251
|
Qiang M, Dong X, Zha Z, Zuo XK, Song XL, Zhao L, Yuan C, Huang C, Tao P, Hu Q, Li WG, Hu W, Li J, Nie Y, Buratto D, Zonta F, Ma P, Yu Z, Liu L, Zhang Y, Yang B, Xie J, Xu TL, Qu Z, Yang G, Lerner RA. Selection of an ASIC1a-blocking combinatorial antibody that protects cells from ischemic death. Proc Natl Acad Sci U S A 2018; 115:E7469-E7477. [PMID: 30042215 PMCID: PMC6094137 DOI: 10.1073/pnas.1807233115] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acid-sensing ion channels (ASICs) have emerged as important, albeit challenging therapeutic targets for pain, stroke, etc. One approach to developing therapeutic agents could involve the generation of functional antibodies against these channels. To select such antibodies, we used channels assembled in nanodiscs, such that the target ASIC1a has a configuration as close as possible to its natural state in the plasma membrane. This methodology allowed selection of functional antibodies that inhibit acid-induced opening of the channel in a dose-dependent way. In addition to regulation of pH, these antibodies block the transport of cations, including calcium, thereby preventing acid-induced cell death in vitro and in vivo. As proof of concept for the use of these antibodies to modulate ion channels in vivo, we showed that they potently protect brain cells from death after an ischemic stroke. Thus, the methodology described here should be general, thereby allowing selection of antibodies to other important ASICs, such as those involved in pain, neurodegeneration, and other conditions.
Collapse
Affiliation(s)
- Min Qiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China
| | - Xue Dong
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Zhao Zha
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China
| | - Xiao-Kun Zuo
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya Medical College of Central South University, 570100 Haikou, China
| | - Xing-Lei Song
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Lixia Zhao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China
| | - Chao Yuan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China
| | - Chen Huang
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Pingdong Tao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Qin Hu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Wei-Guang Li
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Wanhui Hu
- iHuman Institute, ShanghaiTech University, 201210 Shanghai, China
| | - Jie Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yan Nie
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China
| | - Damiano Buratto
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China
| | - Francesco Zonta
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China
| | - Zheng Yu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Lili Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China
| | - Yi Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China
| | - Bei Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China
| | - Jia Xie
- Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037
| | - Tian-Le Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Zhihu Qu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China;
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China;
| | - Richard A Lerner
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China;
- Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
252
|
Yu Z, Wu YJ, Wang YZ, Liu DS, Song XL, Jiang Q, Li Y, Zhang S, Xu NJ, Zhu MX, Li WG, Xu TL. The acid-sensing ion channel ASIC1a mediates striatal synapse remodeling and procedural motor learning. Sci Signal 2018; 11:eaar4481. [PMID: 30087178 PMCID: PMC6324561 DOI: 10.1126/scisignal.aar4481] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Acid-sensing ion channel 1a (ASIC1a) is abundant in multiple brain regions, including the striatum, which serves as the input nucleus of the basal ganglia and is critically involved in procedural learning and motor memory. We investigated the functional role of ASIC1a in striatal neurons. We found that ASIC1a was critical for striatum-dependent motor coordination and procedural learning by regulating the synaptic plasticity of striatal medium spiny neurons. Global deletion of Asic1a in mice led to increased dendritic spine density but impaired spine morphology and postsynaptic architecture, which were accompanied by the decreased function of N-methyl-d-aspartate (NMDA) receptors at excitatory synapses. These structural and functional changes caused by the loss of ASIC1a were largely mediated by reduced activation (phosphorylation) of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated protein kinases (ERKs). Consequently, Asic1a null mice exhibited poor performance on multiple motor tasks, which was rescued by striatal-specific expression of either ASIC1a or CaMKII. Together, our data reveal a previously unknown mechanism mediated by ASIC1a that promotes the excitatory synaptic function underlying striatum-related procedural learning and memory.
Collapse
Affiliation(s)
- Zhe Yu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yan-Jiao Wu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi-Zhi Wang
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Di-Shi Liu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xing-Lei Song
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qin Jiang
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Li
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Siyu Zhang
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Nan-Jie Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Michael Xi Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Wei-Guang Li
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Tian-Le Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
253
|
Zemel BM, Ritter DM, Covarrubias M, Muqeem T. A-Type K V Channels in Dorsal Root Ganglion Neurons: Diversity, Function, and Dysfunction. Front Mol Neurosci 2018; 11:253. [PMID: 30127716 PMCID: PMC6088260 DOI: 10.3389/fnmol.2018.00253] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022] Open
Abstract
A-type voltage-gated potassium (Kv) channels are major regulators of neuronal excitability that have been mainly characterized in the central nervous system. By contrast, there is a paucity of knowledge about the molecular physiology of these Kv channels in the peripheral nervous system, including highly specialized and heterogenous dorsal root ganglion (DRG) neurons. Although all A-type Kv channels display pore-forming subunits with similar structural properties and fast inactivation, their voltage-, and time-dependent properties and modulation are significantly different. These differences ultimately determine distinct physiological roles of diverse A-type Kv channels, and how their dysfunction might contribute to neurological disorders. The importance of A-type Kv channels in DRG neurons is highlighted by recent studies that have linked their dysfunction to persistent pain sensitization. Here, we review the molecular neurophysiology of A-type Kv channels with an emphasis on those that have been identified and investigated in DRG nociceptors (Kv1.4, Kv3.4, and Kv4s). Also, we discuss evidence implicating these Kv channels in neuropathic pain resulting from injury, and present a perspective of outstanding challenges that must be tackled in order to discover novel treatments for intractable pain disorders.
Collapse
Affiliation(s)
- Benjamin M. Zemel
- Vollum Institute, Oregon Health and Science University, Portland, OR, United States
| | - David M. Ritter
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Manuel Covarrubias
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College and Jefferson College of Life Sciences at Thomas Jefferson University, Philadelphia, PA, United States
| | - Tanziyah Muqeem
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College and Jefferson College of Life Sciences at Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
254
|
Ilyaskin AV, Diakov A, Korbmacher C, Haerteis S. Bile acids potentiate proton-activated currents in Xenopus laevis oocytes expressing human acid-sensing ion channel (ASIC1a). Physiol Rep 2018; 5:5/3/e13132. [PMID: 28193786 PMCID: PMC5309578 DOI: 10.14814/phy2.13132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 01/31/2023] Open
Abstract
Acid‐sensing ion channels (ASICs) are nonvoltage‐gated sodium channels transiently activated by extracellular protons and belong to the epithelial sodium channel (ENaC)/Degenerin (DEG) family of ion channels. Bile acids have been shown to activate two members of this family, the bile acid‐sensitive ion channel (BASIC) and ENaC. To investigate whether bile acids also modulate ASIC function, human ASIC1a was heterologously expressed in Xenopus laevis oocytes. Exposing oocytes to tauro‐conjugated cholic (t‐CA), deoxycholic (t‐DCA), and chenodeoxycholic (t‐CDCA) acid at pH 7.4 did not activate ASIC1a‐mediated whole‐cell currents. However, in ASIC1a expressing oocytes the whole‐cell currents elicited by pH 5.5 were significantly increased in the presence of these bile acids. Single‐channel recordings in outside‐out patches confirmed that t‐DCA enhanced the stimulatory effect of pH 5.5 on ASIC1a channel activity. Interestingly, t‐DCA reduced single‐channel current amplitude by ~15% which suggests an interaction of t‐DCA with a region close to the channel pore. Molecular docking predicted binding of bile acids to the pore region near the degenerin site (G433) in the open conformation of the channel. Site‐directed mutagenesis demonstrated that the amino acid residue G433 is critically involved in the potentiating effect of bile acids on ASIC1a activation by protons.
Collapse
Affiliation(s)
- Alexandr V Ilyaskin
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Alexei Diakov
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christoph Korbmacher
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Silke Haerteis
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
255
|
Alijevic O, Hammoud H, Vaithia A, Trendafilov V, Bollenbach M, Schmitt M, Bihel F, Kellenberger S. Heteroarylguanidines as Allosteric Modulators of ASIC1a and ASIC3 Channels. ACS Chem Neurosci 2018; 9:1357-1365. [PMID: 29566331 DOI: 10.1021/acschemneuro.7b00529] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are neuronal Na+-selective ion channels that open in response to extracellular acidification. They are involved in pain, fear, learning, and neurodegeneration after ischemic stroke. 2-Guanidine-4-methylquinazoline (GMQ) was recently discovered as the first nonproton activator of ASIC3. GMQ is of interest as a gating modifier and pore blocker of ASICs. It has however a low potency, and exerts opposite effects on ASIC1a and ASIC3. To further explore the molecular mechanisms of GMQ action, we have used the guanidinium moiety of GMQ as a scaffold and tested the effects of different GMQ derivatives on the ASIC pH dependence and maximal current. We report that GMQ derivatives containing quinazoline and quinoline induced, as GMQ, an alkaline shift of the pH dependence of activation in ASIC3 and an acidic shift in ASIC1a. Another group of 2-guanidinopyridines shifted the pH dependence of both ASIC1a and ASIC3 to more acidic values. Several compounds induced an alkaline shift of the pH dependence of ASIC1a/2a and ASIC2a/3 heteromers. Compared to GMQ, guanidinopyridines showed a 20-fold decrease in the IC50 for ASIC1a and ASIC3 current inhibition at pH 5. Strikingly, 2-guanidino-quinolines and -pyridines showed a concentration-dependent biphasic effect that resulted at higher concentrations in ASIC1a and ASIC3 inhibition (IC50 > 100 μM), while causing at lower concentration a potentiation of ASIC1a, but not ASIC3 currents (EC50 ≈ 10 μM). In conclusion, we describe a new family of small molecules as ASIC ligands and identify an ASIC subtype-specific potentiation by a subgroup of these compounds.
Collapse
Affiliation(s)
- Omar Alijevic
- Department of Pharmacology and Toxicology, University of Lausanne, 1011 Lausanne, Switzerland
| | - Hassan Hammoud
- Faculty of Pharmacy, University of Strasbourg, 67401 Illkirch Cedex, France
| | - Anand Vaithia
- Department of Pharmacology and Toxicology, University of Lausanne, 1011 Lausanne, Switzerland
| | - Viktor Trendafilov
- Department of Pharmacology and Toxicology, University of Lausanne, 1011 Lausanne, Switzerland
| | - Maud Bollenbach
- Faculty of Pharmacy, University of Strasbourg, 67401 Illkirch Cedex, France
| | - Martine Schmitt
- Faculty of Pharmacy, University of Strasbourg, 67401 Illkirch Cedex, France
| | - Frédéric Bihel
- Faculty of Pharmacy, University of Strasbourg, 67401 Illkirch Cedex, France
| | - Stephan Kellenberger
- Department of Pharmacology and Toxicology, University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
256
|
Vats K, Sarmah D, Kaur H, Wanve M, Kalia K, Borah A, Dave KR, Yavagal DR, Bhattacharya P. Inflammasomes in stroke: a triggering role for acid-sensing ion channels. Ann N Y Acad Sci 2018; 1431:14-24. [DOI: 10.1111/nyas.13852] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 01/23/2023]
Affiliation(s)
- Kanchan Vats
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad; Gandhinagar Gujarat India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad; Gandhinagar Gujarat India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad; Gandhinagar Gujarat India
| | - Madhuri Wanve
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad; Gandhinagar Gujarat India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad; Gandhinagar Gujarat India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory; Department of Life Science and Bioinformatics; Assam University; Silchar Assam India
| | - Kunjan R. Dave
- Department of Neurology; University of Miami Miller School of Medicine; Miami Florida
| | - Dileep R. Yavagal
- Department of Neurology; University of Miami Miller School of Medicine; Miami Florida
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad; Gandhinagar Gujarat India
| |
Collapse
|
257
|
Abstract
Lam and Chesler highlight the recent discovery of a G protein–coupled receptor involved in detecting mechanical shear stress.
Collapse
Affiliation(s)
- Ruby M Lam
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD.,Brown-National Institutes of Health Graduate Partnerships Program, Brown University, Providence, RI
| | - Alexander T Chesler
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD
| |
Collapse
|
258
|
Cryo-EM structure of the ASIC1a-mambalgin-1 complex reveals that the peptide toxin mambalgin-1 inhibits acid-sensing ion channels through an unusual allosteric effect. Cell Discov 2018; 4:27. [PMID: 29872539 PMCID: PMC5986765 DOI: 10.1038/s41421-018-0026-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 02/07/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are neuronal voltage-independent Na+ channels that are activated by extracellular acidification. ASICs play essential roles in a wide range of physiological processes, including sodium homeostasis, synaptic plasticity, neurodegeneration, and sensory transduction. Mambalgins, a family of three-finger toxins isolated from black mamba venom, specifically inhibit ASICs to exert strong analgesic effects in vivo, thus are thought to have potential therapeutic values against pain. However, the interaction and inhibition mechanism of mambalgin on ASICs remains elusive. Here, we report a cryo-electron microscopy (cryo-EM) structure of chicken ASIC1a (cASIC1a) in complex with mambalgin-1 toxin at 5.4 Å resolution. Our structure provides the first experimental evidence that mambalgin-1 interacts directly with the extracellular thumb domain of cASIC1a, rather than inserting into the acid-sensing pocket, as previously reported. Binding of mambalgin-1 leads to relocation of the thumb domain that could disrupt the acidic pocket of cASIC1a, illustrating an unusual inhibition mechanism of toxins on ASIC channels through an allosteric effect. These findings establish a structural basis for the toxicity of the mambalgins, and provide crucial insights for the development of new optimized inhibitors of ASICs.
Collapse
|
259
|
Kalina R, Gladkikh I, Dmitrenok P, Chernikov O, Koshelev S, Kvetkina A, Kozlov S, Kozlovskaya E, Monastyrnaya M. New APETx-like peptides from sea anemone Heteractis crispa modulate ASIC1a channels. Peptides 2018; 104:41-49. [PMID: 29684594 DOI: 10.1016/j.peptides.2018.04.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/06/2018] [Accepted: 04/18/2018] [Indexed: 02/07/2023]
Abstract
Sea anemones are an abundant source of various biologically active peptides. The hydrophobic 20% ethanol fraction of tropical sea anemone Heteractis crispa was shown to contain at least 159 peptide compounds including neurotoxins, proteinase and α-amylase inhibitors, as well as modulators of acid-sensing ion channels (ASICs). The three new peptides, π-AnmTX Hcr 1b-2, -3, and -4 (41 aa) (short names Hcr 1b-2, -3, -4), identified by a combination of reversed-phase liquid chromatography and mass spectrometry were found to belong to the class 1b sea anemone neurotoxins. The amino acid sequences of these peptides were determined by Edman degradation and tandem mass spectrometry. The percent of identity of Hcr 1b-2, -3, and -4 with well-known ASIC3 inhibitors Hcr 1b-1 from H. crispa and APETx2 from Anthopleura elegantissima is 95-78% and 46-49%, respectively. Electrophysiological experiments on homomeric ASIC channels expressed in Xenopus laevis oocytes establish that these peptides are the first inhibitors of ASIC1a derived from sea anemone venom. The major peptide, Hcr 1b-2, inhibited both rASIC1a (IC50 4.8 ± 0.3 μM; nH 0.92 ± 0.05) and rASIC3 (IC50 15.9 ± 1.1 μM; nH 1.0 ± 0.05). The maximum inhibition at saturating peptide concentrations reached 64% and 81%, respectively. In the model of acid-induced muscle pain Hcr 1b-2 was also shown to exhibit an antihyperalgesic effect, significantly reducing of the pain threshold of experimental animals.
Collapse
Affiliation(s)
- Rimma Kalina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, FEB RAS, Vladivostok, Russia.
| | - Irina Gladkikh
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, FEB RAS, Vladivostok, Russia.
| | - Pavel Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, FEB RAS, Vladivostok, Russia
| | - Oleg Chernikov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, FEB RAS, Vladivostok, Russia
| | - Sergey Koshelev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
| | - Aleksandra Kvetkina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, FEB RAS, Vladivostok, Russia
| | - Sergey Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
| | - Emma Kozlovskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, FEB RAS, Vladivostok, Russia
| | | |
Collapse
|
260
|
Cheng YR, Jiang BY, Chen CC. Acid-sensing ion channels: dual function proteins for chemo-sensing and mechano-sensing. J Biomed Sci 2018; 25:46. [PMID: 29793480 PMCID: PMC5966886 DOI: 10.1186/s12929-018-0448-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/15/2018] [Indexed: 12/22/2022] Open
Abstract
Background Acid-sensing ion channels (ASICs) are a group of amiloride-sensitive ligand-gated ion channels belonging to the family of degenerin/epithelial sodium channels. ASICs are predominantly expressed in both the peripheral and central nervous system and have been characterized as potent proton sensors to detect extracellular acidification in the periphery and brain. Main body Here we review the recent studies focusing on the physiological roles of ASICs in the nervous system. As the major acid-sensing membrane proteins in the nervous system, ASICs detect tissue acidosis occurring at tissue injury, inflammation, ischemia, stroke, and tumors as well as fatiguing muscle to activate pain-sensing nerves in the periphery and transmit pain signals to the brain. Arachidonic acid and lysophosphocholine have been identified as endogenous non-proton ligands activating ASICs in a neutral pH environment. On the other hand, ASICs are found involved in the tether model mechanotransduction, in which the extracellular matrix and cytoplasmic cytoskeletons act like a gating-spring to tether the mechanically activated ion channels and thus transmit the stimulus force to the channels. Accordingly, accumulating evidence has shown ASICs play important roles in mechanotransduction of proprioceptors, mechanoreceptors and nociceptors to monitor the homoeostatic status of muscle contraction, blood volume, and blood pressure as well as pain stimuli. Conclusion Together, ASICs are dual-function proteins for both chemosensation and mechanosensation involved in monitoring physiological homoeostasis and pathological signals.
Collapse
Affiliation(s)
- Yuan-Ren Cheng
- Department of Life Science, National Taiwan University, Taipei, 106, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, 128, Academia Rd. Sec. 2, Taipei, 115, Taiwan
| | - Bo-Yang Jiang
- Department of Life Science, National Taiwan University, Taipei, 106, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, 128, Academia Rd. Sec. 2, Taipei, 115, Taiwan
| | - Chih-Cheng Chen
- Department of Life Science, National Taiwan University, Taipei, 106, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, 128, Academia Rd. Sec. 2, Taipei, 115, Taiwan. .,Taiwan Mouse Clinic - National Comprehensive Mouse Phenotyping and Drug Testing Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
261
|
Krauson AJ, Rooney JG, Carattino MD. Molecular basis of inhibition of acid sensing ion channel 1A by diminazene. PLoS One 2018; 13:e0196894. [PMID: 29782492 PMCID: PMC5962070 DOI: 10.1371/journal.pone.0196894] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/20/2018] [Indexed: 11/18/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are trimeric proton-gated cation permeable ion channels expressed primarily in neurons. Here we employed site-directed mutagenesis and electrophysiology to investigate the mechanism of inhibition of ASIC1a by diminazene. This compound inhibits mouse ASIC1a with a half-maximal inhibitory concentration (IC50) of 2.4 μM. At first, we examined whether neutralizing mutations of Glu79 and Glu416 alter diminazene block. These residues form a hexagonal array in the lower palm domain that was previously shown to contribute to pore opening in response to extracellular acidification. Significantly, single Gln substitutions at positions 79 and 416 in ASIC1a reduced diminazene apparent affinity by 6-7 fold. This result suggests that diminazene inhibits ASIC1a in part by limiting conformational rearrangement in the lower palm domain. Because diminazene is charged at physiological pHs, we assessed whether it inhibits ASIC1a by blocking the ion channel pore. Consistent with the notion that diminazene binds to a site within the membrane electric field, diminazene block showed a strong dependence with the membrane potential. Moreover, a Gly to Ala mutation at position 438, in the ion conduction pathway of ASIC1a, increased diminazene IC50 by one order of magnitude and eliminated the voltage dependence of block. Taken together, our results indicate that the inhibition of ASIC1a by diminazene involves both allosteric modulation and blocking of ion flow through the conduction pathway. Our findings provide a foundation for the development of more selective and potent ASIC pore blockers.
Collapse
Affiliation(s)
- Aram J Krauson
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - James G Rooney
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Marcelo D Carattino
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.,Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
262
|
Metabolic regulation of synaptic activity. Rev Neurosci 2018; 29:825-835. [DOI: 10.1515/revneuro-2017-0090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/16/2018] [Indexed: 12/20/2022]
Abstract
Abstract
Brain tissue is bioenergetically expensive. In humans, it composes approximately 2% of body weight and accounts for approximately 20% of calorie consumption. The brain consumes energy mostly for ion and neurotransmitter transport, a process that occurs primarily in synapses. Therefore, synapses are expensive for any living creature who has brain. In many brain diseases, synapses are damaged earlier than neurons start dying. Synapses may be considered as vulnerable sites on a neuron. Ischemic stroke, an acute disturbance of blood flow in the brain, is an example of a metabolic disease that affects synapses. The associated excessive glutamate release, called excitotoxicity, is involved in neuronal death in brain ischemia. Another example of a metabolic disease is hypoglycemia, a complication of diabetes mellitus, which leads to neuronal death and brain dysfunction. However, synapse function can be corrected with “bioenergetic medicine”. In this review, a ketogenic diet is discussed as a curative option. In support of a ketogenic diet, whereby carbohydrates are replaced for fats in daily meals, epileptic seizures can be terminated. In this review, we discuss possible metabolic sensors in synapses. These may include molecules that perceive changes in composition of extracellular space, for instance, ketone body and lactate receptors, or molecules reacting to changes in cytosol, for instance, KATP channels or AMP kinase. Inhibition of endocytosis is believed to be a universal synaptic mechanism of adaptation to metabolic changes.
Collapse
|
263
|
Dual actions of Psalmotoxin at ASIC1a and ASIC2a heteromeric channels (ASIC1a/2a). Sci Rep 2018; 8:7179. [PMID: 29739981 PMCID: PMC5940917 DOI: 10.1038/s41598-018-25386-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/20/2018] [Indexed: 02/06/2023] Open
Abstract
Acid-Sensing Ion Channels (ASICs) are gated by extracellular protons and play important roles in physiological and pathological states, such as pain and stroke. ASIC1a and ASIC2a, two of the most highly expressed subunits in the brain, form functional homo- and hetero-meric (ASIC1a/2a) channels. The function of ASIC1a has been widely studied using psalmotoxin (PcTx1), a venom-derived peptide, as an ASIC1a-selective antagonist. Here, using whole-cell patch clamp, we show that PcTx1 has dual actions at ASIC1a/2a. It can either inhibit or potentiate the heteromeric channel, depending on the conditioning and stimulating pHs. Potent inhibition occurs only at conditioning pHs that begin to desensitize the channel (IC50 = 2.9 nM at pH7.0, a threshold pH for desensitization of ASIC1a/2a). By contrast, potent potentiation can occur at the physiological pH in both CHO cells (EC50 = 56.1 nM) and cortical neurons (threshold concentration < 10 nM). PcTx1 potentiates ASIC1a/2a by increasing the apparent affinity of channel activation for protons. As such, potentiation is the strongest at moderate pHs, diminishing with increasing proton concentrations. Our findings identify PcTx1 as a valuable tool for studying ASIC1a/2a function and contribute significantly to the understanding of the diverse and complex pharmacology of PcTx1.
Collapse
|
264
|
Kautz R, Ordinario DD, Tyagi V, Patel P, Nguyen TN, Gorodetsky AA. Cephalopod-Derived Biopolymers for Ionic and Protonic Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704917. [PMID: 29656448 DOI: 10.1002/adma.201704917] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 12/05/2017] [Indexed: 06/08/2023]
Abstract
Cephalopods (e.g., squid, octopuses, and cuttlefish) have long fascinated scientists and the general public alike due to their complex behavioral characteristics and remarkable camouflage abilities. As such, these animals are explored as model systems in neuroscience and represent a well-known commercial resource. Herein, selected literature examples related to the electrical properties of cephalopod-derived biopolymers (eumelanins, chitosans, and reflectins) and to the use of these materials in voltage-gated devices (i.e., transistors) are highlighted. Moreover, some potential future directions and challenges in this area are described, with the aim of inspiring additional research effort on ionic and protonic transistors from cephalopod-derived biopolymers.
Collapse
Affiliation(s)
- Rylan Kautz
- Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, CA, 92697, USA
| | - David D Ordinario
- Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, University of Tokyo, Tokyo, 113-8656, Japan
| | - Vivek Tyagi
- Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, CA, 92697, USA
| | - Priyam Patel
- Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, CA, 92697, USA
| | - Tam N Nguyen
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Alon A Gorodetsky
- Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
265
|
Chen X, Sun X, Wang Z, Zhou X, Xu L, Li F, Zhang X, Pan J, Qi L, Qian H, Mao Z. Involvement of acid-sensing ion channel 1a in gastric carcinoma cell migration and invasion. Acta Biochim Biophys Sin (Shanghai) 2018; 50:440-446. [PMID: 29584803 DOI: 10.1093/abbs/gmy026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 02/22/2018] [Indexed: 12/18/2022] Open
Abstract
Acidic microenvironment, particularly acid-sensing ion channel 1a (ASIC1a), has been reported to promote carcinoma cell proliferation as well as migration. In this study, we explored the effect of ASIC1a on migration and invasion of gastric carcinoma (GC). ASIC1a expression levels were examined in paired GC and adjacent normal tissues from 16 patients by immunohistochemistry. Reverse transcription real-time PCR and immunoblotting were conducted to assess the ASIC1a expression levels in the GC cell line AGS after transfection with ASIC1a small hairpin RNA (shRNA). Wound healing and transwell invasion assays were utilized to detect metastasis and invasion following ASIC1a silencing. Tumor formation was used to detect the role of ASIC1a in tumorigenicity in vivo. It was found that ASIC1a expression level was significantly higher in GC tissues showing postoperative metastasis compared with non-metastasis and non-tumor tissues. Moreover, silencing of ASIC1a with shRNA significantly down-regulated ASIC1a expression and reduced GC cell migration and invasion. A moderately acidic extracellular environment inhibited GC cell viability. Furthermore, ASIC1a shRNA caused inhibition of tumorigenicity in vivo. Our study is the first report of attenuating the malignant phenotype of GC in vitro and in vivo by suppressing ASIC1a, and suggests a novel approach to study the relationship between ASICs and GC cell migration and invasion.
Collapse
Affiliation(s)
- Xin Chen
- Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xue Sun
- Department of Intensive Care Unit, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Zhe Wang
- Department of Infectious Disease, Children's Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xiaojun Zhou
- Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lu Xu
- Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Feng'e Li
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xingding Zhang
- School of Medicine (Shenzhen), Sun Yat-Sen University, Guangzhou 510006, China
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Hematology & Oncology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Ji'an Pan
- School of Medicine (Shenzhen), Sun Yat-Sen University, Guangzhou 510006, China
| | - Lin Qi
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Hematology & Oncology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Haixin Qian
- Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Zhongqi Mao
- Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
266
|
Stephan G, Huang L, Tang Y, Vilotti S, Fabbretti E, Yu Y, Nörenberg W, Franke H, Gölöncsér F, Sperlágh B, Dopychai A, Hausmann R, Schmalzing G, Rubini P, Illes P. The ASIC3/P2X3 cognate receptor is a pain-relevant and ligand-gated cationic channel. Nat Commun 2018; 9:1354. [PMID: 29636447 PMCID: PMC5893604 DOI: 10.1038/s41467-018-03728-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 03/09/2018] [Indexed: 12/21/2022] Open
Abstract
Two subclasses of acid-sensing ion channels (ASIC3) and of ATP-sensitive P2X receptors (P2X3Rs) show a partially overlapping expression in sensory neurons. Here we report that both recombinant and native receptors interact with each other in multiple ways. Current measurements with the patch-clamp technique prove that ASIC3 stimulation strongly inhibits the P2X3R current partly by a Ca2+-dependent mechanism. The proton-binding site is critical for this effect and the two receptor channels appear to switch their ionic permeabilities during activation. Co-immunoprecipation proves the close association of the two protein structures. BN-PAGE and SDS-PAGE analysis is also best reconciled with the view that ASIC3 and P2X3Rs form a multiprotein structure. Finally, in vivo measurements in rats reveal the summation of pH and purinergically induced pain. In conclusion, the receptor subunits do not appear to form a heteromeric channel, but tightly associate with each other to form a protein complex, mediating unidirectional inhibition. Two subclasses of ligand-gated ion channels (ASIC3 and P2X3) are both present at sensory neurons and might be therefore subject to receptor crosstalk. Here authors use electrophysiology, biochemistry and co-immunoprecipitation to show that the two ion channels interact and affect P2X3 currents.
Collapse
Affiliation(s)
- Gabriele Stephan
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, University of Leipzig, Leipzig, 04107, Germany
| | - Lumei Huang
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, University of Leipzig, Leipzig, 04107, Germany.,Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Sandra Vilotti
- Neurobiology Sector, International School for Advanced Studies, Trieste, 34136, Italy
| | - Elsa Fabbretti
- Department of Life Sciences, University of Trieste, Trieste, 34127, Italy
| | - Ye Yu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai, 100025, China
| | - Wolfgang Nörenberg
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, University of Leipzig, Leipzig, 04107, Germany
| | - Heike Franke
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, University of Leipzig, Leipzig, 04107, Germany
| | - Flóra Gölöncsér
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, 1043, Hungary.,János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, 1043, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, 1043, Hungary
| | - Anke Dopychai
- Molecular Pharmacology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, 52072, Germany
| | - Ralf Hausmann
- Molecular Pharmacology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, 52072, Germany
| | - Günther Schmalzing
- Molecular Pharmacology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, 52072, Germany
| | - Patrizia Rubini
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, University of Leipzig, Leipzig, 04107, Germany
| | - Peter Illes
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, University of Leipzig, Leipzig, 04107, Germany.
| |
Collapse
|
267
|
Zhou X, Zhang Y, Tang D, Liang S, Chen P, Tang C, Liu Z. A Chimeric NaV1.8 Channel Expression System Based on HEK293T Cell Line. Front Pharmacol 2018; 9:337. [PMID: 29686617 PMCID: PMC5900924 DOI: 10.3389/fphar.2018.00337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/22/2018] [Indexed: 11/13/2022] Open
Abstract
Among the nine voltage-gated sodium channel (NaV) subtypes, NaV1.8 is an attractive therapeutic target for pain. The heterologous expression of recombinant NaV1.8 currents is of particular importance for its electrophysiological and pharmacological studies. However, NaV1.8 expresses no or low-level functional currents when transiently transfected into non-neuronal cell lines. The present study aims to explore the molecular determinants limiting its functional expression and accordingly establish a functional NaV1.8 expression system. We conducted screening analysis of the NaV1.8 intracellular loops by constructing NaV chimeric channels and confirmed that the NaV1.8 C-terminus was the only limiting factor. Replacing this sequence with that of NaV1.4, NaV1.5, or NaV1.7 constructed functional channels (NaV1.8/1.4L5, NaV1.8/1.5L5, and NaV1.8/1.7L5, respectively), which expressed high-level NaV1.8-like currents in HEK293T cells. The chimeric channel NaV1.8/1.7L5 displayed much faster inactivation of its macroscopic currents than NaV1.8/1.4L5 and NaV1.8/1.5L5, and it was the most similar to wild-type NaV1.8 expressed in ND7/23 cells. Its currents were very stable during repetitive depolarizations, while its repriming kinetic was different from wild-type NaV1.8. Most importantly, NaV1.8/1.7L5 pharmacologically resembled wild-type NaV1.8 as revealed by testing their susceptibility to two NaV1.8 selective antagonists, APETx-2 and MrVIB. NaV chimeras study showed that at least the domain 2 and domain 4 of NaV1.8 were involved in binding with APETx-2. Our study provided new insights into the function of NaV1.8 intracellular loops, as well as a reliable and convenient expression system which could be useful in NaV1.8 studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Cheng Tang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
268
|
Pluskal T, Weng JK. Natural product modulators of human sensations and mood: molecular mechanisms and therapeutic potential. Chem Soc Rev 2018; 47:1592-1637. [PMID: 28933478 DOI: 10.1039/c7cs00411g] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Humans perceive physical information about the surrounding environment through their senses. This physical information is registered by a collection of highly evolved and finely tuned molecular sensory receptors. A multitude of bioactive, structurally diverse ligands have evolved in nature that bind these molecular receptors. The complex, dynamic interactions between the ligands and the receptors lead to changes in our sensory perception or mood. Here, we review our current knowledge of natural products and their derived analogues that interact specifically with human G protein-coupled receptors, ion channels, and nuclear hormone receptors to modulate the sensations of taste, smell, temperature, pain, and itch, as well as mood and its associated behaviour. We discuss the molecular and structural mechanisms underlying such interactions and highlight cases where subtle differences in natural product chemistry produce drastic changes in functional outcome. We also discuss cases where a single compound triggers complex sensory or behavioural changes in humans through multiple mechanistic targets. Finally, we comment on the therapeutic potential of the reviewed area of research and draw attention to recent technological developments in genomics, metabolomics, and metabolic engineering that allow us to tap the medicinal properties of natural product chemistry without taxing nature.
Collapse
Affiliation(s)
- Tomáš Pluskal
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA.
| | | |
Collapse
|
269
|
Abstract
Acid-sensing ion channels (ASICs) are a family of ion channels, consisting of four members; ASIC1 to 4. These channels are sensitive to changes in pH and are expressed throughout the central and peripheral nervous systems-including brain, spinal cord, and sensory ganglia. They have been implicated in a number of neurological conditions such as stroke and cerebral ischemia, traumatic brain injury, and epilepsy, and more recently in migraine. Their expression within areas of interest in the brain in migraine, such as the hypothalamus and PAG, their demonstrated involvement in preclinical models of meningeal afferent signaling, and their role in cortical spreading depression (the electrophysiological correlate of migraine aura), has enhanced research interest into these channels as potential therapeutic targets in migraine. Migraine is a disorder with a paucity of both acute and preventive therapies available, in which at best 50% of patients respond to available medications, and these medications often have intolerable side effects. There is therefore a great need for therapeutic development for this disabling condition. This review will summarize the understanding of the structure and CNS expression of ASICs, the mechanisms for their potential role in nociception, recent work in migraine, and areas for future research and drug development.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, Denmark Hill, London, SE5 9PJ, UK
| | - Eric B Gonzales
- TCU and UNTHSC School of Medicine (applicant for LCME accreditation), Department of Medical Education, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, BSB-14, Richardson, TX, 75080, USA.
| |
Collapse
|
270
|
Weiß KT, Fante M, Köhl G, Schreml J, Haubner F, Kreutz M, Haverkampf S, Berneburg M, Schreml S. Proton-sensing G protein-coupled receptors as regulators of cell proliferation and migration during tumor growth and wound healing. Exp Dermatol 2018; 26:127-132. [PMID: 27623507 DOI: 10.1111/exd.13209] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2016] [Indexed: 12/20/2022]
Abstract
Dysregulation of pH is a feature of both tumor growth and tissue repair. In tumors, microenvironmental changes, like in lactate metabolism, lead to altered intra- and extracellular pH (pHi , pHe ) and vice versa. In wounds, barrier disruption results in extensive variations in pHe on the wound surface. It is known that altered extracellular proton concentrations have a major impact on cell turnover and migration as well as on the metabolic activity of cells involved in tumor spread and wound closure. The proton-sensing G protein-coupled receptors (GPCRs) GPR4, GPR65 (TDAG8), GPR68 (OGR1) and GPR132 (G2A) are activated via a decrease in pHe and transduce this signal to molecular intracellular pathways. Based on the current knowledge, we speculate on the role of proton-sensing GPCRs in wound healing and on their potential as mechanistic linkers of tumor growth and tissue repair.
Collapse
Affiliation(s)
- Katharina T Weiß
- Department of Dermatology, University Medical Center Regensburg, Regensburg, Germany
| | - Matthias Fante
- Department of Internal Medicine III, Oncology, University Medical Center Regensburg, Regensburg, Germany
| | - Gudrun Köhl
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Julia Schreml
- Institute of Human Genetics, University of Cologne, Cologne, Germany
| | - Frank Haubner
- Department of Otorhinolaryngology, University Medical Center Regensburg, Regensburg, Germany
| | - Marina Kreutz
- Department of Internal Medicine III, Oncology, University Medical Center Regensburg, Regensburg, Germany
| | - Sonja Haverkampf
- Department of Dermatology, University Medical Center Regensburg, Regensburg, Germany
| | - Mark Berneburg
- Department of Dermatology, University Medical Center Regensburg, Regensburg, Germany
| | - Stephan Schreml
- Department of Dermatology, University Medical Center Regensburg, Regensburg, Germany
| |
Collapse
|
271
|
Role of acid-sensing ion channels in hypoxia- and hypercapnia-induced ventilatory responses. PLoS One 2018; 13:e0192724. [PMID: 29474404 PMCID: PMC5825021 DOI: 10.1371/journal.pone.0192724] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/29/2018] [Indexed: 12/13/2022] Open
Abstract
Previous reports indicate roles for acid-sensing ion channels (ASICs) in both peripheral and central chemoreception, but the contributions of ASICs to ventilatory drive in conscious, unrestrained animals remain largely unknown. We tested the hypotheses that ASICs contribute to hypoxic- and hypercapnic-ventilatory responses. Blood samples taken from conscious, unrestrained mice chronically instrumented with femoral artery catheters were used to assess arterial O2, CO2, and pH levels during exposure to inspired gas mixtures designed to cause isocapnic hypoxemia or hypercapnia. Whole-body plethysmography was used to monitor ventilatory parameters in conscious, unrestrained ASIC1, ASIC2, or ASIC3 knockout (-/-) and wild-type (WT) mice at baseline, during isocapnic hypoxemia and during hypercapnia. Hypercapnia increased respiratory frequency, tidal volume, and minute ventilation in all groups of mice, but there were no differences between ASIC1-/-, ASIC2-/-, or ASIC3-/- and WT. Isocapnic hypoxemia also increased respiratory frequency, tidal volume, and minute ventilation in all groups of mice. Minute ventilation in ASIC2-/- mice during isocapnic hypoxemia was significantly lower compared to WT, but there were no differences in the responses to isocapnic hypoxemia between ASIC1-/- or ASIC3-/- compared to WT. Surprisingly, these findings show that loss of individual ASIC subunits does not substantially alter hypercapnic or hypoxic ventilatory responses.
Collapse
|
272
|
Gonzales EB, Sumien N. Acidity and Acid-Sensing Ion Channels in the Normal and Alzheimer's Disease Brain. J Alzheimers Dis 2018; 57:1137-1144. [PMID: 28211811 DOI: 10.3233/jad-161131] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease prevalence has reached epidemic proportion with very few treatment options, which are associated with a multitude of side effects. A potential avenue of research for new therapies are protons, and their associated receptor: acid-sensing ion channels (ASIC). Protons are often overlooked neurotransmitters, and proton-gated currents have been identified in the brain. Furthermore, ASICs have been determined to be crucial for proper brain function. While there is more work to be done, this review is intended to highlight protons as neurotransmitters and their role along with the role of ASICs within physiological functioning of the brain. We will also cover the pathophysiological associations between ASICs and modulators of ASICs. Finally, this review will sum up how the studies of protons, ASICs and their modulators may generate new therapeutic molecules for Alzheimer's disease and other neurodegenerative diseases.
Collapse
|
273
|
Xu Y, Jiang YQ, Li C, He M, Rusyniak WG, Annamdevula N, Ochoa J, Leavesley SJ, Xu J, Rich TC, Lin MT, Zha XM. Human ASIC1a mediates stronger acid-induced responses as compared with mouse ASIC1a. FASEB J 2018; 32:3832-3843. [PMID: 29447005 DOI: 10.1096/fj.201701367r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Acid-sensing ion channels (ASICs) are the major proton receptor in the brain and a key mediator of acidosis-induced neuronal injuries in disease. Most of published data on ASIC function came from studies performed in mice, and relatively little is known about potential differences between human and mouse ASICs (hASIC and mASIC, respectively). This information is critical for us to better interpret the functional importance of ASICs in human disease. Here, we examined the expression of ASICs in acutely resected human cortical tissue. Compared with mouse cortex, human cortical tissue showed a similar ratio of ASIC1a:ASIC2a expression, had reduced ASIC2b level, and exhibited a higher membrane:total ratio of ASIC1a. We further investigated the mechanism for higher surface trafficking of hASIC1a in heterologous cells. A single amino acid at position 285 was critical for increased N-glycosylation and surface expression of hASIC1a. Consistent with the changes in trafficking and current, cells expressing hASIC1a or mASIC1a S285P mutant had a higher acid-activated calcium increase and exhibited worsened acidotoxicity. These data suggest that ASICs are likely to have a larger impact on acidosis-induced neuronal injuries in humans than mice, and this effect is, at least in part, a result of more efficient trafficking of hASIC1a.-Xu, Y., Jiang, Y.-Q., Li, C., He, M., Rusyniak, W. G., Annamdevula, N., Ochoa, J., Leavesley, S. J., Xu, J., Rich, T. C., Lin, M. T., Zha, X.-M. Human ASIC1a mediates stronger acid-induced responses as compared with mouse ASIC1a.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yu-Qing Jiang
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,The Third Hospital of Hebei Medical University, ShiJiaZhuang, China
| | - Ce Li
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Mindi He
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - W George Rusyniak
- Department of Neurosurgery, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Naga Annamdevula
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Juan Ochoa
- Department of Neurology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Silas J Leavesley
- Chemical and Biomolecular Engineering, College of Engineering, University of South Alabama, Mobile, Alabama, USA
| | - Jiangping Xu
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Thomas C Rich
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Mike T Lin
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Xiang-Ming Zha
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
274
|
Osmakov DI, Koshelev SG, Andreev YA, Dubinnyi MA, Kublitski VS, Efremov RG, Sobolevsky AI, Kozlov SA. Proton-independent activation of acid-sensing ion channel 3 by an alkaloid, lindoldhamine, from Laurus nobilis. Br J Pharmacol 2018; 175:924-937. [PMID: 29277899 DOI: 10.1111/bph.14134] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 12/05/2017] [Accepted: 12/07/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Acid-sensing ion channels (ASICs) play an important role in synaptic plasticity and learning, as well as in nociception and mechanosensation. ASICs are involved in pain and in neurological and psychiatric diseases, but their therapeutic potential is limited by the lack of ligands activating them at physiological pH. EXPERIMENTAL APPROACH We extracted, purified and determined the structure of a bisbenzylisoquinoline alkaloid, lindoldhamine, (LIN) from laurel leaves. Its effect on ASIC3 channels were characterized, using two-electrode voltage-clamp electrophysiological recordings from Xenopus laevis oocytes. KEY RESULTS At pH 7.4 or higher, LIN activated a sustained, proton-independent, current through rat and human ASIC3 channels, but not rat ASIC1a or ASIC2a channels. LIN also potentiated proton-induced transient currents and promoted recovery from desensitization in human, but not rat, ASIC3 channels. CONCLUSIONS AND IMPLICATIONS We describe a novel ASIC subtype-specific agonist LIN, which induced proton-independent activation of human and rat ASIC3 channels at physiological pH. LIN also acts as a positive allosteric modulator of human, but not rat, ASIC3 channels. This unique, species-selective, ligand of ASIC3, opens new avenues in studies of ASIC structure and function, as well as providing new approaches to drug design.
Collapse
Affiliation(s)
- Dmitry I Osmakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Sergey G Koshelev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yaroslav A Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maxim A Dubinnyi
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vadim S Kublitski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Sergey A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
275
|
Giannese F, Luchetti A, Barbiera G, Lampis V, Zanettini C, Knudsen GP, Scaini S, Lazarevic D, Cittaro D, D'Amato FR, Battaglia M. Conserved DNA Methylation Signatures in Early Maternal Separation and in Twins Discordant for CO 2 Sensitivity. Sci Rep 2018; 8:2258. [PMID: 29396481 PMCID: PMC5797081 DOI: 10.1038/s41598-018-20457-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/18/2018] [Indexed: 01/07/2023] Open
Abstract
Respiratory and emotional responses to blood-acidifying inhalation of CO2 are markers of some human anxiety disorders, and can be enhanced by repeatedly cross-fostering (RCF) mouse pups from their biological mother to unrelated lactating females. Yet, these dynamics remain poorly understood. We show RCF-associated intergenerational transmission of CO2 sensitivity in normally-reared mice descending from RCF-exposed females, and describe the accompanying alterations in brain DNA methylation patterns. These epigenetic signatures were compared to DNA methylation profiles of monozygotic twins discordant for emotional reactivity to a CO2 challenge. Altered methylation was consistently associated with repeated elements and transcriptional regulatory regions among RCF-exposed animals, their normally-reared offspring, and humans with CO2 hypersensitivity. In both species, regions bearing differential methylation were associated with neurodevelopment, circulation, and response to pH acidification processes, and notably included the ASIC2 gene. Our data show that CO2 hypersensitivity is associated with specific methylation clusters and genes that subserve chemoreception and anxiety. The methylation status of genes implicated in acid-sensing functions can inform etiological and therapeutic research in this field.
Collapse
Affiliation(s)
- Francesca Giannese
- Centre for Translational Genomics and Bioinformatics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Luchetti
- Institute of Cell Biology and Neurobiology, National Research Council, Rome, Italy
| | - Giulia Barbiera
- Centre for Translational Genomics and Bioinformatics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Milan, Italy
| | | | - Claudio Zanettini
- Institute of Cell Biology and Neurobiology, National Research Council, Rome, Italy.,National Institute on Drug Abuse, Medication Development Program Molecular Targets and Medications Discovery Branch, Intramural Research Program, NIH, Baltimore, USA
| | - Gun Peggy Knudsen
- The Norwegian Institute of Public Health Department of Genetics, Environment and Mental Health, Oslo, Norway
| | - Simona Scaini
- Department of Psychology, Sigmund Freud University, Milan, Italy
| | - Dejan Lazarevic
- Centre for Translational Genomics and Bioinformatics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Milan, Italy
| | - Davide Cittaro
- Centre for Translational Genomics and Bioinformatics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Milan, Italy
| | - Francesca R D'Amato
- Institute of Cell Biology and Neurobiology, National Research Council, Rome, Italy.
| | - Marco Battaglia
- Department of Psychiatry, the University of Toronto, Toronto, Canada. .,Division of Child, Youth and Emerging Adulthood, Centre for Addiction and Mental Health, Toronto, Canada.
| |
Collapse
|
276
|
Xie ZY, Chen L, Zhang C, Liu L, Wang F, Cai F, Wang XH, Shi R, Sinkemani A, Yu HM, Hong X, Wu XT. Acid-Sensing Ion Channel 1a Regulates Fate of Rat Nucleus Pulposus Cells in Acid Stimulus Through Endoplasmic Reticulum Stress. Biores Open Access 2018; 7:2-9. [PMID: 29445584 PMCID: PMC5808393 DOI: 10.1089/biores.2017.0049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Acid-sensing ion channel 1a (ASIC1a) participates in human intervertebral disc degeneration (IVDD) and regulates the destiny of nucleus pulposus cells (NPCs) in acid stimulus. However, the mechanism of ASIC1a activation and its downstream pathway remain unclear. Endoplasmic reticulum (ER) stress also participates in the acid-induced apoptosis of NPCs. The main purpose of this study was to investigate whether there is any connection between ASIC1a and ER stress in an acid-induced nucleus pulposus degeneration model. The IVDs of Sprague-Dawley rats were stained by immunohistochemical staining to evaluate the expression of ASIC1a in normal and degenerated rat nucleus pulposus. ASIC1a expression was also quantified by quantitative real-time-polymerase chain reaction and Western blotting analysis. NPCs were exposed to the culture media with acidity at pH 7.2 and 6.5 for 24 h, with or without 4-phenylbutyrate (4-PBA, a blocker of the ER stress pathway). Cell apoptosis was examined by Annexin V/Propidium Iodide (PI) staining and was quantified using flow cytometry analysis. ASIC1a-mediated intracellular calcium was determined by Ca2+ imaging using Fura-2-AM. Acidity-induced changes in ER stress markers were studied using Western blotting analysis. In vivo, ASIC1a expression was upregulated in natural degeneration. In vitro, acid stimulus increased intracellular calcium levels, but this effect was blocked by knockdown of ASIC1a, and this reversal was partly inhibited by 4-PBA. In addition, blockade of ASIC1a reduced expression of ER stress markers, especially the proapoptotic markers. ASIC1a partly regulates ER stress and promotes apoptosis of NPCs under acid stimulus and may be a novel therapeutic target in IVDD.
Collapse
Affiliation(s)
- Zhi-Yang Xie
- Department of Spine Surgery, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lu Chen
- Department of Spine Surgery, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Cong Zhang
- Department of Spine Surgery, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lei Liu
- Department of Spine Surgery, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Feng Wang
- Department of Spine Surgery, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Feng Cai
- Department of Spine Surgery, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China.,Department of Orthopedics, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Hu Wang
- Department of Spine Surgery, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Rui Shi
- Department of Spine Surgery, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Arjun Sinkemani
- Department of Spine Surgery, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hao-Min Yu
- Department of Spine Surgery, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xin Hong
- Department of Spine Surgery, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiao-Tao Wu
- Department of Spine Surgery, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
277
|
More SV, Choi DK. Emerging preclinical pharmacological targets for Parkinson's disease. Oncotarget 2018; 7:29835-63. [PMID: 26988916 PMCID: PMC5045437 DOI: 10.18632/oncotarget.8104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/08/2016] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurological condition caused by the degeneration of dopaminergic neurons in the basal ganglia. It is the most prevalent form of Parkinsonism, categorized by cardinal features such as bradykinesia, rigidity, tremors, and postural instability. Due to the multicentric pathology of PD involving inflammation, oxidative stress, excitotoxicity, apoptosis, and protein aggregation, it has become difficult to pin-point a single therapeutic target and evaluate its potential application. Currently available drugs for treating PD provide only symptomatic relief and do not decrease or avert disease progression resulting in poor patient satisfaction and compliance. Significant amount of understanding concerning the pathophysiology of PD has offered a range of potential targets for PD. Several emerging targets including AAV-hAADC gene therapy, phosphodiesterase-4, potassium channels, myeloperoxidase, acetylcholinesterase, MAO-B, dopamine, A2A, mGlu5, and 5-HT-1A/1B receptors are in different stages of clinical development. Additionally, alternative interventions such as deep brain stimulation, thalamotomy, transcranial magnetic stimulation, and gamma knife surgery, are also being developed for patients with advanced PD. As much as these therapeutic targets hold potential to delay the onset and reverse the disease, more targets and alternative interventions need to be examined in different stages of PD. In this review, we discuss various emerging preclinical pharmacological targets that may serve as a new promising neuroprotective strategy that could actually help alleviate PD and its symptoms.
Collapse
Affiliation(s)
- Sandeep Vasant More
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, South Korea
| | - Dong-Kug Choi
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, South Korea
| |
Collapse
|
278
|
Battaglia M, Khan WU. Reappraising Preclinical Models of Separation Anxiety Disorder, Panic Disorder, and CO 2 Sensitivity: Implications for Methodology and Translation into New Treatments. Curr Top Behav Neurosci 2018; 40:195-217. [PMID: 29696603 DOI: 10.1007/7854_2018_42] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Separation anxiety applies to multiple forms of distress responses seen in mammals during postnatal development, including separation from a caregiver. Childhood separation anxiety disorder is an important risk factor for developing panic disorder in early adulthood, and both conditions display an increased sensitivity to elevated CO2 concentrations inhaled from the air. By interfacing epidemiological, genetic, and physiological knowledge with preclinical animal research models, it is possible to decipher the mechanisms that are central to separation anxiety and panic disorders while also suggesting possible therapies. Preclinical research models allow for environmentally controlled studies of early interferences with parental care. These models have shown that different forms of early maternal separation in mice and rats induce elevated CO2 respiratory sensitivity, an important biomarker of separation anxiety and panic disorders. In mice, this is likely due to gene-environment interactions that affect multiple behavioural and physical phenotypes after exposure to this early adversity. Although several questions regarding the causal mechanism of separation anxiety and panic disorder remain unanswered, the identification and improved understanding of biomarkers that link these mental health conditions under the guise of preclinical research models in conjunction with human longitudinal cohort studies can help resolve these issues.
Collapse
Affiliation(s)
- Marco Battaglia
- Division of Child, Youth and Emerging Adulthood Psychiatry, Centre for Addiction & Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Waqas Ullah Khan
- Division of Child, Youth and Emerging Adulthood Psychiatry, Centre for Addiction & Mental Health, Toronto, ON, Canada
- School of Medicine, Faculty of Health Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
279
|
Interleukin-1β and tumor necrosis factor-α augment acidosis-induced rat articular chondrocyte apoptosis via nuclear factor-kappaB-dependent upregulation of ASIC1a channel. Biochim Biophys Acta Mol Basis Dis 2018; 1864:162-177. [DOI: 10.1016/j.bbadis.2017.10.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/09/2017] [Accepted: 10/02/2017] [Indexed: 02/07/2023]
|
280
|
Dubouskaya TG, Hrynevich SV, Waseem TV, Fedorovich SV. Calcium release from intracellular stores is involved in mitochondria depolarization after lowering extracellular pH in rat brain synaptosomes. Acta Neurobiol Exp (Wars) 2018. [DOI: 10.21307/ane-2018-033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
281
|
Patel S, Suleria HA. Ethnic and paleolithic diet: Where do they stand in inflammation alleviation? A discussion. JOURNAL OF ETHNIC FOODS 2017; 4:236-241. [DOI: 10.1016/j.jef.2017.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
282
|
Schmidt A, Rossetti G, Joussen S, Gründer S. Diminazene Is a Slow Pore Blocker of Acid-Sensing Ion Channel 1a (ASIC1a). Mol Pharmacol 2017; 92:665-675. [PMID: 29025967 DOI: 10.1124/mol.117.110064] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/10/2017] [Indexed: 01/01/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are neuronal receptors for extracellular protons. They contribute to the excitatory postsynaptic current and to the detection of painful acidosis. Moreover, they are activated during peripheral inflammation and acidosis associated with various neuronal disorders, such as stroke and neuroinflammation, rendering them interesting drug targets. Diminazene aceturate is a small-molecule inhibitor of ASICs with a reported apparent affinity in the low micromolar range, making it an interesting lead compound. It was reported that diminazene accelerates desensitization of ASICs, which was, however, not explained mechanistically. Furthermore, a binding site in a groove of the extracellular domain was proposed but not experimentally verified. In this study, we revisited the mechanism of inhibition by diminazene and its binding site on ASIC1a, the ASIC subunit with the greatest importance in the central nervous system. We show that diminazene slowly blocks ASIC1a, leading to the apparent acceleration of desensitization and underestimating its potency; we show that diminazene indeed has a submicromolar potency at ASIC1a (IC50 0.3 μM). Moreover, we show that the inhibition is voltage-dependent and competes with that by amiloride, a pore blocker of ASICs. Finally, we identify by molecular docking a binding site in the ion pore that we confirm by site-directed mutagenesis. In summary, our results show that diminazene blocks ASIC1a by a slow open-channel block and suggest that diminazene is an interesting lead compound for high-affinity blockers of ASICs.
Collapse
Affiliation(s)
- Axel Schmidt
- Institute of Physiology (A.S., S.J., S.G.), and Department of Oncology, Hematology and Stem Cell Transplantation (G.R.), RWTH Aachen University, Aachen, Germany; and Computational Biomedicine - Institute for Advanced Simulation/Institute of Neuroscience and Medicine, and Jülich Supercomputing Centre, Jülich, Germany (G.R.)
| | - Giulia Rossetti
- Institute of Physiology (A.S., S.J., S.G.), and Department of Oncology, Hematology and Stem Cell Transplantation (G.R.), RWTH Aachen University, Aachen, Germany; and Computational Biomedicine - Institute for Advanced Simulation/Institute of Neuroscience and Medicine, and Jülich Supercomputing Centre, Jülich, Germany (G.R.)
| | - Sylvia Joussen
- Institute of Physiology (A.S., S.J., S.G.), and Department of Oncology, Hematology and Stem Cell Transplantation (G.R.), RWTH Aachen University, Aachen, Germany; and Computational Biomedicine - Institute for Advanced Simulation/Institute of Neuroscience and Medicine, and Jülich Supercomputing Centre, Jülich, Germany (G.R.)
| | - Stefan Gründer
- Institute of Physiology (A.S., S.J., S.G.), and Department of Oncology, Hematology and Stem Cell Transplantation (G.R.), RWTH Aachen University, Aachen, Germany; and Computational Biomedicine - Institute for Advanced Simulation/Institute of Neuroscience and Medicine, and Jülich Supercomputing Centre, Jülich, Germany (G.R.)
| |
Collapse
|
283
|
|
284
|
Kondratskyi A, Kondratska K, Skryma R, Klionsky DJ, Prevarskaya N. Ion channels in the regulation of autophagy. Autophagy 2017; 14:3-21. [PMID: 28980859 PMCID: PMC5846505 DOI: 10.1080/15548627.2017.1384887] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 09/07/2017] [Accepted: 09/21/2017] [Indexed: 12/18/2022] Open
Abstract
Autophagy is a cellular process in which the cell degrades and recycles its own constituents. Given the crucial role of autophagy in physiology, deregulation of autophagic machinery is associated with various diseases. Hence, a thorough understanding of autophagy regulatory mechanisms is crucially important for the elaboration of efficient treatments for different diseases. Recently, ion channels, mediating ion fluxes across cellular membranes, have emerged as important regulators of both basal and induced autophagy. However, the mechanisms by which specific ion channels regulate autophagy are still poorly understood, thus underscoring the need for further research in this field. Here we discuss the involvement of major types of ion channels in autophagy regulation.
Collapse
Affiliation(s)
- Artem Kondratskyi
- Inserm, U-1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, University of Lille 1, Villeneuve d'Ascq, France
| | - Kateryna Kondratska
- Inserm, U-1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, University of Lille 1, Villeneuve d'Ascq, France
| | - Roman Skryma
- Inserm, U-1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, University of Lille 1, Villeneuve d'Ascq, France
| | - Daniel J. Klionsky
- Life Sciences Institute, and Department of Molecular, Cellular and Developmental Biology; University of Michigan, Ann Arbor, MI, USA
| | - Natalia Prevarskaya
- Inserm, U-1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, University of Lille 1, Villeneuve d'Ascq, France
| |
Collapse
|
285
|
Izurieta Munoz H, Gonzales EB, Sumien N. Effects of creatine supplementation on nociception in young male and female mice. Pharmacol Rep 2017; 70:316-321. [PMID: 29477040 DOI: 10.1016/j.pharep.2017.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 11/01/2017] [Accepted: 11/10/2017] [Indexed: 11/17/2022]
Abstract
BACKGROUND The objective of this study was to evaluate creatine as an anti-nociceptive compound in an animal model of thermal and inflammatory pain. Creatine has the structural potential to interact with acid-sensing ion channels (ASIC), which have been involved in pain sensation modulation. The hypothesis evaluated in this study was that creatine will interact with ASICs leading to decreased nociception. METHODS Male and female C57BL/6J mice were fed with either a control diet or the control diet supplemented with creatine (6.25 g/kg diet). After one week on the diet, the mice were tested for thermal hyperalgesia and inflammatory pain response. RESULTS The latency to withdraw the tail during the thermal hyperalgesia test was unaffected by sex or diet. During the formalin test, males and females responded differently to the stimulus, and the female mice supplemented with creatine seemed to recover faster than the controls. To determine whether ASICs mediate the action of creatine, GMQ, an ASIC3 agonist, was injected in one paw and pain response was quantified. Females responded more strongly to GMQ injections, and all mice fed creatine had a decreased response to GMQ. CONCLUSIONS These preliminary data suggest a potential effect of creatine on inflammation-based nociception that may be mediated via ASIC3. While preliminary, this study warrants further research on the potential of creatine as an analgesic and can serve as a stepping stone for the development of ASIC-based therapeutics.
Collapse
Affiliation(s)
- Haydee Izurieta Munoz
- Department of Pharmacology and Neuroscience, UNT Health Science Center, Fort Worth, USA
| | - Eric B Gonzales
- Department of Medical Education, Texas Christian University and UNT Health Science Center School of Medicine (Applicant for LCME accreditation), Fort Worth, USA
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, UNT Health Science Center, Fort Worth, USA.
| |
Collapse
|
286
|
Involvement of Opioid System, TRPM8, and ASIC Receptors in Antinociceptive Effect of Arrabidaea brachypoda (DC) Bureau. Int J Mol Sci 2017; 18:ijms18112304. [PMID: 29099043 PMCID: PMC5713273 DOI: 10.3390/ijms18112304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/27/2017] [Accepted: 11/01/2017] [Indexed: 02/07/2023] Open
Abstract
Arrabidaea brachypoda (DC) Bureau is a medicinal plant found in Brazil. Known as “cipó-una”, it is popularly used as a natural therapeutic agent against pain and inflammation. This study evaluated the chemical composition and antinociceptive activity of the dichloromethane fraction from the roots of A. brachypoda (DEAB) and its mechanism of action. The chemical composition was characterized by high-performance liquid chromatography, and this fraction is composed only of dimeric flavonoids. The antinociceptive effect was evaluated in formalin and hot plate tests after oral administration (10–100 mg/kg) in male Swiss mice. We also investigated the involvement of TRPV1 (transient receptor potential vanilloid 1), TRPA1 (transient receptor potential ankyrin 1), TRPM8 (transient receptor potential melastatin 8), and ASIC (acid-sensing ion channel), as well as the opioidergic, glutamatergic, and supraspinal pathways. Moreover, the nociceptive response was reduced (30 mg/kg) in the early and late phase of the formalin test. DEAB activity appears to involve the opioid system, TRPM8, and ASIC receptors, clearly showing that the DEAB alleviates acute pain in mice and suggesting the involvement of the TRPM8 and ASIC receptors and the opioid system in acute pain relief.
Collapse
|
287
|
Zhu H, Ding J, Wu J, Liu T, Liang J, Tang Q, Jiao M. Resveratrol attenuates bone cancer pain through regulating the expression levels of ASIC3 and activating cell autophagy. Acta Biochim Biophys Sin (Shanghai) 2017; 49:1008-1014. [PMID: 29036449 DOI: 10.1093/abbs/gmx103] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Indexed: 12/30/2022] Open
Abstract
Bone cancer pain (BCP) is one of the most common pains in patients with malignant cancers. The mechanism underlying BCP is largely unknown. Our previous studies and the increasing evidence both have shown that acid-sensing ion channels 3 (ASIC3) is an important protein in the pathological pain state in some pain models. We hypothesized that the expression change of ASIC3 might be one of the factors related to BCP. In this study, we established the BCP model through intrathecally injecting rat mammary gland carcinoma cells (MRMT-1) into the left tibia of Sprague-Dawley female rats, and found that the BCP rats showed bone destruction, increased mechanical pain sensitivities and up-regulated ASIC3 protein expression levels in L4-L6 dorsal root ganglion. Then, resveratrol, which was intraperitoneally injected into the BCP rats on post-operative Day 21, dose-dependently increased the paw withdrawal threshold of BCP rats, reversed the pain behavior, and had an antinociceptive effect on BCP rats. In ASIC3-transfected SH-SY5Y cells, the ASIC3 protein expression levels were regulated by resveratrol in a dose- and time-dependent manner. Meanwhile, resveratrol also had an antinociceptive effect in ASIC3-mediated pain rat model. Furthermore, resveratrol also enhanced the phosphorylation of AMPK, SIRT1, and LC3-II levels in ASIC3-transfected SH-SY5Y cells, indicating that resveratrol could activate the AMPK-SIRT1-autophagy signal pathway in ASIC3-transfected SH-SY5Y cells. In BCP rats, SIRT1 and LC3-II were also down-regulated. These findings provide new evidence for the use of resveratrol as a therapeutic treatment during BCP states.
Collapse
Affiliation(s)
- Haili Zhu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, China
- Department of Physiology, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, China
| | - Jieqiong Ding
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, China
- Department of Physiology, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, China
| | - Ji Wu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, China
| | - Tingting Liu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, China
- Department of Physiology, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, China
| | - Jing Liang
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, China
| | - Qiong Tang
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, China
- Department of Physiology, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, China
| | - Ming Jiao
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
288
|
Collina S, Rui M, Stotani S, Bignardi E, Rossi D, Curti D, Giordanetto F, Malacrida A, Scuteri A, Cavaletti G. Are sigma receptor modulators a weapon against multiple sclerosis disease? Future Med Chem 2017; 9:2029-2051. [PMID: 29076758 DOI: 10.4155/fmc-2017-0122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Effective therapies for multiple sclerosis (MS) are still missing. This neurological disease affects more than 2.5 million people worldwide. To date, biological immunomodulatory drugs are effective and safe during short-term treatment, but they are suitable only for parenteral administration and they are expensive. Accordingly, academic and industrial environments are still focusing their efforts toward the development of new MS drugs. Considering that neurodegeneration is a contributory factor in the onset of MS, herein we will focus on the crucial role played by sigma 1 receptors (S1Rs) in MS. A pilot study was performed, evaluating the effect of the S1R agonist (R)-RC33 on rat dorsal root ganglia experimental model. The encouraging results support the potential of S1R agonists for MS treatment.
Collapse
Affiliation(s)
- Simona Collina
- Department of Drug Sciences, Medicinal Chemistry & Pharmaceutical Technology Section, Centre for Health Technologies (CHT), University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Marta Rui
- Department of Drug Sciences, Medicinal Chemistry & Pharmaceutical Technology Section, Centre for Health Technologies (CHT), University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Silvia Stotani
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Str. 76a, Dortmund 44227, Germany
| | - Emanuele Bignardi
- Department of Drug Sciences, Medicinal Chemistry & Pharmaceutical Technology Section, Centre for Health Technologies (CHT), University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Daniela Rossi
- Department of Drug Sciences, Medicinal Chemistry & Pharmaceutical Technology Section, Centre for Health Technologies (CHT), University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Daniela Curti
- Department of Biology & Biotechnology 'L. Spallanzani', Laboratory of Cellular & Molecular Neuropharmacology, University of Pavia, Via Ferrata 9, Pavia 27100, Italy
| | | | - Alessio Malacrida
- Experimental Neurology Unit, Department of Medicine & Surgery & Milan Center for Neuroscience, University of Milan Bicocca, Via Cadore 48, Monza 20900, Italy
| | - Arianna Scuteri
- Experimental Neurology Unit, Department of Medicine & Surgery & Milan Center for Neuroscience, University of Milan Bicocca, Via Cadore 48, Monza 20900, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit, Department of Medicine & Surgery & Milan Center for Neuroscience, University of Milan Bicocca, Via Cadore 48, Monza 20900, Italy
| |
Collapse
|
289
|
Hu HJ, Song M. Disrupted Ionic Homeostasis in Ischemic Stroke and New Therapeutic Targets. J Stroke Cerebrovasc Dis 2017; 26:2706-2719. [PMID: 29054733 DOI: 10.1016/j.jstrokecerebrovasdis.2017.09.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/30/2017] [Accepted: 09/06/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Stroke is a leading cause of long-term disability. All neuroprotectants targeting excitotoxicity have failed to become stroke medications. In order to explore and identify new therapeutic targets for stroke, we here reviewed present studies of ionic transporters and channels that are involved in ischemic brain damage. METHOD We surveyed recent literature from animal experiments and clinical reports in the databases of PubMed and Elsevier ScienceDirect to analyze ionic mechanisms underlying ischemic cell damage and suggest promising ideas for stroke therapy. RESULTS Dysfunction of ionic transporters and disrupted ionic homeostasis are most early changes that underlie ischemic brain injury, thus receiving sustained attention in translational stroke research. The Na+/K+-ATPase, Na+/Ca2+ Exchanger, ionotropic glutamate receptor, acid-sensing ion channels (ASICs), sulfonylurea receptor isoform 1 (SUR1)-regulated NCCa-ATP channels, and transient receptor potential (TRP) channels are critically involved in ischemia-induced cellular degenerating processes such as cytotoxic edema, excitotoxicity, necrosis, apoptosis, and autophagic cell death. Some ionic transporters/channels also act as signalosomes to regulate cell death signaling. For acute stroke treatment, glutamate-mediated excitotoxicity must be interfered within 2 hours after stroke. The SUR1-regulated NCCa-ATP channels, Na+/K+-ATPase, ASICs, and TRP channels have a much longer therapeutic window, providing new therapeutic targets for developing feasible pharmacological treatments toward acute ischemic stroke. CONCLUSION The next generation of stroke therapy can apply a polypharmacology strategy for which drugs are designed to target multiple ion transporters/channels or their interaction with neurotoxic signaling pathways. But a successful translation of neuroprotectants relies on in-depth analyses of cell death mechanisms and suitable animal models resembling human stroke.
Collapse
Affiliation(s)
- Hui-Jie Hu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingke Song
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
290
|
Besson T, Lingueglia E, Salinas M. Pharmacological modulation of Acid-Sensing Ion Channels 1a and 3 by amiloride and 2-guanidine-4-methylquinazoline (GMQ). Neuropharmacology 2017; 125:429-440. [DOI: 10.1016/j.neuropharm.2017.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/27/2017] [Accepted: 08/07/2017] [Indexed: 11/28/2022]
|
291
|
Grotle AK, Garcia EA, Huo Y, Stone AJ. Temporal changes in the exercise pressor reflex in type 1 diabetic rats. Am J Physiol Heart Circ Physiol 2017; 313:H708-H714. [DOI: 10.1152/ajpheart.00399.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 01/29/2023]
Abstract
Previous studies have shown that diabetic peripheral neuropathy affects both unmyelinated and myelinated afferents, similar to those evoking the exercise pressor reflex. However, the effect of type 1 diabetes (T1DM) on this reflex is not known. We examined, in decerebrate male and female T1DM [streptozotocin (STZ)] and healthy control (CTL) rats, pressor and cardioaccelerator responses to isometric contraction of the hindlimb muscles during the early and late stages of the disease. STZ (50 mg/kg) was injected to induce diabetes, and experiments were conducted at 1, 3, and 6 wk after injection. On the day of the experiment, we statically contracted the hindlimb muscles by stimulating the sciatic nerve and measured changes in mean arterial pressure and heart rate. We found that the pressor but not cardioaccelerator response was exaggerated in STZ rats at 1 wk (STZ: 21 ± 3 mmHg, n = 10, and CTL: 14 ± 2 mmHg, n = 10, P < 0.05) and at 3 wk (STZ: 26 ± 5 mmHg, n = 10, and CTL: 17 ± 3 mmHg, n = 11, P < 0.05) after injection. However, at 6 wk, and only in male rats, both the pressor (STZ: 13 ± 3 mmHg, n = 12, and CTL: 17 ± 3 mmHg, n = 13, P < 0.05) and cardioaccelerator responses (STZ: 7 ± 3 beats/min, n = 12, and CTL: 10 ± 3 beats/min, n = 13, P < 0.05) to contraction were significantly attenuated in STZ rats compared with CTL rats. These data indicate that T1DM exaggerates the exercise pressor reflex during the early stages of the disease in both male and female rats. Conversely, T1DM attenuates this reflex in the late stage of the disease in male but not female rats. NEW & NOTEWORTHY This is the first study to provide evidence that the pressor and cardioaccelerator responses to skeletal muscle contraction vary depending on the duration of type 1 diabetes.
Collapse
Affiliation(s)
- Ann-Katrin Grotle
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin Texas
| | - Elizabeth A. Garcia
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin Texas
| | - Yu Huo
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin Texas
| | - Audrey J. Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin Texas
| |
Collapse
|
292
|
Leibold NK, van den Hove DLA, Viechtbauer W, Kenis G, Goossens L, Lange I, Knuts I, Smeets HJ, Myin-Germeys I, Steinbusch HW, Schruers KR. Amiloride-sensitive cation channel 2 genotype affects the response to a carbon dioxide panic challenge. J Psychopharmacol 2017; 31:1294-1301. [PMID: 28121219 DOI: 10.1177/0269881116686880] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Until recently, genetic research into panic disorder (PD) has had only limited success. Inspired by rodent research, demonstrating that the acid-sensing ion channel 1a (ASIC1a) is critically involved in the behavioral fear response to carbon dioxide (CO2) exposure, variants in the human homologue gene amiloride-sensitive cation channel 2 (ACCN2) were shown to be associated with PD. However, the relationship between changes in brain pH and ACCN2, as done in rodents by CO2 exposure, has not been investigated yet in humans. Here, we examined this link between the ACCN2 gene and the response to CO2 exposure in two studies: in healthy volunteers as well as PD patients and using both behavioral and physiological outcome measures. More specifically, 107 healthy volunteers and 183 PD patients underwent a 35% CO2 inhalation. Negative affect was assessed using visual analogue scales and the panic symptom list (PSL), and, in healthy volunteers, cardiovascular measurements. The single nucleotide polymorphism rs10875995 was significantly associated with a higher emotional response in PD patients and with an increase in systolic as well as diastolic blood pressure in healthy subjects. In all measurements, subjects homozygous for the T-allele showed a heightened reactivity to CO2. Furthermore, a trend towards an rs685012 genotype effect on the emotional response was found in PD patients. We provide the first evidence that genetic variants in the ACCN2 are associated with differential sensitivity to CO2 in PD patients as well as healthy volunteers, further supporting ACCN2 as a promising candidate for future research to improve current treatment options.
Collapse
Affiliation(s)
- Nicole K Leibold
- 1 Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Daniel LA van den Hove
- 1 Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands.,2 Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Wolfgang Viechtbauer
- 1 Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Gunter Kenis
- 1 Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Liesbet Goossens
- 1 Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Iris Lange
- 1 Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Inge Knuts
- 1 Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Hubert J Smeets
- 3 Genome Center Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Inez Myin-Germeys
- 3 Genome Center Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Harry Wm Steinbusch
- 1 Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Koen Rj Schruers
- 1 Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
293
|
Battaglia M, Garon-Carrier G, Côté SM, Dionne G, Touchette E, Vitaro F, Tremblay RE, Boivin M. Early childhood trajectories of separation anxiety: Bearing on mental health, academic achievement, and physical health from mid-childhood to preadolescence. Depress Anxiety 2017; 34:918-927. [PMID: 28833904 DOI: 10.1002/da.22674] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Separation anxiety disorder is the most prevalent childhood anxiety condition, but no study assessed children for separation anxiety at preschool age and followed them longitudinally and directly until mid-childhood/early adolescence. METHODS Multi-informant (children, teachers, family), multipoint (at age 8, 10, 12, 13) assessments of 1,290 children of the Quebec Longitudinal Study of Child Development, who had been categorized between age 1.5 and 6 into four specific separation anxiety trajectories (1, low-persistent; 2, low-increasing; 3, high-decreasing, and the less common: 4, high-increasing) by growth mixture modeling. Participants in the high-increasing trajectory were compared to participants in the other three trajectories for: (a) child's internalizing and externalizing problem behavior; (b) physical health; (c) academic achievement; (d) maternal anxiety. RESULTS Multivariate analyses of variance/covariance at separate time points showed the high-increasing trajectory mostly associated with: (a) higher internalizing, but not externalizing, behavior; (b) worse academic achievement (most consistently by comparisons to the normative low-persistent trajectory; (c) higher rates of maternal panic/agoraphobic anxiety; (d) worse physical health (most consistently by comparisons to the low-persistent trajectory). The high-increasing trajectory had twofold to threefold higher incidences of physical illnesses than the normative low-persistent group; this was specific for headaches at age 12 years, chronic asthma at age 10 and 13, and having received asthma-related medication during the past 12 months. CONCLUSIONS High-increasing separation anxiety in preschool maintains longitudinal relationships to independent health and academic outcomes, at least until preadolescence. This knowledge can inform the deployment of clinical resources at the earlier signs of the more impairing manifestations.
Collapse
Affiliation(s)
- Marco Battaglia
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Division of Child Youth and Emerging Adult Psychiatry, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | - Sylvana M Côté
- Department of Pediatrics and Psychology, Université de Montréal, Montréal, Canada
| | - Ginette Dionne
- GRIP, School of Psychology, Université Laval, Québec, Canada
| | - Evelyne Touchette
- Department of Psychoeducation, Université du Québec à Trois-Rivières, Québec, Canada
| | - Frank Vitaro
- Department of Psychoeducation, Université de Montréal, Montréal, Canada
| | - Richard E Tremblay
- Department of Pediatrics and Psychology, Université de Montréal, Montréal, Canada.,School of Public Health, Physiotherapy and Population Sciences, University College Dublin, Dublin, Ireland.,Institute of Genetic, Neurobiological, and Social Foundations of Child Development, Tomsk State University, Tomsk, Russian Federation
| | - Michel Boivin
- GRIP, School of Psychology, Université Laval, Québec, Canada.,Institute of Genetic, Neurobiological, and Social Foundations of Child Development, Tomsk State University, Tomsk, Russian Federation
| |
Collapse
|
294
|
Lynagh T, Romero-Rojo JL, Lund C, Pless SA. Molecular Basis for Allosteric Inhibition of Acid-Sensing Ion Channel 1a by Ibuprofen. J Med Chem 2017; 60:8192-8200. [PMID: 28949138 DOI: 10.1021/acs.jmedchem.7b01072] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A growing body of evidence links certain aspects of nonsteroidal anti-inflammatory drug (NSAID) pharmacology with acid-sensing ion channels (ASICs), a small family of excitatory neurotransmitter receptors implicated in pain and neuroinflammation. The molecular basis of NSAID inhibition of ASICs has remained unknown, hindering the exploration of this line of therapy. Here, we characterized the mechanism of inhibition, explored the molecular determinants of sensitivity, and sought to establish informative structure-activity relationships, using electrophysiology, site-directed mutagenesis, and voltage-clamp fluorometry. Our results show that ibuprofen is an allosteric inhibitor of ASIC1a, which binds to a crucial site in the agonist transduction pathway and causes conformational changes that oppose channel activation. Ibuprofen inhibits several ASIC subtypes, but certain ibuprofen derivatives show some selectivity for ASIC1a over ASIC2a and vice versa. These results thus define the NSAID/ASIC interaction and pave the way for small-molecule drug design targeting pain and inflammation.
Collapse
Affiliation(s)
- Timothy Lynagh
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen , Jagtvej 160, 2100 Copenhagen, Denmark
| | - José Luis Romero-Rojo
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen , Jagtvej 160, 2100 Copenhagen, Denmark
| | - Camilla Lund
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen , Jagtvej 160, 2100 Copenhagen, Denmark
| | - Stephan A Pless
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen , Jagtvej 160, 2100 Copenhagen, Denmark
| |
Collapse
|
295
|
Acid-Sensing Ion Channels as Potential Therapeutic Targets in Neurodegeneration and Neuroinflammation. Mediators Inflamm 2017; 2017:3728096. [PMID: 29056828 PMCID: PMC5625748 DOI: 10.1155/2017/3728096] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 07/29/2017] [Accepted: 08/13/2017] [Indexed: 12/21/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are a family of proton-sensing channels that are voltage insensitive, cation selective (mostly permeable to Na+), and nonspecifically blocked by amiloride. Derived from 5 genes (ACCN1-5), 7 subunits have been identified, 1a, 1b, 2a, 2b, 3, 4, and 5, that are widely expressed in the peripheral and central nervous system as well as other tissues. Over the years, different studies have shown that activation of these channels is linked to various physiological and pathological processes, such as memory, learning, fear, anxiety, ischemia, and multiple sclerosis to name a few, so their potential as therapeutic targets is increasing. This review focuses on recent advances that have helped us to better understand the role played by ASICs in different pathologies related to neurodegenerative diseases, inflammatory processes, and pain.
Collapse
|
296
|
Chen SP, Ayata C. Novel Therapeutic Targets Against Spreading Depression. Headache 2017; 57:1340-1358. [PMID: 28842982 DOI: 10.1111/head.13154] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/07/2017] [Accepted: 05/08/2017] [Indexed: 12/11/2022]
Abstract
Migraine is among the most prevalent and disabling neurological diseases in the world. Cortical spreading depression (SD) is an intense wave of neuronal and glial depolarization underlying migraine aura, and a headache trigger, which has been used as an experimental platform for drug screening in migraine. Here, we provide an overview of novel therapeutic targets that show promise to suppress SD, such as acid-sensing ion channels, casein kinase Iδ, P2X7-pannexin 1 complex, and neuromodulation, and outline the experimental models and essential quality measures for rigorous and reproducible efficacy testing.
Collapse
Affiliation(s)
- Shih-Pin Chen
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Cenk Ayata
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
297
|
Yu H, Yang L, Liu L, Zhao X, Huang X. Molecular dynamics simulations investigate the mechanism of Psalmotoxin 1 regulating gating process of an acid-sensing ion channel 1a at pH 5.5. J Biomol Struct Dyn 2017; 36:2558-2566. [PMID: 28768463 DOI: 10.1080/07391102.2017.1363087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Acid-sensing ion channel 1a (ASIC1a) is a cation channel activated by protons and causes neuronal death through central nervous system. Psalmotoxin1 (PcTx1) is a gating modifier for ASIC1a. The process of PcTx1 regulating the channel gating from the extracellular domain to the transmembrane domain is unclear. Here we used molecular dynamics (MD) simulations method to investigate how PcTx1 regulates the gating of the ASIC1a. Our results indicated that PcTx1can mainly regulate ASIC1a gating process through hydrogen bonds, which can affect their relative positions of several key domains in ASIC1a, further, a long-range conformational changes path was determined, which is composed of β1, β2, β10, α6, α7, β11, and β12 in ASIC1a.
Collapse
Affiliation(s)
- Hui Yu
- a Chemistry Teaching Center, College of Chemistry and Biology , Beihua University , Jilin , People's Republic of China
| | - Lianjuan Yang
- b The Fungal Reference Laboratory of Shanghai Dermatology Hospital , Shanghai , China
| | - Lu Liu
- c Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , People's Republic of China
| | - Xi Zhao
- c Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , People's Republic of China
| | - Xuri Huang
- c Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , People's Republic of China
| |
Collapse
|
298
|
Suchyna TM. Piezo channels and GsMTx4: Two milestones in our understanding of excitatory mechanosensitive channels and their role in pathology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 130:244-253. [PMID: 28778608 DOI: 10.1016/j.pbiomolbio.2017.07.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/17/2017] [Accepted: 07/21/2017] [Indexed: 12/19/2022]
Abstract
Discovery of Piezo channels and the reporting of their sensitivity to the inhibitor GsMTx4 were important milestones in the study of non-selective cationic mechanosensitive channels (MSCs) in normal physiology and pathogenesis. GsMTx4 had been used for years to investigate the functional role of cationic MSCs, especially in muscle tissue, but with little understanding of its target or inhibitory mechanism. The sensitivity of Piezo channels to bilayer stress and its robust mechanosensitivity when expressed in heterologous systems were keys to determining GsMTx4's mechanism of action. However, questions remain regarding Piezo's role in muscle function due to the non-selective nature of GsMTx4 inhibition toward membrane mechanoenzymes and the implication of MCS channel types by genetic knockdown. Evidence supporting Piezo like activity, at least in the developmental stages of muscle, is presented. While the MSC targets of GsMTx4 in muscle pathology are unclear, its muscle protective effects are clearly demonstrated in two recent in situ studies on normal cardiomyocytes and dystrophic skeletal muscle. The muscle protective function may be due to the combined effect of GsMTx4's inhibitory action on cationic MSCs like Piezo and TRP, and its potentiation of repolarizing K+ selective MSCs like K2P and SAKCa. Paradoxically, the potent in vitro action of GsMTx4 on many physiological functions seems to conflict with its lack of in situ side-effects on normal animal physiology. Future investigations into cytoskeletal control of sarcolemma mechanics and the suspected inclusion of MSCs in membrane micro/nano sized domains with distinct mechanical properties will aide our understanding of this dichotomy.
Collapse
Affiliation(s)
- Thomas M Suchyna
- University of Buffalo, Dept. of Physiology and Biophysics, Buffalo, NY, USA.
| |
Collapse
|
299
|
Wu J, Liu TT, Zhou YM, Qiu CY, Ren P, Jiao M, Hu WP. Sensitization of ASIC3 by proteinase-activated receptor 2 signaling contributes to acidosis-induced nociception. J Neuroinflammation 2017; 14:150. [PMID: 28754162 PMCID: PMC5534107 DOI: 10.1186/s12974-017-0916-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/11/2017] [Indexed: 02/07/2023] Open
Abstract
Background Tissue acidosis and inflammatory mediators play critical roles in pain. Pro-inflammatory agents trypsin and tryptase cleave and activate proteinase-activated receptor 2 (PAR2) expressed on sensory nerves, which is involved in peripheral mechanisms of inflammation and pain. Extracellular acidosis activates acid-sensing ion channel 3 (ASIC3) to trigger pain sensation. Here, we show that a functional interaction of PAR2 and ASIC3 could contribute to acidosis-induced nociception. Methods Electrophysiological experiments were performed on both rat DRG neurons and Chinese hamster ovary (CHO) cells expressing ASIC3 and PAR2. Nociceptive behavior was induced by acetic acid in rats. Results PAR2-AP, PAR2-activating peptide, concentration-dependently increased the ASIC3 currents in CHO cells transfected with ASIC3 and PAR2. The proton concentration–response relationship was not changed, but that the maximal response increased 58.7 ± 3.8% after pretreatment of PAR2-AP. PAR2 mediated the potentiation of ASIC3 currents via an intracellular cascade. PAR2-AP potentiation of ASIC3 currents disappeared after inhibition of intracellular G protein, PLC, PKC, or PKA signaling. Moreover, PAR2 activation increased proton-evoked currents and spikes mediated by ASIC3 in rat dorsal root ganglion neurons. Finally, peripheral administration of PAR2-AP dose-dependently exacerbated acidosis-induced nocifensive behaviors in rats. Conclusions These results indicated that PAR2 signaling sensitized ASIC3, which may contribute to acidosis-induced nociception. These represent a novel peripheral mechanism underlying PAR2 involvement in hyperalgesia by sensitizing ASIC3 in primary sensory neurons.
Collapse
Affiliation(s)
- Jing Wu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Ting-Ting Liu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China.,Department of Physiology, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Yi-Mei Zhou
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Chun-Yu Qiu
- Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Ping Ren
- Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Ming Jiao
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China.
| | - Wang-Ping Hu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China. .,Department of Physiology, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China.
| |
Collapse
|
300
|
Taugher RJ, Lu Y, Fan R, Ghobbeh A, Kreple CJ, Faraci FM, Wemmie JA. ASIC1A in neurons is critical for fear-related behaviors. GENES BRAIN AND BEHAVIOR 2017; 16:745-755. [PMID: 28657172 DOI: 10.1111/gbb.12398] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 12/22/2022]
Abstract
Acid-sensing ion channels (ASICs) have been implicated in fear-, addiction- and depression-related behaviors in mice. While these effects have been attributed to ASIC1A in neurons, it has been reported that ASICs may also function in nonneuronal cells. To determine if ASIC1A in neurons is indeed required, we generated neuron-specific knockout (KO) mice with floxed Asic1a alleles disrupted by Cre recombinase driven by the neuron-specific synapsin I promoter (SynAsic1a KO mice). We confirmed that Cre expression occurred in neurons, but not all neurons, and not in nonneuronal cells including astrocytes. Consequent loss of ASIC1A in some but not all neurons was verified by western blotting, immunohistochemistry and electrophysiology. We found ASIC1A was disrupted in fear circuit neurons, and SynAsic1a KO mice exhibited prominent deficits in multiple fear-related behaviors including Pavlovian fear conditioning to cue and context, predator odor-evoked freezing and freezing responses to carbon dioxide inhalation. In contrast, in the nucleus accumbens ASIC1A expression was relatively normal in SynAsic1a KO mice, and consistent with this observation, cocaine conditioned place preference (CPP) was normal. Interestingly, depression-related behavior in the forced swim test, which has been previously linked to ASIC1A in the amygdala, was also normal. Together, these data suggest neurons are an important site of ASIC1A action in fear-related behaviors, whereas other behaviors likely depend on ASIC1A in other neurons or cell types not targeted in SynAsic1a KO mice. These findings highlight the need for further work to discern the roles of ASICs in specific cell types and brain sites.
Collapse
Affiliation(s)
- R J Taugher
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA.,Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Y Lu
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA.,Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - R Fan
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA.,Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - A Ghobbeh
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA.,Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - C J Kreple
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - F M Faraci
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,Department of Pharmacology, University of Iowa, Iowa City, IA, USA
| | - J A Wemmie
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA.,Department of Veterans Affairs Medical Center, Iowa City, IA, USA.,Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,Department of Neurosurgery, University of Iowa, Iowa City, IA, USA.,Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA.,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA.,Roy J. Carver Chair of Psychiatry and Neuroscience, University of Iowa, Iowa City, IA, USA
| |
Collapse
|