251
|
Mowat J, Ehrmann AHM, Christian S, Sperl C, Menz S, Günther J, Hillig RC, Bauser M, Schwede W. Identification of the Highly Active, Species Cross-Reactive Complex I Inhibitor BAY-179. ACS Med Chem Lett 2022; 13:348-357. [PMID: 35300083 PMCID: PMC8919281 DOI: 10.1021/acsmedchemlett.1c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/08/2022] [Indexed: 11/28/2022] Open
Abstract
Mitochondria are key regulators of energy supply and cell death. Generation of ATP within mitochondria occurs through oxidative phosphorylation (OXPHOS), a process which utilizes the four complexes (complex I-IV) of the electron transport chain and ATP synthase. Certain oncogenic mutations (e.g., LKB1 or mIDH) can further enhance the reliance of cancer cells on OXPHOS for their energetic requirements, rendering cells sensitive to complex I inhibition and highlighting the potential value of complex I as a therapeutic target. Herein, we describe the discovery of a potent, selective, and species cross-reactive complex I inhibitor. A high-throughput screen of the Bayer compound library followed by hit triaging and initial hit-to-lead activities led to a lead structure which was further optimized in a comprehensive lead optimization campaign. Focusing on balancing potency and metabolic stability, this program resulted in the identification of BAY-179, an excellent in vivo suitable tool with which to probe the biological relevance of complex I inhibition in cancer indications.
Collapse
Affiliation(s)
- Jeffrey Mowat
- Pharmaceuticals R&D, Bayer AG, 13342 Berlin, Germany
| | | | | | - Carolyn Sperl
- Pharmaceuticals R&D, Bayer AG, 13342 Berlin, Germany
| | - Stephan Menz
- Pharmaceuticals R&D, Bayer AG, 13342 Berlin, Germany
| | | | | | - Marcus Bauser
- Pharmaceuticals R&D, Bayer AG, 13342 Berlin, Germany
| | | |
Collapse
|
252
|
Fang YQ, Chen T, Huang G, Ni S, Dang L. Reaction mechanism for copper catalyzed functionalization of unsaturated side chains of amides via domino rearrangement. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
253
|
He P, Chen B, Huang L, Liu X, Qin J, Zhang Z, Dai W. Heterogeneous manganese-oxide-catalyzed successive cleavage and functionalization of alcohols to access amides and nitriles. Chem 2022. [DOI: 10.1016/j.chempr.2022.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
254
|
Alberts EM, Fernando PUAI, Thornell TL, George HE, Koval AM, Shukla MK, Weiss CA, Moores LC. Toward bioinspired polymer adhesives: activation assisted via HOBt for grafting of dopamine onto poly(acrylic acid). ROYAL SOCIETY OPEN SCIENCE 2022; 9:211637. [PMID: 35360348 PMCID: PMC8965409 DOI: 10.1098/rsos.211637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/17/2022] [Indexed: 05/03/2023]
Abstract
The design of bioinspired polymers has long been an area of intense study, however, applications to the design of concrete admixtures for improved materials performance have been relatively unexplored. In this work, we functionalized poly(acrylic acid) (PAA), a simple analogue to polycarboxylate ether admixtures in concrete, with dopamine to form a catechol-bearing polymer (PAA-g-DA). Synthetic routes using hydroxybenzotriazole (HOBt) as an activating agent were examined for their ability in grafting dopamine to the PAA backbone. Previous literature using the traditional coupling reagent 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) to graft dopamine to PAA were found to be inconsistent and the sensitivity of EDC coupling reactions necessitated a search for an alternative. Additionally, HOBt allowed for greater control over per cent functionalization of the backbone, is a simple, robust reaction, and showed potential for scalability. This finding also represents a novel synthetic pathway for amide bond formation between dopamine and PAA. Finally, we performed preliminary adhesion studies of our polymer on rose granite specimens and demonstrated a 56% improvement in the mean adhesion strength over unfunctionalized PAA. These results demonstrate an early study on the potential of PAA-g-DA to be used for improving the bonds within concrete.
Collapse
Affiliation(s)
| | - P. U. Ashvin Iresh Fernando
- Bennett Aerospace, 1100 Crescent Green, #250, Cary, NC 27518, USA
- Oak Ridge Institute for Science and Education, 1299 Bethel Valley Rd, Oak Ridge, TN 37830, USA
| | - Travis L. Thornell
- US Army Engineer Research and Development Center, Geotechnical and Structures Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - Hannah E. George
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Dr, Hattiesburg, MS 39406, USA
| | - Ashlyn M. Koval
- Oak Ridge Institute for Science and Education, 1299 Bethel Valley Rd, Oak Ridge, TN 37830, USA
| | - Manoj K. Shukla
- US Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - Charles A. Weiss
- US Army Engineer Research and Development Center, Geotechnical and Structures Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - Lee C. Moores
- US Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| |
Collapse
|
255
|
Conlon PR, Gurijala VR, Kaufman M, Li D, Li J, Li Y, Yin M, Reddy BS, Wagler T, Wang Z, Xu Z, Yurkovetskiy AV, Zhu L. Process Development and GMP Production of a Conjugate Warhead: Auristatin F-HPA-Ala/TFA (XMT-1864/TFA). Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Patrick R. Conlon
- Former Mersana Therapeutics, Inc., 840 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Venu Reddy Gurijala
- Drug Substance Development, Mersana Therapeutics, Inc., 840 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Michael Kaufman
- Former Mersana Therapeutics, Inc., 840 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Dachang Li
- Chemical Macromolecule Division, Asymchem Life Science (Tianjin) Co., Ltd. No. 71, Seventh Avenue, TEDA Tianjin 300457, P.R. China
| | - Jiuyuan Li
- Chemical Macromolecule Division, Asymchem Life Science (Tianjin) Co., Ltd. No. 71, Seventh Avenue, TEDA Tianjin 300457, P.R. China
| | - Yuanyuan Li
- Drug Substance Development, Mersana Therapeutics, Inc., 840 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Mao Yin
- Former Mersana Therapeutics, Inc., 840 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Bollu Satyanarayan Reddy
- Drug Substance Development, Mersana Therapeutics, Inc., 840 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Thomas Wagler
- Drug Substance Development, Mersana Therapeutics, Inc., 840 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Zedong Wang
- Chemical Macromolecule Division, Asymchem Life Science (Tianjin) Co., Ltd. No. 71, Seventh Avenue, TEDA Tianjin 300457, P.R. China
| | - Zhongmin Xu
- Chemdiscover, 10 Carlton Circle, Princeton, New Jersey 08540, United States
| | - Aleksandr V. Yurkovetskiy
- Former Mersana Therapeutics, Inc., 840 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Lei Zhu
- Drug Substance Development, Mersana Therapeutics, Inc., 840 Memorial Drive, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
256
|
Vaidya AJ, Solomon KV. Surface Functionalization of Rod-Shaped Viral Particles for Biomedical Applications. ACS APPLIED BIO MATERIALS 2022; 5:1980-1989. [PMID: 35148077 DOI: 10.1021/acsabm.1c01204] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While synthetic nanoparticles play a very important role in modern medicine, concerns regarding toxicity, sustainability, stability, and dispersity are drawing increasing attention to naturally derived alternatives. Rod-shaped plant viruses and virus-like particles (VLPs) are biological nanoparticles with powerful advantages such as biocompatibility, tunable size and aspect ratio, monodispersity, and multivalency. These properties facilitate controlled biodistribution and tissue targeting for powerful applications in medicine. Ongoing research efforts focus on functionalizing or otherwise engineering these structures for a myriad of applications, including vaccines, imaging, and drug delivery. These include chemical and biological strategies for conjugation to small molecule chemical dyes, drugs, metals, polymers, peptides, proteins, carbohydrates, and nucleic acids. Many strategies are available and vary greatly in efficiency, modularity, selectivity, and simplicity. This review provides a comprehensive summary of VLP functionalization approaches while highlighting biomedically relevant examples. Limitations of current strategies and opportunities for further advancement will also be discussed.
Collapse
Affiliation(s)
- Akash J Vaidya
- Department of Chemical & Biomolecular Engineering, University of Delaware, 150 Academy St, Newark, Delaware 19716, United States
| | - Kevin V Solomon
- Department of Chemical & Biomolecular Engineering, University of Delaware, 150 Academy St, Newark, Delaware 19716, United States
| |
Collapse
|
257
|
Cagide F, Gomes LR, Low JN, Borges F. Unexpected conversion of 4-oxo-4H-chromene-2-carboxylic acid to 2-(1,3-benzothiazol-2-yl)-4H-chromen-4-one and spiro[1,4-benzothiazine-2,2'-chromene]-3,4'(3'H,4H)-dione. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03058-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
258
|
N,N-Chelate nickel(II) complexes bearing Schiff base ligands as efficient hydrogenation catalysts for amine synthesis. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
259
|
Nagy V, Sahariah P, Hjálmarsdóttir MÁ, Másson M. Chitosan-hydroxycinnamic acid conjugates: Optimization of the synthesis and investigation of the structure activity relationship. Carbohydr Polym 2022; 277:118896. [PMID: 34893298 DOI: 10.1016/j.carbpol.2021.118896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022]
Abstract
A new synthesis method was developed and optimized by a full factorial design for conjugating hydroxycinnamic acids (HCA-s) to chitosan. Cinnamic acid and tert-butyldimethylsilyl protected HCA-s were converted to their corresponding acyl chlorides and reacted with 3,6-di-O-tert-butyldimethylsilyl-chitosan to selectively form amide linkages, resulting in water-soluble conjugates after deprotection. Nineteen conjugates were obtained with various degrees of substitution (DS) ranging from 3% to 60%. The conjugates were found to be bactericidal against Staphylococcus aureus and Escherichia coli, with their activities equal to chitosan at low DS but an increase in the DS correlated with reduced activity. DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging assay was performed to determine the EC50 values. Chitosan only exhibited low antioxidant activity, whereas the HCA-chitosan conjugates exhibited higher antioxidant activities correlating with the DS. One caffeic acid conjugate (21%) was 4000 times more active than chitosan and more active than free caffeic acid.
Collapse
Affiliation(s)
- Vivien Nagy
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavík, Iceland
| | - Priyanka Sahariah
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavík, Iceland
| | - Martha Á Hjálmarsdóttir
- Faculty of Medicine, School of Health Sciences, University of Iceland, Hringbraut 31, IS-102 Reykjavík, Iceland
| | - Már Másson
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavík, Iceland.
| |
Collapse
|
260
|
Huang Z, Tang J, Jiang X, Xie T, Zhang M, Lan D, Pi S, Tan Z, Yi B, Li Y. Iron-catalyzed hydroaminocarbonylation of alkynes: Selective and efficient synthesis of primary α,β-unsaturated amides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
261
|
Kumar D, Maury SK, Kumari S, Kamal A, Singh HK, Singh S, Srivastava V. TBAI-catalyzed C–N bond formation through oxidative coupling of benzyl bromides with amines: a new avenue to the synthesis of amides. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2029897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Dhirendra Kumar
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, India
| | - Suresh Kumar Maury
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, India
| | - Savita Kumari
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, India
| | - Arsala Kamal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, India
| | | | - Sundaram Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, India
| | - Vandana Srivastava
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
262
|
Wang A, Xie Y, Wang J, Shi D, Yu H. Atom-economic amide synthesis by using an iron-substituted polyoxometalate catalyst. Chem Commun (Camb) 2022; 58:1127-1130. [PMID: 34981100 DOI: 10.1039/d1cc05417a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report an efficient and economical amidation strategy by using a polyoxometalate-based iron catalyst that affords the corresponding amide products in good yields. All of the aliphatic, aromatic and heterocyclic substrates are produced in high yields without additional base or organic ligands. Most importantly, the first example of heterogeneous iron(III)-catalyzed formation of the diamides is developed.
Collapse
Affiliation(s)
- Aiping Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| | - Ya Xie
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Jingjing Wang
- Laboratoire d' Electrochimie et de Chimie Physique du Corps Solide, Institut de Chimie, UMR CNRS 7177, Université de Strasbourg, 67081 Strasbourg cedex, France
| | - Da Shi
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| | - Han Yu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China. .,Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
263
|
Soleimanbeigi M, Dousti F, Hassanzadeh F, Mirian M, Varshosaz J, Kasesaz Y, Rostami M. Boron Phenyl Alanine Targeted Chitosan-PNIPAAm Core-Shell Thermo-Responsive Nanoparticles; Boosting Drug Delivery to Glioblastoma in BNCT. Drug Dev Ind Pharm 2022; 47:1607-1623. [DOI: 10.1080/03639045.2022.2032132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Monireh Soleimanbeigi
- Master Student of Medicinal Chemistry, Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Dousti
- Master Student of Medicinal Chemistry, Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Science, Isfahan, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Centre and Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Science, Isfahan, Iran
| | - Yaser Kasesaz
- Reactor and Nuclear Safety Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran
| | - Mahboubeh Rostami
- Novel Drug Delivery Systems Research Centre and Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
264
|
Bhandari S, Bisht KS, Merkler DJ. The Biosynthesis and Metabolism of the N-Acylated Aromatic Amino Acids: N-Acylphenylalanine, N-Acyltyrosine, N-Acyltryptophan, and N-Acylhistidine. Front Mol Biosci 2022; 8:801749. [PMID: 35047560 PMCID: PMC8762209 DOI: 10.3389/fmolb.2021.801749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/03/2021] [Indexed: 12/29/2022] Open
Abstract
The fatty acid amides are a family of lipids composed of two chemical moieties, a fatty acid and a biogenic amine linked together in an amide bond. This lipid family is structurally related to the endocannabinoid anandamide (N-arachidonoylethanolamine) and, thus, is frequently referred to as a family of endocannabinoid-related lipids. The fatty acid amide family is divided into different classes based on the conjugate amine; anandamide being a member of the N-acylethanolamine class (NAE). Another class within the fatty acid amide family is the N-acyl amino acids (NA-AAs). The focus of this review is a sub-class of the NA-AAs, the N-acyl aromatic amino acids (NA-ArAAs). The NA-ArAAs are not broadly recognized, even by those interested in the endocannabinoids and endocannabinoid-related lipids. Herein, the NA-ArAAs that have been identified from a biological source will be highlighted and pathways for their biosynthesis, degradation, enzymatic modification, and transport will be presented. Also, information about the cellular functions of the NA-ArAAs will be placed in context with the data regarding the identification and metabolism of these N-acylated amino acids. A review of the current state-of-knowledge about the NA-ArAAs is to stimulate future research about this underappreciated sub-class of the fatty acid amide family.
Collapse
Affiliation(s)
- Suzeeta Bhandari
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| | - Kirpal S Bisht
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| | - David J Merkler
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| |
Collapse
|
265
|
Sonam, Shinde VN, Kumar A. KPF6-Mediated Esterification and Amidation of Carboxylic Acids. J Org Chem 2022; 87:2651-2661. [DOI: 10.1021/acs.joc.1c02611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sonam
- Department of Chemistry, Birla Institute of Technology & Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Vikki N. Shinde
- Department of Chemistry, Birla Institute of Technology & Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology & Science, Pilani Campus, Pilani, Rajasthan 333031, India
| |
Collapse
|
266
|
Gordon CP, Tadros J, Dankers C, Jurisinec A, Menti M, Aldrich-Wright J. A Comparison of Immobilised Triphenylphosphine and 1-Hydroxybenzotriazole as Mediators of Catch-and-Release Acylation Under Flow Conditions. Chem Asian J 2022; 17:e202101308. [PMID: 35048529 DOI: 10.1002/asia.202101308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/12/2022] [Indexed: 11/09/2022]
Abstract
Described herein is a comparative study of immobilised triphenylphosphine (PS-PPh3) and 1-hydroxybenzotriazole (PS-HOBt) to mediate amide couplings under continuous flow. Compared to Appel-type amidations (PS-PPh3), the developed 'catch-and-release' approach (PS-HOBt) afforded near-quantitative amide conversions. Utilising this strategy, sulfonyl chloride amenability enabled facile access to an expanded library of sulfonate and sulfonamides. Post-constructional peptide modification was also demonstrated, affording two Nβ-functionalised pentapeptides in high yields and purities. In contrast to frequently utilised coupling agents, the PS-HOBt resin could be recycled six times without a reduction in efficacy or regeneration requirements.
Collapse
Affiliation(s)
- Christopher Peter Gordon
- Western Sydney University, School of Science and Health, Goldsmith Ave, Campbelltown, NSW 2560, Australia, 2560, Campbelltown, AUSTRALIA
| | - Joseph Tadros
- Western Sydney University, School of Science and Health, AUSTRALIA
| | | | - Ashley Jurisinec
- Western Sydney University, School of Science and Health, AUSTRALIA
| | - Maria Menti
- Western Sydney University, School of Science and Health, AUSTRALIA
| | | |
Collapse
|
267
|
Lu B, Xiao WJ, Chen JR. Recent Advances in Visible-Light-Mediated Amide Synthesis. Molecules 2022; 27:517. [PMID: 35056829 PMCID: PMC8781888 DOI: 10.3390/molecules27020517] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/10/2022] Open
Abstract
Visible-light photoredox catalysis has attracted tremendous interest within the synthetic community. As such, the activation mode potentially provides a more sustainable and efficient platform for the activation of organic molecules, enabling the invention of many controlled radical-involved reactions under mild conditions. In this context, amide synthesis via the strategy of photoredox catalysis has received growing interest due to the ubiquitous presence of this structural motif in numerous natural products, pharmaceuticals and functionalized materials. Employing this strategy, a wide variety of amides can be prepared effectively from halides, arenes and even alkanes under irradiation of visible light. These methods provide a robust alternative to well-established strategies for amide synthesis that involve condensation between a carboxylic acid and amine mediated by a stoichiometric activating agent. In this review, the representative progresses made on the synthesis of amides through visible light-mediated radical reactions are summarized.
Collapse
Affiliation(s)
- Bin Lu
- Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China; (B.L.); (W.-J.X.)
| | - Wen-Jing Xiao
- Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China; (B.L.); (W.-J.X.)
| | - Jia-Rong Chen
- Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China; (B.L.); (W.-J.X.)
- School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang 453007, China
| |
Collapse
|
268
|
Half‐Sandwich Ruthenium Complexes Bearing Hemilabile κ
2
‐(
C
,
S
)−Thioether‐Functionalized NHC Ligands: Application to Amide Synthesis from Alcohol and Amine. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
269
|
Jyoti MMS, Rana MR, Ali MH, Tokumoto T. Establishment of a steroid binding assay for membrane progesterone receptor alpha (PAQR7) by using graphene quantum dots (GQDs). Biochem Biophys Res Commun 2022; 592:1-6. [PMID: 35007844 DOI: 10.1016/j.bbrc.2022.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 01/03/2022] [Indexed: 12/17/2022]
Abstract
Currently, semiconductor nanoparticles known as quantum dots (QDs) have attracted interest in various application fields such as those requiring sensing properties, binding assays, and cellular imaging and are the very important in the acceleration of drug discovery due to their unique photophysical properties. Here, we applied graphene quantum dots (GQDs) for the binding assay of membrane progesterone receptor alpha (mPRα), one of the probable membrane receptors that have potential in drug discovery applications. By coupling the amino groups of mPRα with GQDs, we prepared fluorogenic GQD-conjugated mPRα (GQD-mPRα). When mixed with a progesterone-BSA-fluorescein isothiocyanate conjugate (P4-BSA-FITC) to check the ligand receptor binding activity of GQD-mPRα, fluorescence at 520 nm appeared. The fluorescence at 520 nm was reduced by the addition of free progesterone into the reaction mixture. GQD-coupled BSA (GQD-BSA) did not show a reduction in fluorescence at 520 nm. The results demonstrated the formation of a complex of GQD-mPRα and P4-BSA-FITC with ligand receptor binding. We established a ligand binding assay for membrane steroid receptors that is applicable for high-throughput assays.
Collapse
Affiliation(s)
- Md Maisum Sarwar Jyoti
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Md Rubel Rana
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Md Hasan Ali
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Toshinobu Tokumoto
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
270
|
Cao X, Zheng Z, Liu J, Hu Y, Yu H, Cai S, Wang G. H
2
O
2
‐Mediated Synthesis of 1,2,4‐Thiadiazole Derivatives in Ethanol at Room Temperature. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Xian‐Ting Cao
- College of Medical Engineering& the Key Laboratory for Medical Functional Nanomaterials Jining Medical University Jining 272067 People's Republic of China
| | - Zuo‐Ling Zheng
- College of Medical Engineering& the Key Laboratory for Medical Functional Nanomaterials Jining Medical University Jining 272067 People's Republic of China
| | - Jie Liu
- College of Medical Engineering& the Key Laboratory for Medical Functional Nanomaterials Jining Medical University Jining 272067 People's Republic of China
| | - Yu‐He Hu
- College of Medical Engineering& the Key Laboratory for Medical Functional Nanomaterials Jining Medical University Jining 272067 People's Republic of China
| | - Hao‐Yun Yu
- College of Medical Engineering& the Key Laboratory for Medical Functional Nanomaterials Jining Medical University Jining 272067 People's Republic of China
| | - Shasha Cai
- College of Medical Engineering& the Key Laboratory for Medical Functional Nanomaterials Jining Medical University Jining 272067 People's Republic of China
| | - Guannan Wang
- College of Medical Engineering& the Key Laboratory for Medical Functional Nanomaterials Jining Medical University Jining 272067 People's Republic of China
| |
Collapse
|
271
|
Govada GV, Sabbasani RR. A new outlook in oxidative transformations and coupling reactions via in situ generation of organic chloramines. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
272
|
Nguyen TTT, Duong VD, Pham TNN, Duong QT, Nguyen TB. Sulfur–DMSO promoted oxidative coupling of active methylhetarenes with amines: access to amides. Org Biomol Chem 2022; 20:8054-8058. [DOI: 10.1039/d2ob01709a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The sulfur–DMSO couple was found to promote the coupling of active methylhetarenes with amines to yield amides under heating conditions. When 2-methylquinoline was used as the methylhetarene component, the reaction could be catalyzed by Fe, Co and Ni salts.
Collapse
Affiliation(s)
- Thi Thu Tram Nguyen
- Faculty of Basic Sciences, Can Tho University of Medicine and Pharmacy, Vietnam
| | - Viet Dung Duong
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1, av de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Thi Ngoc Nga Pham
- Faculty of Basic Sciences, Can Tho University of Medicine and Pharmacy, Vietnam
| | - Quoc Thanh Duong
- Faculty of Basic Sciences, Can Tho University of Medicine and Pharmacy, Vietnam
| | - Thanh Binh Nguyen
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1, av de la Terrasse, 91198 Gif-sur-Yvette, France
| |
Collapse
|
273
|
Li Q, Dai P, Tang H, Zhang M, Wu J. Photomediated reductive coupling of nitroarenes with aldehydes for amide synthesis. Chem Sci 2022; 13:9361-9365. [PMID: 36093005 PMCID: PMC9384791 DOI: 10.1039/d2sc03047k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/15/2022] [Indexed: 12/31/2022] Open
Abstract
In view of the widespread significance of amide functional groups in organic synthesis and pharmaceutical studies, an efficient and practical synthetic protocol that avoids the use of stoichiometric activating reagents or metallic reductants is highly desirable.
Collapse
Affiliation(s)
- Qingyao Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Peng Dai
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Haidi Tang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Muliang Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| |
Collapse
|
274
|
Liang Y, Luo J, Milstein D. Facile synthesis of amides via acceptorless dehydrogenative coupling of aryl epoxides and amines. Chem Sci 2022; 13:5913-5919. [PMID: 35685791 PMCID: PMC9132053 DOI: 10.1039/d2sc01959k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
The synthesis of amides is significant in a wide variety of academic and industrial fields. We report here a new reaction, namely acceptorless dehydrogenative coupling of epoxides and amines to form amides catalyzed by ruthenium pincer complexes. Various aryl epoxides and amines smoothly convert into the desired amides in high yields with the generation of H2 gas as the only byproduct. Control experiments indicate that amides are generated kinetically faster than side products, possibly because of the facile activation of epoxides by metal–ligand cooperation, as supported by the observation of a ruthenium-enolate species. No alcohol or free aldehyde are involved. A mechanism is proposed involving a dual role of the catalyst, which is responsible for the high yield and selectivity of the new reaction. We report the ruthenium pincer complex catalyzed acceptorless dehydrogenative coupling of epoxides and amines to form amides. The reaction offers a facile and atom economical two-step strategy for transforming alkenes into amides.![]()
Collapse
Affiliation(s)
- Yaoyu Liang
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 76100 Israel
| | - Jie Luo
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 76100 Israel
| | - David Milstein
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 76100 Israel
| |
Collapse
|
275
|
Saberi D, Mansourinejhad S, Shadi A, Habibi H. One-pot synthesis of a highly disperse core–shell CuO–alginate nanocomposite and the investigation of its antibacterial and catalytic properties. NEW J CHEM 2022. [DOI: 10.1039/d1nj02770k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Sodium alginate extracted from native algae of the Persian Gulf for use in the synthesis of a highly disperse CuO–alginate nanocomposite, which is used as an antibacterial agent as well as a catalyst in the synthesis of amides.
Collapse
Affiliation(s)
- Dariush Saberi
- Department of Chemistry, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr 75169, Iran
| | - Sanam Mansourinejhad
- Department of Chemistry, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr 75169, Iran
| | - Ahmad Shadi
- Department of Bio science and Technology, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr 75169, Iran
| | - Hassan Habibi
- Animal Science Department, College of Agriculture and Natural Resources, Persian Gulf University, Bushehr, 75169, Iran
| |
Collapse
|
276
|
SINGH JITENDER, Sharma A. Green and Sustainable Visible Light-Mediated Formation of Amide Bonds: An Emerging Niche in Organic Chemistry. NEW J CHEM 2022. [DOI: 10.1039/d2nj02406c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amide bond is one of the most fascinating functional groups in nature due to its stability, conformational diversity, high bond polarity, and abundance in numerous natural products and drug candidates,...
Collapse
|
277
|
Opačak S, Perić B, Gojšić T, Čikoš A, Vikić-Topić D, Kirin SI. Tandem amide coupling and hydroamination: unexpected benzotriazole oxide addition to the propiolic acid triple bond. NEW J CHEM 2022. [DOI: 10.1039/d2nj02587f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unexpected tandem reaction consisting of amide coupling and hydroamination occurring with common triazole coupling reagents.
Collapse
Affiliation(s)
- Saša Opačak
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Berislav Perić
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Tomislav Gojšić
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Ana Čikoš
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Dražen Vikić-Topić
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
- Department of Natural and Health Studies, Juraj Dobrila University of Pula, Zagrebačka 30, HR-52100 Pula, Croatia
| | - Srećko I. Kirin
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| |
Collapse
|
278
|
Goncharova IK, Ulianova EA, Novikov RA, Volodin AD, Korlyukov AA, Arzumanyan AV. Siloxane-containing derivatives of benzoic acid: chemical transformation of the carboxyl group. NEW J CHEM 2022. [DOI: 10.1039/d2nj03872b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This research presents a scalable method for chemical transformation of Si-containing derivatives of benzoic acid to a wide range of corresponding esters, thioesters, amides, etc. Some of them form HOF-like structures in the crystalline state.
Collapse
Affiliation(s)
- Irina K. Goncharova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., Moscow 119991, Russian Federation
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Eva A. Ulianova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., Moscow 119991, Russian Federation
- HZ University of Applied Sciences, 4382 NW Middelburg, The Netherlands
| | - Roman A. Novikov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Alexander D. Volodin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., Moscow 119991, Russian Federation
| | - Alexander A. Korlyukov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., Moscow 119991, Russian Federation
| | - Ashot V. Arzumanyan
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., Moscow 119991, Russian Federation
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| |
Collapse
|
279
|
Yan Z, Liu F, Wang X, Qiang Q, Li Y, Zhang Y, Rong Z. Redox-Neutral Dehydrogenative Cross-Coupling of Alcohols and Amines Enabled by Nickel Catalysis. Org Chem Front 2022. [DOI: 10.1039/d2qo00004k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Presented herein is a facile and straightforward synthetic method for the construction of amides via Ni/NHC-catalyzed amidation of alcohols with amines. The strategy exhibits various advantages over existing methods, including...
Collapse
|
280
|
Zhang Y, de Azambuja F, Parac-Vogt TN. Zirconium oxo clusters as discrete molecular catalysts for the direct amide bond formation. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00421f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A discrete dodecanuclear Zr oxo cluster catalyzed the direct formation of amide bonds without the need of water scavenging or dry reactions conditions showcasing the potential of these molecular clusters to become a new class of efficient catalysts.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | | | | |
Collapse
|
281
|
Novel versatile synthesis method for amides, carbamates and ureas employing a Grignard base, an amine and an ester. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2021.100253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
282
|
Nerantzaki M, Michel A, Petit L, Garnier M, Menager C, Griffete N. Biotinylated magnetic molecularly imprinted polymer nanoparticles for cancer cell targeting and controlled drug delivery. Chem Commun (Camb) 2022; 58:5642-5645. [DOI: 10.1039/d2cc00740a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, multivalent functions have been successfully integrated on a single core-shell type nanostructure, for remote-controlled and receptor-targeted intracellular delivery of doxorubicin (DOX) to breast cancer cells that overexpress biotin receptors.
Collapse
|
283
|
Khalid M, Kanwal T, Saifullah S, Imran M, Ullah S, Shah MR. Investigation of a Single Tail Lysine Rich Peptide Amphiphile with an Ultra Short Peptide Head for its Nano Scale Self-assembly and Drug Loading Potential. J CLUST SCI 2022. [DOI: 10.1007/s10876-020-01952-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
284
|
Chatterjee P, Wang H, Manzano JS, Kanbur U, Sadow AD, Slowing II. Surface ligands enhance the catalytic activity of supported Au nanoparticles for the aerobic α-oxidation of amines to amides. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02121d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalytic aerobic α-oxidation of amines in water is an atom economic and green alternative to current methods of amide synthesis. The reaction uses O2 as terminal oxidant, avoids hazardous...
Collapse
|
285
|
Camargo-Ayala L, Prent-Peñaloza L, Polo-Cuadrado E, Brito I, Cisterna J, Osorio E, González W, Gutiérrez M. Synthesis, characterization, crystal and molecular structure and theoretical study of N-(naphthalen-1-yl)-2-(piperidin-1-yl) acetamide, a selective butyrylcholinesterase inhibitor. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
286
|
Verma S, Kim KH. Graphene-based materials for the adsorptive removal of uranium in aqueous solutions. ENVIRONMENT INTERNATIONAL 2022; 158:106944. [PMID: 34689036 DOI: 10.1016/j.envint.2021.106944] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/19/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Ground water contamination by radioactive elements has become a critical issue that can pose significant threats to human health. Adsorption is the most promising approach for the removal of radioactive elements owing to its simplicity, effectiveness, and easy operation. Among the plethora of functional adsorbents, graphene oxide and its derivatives are recognized for their excellent potential as adsorbent with the unique 2D structure, high surface area, and intercalated functional groups. To learn more about their practical applicability, the procedures involved in their preparation and functionalization are described with the microscopic removal mechanism by GO functionalities across varying solution pH. The performance of these adsorbents is assessed further in terms of the basic performance metrics such as partition coefficient. Overall, this article is expected to provide valuable insights into the current status of graphene-based adsorbents developed for uranium removal with a guidance for the future directions in this research field.
Collapse
Affiliation(s)
- Swati Verma
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Korea
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Korea.
| |
Collapse
|
287
|
Wan C, Feng Y, Hou Z, Lian C, Zhang L, An Y, Sun J, Yang D, Jiang C, Yin F, Wang R, Li Z. Electrophilic Sulfonium-Promoted Peptide and Protein Amidation in Aqueous Media. Org Lett 2021; 24:581-586. [PMID: 34968069 DOI: 10.1021/acs.orglett.1c04017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel amidation strategy using electrophilic sulfonium, which is soluble and stable in aqueous conditions, was developed. The sulfoniums could activate thioacid and carboxyl acid to efficiently react with amines to afford amides. This method enables applications in amidation in both aqueous media and solid-phase peptide synthesis, peptide/protein modifications, and reactive lysines of a proteome at pH 10 with activity-based protein profiling. A peptide ligand-directed labeling of the USP7-UBL2 domain was also performed using this method.
Collapse
Affiliation(s)
- Chuan Wan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Yuan Feng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Zhanfeng Hou
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China
| | - Chenshan Lian
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China
| | - Liang Zhang
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China.,Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yuhao An
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China
| | - Jinming Sun
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Dongyan Yang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, P. R. China
| | - Chenran Jiang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China
| | - Rui Wang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China.,Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China
| |
Collapse
|
288
|
Amide Bond Formation via the Rearrangement of Nitrile Imines Derived from N-2-Nitrophenyl Hydrazonyl Bromides. Org Lett 2021; 24:334-338. [PMID: 34964648 PMCID: PMC8762704 DOI: 10.1021/acs.orglett.1c03993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report how the rearrangement of highly reactive nitrile imines derived from N-2-nitrophenyl hydrazonyl bromides can be harnessed for the facile construction of amide bonds. This amidation reaction was found to be widely applicable to the synthesis of primary, secondary, and tertiary amides and was used as the key step in the synthesis of the lipid-lowering agent bezafibrate. The orthogonality and functional group tolerance of this approach was exemplified by the N-acylation of unprotected amino acids.
Collapse
|
289
|
Cho S, Lee Y, Lee K, Lee H, Lee Y, Jung B. Synthesis of alkynamides through reaction of alkyl- or aryl-substituted alkynylaluminums with isocyanates. Org Biomol Chem 2021; 20:139-151. [PMID: 34874041 DOI: 10.1039/d1ob01990b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An efficient and facile method for the preparation of alkynamides through Et3N-catalyzed alumination of alkyl- or aryl-substituted terminal alkynes with AlMe3 and sequential nucleophilic addition of in situ generated alkynylaluminums to isocyanates is described. This method has the merits of using readily available isocyanates and monosubstituted alkynes, easy access to organoaluminums, short reaction times, and high efficiency. A gram-scale synthesis of the desired alkynamide and its application to the formation of α-methylene-β-lactams demonstrates the synthetic utility of this method.
Collapse
Affiliation(s)
- Soohong Cho
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Yeonjoo Lee
- Department of Emerging Materials Science, DGIST, Daegu 42988, Republic of Korea.
| | - Kyeongmin Lee
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Hwiwoong Lee
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Yunmi Lee
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Byunghyuck Jung
- Department of Emerging Materials Science, DGIST, Daegu 42988, Republic of Korea.
| |
Collapse
|
290
|
Artús Suàrez L, Balcells D, Nova A. Computational Studies on the Mechanisms for Deaminative Amide Hydrogenation by Homogeneous Bifunctional Catalysts. Top Catal 2021. [DOI: 10.1007/s11244-021-01542-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractThe deaminative hydrogenation of amides is one of the most convenient pathways for the synthesis of amines and alcohols. The ideal source of reducing equivalents for this reaction is molecular hydrogen, though, in practice, this approach requires high pressures and temperatures, with many catalysts achieving only small turnover numbers and frequencies. Nonetheless, during the last ten years, this field has made major advances towards larger turnovers under milder conditions thanks to the development of bifunctional catalysts. These systems promote the heterolytic cleavage of hydrogen into proton and hydride by combining a basic ligand with an acidic metal centre. The present review focuses on the computational study of the reaction mechanism underlying bifunctional catalysis. This review is structured around the fundamental steps of this mechanism, namely the C=O and C–N hydrogenation of the amide, the C–N protonolysis of the hemiaminal, the C=O hydrogenation of the aldehyde, and the competition between hydrogen activation and catalyst deactivation. In line with the complexity of the mechanism, we also provide a perspective on the use of microkinetic models. Both Noyori- and Milstein-type catalysts are discussed and compared.
Collapse
|
291
|
Platte S, Korff M, Imberg L, Balicioglu I, Erbacher C, Will JM, Daniliuc CG, Karst U, Kalinin DV. Microscale Parallel Synthesis of Acylated Aminotriazoles Enabling the Development of Factor XIIa and Thrombin Inhibitors. ChemMedChem 2021; 16:3672-3690. [PMID: 34278727 PMCID: PMC9292294 DOI: 10.1002/cmdc.202100431] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 01/12/2023]
Abstract
Herein we report a microscale parallel synthetic approach allowing for rapid access to libraries of N-acylated aminotriazoles and screening of their inhibitory activity against factor XIIa (FXIIa) and thrombin, which are targets for antithrombotic drugs. This approach, in combination with post-screening structure optimization, yielded a potent 7 nM inhibitor of FXIIa and a 25 nM thrombin inhibitor; both compounds showed no inhibition of the other tested serine proteases. Selected N-acylated aminotriazoles exhibited anticoagulant properties in vitro influencing the intrinsic blood coagulation pathway, but not extrinsic coagulation. Mechanistic studies of FXIIa inhibition suggested that synthesized N-acylated aminotriazoles are covalent inhibitors of FXIIa. These synthesized compounds may serve as a promising starting point for the development of novel antithrombotic drugs.
Collapse
Affiliation(s)
- Simon Platte
- Institute of Pharmaceutical and Medicinal ChemistryUniversity of MünsterCorrensstr. 4848149MünsterGermany
| | - Marvin Korff
- Institute of Pharmaceutical and Medicinal ChemistryUniversity of MünsterCorrensstr. 4848149MünsterGermany
| | - Lukas Imberg
- Institute of Pharmaceutical and Medicinal ChemistryUniversity of MünsterCorrensstr. 4848149MünsterGermany
| | - Ilker Balicioglu
- Institute of Pharmaceutical and Medicinal ChemistryUniversity of MünsterCorrensstr. 4848149MünsterGermany
| | - Catharina Erbacher
- Institute of Inorganic and Analytical ChemistryUniversity of MünsterCorrensstr. 3048149MünsterGermany
| | - Jonas M. Will
- Institute of Inorganic and Analytical ChemistryUniversity of MünsterCorrensstr. 3048149MünsterGermany
| | | | - Uwe Karst
- Institute of Inorganic and Analytical ChemistryUniversity of MünsterCorrensstr. 3048149MünsterGermany
| | - Dmitrii V. Kalinin
- Institute of Pharmaceutical and Medicinal ChemistryUniversity of MünsterCorrensstr. 4848149MünsterGermany
| |
Collapse
|
292
|
Guerriero A, Peruzzini M, Gonsalvi L. Synthesis of New Ruthenium‐CAP Complexes and Use as Catalysts for Benzonitrile Hydration to Benzamide. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Antonella Guerriero
- Istituto di Chimica dei Composti OrganoMetallici (ICCOM) Consiglio Nazionale delle Ricerche (CNR) Via Madonna del Piano 10 50019 Sesto Fiorentino (Florence) Italy
| | - Maurizio Peruzzini
- Istituto di Chimica dei Composti OrganoMetallici (ICCOM) Consiglio Nazionale delle Ricerche (CNR) Via Madonna del Piano 10 50019 Sesto Fiorentino (Florence) Italy
| | - Luca Gonsalvi
- Istituto di Chimica dei Composti OrganoMetallici (ICCOM) Consiglio Nazionale delle Ricerche (CNR) Via Madonna del Piano 10 50019 Sesto Fiorentino (Florence) Italy
| |
Collapse
|
293
|
Dai X, Wang X, Rabeah J, Kreyenschulte C, Brückner A, Shi F. Supported Cu II Single-Ion Catalyst for Total Carbon Utilization of C 2 and C 3 Biomass-Based Platform Molecules in the N-Formylation of Amines. Chemistry 2021; 27:16889-16895. [PMID: 34423878 PMCID: PMC9292173 DOI: 10.1002/chem.202102300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Indexed: 12/28/2022]
Abstract
The shift from fossil carbon sources to renewable ones is vital for developing sustainable chemical processes to produce valuable chemicals. In this work, value‐added formamides were synthesized in good yields by the reaction of amines with C2 and C3 biomass‐based platform molecules such as glycolic acid, 1,3‐dihydroxyacetone and glyceraldehyde. These feedstocks were selectively converted by catalysts based on Cu‐containing zeolite 5A through the in situ formation of carbonyl‐containing intermediates. To the best of our knowledge, this is the first example in which all the carbon atoms in biomass‐based feedstocks could be amidated to produce formamide. Combined catalyst characterization results revealed preferably single CuII sites on the surface of Cu/5A, some of which form small clusters, but without direct linking via oxygen bridges. By combining the results of electron paramagnetic resonance (EPR) spin‐trapping, operando attenuated total reflection (ATR) IR spectroscopy and control experiments, it was found that the formation of formamides might involve a HCOOH‐like intermediate and .NHPh radicals, in which the selective formation of .OOH radicals might play a key role.
Collapse
Affiliation(s)
- Xingchao Dai
- Leibniz Institute for Catalysis e.V., University of Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, 730000, China
| | - Xinzhi Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, 730000, China
| | - Jabor Rabeah
- Leibniz Institute for Catalysis e.V., University of Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Carsten Kreyenschulte
- Leibniz Institute for Catalysis e.V., University of Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Angelika Brückner
- Leibniz Institute for Catalysis e.V., University of Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Feng Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, 730000, China
| |
Collapse
|
294
|
Seo OB, Saha S, Kim NH, Lee JH. Preparation of functionalized MXene-stitched-graphene oxide/poly (ethylene-co-acrylic acid) nanocomposite with enhanced hydrogen gas barrier properties. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119839] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
295
|
Ruthenium(II) complexes bearing bidentate acylthiourea ligands for direct oxidation of amine α-carbon to amide. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
296
|
Tung TT, Nielsen J. Amide bond formation in aqueous solution: direct coupling of metal carboxylate salts with ammonium salts at room temperature. Org Biomol Chem 2021; 19:10073-10080. [PMID: 34779471 DOI: 10.1039/d1ob02064a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report a green, expeditious, and practically simple protocol for direct coupling of carboxylate salts and ammonium salts under ACN/H2O conditions at room temperature without the addition of tertiary amine bases. The water-soluble coupling reagent EDC·HCl is a key component in the reaction. The reaction runs smoothly with unsubstituted/substituted ammonium salts and provides a clean product without column chromatography. Our reaction tolerates both carboxylate (which are unstable in other forms) and amine salts (which are unstable/volatile when present in free form). We believe that the reported method could be used as an alternative and suitable method at the laboratory and industrial scales.
Collapse
Affiliation(s)
- Truong Thanh Tung
- Faculty of Pharmacy, PHENIKAA University, Hanoi, 12116, Vietnam. .,PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi, 12116, Vietnam
| | - John Nielsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
297
|
Murugesan K, Alenad AM, Alshammari AS, Sohail M, Jagadeesh RV. Reductive N-alkylation of primary amides using nickel-nanoparticles. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
298
|
Kalita T, Mandal B. One‐Pot Synthesis of Amide, Dipeptide, Ester and Hydroxamate Using Oxyma and Thionyl Chloride (SOCl
2
). ChemistrySelect 2021. [DOI: 10.1002/slct.202103006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Tapasi Kalita
- Department of Chemistry Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| | - Bhubaneswar Mandal
- Department of Chemistry Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| |
Collapse
|
299
|
Pham DT, Nguyen VT, Vu BD, Phan DC. A New Method for the Synthesis of N, N-Diethyl-m-Methylbenzamide from m-Toluic Acid and Diethylamine Using 1,1'-Carbonyl-di-(1,2,4-triazole) (CDT) as Coupling Agent. LETT ORG CHEM 2021. [DOI: 10.2174/1570178618666211119121227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
A new, simple method for the synthesis of N, N-dietyl-m-methylbenzamide (DEET) from m-toluic acid and diethylamine using 1,1'-carbonyl-di-(1,2,4-triazole) (CDT) as a coupling agent has been performed. The basic principles of activated carbonyls have been explored with the ability to prepare new amides easily. All reaction by-products are water-soluble as well as removed by filtration, the reaction could be purified easily in an aqueous solution by liquid-liquid extraction, and the product DEET was high purity. This experimental efficiency is about 94-95%, purity (HPLC): 97-98%.
Collapse
Affiliation(s)
- Duc Thinh Pham
- Vietnam Military Medical University, Ha Dong district, Hanoi 12108, Vietnam
| | - Van Thu Nguyen
- Vietnam Military Medical University, Ha Dong district, Hanoi 12108, Vietnam
| | - Binh Duong Vu
- Vietnam Military Medical University, Ha Dong district, Hanoi 12108, Vietnam
| | - Dinh Chau Phan
- School of Chemical Engineering, Hanoi University of Science and Technology, Haibatrung District, Hanoi 11600, Vietnam
| |
Collapse
|
300
|
Falkenstein M, Reiner-Link D, Zivkovic A, Gering I, Willbold D, Stark H. Histamine H 3 receptor antagonists with peptidomimetic (keto)piperazine structures to inhibit Aβ oligomerisation. Bioorg Med Chem 2021; 50:116462. [PMID: 34695709 DOI: 10.1016/j.bmc.2021.116462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Alzheimeŕs disease (AD) is the most prominent neurodegenerative disorder with high medical need. Protein-protein-interactions (PPI) interactions have a critical role in AD where β-amyloid structures (Aβ) build toxic oligomers. Design of disease modifying multi target directed ligand (MTDL) has been performed, which disable PPI on the one hand and on the other hand, act as procognitive antagonists at the histamine H3 receptor (H3R). The synthetized compounds are structurally based on peptidomimetic amino acid-like structures mainly as keto, diketo-, or acyl variations of a piperazine moiety connected to an H3R pharmacophore. Most of them showed low nanomolar affinities at H3R and some with promising affinity to Aβ-monomers. The structure-activity relationships (SAR) described offer new possibilities for MTDL with an optimized profile combining symptomatic and potential causal therapeutic approaches in AD.
Collapse
Affiliation(s)
- Markus Falkenstein
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - David Reiner-Link
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Aleksandra Zivkovic
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Ian Gering
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dieter Willbold
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; Institute of Physical Biology, Heinrich Heine University Düsseldorf, 40225 Duesseldorf, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany.
| |
Collapse
|