251
|
Marsden WN. Synaptic plasticity in depression: molecular, cellular and functional correlates. Prog Neuropsychopharmacol Biol Psychiatry 2013; 43:168-84. [PMID: 23268191 DOI: 10.1016/j.pnpbp.2012.12.012] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 12/14/2012] [Accepted: 12/15/2012] [Indexed: 12/31/2022]
Abstract
Synaptic plasticity confers environmental adaptability through modification of the connectivity between neurons and neuronal circuits. This is achieved through changes to synapse-associated signaling systems and supported by complementary changes to cellular morphology and metabolism within the tripartite synapse. Mounting evidence suggests region-specific changes to synaptic form and function occur as a result of chronic stress and in depression. Within subregions of the prefrontal cortex (PFC) and hippocampus structural and synapse-related findings seem consistent with a deficit in long-term potentiation (LTP) and facilitation of long-term depression (LTD), particularly at excitatory pyramidal synapses. Other brain regions are less well-studied; however the amygdala may feature a somewhat opposite synaptic pathology including reduced inhibitory tone. Changes to synaptic plasticity in stress and depression may correlate those to several signal transduction pathways (e.g. NOS-NO, cAMP-PKA, Ras-ERK, PI3K-Akt, GSK-3, mTOR and CREB) and upstream receptors (e.g. NMDAR, TrkB and p75NTR). Deficits in synaptic plasticity may further correlate disrupted brain redox and bioenergetics. Finally, at a functional level region-specific changes to synaptic plasticity in depression may relate to maladapted neurocircuitry and parallel reduced cognitive control over negative emotion.
Collapse
Affiliation(s)
- W N Marsden
- Highclere Court, Woking, Surrey, GU21 2QP, UK.
| |
Collapse
|
252
|
Effects of restraint stress on glial activity in the rostral ventromedial medulla. Neuroscience 2013; 241:10-21. [DOI: 10.1016/j.neuroscience.2013.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 12/24/2022]
|
253
|
Sandoval M, Luarte A, Herrera-Molina R, Varas-Godoy M, Santibáñez M, Rubio FJ, Smit AB, Gundelfinger ED, Li KW, Smalla KH, Wyneken U. The glycolytic enzyme aldolase C is up-regulated in rat forebrain microsomes and in the cerebrospinal fluid after repetitive fluoxetine treatment. Brain Res 2013; 1520:1-14. [PMID: 23688545 DOI: 10.1016/j.brainres.2013.04.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 03/22/2013] [Accepted: 04/24/2013] [Indexed: 01/21/2023]
Abstract
The antidepressant drug fluoxetine is widely used for the treatment of a broad range of psychiatric disorders. Its mechanism of action is thought to involve cellular adaptations that are induced with a slow time course after initiation of treatment. To gain insight into the signaling pathways underlying such changes, the expression levels of proteins in a microsomal sub-fraction enriched in intracellular membranes from the rat forebrain was analyzed after two weeks of treatment with fluoxetine. Proteins were separated by two-dimensional gel electrophoresis, and the differentially regulated protein spots were identified by mass spectrometry. Protein network analysis suggested that most of the identified proteins could potentially be regulated by the insulin family of proteins. Among them, Fructose-bisphosphate aldolase C (AldoC), a glycolytic/gluconeogenic enzyme primarily expressed in forebrain astrocytes, was up-regulated 7.6-fold. An immunohistochemical analysis of the dorsal hippocampus revealed a robust decrease (43±2%) in the co-localization of AldoC and the astrocyte marker GFAP and a diffuse staining pattern, compatible with AldoC secretion into the extracellular space. Consistently, AldoC, contained in an exosome-like fraction in astrocyte conditioned medium, increased significantly in the cerebrospinal fluid. Our findings strongly favor a non-canonic signaling role for AldoC in cellular adaptations induced by repetitive fluoxetine treatment.
Collapse
Affiliation(s)
- Mauricio Sandoval
- Laboratorio de Neurociencias, Universidad de Los Andes, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
254
|
BDNF overexpression in mouse hippocampal astrocytes promotes local neurogenesis and elicits anxiolytic-like activities. Transl Psychiatry 2013; 3:e253. [PMID: 23632457 PMCID: PMC3641417 DOI: 10.1038/tp.2013.30] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The therapeutic activity of selective serotonin (5-HT) reuptake inhibitors (SSRIs) relies on long-term adaptation at pre- and post-synaptic levels. The sustained administration of SSRIs increases the serotonergic neurotransmission in response to a functional desensitization of the inhibitory 5-HT1A autoreceptor in the dorsal raphe. At nerve terminal such as the hippocampus, the enhancement of 5-HT availability increases brain-derived neurotrophic factor (BDNF) synthesis and signaling, a major event in the stimulation of adult neurogenesis. In physiological conditions, BDNF would be expressed at functionally relevant levels in neurons. However, the recent observation that SSRIs upregulate BDNF mRNA in primary cultures of astrocytes strongly suggest that the therapeutic activity of antidepressant drugs might result from an increase in BDNF synthesis in this cell type. In this study, by overexpressing BDNF in astrocytes, we balanced the ratio between astrocytic and neuronal BDNF raising the possibility that such manipulation could positively reverberate on anxiolytic-/antidepressant-like activities in transfected mice. Our results indicate that BDNF overexpression in hippocampal astrocytes produced anxiolytic-/antidepressant-like activity in the novelty suppressed feeding in relation with the stimulation of hippocampal neurogenesis whereas it did not potentiate the effects of the SSRI fluoxetine on these parameters. Moreover, overexpressing BDNF revealed the anxiolytic-like activity of fluoxetine in the elevated plus maze while attenuating 5-HT neurotransmission in response to a blunted downregulation of the 5-HT1A autoreceptor. These results emphasize an original role of hippocampal astrocytes in the synthesis of BDNF, which can act through neurogenesis-dependent and -independent mechanisms to regulate different facets of anxiolytic-like responses.
Collapse
|
255
|
Czéh B, Di Benedetto B. Antidepressants act directly on astrocytes: evidences and functional consequences. Eur Neuropsychopharmacol 2013; 23:171-85. [PMID: 22609317 DOI: 10.1016/j.euroneuro.2012.04.017] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 04/27/2012] [Indexed: 11/24/2022]
Abstract
Post-mortem histopathological studies report on reduced glial cell numbers in various frontolimbic areas of depressed patients implying that glial loss together with abnormal functioning could contribute to the pathophysiology of mood disorders. Astrocytes are regarded as the most abundant cell type in the brain and known for their housekeeping functions, but as recent developments suggest, they are also dynamic regulators of synaptogenesis, synaptic strength and stability and they control adult hippocampal neurogenesis. The primary aim of this review was to summarize the abundant experimental evidences demonstrating that antidepressant therapies have profound effect on astrocytes. Antidepressants modify astroglial physiology, morphology and by affecting gliogenesis they probably even regulate glial cell numbers. Antidepressants affect intracellular signaling pathways and gene expression of astrocytes, as well as the expression of receptors and the release of various trophic factors. We also assess the potential functional consequences of these changes on glutamate and glucose homeostasis and on synaptic communication between the neurons. We propose here a hypothesis that antidepressant treatment not only affects neurons, but also activates astrocytes, triggering them to carry out specific functions that result in the reactivation of cortical plasticity and can lead to the readjustment of abnormal neuronal networks. We argue here that these astrocyte specific changes are likely to contribute to the therapeutic effectiveness of the currently available antidepressant treatments and the better understanding of these cellular and molecular processes could help us to identify novel targets for the development of antidepressant drugs.
Collapse
Affiliation(s)
- Boldizsár Czéh
- Max-Planck-Institute of Psychiatry, 80804 Munich, Germany.
| | | |
Collapse
|
256
|
Wang Q, Van Heerikhuize J, Aronica E, Kawata M, Seress L, Joels M, Swaab DF, Lucassen PJ. Glucocorticoid receptor protein expression in human hippocampus; stability with age. Neurobiol Aging 2013; 34:1662-73. [PMID: 23290588 DOI: 10.1016/j.neurobiolaging.2012.11.019] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 11/18/2012] [Accepted: 11/25/2012] [Indexed: 01/22/2023]
Abstract
The glucocorticoid receptor (GR) exerts numerous functions in the body and brain. In the brain, it has been implicated, amongst others, in feedback regulation of the hypothalamic-pituitary-adrenal axis, with potential deficits during aging and in depression. GRs are abundantly expressed in the hippocampus of rodent, except for the Ammon's horn (CA) 3 subregion. In rhesus monkey however, GR protein was largely absent from all hippocampal subregions, which prompted us to investigate its distribution in human hippocampus. After validation of antibody specificity, we investigated GRα protein distribution in the postmortem hippocampus of 26 human control subjects (1-98 years of age) and quantified changes with age and sex. In contrast to monkey, abundant GR-immunoreactivity was present in nuclei of almost all neurons of the hippocampal CA subfields and dentate gyrus (DG), although neurons of the CA3 subregion displayed lower levels of immunoreactivity. Colocalization with glial fibrillary acidic protein confirmed that GR was additionally expressed in approximately 50% of the astrocytes in the CA regions, with lower levels of colocalization (approximately 20%) in the DG. With increased age, GR expression remained stable in the CA regions in both sexes, whereas a significant negative correlation was found with age only in the DG of females. Thus, in contrast to the very low levels previously reported in monkey, GR protein is prominently expressed in human hippocampus, indicating that this region can form an important target for corticosteroid effects in human.
Collapse
Affiliation(s)
- Qian Wang
- Swammerdam Institute for Life Sciences (SILS)-Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
257
|
Araya-Callís C, Hiemke C, Abumaria N, Flugge G. Chronic psychosocial stress and citalopram modulate the expression of the glial proteins GFAP and NDRG2 in the hippocampus. Psychopharmacology (Berl) 2012; 224:209-22. [PMID: 22610521 PMCID: PMC3465647 DOI: 10.1007/s00213-012-2741-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 05/03/2012] [Indexed: 11/06/2022]
Abstract
RATIONALE It has been suggested that there are causal relationships between alterations in brain glia and major depression. OBJECTIVES To investigate whether a depressive-like state induces changes in brain astrocytes, we used chronic social stress in male rats, an established preclinical model of depression. Expression of two astrocytic proteins, the intermediate filament component glial fibrillary acidic protein (GFAP) and the cytoplasmic protein N-myc downregulated gene 2 (NDRG2), was analyzed in the hippocampus. For comparison, expression of the neuronal protein syntaxin-1A was also determined. METHODS Adult male rats were subjected to daily social defeat for 5 weeks and were concomitantly treated with citalopram (30 mg/kg/day, via the drinking water) for 4 weeks. RESULTS Western blot analysis showed that the chronic stress downregulated GFAP but upregulated NDRG2 protein. Citalopram did not prevent these stress effects, but the antidepressant per se downregulated GFAP and upregulated NDRG2 in nonstressed rats. In contrast, citalopram prevented the stress-induced upregulation of the neuronal protein syntaxin-1A. CONCLUSIONS These data suggest that chronic stress and citalopram differentially affect expression of astrocytic genes while the antidepressant drug does not prevent the stress effects. The inverse regulation of the cytoskeletal protein GFAP and the cytoplasmic protein NDRG2 indicates that the cells undergo profound metabolic changes during stress and citalopram treatment. Furthermore, the present findings indicate that a 4-week treatment with citalopram does not restore normal glial function in the hippocampus, although the behavior of the animals was normalized within this treatment period, as reported previously.
Collapse
Affiliation(s)
- Carolina Araya-Callís
- Clinical Neurobiology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Gottingen, Germany
- DFG Research Center for Molecular Physiology of the Brain, Gottingen, Germany
| | - Christoph Hiemke
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany
| | - Nashat Abumaria
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Gabriele Flugge
- Clinical Neurobiology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Gottingen, Germany
- DFG Research Center for Molecular Physiology of the Brain, Gottingen, Germany
| |
Collapse
|
258
|
Gong Y, Sun XL, Wu FF, Su CJ, Ding JH, Hu G. Female early adult depression results in detrimental impacts on the behavioral performance and brain development in offspring. CNS Neurosci Ther 2012; 18:461-70. [PMID: 22672298 DOI: 10.1111/j.1755-5949.2012.00324.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIMS The present study was to understand whether early adult depressive females implicated their offspring. METHODS Seven-week-old female mice were subject to chronic mild stress (CMS) to establish the animal model of depression. The behavioral performance of their offspring were tested via neonatal reflexes tests, hole-board test, and morris water maze test in different ages. Astrocyte number, hippocampal volume, and neurogenesis were analyzed via immunohistochemical blotting. Glucocorticoid receptor (GR) expression and serum cortisol levels were measured by western blotting and ELISA. RESULTS Female depressive mice had normal fertility, but their offspring had lowered neonatal survival rate and body weight from neonatal period to early adulthood. The offspring of female depressive mice exhibited the impairments of neonatal reflex attainment and memory, but had higher emotionality as adults. Furthermore, the astrocyte number, hippocampal volume, and neurogenesis were reduced in the offspring. However, the expressions of GR were increased in the hippocampus of offspring. CONCLUSION This study reveals that female early adult depressive mice have normal reproductive ability, but make long-term detrimental impacts on the behavioral performance and brain development of their offspring.
Collapse
Affiliation(s)
- Yu Gong
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | | | | | | | |
Collapse
|
259
|
Claessens SE, Belanoff JK, Kanatsou S, Lucassen PJ, Champagne DL, Ronald de Kloet E. Acute effects of neonatal dexamethasone treatment on proliferation and astrocyte immunoreactivity in hippocampus and corpus callosum: Towards a rescue strategy. Brain Res 2012; 1482:1-12. [DOI: 10.1016/j.brainres.2012.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 07/31/2012] [Accepted: 08/10/2012] [Indexed: 12/15/2022]
|
260
|
Hu P, Oomen C, van Dam AM, Wester J, Zhou JN, Joëls M, Lucassen PJ. A single-day treatment with mifepristone is sufficient to normalize chronic glucocorticoid induced suppression of hippocampal cell proliferation. PLoS One 2012; 7:e46224. [PMID: 23049985 PMCID: PMC3458013 DOI: 10.1371/journal.pone.0046224] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/28/2012] [Indexed: 01/06/2023] Open
Abstract
Background Chronic stress or prolonged administration of glucocorticoids suppresses proliferation and/or survival of newborn cells in adult rat dentate gyrus. Earlier we showed that administration of the glucocorticoid receptor antagonist mifepristone during the final 4 days of a 21 days period of corticosterone treatment fully normalized the number of newborn cells. Here we aimed to better understand how mifepristone achieves this effect and questioned whether an even shorter (single day) mifepristone treatment (instead of 4 days) also suffices to normalize neurogenesis. Methods We investigated various steps of the neurogenic process, using the immunohistochemical markers BrdU, doublecortin, proliferating cell nuclear antigen as well as glial fibrillary acidic protein, after 17 or 21 days of corticosterone (versus vehicle) treatment. Results Corticosterone primarily attenuates the proliferation of cells which subsequently develop into neurons; this is fully reversed by mifepristone. Surprisingly, the corticosteroid effects on neurogenesis can even be fully re-set by a single-day treatment with mifepristone (on day 18), despite the continued corticosterone exposure on subsequent days. Conclusions Our results emphasize that studies into the therapeutical efficacy of new antidepressants, especially those targeting HPA-activity or the glucocorticoid receptor, should explore the possibility to reduce treatment duration.
Collapse
Affiliation(s)
- Pu Hu
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
- CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Charlotte Oomen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Anne-Marie van Dam
- VU University Medical Center, Neuroscience Campus Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, The Netherlands
| | - Jordi Wester
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Jiang-Ning Zhou
- CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Marian Joëls
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
- Rudolf Magnus Institute for Neurosciences, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul J. Lucassen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
261
|
Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ. Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci 2012; 13:465-77. [PMID: 22678511 DOI: 10.1038/nrn3257] [Citation(s) in RCA: 1112] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The essential amino acid tryptophan is not only a precursor of serotonin but is also degraded to several other neuroactive compounds, including kynurenic acid, 3-hydroxykynurenine and quinolinic acid. The synthesis of these metabolites is regulated by an enzymatic cascade, known as the kynurenine pathway, that is tightly controlled by the immune system. Dysregulation of this pathway, resulting in hyper-or hypofunction of active metabolites, is associated with neurodegenerative and other neurological disorders, as well as with psychiatric diseases such as depression and schizophrenia. With recently developed pharmacological agents, it is now possible to restore metabolic equilibrium and envisage novel therapeutic interventions.
Collapse
Affiliation(s)
- Robert Schwarcz
- University of Maryland School of Medicine, Baltimore, Maryland 21228, USA. rschwarc@mprc. umaryland.edu
| | | | | | | |
Collapse
|
262
|
Quesseveur G, Nguyen HT, Gardier AM, Guiard BP. 5-HT2 ligands in the treatment of anxiety and depression. Expert Opin Investig Drugs 2012; 21:1701-25. [PMID: 22917059 DOI: 10.1517/13543784.2012.719872] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION One third of depressed patients do not respond adequately to conventional antidepressants including the selective serotonin reuptake inhibitors (SSRIs). Therefore, multi-target drugs or augmentation strategies have been developed for the management of SSRIs-resistant patients. In this context, the 5-HT(2) receptor subtypes represent promising targets but their precise roles have yet to be determined. AREAS COVERED The aim of this review is to shed some light on the preclinical evidence supporting the use of 5-HT(2A) and/or 5-HT(2C) receptor antagonists such as antipsychotics, as potential effective adjuncts in SSRIs-resistant depression. This review synthesizes the current literature about the behavioral, electrophysiological and neurochemical effects of 5-HT(2) receptors ligands on the monoaminergic systems but also on adult hippocampal neurogenesis. EXPERT OPINION Although studies support the hypothesis that the inactivation of 5-HT(2A) and/or 5-HT(2C) receptors might be of interest to reinforce different facets of the therapeutic activity of SSRIs, this pharmacological strategy remains debatable notably because of the lack of chronic data in relevant animal models. Conversely, emerging evidence suggests that the activation of 5-HT(2B) receptor is required for antidepressant-like activity, opening the way to new therapeutic approaches. However, the potential risks related to the enhancement of monoaminergic neurotransmissions could represent a major concern.
Collapse
Affiliation(s)
- Gaël Quesseveur
- EA3544 University Paris-XI, Laboratoire de Neuropharmacologie, Fac. Pharmacie, F-92296, Châtenay-Malabry cedex, France
| | | | | | | |
Collapse
|
263
|
Easing the burden of bipolar disorder: from urgent situations to remission. PRIMARY CARE COMPANION TO THE JOURNAL OF CLINICAL PSYCHIATRY 2012; 10:391-402. [PMID: 19158978 DOI: 10.4088/pcc.v10n0507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
264
|
Imbe H, Kimura A, Donishi T, Kaneoke Y. Chronic restraint stress decreases glial fibrillary acidic protein and glutamate transporter in the periaqueductal gray matter. Neuroscience 2012; 223:209-18. [PMID: 22890077 DOI: 10.1016/j.neuroscience.2012.08.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 12/22/2022]
Abstract
Stress affects brain activity and promotes long-term changes in multiple neural systems. Exposure to stressors causes substantial effects on the perception and response to pain. In several animal models, chronic stress produces lasting hyperalgesia. Postmortem studies of stress-related psychiatric disorders have demonstrated a decrease in the number of astrocytes and the level of glial fibrillary acidic protein (GFAP), a marker for astrocyte, in the cerebral cortex. Since astrocytes play vital roles in maintaining neuroplasticity via synapse maintenance and secretion of neurotrophins, impairment of astrocytes is thought to be involved in the neuropathology. In the present study we examined GFAP and excitatory amino acid transporter 2 (EAAT2) protein levels in the periaqueductal gray matter (PAG) after subacute and chronic restraint stresses to clarify changes in descending pain modulatory system in the rat with stress-induced hyperalgesia. Chronic restraint stress (6h/day for 3 weeks), but not subacute restraint stress (6h/day for 3 days), caused a marked mechanical hypersensitivity and aggressive behavior. The chronic restraint stress induced a significant decrease of GFAP protein level in the PAG (32.0 ± 8.9% vs. control group, p<0.05). In immunohistochemical analysis the remarkable decrease of GFAP was observed in the ventrolateral PAG. The EAAT2 protein level in the 3 weeks stress group (79.6 ± 6.8%) was significantly lower compared to that in the control group (100.0 ± 6.1%, p<0.05). In contrast there was no significant difference in the GFAP and EAAT2 protein levels between the control and 3 days stress groups These findings suggest a dysfunction of the PAG that plays pivotal roles in the organization of strategies for coping with stressors and in pain modulation after chronic restraint stress.
Collapse
Affiliation(s)
- H Imbe
- Department of Physiology, Wakayama Medical University, Kimiidera 811-1, Wakayama City 641-8509, Japan.
| | | | | | | |
Collapse
|
265
|
[A depression model of social defeat etiology using tree shrews]. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2012; 33:92-8. [PMID: 22345016 DOI: 10.3724/sp.j.1141.2012.01092] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Depression is a common neuropsychiatric disorder, marked by depressed mood for at least two weeks. The World Health Organization predicts that depression will be the number one leading cause of disease and injury burden by 2030. Clinical treatment faces at least three serious obstacles. First, the disease mechanism is not fully understood and thus there are no effective ways to predict and prevent depression and no biological method of diagnosis. Second, available antidepressants are based on monoamine mechanisms that commonly have a long delay of action and possibly cause a higher risk of suicide. Third, no other antidepressant mechanisms are available, with fast action and few side effects. Unfortunately, several decades of research based on rodent models of depression have not been successful in resolving these problems, at least partially due to the huge differences in brain function between rodents and people. Tree shrews are the closest sister to primates, and brain functions in these species are closer to those of humans. In this review, we discuss a tree shrew model of depression with social defeat etiology and aspects of construct, face and predicted validity of an animal model. Although a tree shrew model of depression has long been ignored and not fully established, its similarities to those aspects of depression in humans may open a new avenue to address this human condition.
Collapse
|
266
|
Garza JC, Guo M, Zhang W, Lu XY. Leptin restores adult hippocampal neurogenesis in a chronic unpredictable stress model of depression and reverses glucocorticoid-induced inhibition of GSK-3β/β-catenin signaling. Mol Psychiatry 2012; 17:790-808. [PMID: 22182938 PMCID: PMC3368076 DOI: 10.1038/mp.2011.161] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Stress and glucocorticoid stress hormones inhibit neurogenesis, whereas antidepressants increase neurogenesis and block stress-induced decrease in neurogenesis. Our previous studies have shown that leptin, an adipocyte-derived hormone with antidepressant-like properties, promotes baseline neurogenesis in the adult hippocampus. This study aimed to determine whether leptin is able to restore suppression of neurogenesis in a rat chronic unpredictable stress (CUS) model of depression. Chronic treatment with leptin reversed the CUS-induced reduction of hippocampal neurogenesis and depression-like behaviors. Leptin treatment elicited a delayed long-lasting antidepressant-like effect in the forced swim behavioral despair test, and this effect was blocked by ablation of neurogenesis with X-irradiation. The functional isoform of the leptin receptor, LepRb, and the glucocorticoid receptor (GR) were colocalized in hippocampal neural stem/progenitor cells in vivo and in vitro. Leptin treatment reversed the GR agonist dexamethasone (DEX)-induced reduction of proliferation of cultured neural stem/progenitor cells from adult hippocampus. Further mechanistic analysis revealed that leptin and DEX converged on glycogen synthase kinase-3β (GSK-3β) and β-catenin. While DEX decreased Ser9 phosphorylation and increased Tyr216 phosphorylation of GSK-3β, leptin increased Ser9 phosphorylation and attenuated the effects of DEX at both Ser9 and Tyr216 phosphorylation sites of GSK-3β. Moreover, leptin increased total level and nuclear translocation of β-catenin, a primary substrate of GSK-3β and a key regulator in controlling hippocampal neural progenitor cell proliferation, and reversed the inhibitory effects of DEX on β-catenin. Taken together, our results suggest that adult neurogenesis is involved in the delayed long-lasting antidepressant-like behavioral effects of leptin, and leptin treatment counteracts chronic stress and glucocorticoid-induced suppression of hippocampal neurogenesis via activating the GSK-3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jacob C. Garza
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Ming Guo
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Wei Zhang
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Xin-Yun Lu
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229,Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229,To whom correspondence should be addressed: Xin-Yun Lu, M.D., Ph.D., Department of Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, Phone: 210-567-0803, Fax : 210-567-4303,:
| |
Collapse
|
267
|
Mood disorders. Transl Neurosci 2012. [DOI: 10.1017/cbo9780511980053.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
268
|
Hodes GE, Brookshire BR, Hill-Smith TE, Teegarden SL, Berton O, Lucki I. Strain differences in the effects of chronic corticosterone exposure in the hippocampus. Neuroscience 2012; 222:269-80. [PMID: 22735575 DOI: 10.1016/j.neuroscience.2012.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 05/18/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
Abstract
Stress hormones are thought to be involved in the etiology of depression, in part, because animal models show they cause morphological damage to the brain, an effect that can be reversed by chronic antidepressant treatment. The current study examined two mouse strains selected for naturalistic variation of tissue regeneration after injury for resistance to the effects of chronic corticosterone (CORT) exposure on cell proliferation and neurotrophin mobilization. The wound healer MRL/MpJ and control C57BL/6J mice were implanted subcutaneously with pellets that released CORT for 7 days. MRL/MpJ mice were resistant to reductions of hippocampal cell proliferation by chronic exposure to CORT when compared to vulnerable C57BL/6J mice. Chronic CORT exposure also reduced protein levels of brain-derived neurotrophic factor (BDNF) in the hippocampus of C57BL/6J but not MRL/MpJ mice. CORT pellet exposure increased circulating levels of CORT in the plasma of both strains in a dose-dependent manner although MRL/MpJ mice may have larger changes from baseline. The strains did not differ in circulating levels of corticosterone binding globulin (CBG). There were also no strain differences in CORT levels in the hippocampus, nor did CORT exposure alter glucocorticoid receptor or mineralocorticoid receptor expression in a strain-dependent manner. Strain differences were found in the N-methyl-D-aspartate (NMDA) receptor, and BDNF I and IV promoters. Strain and CORT exposure interacted to alter tropomyosine-receptor-kinase B (TrkB) expression and this may be a potential mechanism protecting MRL/MpJ mice. In addition, differences in the inflammatory response of matrix metalloproteinases (MMPs) may also contribute to these strain differences in resistance to the deleterious effects of CORT to the brain.
Collapse
Affiliation(s)
- G E Hodes
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, United States
| | | | | | | | | | | |
Collapse
|
269
|
Abstract
Altered glial structure and function is implicated in several major mental illnesses and increasing evidence specifically links changes in oligodendrocytes with disrupted mood regulation. Low density and reduced expression of oligodendrocyte-specific gene transcripts in postmortem human subjects points toward decreased oligodendrocyte function in most of the major mental illnesses. Similar features are observed in rodent models of stress-induced depressive-like phenotypes, such as the unpredictable chronic mild stress and chronic corticosterone exposure, suggesting an effect downstream from stress. However, whether oligodendrocyte changes are a causal component of psychiatric phenotypes is not known. Traditional views that identify oligodendrocytes solely as nonfunctional support cells are being challenged, and recent studies suggest a more dynamic role for oligodendrocytes in neuronal functioning than previously considered, with the region adjacent to the node of Ranvier (i.e., paranode) considered a critical region of glial-neuronal interaction. Here, we briefly review the current knowledge regarding oligodendrocyte disruptions in psychiatric disorders and related animal models, with a focus on major depression. We then highlight several rodent studies, which suggest that alterations in oligodendrocyte structure and function can produce behavioral changes that are informative of mood regulatory mechanisms. Together, these studies suggest a model, whereby impaired oligodendrocyte and possibly paranode structure and function can impact neural circuitry, leading to downstream effects related to emotionality in rodents, and potentially to mood regulation in human psychiatric disorders.
Collapse
Affiliation(s)
- N Edgar
- Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - E Sibille
- Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA,Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, Bridgeside Point II, Suite 231, 450 Technology Drive, Pittsburgh, PA 15219, USA. E-mail:
| |
Collapse
|
270
|
The clinical implications of cognitive impairment and allostatic load in bipolar disorder. Eur Psychiatry 2012; 28:21-9. [PMID: 22534552 DOI: 10.1016/j.eurpsy.2011.11.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 10/25/2011] [Accepted: 11/11/2011] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Allostatic load (AL) relates to the neural and bodily "wear and tear" that emerge in the context of chronic stress. This paper aims to provide clinicians with a comprehensive overview of the role of AL in patophysiology of bipolar disorder (BD) and its practical implications. METHODS PubMed searches were conducted on English-language articles published from 1970 to June 2011 using the search terms allostatic load, oxidative stress, staging, and bipolar disorder cross-referenced with cognitive impairment, comorbidity, mediators, prevention. RESULTS Progressive neural and physical dysfunction consequent to mood episodes in BD can be construed as a cumulative state of AL. The concept of AL can help to reconcile cognitive impairment and increased rates of clinical comorbidities that occur over the course of cumulative BD episodes. CONCLUSIONS Data on transduction of psychosocial stress into the neurobiology of mood episodes converges to the concept of AL. Mood episodes prevention would not only alleviate emotional suffering, but also arrest the cycle of AL, cognitive decline, physical morbidities and, eventually, related mortality. These objectives can be achieved by focusing on effective prophylaxis from the first stages of the disorder, providing mood-stabilizing agents and standardized psychoeducation and, potentially, addressing cognitive deficits by the means of specific medication and neuropsychological interventions.
Collapse
|
271
|
Bian Y, Pan Z, Hou Z, Huang C, Li W, Zhao B. Learning, memory, and glial cell changes following recovery from chronic unpredictable stress. Brain Res Bull 2012; 88:471-6. [PMID: 22537595 DOI: 10.1016/j.brainresbull.2012.04.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 03/28/2012] [Accepted: 04/09/2012] [Indexed: 12/29/2022]
Abstract
Previous research has indicated that chronic stress induces inflammatory responses, cognitive impairments, and changes in microglia and astrocytes. However, whether stress-induced changes following recovery are reversible is unclear. The present study examined the effects of chronic unpredictable stress (CUS) following recovery on spatial learning and memory impairments, changes in microglia and astrocytes, and interleukine-1β (IL-1β) and glial-derived neurotrophic factor (GDNF) levels. Mice were randomly divided into control, stress, and recovery groups, and CUS was applied to mice in the stress and recovery groups for 40 days. Following the application of CUS, the recovery group was allowed 40 days without stress. The results of the Morris water maze illustrated that CUS-induced spatial learning and memory impairments could be reversed or even improved by a period of recovery. Immunohistochemical tests revealed that CUS-induced alterations in microglia could dissipate with time in the CA3 region of the hippocampus and prelimbic areas. However, CUS-induced activation of astrocytes was sustained in the CA3 area following recovery. Western blot analyses revealed that CUS induced a significant increase of GDNF and a significant decrease in IL-1β. Additionally, increased GDNF levels were sustained in the hippocampus during recovery. In conclusion, this study provides evidence that CUS-induced learning and memory impairments could be reversible following recovery. However, activated astrocytes and increased GDNF levels in the hippocampus remained elevated after recovery, suggesting that activated astrocytes and increased GDNF play important roles in the adaptation of the brain to CUS and in repairing CUS-induced impairments during recovery.
Collapse
Affiliation(s)
- Yanqing Bian
- College of Life Science, Hebei Normal University, Shijiazhuang 050016, PR China
| | | | | | | | | | | |
Collapse
|
272
|
Sun JD, Liu Y, Yuan YH, Li J, Chen NH. Gap junction dysfunction in the prefrontal cortex induces depressive-like behaviors in rats. Neuropsychopharmacology 2012; 37:1305-20. [PMID: 22189291 PMCID: PMC3306892 DOI: 10.1038/npp.2011.319] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Growing evidence has implicated glial anomalies in the pathophysiology of major depression disorder (MDD). Gap junctional communication is a main determinant of astrocytic function. However, it is unclear whether gap junction dysfunction is involved in MDD development. This study investigates changes in the function of astrocyte gap junction occurring in the rat prefrontal cortex (PFC) after chronic unpredictable stress (CUS), a rodent model of depression. Animals exposed to CUS and showing behavioral deficits in sucrose preference test (SPT) and novelty suppressed feeding test (NSFT) exhibited significant decreases in diffusion of gap junction channel-permeable dye and expression of connexin 43 (Cx43), a major component of astrocyte gap junction, and abnormal gap junctional ultrastructure in the PFC. Furthermore, we analyzed the effects of typical antidepressants fluoxetine and duloxetine and glucocorticoid receptor (GR) antagonist mifepristone on CUS-induced gap junctional dysfunction and depressive-like behaviors. The cellular and behavioral alterations induced by CUS were reversed and/or blocked by treatment with typical antidepressants or mifepristone, indicating that the mechanism of their antidepressant action may involve the amelioration of gap junction dysfunction and the cellular changes may be related to GR activation. We then investigated the effects of pharmacological gap junction blockade in the PFC on depressive-like behaviors. The results demonstrate that carbenoxolone (CBX) infusions induced anhedonia in SPT, and anxiety in NSFT, and Cx43 mimetic peptides Gap27 and Gap26 also induced anhedonia, a core symptom of depression. Together, this study supports the hypothesis that gap junction dysfunction contributes to the pathophysiology of depression.
Collapse
Affiliation(s)
- Jian-Dong Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Xuanwu District, Beijing 100050, China, Tel: +86 10 63165177, Fax: +86 10 63165177, E-mail:
| |
Collapse
|
273
|
Schnell C, Janc OA, Kempkes B, Callis CA, Flügge G, Hülsmann S, Müller M. Restraint Stress Intensifies Interstitial K(+) Accumulation during Severe Hypoxia. Front Pharmacol 2012; 3:53. [PMID: 22470344 PMCID: PMC3314232 DOI: 10.3389/fphar.2012.00053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 03/12/2012] [Indexed: 11/23/2022] Open
Abstract
Chronic stress affects neuronal networks by inducing dendritic retraction, modifying neuronal excitability and plasticity, and modulating glial cells. To elucidate the functional consequences of chronic stress for the hippocampal network, we submitted adult rats to daily restraint stress for 3 weeks (6 h/day). In acute hippocampal tissue slices of stressed rats, basal synaptic function and short-term plasticity at Schaffer collateral/CA1 neuron synapses were unchanged while long-term potentiation was markedly impaired. The spatiotemporal propagation pattern of hypoxia-induced spreading depression episodes was indistinguishable among control and stress slices. However, the duration of the extracellular direct current potential shift was shortened after stress. Moreover, K+ fluxes early during hypoxia were more intense, and the postsynaptic recoveries of interstitial K+ levels and synaptic function were slower. Morphometric analysis of immunohistochemically stained sections suggested hippocampal shrinkage in stressed rats, and the number of cells that are immunoreactive for glial fibrillary acidic protein was increased in the CA1 subfield indicating activation of astrocytes. Western blots showed a marked downregulation of the inwardly rectifying K+ channel Kir4.1 in stressed rats. Yet, resting membrane potentials, input resistance, and K+-induced inward currents in CA1 astrocytes were indistinguishable from controls. These data indicate an intensified interstitial K+ accumulation during hypoxia in the hippocampus of chronically stressed rats which seems to arise from a reduced interstitial volume fraction rather than impaired glial K+ buffering. One may speculate that chronic stress aggravates hypoxia-induced pathophysiological processes in the hippocampal network and that this has implications for the ischemic brain.
Collapse
Affiliation(s)
- Christian Schnell
- DFG Research Center Molecular Physiology of the Brain, Georg-August-Universität Göttingen Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
274
|
Kaae SS, Chen F, Wegener G, Madsen TM, Nyengaard JR. Quantitative hippocampal structural changes following electroconvulsive seizure treatment in a rat model of depression. Synapse 2012; 66:667-76. [PMID: 22389166 DOI: 10.1002/syn.21553] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 02/24/2012] [Indexed: 01/27/2023]
Abstract
OBJECTIVE The pathophysiology of depression and the effects of antidepressant treatment are hypothesized to be related to hippocampal structural changes. This study aims to investigate the effect of electroconvulsive seizures on behavior and hippocampal structure in a rat model of depression. METHODS Flinders Sensitive Line (FSL) and Flinders Resistant Line (FRL) rats were treated daily for 10 days with either electroconvulsive seizures or sham treatment. The behavior was evaluated using the forced swim test. Design-based stereological methods were used to quantify the hippocampal volume and the numbers of neurons and glial cells in specific hippocampal subregions. RESULTS The basal level of hippocampal volume and neuron number differed significantly between the two rat strains, and a trend toward the FSL strain having more glial cells was found. The structural differences found between the sham-treated animals were counteracted by electroconvulsive seizure (ECS) treatment, which also normalized the behavior. ECS treatment increased the number of glial cells in hilus significantly in the FRL rats and with the same tendency for the FSL rats. CONCLUSION Our results indicate that along with hippocampal neurogenesis, gliogenesis may also be involved in the pathophysiology of depression and in the effect of antidepressant treatment. The underlying mechanisms remain unknown, and further investigations are required to clarify whether the structural changes are necessary to induce a therapeutic effect of antidepressant treatment or if they rather represent an epiphenomenon.
Collapse
Affiliation(s)
- Susanne S Kaae
- Stereology and EM Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, DK-8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
275
|
Chernoloz O, El Mansari M, Blier P. Long-term administration of the dopamine D3/2 receptor agonist pramipexole increases dopamine and serotonin neurotransmission in the male rat forebrain. J Psychiatry Neurosci 2012; 37:113-21. [PMID: 22023785 PMCID: PMC3297071 DOI: 10.1503/jpn.110038] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Long-term administration of the dopamine (DA) D2-like (D3/2) receptor agonist pramipexole (PPX) has been previously found to desensitize D2 autoreceptors, thereby allowing a normalization of the firing of DA neurons and serotonin (5-HT)1A autoreceptors, permitting an enhancement of the spontaneous firing of 5-HT neurons. We hypothesized that PPX would increase overall DA and 5-HT neurotransmission in the forebrain as a result of these changes at the presynaptic level. METHODS Osmotic minipumps were implanted subcutaneously in male Sprague-Dawley rats, delivering PPX at a dose of 1 mg/kg/d for 14 days. The in vivo electrophysiologic microiontophoretic experiments were carried out in anesthetized rats. RESULTS The sensitivity of postsynaptic D2 receptors in the prefrontal cortex (PFC) remained unaltered following PPX administration, as indicated by the unchanged responsiveness to the microiontophoretic application of DA. Their tonic activation was, however, significantly increased by 104% compared with the control level. The sensitivity of postsynaptic 5-HT1A receptors was not altered, as indicated by the unchanged responsiveness to the microiontophoretic application of 5-HT. Similar to other antidepressant treatments, long-term PPX administration enhanced the tonic activation of 5-HT1A receptors on CA3 pyramidal neurons by 142% compared with the control level. LIMITATIONS The assessment of DA and 5-HT neuronal tone was restricted to the PFC and the hippocampus, respectively. CONCLUSION Chronic PPX administration led to a net enhancement in DA and 5-HT neurotransmission, as indicated by the increased tonic activation of postsynaptic D2 and 5-HT1A receptors in forebrain structures.
Collapse
Affiliation(s)
- Olga Chernoloz
- Institute of Mental Health Research, University of Ottawa, Ottawa, Ont.
| | | | | |
Collapse
|
276
|
Shively CA, Willard SL. Behavioral and neurobiological characteristics of social stress versus depression in nonhuman primates. Exp Neurol 2012; 233:87-94. [PMID: 21983263 PMCID: PMC4031682 DOI: 10.1016/j.expneurol.2011.09.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 08/30/2011] [Accepted: 09/16/2011] [Indexed: 12/28/2022]
Abstract
The focus of the review is on the behavioral and physiological manifestations of stress versus depression. The purpose of the review is to evaluate the conceptual approach of using stress models as surrogates for depression. Social stress and depression have many characteristics in common and promote each other. Both have adverse effects on social relationships and the quality of life, and increase risk of other diseases. However, they are not the same constructs. In human and nonhuman primates, the behavior and neurobiology of stressed individuals differ from that of depressed individuals. Some similarities in stress physiology in socially stressed and depressed individuals have been used to support the use of stressed animals as models of depression, and much has been learned from stress models of depression. However, the studies reviewed here also suggest that the depressed state also has different characteristics than the stressed state, and studying the differences may be important to furthering our understanding of each of these constructs as well as their mutual relationship.
Collapse
Affiliation(s)
- Carol A Shively
- Department of Pathology Section on Comparative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1040, USA.
| | | |
Collapse
|
277
|
Unemura K, Kume T, Kondo M, Maeda Y, Izumi Y, Akaike A. Glucocorticoids Decrease Astrocyte Numbers by Reducing Glucocorticoid Receptor Expression In Vitro and In Vivo. J Pharmacol Sci 2012; 119:30-9. [DOI: 10.1254/jphs.12047fp] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
278
|
Liu W, Shu XJ, Chen FY, Zhu C, Sun XH, Liu LJ, Ai YX, Li YG, Zhao H. Tianeptine reverses stress-induced asymmetrical hippocampal volume and N-acetylaspartate loss in rats: an in vivo study. Psychiatry Res 2011; 194:385-392. [PMID: 22047727 DOI: 10.1016/j.pscychresns.2011.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 01/30/2011] [Accepted: 02/10/2011] [Indexed: 02/05/2023]
Abstract
Stress-induced hippocampal volume loss and decrease in N-acetylaspartate (NAA) level have been reported to be associated with impaired neural plasticity and neuronal damage in adults. Accordingly, reversing structural and metabolite damage in the hippocampus may be a desirable goal for antidepressant therapy. The present study investigated the effects of tianeptine on chronic stress-induced hippocampal volume loss and metabolite alterations in vivo in 24 Sprague-Dawley rats. Rats were subjected to a consecutive 28-day forced swimming test stress. Tianeptine (50mg/kg) or saline was administered intragastrically 4h after swimming each day. Spontaneous behaviors, serum corticosterone concentration, hippocampal volume and NAA level were evaluated after stress. Chronic tianeptine treatment counteracted the chronic stress-induced suppression of spontaneous behaviors, elevated serum corticosterone concentration, reduced hippocampal volume and decreased NAA level. Moreover, we found asymmetrical right-left hippocampal volume loss in stressed rats, with the left hippocampus more sensitive to chronic stress than the right hippocampus. In addition, stressed rats showed a decreased level of hippocampal metabolites, without significant loss of hippocampal volume. These findings provide experimental evidence for impaired structural plasticity of the brain being an important feature of depressive illness and suggest that prophylactic tianeptine treatments could reverse structural changes in brain. The structural and neurochemical alterations in the hippocampus may be valuable indexes for evaluating the prophylactic and curative effect of antidepressant treatments in depressive and stress-related disorders.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, 515041, Guangdong, China; Department of Pathology and Pathophysiology, Medical School, Jianghan University, Wuhan, 430056, Hubei, China
| | - Xi-Ji Shu
- Department of Pathology and Pathophysiology, Medical School, Jianghan University, Wuhan, 430056, Hubei, China
| | - Fu-Yin Chen
- Department of Forensic Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Cheng Zhu
- Department of Forensic Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xiao-Hai Sun
- Department of Forensic Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Li-Jiang Liu
- Department of Pathology and Pathophysiology, Medical School, Jianghan University, Wuhan, 430056, Hubei, China
| | - Yong-Xun Ai
- Department of Pathology and Pathophysiology, Medical School, Jianghan University, Wuhan, 430056, Hubei, China
| | - Yu-Guang Li
- Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, 515041, Guangdong, China; Department of Cardiology, the First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Hu Zhao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
279
|
Zhao Y, Wang Z, Dai J, Chen L, Huang Y, Zhan Z. Beneficial effects of benzodiazepine diazepam on chronic stress-induced impairment of hippocampal structural plasticity and depression-like behavior in mice. Behav Brain Res 2011; 228:339-50. [PMID: 22198054 DOI: 10.1016/j.bbr.2011.12.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 12/03/2011] [Accepted: 12/06/2011] [Indexed: 01/20/2023]
Abstract
Whether benzodiazepines (BZDs) have beneficial effects on the progress of chronic stress-induced impairment of hippocampal structural plasticity and major depression is uncertain. The present study designed four preclinical experiments to determine the effects of BZDs using chronic unpredictable stress model. In Experiment 1, several time course studies on behavior and hippocampus response to stress were conducted using the forced swim and tail suspension tests (FST and TST) as well as hippocampal structural plasticity markers. Chronic stress induced depression-like behavior in the FST and TST as well as decreased hippocampal structural plasticity that returned to normal within 3 wk. In Experiment 2, mice received p.o. administration of three diazepam dosages prior to each variate stress session for 4 wk. This treatment significantly antagonized the elevation of stress-induced corticosterone levels. Only low- (0.5mg/kg) and medium-dose (1mg/kg) diazepam blocked the detrimental effects of chronic stress. In Experiment 3, after 7 wk of stress sessions, daily p.o. diazepam administration during 1 wk recovery phase dose-dependently accelerated the recovery of stressed mice. In Experiment 4, 1 wk diazepam administration to control mice enhanced significantly hippocampal structural plasticity and induced an antidepressant-like behavioral effect, whereas 4 wk diazepam administration produced opposite effects. Hence, diazepam can slow the progress of chronic stress-induced detrimental consequences by normalizing glucocorticoid hormones. Considering the adverse effect of long-term diazepam administration on hippocampal plasticity, the preventive effects of diazepam may depend on the proper dose. Short-term diazepam treatment enhances hippocampal structural plasticity and is beneficial to recovery following chronic stress.
Collapse
Affiliation(s)
- Yunan Zhao
- Key Laboratory of Brain Research, Basic Medical College, Nanjing University of Traditional Chinese Medicine, Nanjing, China.
| | | | | | | | | | | |
Collapse
|
280
|
Golan M, Schreiber G, Avissar S. Antidepressants elevate GDNF expression and release from C₆ glioma cells in a β-arrestin1-dependent, CREB interactive pathway. Int J Neuropsychopharmacol 2011; 14:1289-300. [PMID: 21223624 DOI: 10.1017/s1461145710001550] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF), essential for neuronal survival, plasticity and development, has been implicated in the mechanism of action of antidepressant drugs (ADs). β-arrestin1, a member of the arrestin protein family, was found to play a role in AD mechanism of action. The present study aimed at evaluating whether the effect of ADs on GDNF in C6 rat glioma cells is exerted through a β-arrestin1-dependent, CREB-interactive pathway. For chronic treatment, C6 rat glioma cells were treated for 3 d with different classes of ADs: imipramine - a non-selective monoamine reuptake inhibitor, citalopram - a serotonin selective reuptake inhibitor (SSRI) or desipramine - a norepinephrine selective reuptake inhibitor (NSRI) and compared to mood stabilizers (lithium and valproic acid) or to the antipsychotic haloperidol. Only ADs significantly elevated β-arrestin1 levels in the cytosol, while reducing phospho-β-arrestin1 levels in the cell nuclear fraction. ADs significantly increased both GDNF expression and release from the cells, but were unable to induce such effects in β-arrestin1 knock-down cells. Chronic AD treatment significantly increased CREB phosphorylation without altering the level of total CREB in the nuclear fraction of the cells. Moreover, treatment with ADs significantly increased β-arrestin1/CREB interaction. These findings support the involvement of β-arrestin1 in the mechanism of action of ADs. We suggest that following AD treatment, β-arrestin1 generates a transcription complex involving CREB essential for GDNF expression and release, thus enhancing GDNF's neuroprotective action that promotes cellular survival and plasticity when the survival and function of neurons is compromised as occurs in major depression.
Collapse
Affiliation(s)
- Moran Golan
- Department of Pharmacology, Faculty for Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | | | | |
Collapse
|
281
|
Schroeter ML, Steiner J, Mueller K. Glial pathology is modified by age in mood disorders--a systematic meta-analysis of serum S100B in vivo studies. J Affect Disord 2011; 134:32-8. [PMID: 21144594 DOI: 10.1016/j.jad.2010.11.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/06/2010] [Accepted: 11/06/2010] [Indexed: 01/01/2023]
Abstract
BACKGROUND Mood disorders are characterized by specific glial pathology. Recently, based on histopathological post mortem studies, the glial hypothesis has been discussed as a dynamic process, in particular with regard to glioplasticity. Whereas in young subjects with mood disorders, glial cell density or glial cell numbers are reduced, they are increased in elderly subjects. METHODS To validate this concept in vivo, we investigated the dynamic course of glial pathology in mood disorders across studies measuring the glial marker protein S100B in serum in a systematic and quantitative meta-analysis according to the QUOROM and PRISMA statement. We searched for studies in PubMed and Medline, applied strict inclusion/exclusion criteria, and calculated effect sizes according to Cohen and Hedges. RESULTS The final meta-analysis included 174 subjects with mood disorders and 102 control subjects. It demonstrated higher levels of the glial marker protein S100B in older compared with younger adult subjects suffering from mood disorders, although both young and older subjects showed elevated values in comparison to control subjects. Illness duration and age at onset had no impact on serum S100B. LIMITATIONS Influences of antidepressive drugs vs. the spontaneous course of the illness, differences between mood disorder subtypes and the specific role of S100B have to be investigated in future longitudinal studies. CONCLUSIONS The meta-analysis indicates a modifying effect of S100B in mood disorders in the interaction with age, with an increasing role across the lifespan. Results are relevant for the understanding of mood disorders and future illness modifying therapies because S100B may influence neuro- and glioplasticity.
Collapse
Affiliation(s)
- Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany.
| | | | | |
Collapse
|
282
|
Banasr M, Dwyer JM, Duman RS. Cell atrophy and loss in depression: reversal by antidepressant treatment. Curr Opin Cell Biol 2011; 23:730-7. [PMID: 21996102 DOI: 10.1016/j.ceb.2011.09.002] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 08/31/2011] [Accepted: 09/01/2011] [Indexed: 02/07/2023]
Abstract
Depression is associated with structural alterations in limbic brain regions that control emotion and mood. Studies of chronic stress in animal models and postmortem tissue from depressed subjects demonstrate that these structural alterations result from atrophy and loss of neurons and glial cells. These findings indicate that depression and stress-related mood disorders can be considered mild neurodegenerative disorders. Importantly, there is evidence that these structural alterations can be blocked or even reversed by elimination of stress and by antidepressant treatments. A major focus of current investigations is to characterize the molecular signaling pathways and factors that underlie these effects of stress, depression, and antidepressant treatment. Recent advances in this research area are discussed and potential novel targets for antidepressant development are highlighted.
Collapse
Affiliation(s)
- Mounira Banasr
- Departments of Psychiatry and Neurobiology, Yale University School of Medicine, New Haven, CT 06508, United States
| | | | | |
Collapse
|
283
|
Girardet C, Bosler O. [Structural plasticity of the adult central nervous system: insights from the neuroendocrine hypothalamus]. Biol Aujourdhui 2011; 205:179-97. [PMID: 21982406 DOI: 10.1051/jbio/2011018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Indexed: 01/26/2023]
Abstract
Accumulating evidence renders the dogma obsolete according to which the structural organization of the brain would remain essentially stable in adulthood, changing only in response to a need for compensatory processes during increasing age and degeneration. It has indeed become clear from investigations on various models that the adult nervous system can adapt to physiological demands by altering reversibly its synaptic circuits. This potential for structural and functional modifications results not only from the plastic properties of neurons but also from the inherent capacity of the glial cellular components to undergo remodeling as well. This is currently known for astrocytes, the major glial cells in brain which are well-recognized as dynamic partners in the mechanisms of synaptic transmission, and for the tanycytes and pituicytes which contribute to the regulation of neurosecretory processes in neurohemal regions of the hypothalamus. Studies on the neuroendocrine hypothalamus, whose role is central in homeostatic regulations, have gained good insights into the spectacular neuronal-glial rearrangements that may subserve functional plasticity in the adult brain. Following pioneering works on the morphological reorganizations taking place in the hypothalamo-neurohypophyseal system under certain physiological conditions such as dehydration and lactation, studies on the gonadotropic system that orchestrates reproductive functions have re-emphasized the dynamic interplay between neurons and glia in brain structural plasticity processes. This review summarizes the major contributions provided by these researches in the field and also addresses the question of the morphological rearrangements that occur on a 24-h basis in the central component of the circadian clock responsible for the temporal aspects of endocrine regulations. Taken together, the reviewed data highlight the close cooperation between neurons and glia in developing strategies for functional adaptation of the brain to the changing conditions of the internal and external environment.
Collapse
Affiliation(s)
- Clémence Girardet
- Centre de Recherche en Neurobiologie-Neurophysiologie de Marseille, France.
| | | |
Collapse
|
284
|
Glucocorticoid regulation of astrocytic fate and function. PLoS One 2011; 6:e22419. [PMID: 21811605 PMCID: PMC3141054 DOI: 10.1371/journal.pone.0022419] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/22/2011] [Indexed: 12/26/2022] Open
Abstract
Glial loss in the hippocampus has been suggested as a factor in the pathogenesis of stress-related brain disorders that are characterized by dysregulated glucocorticoid (GC) secretion. However, little is known about the regulation of astrocytic fate by GC. Here, we show that astrocytes derived from the rat hippocampus undergo growth inhibition and display moderate activation of caspase 3 after exposure to GC. Importantly, the latter event, observed both in situ and in primary astrocytic cultures is not followed by either early- or late-stage apoptosis, as monitored by stage I or stage II DNA fragmentation. Thus, unlike hippocampal granule neurons, astrocytes are resistant to GC-induced apoptosis; this resistance is due to lower production of reactive oxygen species (ROS) and a greater buffering capacity against the cytotoxic actions of ROS. We also show that GC influence hippocampal cell fate by inducing the expression of astrocyte-derived growth factors implicated in the control of neural precursor cell proliferation. Together, our results suggest that GC instigate a hitherto unknown dialog between astrocytes and neural progenitors, adding a new facet to understanding how GC influence the cytoarchitecture of the hippocampus.
Collapse
|
285
|
Ben Menachem-Zidon O, Avital A, Ben-Menahem Y, Goshen I, Kreisel T, Shmueli EM, Segal M, Ben Hur T, Yirmiya R. Astrocytes support hippocampal-dependent memory and long-term potentiation via interleukin-1 signaling. Brain Behav Immun 2011; 25:1008-16. [PMID: 21093580 DOI: 10.1016/j.bbi.2010.11.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 11/10/2010] [Accepted: 11/11/2010] [Indexed: 02/04/2023] Open
Abstract
Recent studies indicate that astrocytes play an integral role in neural and synaptic functioning. To examine the implications of these findings for neurobehavioral plasticity we investigated the involvement of astrocytes in memory and long-term potentiation (LTP), using a mouse model of impaired learning and synaptic plasticity caused by genetic deletion of the interleukin-1 receptor type I (IL-1RI). Neural precursor cells (NPCs), derived from either wild type (WT) or IL-1 receptor knockout (IL-1rKO) neonatal mice, were labeled with bromodeoxyuridine (BrdU) and transplanted into the hippocampus of either IL-1rKO or WT adult host mice. Transplanted NPCs survived and differentiated into astrocytes (expressing GFAP and S100β), but not to neurons or oligodendrocytes. The NPCs-derived astrocytes from WT but not IL-1rKO mice displayed co-localization of GFAP with the IL-1RI. Four to twelve weeks post-transplantation, memory functioning was examined in the fear-conditioning and the water maze paradigms and LTP of perforant path-dentate gyrus synapses was assessed in anesthetized mice. As expected, IL-1rKO mice transplanted with IL-1rKO cells or sham operated displayed severe memory disturbances in both paradigms as well as a marked impairment in LTP. In contrast, IL-1rKO mice transplanted with WT NPCs displayed a complete rescue of the impaired memory functioning as well as partial restoration of LTP. These findings indicate that astrocytes play a critical role in memory functioning and LTP, and specifically implicate astrocytic IL-1 signaling in these processes. The results suggest novel conceptualization and therapeutic targets for neuropsychiatric disorders characterized by impaired astrocytic functioning concomitantly with disturbed memory and synaptic plasticity.
Collapse
|
286
|
Allaman I, Fiumelli H, Magistretti PJ, Martin JL. Fluoxetine regulates the expression of neurotrophic/growth factors and glucose metabolism in astrocytes. Psychopharmacology (Berl) 2011; 216:75-84. [PMID: 21301813 DOI: 10.1007/s00213-011-2190-y] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 01/17/2011] [Indexed: 02/08/2023]
Abstract
RATIONALE The pharmacological actions of most antidepressants are ascribed to the modulation of serotonergic and/or noradrenergic transmission in the brain. During therapeutic treatment for major depression, fluoxetine, one of the most commonly prescribed selective serotonin reuptake inhibitor (SSRI) antidepressants, accumulates in the brain, suggesting that fluoxetine may interact with additional targets. In this context, there is increasing evidence that astrocytes are involved in the pathophysiology of major depression. OBJECTIVES The aim of this study was to examine the effects of fluoxetine on the expression of neurotrophic/growth factors that have antidepressant properties and on glucose metabolism in cultured cortical astrocytes. RESULTS Treatment of astrocytes with fluoxetine and paroxetine, another SSRI antidepressant, upregulated brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), and VGF mRNA expression. In contrast, the tricyclic antidepressants desipramine and imipramine did not affect the expression of these neurotrophic/growth factors. Analysis of the effects of fluoxetine on glucose metabolism revealed that fluoxetine reduces glycogen levels and increases glucose utilization and lactate release by astrocytes. Similar data were obtained with paroxetine, whereas imipramine and desipramine did not regulate glucose metabolism in this glial cell population. Our results also indicate that the effects of fluoxetine and paroxetine on glucose utilization, lactate release, and expression of BDNF, VEGF, and VGF are not mediated by serotonin-dependent mechanisms. CONCLUSIONS These data suggest that, by increasing the expression of specific astrocyte-derived neurotrophic factors and lactate release from astrocytes, fluoxetine may contribute to normalize the trophic and metabolic support to neurons in major depression.
Collapse
Affiliation(s)
- Igor Allaman
- Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | | | | | | |
Collapse
|
287
|
Zschocke J, Zimmermann N, Berning B, Ganal V, Holsboer F, Rein T. Antidepressant drugs diversely affect autophagy pathways in astrocytes and neurons--dissociation from cholesterol homeostasis. Neuropsychopharmacology 2011; 36:1754-68. [PMID: 21508931 PMCID: PMC3138654 DOI: 10.1038/npp.2011.57] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 02/17/2011] [Accepted: 03/22/2011] [Indexed: 01/25/2023]
Abstract
In the search for antidepressants' (ADs') mechanisms of action beyond their influence on monoaminergic neurotransmission, we analyzed the effects of three structurally and pharmacologically different ADs on autophagic processes in rat primary astrocytes and neurons. Autophagy has a significant role in controlling protein turnover and energy supply. Both, the tricyclic AD amitriptyline (AMI) and the selective serotonin re-uptake inhibitor citalopram (CIT) induced autophagy as mirrored by pronounced upregulation and cellular redistribution of the marker LC3B-II. Redistribution was characterized by formation of LC3B-II-positive structures indicative of autophagosomes, which associated with AVs in a time-dependent manner. Deletion of Atg5, representing a central mediator of autophagy in MEFs, led to abrogation of AMI-induced LC3B-I/II conversion. By contrast, VEN, a selective serotonin and noradrenaline reuptake inhibitor, did not promote autophagic processes in either cell type. The stimulatory impact of AMI on autophagy partly involved class-III PI3 kinase-dependent pathways as 3-methyladenine slightly diminished the effects of AMI. Autophagic flux as defined by autophagosome turnover was vastly undisturbed, and degradation of long-lived proteins was augmented upon AMI treatment. Enhanced autophagy was dissociated from drug-induced alterations in cholesterol homeostasis. Subsequent to AMI- and CIT-mediated autophagy induction, neuronal and glial viability decreased, with neurons showing signs of apoptosis. In conclusion, we report that distinct ADs promote autophagy in neural cells, with important implications on energy homeostasis.
Collapse
Affiliation(s)
- Jürgen Zschocke
- Chaperone Research Group, Max Planck Institute of Psychiatry, Munich, Germany
| | - Nicole Zimmermann
- Chaperone Research Group, Max Planck Institute of Psychiatry, Munich, Germany
| | - Barbara Berning
- Chaperone Research Group, Max Planck Institute of Psychiatry, Munich, Germany
| | - Vanessa Ganal
- Chaperone Research Group, Max Planck Institute of Psychiatry, Munich, Germany
| | - Florian Holsboer
- Chaperone Research Group, Max Planck Institute of Psychiatry, Munich, Germany
| | - Theo Rein
- Chaperone Research Group, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
288
|
Li B, Dong L, Fu H, Wang B, Hertz L, Peng L. Effects of chronic treatment with fluoxetine on receptor-stimulated increase of [Ca2+]i in astrocytes mimic those of acute inhibition of TRPC1 channel activity. Cell Calcium 2011; 50:42-53. [PMID: 21640379 DOI: 10.1016/j.ceca.2011.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 04/30/2011] [Accepted: 05/03/2011] [Indexed: 12/17/2022]
Abstract
Primary cultures of mouse astrocytes were used to investigate effects by chronic treatment (3-21 days) with fluoxetine (0.5-10 μM) on capacitative Ca(2+) influx after treatment with the SERCA inhibitor thapsigargin and on receptor agonist-induced increases in free cytosolic Ca(2+) concentration [Ca(2+)](i), determined with Fura-2. The agonists were the 5-HT(2B) agonist fluoxetine, the α(2)-adrenergic agonist dexmedetomidine, and ryanodine receptor (RyR) and IP(3) receptor (IP(3)R) agonists. In untreated sister cultures each agonist distinctly increased [Ca(2+)](i), but in cultures treated for sufficient length of time or with sufficiently high doses of fluoxetine, acute administration of fluoxetine, dexmedetomidine, or RyR or IP(3)R agonists elicited reduced, in some cases abolished, effects. Capacitative Ca(2+) entry, meditated by TRPC1 channels, was sufficiently inhibited to cause a depletion of Ca(2+) stores, which could explain the reduced agonist effects. All effects of chronic fluoxetine administration could be replicated by TRPC1 channel antibody or siRNA. Since increases in astrocytic [Ca(2+)](i) regulate release of gliotransmitters, these effects may have profound effects on brain function. They may be important for therapeutic effects of all 5 conventional 'serotonin-specific reuptake inhibitors' (SSRIs), which at concentrations used therapeutically (∼1 μM) share other of fluoxetine's chronic effects (Zhang et al., Neuron Glia Biol. 16 (2010) 1-13).
Collapse
Affiliation(s)
- Baoman Li
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China
| | | | | | | | | | | |
Collapse
|
289
|
Kwon SKC, Kovesdi E, Gyorgy AB, Wingo D, Kamnaksh A, Walker J, Long JB, Agoston DV. Stress and traumatic brain injury: a behavioral, proteomics, and histological study. Front Neurol 2011; 2:12. [PMID: 21441982 PMCID: PMC3057553 DOI: 10.3389/fneur.2011.00012] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 02/19/2011] [Indexed: 01/19/2023] Open
Abstract
Psychological stress and traumatic brain injury (TBI) can both result in lasting neurobehavioral abnormalities. Post-traumatic stress disorder and blast induced TBI (bTBI) have become the most significant health issues in current military conflicts. Importantly, military bTBI virtually never occurs without stress. In this experiment, we assessed anxiety and spatial memory of rats at different time points after repeated exposure to stress alone or in combination with a single mild blast. At 2 months after injury or sham we analyzed the serum, prefrontal cortex (PFC), and hippocampus (HC) of all animals by proteomics and immunohistochemistry. Stressed sham animals showed an early increase in anxiety but no memory impairment at any measured time point. They had elevated levels of serum corticosterone (CORT) and hippocampal IL-6 but no other cellular or protein changes. Stressed injured animals had increased anxiety that returned to normal at 2 months and significant spatial memory impairment that lasted up to 2 months. They had elevated serum levels of CORT, CK-BB, NF-H, NSE, GFAP, and VEGF. Moreover, all of the measured protein markers were elevated in the HC and the PFC; rats had an increased number of TUNEL-positive cells in the HC and elevated GFAP and Iba1 immunoreactivity in the HC and the PFC. Our findings suggest that exposure to repeated stress alone causes a transient increase in anxiety and no significant memory impairment or cellular and molecular changes. In contrast, repeated stress and blast results in lasting behavioral, molecular, and cellular abnormalities characterized by memory impairment, neuronal and glial cell loss, inflammation, and gliosis. These findings may have implications in the development of diagnostic and therapeutic measures for conditions caused by stress or a combination of stress and bTBI.
Collapse
Affiliation(s)
- Sook-Kyung C Kwon
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University Bethesda, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
290
|
Schipke CG, Heuser I, Peters O. Antidepressants act on glial cells: SSRIs and serotonin elicit astrocyte calcium signaling in the mouse prefrontal cortex. J Psychiatr Res 2011; 45:242-8. [PMID: 20619420 DOI: 10.1016/j.jpsychires.2010.06.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 06/02/2010] [Accepted: 06/08/2010] [Indexed: 11/24/2022]
Abstract
One important target in the treatment of major depressive disorder (MDD) is the serotonin (5-hydroxytryptamine, 5-HT) system. Selective serotonin reuptake inhibitors (SSRI) are used to treat MDD. Yet, the mode of action of these drugs is not completely understood. There is evolving evidence for a role of glutamate in mood disorder and its signaling. Astrocytes are involved in glutamate metabolism and play an active role in memory processing but their role in mood disorders is still largely unknown. A modulation of astrocytic signaling by SSRIs or 5-HT has not been investigated up to now. We investigated astrocytic calcium signaling with the calcium indicator dye Fluo-4. Using a confocal microscope, we imaged astrocytes in the medial prefrontal cortex of acute mouse brain slices after the application of the SSRIs citalopram and fluoxetine. In the same way, we studied the effects of serotonin and the modulation of this signaling by glutamate in astrocytes. We found that astrocyte calcium signaling can be elicited by 5-HT. Also, the SSRIs citalopram and fluoxetine induce calcium signals in about 1/3 of all astrocytes, even when neuronal signal propagation is inhibited. Astrocytic responses to 5-HT have a unique pattern and they could mostly not be evoked twice. We determined that glutamate is a substance that can interfere with 5-HT-induced calcium signals in astrocytes since after stimulation by glutamate, astrocytes did not show a response to 5-HT. Astrocytic calcium signaling is elicited by SSRIs and 5-HT. They may serve as integrators, linking the serotonergic and glutamatergic signaling pathways.
Collapse
Affiliation(s)
- Carola G Schipke
- Department of Psychiatry, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Germany.
| | | | | |
Collapse
|
291
|
Liu Q, Li B, Zhu HY, Wang YQ, Yu J, Wu GC. Glia atrophy in the hippocampus of chronic unpredictable stress-induced depression model rats is reversed by electroacupuncture treatment. J Affect Disord 2011; 128:309-13. [PMID: 20801523 DOI: 10.1016/j.jad.2010.07.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 07/09/2010] [Accepted: 07/10/2010] [Indexed: 12/17/2022]
Abstract
BACKGROUND Growing evidence indicates that glia atrophy contributes to the pathophysiology and possibly the pathogenesis of major depressive disorder. Electroacupuncture (EA), one of Chinese traditional therapy, has potent antidepressant-like effect in many clinical studies. The mechanism by which EA improves behavioral deficits is still unclear. METHOD Chronic unpredictable stress (CUS)-induced depression model rats were used to study the effect of EA treatment. EA was performed on acupoints 'Bai-Hui' (Du 20) and unilateral 'An-Mian' (EX 17) once daily for three consecutive weeks, two weeks post CUS procedure. The antidepressant-like effect of EA treatment was analyzed by physical state (PS) and open field test (OFT). Astrocytic marker glial fibrillary acidic protein (GFAP) level in the hippocampus was detected by immunohistochemistry, Western blot analysis and reverse transcription-polymerase chain reaction (RT-PCR). RESULTS Exposure to CUS resulted in a decrease of behavioral activity, whereas a daily session of EA treatment significantly reversed the behavioral deficit of these depression model rats. Moreover, the levels of GFAP mRNA and protein were decreased in the hippocampus of depression model rats. Intriguingly, EA treatment blocked effectively the decreased GFAP level. LIMITATION The relative small number of the depression model rats may cause some bias of behavioral tests. CONCLUSION EA has potential antidepressant-like effect on CUS-induced depression model rats, which might be mediated by affecting the glial atrophy in the hippocampus.
Collapse
Affiliation(s)
- Qiong Liu
- Department of Anatomy, Histology and Embryology, State Key Lab of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | | | | | | | | | | |
Collapse
|
292
|
Evidence of female-specific glial deficits in the hippocampus in a mouse model of prenatal stress. Eur Neuropsychopharmacol 2011; 21:71-9. [PMID: 20702067 DOI: 10.1016/j.euroneuro.2010.07.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 06/02/2010] [Accepted: 07/19/2010] [Indexed: 12/27/2022]
Abstract
Prenatal stress (PS) has been associated with an increased incidence of numerous neuropsychiatric disorders, including depression, anxiety, schizophrenia, and autism. To determine the effects of PS on hippocampal-dependent behaviour hippocampal morphology, we examined behavioural responses and hippocampal cytoarchitecture of a maternal restraint stress paradigm of PS in C57BL6 mice. Female offspring only showed a reduction in hippocampal glial count in the pyramidal layer following PS. Additionally, only PS females showed increased depressive-like behaviour with cognitive deficits predominantly in female offspring when compared to males. This data provides evidence for functional female-specific glial deficits within the hippocampus as a consequence of PS.
Collapse
|
293
|
Hui J, Zhang Z, Liu S, Xi G, Zhang X, Teng G, Chan KC, Wu EX, Nie B, Shan B, Li L, Reynolds GP. Adolescent escitalopram administration modifies neurochemical alterations in the hippocampus of maternally separated rats. Eur Neuropsychopharmacol 2010; 20:875-83. [PMID: 20888191 DOI: 10.1016/j.euroneuro.2010.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 08/03/2010] [Accepted: 08/27/2010] [Indexed: 01/02/2023]
Abstract
Early life stress is a potential precursor of eventual neuropsychiatric diseases and may result in altered neurodevelopment and function of the hippocampus, which thus provides a site at which potential interventions to modify the effects of early life stress may act. In this study, Sprague-Dawley rat pups comprising male and female animals underwent maternal separation (MS) for 180 min from postnatal days (PND) 2 to 14, or were left with their dams. They subsequently received daily administration of saline (0.9%), escitalopram (10 mg/kg), or no treatment during adolescence (PND 43-60). All adult animals underwent brain magnetic resonance imaging (MRI) and bilateral hippocampal proton magnetic resonance spectroscopy ((1)H-MRS). Neither MS nor escitalopram treatment had a significant effect on hippocampal volume. Adult rats that experienced MS displayed significantly increased choline-containing compounds (Cho) and decreased N-acetylaspartate (NAA), glutamate (Glu) and Myo-inositol (MI) relative to the stable neurometabolite creatine (Cr) in hippocampus. Administration of escitalopram during adolescence could modify the alterations of NAA/Cr, Glu/Cr and MI/Cr. The effects of MS on hippocampal neurochemistry were most significant in the right hippocampus. These results indicate that MS in rats has long-term consequences on hippocampal neurochemistry reflective of neural density/functional integrity, especially on the right hippocampus, and adolescent administration with escitalopram can at least partially ameliorate these neurochemical alterations. Furthermore, these metabolite changes seem to be more sensitive indicators of the results from early life stress than volume changes.
Collapse
Affiliation(s)
- Jiaojie Hui
- School of Clinical Medicine, Southeast University, Nanjing, Jiangsu, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
294
|
Grande I, Fries GR, Kunz M, Kapczinski F. The role of BDNF as a mediator of neuroplasticity in bipolar disorder. Psychiatry Investig 2010; 7:243-50. [PMID: 21253407 PMCID: PMC3022310 DOI: 10.4306/pi.2010.7.4.243] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 09/07/2010] [Indexed: 12/31/2022] Open
Abstract
The cognitive impairment and neuroanatomical changes that takes place among patients with bipolar disorder (BD) patients has been well described. Recent data suggest that changes in neuroplasticity, cell resilience and connectivity are the main neuropathological findings in BD. Data from differential lines of research converges to the brain-derived neurotrophic factor (BDNF) as an important contributor to the neuroplasticity changes described among BD patients. BDNF serum levels have been shown to be decreased in depressive and manic episodes, returning to normal levels in euthymia. BDNF has also been shown to decrease as the disorder progresses. Moreover, factors that negatively influence the course of BD, such as life stress and trauma have been shown to be associated with a decrease in BDNF serum levels. These findings suggest that BDNF plays a central role in the progression of BD. The present review discusses the role of BDNF as a mediator of the neuroplastic changes that occur in portion with mood episodes and the potential use of serum BDNF as a biomarker in BD.
Collapse
Affiliation(s)
- Iria Grande
- Bipolar Disorder Program and Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Bipolar Disorders Program, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Gabriel Rodrigo Fries
- Bipolar Disorder Program and Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mauricio Kunz
- Bipolar Disorder Program and Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Flavio Kapczinski
- Bipolar Disorder Program and Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- National Institute for Translational Medicine, INCT-TM, Porto Alegre, Brazil
| |
Collapse
|
295
|
|
296
|
Krugers HJ, Lucassen PJ, Karst H, Joëls M. Chronic stress effects on hippocampal structure and synaptic function: relevance for depression and normalization by anti-glucocorticoid treatment. Front Synaptic Neurosci 2010; 2:24. [PMID: 21423510 PMCID: PMC3059694 DOI: 10.3389/fnsyn.2010.00024] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 06/07/2010] [Indexed: 01/08/2023] Open
Abstract
Exposure of an organism to environmental challenges activates two hormonal systems that help the organism to adapt. As part of this adaptational process, brain processes are changed such that appropriate behavioral strategies are selected that allow optimal performance at the short term, while relevant information is stored for the future. Over the past years it has become evident that chronic uncontrollable and unpredictable stress also exerts profound effects on structure and function of limbic neurons, but the impact of chronic stress is not a mere accumulation of repeated episodes of acute stress exposure. Dendritic trees are reduced in some regions but expanded in others, and cells are generally exposed to a higher calcium load upon depolarization. Synaptic strengthening is largely impaired. Neurotransmitter responses are also changed, e.g., responses to serotonin. We here discuss: (a) the main cellular effects after chronic stress with emphasis on the hippocampus, (b) how such effects could contribute to the development of psychopathology in genetically vulnerable individuals, and (c) their normalization by brief treatment with anti-glucocorticoids.
Collapse
Affiliation(s)
- Harmen J. Krugers
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Paul J. Lucassen
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Henk Karst
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center UtrechtUtrecht, Netherlands
| | - Marian Joëls
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center UtrechtUtrecht, Netherlands
| |
Collapse
|
297
|
Iwata M, Shirayama Y, Ishida H, Hazama GI, Nakagome K. Hippocampal astrocytes are necessary for antidepressant treatment of learned helplessness rats. Hippocampus 2010; 21:877-84. [PMID: 20572198 DOI: 10.1002/hipo.20803] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2010] [Indexed: 12/16/2022]
Abstract
The astrocyte is a major component of the neural network and plays a role in brain function. Previous studies demonstrated changes in the number of astrocytes in depression. In this study, we examined alterations in the number of astrocytes in the learned helplessness (LH) rat, an animal model of depression. The numbers of activated and nonactivated astrocytes in the dentate gyrus (molecular layer, subgranular zone, and hilus), and CA1 and CA3 regions of the hippocampus were significantly increased 2 and 8 days after attainment of LH. Subchronic treatment with imipramine showed a tendency (although not statistically significant) to decrease the LH-induced increment of activated astrocytes in the CA3 region and dentate gyrus. Furthermore, subchronic treatment of naïve rats with imipramine did not alter the numbers of activated and nonactivated astrocytes. However, the antidepressant-like effects of imipramine in the LH paradigm were blocked when fluorocitrate (a reversible inhibitor of astrocyte function) was injected into the dentate gyrus or CA3 region. Injection of fluorocitrate into naive rats failed to induce behavioral deficits in the conditioned avoidance test. These results indicate that astrocytes are responsive to the antidepressant-like effect of imipramine in the dentate gyrus and CA3 region of the hippocampus.
Collapse
Affiliation(s)
- Masaaki Iwata
- Department of Neuropsychiatry, Faculty of Medicine, Tottori University, Yonago, Japan
| | | | | | | | | |
Collapse
|
298
|
Mood disorders are glial disorders: evidence from in vivo studies. Cardiovasc Psychiatry Neurol 2010; 2010:780645. [PMID: 20585358 PMCID: PMC2878670 DOI: 10.1155/2010/780645] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 03/30/2010] [Indexed: 02/07/2023] Open
Abstract
It has recently been suggested that mood disorders can be characterized by glial pathology as indicated by histopathological postmortem findings. Here, we review studies investigating the glial marker S100B in serum of patients with mood disorders. This protein might act as a growth and differentiation factor. It is located in, and may actively be released by, astro- and oligodendrocytes. Studies consistently show that S100B is elevated in mood disorders; more strongly in major depressive than bipolar disorder. Successful antidepressive treatment reduces S100B in major depression whereas there is no evidence of treatment effects in mania. In contrast to the glial marker S100B, the neuronal marker protein neuron-specific enolase is unaltered. By indicating glial alterations without neuronal changes, serum S100B studies confirm specific glial pathology in mood disorders in vivo. S100B can be regarded as a potential diagnostic biomarker for mood disorders and as a biomarker for successful antidepressive treatment.
Collapse
|
299
|
Banasr M, Chowdhury GMI, Terwilliger R, Newton SS, Duman RS, Behar KL, Sanacora G. Glial pathology in an animal model of depression: reversal of stress-induced cellular, metabolic and behavioral deficits by the glutamate-modulating drug riluzole. Mol Psychiatry 2010; 15:501-11. [PMID: 18825147 PMCID: PMC3347761 DOI: 10.1038/mp.2008.106] [Citation(s) in RCA: 355] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Growing evidence indicates that glia pathology and amino-acid neurotransmitter system abnormalities contribute to the pathophysiology and possibly the pathogenesis of major depressive disorder. This study investigates changes in glial function occurring in the rat prefrontal cortex (PFC) after chronic unpredictable stress (CUS), a rodent model of depression. Furthermore, we analyzed the effects of riluzole, a Food and Drug Administration-approved drug for the treatment of amyotrophic laterosclerosis, known to modulate glutamate release and facilate glutamate uptake, on CUS-induced glial dysfunction and depressive-like behaviors. We provide the first experimental evidence that chronic stress impairs cortical glial function. Animals exposed to CUS and showing behavioral deficits in sucrose preference and active avoidance exhibited significant decreases in 13C-acetate metabolism reflecting glial cell metabolism, and glial fibrillary associated protein (GFAP) mRNA expression in the PFC. The cellular, metabolic and behavioral alterations induced by CUS were reversed and/or blocked by chronic treatment with the glutamate-modulating drug riluzole. The beneficial effects of riluzole on CUS-induced anhedonia and helplessness demonstrate the antidepressant action of riluzole in rodents. Riluzole treatment also reversed CUS-induced reductions in glial metabolism and GFAP mRNA expression. Our results are consistent with recent open-label clinical trials showing the drug's effect in mood and anxiety disorders. This study provides further validation of hypothesis that glial dysfunction and disrupted amino-acid neurotransmission contribute to the pathophysiology of depression and that modulation of glutamate metabolism, uptake and/or release represent viable targets for antidepressant drug development.
Collapse
Affiliation(s)
- M Banasr
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Ribicoff Research Facilities, Yale University School of Medicine, New Haven, CT, USA
| | - GMI Chowdhury
- Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA,Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - R Terwilliger
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Ribicoff Research Facilities, Yale University School of Medicine, New Haven, CT, USA
| | - SS Newton
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Ribicoff Research Facilities, Yale University School of Medicine, New Haven, CT, USA
| | - RS Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Ribicoff Research Facilities, Yale University School of Medicine, New Haven, CT, USA
| | - KL Behar
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - G Sanacora
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Ribicoff Research Facilities, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
300
|
Janssen DGA, Caniato RN, Verster JC, Baune BT. A psychoneuroimmunological review on cytokines involved in antidepressant treatment response. Hum Psychopharmacol 2010; 25:201-15. [PMID: 20373471 DOI: 10.1002/hup.1103] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The literature exploring the role that cytokine functioning plays in the pathogenesis and treatment of depressive illness is reviewed. The review focuses on the influence of antidepressants on cytokines, and on how treatment response might be affected by genetic variants of cytokines. METHOD The authors systematically reviewed the scientific literature on the subject over the last 20 years, searching PubMed, PsychInfo, and Cochrane databases. RESULTS Antidepressants modulate cytokine functioning, and these mechanisms appear to directly influence treatment outcome in depression. Antidepressants appear to normalize serum levels of major inflammatory cytokines, including interleukin (IL)-1beta, IL-6, tumor necrosis factor alpha (TNF-alpha), and interferon gamma (IFN-gamma). Antidepressants are postulated to modulate cytokine functioning through their effects on intracellular cyclic adenosyl monophosphate (cAMP), serotonin metabolism, the hypothalamo-pituitary-adrenocortical (HPA) axis or through a direct action on neurogenesis. Preliminary research shows that cytokine genotypes and functioning may be able to help predict antidepressant treatment response. CONCLUSIONS Current literature demonstrates an association between antidepressant action and cytokine functioning in major depression. Improved understanding of the specific pharmacologic and pharmacogenetic mechanisms is needed. Such knowledge may serve to enhance our understanding of depression, leading to promising new directions in the pathology, nosology, and treatment of depression.
Collapse
Affiliation(s)
- Debbie G A Janssen
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | | |
Collapse
|