251
|
Wang S, Liu Z, Zou Y, Lai X, Ding D, Chen L, Zhang L, Wu Y, Chen Z, Tan W. Elucidating the cellular uptake mechanism of aptamer-functionalized graphene-isolated-Au-nanocrystals with dual-modal imaging. Analyst 2016; 141:3337-42. [DOI: 10.1039/c6an00483k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aptamers significantly changed the nanocrystal cellular endocytosis pathway with graphene-isolated-Au-nanocrystals as the Raman and two-photon luminescence dual-modal imaging probe.
Collapse
|
252
|
Sarycheva AS, Brazhe NA, Baizhumanov AA, Nikelshparg EI, Semenova AA, Garshev AV, Baranchikov AE, Ivanov VK, Maksimov GV, Sosnovtseva O, Goodilin EA. New nanocomposites for SERS studies of living cells and mitochondria. J Mater Chem B 2015; 4:539-546. [PMID: 32263217 DOI: 10.1039/c5tb01886b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A great enhancement in Raman scattering (SERS) from heme-containing submembrane biomolecules inside intact erythrocytes and functional mitochondria is demonstrated for the first time using silver-silica beads prepared using a new method involving aerosol pyrolysis with aqueous diamminesilver(i) hydroxide as a unique source of plasmonic nanoparticles for SiO2 microspheres. The recorded SERS spectra reveal a set of characteristic peaks at 750, 1127, 1170, 1371, 1565, 1585 and 1638 cm-1, resulting from the normal group vibrations of the pyrrole rings, methine bridges and side radicals in the heme molecules. The SERS spectra of functional mitochondria are sensitive to the activity of the mitochondrial electron transport chain, thus making the method a novel label-free approach to monitor the redox state and conformation of cytochromes in their natural cell environment. The developed nanocomposites are highly suitable for the analysis of biological objects due to their robust synthesis and superior spatial and temporal signal reproducibility, which was preserved for a period of at least one year.
Collapse
Affiliation(s)
- A S Sarycheva
- Department of Nanomaterials, Faculty of Material Sciences, Moscow State University, Leninskie gory 1/3, Moscow, 119991, Russia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
253
|
Ryu IS, Camp CH, Jin Y, Cicerone MT, Lee YJ. Beam scanning for rapid coherent Raman hyperspectral imaging. OPTICS LETTERS 2015; 40:5826-9. [PMID: 26670522 PMCID: PMC4817276 DOI: 10.1364/ol.40.005826] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Coherent Raman imaging requires high-peak power laser pulses to maximize the nonlinear multiphoton signal generation, but accompanying photo-induced sample damage often poses a challenge to microscopic imaging studies. We demonstrate that beam scanning by a 3.5-kHz resonant mirror in a broadband coherent anti-Stokes Raman scattering (BCARS) imaging system can reduce photo-induced damage without compromising signal intensity. Additionally, beam scanning enables slit acquisition, in which spectra from a thin line of sample illumination are acquired in parallel during a single charge-coupled device exposure. Reflective mirrors are employed in the beam-scanning assembly to minimize chromatic aberration and temporal dispersion. The combined approach of beam scanning and slit acquisition is compared with the sample-scanning mode in terms of spatial resolution, photo-induced damage, and imaging speed at the maximum laser power below the sample-damage threshold. We show that the beam-scanning BCARS imaging method can reduce photodamage probability in biological cells and tissues, enabling faster imaging speed by using a higher excitation laser power than could be achieved without beam scanning.
Collapse
Affiliation(s)
- Ian Seungwan Ryu
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Charles H. Camp
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Ying Jin
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Marcus T. Cicerone
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Young Jong Lee
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
254
|
Hsu JF, Hsieh PY, Hsu HY, Shigeto S. When cells divide: Label-free multimodal spectral imaging for exploratory molecular investigation of living cells during cytokinesis. Sci Rep 2015; 5:17541. [PMID: 26632877 PMCID: PMC4668386 DOI: 10.1038/srep17541] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/02/2015] [Indexed: 12/23/2022] Open
Abstract
In vivo, molecular-level investigation of cytokinesis, the climax of the cell cycle, not only deepens our understanding of how life continues, but it will also open up new possibilities of diagnosis/prognosis of cancer cells. Although fluorescence-based methods have been widely employed to address this challenge, they require a fluorophore to be designed for a specific known biomolecule and introduced into the cell. Here, we present a label-free spectral imaging approach based on multivariate curve resolution analysis of Raman hyperspectral data that enables exploratory untargeted studies of mammalian cell cytokinesis. We derived intrinsic vibrational spectra and intracellular distributions of major biomolecular components (lipids and proteins) in dividing and nondividing human colon cancer cells. In addition, we discovered an unusual autofluorescent lipid component that appears predominantly in the vicinity of the cleavage furrow during cytokinesis. This autofluorescence signal could be utilized as an endogenous probe for monitoring and visualizing cytokinesis in vivo.
Collapse
Affiliation(s)
- Jen-Fang Hsu
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Pei-Ying Hsieh
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Hsin-Yun Hsu
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Shinsuke Shigeto
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| |
Collapse
|
255
|
Mu Z, Zhao X, Huang Y, Lu M, Gu Z. Photonic Crystal Hydrogel Enhanced Plasmonic Staining for Multiplexed Protein Analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:6036-43. [PMID: 26436833 DOI: 10.1002/smll.201501829] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/05/2015] [Indexed: 05/25/2023]
Abstract
Plasmonic nanoparticles are commonly used as optical transducers in sensing applications. The optical signals resulting from the interaction of analytes and plamsonic nanoparticles are influenced by surrounding physical structures where the nanoparticles are located. This paper proposes inverse opal photonic crystal hydrogel as 3D structure to improve Raman signals from plasmonic staining. By hybridization of the plasmonic nanoparticles and photonic crystal, surface-enhanced Raman spectroscopy (SERS) analysis of multiplexed protein is realized. It benefits the Raman analysis by providing high-density "hot spots" in 3D and extra enhancement of local electromagnetic field at the band edge of PhC with periodic refractive index distribution. The strong interaction of light and the hybrid 3D nanostructure offers new insights into plasmonic nanoparticle applications and biosensor design.
Collapse
Affiliation(s)
- Zhongde Mu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Xiangwei Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Yin Huang
- Department of Electrical and Computer Engineering, Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Meng Lu
- Department of Electrical and Computer Engineering, Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
256
|
Watanabe K, Palonpon AF, Smith NI, Chiu LD, Kasai A, Hashimoto H, Kawata S, Fujita K. Structured line illumination Raman microscopy. Nat Commun 2015; 6:10095. [PMID: 26626144 PMCID: PMC4686755 DOI: 10.1038/ncomms10095] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 11/03/2015] [Indexed: 11/09/2022] Open
Abstract
In the last couple of decades, the spatial resolution in optical microscopy has increased to unprecedented levels by exploiting the fluorescence properties of the probe. At about the same time, Raman imaging techniques have emerged as a way to image inherent chemical information in a sample without using fluorescent probes. However, in many applications, the achievable resolution is limited to about half the wavelength of excitation light. Here we report the use of structured illumination to increase the spatial resolution of label-free spontaneous Raman microscopy, generating highly detailed spatial contrast from the ensemble of molecular information in the sample. Using structured line illumination in slit-scanning Raman microscopy, we demonstrate a marked improvement in spatial resolution and show the applicability to a range of samples, including both biological and inorganic chemical component mapping. This technique is expected to contribute towards greater understanding of chemical component distributions in organic and inorganic materials.
Collapse
Affiliation(s)
- Kozue Watanabe
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Almar F Palonpon
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nicholas I Smith
- Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Liang-da Chiu
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Atsushi Kasai
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.,Interdisciplinary Program for Biomedical Sciences, Institute for Academic Initiatives, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.,iPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate school of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Kawata
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Katsumasa Fujita
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
257
|
Minamikawa T, Harada Y, Takamatsu T. Ex vivo peripheral nerve detection of rats by spontaneous Raman spectroscopy. Sci Rep 2015; 5:17165. [PMID: 26602842 PMCID: PMC4658536 DOI: 10.1038/srep17165] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/19/2015] [Indexed: 01/17/2023] Open
Abstract
Nerve-sparing surgery is increasingly being applied to avoid functional deficits of the limbs and organs following surgery. Peripheral nerves that should be preserved are, however, sometimes misidentified due to similarity of shape and color to non-nerve tissues. To avoid misidentification of peripheral nerves, development of an in situ nerve detection method is desired. In this study, we report the label-free detection of ex vivo peripheral nerves of Wistar rats by using Raman spectroscopy. We obtained Raman spectra of peripheral nerves (myelinated and unmyelinated nerves) and their adjacent tissues of Wistar rats without any treatment such as fixation and/or staining. For the identification of tissue species and further analysis of spectral features, we proposed a principal component regression-based discriminant analysis with representative Raman spectra of peripheral nerves and their adjacent tissues. Our prediction model selectively detected myelinated nerves and unmyelinated nerves of Wistar rats with respective sensitivities of 95.5% and 88.3% and specificities of 99.4% and 93.5%. Furthermore, important spectral features for the identification of tissue species were revealed by detailed analysis of principal components of representative Raman spectra of tissues. Our proposed approach may provide a unique and powerful tool for peripheral nerve detection for nerve-sparing surgery in the future.
Collapse
Affiliation(s)
- Takeo Minamikawa
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yoshinori Harada
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tetsuro Takamatsu
- Department of Medical Photonics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
258
|
Naemat A, Elsheikha HM, Al-Sandaqchi A, Kong K, Ghita A, Notingher I. Analysis of interaction between the apicomplexan protozoan Toxoplasma gondii and host cells using label-free Raman spectroscopy. Analyst 2015; 140:756-64. [PMID: 25422831 DOI: 10.1039/c4an01810a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Label-free imaging using Raman micro-spectroscopy (RMS) was used to characterize the spatio-temporal molecular changes of T. gondii tachyzoites and their host cell microenvironment. Raman spectral maps were recorded from isolated T. gondii tachyzoites and T. gondii-infected human retinal cells at 6 h, 24 h and 48 h post-infection. Principal component analysis (PCA) of the Raman spectra of paraformaldehyde-fixed infected cells indicated a significant increase in the amount of lipids and proteins in the T. gondii tachyzoites as the infection progresses within host cells. These results were confirmed by experiments carried out on live T. gondii-infected cells and were correlated with an increase in the concentration of proteins and lipids required for the replication of this intracellular pathogen. These findings demonstrate the potential of RMS to characterize time- and spatially-dependent molecular interactions between intracellular pathogens and the host cells. Such information may be useful for discovery of pharmacological targets or screening compounds with potential neuro-protective activity for eminent effects of changes in brain infection control practices.
Collapse
Affiliation(s)
- Abida Naemat
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK.
| | | | | | | | | | | |
Collapse
|
259
|
Hobro AJ, Pavillon N, Fujita K, Ozkan M, Coban C, Smith NI. Label-free Raman imaging of the macrophage response to the malaria pigment hemozoin. Analyst 2015; 140:2350-9. [PMID: 25646175 DOI: 10.1039/c4an01850h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hemozoin, the 'malaria pigment', is engulfed by phagocytic cells, such as macrophages, during malaria infection. This biocrystalline substance is difficult to degrade and often accumulates in phagocytes. The macrophage response to hemozoin relates to the severity of the disease and the potential for malaria-related disease complications. In this study we have used Raman spectroscopy as a label-free method to investigate the biochemical changes occurring in macrophages during the first few hours of hemozoin uptake. We found a number of distinct spectral groups, spectrally or spatially related to the presence of the hemozoin inside the cell. Intracellular hemozoin was spectrally identical to extracellular hemozoin, regardless of the location in the cell. A small proportion of hemozoin was found to be associated with lipid-based components, consistent with the uptake of hemozoin into vesicles such as phagosomes and lysosomes. The spatial distribution of the hemozoin was observed to be inhomogeneous, and its presence largely excluded that of proteins and lipids, demonstrating that cells were not able to break down the biocrystals on the time scales studied here. These results show that Raman imaging can be used to answer some of the open questions regarding the role of hemozoin in the immune response. How different combinations of hemozoin and other molecules are treated by macrophages, whether hemozoin can be broken down by the cell, and more importantly, which co-factors or products are involved in the subsequent cell reaction are the expected issues to be elucidated by this technique.
Collapse
Affiliation(s)
- Alison J Hobro
- Biophotonics Laboratory, Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
260
|
Brazhe NA, Evlyukhin AB, Goodilin EA, Semenova AA, Novikov SM, Bozhevolnyi SI, Chichkov BN, Sarycheva AS, Baizhumanov AA, Nikelshparg EI, Deev LI, Maksimov EG, Maksimov GV, Sosnovtseva O. Probing cytochrome c in living mitochondria with surface-enhanced Raman spectroscopy. Sci Rep 2015; 5:13793. [PMID: 26346634 PMCID: PMC4561893 DOI: 10.1038/srep13793] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/03/2015] [Indexed: 11/29/2022] Open
Abstract
Selective study of the electron transport chain components in living mitochondria is essential for fundamental biophysical research and for the development of new medical diagnostic methods. However, many important details of inter- and intramembrane mitochondrial processes have remained in shadow due to the lack of non-invasive techniques. Here we suggest a novel label-free approach based on the surface-enhanced Raman spectroscopy (SERS) to monitor the redox state and conformation of cytochrome c in the electron transport chain in living mitochondria. We demonstrate that SERS spectra of living mitochondria placed on hierarchically structured silver-ring substrates provide exclusive information about cytochrome c behavior under modulation of inner mitochondrial membrane potential, proton gradient and the activity of ATP-synthetase. Mathematical simulation explains the observed enhancement of Raman scattering due to high concentration of electric near-field and large contact area between mitochondria and nanostructured surfaces.
Collapse
Affiliation(s)
- Nadezda A. Brazhe
- Department of Biophysics, Biological Faculty, Moscow State University, Leninskie gory 1/12, Moscow, 119234, Russia
- Department of Biomedical Sciences, Faculty of Medical and Health Sciences, Copenhagen University, Blegdamsvej 3, Copenhagen, DK-2200, Denmark
| | - Andrey B. Evlyukhin
- Laser Zentrum Hannover e. V., Hollerihallee 8, D-30419 Hannover, Germany
- Department of Technology and Innovation, University of Southern Denmark, Odense M, DK-5230 Denmark
| | - Eugene A. Goodilin
- Department of Nanomaterials, Faculty of Material Sciences, Moscow State University, Moscow, Leninskie gory 1/73, 119991, Russia
- Department of Inorganic chemistry, Faculty of Chemistry, Moscow State University, Moscow, Leninskie gory 1/3, 119991, Russia
- Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences, Moscow, Leninskiy prospekt, 119992, Russia
| | - Anna A. Semenova
- Department of Nanomaterials, Faculty of Material Sciences, Moscow State University, Moscow, Leninskie gory 1/73, 119991, Russia
| | - Sergey M. Novikov
- Department of Technology and Innovation, University of Southern Denmark, Odense M, DK-5230 Denmark
| | - Sergey I. Bozhevolnyi
- Department of Technology and Innovation, University of Southern Denmark, Odense M, DK-5230 Denmark
| | - Boris N. Chichkov
- Laser Zentrum Hannover e. V., Hollerihallee 8, D-30419 Hannover, Germany
| | - Asya S. Sarycheva
- Department of Nanomaterials, Faculty of Material Sciences, Moscow State University, Moscow, Leninskie gory 1/73, 119991, Russia
| | - Adil A. Baizhumanov
- Department of Biophysics, Biological Faculty, Moscow State University, Leninskie gory 1/12, Moscow, 119234, Russia
| | - Evelina I. Nikelshparg
- Department of Biophysics, Biological Faculty, Moscow State University, Leninskie gory 1/12, Moscow, 119234, Russia
| | - Leonid I. Deev
- Department of Biophysics, Biological Faculty, Moscow State University, Leninskie gory 1/12, Moscow, 119234, Russia
| | - Eugene G. Maksimov
- Department of Biophysics, Biological Faculty, Moscow State University, Leninskie gory 1/12, Moscow, 119234, Russia
| | - Georgy V. Maksimov
- Department of Biophysics, Biological Faculty, Moscow State University, Leninskie gory 1/12, Moscow, 119234, Russia
| | - Olga Sosnovtseva
- Department of Biomedical Sciences, Faculty of Medical and Health Sciences, Copenhagen University, Blegdamsvej 3, Copenhagen, DK-2200, Denmark
| |
Collapse
|
261
|
Hashimoto A, Yamaguchi Y, Chiu LD, Morimoto C, Fujita K, Takedachi M, Kawata S, Murakami S, Tamiya E. Time-lapse Raman imaging of osteoblast differentiation. Sci Rep 2015; 5:12529. [PMID: 26211729 PMCID: PMC4515588 DOI: 10.1038/srep12529] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/01/2015] [Indexed: 11/23/2022] Open
Abstract
Osteoblastic mineralization occurs during the early stages of bone formation. During this mineralization, hydroxyapatite (HA), a major component of bone, is synthesized, generating hard tissue. Many of the mechanisms driving biomineralization remain unclear because the traditional biochemical assays used to investigate them are destructive techniques incompatible with viable cells. To determine the temporal changes in mineralization-related biomolecules at mineralization spots, we performed time-lapse Raman imaging of mouse osteoblasts at a subcellular resolution throughout the mineralization process. Raman imaging enabled us to analyze the dynamics of the related biomolecules at mineralization spots throughout the entire process of mineralization. Here, we stimulated KUSA-A1 cells to differentiate into osteoblasts and conducted time-lapse Raman imaging on them every 4 hours for 24 hours, beginning 5 days after the stimulation. The HA and cytochrome c Raman bands were used as markers for osteoblastic mineralization and apoptosis. From the Raman images successfully acquired throughout the mineralization process, we found that β-carotene acts as a biomarker that indicates the initiation of osteoblastic mineralization. A fluctuation of cytochrome c concentration, which indicates cell apoptosis, was also observed during mineralization. We expect time-lapse Raman imaging to help us to further elucidate osteoblastic mineralization mechanisms that have previously been unobservable.
Collapse
Affiliation(s)
- Aya Hashimoto
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshinori Yamaguchi
- Institute of Photonics and Biomedicine, Graduate School of Science, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China
| | - Liang-da Chiu
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Chiaki Morimoto
- Department of Periodontology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Katsumasa Fujita
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masahide Takedachi
- Department of Periodontology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Kawata
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shinya Murakami
- Department of Periodontology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eiichi Tamiya
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
262
|
Winterhalder MJ, Zumbusch A. Beyond the borders--Biomedical applications of non-linear Raman microscopy. Adv Drug Deliv Rev 2015; 89:135-44. [PMID: 25959426 DOI: 10.1016/j.addr.2015.04.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/17/2015] [Accepted: 04/29/2015] [Indexed: 11/26/2022]
Abstract
Raman spectroscopy offers great promise for label free imaging in biomedical applications. Its use, however, is hampered by the long integration times required and the presence of autofluorescence in many samples which outshines the Raman signals. In order to overcome these limitations, a variety of different non-linear Raman imaging techniques have been developed over the last decade. This review describes biomedical applications of these novel but already mature imaging techniques.
Collapse
|
263
|
Abazari A, Chakraborty N, Hand S, Aksan A, Toner M. A Raman microspectroscopy study of water and trehalose in spin-dried cells. Biophys J 2015; 107:2253-62. [PMID: 25418294 DOI: 10.1016/j.bpj.2014.09.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 10/24/2022] Open
Abstract
Long-term storage of desiccated nucleated mammalian cells at ambient temperature may be accomplished in a stable glassy state, which can be achieved by removal of water from the biological sample in the presence of glass-forming agents including trehalose. The stability of the glass may be compromised due to a nonuniform distribution of residual water and trehalose within and around the desiccated cells. Thus, quantification of water and trehalose contents at the single-cell level is critical for predicting the glass formation and stability for dry storage. Using Raman microspectroscopy, we estimated the trehalose and residual water contents in the microenvironment of spin-dried cells. Individual cells with or without intracellular trehalose were embedded in a solid thin layer of extracellular trehalose after spin-drying. We found strong evidence suggesting that the residual water was bound at a 2:1 water/trehalose molar ratio in both the extracellular and intracellular milieus. Other than the water associated with trehalose, we did not find any more residual water in the spin-dried sample, intra- or extracellularly. The extracellular trehalose film exhibited characteristics of an amorphous state with a glass transition temperature of ?22°C. The intracellular milieu also dried to levels suitable for glass formation at room temperature. These findings demonstrate a method for quantification of water and trehalose in desiccated specimens using confocal Raman microspectroscopy. This approach has broad use in desiccation studies to carefully investigate the relationship of water and trehalose content and distribution with the tolerance to drying in mammalian cells.
Collapse
Affiliation(s)
- Alireza Abazari
- The Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Boston, Massachusetts
| | - Nilay Chakraborty
- Department of Mechanical Engineering, University of Michigan-Dearborn, Dearborn, Michigan
| | - Steven Hand
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - Alptekin Aksan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Mehmet Toner
- The Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Boston, Massachusetts.
| |
Collapse
|
264
|
Zheng X, Zong C, Xu M, Wang X, Ren B. Raman Imaging from Microscopy to Nanoscopy, and to Macroscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:3395-3406. [PMID: 25873340 DOI: 10.1002/smll.201403804] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/08/2015] [Indexed: 06/04/2023]
Abstract
Raman spectroscopy can not only provide intrinsic fingerprint information about a sample, but also utilize the merits of the narrow bandwidth and low background of Raman spectra, offering itself as a promising multiplex analytical technique. Raman microscopy has become particularly attractive recently because it has demonstrated itself as an important imaging technique for various samples, from biological samples and chemical systems to industrially important silicon-based wafers. In this Concept article, some of the most recent advances in Raman imaging techniques are critically reviewed, and the advantages and problems associated with the current techniques are discussed. Particular emphasis is placed on its future directions, from both the technical and application sides.
Collapse
Affiliation(s)
- Xiaoshan Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Cheng Zong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Mengxi Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
265
|
Zhang Z, Liu Q, Gao D, Luo D, Niu Y, Yang J, Li Y. Graphene Oxide as a Multifunctional Platform for Raman and Fluorescence Imaging of Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:3000-5. [PMID: 25708171 DOI: 10.1002/smll.201403459] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/04/2015] [Indexed: 05/05/2023]
Abstract
Fluorescence and Raman bimodal imaging and Raman multifrequency imaging of Hela cells are carried out with the help of two kinds of graphene oxide-based hybrids. As a multifunctional platform, graphene oxide acts as not only a Raman probe, but also as a substrate for Raman and fluorescent probes to load on.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Qinghai Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Dongliang Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Da Luo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yang Niu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Juan Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yan Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
266
|
Lee JY, Park Y, Pun S, Lee SS, Lo JF, Lee LP. Real-time investigation of cytochrome c release profiles in living neuronal cells undergoing amyloid beta oligomer-induced apoptosis. NANOSCALE 2015; 7:10340-10343. [PMID: 26009283 DOI: 10.1039/c5nr02390d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Intracellular Cyt c release profiles in living human neuroblastoma undergoing amyloid β oligomer (AβO)-induced apoptosis, as a model Alzheimer's disease-associated pathogenic molecule, were analysed in a real-time manner using plasmon resonance energy transfer (PRET)-based spectroscopy.
Collapse
Affiliation(s)
- Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-715, Republic of Korea
| | | | | | | | | | | |
Collapse
|
267
|
Ichimura T, Chiu LD, Fujita K, Machiyama H, Kawata S, Watanabe TM, Fujita H. Visualizing the appearance and disappearance of the attractor of differentiation using Raman spectral imaging. Sci Rep 2015; 5:11358. [PMID: 26079396 PMCID: PMC5155549 DOI: 10.1038/srep11358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/21/2015] [Indexed: 01/02/2023] Open
Abstract
Using Raman spectral imaging, we visualized the cell state transition during differentiation and constructed hypothetical potential landscapes for attractors of cellular states on a state space composed of parameters related to the shape of the Raman spectra. As models of differentiation, we used the myogenic C2C12 cell line and mouse embryonic stem cells. Raman spectral imaging can validate the amounts and locations of multiple cellular components that describe the cell state such as proteins, nucleic acids, and lipids; thus, it can report the state of a single cell. Herein, we visualized the cell state transition during differentiation using Raman spectral imaging of cell nuclei in combination with principal component analysis. During differentiation, cell populations with a seemingly homogeneous cell state before differentiation showed heterogeneity at the early stage of differentiation. At later differentiation stages, the cells returned to a homogeneous cell state that was different from the undifferentiated state. Thus, Raman spectral imaging enables us to illustrate the disappearance and reappearance of an attractor in a differentiation landscape, where cells stochastically fluctuate between states at the early stage of differentiation.
Collapse
Affiliation(s)
- Taro Ichimura
- Laboratory for Comprehensive Bioimaging, Riken QBiC, 6-2-3 Furuedai, Suita, Osaka, Japan
| | - Liang-da Chiu
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Katsumasa Fujita
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Hiroaki Machiyama
- WPI, Immunology Frontier Research Center, Osaka University, 1-3 Yamadaoka, Suita, Osaka, Japan
| | - Satoshi Kawata
- 1] Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan [2] Nanophotonics Laboratory, RIKEN, Wako, Saitama, Japan, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Tomonobu M Watanabe
- Laboratory for Comprehensive Bioimaging, Riken QBiC, 6-2-3 Furuedai, Suita, Osaka, Japan
| | - Hideaki Fujita
- 1] Laboratory for Comprehensive Bioimaging, Riken QBiC, 6-2-3 Furuedai, Suita, Osaka, Japan [2] WPI, Immunology Frontier Research Center, Osaka University, 1-3 Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
268
|
Nawa Y, Inami W, Lin S, Kawata Y, Terakawa S. High-resolution, label-free imaging of living cells with direct electron-beam-excitation-assisted optical microscopy. OPTICS EXPRESS 2015; 23:14561-14568. [PMID: 26072816 DOI: 10.1364/oe.23.014561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
High spatial resolution microscope is desired for deep understanding of cellular functions, in order to develop medical technologies. We demonstrate high-resolution imaging of un-labelled organelles in living cells, in which live cells on a 50 nm thick silicon nitride membrane are imaged by autofluorescence excited with a focused electron beam through the membrane. Electron beam excitation enables ultrahigh spatial resolution imaging of organelles, such as mitochondria, nuclei, and various granules. Since the autofluorescence spectra represent molecular species, this microscopy allows fast and detailed investigations of cellular status in living cells.
Collapse
|
269
|
Feng J, de la Fuente-Núñez C, Trimble MJ, Xu J, Hancock REW, Lu X. An in situ Raman spectroscopy-based microfluidic "lab-on-a-chip" platform for non-destructive and continuous characterization of Pseudomonas aeruginosa biofilms. Chem Commun (Camb) 2015; 51:8966-9. [PMID: 25929246 PMCID: PMC4433399 DOI: 10.1039/c5cc02744f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pseudomonas aeruginosa biofilm was cultivated and characterized in a microfluidic "lab-on-a-chip" platform coupled with confocal Raman microscopy in a non-destructive manner. Biofilm formation could be quantified by this label-free platform and correlated well with confocal laser scanning microscopy. This Raman-microfluidic platform could also discriminate biofilms at different developmental stages.
Collapse
Affiliation(s)
- Jinsong Feng
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| | | | | | | | | | | |
Collapse
|
270
|
Zito G, Rusciano G, Pesce G, Dochshanov A, Sasso A. Surface-enhanced Raman imaging of cell membrane by a highly homogeneous and isotropic silver nanostructure. NANOSCALE 2015; 7:8593-606. [PMID: 25898990 DOI: 10.1039/c5nr01341k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Label-free chemical imaging of live cell membranes can shed light on the molecular basis of cell membrane functionalities and their alterations under membrane-related diseases. In principle, this can be done by surface-enhanced Raman scattering (SERS) in confocal microscopy, but requires engineering plasmonic architectures with a spatially invariant SERS enhancement factor G(x, y) = G. To this end, we exploit a self-assembled isotropic nanostructure with characteristics of homogeneity typical of the so-called near-hyperuniform disorder. The resulting highly dense, homogeneous and isotropic random pattern consists of clusters of silver nanoparticles with limited size dispersion. This nanostructure brings together several advantages: very large hot spot density (∼10(4) μm(-2)), superior spatial reproducibility (SD < 1% over 2500 μm(2)) and single-molecule sensitivity (Gav ∼ 10(9)), all on a centimeter scale transparent active area. We are able to reconstruct the label-free SERS-based chemical map of live cell membranes with confocal resolution. In particular, SERS imaging is here demonstrated on red blood cells in vitro in order to use the Raman-resonant heme of the cell as a contrast medium to prove spectroscopic detection of membrane molecules. Numerical simulations also clarify the SERS characteristics of the substrate in terms of electromagnetic enhancement and distance sensitivity range consistently with the experiments. The large SERS-active area is intended for multi-cellular imaging on the same substrate, which is important for spectroscopic comparative analysis of complex organisms like cells. This opens new routes for in situ quantitative surface analysis and dynamic probing of living cells exposed to membrane-targeting drugs.
Collapse
Affiliation(s)
- Gianluigi Zito
- Department of Physics, University of Naples Federico II, via Cintia, 80126-I Naples, Italy.
| | | | | | | | | |
Collapse
|
271
|
Galler K, Bräutigam K, Große C, Popp J, Neugebauer U. Making a big thing of a small cell--recent advances in single cell analysis. Analyst 2015; 139:1237-73. [PMID: 24495980 DOI: 10.1039/c3an01939j] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Single cell analysis is an emerging field requiring a high level interdisciplinary collaboration to provide detailed insights into the complex organisation, function and heterogeneity of life. This review is addressed to life science researchers as well as researchers developing novel technologies. It covers all aspects of the characterisation of single cells (with a special focus on mammalian cells) from morphology to genetics and different omics-techniques to physiological, mechanical and electrical methods. In recent years, tremendous advances have been achieved in all fields of single cell analysis: (1) improved spatial and temporal resolution of imaging techniques to enable the tracking of single molecule dynamics within single cells; (2) increased throughput to reveal unexpected heterogeneity between different individual cells raising the question what characterizes a cell type and what is just natural biological variation; and (3) emerging multimodal approaches trying to bring together information from complementary techniques paving the way for a deeper understanding of the complexity of biological processes. This review also covers the first successful translations of single cell analysis methods to diagnostic applications in the field of tumour research (especially circulating tumour cells), regenerative medicine, drug discovery and immunology.
Collapse
Affiliation(s)
- Kerstin Galler
- Integrated Research and Treatment Center "Center for Sepsis Control and Care", Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany
| | | | | | | | | |
Collapse
|
272
|
Sphingomyelin distribution in lipid rafts of artificial monolayer membranes visualized by Raman microscopy. Proc Natl Acad Sci U S A 2015; 112:4558-63. [PMID: 25825736 DOI: 10.1073/pnas.1418088112] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sphingomyelin (SM) and cholesterol (chol)-rich domains in cell membranes, called lipid rafts, are thought to have important biological functions related to membrane signaling and protein trafficking. To visualize the distribution of SM in lipid rafts by means of Raman microscopy, we designed and synthesized an SM analog tagged with a Raman-active diyne moiety (diyne-SM). Diyne-SM showed a strong peak in a Raman silent region that is free of interference from intrinsic vibrational modes of lipids and did not appear to alter the properties of SM-containing monolayers. Therefore, we used Raman microscopy to directly visualize the distribution of diyne-SM in raft-mimicking domains formed in SM/dioleoylphosphatidylcholine/chol ternary monolayers. Raman images visualized a heterogeneous distribution of diyne-SM, which showed marked variation, even within a single ordered domain. Specifically, diyne-SM was enriched in the central area of raft domains compared with the peripheral area. These results seem incompatible with the generally accepted raft model, in which the raft and nonraft phases show a clear biphasic separation. One of the possible reasons is that gradual changes of SM concentration occur between SM-rich and -poor regions to minimize hydrophobic mismatch. We believe that our technique of hyperspectral Raman imaging of a single lipid monolayer opens the door to quantitative analysis of lipid membranes by providing both chemical information and spatial distribution with high (diffraction-limited) spatial resolution.
Collapse
|
273
|
Ghita A, Pascut FC, Sottile V, Denning C, Notingher I. Applications of Raman micro-spectroscopy to stem cell technology: label-free molecular discrimination and monitoring cell differentiation. EPJ TECHNIQUES AND INSTRUMENTATION 2015; 2:6. [PMID: 26161299 PMCID: PMC4486413 DOI: 10.1140/epjti/s40485-015-0016-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/05/2015] [Indexed: 05/27/2023]
Abstract
Stem cell therapy is widely acknowledged as a key medical technology of the 21st century which may provide treatments for many currently incurable diseases. These cells have an enormous potential for cell replacement therapies to cure diseases such as Parkinson's disease, diabetes and cardiovascular disorders, as well as in tissue engineering as a reliable cell source for providing grafts to replace and repair diseased tissues. Nevertheless, the progress in this field has been difficult in part because of lack of techniques that can measure non-invasively the molecular properties of cells. Such repeated measurements can be used to evaluate the culture conditions during differentiation, cell quality and phenotype heterogeneity of stem cell progeny. Raman spectroscopy is an optical technique based on inelastic scattering of laser photons by molecular vibrations of cellular molecules and can be used to provide chemical fingerprints of cells or organelles without fixation, lysis or use of labels and other contrast enhancing chemicals. Because differentiated cells are specialized to perform specific functions, these cells produce specific biochemicals that can be detected by Raman micro-spectroscopy. This mini-review paper describes applications of Raman micro-scpectroscopy to measure moleculare properties of stem cells during differentiation in-vitro. The paper focuses on time- and spatially-resolved Raman spectral measurements that allow repeated investigation of live stem cells in-vitro.
Collapse
Affiliation(s)
- Adrian Ghita
- />School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD UK
| | - Flavius C Pascut
- />School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD UK
| | - Virginie Sottile
- />School of Medicine, University of Nottingham, Nottingham, NG7 2RD UK
| | - Chris Denning
- />School of Medicine, University of Nottingham, Nottingham, NG7 2RD UK
| | - Ioan Notingher
- />School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD UK
| |
Collapse
|
274
|
von Erlach TC, Hedegaard MAB, Stevens MM. High resolution Raman spectroscopy mapping of stem cell micropatterns. Analyst 2015; 140:1798-803. [PMID: 25671676 PMCID: PMC5407440 DOI: 10.1039/c4an02346c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We report on the use of high resolution Raman spectroscopy mapping combined with a micro-engineered stem cell platform. This technique obtains quantitative information about the concentration of individual intracellular molecules such as proteins, lipids, and other metabolites, while tightly controlling cell shape and adhesion. This new quantitative analysis will prove highly relevant for in vitro drug screening applications and regenerative medicine.
Collapse
Affiliation(s)
- Thomas C von Erlach
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK.
| | | | | |
Collapse
|
275
|
Yamakoshi H, Palonpon A, Dodo K, Ando J, Kawata S, Fujita K, Sodeoka M. A sensitive and specific Raman probe based on bisarylbutadiyne for live cell imaging of mitochondria. Bioorg Med Chem Lett 2015; 25:664-7. [DOI: 10.1016/j.bmcl.2014.11.080] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/26/2014] [Accepted: 11/28/2014] [Indexed: 01/12/2023]
|
276
|
Große C, Bergner N, Dellith J, Heller R, Bauer M, Mellmann A, Popp J, Neugebauer U. Label-Free Imaging and Spectroscopic Analysis of Intracellular Bacterial Infections. Anal Chem 2015; 87:2137-42. [DOI: 10.1021/ac503316s] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Christina Große
- Center
for Sepsis Control and Care, Jena University Hospital, Erlanger Allee
101, D-07747 Jena, Thuringia, Germany
- Leibniz Institute
of Photonic Technology, Albert-Einstein-Straße
9, D-07745 Jena, Thuringia, Germany
| | - Norbert Bergner
- Leibniz Institute
of Photonic Technology, Albert-Einstein-Straße
9, D-07745 Jena, Thuringia, Germany
| | - Jan Dellith
- Leibniz Institute
of Photonic Technology, Albert-Einstein-Straße
9, D-07745 Jena, Thuringia, Germany
| | - Regine Heller
- Center
for Sepsis Control and Care, Jena University Hospital, Erlanger Allee
101, D-07747 Jena, Thuringia, Germany
- Institute
for Molecular Cell Biology, Jena University Hospital, Hans-Knöll-Straße
2, D-07745 Jena, Thuringia, Germany
| | - Michael Bauer
- Center
for Sepsis Control and Care, Jena University Hospital, Erlanger Allee
101, D-07747 Jena, Thuringia, Germany
| | - Alexander Mellmann
- Institute
of Hygiene, University of Münster, Robert-Koch-Straße 41, D-48149 Münster, North Rhine-Westphalia, Germany
| | - Jürgen Popp
- Center
for Sepsis Control and Care, Jena University Hospital, Erlanger Allee
101, D-07747 Jena, Thuringia, Germany
- Leibniz Institute
of Photonic Technology, Albert-Einstein-Straße
9, D-07745 Jena, Thuringia, Germany
- Institute
of Physical Chemistry and Abbe School of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, D-07743 Jena, Thuringia, Germany
| | - Ute Neugebauer
- Center
for Sepsis Control and Care, Jena University Hospital, Erlanger Allee
101, D-07747 Jena, Thuringia, Germany
- Leibniz Institute
of Photonic Technology, Albert-Einstein-Straße
9, D-07745 Jena, Thuringia, Germany
| |
Collapse
|
277
|
Edengeiser E, Meister K, Bründermann E, Büning S, Ebbinghaus S, Havenith M. Non-invasive chemical assessment of living human spermatozoa. RSC Adv 2015. [DOI: 10.1039/c4ra12158a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Confocal Raman microspectroscopy was used to chemically image single and living human spermatozoa under near-physiological conditions.
Collapse
Affiliation(s)
- Eugen Edengeiser
- Physical Chemistry II
- Faculty of Chemistry and Biochemistry
- Ruhr Universität Bochum
- 44780 Bochum
- Germany
| | - Konrad Meister
- Physical Chemistry II
- Faculty of Chemistry and Biochemistry
- Ruhr Universität Bochum
- 44780 Bochum
- Germany
| | - Erik Bründermann
- Physical Chemistry II
- Faculty of Chemistry and Biochemistry
- Ruhr Universität Bochum
- 44780 Bochum
- Germany
| | - Steffen Büning
- Physical Chemistry II
- Faculty of Chemistry and Biochemistry
- Ruhr Universität Bochum
- 44780 Bochum
- Germany
| | - Simon Ebbinghaus
- Physical Chemistry II
- Faculty of Chemistry and Biochemistry
- Ruhr Universität Bochum
- 44780 Bochum
- Germany
| | - Martina Havenith
- Physical Chemistry II
- Faculty of Chemistry and Biochemistry
- Ruhr Universität Bochum
- 44780 Bochum
- Germany
| |
Collapse
|
278
|
Pavillon N, Smith NI. Maximizing throughput in label-free microspectroscopy with hybrid Raman imaging. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:016007. [PMID: 25572258 DOI: 10.1117/1.jbo.20.1.016007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/02/2014] [Indexed: 06/04/2023]
Abstract
Raman spectroscopy is an optical method providing sample molecular composition, which can be analyzed (by point measurements) or spatially mapped by Raman imaging. These provide different information, signal-to-noise ratios, and require different acquisition times. Here, we quantitatively assess Raman spectral features and compare the two measurement methods by multivariate analysis. We also propose a hybrid method: scanning the beam through the sample but optically binning the signal at one location on the detector. This approach generates significantly more useful spectral signals in terms of peak visibility and statistical information. Additionally, by combination with a complementary imaging mode such as quantitative phase microscopy, hybrid imaging allows high throughput and robust spectral analysis while retaining sample spatial information. We demonstrate the improved ability to discriminate between cell lines when using hybrid scanning compared to typical point mode measurements, by quantitatively evaluating spectra taken from two macrophage-like cell lines. Hybrid scanning also provides better classification capability than the full Raman imaging mode, while providing higher signal-to-noise signals with shorter acquisition times. This hybrid imaging approach is suited for various applications including cytometry, cancer versus noncancer detection, and label-free discrimination of cell types or tissues.
Collapse
Affiliation(s)
- Nicolas Pavillon
- Osaka University, Immunology Frontier Research Center (IFReC), Biophotonics Laboratory, Suita, Osaka 565-0871, Japan
| | - Nicholas I Smith
- Osaka University, Immunology Frontier Research Center (IFReC), Biophotonics Laboratory, Suita, Osaka 565-0871, JapanbPRESTO, Japan Science and Technology Agency (JST), Chiyodaku, Tokyo 102-0076, Japan
| |
Collapse
|
279
|
Vasdekis AE, Stephanopoulos G. Review of methods to probe single cell metabolism and bioenergetics. Metab Eng 2015; 27:115-135. [PMID: 25448400 PMCID: PMC4399830 DOI: 10.1016/j.ymben.2014.09.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 11/26/2022]
Abstract
Single cell investigations have enabled unexpected discoveries, such as the existence of biological noise and phenotypic switching in infection, metabolism and treatment. Herein, we review methods that enable such single cell investigations specific to metabolism and bioenergetics. Firstly, we discuss how to isolate and immobilize individuals from a cell suspension, including both permanent and reversible approaches. We also highlight specific advances in microbiology for its implications in metabolic engineering. Methods for probing single cell physiology and metabolism are subsequently reviewed. The primary focus therein is on dynamic and high-content profiling strategies based on label-free and fluorescence microspectroscopy and microscopy. Non-dynamic approaches, such as mass spectrometry and nuclear magnetic resonance, are also briefly discussed.
Collapse
Affiliation(s)
- Andreas E Vasdekis
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99354, USA.
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Room 56-469, Cambridge, MA 02139, USA.
| |
Collapse
|
280
|
Tahara T, Kaku T, Arai Y. Digital holography based on multiwavelength spatial-bandwidth-extended capturing-technique using a reference arm (Multi-SPECTRA). OPTICS EXPRESS 2014; 22:29594-29610. [PMID: 25606892 DOI: 10.1364/oe.22.029594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Single-shot digital holography based on multiwavelength spatial-bandwidth-extended capturing-technique using a reference arm (Multi-SPECTRA) is proposed. Both amplitude and quantitative phase distributions of waves containing multiple wavelengths are simultaneously recorded with a single reference arm in a single monochromatic image. Then, multiple wavelength information is separately extracted in the spatial frequency domain. The crosstalk between the object waves with different wavelengths is avoided and the number of wavelengths recorded with both a single-shot exposure and no crosstalk can be increased, by a large spatial carrier that causes the aliasing, and/or by use of a grating. The validity of Multi-SPECTRA is quantitatively, numerically, and experimentally confirmed.
Collapse
|
281
|
Photobleaching of the resonance Raman lines of cytochromes in living yeast cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 141:269-74. [PMID: 25463677 DOI: 10.1016/j.jphotobiol.2014.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/17/2014] [Accepted: 10/11/2014] [Indexed: 01/25/2023]
Abstract
The photobleaching of the resonance cytochrome Raman lines in living Saccharomyces cerevisiae cells was studied. The photobleaching rate versus the irradiation power was described by square function plus a constant in contrast to the linear dependence of the photoinjury rate. This difference distinguishes the cytochrome photooxidation from other processes of the cell photodamage. The square dependence is associated with the reaction involving two photogenerated intermediates while the constant with the dark redox balance rates. This work demonstrates a potential of Raman spectroscopy to characterize the native cytochrome reaction rates and to study the cell photodamage precursors.
Collapse
|
282
|
Manioglu S, Atis M, Aas M, Kiraz A, Bayraktar H. Direct conversion of cytochrome c spectral shifts to fluorescence using photochromic FRET. Chem Commun (Camb) 2014; 50:12333-6. [PMID: 25183463 DOI: 10.1039/c4cc06146b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Photochromic fluorescence resonance energy transfer (pcFRET) was used to monitor the redox activity of non-fluorescent heme protein. Venus fluorescent protein was used as a donor where its emission intensity was reversibly modulated by the absorption change of Cytochrome c.
Collapse
Affiliation(s)
- Selen Manioglu
- Department of Chemical and Biological Engineering, Koc University, Istanbul, 34450, Turkey
| | | | | | | | | |
Collapse
|
283
|
Zhao Y, Marjanovic M, Chaney EJ, Graf BW, Mahmassani Z, Boppart MD, Boppart SA. Longitudinal label-free tracking of cell death dynamics in living engineered human skin tissue with a multimodal microscope. BIOMEDICAL OPTICS EXPRESS 2014; 5:3699-716. [PMID: 25360383 PMCID: PMC4206335 DOI: 10.1364/boe.5.003699] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/03/2014] [Accepted: 09/06/2014] [Indexed: 05/04/2023]
Abstract
We demonstrate real-time, longitudinal, label-free tracking of apoptotic and necrotic cells in living tissue using a multimodal microscope. The integrated imaging platform combines multi-photon microscopy (MPM, based on two-photon excitation fluorescence), optical coherence microscopy (OCM), and fluorescence lifetime imaging microscopy (FLIM). Three-dimensional (3-D) co-registered images are captured that carry comprehensive information of the sample, including structural, molecular, and metabolic properties, based on light scattering, autofluorescence intensity, and autofluorescence lifetime, respectively. Different cell death processes, namely, apoptosis and necrosis, of keratinocytes from different epidermal layers are longitudinally monitored and investigated. Differentiation of the two cell death processes in a complex living tissue environment is enabled by quantitative image analysis and high-confidence classification processing based on the multidimensional, cross-validating imaging data. These results suggest that despite the limitations of each individual label-free modality, this multimodal imaging approach holds the promise for studies of different cell death processes in living tissue and in vivo organs.
Collapse
Affiliation(s)
- Youbo Zhao
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Marina Marjanovic
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Eric J. Chaney
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Benedikt W. Graf
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ziad Mahmassani
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Marni D. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Internal Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
284
|
Hiramatsu H. Structure Analysis of Disease-related Proteins Using Vibrational Spectroscopy. YAKUGAKU ZASSHI 2014; 134:1013-20. [DOI: 10.1248/yakushi.14-00181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
285
|
Eder SHK, Gigler AM, Hanzlik M, Winklhofer M. Sub-micrometer-scale mapping of magnetite crystals and sulfur globules in magnetotactic bacteria using confocal Raman micro-spectrometry. PLoS One 2014; 9:e107356. [PMID: 25233081 PMCID: PMC4169400 DOI: 10.1371/journal.pone.0107356] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/14/2014] [Indexed: 11/19/2022] Open
Abstract
The ferrimagnetic mineral magnetite Fe3O4 is biomineralized by magnetotactic microorganisms and a diverse range of animals. Here we demonstrate that confocal Raman microscopy can be used to visualize chains of magnetite crystals in magnetotactic bacteria, even though magnetite is a poor Raman scatterer and in bacteria occurs in typical grain sizes of only 35-120 nm, well below the diffraction-limited optical resolution. When using long integration times together with low laser power (<0.25 mW) to prevent laser induced damage of magnetite, we can identify and map magnetite by its characteristic Raman spectrum (303, 535, 665 cm(-1)) against a large autofluorescence background in our natural magnetotactic bacteria samples. While greigite (cubic Fe3S4; Raman lines of 253 and 351 cm(-1)) is often found in the Deltaproteobacteria class, it is not present in our samples. In intracellular sulfur globules of Candidatus Magnetobacterium bavaricum (Nitrospirae), we identified the sole presence of cyclo-octasulfur (S8: 151, 219, 467 cm(-1)), using green (532 nm), red (638 nm) and near-infrared excitation (785 nm). The Raman-spectra of phosphorous-rich intracellular accumulations point to orthophosphate in magnetic vibrios and to polyphosphate in magnetic cocci. Under green excitation, the cell envelopes are dominated by the resonant Raman lines of the heme cofactor of the b or c-type cytochrome, which can be used as a strong marker for label-free live-cell imaging of bacterial cytoplasmic membranes, as well as an indicator for the redox state.
Collapse
Affiliation(s)
- Stephan H. K. Eder
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Alexander M. Gigler
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-University Munich, Munich, Germany
- Center for NanoScience (CeNS), Munich, Germany
| | - Marianne Hanzlik
- Department of Chemistry, Elektronenmikroskopie, Technical University Munich, Munich, Germany
| | - Michael Winklhofer
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-University Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
286
|
Bian X, Song ZL, Qian Y, Gao W, Cheng ZQ, Chen L, Liang H, Ding D, Nie XK, Chen Z, Tan W. Fabrication of graphene-isolated-Au-nanocrystal nanostructures for multimodal cell imaging and photothermal-enhanced chemotherapy. Sci Rep 2014; 4:6093. [PMID: 25178354 PMCID: PMC4151100 DOI: 10.1038/srep06093] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/23/2014] [Indexed: 11/28/2022] Open
Abstract
Using nanomaterials to develop multimodal systems has generated cutting-edge biomedical functions. Herein, we develop a simple chemical-vapor-deposition method to fabricate graphene-isolated-Au-nanocrystal (GIAN) nanostructures. A thin layer of graphene is precisely deposited on the surfaces of gold nanocrystals to enable unique capabilities. First, as surface-enhanced-Raman-scattering substrates, GIANs quench background fluorescence and reduce photocarbonization or photobleaching of analytes. Second, GIANs can be used for multimodal cell imaging by both Raman scattering and near-infrared (NIR) two-photon luminescence. Third, GIANs provide a platform for loading anticancer drugs such as doxorubicin (DOX) for therapy. Finally, their NIR absorption properties give GIANs photothermal therapeutic capability in combination with chemotherapy. Controlled release of DOX molecules from GIANs is achieved through NIR heating, significantly reducing the possibility of side effects in chemotherapy. The GIANs have high surface areas and stable thin shells, as well as unique optical and photothermal properties, making them promising nanostructures for biomedical applications.
Collapse
Affiliation(s)
- Xia Bian
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, China
| | - Zhi-Ling Song
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, China
| | - Yu Qian
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, China
| | - Wei Gao
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, China
| | - Zhen-Qian Cheng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, China
| | - Long Chen
- Faculty of Sciences, University of Macau, Av. Padre Tomás Pereira Taipa, Macau, China
| | - Hao Liang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, China
| | - Ding Ding
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, China
| | - Xiang-Kun Nie
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, China
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, China
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at Bio/nano Interface, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
287
|
Nishiki-Muranishi N, Harada Y, Minamikawa T, Yamaoka Y, Dai P, Yaku H, Takamatsu T. Label-free evaluation of myocardial infarction and its repair by spontaneous Raman spectroscopy. Anal Chem 2014; 86:6903-10. [PMID: 24914734 DOI: 10.1021/ac500592y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Raman spectroscopy, which provides information about molecular species and structures of biomolecules via intrinsic molecular vibrations, can analyze physiological and pathological states of tissues on the basis of molecular constituents without staining. In this study, we analyzed Raman spectra of myocardial infarction and its repair in rats using the hypothesis that the myocardium in the course of myocardial infarction and its repair could be recognized by spontaneous Raman spectroscopy on the basis of chemical changes in myocardial tissues. Raman spectra were acquired from unfixed frozen cross sections of normal and infarcted heart tissues upon excitation at 532 nm. Raman spectra of the infarcted tissues were successfully obtained at characteristic time points: days 2, 5, and 21 after coronary ligation, at which the main components of the infarcted region were coagulation necrosis, granulation tissue, and fibrotic tissue, respectively. The latent variable weights calculated by a multivariate classification method, partial least-squares-discriminant analysis (PLS-DA), revealed fundamental information about the spectral differences among the types of tissues on the basis of molecular constituents. A prediction model for the evaluation of these tissue types was established via PLS-DA. Cross-validated sensitivities of 99.3, 95.3, 96.4, and 91.3% and specificities of 99.4, 99.5, 96.5, and 98.3% were attained for the discrimination of normal, necrotic, granulation, and fibrotic tissue, respectively. A two-dimensional image of a marginal area of infarction was successfully visualized via PLS-DA. Our results demonstrated that spontaneous Raman spectroscopy combined with PLS-DA is a novel label-free method of evaluating myocardial infarction and its repair.
Collapse
Affiliation(s)
- Nanae Nishiki-Muranishi
- Department of Pathology and Cell Regulation and ‡Department of Cardiovascular Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , 465 Kajii-cho Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | | | | | | | | | | | | |
Collapse
|
288
|
Pavillon N, Hobro AJ, Smith NI. Cell optical density and molecular composition revealed by simultaneous multimodal label-free imaging. Biophys J 2014; 105:1123-32. [PMID: 24010655 DOI: 10.1016/j.bpj.2013.07.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/18/2013] [Accepted: 07/23/2013] [Indexed: 01/14/2023] Open
Abstract
We show how Raman imaging can be combined with independent but simultaneous phase measurements of unlabeled cells, with the resulting data providing information on how the light is retarded and/or scattered by molecules in the cell. We then show, for the first time to our knowledge, how the chemistry of the cell highlighted in the Raman information is related to the cell quantitative phase information revealed in digital holographic microscopy by quantifying how the two sets of spatial information are correlated. The results show that such a multimodal implementation is highly useful for the convenience of having video rate imaging of the cell during the entire Raman measurement time, allowing us to observe how the cell changes during Raman acquisition. More importantly, it also shows that the two sets of label-free data, which result from different scattering mechanisms, are complementary and can be used to interpret the composition and dynamics of the cell, where each mode supplies label-free information not available from the other mode.
Collapse
Affiliation(s)
- Nicolas Pavillon
- Biophotonics Laboratory, Immunology Frontier Research Center IFReC, Osaka University, Suita, Osaka, Japan.
| | | | | |
Collapse
|
289
|
Fu D, Xie XS. Reliable Cell Segmentation Based on Spectral Phasor Analysis of Hyperspectral Stimulated Raman Scattering Imaging Data. Anal Chem 2014; 86:4115-9. [DOI: 10.1021/ac500014b] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Dan Fu
- Department
of Chemistry and
Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - X. Sunney Xie
- Department
of Chemistry and
Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
290
|
Yang YC, Chang WT, Huang SK, Liau I. Characterization of the Pharmaceutical Effect of Drugs on Atherosclerotic Lesions in Vivo Using Integrated Fluorescence Imaging and Raman Spectral Measurements. Anal Chem 2014; 86:3863-8. [DOI: 10.1021/ac404051f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yi-Cyun Yang
- Department
of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Wei-Tien Chang
- National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Shao-Kang Huang
- Department
of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Ian Liau
- Department
of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
291
|
Ichimura T, Chiu LD, Fujita K, Kawata S, Watanabe TM, Yanagida T, Fujita H. Visualizing cell state transition using Raman spectroscopy. PLoS One 2014; 9:e84478. [PMID: 24409302 PMCID: PMC3883674 DOI: 10.1371/journal.pone.0084478] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/14/2013] [Indexed: 11/22/2022] Open
Abstract
System level understanding of the cell requires detailed description of the cell state, which is often characterized by the expression levels of proteins. However, understanding the cell state requires comprehensive information of the cell, which is usually obtained from a large number of cells and their disruption. In this study, we used Raman spectroscopy, which can report changes in the cell state without introducing any label, as a non-invasive method with single cell capability. Significant differences in Raman spectra were observed at the levels of both the cytosol and nucleus in different cell-lines from mouse, indicating that Raman spectra reflect differences in the cell state. Difference in cell state was observed before and after the induction of differentiation in neuroblastoma and adipocytes, showing that Raman spectra can detect subtle changes in the cell state. Cell state transitions during embryonic stem cell (ESC) differentiation were visualized when Raman spectroscopy was coupled with principal component analysis (PCA), which showed gradual transition in the cell states during differentiation. Detailed analysis showed that the diversity between cells are large in undifferentiated ESC and in mesenchymal stem cells compared with terminally differentiated cells, implying that the cell state in stem cells stochastically fluctuates during the self-renewal process. The present study strongly indicates that Raman spectral morphology, in combination with PCA, can be used to establish cells' fingerprints, which can be useful for distinguishing and identifying different cellular states.
Collapse
Affiliation(s)
- Taro Ichimura
- Quantitative Biology Center, Riken, Suita, Osaka, Japan
| | - Liang-da Chiu
- Department of Applied Physics, Osaka University, Suita, Osaka, Japan
| | - Katsumasa Fujita
- Department of Applied Physics, Osaka University, Suita, Osaka, Japan
| | - Satoshi Kawata
- Department of Applied Physics, Osaka University, Suita, Osaka, Japan
- Nanophotonics Laboratory, Riken, Wako, Saitama, Japan
| | | | - Toshio Yanagida
- Quantitative Biology Center, Riken, Suita, Osaka, Japan
- Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Hideaki Fujita
- Quantitative Biology Center, Riken, Suita, Osaka, Japan
- Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
292
|
|
293
|
Ghita A, Pascut FC, Sottile V, Notingher I. Monitoring the mineralisation of bone nodules in vitro by space- and time-resolved Raman micro-spectroscopy. Analyst 2014; 139:55-8. [DOI: 10.1039/c3an01716h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
294
|
Galler K, Schleser F, Fröhlich E, Requardt RP, Kortgen A, Bauer M, Popp J, Neugebauer U. Exploitation of the hepatic stellate cell Raman signature for their detection in native tissue samples. Integr Biol (Camb) 2014; 6:946-56. [DOI: 10.1039/c4ib00130c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The unique information concentrated in Raman spectra serves to differentiate hepatic stellate cells from hepatocytes, detect them in living tissue and provide insight in their activation state.
Collapse
Affiliation(s)
- Kerstin Galler
- Leibniz Institute of Photonic Technology
- Jena, Germany
- Center for Sepsis Control and Care
- Jena University Hospital
- Germany
| | - Franziska Schleser
- Center for Sepsis Control and Care
- Jena University Hospital
- Germany
- Department of Anesthesiology and Intensive Care Medicine
- Jena University Hospital
| | - Esther Fröhlich
- Center for Sepsis Control and Care
- Jena University Hospital
- Germany
- Department of Anesthesiology and Intensive Care Medicine
- Jena University Hospital
| | | | - Andreas Kortgen
- Center for Sepsis Control and Care
- Jena University Hospital
- Germany
- Department of Anesthesiology and Intensive Care Medicine
- Jena University Hospital
| | - Michael Bauer
- Center for Sepsis Control and Care
- Jena University Hospital
- Germany
- Department of Anesthesiology and Intensive Care Medicine
- Jena University Hospital
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology
- Jena, Germany
- Center for Sepsis Control and Care
- Jena University Hospital
- Germany
| | - Ute Neugebauer
- Leibniz Institute of Photonic Technology
- Jena, Germany
- Center for Sepsis Control and Care
- Jena University Hospital
- Germany
| |
Collapse
|
295
|
Affiliation(s)
- Karen A. Antonio
- University of Notre Dame, Department of
Chemistry and Biochemistry, Notre
Dame, Indiana 46556, United States
| | - Zachary D. Schultz
- University of Notre Dame, Department of
Chemistry and Biochemistry, Notre
Dame, Indiana 46556, United States
| |
Collapse
|
296
|
Hobro AJ, Konishi A, Coban C, Smith NI. Raman spectroscopic analysis of malaria disease progression via blood and plasma samples. Analyst 2013; 138:3927-33. [PMID: 23529513 DOI: 10.1039/c3an00255a] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study Raman spectroscopy has been used to monitor the changes in erythrocytes and plasma during Plasmodium infection in mice, following malaria disease progression over the course of 7 days. The Raman spectra of both samples are dominated by the spectra of hemoglobin and hemozoin, due to their resonant enhancement. In plasma samples, due to the inherently low heme background, heme-based changes in the Raman spectra could be detected in the very early stages of infection, as little as one day after Plasmodium infection, where parasitemia levels were low, on the order of 0.2%, and typically difficult to detect by existing methods. Further principal component analysis also indicates concurrent erythrocyte membrane changes at around day 4, where parasitemia levels reached 3%. These results show that plasma analysis has significant potential for early, quantitative and automated detection of malaria, and to quantify heme levels in serum which modulate malarial effects on the immune system.
Collapse
Affiliation(s)
- Alison J Hobro
- Biophotonics Laboratory, Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
297
|
Brazhe NA, Treiman M, Faricelli B, Vestergaard JH, Sosnovtseva O. In situ Raman study of redox state changes of mitochondrial cytochromes in a perfused rat heart. PLoS One 2013; 8:e70488. [PMID: 24009655 PMCID: PMC3757006 DOI: 10.1371/journal.pone.0070488] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/19/2013] [Indexed: 01/05/2023] Open
Abstract
We developed a Raman spectroscopy-based approach for simultaneous study of redox changes in c-and b-type cytochromes and for a semiquantitative estimation of the amount of oxygenated myoglobin in a perfused rat heart. Excitation at 532 nm was used to obtain Raman scattering of the myocardial surface of the isolated heart at normal and hypoxic conditions. Raman spectra of the heart under normal pO2 demonstrate unique peaks attributable to reduced c-and b-type cytochromes and oxymyoglobin (oMb). The cytochrome peaks decreased in intensity upon FCCP treatment, as predicted from uncoupling mitochondrial respiration. Conversely, transient hypoxia causes the reversible increase in the intensity of peaks assigned to cytochromes c and c1, reflecting electron stacking proximal to cytochrome oxidase due to the lack of terminal electron acceptor O2. Intensities of peaks assigned to oxy- and deoxyhemoglobin were used for the semiquantitative estimation of oMb deoxygenation that was found to be of approximately 50 under hypoxia conditions.
Collapse
Affiliation(s)
- Nadezda A. Brazhe
- Biophysics Department, Biological faculty, Moscow State University, Moscow, Russia
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Marek Treiman
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
- The Danish National Foundation Research Center for Heart Arrhythmia, Copenhagen, Denmark
| | - Barbara Faricelli
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
- The Danish National Foundation Research Center for Heart Arrhythmia, Copenhagen, Denmark
| | - Jakob H. Vestergaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
- The Danish National Foundation Research Center for Heart Arrhythmia, Copenhagen, Denmark
| | - Olga Sosnovtseva
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
298
|
Isobe K, Kawano H, Suda A, Kumagai A, Miyawaki A, Midorikawa K. Simultaneous imaging of two-photon absorption and stimulated Raman scattering by spatial overlap modulation nonlinear optical microscopy. BIOMEDICAL OPTICS EXPRESS 2013; 4:1548-1558. [PMID: 24049676 PMCID: PMC3771826 DOI: 10.1364/boe.4.001548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/23/2013] [Accepted: 07/23/2013] [Indexed: 06/02/2023]
Abstract
Imaging of simultaneous two-photon absorption and stimulated Raman scattering is accomplished by detecting the intensity changes of the two-color pulses simultaneously and the mathematical operations of addition and subtraction. The stimulated Raman scattering is quantitatively separated from the two-photon absorption, generated in a mixed solution in which a glycerin solution is miscible in various proportions with a quantum dot solution. Our technique is applied to simultaneous two-photon absorption and stimulated Raman scattering imaging.
Collapse
Affiliation(s)
- Keisuke Isobe
- Laser Technology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Kawano
- Laboratory for Cell Function Dynamics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Akira Suda
- Department of Physics, Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Akiko Kumagai
- Laboratory for Cell Function Dynamics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Atsushi Miyawaki
- RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Laboratory for Cell Function Dynamics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Katsumi Midorikawa
- Laser Technology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
299
|
Seto K, Okuda Y, Tokunaga E, Kobayashi T. Development of a multiplex stimulated Raman microscope for spectral imaging through multi-channel lock-in detection. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2013; 84:083705. [PMID: 24007071 DOI: 10.1063/1.4818670] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We report the development of a multiplex stimulated Raman microscope for spectral imaging through multi-channel lock-in detection with a single light source. A white pump beam is prepared with a piece of photonic crystal fiber (PCF). The system does not require the synchronization of plural light sources or the scanning of their wavelengths, and thus a jitter-free pair of pump and Stokes beams is obtained, and a high degree of temporal synchronization is attained in the spectra. The multi-channel lock-in detection (extended to 128 channels) enables the observation of pseudo-continuous stimulated Raman spectra, demonstrating the strong ability of qualitative analysis to identify various types of C-H stretching modes such as the symmetric and asymmetric modes of the methylene∕methyl and aromatic groups. Images of a mixed film of polystyrene and polymethylmethacrylate are presented to demonstrate the system's spectral imaging ability. The spatial distribution of these materials is successfully captured through one-time imaging, although the noise of the white light pump beam generated with the PCF limits the system's imaging speed.
Collapse
Affiliation(s)
- Keisuke Seto
- Department of Applied Physics and Chemistry and Institute for Laser Science, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | | | | | | |
Collapse
|
300
|
Molecular imaging of live cells by Raman microscopy. Curr Opin Chem Biol 2013; 17:708-15. [DOI: 10.1016/j.cbpa.2013.05.021] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/30/2013] [Accepted: 05/17/2013] [Indexed: 01/11/2023]
|