251
|
Ren S, Wang Y, Yue F, Cheng X, Dang R, Qiao Q, Sun X, Li X, Jiang Q, Yao J, Qin H, Wang G, Liao X, Gao D, Xia J, Zhang J, Hu B, Yan J, Wang Y, Xu M, Han Y, Tang X, Chen X, He C, Hu Z. The paraventricular thalamus is a critical thalamic area for wakefulness. Science 2018; 362:429-434. [PMID: 30361367 DOI: 10.1126/science.aat2512] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 09/06/2018] [Indexed: 12/16/2022]
Abstract
Clinical observations indicate that the paramedian region of the thalamus is a critical node for controlling wakefulness. However, the specific nucleus and neural circuitry for this function remain unknown. Using in vivo fiber photometry or multichannel electrophysiological recordings in mice, we found that glutamatergic neurons of the paraventricular thalamus (PVT) exhibited high activities during wakefulness. Suppression of PVT neuronal activity caused a reduction in wakefulness, whereas activation of PVT neurons induced a transition from sleep to wakefulness and an acceleration of emergence from general anesthesia. Moreover, our findings indicate that the PVT–nucleus accumbens projections and hypocretin neurons in the lateral hypothalamus to PVT glutamatergic neurons’ projections are the effector pathways for wakefulness control. These results demonstrate that the PVT is a key wakefulness-controlling nucleus in the thalamus.
Collapse
Affiliation(s)
- Shuancheng Ren
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China
| | - Yaling Wang
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China
| | - Faguo Yue
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China
- Department of Sleep and Psychology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiaofang Cheng
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China
| | - Ruozhi Dang
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China
| | - Qicheng Qiao
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China
| | - Xueqi Sun
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China
| | - Xin Li
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China
| | - Qian Jiang
- Department of Sleep and Psychology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Jiwei Yao
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
| | - Han Qin
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
| | - Guanzhong Wang
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China
| | - Xiang Liao
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
| | - Dong Gao
- Department of Sleep and Psychology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Jianxia Xia
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China
| | - Jun Zhang
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China
| | - Bo Hu
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China
| | - Junan Yan
- Brain Research Center, Third Military Medical University, Chongqing 400038, China
| | - Yanjiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Min Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yunyun Han
- Department of Neurobiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangdong Tang
- Sleep Medicine Center, Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaowei Chen
- Brain Research Center, Third Military Medical University, Chongqing 400038, China.
| | - Chao He
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China.
| | - Zhian Hu
- Department of Physiology, Collaborative Innovation Center for Brain Science, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
252
|
A highly collateralized thalamic cell type with arousal-predicting activity serves as a key hub for graded state transitions in the forebrain. Nat Neurosci 2018; 21:1551-1562. [PMID: 30349105 PMCID: PMC6441588 DOI: 10.1038/s41593-018-0251-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 08/19/2018] [Indexed: 11/09/2022]
Abstract
Sleep cycles consist of rapid alterations between arousal states
including transient perturbation of sleep rhythms, microarousals and full-blown
awake states. Here we demonstrate that the calretinin containing (CR+) neurons
in the dorsal medial thalamus (DMT) constitute a key diencephalic node that
mediates distinct levels of forebrain arousal. Cell-type-specific activation of
DMT/CR+ cells could elicit active locomotion lasting for minutes, stereotyped
microarousals or transient disruption of sleep rhythms depending on the
parameters of the stimulation. State transitions could be induced in both
slow-wave and REM sleep. The DMT/CR+ cells displayed elevated activity prior to
arousal, received selective subcortical inputs and innervated several forebrain
sites via highly branched axons. Together, these features enable DMT/CR+ cells
to summate subcortical arousal information and effectively transfer it as a
rapid, synchronous signal to several forebrain regions to modulate the level of
arousal.
Collapse
|
253
|
A central amygdala to zona incerta projection is required for acquisition and remote recall of conditioned fear memory. Nat Neurosci 2018; 21:1515-1519. [PMID: 30349111 DOI: 10.1038/s41593-018-0248-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 08/28/2018] [Indexed: 11/08/2022]
Abstract
The formation and retrieval of conditioned fear memories critically depend on the amygdala. Here we identify an inhibitory projection from somatostatin-positive neurons in the central amygdala to parvalbumin-positive neurons in the zona incerta that is required for both recent and remote fear memories. Thus, the amygdala inhibitory input to parvalbumin-positive neurons in the zona incerta, a nucleus not previously implicated in fear memory, is an essential component of the fear memory circuitry.
Collapse
|
254
|
Ren J, Friedmann D, Xiong J, Liu CD, Ferguson BR, Weerakkody T, DeLoach KE, Ran C, Pun A, Sun Y, Weissbourd B, Neve RL, Huguenard J, Horowitz MA, Luo L. Anatomically Defined and Functionally Distinct Dorsal Raphe Serotonin Sub-systems. Cell 2018; 175:472-487.e20. [PMID: 30146164 PMCID: PMC6173627 DOI: 10.1016/j.cell.2018.07.043] [Citation(s) in RCA: 297] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 07/01/2018] [Accepted: 07/25/2018] [Indexed: 01/21/2023]
Abstract
The dorsal raphe (DR) constitutes a major serotonergic input to the forebrain and modulates diverse functions and brain states, including mood, anxiety, and sensory and motor functions. Most functional studies to date have treated DR serotonin neurons as a single population. Using viral-genetic methods, we found that subcortical- and cortical-projecting serotonin neurons have distinct cell-body distributions within the DR and differentially co-express a vesicular glutamate transporter. Further, amygdala- and frontal-cortex-projecting DR serotonin neurons have largely complementary whole-brain collateralization patterns, receive biased inputs from presynaptic partners, and exhibit opposite responses to aversive stimuli. Gain- and loss-of-function experiments suggest that amygdala-projecting DR serotonin neurons promote anxiety-like behavior, whereas frontal-cortex-projecting neurons promote active coping in the face of challenge. These results provide compelling evidence that the DR serotonin system contains parallel sub-systems that differ in input and output connectivity, physiological response properties, and behavioral functions.
Collapse
Affiliation(s)
- Jing Ren
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Drew Friedmann
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Jing Xiong
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Cindy D Liu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Brielle R Ferguson
- Department of Neurology and Neurological Sciences, Stanford, CA 94305, USA
| | - Tanya Weerakkody
- Department of Neurology and Neurological Sciences, Stanford, CA 94305, USA
| | - Katherine E DeLoach
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Chen Ran
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Albert Pun
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Yanwen Sun
- Department of Physics, Stanford University, Stanford, CA 94305, USA
| | - Brandon Weissbourd
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Rachael L Neve
- Delivery Technology Core, Massachusetts General Hospital, Cambridge, MA 02139, USA
| | - John Huguenard
- Department of Neurology and Neurological Sciences, Stanford, CA 94305, USA
| | - Mark A Horowitz
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
255
|
Fenster RJ, Lebois LAM, Ressler KJ, Suh J. Brain circuit dysfunction in post-traumatic stress disorder: from mouse to man. Nat Rev Neurosci 2018; 19:535-551. [PMID: 30054570 PMCID: PMC6148363 DOI: 10.1038/s41583-018-0039-7] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a prevalent, debilitating and sometimes deadly consequence of exposure to severe psychological trauma. Although effective treatments exist for some individuals, they are limited. New approaches to intervention, treatment and prevention are therefore much needed. In the past few years, the field has rapidly developed a greater understanding of the dysfunctional brain circuits underlying PTSD, a shift in understanding that has been made possible by technological revolutions that have allowed the observation and perturbation of the macrocircuits and microcircuits thought to underlie PTSD-related symptoms. These advances have allowed us to gain a more translational knowledge of PTSD, have provided further insights into the mechanisms of risk and resilience and offer promising avenues for therapeutic discovery.
Collapse
Affiliation(s)
- Robert J Fenster
- Division of Depression and Anxiety Disorders, McLean Hospital Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Lauren A M Lebois
- Division of Depression and Anxiety Disorders, McLean Hospital Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Kerry J Ressler
- Division of Depression and Anxiety Disorders, McLean Hospital Department of Psychiatry, Harvard Medical School, Belmont, MA, USA.
| | - Junghyup Suh
- Division of Depression and Anxiety Disorders, McLean Hospital Department of Psychiatry, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
256
|
Hao L, Yang Z, Gong P, Lei J. Maintenance of postsynaptic neuronal excitability by a positive feedback loop of postsynaptic BDNF expression. Cogn Neurodyn 2018; 12:403-416. [PMID: 30137877 DOI: 10.1007/s11571-018-9479-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/17/2018] [Accepted: 02/04/2018] [Indexed: 12/28/2022] Open
Abstract
Experiments have demonstrated that in mice, the PVT strongly projects to the CeL and participates in the formation of fear memories by synaptic potentiation in the amygdala. Herein, we propose a mathematical model based on a positive feedback loop of BDNF expression and signaling to investigate PVT manipulation of synaptic potentiation. The model is validated by comparisons with experimental observations. We find that a high postsynaptic firing frequency after stimulation is induced by presynaptic Ca2+ when the rates of BDNF secretion from PVT and LA neurons to the CeL are above a threshold value. Moreover, the positive feedback of postsynaptic BDNF production is important for the maintenance of the high excitability of the SOM+ CeL neuron after stimulation. The model brings insight into the underlying mechanisms of PVT modulation of synaptic potentiation at LA-CeL synapses and provides a framework of understanding other similar processes associated with synaptic plasticity.
Collapse
Affiliation(s)
- Lijie Hao
- 1School of Mathematics and Systems Science and LMIB, Beihang University, Beijing, 100191 China
| | - Zhuoqin Yang
- 1School of Mathematics and Systems Science and LMIB, Beihang University, Beijing, 100191 China.,2School of Physics, University of Sydney, Sydney, NSW 2006 Australia
| | - Pulin Gong
- 2School of Physics, University of Sydney, Sydney, NSW 2006 Australia
| | - Jinzhi Lei
- 3Zhou Pei-Yuan Center for Applied Mathematics, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
257
|
Jackson J, Karnani MM, Zemelman BV, Burdakov D, Lee AK. Inhibitory Control of Prefrontal Cortex by the Claustrum. Neuron 2018; 99:1029-1039.e4. [PMID: 30122374 PMCID: PMC6168643 DOI: 10.1016/j.neuron.2018.07.031] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/17/2018] [Accepted: 07/18/2018] [Indexed: 11/21/2022]
Abstract
The claustrum is a small subcortical nucleus that has extensive excitatory connections with many cortical areas. While the anatomical connectivity from the claustrum to the cortex has been studied intensively, the physiological effect and underlying circuit mechanisms of claustrocortical communication remain elusive. Here we show that the claustrum provides strong, widespread, and long-lasting feedforward inhibition of the prefrontal cortex (PFC) sufficient to silence ongoing neural activity. This claustrocortical feedforward inhibition was predominantly mediated by interneurons containing neuropeptide Y, and to a lesser extent those containing parvalbumin. Therefore, in contrast to other long-range excitatory inputs to the PFC, the claustrocortical pathway is designed to provide overall inhibition of cortical activity. This unique circuit organization allows the claustrum to rapidly and powerfully suppress cortical networks and suggests a distinct role for the claustrum in regulating cognitive processes in prefrontal circuits. The claustrum strongly inhibits, rather than excites, prefrontal cortex Prefrontal NPY and PV interneurons are activated by the claustrum Claustrocortical feedforward inhibition is predominantly mediated by NPY neurons
Collapse
Affiliation(s)
- Jesse Jackson
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | | | - Boris V Zemelman
- Department of Neuroscience, Center for Learning and Memory, University of Texas, University Station, C7000 Austin, TX 78712, USA
| | - Denis Burdakov
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Albert K Lee
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|
258
|
Rahman MM, Shukla A, Chattarji S. Extinction recall of fear memories formed before stress is not affected despite higher theta activity in the amygdala. eLife 2018; 7:35450. [PMID: 30102149 PMCID: PMC6125126 DOI: 10.7554/elife.35450] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 08/08/2018] [Indexed: 11/13/2022] Open
Abstract
Stress is known to exert its detrimental effects not only by enhancing fear, but also by impairing its extinction. However, in earlier studies stress exposure preceded both processes. Thus, compared to unstressed animals, stressed animals had to extinguish fear memories that were strengthened by prior exposure to stress. Here, we dissociate the two processes to examine if stress specifically impairs the acquisition and recall of fear extinction. Strikingly, when fear memories were formed before stress exposure, thereby allowing animals to initiate extinction from comparable levels of fear, recall of fear extinction was unaffected. Despite this, we observed a persistent increase in theta activity in the BLA. Theta activity in the mPFC, by contrast, was normal. Stress also disrupted mPFC-BLA theta-frequency synchrony and directional coupling. Thus, in the absence of the fear-enhancing effects of stress, the expression of fear during and after extinction reflects normal regulation of theta activity in the mPFC, not theta hyperactivity in the amygdala.
Collapse
Affiliation(s)
| | | | - Sumantra Chattarji
- National Centre for Biological Sciences, Bangalore, India.,Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India.,Centre for Integrative Physiology, Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
259
|
Functional Connectivity of Chronic Cocaine Use Reveals Progressive Neuroadaptations in Neocortical, Striatal, and Limbic Networks. eNeuro 2018; 5:eN-NWR-0081-18. [PMID: 30073194 PMCID: PMC6071197 DOI: 10.1523/eneuro.0081-18.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/25/2018] [Accepted: 07/10/2018] [Indexed: 12/21/2022] Open
Abstract
Brain imaging studies indicate that chronic cocaine users display altered functional connectivity between prefrontal cortical, thalamic, striatal, and limbic regions; however, the use of cross-sectional designs in these studies precludes measuring baseline brain activity prior to cocaine use. Animal studies can circumvent this limitation by comparing functional connectivity between baseline and various time points after chronic cocaine use. In the present study, adult male Long–Evans rats were trained to self-administer cocaine intravenously for 6 h sessions daily over 14 consecutive days. Two additional groups serving as controls underwent sucrose self-administration or exposure to the test chambers alone. Functional magnetic resonance imaging was conducted before self-administration and after 1 and 14 d of abstinence (1d and 14d Abs). After 1d Abs from cocaine, there were increased clustering coefficients in brain areas involved in reward seeking, learning, memory, and autonomic and affective processing, including amygdala, hypothalamus, striatum, hippocampus, and thalamus. Similar changes in clustering coefficient after 1d Abs from sucrose were evident in predominantly thalamic brain regions. Notably, there were no changes in strength of functional connectivity at 1 or 14 d after either cocaine or sucrose self-administration. The results suggest that cocaine and sucrose can change the arrangement of functional connectivity of brain regions involved in cognition and emotion, but that these changes dissipate across the early stages of abstinence. The study also emphasizes the importance of including baseline measures in longitudinal functional neuroimaging designs seeking to assess functional connectivity in the context of substance use.
Collapse
|
260
|
Jhang J, Lee H, Kang MS, Lee HS, Park H, Han JH. Anterior cingulate cortex and its input to the basolateral amygdala control innate fear response. Nat Commun 2018; 9:2744. [PMID: 30013065 PMCID: PMC6048069 DOI: 10.1038/s41467-018-05090-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 06/12/2018] [Indexed: 11/23/2022] Open
Abstract
Prefrontal brain areas are implicated in the control of fear behavior. However, how prefrontal circuits control fear response to innate threat is poorly understood. Here, we show that the anterior cingulate cortex (ACC) and its input to the basolateral nucleus of amygdala (BLA) contribute to innate fear response to a predator odor in mice. Optogenetic inactivation of the ACC enhances freezing response to fox urine without affecting conditioned freezing. Conversely, ACC stimulation robustly inhibits both innate and conditioned freezing. Circuit tracing and slice patch recordings demonstrate a monosynaptic glutamatergic connectivity of ACC-BLA but no or very sparse ACC input to the central amygdala. Finally, our optogenetic manipulations of the ACC-BLA projection suggest its inhibitory control of innate freezing response to predator odors. Together, our results reveal the role of the ACC and its projection to BLA in innate fear response to olfactory threat stimulus. Brain circuits that control innate fear response are essential for an animal’s survival. Here, the authors report how the anterior cingulate cortex and its projection to amygdala control the innate fear response in mice.
Collapse
Affiliation(s)
- Jinho Jhang
- Department of Biological Sciences, KAIST Institute for the BioCentury (KIB), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Hyoeun Lee
- Department of Structure & Function of Neural Network, Korea Brain Research Institute (KBRI), 61 Cheomdan-ro, Dong-gu, Daegu, 41068, Korea
| | - Min Soo Kang
- Department of Biological Sciences, KAIST Institute for the BioCentury (KIB), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Han-Sol Lee
- Department of Biological Sciences, KAIST Institute for the BioCentury (KIB), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Hyungju Park
- Department of Structure & Function of Neural Network, Korea Brain Research Institute (KBRI), 61 Cheomdan-ro, Dong-gu, Daegu, 41068, Korea.
| | - Jin-Hee Han
- Department of Biological Sciences, KAIST Institute for the BioCentury (KIB), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.
| |
Collapse
|
261
|
Raij T, Nummenmaa A, Marin MF, Porter D, Furtak S, Setsompop K, Milad MR. Prefrontal Cortex Stimulation Enhances Fear Extinction Memory in Humans. Biol Psychiatry 2018; 84:129-137. [PMID: 29246436 PMCID: PMC5936658 DOI: 10.1016/j.biopsych.2017.10.022] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 10/07/2017] [Accepted: 10/10/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND Animal fear conditioning studies have illuminated neuronal mechanisms of learned associations between sensory stimuli and fear responses. In rats, brief electrical stimulation of the infralimbic cortex has been shown to reduce conditioned freezing during recall of extinction memory. Here, we translated this finding to humans with magnetic resonance imaging-navigated transcranial magnetic stimulation (TMS). METHODS Subjects (N = 28) were aversively conditioned to two different cues (day 1). During extinction learning (day 2), TMS was paired with one of the conditioned cues but not the other. TMS parameters were similar to those used in rat infralimbic cortex: brief pulse trains (300 ms at 20 Hz) starting 100 ms after cue onset, total of four trains (28 TMS pulses). TMS was applied to one of two targets in the left frontal cortex, one functionally connected (target 1) and the other unconnected (target 2, control) with a human homologue of infralimbic cortex in the ventromedial prefrontal cortex. Skin conductance responses were used as an index of conditioned fear. RESULTS During extinction recall (day 3), the cue paired with TMS to target 1 showed significantly reduced skin conductance responses, whereas TMS to target 2 had no effect. Further, we built group-level maps that weighted TMS-induced electric fields and diffusion magnetic resonance imaging connectivity estimates with fear level. These maps revealed distinct cortical regions and large-scale networks associated with reduced versus increased fear. CONCLUSIONS The results showed that spatiotemporally focused TMS may enhance extinction learning and/or consolidation of extinction memory and suggested novel cortical areas and large-scale networks for targeting in future studies.
Collapse
Affiliation(s)
- Tommi Raij
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Massachusetts Institute of Technology, Charlestown, Massachusetts; Harvard Medical School, Boston, Massachusetts.
| | - Aapo Nummenmaa
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Marie-France Marin
- Harvard Medical School, Boston, MA, USA,MGH Department of Psychiatry, MA, USA
| | | | | | - Kawin Setsompop
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Mohammed R. Milad
- Harvard Medical School, Boston, MA, USA,MGH Department of Psychiatry, MA, USA
| |
Collapse
|
262
|
Godoy LD, Rossignoli MT, Delfino-Pereira P, Garcia-Cairasco N, de Lima Umeoka EH. A Comprehensive Overview on Stress Neurobiology: Basic Concepts and Clinical Implications. Front Behav Neurosci 2018; 12:127. [PMID: 30034327 PMCID: PMC6043787 DOI: 10.3389/fnbeh.2018.00127] [Citation(s) in RCA: 420] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022] Open
Abstract
Stress is recognized as an important issue in basic and clinical neuroscience research, based upon the founding historical studies by Walter Canon and Hans Selye in the past century, when the concept of stress emerged in a biological and adaptive perspective. A lot of research after that period has expanded the knowledge in the stress field. Since then, it was discovered that the response to stressful stimuli is elaborated and triggered by the, now known, stress system, which integrates a wide diversity of brain structures that, collectively, are able to detect events and interpret them as real or potential threats. However, different types of stressors engage different brain networks, requiring a fine-tuned functional neuroanatomical processing. This integration of information from the stressor itself may result in a rapid activation of the Sympathetic-Adreno-Medullar (SAM) axis and the Hypothalamus-Pituitary-Adrenal (HPA) axis, the two major components involved in the stress response. The complexity of the stress response is not restricted to neuroanatomy or to SAM and HPA axes mediators, but also diverge according to timing and duration of stressor exposure, as well as its short- and/or long-term consequences. The identification of neuronal circuits of stress, as well as their interaction with mediator molecules over time is critical, not only for understanding the physiological stress responses, but also to understand their implications on mental health.
Collapse
Affiliation(s)
- Lívea Dornela Godoy
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Polianna Delfino-Pereira
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Norberto Garcia-Cairasco
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Eduardo Henrique de Lima Umeoka
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
263
|
Davis P, Reijmers LG. The dynamic nature of fear engrams in the basolateral amygdala. Brain Res Bull 2018; 141:44-49. [PMID: 29269319 PMCID: PMC6005719 DOI: 10.1016/j.brainresbull.2017.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/15/2017] [Accepted: 12/07/2017] [Indexed: 12/27/2022]
Abstract
Great progress has been made in our understanding of how so-called memory engrams in the brain enable the storage and retrieval of memories. This has led to the realization that across the lifetime of an animal, the spatial and temporal properties of a memory engram are not fixed, but instead are subjected to dynamic modifications that can be both dependent and independent on additional experiences. The dynamic nature of engrams is especially relevant in the case of fear memories, whose contributions to an animal's evolutionary fitness depend on a delicate balance of stability and flexibility. Though fear memories have the potential to last a lifetime, their expression also needs to be properly tuned to prevent maladaptive behavior, such as seen in patients with post-traumatic stress disorder. To achieve this balance, fear engrams are subjected to complex spatiotemporal dynamics, making them informative examples of the "dynamic engram". In this review, we discuss the current understanding of the dynamic nature of fear engrams in the basolateral amygdala, a brain region that plays a central role in fear memory encoding and expression. We propose that this understanding can be further advanced by studying how fast dynamics, such as oscillatory circuit activity, support the storage and retrieval of fear engrams that can be stable over long time intervals.
Collapse
Affiliation(s)
- Patrick Davis
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States; Medical Scientist Training Program and Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, United States
| | - Leon G Reijmers
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States.
| |
Collapse
|
264
|
Pollack GA, Bezek JL, Lee SH, Scarlata MJ, Weingast LT, Bergstrom HC. Cued fear memory generalization increases over time. Learn Mem 2018; 25:298-308. [PMID: 29907637 PMCID: PMC6004064 DOI: 10.1101/lm.047555.118] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/13/2018] [Indexed: 01/04/2023]
Abstract
Fear memory is a highly stable and durable form of memory, even over vast (remote) time frames. Nevertheless, some elements of fear memory can be forgotten, resulting in generalization. The purpose of this study is to determine how cued fear memory generalizes over time and measure underlying patterns of cortico-amygdala synaptic plasticity. We established generalization gradients at recent (1-d) and remote (30-d) retention intervals following auditory cued fear conditioning in adult male C57BL/6 mice. Results revealed a flattening of the generalization gradient (increased generalization) that was dissociated from contextual fear generalization, indicating a specific influence of time on cued fear memory performance. This effect reversed after a brief exposure to the novel stimulus soon after learning. Measurements from cortico-amygdala imaging of the activity-regulated cytoskeletal Arc/arg 3.1 (Arc) protein using immunohistochemistry after cued fear memory retrieval revealed a stable pattern of Arc expression in the dorsolateral amygdala, but temporally dynamic expression in the cortex. Over time, increased fear memory generalization was associated with a reduction in Arc expression in the agranular insular and infralimbic cortices while discrimination learning was associated with increased Arc expression in the prelimbic cortex. These data identify the dorsolateral amygdala, medial prefrontal, and insular cortices as loci for synaptic plasticity underlying cued fear memory generalization over time.
Collapse
Affiliation(s)
- Gabrielle A Pollack
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York 12604 USA
| | - Jessica L Bezek
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York 12604 USA
| | - Serena H Lee
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York 12604 USA
| | - Miranda J Scarlata
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York 12604 USA
| | - Leah T Weingast
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York 12604 USA
| | - Hadley C Bergstrom
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York 12604 USA
| |
Collapse
|
265
|
Beas BS, Wright BJ, Skirzewski M, Leng Y, Hyun JH, Koita O, Ringelberg N, Kwon HB, Buonanno A, Penzo MA. The locus coeruleus drives disinhibition in the midline thalamus via a dopaminergic mechanism. Nat Neurosci 2018; 21:963-973. [PMID: 29915192 PMCID: PMC6035776 DOI: 10.1038/s41593-018-0167-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/25/2018] [Indexed: 12/13/2022]
Abstract
The paraventricular nucleus of the thalamus (PVT) is increasingly being recognized as a critical node linking stress detection to the emergence of adaptive behavioral responses to stress. However, despite growing evidence implicating the PVT in stress processing, the neural mechanisms by which stress impacts PVT neurocircuitry and promotes stressed states remain unknown. Here we show that stress exposure drives a rapid and persistent reduction of inhibitory transmission onto projection neurons of the posterior PVT (pPVT). This stress-induced disinhibition of the pPVT was associated with a locus coeruleus (LC)-mediated rise in the extracellular concentration of dopamine in the midline thalamus, required the function of dopamine D2 receptors on PVT neurons and increased sensitivity to stress. Our findings define the LC as an important modulator of PVT function: by controlling the inhibitory tone of the pPVT, it modulates the excitability of pPVT projection neurons and controls stress responsivity.
Collapse
Affiliation(s)
- B Sofia Beas
- National Institute of Mental Health, Bethesda, MD, USA
| | | | - Miguel Skirzewski
- National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Yan Leng
- National Institute of Mental Health, Bethesda, MD, USA
| | - Jung Ho Hyun
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Omar Koita
- National Institute of Mental Health, Bethesda, MD, USA
| | | | - Hyung-Bae Kwon
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.,Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Andres Buonanno
- National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Mario A Penzo
- National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
266
|
Otis JM, Fitzgerald MK, Yousuf H, Burkard JL, Drake M, Mueller D. Prefrontal Neuronal Excitability Maintains Cocaine-Associated Memory During Retrieval. Front Behav Neurosci 2018; 12:119. [PMID: 29962941 PMCID: PMC6010542 DOI: 10.3389/fnbeh.2018.00119] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/28/2018] [Indexed: 11/13/2022] Open
Abstract
Presentation of drug-associated cues provokes craving and drug seeking, and elimination of these associative memories would facilitate recovery from addiction. Emotionally salient memories are maintained during retrieval, as particular pharmacologic or optogenetic perturbations of memory circuits during retrieval, but not after, can induce long-lasting memory impairments. For example, in rats, inhibition of noradrenergic beta-receptors, which control intrinsic neuronal excitability, in the prelimbic medial prefrontal cortex (PL-mPFC) can cause long-term memory impairments that prevent subsequent cocaine-induced reinstatement. The physiologic mechanisms that allow noradrenergic signaling to maintain drug-associated memories during retrieval, however, are unclear. Here we combine patch-clamp electrophysiology ex vivo and behavioral neuropharmacology in vivo to evaluate the mechanisms that maintain drug-associated memory during retrieval in rats. Consistent with previous studies, we find that cocaine experience increases the intrinsic excitability of pyramidal neurons in PL-mPFC. In addition, we now find that this intrinsic plasticity positively predicts the retrieval of a cocaine-induced conditioned place preference (CPP) memory, suggesting that such plasticity may contribute to drug-associated memory retrieval. In further support of this, we find that pharmacological blockade of a cAMP-dependent signaling cascade, which allows noradrenergic signaling to elevate neuronal excitability, is required for memory maintenance during retrieval. Thus, inhibition of PL-mPFC neuronal excitability during memory retrieval not only leads to long-term deficits in the memory, but this memory deficit provides protection against subsequent cocaine-induced reinstatement. These data reveal that PL-mPFC intrinsic neuronal excitability maintains a cocaine-associated memory during retrieval and suggest a unique mechanism whereby drug-associated memories could be targeted for elimination.
Collapse
Affiliation(s)
- James M Otis
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States.,Department of Psychiatry, University of North Carolina-Chapel Hill, Chapel Hill, NC, United States
| | - Michael K Fitzgerald
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Hanna Yousuf
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Jake L Burkard
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Matthew Drake
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Devin Mueller
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States.,Department of Basic Sciences, Ponce Health Sciences University-School of Medicine/Ponce Research Institute, Ponce, Puerto Rico
| |
Collapse
|
267
|
Neuropeptide signalling in the central nucleus of the amygdala. Cell Tissue Res 2018; 375:93-101. [DOI: 10.1007/s00441-018-2862-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/17/2018] [Indexed: 12/26/2022]
|
268
|
Diehl MM, Bravo-Rivera C, Rodriguez-Romaguera J, Pagan-Rivera PA, Burgos-Robles A, Roman-Ortiz C, Quirk GJ. Active avoidance requires inhibitory signaling in the rodent prelimbic prefrontal cortex. eLife 2018; 7:34657. [PMID: 29851381 PMCID: PMC5980229 DOI: 10.7554/elife.34657] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/06/2018] [Indexed: 12/27/2022] Open
Abstract
Much is known about the neural circuits of conditioned fear and its relevance to understanding anxiety disorders, but less is known about other anxiety-related behaviors such as active avoidance. Using a tone-signaled, platform-mediated avoidance task, we observed that pharmacological inactivation of the prelimbic prefrontal cortex (PL) delayed avoidance. Surprisingly, optogenetic silencing of PL glutamatergic neurons did not delay avoidance. Consistent with this, inhibitory but not excitatory responses of rostral PL neurons were associated with avoidance training. To test the importance of these inhibitory responses, we optogenetically stimulated PL neurons to counteract the tone-elicited reduction in firing rate. Photoactivation of rostral (but not caudal) PL neurons at 4 Hz impaired avoidance. These findings suggest that inhibitory responses of rostral PL neurons signal the avoidability of a potential threat and underscore the importance of designing behavioral optogenetic studies based on neuronal firing responses.
Collapse
Affiliation(s)
- Maria M Diehl
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Christian Bravo-Rivera
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Jose Rodriguez-Romaguera
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Pablo A Pagan-Rivera
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Anthony Burgos-Robles
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Ciorana Roman-Ortiz
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Gregory J Quirk
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| |
Collapse
|
269
|
Staib JM, Della Valle R, Knox DK. Disruption of medial septum and diagonal bands of Broca cholinergic projections to the ventral hippocampus disrupt auditory fear memory. Neurobiol Learn Mem 2018; 152:71-79. [PMID: 29783059 DOI: 10.1016/j.nlm.2018.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 04/24/2018] [Accepted: 05/17/2018] [Indexed: 01/08/2023]
Abstract
In classical fear conditioning, a neutral conditioned stimulus (CS) is paired with an aversive unconditioned stimulus (US), which leads to a fear memory. If the CS is repeatedly presented without the US after fear conditioning, the formation of an extinction memory occurs, which inhibits fear memory expression. A previous study has demonstrated that selective cholinergic lesions in the medial septum and vertical limb of the diagonal bands of Broca (MS/vDBB) prior to fear and extinction learning disrupt contextual fear memory discrimination and acquisition of extinction memory. MS/vDBB cholinergic neurons project to a number of substrates that are critical for fear and extinction memory. However, it is currently unknown which of these efferent projections are critical for contextual fear memory discrimination and extinction memory. To address this, we induced cholinergic lesions in efferent targets of MS/vDBB cholinergic neurons. These included the dorsal hippocampus (dHipp), ventral hippocampus (vHipp), medial prefrontal cortex (mPFC), and in the mPFC and dHipp combined. None of these lesion groups exhibited deficits in contextual fear memory discrimination or extinction memory. However, vHipp cholinergic lesions disrupted auditory fear memory. Because MS/vDBB cholinergic neurons are the sole source of acetylcholine in the vHipp, these results suggest that MS/vDBB cholinergic input to the vHipp is critical for auditory fear memory. Taken together with previous findings, the results of this study suggest that MS/vDBB cholinergic neurons are critical for fear and extinction memory, though further research is needed to elucidate the role of MS/vDBB cholinergic neurons in these types of emotional memory.
Collapse
Affiliation(s)
- Jennifer M Staib
- University of Delaware, Department of Psychological and Brain Sciences, United States
| | - Rebecca Della Valle
- University of Delaware, Department of Psychological and Brain Sciences, United States
| | - Dayan K Knox
- University of Delaware, Department of Psychological and Brain Sciences, United States.
| |
Collapse
|
270
|
Mechanisms of Sex Differences in Fear and Posttraumatic Stress Disorder. Biol Psychiatry 2018; 83:876-885. [PMID: 29331353 DOI: 10.1016/j.biopsych.2017.11.016] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 11/24/2022]
Abstract
Following sexual maturity, females disproportionately have higher rates of posttraumatic stress disorder (PTSD) and experience greater symptom severity and chronicity as compared with males. This observation has led many to examine sex differences in PTSD risk factors. Though relatively few, these studies reveal that the root causes of PTSD sex differences are complex, and partly represent interactions between sex-specific nonbiological and biological risk factors, which differentially shape PTSD vulnerability. Moreover, these studies suggest that sex-specific PTSD vulnerability is partly regulated by sex differences in fear systems. Fear, which represents a highly conserved adaptive response to threatening environmental stimuli, becomes pathological in trauma- and stress-based psychiatric syndromes, such as PTSD. Over the last 30 years, considerable progress has been made in understanding normal and pathological molecular and behavioral fear processes in humans and animal models. Thus, fear mechanisms represent a tractable PTSD biomarker in the study of sex differences in fear. In this review, we discuss studies that examine nonbiological and biological sex differences that contribute to normal and pathological fear behaviors in humans and animal models. This, we hope, will shed greater light on the potential mechanisms that contribute to increased PTSD vulnerability in females.
Collapse
|
271
|
Ashokan A, Lim JWH, Hang N, Mitra R. Complex housing causes a robust increase in dendritic complexity and spine density of medial prefrontal cortical neurons. Sci Rep 2018; 8:7308. [PMID: 29743496 PMCID: PMC5943332 DOI: 10.1038/s41598-018-25399-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 04/18/2018] [Indexed: 12/22/2022] Open
Abstract
Prelimbic cortex and infralimbic cortex, parts of the ventromedial prefrontal cortex, are critical brain regions for generating a flexible behavioral response to changing environmental contingencies. This includes the role of these brain structures in the extinction of learned fear, decision making and retrieval of remote memories. Dendritic structure of medial prefrontal cortex neurons retains significant structural plasticity in adulthood. This has been mainly demonstrated as dendritic atrophy and loss of dendritic spines due to chronic stress. It remains unknown if housing condition of the animals itself can cause opposing changes in the dendritic organization. In that backdrop, here we report that short-term increase in complexity of the housing causes a robust increase in complexity of dendritic architecture of prelimbic and infralimbic neurons. This is reflected in the dendritic expansion of prelimbic neurons and increase in spine density of prelimbic and infralimbic neurons. These results suggest that non-invasive changes in the housing environment can be harnessed to study brain reserves for the flexible and species-typical behaviors.
Collapse
Affiliation(s)
- Archana Ashokan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Jamien Wee Han Lim
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Nicholas Hang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Rupshi Mitra
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
272
|
Pfeiffer R, Wallace M, Lense M. Social motor coordination during adult-child interactions. Ann N Y Acad Sci 2018; 1423:275-283. [PMID: 29727030 DOI: 10.1111/nyas.13651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 12/01/2022]
Abstract
Social motor coordination (SMC) pertains to the timing of contingent movements during social interactions and is of high relevance for successful social and musical interactions. Semi-automated, objective methods are increasingly being used to analyze SMC, though it is unclear if these methods are feasible in naturalistic settings with young children. The purpose of the current preliminary study was to explore SMC in adult-child dyads during semi-structured social interactions. Thirteen dyads (mean age of children = 36 months) participated in a predictable turn-taking task from a social communication assessment, and a semi-automated frame-difference approach was used to capture movement activity. Relative timing and activity approaches revealed that, while there is some evidence of co-occurring movement, the dyad predominantly exhibited patterns of responsive movement activity (e.g., turn taking or alternating movement) consistent with the activity's structure. Future work may extend these approaches to social musical interactions in order to examine movement coordination and prosocial behavior during joint music-making activities with young children.
Collapse
Affiliation(s)
- Rita Pfeiffer
- Program for Music, Mind, and Society, Vanderbilt University, Nashville, Tennessee
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Brain Institute, Nashville, Tennessee
| | - Mark Wallace
- Program for Music, Mind, and Society, Vanderbilt University, Nashville, Tennessee
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Brain Institute, Nashville, Tennessee
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Kennedy Center for Developmental Disabilities, Nashville, Tennessee
- Graduate School, Vanderbilt University, Nashville, Tennessee
- Department of Psychiatry, Vanderbilt University, Nashville, Tennessee
| | - Miriam Lense
- Program for Music, Mind, and Society, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Kennedy Center for Developmental Disabilities, Nashville, Tennessee
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, Tennessee
- The Curb Center for Art, Enterprise, and Policy, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
273
|
Role of Trpv1 and Trpv4 in surgical incision-induced tissue swelling and Fos-like immunoreactivity in the central nervous system of mice. Neurosci Lett 2018; 678:76-82. [PMID: 29733975 DOI: 10.1016/j.neulet.2018.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/05/2018] [Accepted: 05/01/2018] [Indexed: 11/24/2022]
Abstract
Pain management remains a major concern regarding the treatment of postoperative patients. Transient receptor potential (TRP) channels are considered to be new therapeutic targets for pain control. We investigated whether the genes Trpv1 and Trpv4 are involved in hind paw swelling caused after surgical incision in mice or in incision-induced Fos-like immunoreactivity (Fos-LI) levels in the central nervous system. Mice were divided into four groups: wild-type (WT) control, WT incision, Trpv1 knockout (Trpv1-/-) incision, and Trpv4 knockout (Trpv4-/-) incision. Mice were anesthetized, and only those in the incision, and not control, groups received a surgical incision to their right plantar hind paw. Changes in paw diameter and in Fos-LI levels in the dorsal horn of the spinal cord, paraventricular nucleus of the hypothalamus (PVN), paraventricular nucleus of the thalamus, and central amygdala were evaluated 2 h after the incision. There was no significant difference in the paw diameter among groups. In contrast, in laminae I-II of the dorsal horn of the spinal cord and PVN, Fos-LI was significantly higher in all incision groups than in the WT control group. A significant increase in Fos-positive cells was also observed in the dorsal horn laminae III-IV in Trpv1-/- and Trpv4-/- incision groups compared with the WT incision group. Our results indicate that surgical incision activates the PVN and that Trpv1 and Trpv4 might be involved in neuronal activity in the dorsal horn laminae III-IV after surgical incision.
Collapse
|
274
|
Moberly AH, Schreck M, Bhattarai JP, Zweifel LS, Luo W, Ma M. Olfactory inputs modulate respiration-related rhythmic activity in the prefrontal cortex and freezing behavior. Nat Commun 2018; 9:1528. [PMID: 29670106 PMCID: PMC5906445 DOI: 10.1038/s41467-018-03988-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 03/27/2018] [Indexed: 11/15/2022] Open
Abstract
Respiration and airflow through the nasal cavity are known to be correlated with rhythmic neural activity in the central nervous system. Here we show in rodents that during conditioned fear-induced freezing behavior, mice breathe at a steady rate (~4 Hz), which is correlated with a predominant 4-Hz oscillation in the prelimbic prefrontal cortex (plPFC), a structure critical for expression of conditioned fear behaviors. We demonstrate anatomical and functional connections between the olfactory pathway and plPFC via circuit tracing and optogenetics. Disruption of olfactory inputs significantly reduces the 4-Hz oscillation in the plPFC, but leads to prolonged freezing periods. Our results indicate that olfactory inputs can modulate rhythmic activity in plPFC and freezing behavior. Nasal airflow and olfactory bulb activity are linked to oscillations in cortical areas. This study shows olfactory input and respiration are correlated with oscillation in the prefrontal cortex during freezing behavior in mice, and attenuation of olfactory inputs can increase behavioral freezing.
Collapse
Affiliation(s)
- Andrew H Moberly
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| | - Mary Schreck
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Janardhan P Bhattarai
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Larry S Zweifel
- Department of Pharmacology and Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, 98115, USA
| | - Wenqin Luo
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
275
|
Cameron HA, Schoenfeld TJ. Behavioral and structural adaptations to stress. Front Neuroendocrinol 2018; 49:106-113. [PMID: 29421158 PMCID: PMC5963997 DOI: 10.1016/j.yfrne.2018.02.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/20/2018] [Accepted: 02/03/2018] [Indexed: 10/18/2022]
Abstract
Unpredictable aversive experiences, or stressors, lead to changes in depression- and anxiety-related behavior and to changes in hippocampal structure including decreases in adult neurogenesis, granule cell and pyramidal cell dendritic morphology, and volume. Here we review the relationship between these behavioral and structural changes and discuss the possibility that these changes may be largely adaptive. Specifically, we suggest that new neurons in the dentate gyrus enhance behavioral adaptability to changes in the environment, biasing behavior in novel situations based on previous experience with stress. Conversely, atrophy-like changes in the hippocampus and decreased adult neurogenesis following chronic stress may serve to limit stress responses and stabilize behavior during chronic stress.
Collapse
Affiliation(s)
- Heather A Cameron
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Timothy J Schoenfeld
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
276
|
Transient inactivation of the paraventricular nucleus of the thalamus enhances cue-induced reinstatement in goal-trackers, but not sign-trackers. Psychopharmacology (Berl) 2018; 235:999-1014. [PMID: 29285634 PMCID: PMC5871598 DOI: 10.1007/s00213-017-4816-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/13/2017] [Indexed: 12/21/2022]
Abstract
RATIONALE The paraventricular nucleus of the thalamus (PVT) has been shown to mediate cue-motivated behaviors, such as sign- and goal-tracking, as well as reinstatement of drug-seeking behavior. However, the role of the PVT in mediating individual variation in cue-induced drug-seeking behavior remains unknown. OBJECTIVES This study aimed to determine if inactivation of the PVT differentially mediates cue-induced drug-seeking behavior in sign-trackers and goal-trackers. METHODS Rats were characterized as sign-trackers (STs) or goal-trackers (GTs) based on their Pavlovian conditioned approach behavior. Rats were then exposed to 15 days of cocaine self-administration, followed by a 2-week forced abstinence period and then extinction training. Rats then underwent tests for cue-induced reinstatement and general locomotor activity, prior to which they received an infusion of either saline (control) or baclofen/muscimol (B/M) to inactivate the PVT. RESULTS Relative to control animals of the same phenotype, GTs show a robust increase in cue-induced drug-seeking behavior following PVT inactivation, whereas the behavior of STs was not affected. PVT inactivation did not affect locomotor activity in either phenotype. CONCLUSION In GTs, the PVT appears to inhibit the expression of drug-seeking, presumably by attenuating the incentive value of the drug cue. Thus, inactivation of the PVT releases this inhibition in GTs, resulting in an increase in cue-induced drug-seeking behavior. PVT inactivation did not affect cue-induced drug-seeking behavior in STs, suggesting that the role of the PVT in encoding the incentive motivational value of drug cues differs between STs and GTs.
Collapse
|
277
|
Grunfeld IS, Likhtik E. Mixed selectivity encoding and action selection in the prefrontal cortex during threat assessment. Curr Opin Neurobiol 2018; 49:108-115. [PMID: 29454957 PMCID: PMC5889962 DOI: 10.1016/j.conb.2018.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/27/2017] [Accepted: 01/17/2018] [Indexed: 01/18/2023]
Abstract
The medial prefrontal cortex (mPFC) regulates expression of emotional behavior. The mPFC combines multivariate information from its inputs, and depending on the imminence of threat, activates downstream networks that either increase or decrease the expression of anxiety-related motor behavior and autonomic activation. Here, we selectively highlight how subcortical input to the mPFC from two example structures, the amygdala and ventral hippocampus, help shape mixed selectivity encoding and action selection during emotional processing. We outline a model where prefrontal subregions modulate behavior along orthogonal motor dimensions, and exhibit connectivity that selects for expression of one behavioral strategy while inhibiting the other.
Collapse
Affiliation(s)
- Itamar S Grunfeld
- Biology Department, Hunter College, CUNY, United States; Neuroscience Collaborative, The Graduate Center, CUNY, United States
| | - Ekaterina Likhtik
- Biology Department, Hunter College, CUNY, United States; Neuroscience Collaborative, The Graduate Center, CUNY, United States.
| |
Collapse
|
278
|
Scheggia D, Zamberletti E, Realini N, Mereu M, Contarini G, Ferretti V, Managò F, Margiani G, Brunoro R, Rubino T, De Luca MA, Piomelli D, Parolaro D, Papaleo F. Remote memories are enhanced by COMT activity through dysregulation of the endocannabinoid system in the prefrontal cortex. Mol Psychiatry 2018. [PMID: 28630452 DOI: 10.1038/mp.2017.126] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The prefrontal cortex (PFC) is a crucial hub for the flexible modulation of recent memories (executive functions) as well as for the stable organization of remote memories. Dopamine in the PFC is implicated in both these processes and genetic variants affecting its neurotransmission might control the unique balance between cognitive stability and flexibility present in each individual. Functional genetic variants in the catechol-O-methyltransferase (COMT) gene result in a different catabolism of dopamine in the PFC. However, despite the established role played by COMT genetic variation in executive functions, its impact on remote memory formation and recall is still poorly explored. Here we report that transgenic mice overexpressing the human COMT-Val gene (COMT-Val-tg) present exaggerated remote memories (>50 days) while having unaltered recent memories (<24 h). COMT selectively and reversibly modulated the recall of remote memories as silencing COMT Val overexpression starting from 30 days after the initial aversive conditioning normalized remote memories. COMT genetic overactivity produced a selective overdrive of the endocannabinoid system within the PFC, but not in the striatum and hippocampus, which was associated with enhanced remote memories. Indeed, acute pharmacological blockade of CB1 receptors was sufficient to rescue the altered remote memory recall in COMT-Val-tg mice and increased PFC dopamine levels. These results demonstrate that COMT genetic variations modulate the retrieval of remote memories through the dysregulation of the endocannabinoid system in the PFC.
Collapse
Affiliation(s)
- D Scheggia
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - E Zamberletti
- Department of Biotechnology and Life Sciences, and Neuroscience Center, University of Insubria, Busto Arsizio, Italy
| | - N Realini
- Drug Discovery and Development, Istituto Italiano di Tecnologia, Genoa, Italy
| | - M Mereu
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy.,Dipartimento di Scienze del Farmaco, Universita' degli Studi di Padova, Largo Meneghetti, Padova, Italy
| | - G Contarini
- Dipartimento di Scienze del Farmaco, Universita' degli Studi di Padova, Largo Meneghetti, Padova, Italy
| | - V Ferretti
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - F Managò
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - G Margiani
- Department of Biomedical Sciences, Università di Cagliari, Cagliari, Italy
| | - R Brunoro
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - T Rubino
- Department of Biotechnology and Life Sciences, and Neuroscience Center, University of Insubria, Busto Arsizio, Italy
| | - M A De Luca
- Department of Biomedical Sciences, Università di Cagliari, Cagliari, Italy
| | - D Piomelli
- Drug Discovery and Development, Istituto Italiano di Tecnologia, Genoa, Italy.,Department of Anatomy and Neurobiology, Pharmacology and Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - D Parolaro
- Department of Biotechnology and Life Sciences, and Neuroscience Center, University of Insubria, Busto Arsizio, Italy
| | - F Papaleo
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
279
|
LeDoux J, Daw ND. Surviving threats: neural circuit and computational implications of a new taxonomy of defensive behaviour. Nat Rev Neurosci 2018; 19:269-282. [PMID: 29593300 DOI: 10.1038/nrn.2018.22] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Research on defensive behaviour in mammals has in recent years focused on elicited reactions; however, organisms also make active choices when responding to danger. We propose a hierarchical taxonomy of defensive behaviour on the basis of known psychological processes. Included are three categories of reactions (reflexes, fixed reactions and habits) and three categories of goal-directed actions (direct action-outcome behaviours and actions based on implicit or explicit forecasting of outcomes). We then use this taxonomy to guide a summary of findings regarding the underlying neural circuits.
Collapse
Affiliation(s)
- Joseph LeDoux
- Center for Neural Science and Department of Psychology, New York University, New York, NY, USA.,Department of Psychiatry and Department of Child and Adolescent Psychiatry, New York University Langone Medical School, New York, NY, USA.,Nathan Kline Institute for Psychiatry Research, Orangeburg, NY, USA
| | - Nathaniel D Daw
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
280
|
Jimenez JC, Su K, Goldberg AR, Luna VM, Biane JS, Ordek G, Zhou P, Ong SK, Wright MA, Zweifel L, Paninski L, Hen R, Kheirbek MA. Anxiety Cells in a Hippocampal-Hypothalamic Circuit. Neuron 2018; 97:670-683.e6. [PMID: 29397273 PMCID: PMC5877404 DOI: 10.1016/j.neuron.2018.01.016] [Citation(s) in RCA: 379] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 12/04/2017] [Accepted: 01/05/2018] [Indexed: 11/25/2022]
Abstract
The hippocampus is traditionally thought to transmit contextual information to limbic structures where it acquires valence. Using freely moving calcium imaging and optogenetics, we show that while the dorsal CA1 subregion of the hippocampus is enriched in place cells, ventral CA1 (vCA1) is enriched in anxiety cells that are activated by anxiogenic environments and required for avoidance behavior. Imaging cells defined by their projection target revealed that anxiety cells were enriched in the vCA1 population projecting to the lateral hypothalamic area (LHA) but not to the basal amygdala (BA). Consistent with this selectivity, optogenetic activation of vCA1 terminals in LHA but not BA increased anxiety and avoidance, while activation of terminals in BA but not LHA impaired contextual fear memory. Thus, the hippocampus encodes not only neutral but also valence-related contextual information, and the vCA1-LHA pathway is a direct route by which the hippocampus can rapidly influence innate anxiety behavior.
Collapse
Affiliation(s)
- Jessica C Jimenez
- Departments of Neuroscience, Psychiatry & Pharmacology, Columbia University, New York, NY, USA; Division of Integrative Neuroscience, Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Katy Su
- Departments of Neuroscience, Psychiatry & Pharmacology, Columbia University, New York, NY, USA; Division of Integrative Neuroscience, Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Alexander R Goldberg
- Departments of Neuroscience, Psychiatry & Pharmacology, Columbia University, New York, NY, USA; Division of Integrative Neuroscience, Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Victor M Luna
- Departments of Neuroscience, Psychiatry & Pharmacology, Columbia University, New York, NY, USA; Division of Integrative Neuroscience, Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Jeremy S Biane
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Gokhan Ordek
- Departments of Neuroscience, Psychiatry & Pharmacology, Columbia University, New York, NY, USA; Division of Integrative Neuroscience, Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Pengcheng Zhou
- Center for the Neural Basis of Cognition and Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA; Departments of Statistics and Neuroscience, Grossman Center for the Statistics of Mind, Center for Theoretical Neuroscience, Kavli Institute for Brain Science, and NeuroTechnology Center, Columbia University, New York, NY, USA
| | - Samantha K Ong
- Departments of Neuroscience, Psychiatry & Pharmacology, Columbia University, New York, NY, USA; Division of Integrative Neuroscience, Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Matthew A Wright
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Larry Zweifel
- Department of Pharmacology, University of Washington, Seattle, WA 98105, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98105, USA
| | - Liam Paninski
- Departments of Statistics and Neuroscience, Grossman Center for the Statistics of Mind, Center for Theoretical Neuroscience, Kavli Institute for Brain Science, and NeuroTechnology Center, Columbia University, New York, NY, USA
| | - René Hen
- Departments of Neuroscience, Psychiatry & Pharmacology, Columbia University, New York, NY, USA; Division of Integrative Neuroscience, Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA.
| | - Mazen A Kheirbek
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
281
|
Carvalho MC, Veloni AC, Genaro K, Brandão ML. Behavioral sensitization induced by dorsal periaqueductal gray electrical stimulation is counteracted by NK1 receptor antagonism in the ventral hippocampus and central nucleus of the amygdala. Neurobiol Learn Mem 2018. [PMID: 29519453 DOI: 10.1016/j.nlm.2018.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A single threatening experience may change the behavior of an animal in a long-lasting way and elicit generalized behavioral responses to a novel threatening situation that is unrelated to the original aversive experience. Electrical stimulation (ES) of the dorsal periaqueductal gray (dPAG) produces a range of defensive reactions, characterized by freezing, escape, and post-stimulation freezing (PSF). The latter reflects the processing of ascending aversive information to prosencephalic structures, including the central nucleus of the amygdala (CeA), which allows the animal to evaluate the consequences of the aversive situation. This process is modulated by substance P (SP) and its preferred receptor, neurokinin 1 (NK1). The ventral hippocampus (VH) has been associated with the processing of aversive information and expression of emotional reactions with negative valence, but the participation of the VH in the expression of these defensive responses has not been investigated. The VH is rich in NK1 receptor expression and has a high density of SP-containing fibers. The present study examined the role of NK1 receptors in the VH in the expression of defensive responses and behavioral sensitization that were induced by dPAG-ES. Rats were implanted with an electrode in the dPAG for ES, and a cannula was implanted in the VH or CeA for injections of vehicle (phosphate-buffered saline) or the NK1 receptor antagonist spantide (100 pmol/0.2 μL. Spantide reduced the duration of PSF that was evoked by dPAG-ES, without changing the aversive freezing or escape thresholds. One and 7 days later, exploratory behavior was evaluated in independent groups of rats in the elevated plus maze (EPM). dPAG-ES in rats that received vehicle caused higher aversion to the open arms of the EPM compared with rats that did not receive dPAG stimulation at both time intervals. Injections of spantide in the VH or CeA prevented the proaversive effects of dPAG-ES in the EPM only 1 day later. These findings suggest that NK1 receptors are activated in both the VH and CeA during the processing of aversive information that derives from dPAG-ES. As previously shown for the CeA, SP/NK1 receptors in the VH are recruited during PSF that is evoked by dPAG-ES, suggesting that a 24-h time window is susceptible to interventions with NK1 antagonists that block the passage of aversive information from the dPAG to higher brain areas.
Collapse
Affiliation(s)
- M C Carvalho
- Departamento de Psicologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, SP, Brazil; Instituto de Neurociências e Comportamento, INeC, Ribeirão Preto, SP, Brazil.
| | - A C Veloni
- Departamento de Psicologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, SP, Brazil; Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, SP, Brazil
| | - K Genaro
- Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, SP, Brazil; Instituto de Neurociências e Comportamento, INeC, Ribeirão Preto, SP, Brazil
| | - M L Brandão
- Instituto de Neurociências e Comportamento, INeC, Ribeirão Preto, SP, Brazil
| |
Collapse
|
282
|
Diehl MM. It's in the Genes: A New Marker for Sex Differences in Depression and Anxiety. Biol Psychiatry 2018; 83:e35-e36. [PMID: 29277195 DOI: 10.1016/j.biopsych.2017.11.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 11/15/2017] [Indexed: 01/25/2023]
Affiliation(s)
- Maria M Diehl
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.
| |
Collapse
|
283
|
Manassero E, Renna A, Milano L, Sacchetti B. Lateral and Basal Amygdala Account for Opposite Behavioral Responses during the Long-Term Expression of Fearful Memories. Sci Rep 2018; 8:518. [PMID: 29323226 PMCID: PMC5765149 DOI: 10.1038/s41598-017-19074-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/26/2017] [Indexed: 12/19/2022] Open
Abstract
Memories of fearful events can be maintained throughout the lifetime of animals. Here we showed that lesions of the lateral nucleus (LA) performed shortly after training impaired the retention of long-term memories, assessed by the concomitant measurement of two dissociable defensive responses, freezing and avoidance in rats. Strikingly, when LA lesions were performed four weeks after training, rats did not show freezing to a learned threat stimulus, but they were able to direct their responses away from it. Similar results were found when the central nucleus (CeA) was lesioned four weeks after training, whereas lesions of the basal nucleus (BA) suppressed avoidance without affecting freezing. LA and BA receive parallel inputs from the auditory cortex, and optogenetic inhibition of these terminals hampered both freezing and avoidance. We therefore propose that, at variance with the traditional serial flow of information model, long-term fearful memories recruit two parallel circuits in the amygdala, one relying on the LA-to-CeA pathway and the other relying solely on BA, which operate independently and mediate distinct defensive responses.
Collapse
Affiliation(s)
- Eugenio Manassero
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, Corso Raffaello 30, I-10125, Turin, Italy
| | - Annamaria Renna
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, Corso Raffaello 30, I-10125, Turin, Italy
| | - Luisella Milano
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, Corso Raffaello 30, I-10125, Turin, Italy
| | - Benedetto Sacchetti
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, Corso Raffaello 30, I-10125, Turin, Italy. .,National Institute of Neuroscience, Turin, Italy.
| |
Collapse
|
284
|
Song C, Moyer JR. Layer- and subregion-specific differences in the neurophysiological properties of rat medial prefrontal cortex pyramidal neurons. J Neurophysiol 2018; 119:177-191. [PMID: 28978762 PMCID: PMC5866461 DOI: 10.1152/jn.00146.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 10/02/2017] [Accepted: 10/02/2017] [Indexed: 12/25/2022] Open
Abstract
Medial prefrontal cortex (mPFC) is critical for the expression of long-term conditioned fear. However, the neural circuits involving fear memory acquisition and retrieval are still unclear. Two subregions within mPFC that have received a lot of attention are the prelimbic (PL) and infralimbic (IL) cortices (e.g., Santini E, Quirk GJ, Porter JT. J Neurosci 28: 4028-4036, 2008; Song C, Ehlers VL, Moyer JR Jr J Neurosci 35: 13511-13524, 2015). Interestingly, PL and IL may play distinct roles during fear memory acquisition and retrieval but the underlying mechanism is poorly understood. One possibility is that the intrinsic membrane properties differ between these subregions. Thus, the current study was carried out to characterize the basic membrane properties of mPFC neurons in different layers and subregions. We found that pyramidal neurons in L2/3 were more hyperpolarized and less excitable than in L5. This was observed in both IL and PL and was associated with an enhanced h-current in L5 neurons. Within L2/3, IL neurons were more excitable than those in PL, which may be due to a lower spike threshold and higher input resistance in IL neurons. Within L5, the intrinsic excitability was comparable between neurons obtained in IL and PL. Thus, the heterogeneity in physiological properties of mPFC neurons may underlie the observed subregion-specific contribution of mPFC in cognitive function and emotional control, such as fear memory expression. NEW & NOTEWORTHY This is the first study to demonstrate that medial prefrontal cortical (mPFC) neurons are heterogeneous in both a layer- and a subregion-specific manner. Specifically, L5 neurons are more depolarized and more excitable than those neurons in L2/3, which is likely due to variations in h-current. Also, infralimbic neurons are more excitable than those of prelimbic neurons in layer 2/3, which may be due to differences in certain intrinsic properties, including input resistance and spike threshold.
Collapse
Affiliation(s)
- Chenghui Song
- Department of Psychology, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin
| | - James R Moyer
- Department of Psychology, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin
- Department of Biological Sciences, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin
| |
Collapse
|
285
|
Knox D, Stanfield BR, Staib JM, David NP, DePietro T, Chamness M, Schneider EK, Keller SM, Lawless C. Using c-Jun to identify fear extinction learning-specific patterns of neural activity that are affected by single prolonged stress. Behav Brain Res 2017; 341:189-197. [PMID: 29292158 DOI: 10.1016/j.bbr.2017.12.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/08/2017] [Accepted: 12/28/2017] [Indexed: 01/15/2023]
Abstract
Neural circuits via which stress leads to disruptions in fear extinction is often explored in animal stress models. Using the single prolonged stress (SPS) model of post traumatic stress disorder and the immediate early gene (IEG) c-Fos as a measure of neural activity, we previously identified patterns of neural activity through which SPS disrupts extinction retention. However, none of these stress effects were specific to fear or extinction learning and memory. C-Jun is another IEG that is sometimes regulated in a different manner to c-Fos and could be used to identify emotional learning/memory specific patterns of neural activity that are sensitive to SPS. Animals were either fear conditioned (CS-fear) or presented with CSs only (CS-only) then subjected to extinction training and testing. C-Jun was then assayed within neural substrates critical for extinction memory. Inhibited c-Jun levels in the hippocampus (Hipp) and enhanced functional connectivity between the ventromedial prefrontal cortex (vmPFC) and basolateral amygdala (BLA) during extinction training was disrupted by SPS in the CS-fear group only. As a result, these effects were specific to emotional learning/memory. SPS also disrupted inhibited Hipp c-Jun levels, enhanced BLA c-Jun levels, and altered functional connectivity among the vmPFC, BLA, and Hipp during extinction testing in SPS rats in the CS-fear and CS-only groups. As a result, these effects were not specific to emotional learning/memory. Our findings suggest that SPS disrupts neural activity specific to extinction memory, but may also disrupt the retention of fear extinction by mechanisms that do not involve emotional learning/memory.
Collapse
Affiliation(s)
- Dayan Knox
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| | - Briana R Stanfield
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, United States
| | - Jennifer M Staib
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Nina P David
- School of Public Policy and Administration, University of Delaware, Newark, DE 19716, United States
| | - Thomas DePietro
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Marisa Chamness
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Elizabeth K Schneider
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Samantha M Keller
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Caroline Lawless
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
286
|
Boosting of Thalamic D2 Dopaminergic Transmission: A Potential Strategy for Drug-Seeking Attenuation. eNeuro 2017; 4:eN-COM-0378-17. [PMID: 29279859 PMCID: PMC5738865 DOI: 10.1523/eneuro.0378-17.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 01/30/2023] Open
Abstract
This commentary focuses on novel findings by Clark et al. (2017) published in eNeuro, which show that dopamine D2 receptors (D2Rs) in the paraventricular nucleus of the thalamus (PVT) are involved in cocaine sensitization. We extend the discussion on how their findings contribute to our understanding of the role of the PVT in drug seeking by providing new insight on the role of the PVT in the regulation of food-seeking and fear responses. We also consider the significance of the neuroanatomical findings reported by Clark et al., that the PVT is reciprocally connected with areas of the brain involved in addiction and discuss the implications associated with the source and type of dopaminergic fibers innervating this area of the thalamus.
Collapse
|
287
|
Cao B, Ni HY, Li J, Zhou Y, Bian XL, Tao Y, Cai CY, Qin C, Wu HY, Chang L, Luo CX, Zhu DY. (+)-Borneol suppresses conditioned fear recall and anxiety-like behaviors in mice. Biochem Biophys Res Commun 2017; 495:1588-1593. [PMID: 29223397 DOI: 10.1016/j.bbrc.2017.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 12/05/2017] [Indexed: 01/19/2023]
Abstract
Fear- and anxiety-related psychiatric disorders have been one of the major chronic diseases afflicting patients for decades, and new compounds for treating such disorders remain to be developed. (+)-Borneol, a bicyclic monoterpene found in several species of Artemisia and Dipterocarpaceae, is widely used for anxiety, pain and anesthesia in Chinese medicine. Meanwhile, it can potentiate GABA (γ-aminobutyric acid) activity directly in recombinant GABAA receptors. The present study was to investigate the effects of (+)-Borneol on both contextual and cued fear recall. Interestingly, microinjection of (+)-Borneol into the dorsal hippocampus inhibited 24 h and 7 d contextual fear, whereas its infusion into ventral hippocampus only reduced 24 h cued fear responses. Moreover, microinjection of (+)-Borneol into dorsal but not ventral hippocampus suppressed anxiety-like behaviors in the open field test, light/dark exploration and the elevated plus maze test. As selective GABAA receptor antagonist bicuculline reversed the effect of (+)-Borneol on contextual fear paradigm and the drug potentiated GABA-evoked currents in acute hippocampus slices, modulation of the GABAergic neurotransmission may explain the effects of (+)-Borneol. Our findings suggest that (+)-Borneol can serve as a new therapeutic in fear- and anxiety-related disorders.
Collapse
Affiliation(s)
- Bo Cao
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Huan-Yu Ni
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jun Li
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ying Zhou
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xin-Lan Bian
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yan Tao
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Cheng-Yun Cai
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Cheng Qin
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Hai-Yin Wu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Lei Chang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Chun-Xia Luo
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Precision Medicine of Cardiovascular Disease, Nanjing Medical University, Nanjing 211166, China; Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
288
|
Maeng LY, Cover KK, Taha MB, Landau AJ, Milad MR, Lebrón-Milad K. Estradiol shifts interactions between the infralimbic cortex and central amygdala to enhance fear extinction memory in female rats. J Neurosci Res 2017; 95:163-175. [PMID: 27870439 DOI: 10.1002/jnr.23826] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/27/2016] [Accepted: 06/20/2016] [Indexed: 01/01/2023]
Abstract
There is growing evidence that estradiol (E2) enhances fear extinction memory consolidation. However, it is unclear how E2 influences the nodes of the fear extinction network to enhance extinction memory. This study begins to delineate the neural circuits underlying the influence of E2 on fear extinction acquisition and consolidation in female rats. After fear conditioning (day 1), naturally cycling female rats underwent extinction learning (day 2) in a low-E2 state, receiving a systemic administration of either E2 or vehicle prior to extinction training. Extinction memory recall was then tested 24 hr later (day 3). We measured immediate early gene c-fos expression within the extinction network during fear extinction learning and extinction recall. During extinction learning, E2 treatment increased centrolateral amygdala c-fos activity and reduced lateral amygdala activity relative to vehicle. During extinction recall, E2-treated rats exhibited reduced c-fos expression in the centromedial amygdala. There were no group differences in c-fos expression within the medial prefrontal cortex or dorsal hippocampus. Examining c-fos ratios with the infralimbic cortex (IL) revealed that, despite the lack of group differences within the IL, E2 treatment induced greater IL activity relative to both prelimbic cortex and central amygdala (CeA) activity during extinction memory recall. Only the relationship between IL and CeA activity positively correlated with extinction retention. In conclusion, E2 appears to modify interactions between the IL and the CeA in females, shifting from stronger amygdalar modulation of fear during extinction learning to stronger IL control during extinction recall. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lisa Y Maeng
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Kara K Cover
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Mohamad B Taha
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Aaron J Landau
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Mohammed R Milad
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Kelimer Lebrón-Milad
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
289
|
Madsen HB, Guerin AA, Kim JH. Investigating the role of dopamine receptor- and parvalbumin-expressing cells in extinction of conditioned fear. Neurobiol Learn Mem 2017; 145:7-17. [DOI: 10.1016/j.nlm.2017.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/09/2017] [Accepted: 08/21/2017] [Indexed: 12/16/2022]
|
290
|
Howell CJ, Sceniak MP, Lang M, Krakowiecki W, Abouelsoud FE, Lad SU, Yu H, Katz DM. Activation of the Medial Prefrontal Cortex Reverses Cognitive and Respiratory Symptoms in a Mouse Model of Rett Syndrome. eNeuro 2017; 4:ENEURO.0277-17.2017. [PMID: 29333487 PMCID: PMC5762598 DOI: 10.1523/eneuro.0277-17.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/27/2017] [Accepted: 12/01/2017] [Indexed: 12/30/2022] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder caused by loss-of-function mutations in the gene encoding methyl-CpG-binding protein 2 (MeCP2; Amir et al., 1999), a transcriptional regulatory protein (Klose et al., 2005). Mouse models of RTT (Mecp2 mutants) exhibit excitatory hypoconnectivity in the medial prefrontal cortex (mPFC; Sceniak et al., 2015), a region critical for functions that are abnormal in RTT patients, ranging from learning and memory to regulation of visceral homeostasis (Riga et al., 2014). The present study was designed to test the hypothesis that increasing the activity of mPFC pyramidal neurons in heterozygous female Mecp2 mutants (Hets) would ameliorate RTT-like symptoms, including deficits in respiratory control and long-term retrieval of auditory conditioned fear. Selective activation of mPFC pyramidal neurons in adult animals was achieved by bilateral infection with an AAV8 vector expressing excitatory hm3D(Gq) DREADD (Designer Receptors Exclusively Activated by Designer Drugs) (Armbruster et al., 2007) under the control of the CamKIIa promoter. DREADD activation in Mecp2 Hets completely restored long-term retrieval of auditory conditioned fear, eliminated respiratory apneas, and reduced respiratory frequency variability to wild-type (Wt) levels. Reversal of respiratory symptoms following mPFC activation was associated with normalization of Fos protein levels, a marker of neuronal activity, in a subset of brainstem respiratory neurons. Thus, despite reduced levels of MeCP2 and severe neurological deficits, mPFC circuits in Het mice are sufficiently intact to generate normal behavioral output when pyramidal cell activity is increased. These findings highlight the contribution of mPFC hypofunction to the pathophysiology of RTT and raise the possibility that selective activation of cortical regions such as the mPFC could provide therapeutic benefit to RTT patients.
Collapse
Affiliation(s)
- C James Howell
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Michael P Sceniak
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Min Lang
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Wenceslas Krakowiecki
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Fatimah E Abouelsoud
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Saloni U Lad
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Heping Yu
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - David M Katz
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| |
Collapse
|
291
|
Ganglberger F, Kaczanowska J, Penninger JM, Hess A, Bühler K, Haubensak W. Predicting functional neuroanatomical maps from fusing brain networks with genetic information. Neuroimage 2017; 170:113-120. [PMID: 28877513 DOI: 10.1016/j.neuroimage.2017.08.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 08/21/2017] [Accepted: 08/24/2017] [Indexed: 02/07/2023] Open
Abstract
Functional neuroanatomical maps provide a mesoscale reference framework for studies from molecular to systems neuroscience and psychiatry. The underlying structure-function relationships are typically derived from functional manipulations or imaging approaches. Although highly informative, these are experimentally costly. The increasing amount of publicly available brain and genetic data offers a rich source that could be mined to address this problem computationally. Here, we developed an algorithm that fuses gene expression and connectivity data with functional genetic meta data and exploits cumulative effects to derive neuroanatomical maps related to multi-genic functions. We validated the approach by using public available mouse and human data. The generated neuroanatomical maps recapture known functional anatomical annotations from literature and functional MRI data. When applied to multi-genic meta data from mouse quantitative trait loci (QTL) studies and human neuropsychiatric databases, this method predicted known functional maps underlying behavioral or psychiatric traits. Taken together, genetically weighted connectivity analysis (GWCA) allows for high throughput functional exploration of brain anatomy in silico. It maps functional genetic associations onto brain circuitry for refining functional neuroanatomy, or identifying trait-associated brain circuitry, from genetic data.
Collapse
Affiliation(s)
| | - Joanna Kaczanowska
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030, Vienna, Austria
| | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University Erlangen-Nuremberg, Fahrstrasse 17, 91054, Erlangen, Germany
| | - Katja Bühler
- VRVis Research Center, Donau-City Strasse 11, 1220, Vienna, Austria.
| | - Wulf Haubensak
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria.
| |
Collapse
|
292
|
Kato T. Neurobiological basis of bipolar disorder: Mitochondrial dysfunction hypothesis and beyond. Schizophr Res 2017; 187:62-66. [PMID: 27839913 DOI: 10.1016/j.schres.2016.10.037] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/24/2016] [Accepted: 10/27/2016] [Indexed: 02/07/2023]
Abstract
Bipolar disorder is one of two major psychotic disorders together with schizophrenia and causes severe psychosocial disturbance. Lack of adequate animal models hampers development of new mood stabilizers. We proposed a mitochondrial dysfunction hypothesis and have been studying the neurobiology of bipolar disorder based on this hypothesis. We showed that deletions of mitochondrial DNA (ΔmtDNA) play a pathophysiological role at least in some patients with bipolar disorder possibly by affecting intracellular calcium regulation. Mutant polymerase γ transgenic mice that accumulate ΔmtDNA in the brain showed recurrent spontaneous depression-like episodes which were prevented by a serotonin-selective reuptake inhibitor and worsened by lithium withdrawal. The animal model would be useful to develop new mood stabilizers.
Collapse
Affiliation(s)
- Tadafumi Kato
- Laboratory for Molecular Dynamic of Mental Disorders, RIKEN Brain Science Institute, Japan.
| |
Collapse
|
293
|
Clark AM, Leroy F, Martyniuk KM, Feng W, McManus E, Bailey MR, Javitch JA, Balsam PD, Kellendonk C. Dopamine D2 Receptors in the Paraventricular Thalamus Attenuate Cocaine Locomotor Sensitization. eNeuro 2017; 4:ENEURO.0227-17.2017. [PMID: 29071300 PMCID: PMC5654238 DOI: 10.1523/eneuro.0227-17.2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022] Open
Abstract
Alterations in thalamic dopamine (DA) or DA D2 receptors (D2Rs) have been measured in drug addiction and schizophrenia, but the relevance of thalamic D2Rs for behavior is largely unknown. Using in situ hybridization and mice expressing green fluorescent protein (GFP) under the Drd2 promoter, we found that D2R expression within the thalamus is enriched in the paraventricular nucleus (PVT) as well as in more ventral midline thalamic nuclei. Within the PVT, D2Rs are inhibitory as their activation inhibits neuronal action potentials in brain slices. Using Cre-dependent anterograde and retrograde viral tracers, we further determined that PVT neurons are reciprocally interconnected with multiple areas of the limbic system including the amygdala and the nucleus accumbens (NAc). Based on these anatomical findings, we analyzed the role of D2Rs in the PVT in behaviors that are supported by these areas and that also have relevance for schizophrenia and drug addiction. Male and female mice with selective overexpression of D2Rs in the PVT showed attenuated cocaine locomotor sensitization, whereas anxiety levels, fear conditioning, sensorimotor gating, and food-motivated behaviors were not affected. These findings suggest the importance of PVT inhibition by D2Rs in modulating the sensitivity to cocaine, a finding that may have novel implications for human drug use.
Collapse
Affiliation(s)
- Abigail M. Clark
- Graduate Program in Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Felix Leroy
- Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Kelly M. Martyniuk
- Graduate Program in Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Wendy Feng
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Erika McManus
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Matthew R. Bailey
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Jonathan A. Javitch
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032
| | - Peter D. Balsam
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Psychology, Barnard College Columbia University, New York, NY 10027
| | - Christoph Kellendonk
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032
| |
Collapse
|
294
|
Otis JM, Mueller D. Reversal of Cocaine-Associated Synaptic Plasticity in Medial Prefrontal Cortex Parallels Elimination of Memory Retrieval. Neuropsychopharmacology 2017; 42:2000-2010. [PMID: 28466871 PMCID: PMC5561348 DOI: 10.1038/npp.2017.90] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 01/24/2023]
Abstract
Addiction is characterized by abnormalities in prefrontal cortex that are thought to allow drug-associated cues to drive compulsive drug seeking and taking. Identification and reversal of these pathologic neuroadaptations are therefore critical for treatment of addiction. Previous studies using rodents reveal that drugs of abuse cause dendritic spine plasticity in prelimbic medial prefrontal cortex (PL-mPFC) pyramidal neurons, a phenomenon that correlates with the strength of drug-associated memories in vivo. Thus, we hypothesized that cocaine-evoked plasticity in PL-mPFC may underlie cocaine-associated memory retrieval, and therefore disruption of this plasticity would prevent retrieval. Indeed, using patch clamp electrophysiology we find that cocaine place conditioning increases excitatory presynaptic and postsynaptic transmission in rat PL-mPFC pyramidal neurons. This was accounted for by increases in excitatory presynaptic release, paired-pulse facilitation, and increased AMPA receptor transmission. Noradrenergic signaling is known to maintain glutamatergic plasticity upon reactivation of modified circuits, and we therefore next determined whether inhibition of noradrenergic signaling during memory reactivation would reverse the cocaine-evoked plasticity and/or disrupt the cocaine-associated memory. We find that administration of the β-adrenergic receptor antagonist propranolol before memory retrieval, but not after (during memory reconsolidation), reverses the cocaine-evoked presynaptic and postsynaptic modifications in PL-mPFC and causes long-lasting memory impairments. Taken together, these data reveal that cocaine-evoked synaptic plasticity in PL-mPFC is reversible in vivo, and suggest a novel strategy that would allow normalization of prefrontal circuitry in addiction.
Collapse
Affiliation(s)
- James M Otis
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA,Department of Psychiatry, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Devin Mueller
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA,Department of Basic Sciences, Neuroscience Division, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico,Department of Basic Sciences, Neuroscience Division, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, P.O. Box 7004, Ponce 00732-7004, Puerto Rico, Tel: +1 787 840 2575 Ext. 2588, Fax: +1 787 844 1980, E-mail:
| |
Collapse
|
295
|
Ferrara NC, Cullen PK, Pullins SP, Rotondo EK, Helmstetter FJ. Input from the medial geniculate nucleus modulates amygdala encoding of fear memory discrimination. Learn Mem 2017; 24:414-421. [PMID: 28814467 PMCID: PMC5580525 DOI: 10.1101/lm.044131.116] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/05/2017] [Indexed: 12/24/2022]
Abstract
Generalization of fear can involve abnormal responding to cues that signal safety and is common in people diagnosed with post-traumatic stress disorder. Differential auditory fear conditioning can be used as a tool to measure changes in fear discrimination and generalization. Most prior work in this area has focused on elevated amygdala activity as a critical component underlying generalization. The amygdala receives input from auditory cortex as well as the medial geniculate nucleus (MgN) of the thalamus, and these synapses undergo plastic changes in response to fear conditioning and are major contributors to the formation of memory related to both safe and threatening cues. The requirement for MgN protein synthesis during auditory discrimination and generalization, as well as the role of MgN plasticity in amygdala encoding of discrimination or generalization, have not been directly tested. GluR1 and GluR2 containing AMPA receptors are found at synapses throughout the amygdala and their expression is persistently up-regulated after learning. Some of these receptors are postsynaptic to terminals from MgN neurons. We found that protein synthesis-dependent plasticity in MgN is necessary for elevated freezing to both aversive and safe auditory cues, and that this is accompanied by changes in the expressions of AMPA receptor and synaptic scaffolding proteins (e.g., SHANK) at amygdala synapses. This work contributes to understanding the neural mechanisms underlying increased fear to safety signals after stress.
Collapse
Affiliation(s)
- Nicole C Ferrara
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Patrick K Cullen
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Shane P Pullins
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Elena K Rotondo
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Fred J Helmstetter
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| |
Collapse
|
296
|
Andermann ML, Lowell BB. Toward a Wiring Diagram Understanding of Appetite Control. Neuron 2017; 95:757-778. [PMID: 28817798 DOI: 10.1016/j.neuron.2017.06.014] [Citation(s) in RCA: 373] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/02/2017] [Accepted: 06/07/2017] [Indexed: 01/26/2023]
Abstract
Prior mouse genetic research has set the stage for a deep understanding of appetite regulation. This goal is now being realized through the use of recent technological advances, such as the ability to map connectivity between neurons, manipulate neural activity in real time, and measure neural activity during behavior. Indeed, major progress has been made with regard to meal-related gut control of appetite, arcuate nucleus-based hypothalamic circuits linking energy state to the motivational drive, hunger, and, finally, limbic and cognitive processes that bring about hunger-mediated increases in reward value and perception of food. Unexpected findings are also being made; for example, the rapid regulation of homeostatic neurons by cues that predict future food consumption. The aim of this review is to cover the major underpinnings of appetite regulation, describe recent advances resulting from new technologies, and synthesize these findings into an updated view of appetite regulation.
Collapse
Affiliation(s)
- Mark L Andermann
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
297
|
Acute gonadotropin-releasing hormone agonist treatment enhances extinction memory in male rats. Psychoneuroendocrinology 2017; 82:164-172. [PMID: 28550793 PMCID: PMC5596662 DOI: 10.1016/j.psyneuen.2017.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 04/13/2017] [Accepted: 05/15/2017] [Indexed: 11/21/2022]
Abstract
Leuprolide acetate (LEU), also known as Lupron, is commonly used to treat prostate cancer in men. As a gonadotropin-releasing hormone (GnRH) receptor agonist, it initially stimulates the release of gonadal hormones, testosterone (T) and estradiol. This surge eventually suppresses these hormones, preventing the further growth and spread of cancer cells. Individuals receiving this treatment often report anxiety and cognitive changes, but LEU's effects on the neural mechanisms that are involved in anxiety during the trajectory of treatment are not well known. In this study, we examined the acute effects of LEU on fear extinction, hypothesizing that increased T levels following a single administration of LEU will facilitate extinction recall by altering neuronal activity within the fear extinction circuitry. Two groups of naïve adult male rats underwent a 3-day fear conditioning, extinction, and recall experiment. The delayed group (n=15) received a single injection of vehicle or LEU (1.2mg/kg) 3weeks before behavioral testing. The acute group (n=25) received an injection one day after fear conditioning, 30min prior to extinction training. Following recall, the brains for all animals were collected for c-fos immunohistochemistry. Blood samples were also collected and assayed for T levels. Acute administration of LEU increased serum T levels during extinction training and enhanced extinction recall 24h later. This enhanced extinction memory was correlated with increased c-fos activity within the infralimbic cortex and amygdala, which was not observed in the delayed group. These results suggest that the elevation in T induced by acute administration of LEU can influence extinction memory consolidation, perhaps through modification of neuronal activity within the infralimbic cortex and amygdala. This may be an important consideration in clinical applications of LEU and its effects on anxiety and cognition.
Collapse
|
298
|
Cambiaghi M, Renna A, Milano L, Sacchetti B. Reversible Inactivation of the Higher Order Auditory Cortex during Fear Memory Consolidation Prevents Memory-Related Activity in the Basolateral Amygdala during Remote Memory Retrieval. Front Behav Neurosci 2017; 11:138. [PMID: 28790901 PMCID: PMC5524669 DOI: 10.3389/fnbeh.2017.00138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/13/2017] [Indexed: 02/03/2023] Open
Abstract
Recent findings have shown that the auditory cortex, and specifically the higher order Te2 area, is necessary for the consolidation of long-term fearful memories and that it interacts with the amygdala during the retrieval of long-term fearful memories. Here, we tested whether the reversible blockade of Te2 during memory consolidation may affect the activity changes occurring in the amygdala during the retrieval of fearful memories. To address this issue, we blocked Te2 in a reversible manner during memory consolidation processes. After 4 weeks, we assessed the activity of Te2 and individual nuclei of the amygdala during the retrieval of long-term memories. Rats in which Te2 was inactivated upon memory encoding showed a decreased freezing and failed to show Te2-to-basolateral amygdala (BLA) synchrony during memory retrieval. In addition, the expression of the immediate early gene zif268 in the lateral, basal and central amygdala nuclei did not show memory-related enhancement. As all sites were intact upon memory retrieval, we propose that the auditory cortex represents a key node in the consolidation of fear memories and it is essential for amygdala nuclei to support memory retrieval process.
Collapse
Affiliation(s)
- Marco Cambiaghi
- Rita Levi-Montalcini Department of Neuroscience, University of TurinTurin, Italy
| | - Annamaria Renna
- Rita Levi-Montalcini Department of Neuroscience, University of TurinTurin, Italy
| | - Luisella Milano
- Rita Levi-Montalcini Department of Neuroscience, University of TurinTurin, Italy
| | - Benedetto Sacchetti
- Rita Levi-Montalcini Department of Neuroscience, University of TurinTurin, Italy.,Institute of NeuroscienceTurin, Italy
| |
Collapse
|
299
|
Fatty Acid-Binding Protein 5 at the Blood-Brain Barrier Regulates Endogenous Brain Docosahexaenoic Acid Levels and Cognitive Function. J Neurosci 2017; 36:11755-11767. [PMID: 27852782 DOI: 10.1523/jneurosci.1583-16.2016] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 09/22/2016] [Accepted: 09/24/2016] [Indexed: 11/21/2022] Open
Abstract
Fatty acid-binding protein 5 (FABP5) at the blood-brain barrier contributes to the brain uptake of docosahexaenoic acid (DHA), a blood-derived polyunsaturated fatty acid essential for maintenance of cognitive function. Given the importance of DHA in cognition, the aim of this study was to investigate whether deletion of FABP5 results in cognitive dysfunction and whether this is associated with reduced brain endothelial cell uptake of exogenous DHA and subsequent attenuation in the brain levels of endogenous DHA. Cognitive function was assessed in male and female FABP5+/+ and FABP5-/- mice using a battery of memory paradigms. FABP5-/- mice exhibited impaired working memory and short-term memory, and these cognitive deficits were associated with a 14.7 ± 5.7% reduction in endogenous brain DHA levels. The role of FABP5 in the blood-brain barrier transport of DHA was assessed by measuring 14C-DHA uptake into brain endothelial cells and capillaries isolated from FABP5+/+ and FABP5-/- mice. In line with a crucial role of FABP5 in the brain uptake of DHA, 14C-DHA uptake into brain endothelial cells and brain capillaries of FABP5-/- mice was reduced by 48.4 ± 14.5% and 14.0 ± 4.2%, respectively, relative to those of FABP5+/+ mice. These results strongly support the hypothesis that FABP5 is essential for maintaining brain endothelial cell uptake of DHA, and that cognitive deficits observed in FABP5-/- mice are associated with reduced CNS access of DHA. SIGNIFICANCE STATEMENT Genetic deletion of fatty acid-binding protein 5 (FABP5) in mice reduces uptake of exogenous docosahexaenoic acid (DHA) into brain endothelial cells and brain capillaries and reduces brain parenchymal levels of endogenous DHA. Therefore, FABP5 in the brain endothelial cell is a crucial contributor to the brain levels of DHA. Critically, lowered brain DHA levels in FABP5-/- mice occurred in tandem with cognitive deficits in a battery of memory paradigms. This study provides evidence of a critical role for FABP5 in the maintenance of cognitive function via regulating the brain uptake of DHA, and suggests that upregulation of FABP5 in neurodegenerative diseases, where brain DHA levels are possibly diminished (e.g., Alzheimer's disease), may provide a novel therapeutic approach for restoring cognitive function.
Collapse
|
300
|
An B, Kim J, Park K, Lee S, Song S, Choi S. Amount of fear extinction changes its underlying mechanisms. eLife 2017; 6. [PMID: 28671550 PMCID: PMC5495569 DOI: 10.7554/elife.25224] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/22/2017] [Indexed: 12/12/2022] Open
Abstract
There has been a longstanding debate on whether original fear memory is inhibited or erased after extinction. One possibility that reconciles this uncertainty is that the inhibition and erasure mechanisms are engaged in different phases (early or late) of extinction. In this study, using single-session extinction training and its repetition (multiple-session extinction training), we investigated the inhibition and erasure mechanisms in the prefrontal cortex and amygdala of rats, where neural circuits underlying extinction reside. The inhibition mechanism was prevalent with single-session extinction training but faded when single-session extinction training was repeated. In contrast, the erasure mechanism became prevalent when single-session extinction training was repeated. Moreover, ablating the intercalated neurons of amygdala, which are responsible for maintaining extinction-induced inhibition, was no longer effective in multiple-session extinction training. We propose that the inhibition mechanism operates primarily in the early phase of extinction training, and the erasure mechanism takes over after that.
Collapse
Affiliation(s)
- Bobae An
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea.,Department of Neurobiology, Duke University, Durham, United States
| | - Jihye Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Kyungjoon Park
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Sukwon Lee
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea.,Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, Korea
| | - Sukwoon Song
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Sukwoo Choi
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|