
- Cloning, Molecular
- Collagen/metabolism
- Collagenases/chemistry
- Collagenases/genetics
- DNA, Complementary/metabolism
- Embryo Implantation
- Embryo, Mammalian/enzymology
- Female
- Gene Expression Regulation, Developmental
- Gene Library
- Genetic Vectors
- Humans
- In Situ Hybridization, Fluorescence
- Matrix Metalloproteinase 1/chemistry
- Matrix Metalloproteinase 9/chemistry
- Matrix Metalloproteinase 9/metabolism
- Matrix Metalloproteinases/chemistry
- Matrix Metalloproteinases/genetics
- Mice
- Models, Molecular
- Molecular Sequence Data
- Multigene Family
- Open Reading Frames
- Phylogeny
- Protein Structure, Tertiary
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Uterus/enzymology
- Uterus/metabolism
Collapse
Affiliation(s)
- M Balbín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, 33006-Oviedo, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
295
|
Liu J, Akoulitchev S, Weber A, Ge H, Chuikov S, Libutti D, Wang XW, Conaway JW, Harris CC, Conaway RC, Reinberg D, Levens D. Defective interplay of activators and repressors with TFIH in xeroderma pigmentosum. Cell 2001; 104:353-63. [PMID: 11239393 DOI: 10.1016/s0092-8674(01)00223-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inherited mutations of the TFIIH helicase subunits xeroderma pigmentosum (XP) B or XPD yield overlapping DNA repair and transcription syndromes. The high risk of cancer in these patients is not fully explained by the repair defect. The transcription defect is subtle and has proven more difficult to evaluate. Here, XPB and XPD mutations are shown to block transcription activation by the FUSE Binding Protein (FBP), a regulator of c-myc expression, and repression by the FBP Interacting Repressor (FIR). Through TFIIH, FBP facilitates transcription until promoter escape, whereas after initiation, FIR uses TFIIH to delay promoter escape. Mutations in TFIIH that impair regulation by FBP and FIR affect proper regulation of c-myc expression and have implications in the development of malignancy.
Collapse
Affiliation(s)
- J Liu
- Gene Regulation Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|