251
|
Vapniarsky N, Arzi B, Hu JC, Nolta JA, Athanasiou KA. Concise Review: Human Dermis as an Autologous Source of Stem Cells for Tissue Engineering and Regenerative Medicine. Stem Cells Transl Med 2015; 4:1187-98. [PMID: 26253713 DOI: 10.5966/sctm.2015-0084] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/08/2015] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED The exciting potential for regenerating organs from autologous stem cells is on the near horizon, and adult dermis stem cells (DSCs) are particularly appealing because of the ease and relative minimal invasiveness of skin collection. A substantial number of reports have described DSCs and their potential for regenerating tissues from mesenchymal, ectodermal, and endodermal lineages; however, the exact niches of these stem cells in various skin types and their antigenic surface makeup are not yet clearly defined. The multilineage potential of DSCs appears to be similar, despite great variability in isolation and in vitro propagation methods. Despite this great potential, only limited amounts of tissues and clinical applications for organ regeneration have been developed from DSCs. This review summarizes the literature on DSCs regarding their niches and the specific markers they express. The concept of the niches and the differentiation capacity of cells residing in them along particular lineages is discussed. Furthermore, the advantages and disadvantages of widely used methods to demonstrate lineage differentiation are considered. In addition, safety considerations and the most recent advancements in the field of tissue engineering and regeneration using DSCs are discussed. This review concludes with thoughts on how to prospectively approach engineering of tissues and organ regeneration using DSCs. Our expectation is that implementation of the major points highlighted in this review will lead to major advancements in the fields of regenerative medicine and tissue engineering. SIGNIFICANCE Autologous dermis-derived stem cells are generating great excitement and efforts in the field of regenerative medicine and tissue engineering. The substantial impact of this review lies in its critical coverage of the available literature and in providing insight regarding niches, characteristics, and isolation methods of stem cells derived from the human dermis. Furthermore, it provides analysis of the current state-of-the-art regenerative approaches using human-derived dermal stem cells, with consideration of current guidelines, to assist translation toward therapeutic use.
Collapse
Affiliation(s)
- Natalia Vapniarsky
- Department of Biomedical Engineering, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, Institute for Regenerative Cures and Department of Internal Medicine, School of Medicine, and Department of Orthopaedic Surgery, University of California, Davis, Davis, California, USA
| | - Boaz Arzi
- Department of Biomedical Engineering, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, Institute for Regenerative Cures and Department of Internal Medicine, School of Medicine, and Department of Orthopaedic Surgery, University of California, Davis, Davis, California, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, Institute for Regenerative Cures and Department of Internal Medicine, School of Medicine, and Department of Orthopaedic Surgery, University of California, Davis, Davis, California, USA
| | - Jan A Nolta
- Department of Biomedical Engineering, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, Institute for Regenerative Cures and Department of Internal Medicine, School of Medicine, and Department of Orthopaedic Surgery, University of California, Davis, Davis, California, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, Institute for Regenerative Cures and Department of Internal Medicine, School of Medicine, and Department of Orthopaedic Surgery, University of California, Davis, Davis, California, USA
| |
Collapse
|
252
|
Ali N, Hosseini M, Vainio S, Taïeb A, Cario‐André M, Rezvani H. Skin equivalents: skin from reconstructions as models to study skin development and diseases. Br J Dermatol 2015; 173:391-403. [DOI: 10.1111/bjd.13886] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2015] [Indexed: 12/17/2022]
Affiliation(s)
- N. Ali
- Laboratory of Developmental Biology Faculty of Biochemistry and Molecular Medicine University of Oulu and Biocenter Oulu Aapistie 5A 90220 Oulu Finland
- Inserm U 1035 33076 Bordeaux France
- Université de Bordeaux 146 rue Léo Saignat 33076 Bordeaux France
| | - M. Hosseini
- Inserm U 1035 33076 Bordeaux France
- Université de Bordeaux 146 rue Léo Saignat 33076 Bordeaux France
| | - S. Vainio
- Laboratory of Developmental Biology Faculty of Biochemistry and Molecular Medicine University of Oulu and Biocenter Oulu Aapistie 5A 90220 Oulu Finland
| | - A. Taïeb
- Inserm U 1035 33076 Bordeaux France
- Université de Bordeaux 146 rue Léo Saignat 33076 Bordeaux France
- Centre de Référence pour les Maladies Rares de la Peau Bordeaux France
- Département de Dermatologie & Dermatologie Pédiatrique CHU de Bordeaux Bordeaux France
| | - M. Cario‐André
- Inserm U 1035 33076 Bordeaux France
- Université de Bordeaux 146 rue Léo Saignat 33076 Bordeaux France
- Centre de Référence pour les Maladies Rares de la Peau Bordeaux France
| | - H.R. Rezvani
- Inserm U 1035 33076 Bordeaux France
- Université de Bordeaux 146 rue Léo Saignat 33076 Bordeaux France
- Centre de Référence pour les Maladies Rares de la Peau Bordeaux France
| |
Collapse
|
253
|
Peptide-modified Substrate for Modulating Gland Tissue Growth and Morphology In Vitro. Sci Rep 2015; 5:11468. [PMID: 26098225 PMCID: PMC4476418 DOI: 10.1038/srep11468] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/19/2015] [Indexed: 11/22/2022] Open
Abstract
In vitro fabricated biological tissue would be a valuable tool to screen newly synthesized drugs or understand the tissue development process. Several studies have attempted to fabricate biological tissue in vitro. However, controlling the growth and morphology of the fabricated tissue remains a challenge. Therefore, new techniques are required to modulate tissue growth. RGD (arginine-glycine-aspartic acid), which is an integrin-binding domain of fibronectin, has been found to enhance cell adhesion and survival; it has been used to modify substrates for in vitro cell culture studies or used as tissue engineering scaffolds. In addition, this study shows novel functions of the RGD peptide, which enhances tissue growth and modulates tissue morphology in vitro. When an isolated submandibular gland (SMG) was cultured on an RGD-modified alginate hydrogel sheet, SMG growth including bud expansion and cleft formation was dramatically enhanced. Furthermore, we prepared small RGD-modified alginate beads and placed them on the growing SMG tissue. These RGD-modified beads successfully induced cleft formation at the bead position, guiding the desired SMG morphology. Thus, this RGD-modified material might be a promising tool to modulate tissue growth and morphology in vitro for biological tissue fabrication.
Collapse
|
254
|
Chan CC, Fan SMY, Wang WH, Mu YF, Lin SJ. A Two-Stepped Culture Method for Efficient Production of Trichogenic Keratinocytes. Tissue Eng Part C Methods 2015; 21:1070-9. [PMID: 25951188 DOI: 10.1089/ten.tec.2015.0033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Successful hair follicle (HF) neogenesis in adult life depends on the existence of both capable dermal cells and competent epidermal keratinocytes that recapitulate embryonic organogenesis through epithelial-mesenchymal interaction. In tissue engineering, the maintenance of trichogenic potential of adult epidermal cells, while expanding them remains a challenging issue. We found that although HF outer root sheath keratinocytes could be expanded for more than 100 passages as clonogenic cells without losing the proliferative potential with a 3T3J2 fibroblast feeder layer, these keratinocytes were unable to form new HFs when combined with inductive HF dermal papilla (DP) cells. However, when these high-passage keratinocytes were cocultured with HF DP cells for 4 days in vitro, they regained the trichogenic ability to form new HFs after transplantation. We found that the short-term coculture with DP cells enhanced both Wnt/β-catenin signaling, a signaling cascade key to HF development, and upregulated the expression of HF-specific genes, including K6, K16, K17, and K75, in keratinocytes, indicating that these cells were poised toward a HF fate. Hence, efficient production of trichogenic keratinocytes can be obtained by a two-stepped procedure with initial cell expansion with a 3T3J2 fibroblast feeder followed by short-term coculture with DP cells.
Collapse
Affiliation(s)
- Chih-Chieh Chan
- 1 Institute of Biomedical Engineering, National Taiwan University , Taipei, Taiwan .,2 Department of Dermatology, National Taiwan University Hospital and College of Medicine , Taipei, Taiwan
| | - Sabrina Mai-Yi Fan
- 1 Institute of Biomedical Engineering, National Taiwan University , Taipei, Taiwan
| | - Wei-Hung Wang
- 1 Institute of Biomedical Engineering, National Taiwan University , Taipei, Taiwan
| | - Yi-Fen Mu
- 2 Department of Dermatology, National Taiwan University Hospital and College of Medicine , Taipei, Taiwan
| | - Sung-Jan Lin
- 1 Institute of Biomedical Engineering, National Taiwan University , Taipei, Taiwan .,2 Department of Dermatology, National Taiwan University Hospital and College of Medicine , Taipei, Taiwan
| |
Collapse
|
255
|
Balañá ME, Charreau HE, Leirós GJ. Epidermal stem cells and skin tissue engineering in hair follicle regeneration. World J Stem Cells 2015; 7:711-27. [PMID: 26029343 PMCID: PMC4444612 DOI: 10.4252/wjsc.v7.i4.711] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/02/2014] [Accepted: 02/04/2015] [Indexed: 02/06/2023] Open
Abstract
The reconstitution of a fully organized and functional hair follicle from dissociated cells propagated under defined tissue culture conditions is a challenge still pending in tissue engineering. The loss of hair follicles caused by injuries or pathologies such as alopecia not only affects the patients' psychological well-being, but also endangers certain inherent functions of the skin. It is then of great interest to find different strategies aiming to regenerate or neogenerate the hair follicle under conditions proper of an adult individual. Based upon current knowledge on the epithelial and dermal cells and their interactions during the embryonic hair generation and adult hair cycling, many researchers have tried to obtain mature hair follicles using different strategies and approaches depending on the causes of hair loss. This review summarizes current advances in the different experimental strategies to regenerate or neogenerate hair follicles, with emphasis on those involving neogenesis of hair follicles in adult individuals using isolated cells and tissue engineering. Most of these experiments were performed using rodent cells, particularly from embryonic or newborn origin. However, no successful strategy to generate human hair follicles from adult cells has yet been reported. This review identifies several issues that should be considered to achieve this objective. Perhaps the most important challenge is to provide three-dimensional culture conditions mimicking the structure of living tissue. Improving culture conditions that allow the expansion of specific cells while protecting their inductive properties, as well as methods for selecting populations of epithelial stem cells, should give us the necessary tools to overcome the difficulties that constrain human hair follicle neogenesis. An analysis of patent trends shows that the number of patent applications aimed at hair follicle regeneration and neogenesis has been increasing during the last decade. This field is attractive not only to academic researchers but also to the companies that own almost half of the patents in this field.
Collapse
Affiliation(s)
- María Eugenia Balañá
- María Eugenia Balañá, Gustavo José Leirós, Fundación Pablo Cassará -Instituto de Ciencia y Tecnología Dr. César Milstein, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo 2468 C1440FFX, Ciudad de Buenos Aires, Argentina
| | - Hernán Eduardo Charreau
- María Eugenia Balañá, Gustavo José Leirós, Fundación Pablo Cassará -Instituto de Ciencia y Tecnología Dr. César Milstein, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo 2468 C1440FFX, Ciudad de Buenos Aires, Argentina
| | - Gustavo José Leirós
- María Eugenia Balañá, Gustavo José Leirós, Fundación Pablo Cassará -Instituto de Ciencia y Tecnología Dr. César Milstein, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo 2468 C1440FFX, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
256
|
Synergistic effect of PDGF and FGF2 for cell proliferation and hair inductive activity in murine vibrissal dermal papilla in vitro. J Dermatol Sci 2015; 79:110-8. [PMID: 25975959 DOI: 10.1016/j.jdermsci.2015.04.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/31/2015] [Accepted: 04/17/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND The dermal papilla is composed of a small clump of mesenchymal cells, called dermal papilla cells (DPCs). DPCs closely interact with epidermal cells to give rise to hair follicles and shafts during hair follicle development and the hair cycle. DPCs are promising cell sources for hair regeneration therapy for alopecia patients. However, once DPCs are put into conventional two-dimensional culture conditions, they quickly lose their capability to produce hair follicles. OBJECTIVE We aimed to expand a sufficiently large population of DPCs that retain their hair inductive activity. METHODS Murine DPCs were cultured in the presence of platelet-derived growth factor-AA (PDGF-AA) and fibroblast growth factor 2 (FGF2). Expressions of follicular-related genes were analyzed by real time PCR and hair inductive activity was determined by patch assay and chamber assay in vivo. RESULTS FGF2 significantly increased the expression of platelet-derived growth factor receptor alpha (PDGFRα) in cultured vibrissal DPCs. PDGF-AA, a ligand of PDGFRα, promoted proliferation of DPCs synergistically when utilized with FGF2 and enhanced the expression of several follicular-related genes in DPCs. Hair reconstitution assays revealed that DPCs treated with both PDGF-AA and FGF-2 were able to maintain their hair inductive activity better than those treated with FGF2 alone. CONCLUSION Both cell proliferation and hair inductive activity in murine DPCs are maintained by the synergistic effect of FGF2 and PDGF-AA.
Collapse
|
257
|
Thangapazham RL, Klover P, Li S, Wang JA, Sperling L, Darling TN. A model system to analyse the ability of human keratinocytes to form hair follicles. Exp Dermatol 2015; 23:443-6. [PMID: 24758480 DOI: 10.1111/exd.12424] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2014] [Indexed: 01/21/2023]
Abstract
Earlier studies showed that dermal cells lose trichogenic capacity with passage, but studies on the effect of keratinocyte passage on human hair follicle neogenesis and graft quality have been hampered by the lack of a suitable model system. We recently documented human hair follicle neogenesis in grafted dermal-epidermal composites, and in the present study, we determined the effects of keratinocyte passage on hair follicle neogenesis. Dermal equivalents were made with cultured human dermal papilla cells and were overlaid with either primary or passaged human keratinocytes to form dermal-epidermal composites; these were then grafted onto immunodeficient mice. Superior hair follicle neogenesis was observed using early keratinocyte cultures. Characteristics such as formation of hair shafts and sebaceous glands, presence of hair follicles with features of anagen or telogen follicles, and reproducible hair and skin function parameters make this model a tool to study human hair follicle neogenesis and development.
Collapse
Affiliation(s)
- Rajesh L Thangapazham
- Department of Dermatology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
258
|
Gupta AK, Lyons DCA, Daigle D. Progression of surgical hair restoration techniques. J Cutan Med Surg 2015; 19:17-21. [PMID: 25775658 DOI: 10.2310/7750.2014.13212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Early surgical hair restoration (SHR) techniques were fraught with limitations. Major advancements and refinements have taken place yielding minimally invasive, relatively scar-free, and natural-looking hair transplantations. OBJECTIVE Our aim was to review the origins and advancements of SHR and to discuss future directions for the field. METHODS Searches were performed using: Pubmed, Scopus, and the International Society of Hair Restoration Surgery's Hair Transplant Forum International for articles related to SHR. Reference sections of articles obtained were reviewed. Relevant textbooks obtained were reviewed. RESULTS AND CONCLUSION SHR techniques originated as macro-level graft transplantations and excision of scalp tissue. They progressed toward micro-level graft transplantations performed with extreme caution and precision. However, all SHR techniques are limited by their reliance on existing donor hair to fill balding areas. Further advancements in hair follicle cell cloning and regeneration of growth may offer a solution to this overarching limitation.
Collapse
Affiliation(s)
- Aditya K Gupta
- Department of Medicine, University of Toronto, Toronto, ON, and Mediprobe Research Inc., London, ON
| | - Danika C A Lyons
- Department of Medicine, University of Toronto, Toronto, ON, and Mediprobe Research Inc., London, ON
| | - Deanne Daigle
- Department of Medicine, University of Toronto, Toronto, ON, and Mediprobe Research Inc., London, ON
| |
Collapse
|
259
|
Abstract
The epidermis and associated appendages of the skin represent a multi-lineage tissue that is maintained by perpetual rounds of renewal. During homeostasis, turnover of epidermal lineages is achieved by input from regionalized keratinocytes stem or progenitor populations with little overlap from neighboring niches. Over the last decade, molecular markers selectively expressed by a number of these stem or progenitor pools have been identified, allowing for the isolation and functional assessment of stem cells and genetic lineage tracing analysis within intact skin. These advancements have led to many fundamental observations about epidermal stem cell function such as the identification of their progeny, their role in maintenance of skin homeostasis, or their contribution to wound healing. In this chapter, we provide a methodology to identify and isolate epidermal stem cells and to assess their functional role in their respective niche. Furthermore, recent evidence has shown that the microenvironment also plays a crucial role in stem cell function. Indeed, epidermal cells are under the influence of surrounding fibroblasts, adipocytes, and sensory neurons that provide extrinsic signals and mechanical cues to the niche and contribute to skin morphogenesis and homeostasis. A better understanding of these microenvironmental cues will help engineer in vitro experimental models with more relevance to in vivo skin biology. New approaches to address and study these environmental cues in vitro will also be addressed.
Collapse
Affiliation(s)
- Yanne S Doucet
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | | |
Collapse
|
260
|
Driskell RR, Watt FM. Understanding fibroblast heterogeneity in the skin. Trends Cell Biol 2014; 25:92-9. [PMID: 25455110 DOI: 10.1016/j.tcb.2014.10.001] [Citation(s) in RCA: 280] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/09/2014] [Accepted: 10/13/2014] [Indexed: 01/06/2023]
Abstract
Fibroblasts are found in most tissues, yet they remain poorly characterised. Different fibroblast subpopulations with distinct functions have been identified in the skin. This functional heterogeneity reflects the varied fibroblast lineages that arise from a common embryonic precursor. In addition to autocrine signals, fibroblasts are highly responsive to Wnt-regulated signals from the overlying epidermis, which can act both locally, via extracellular matrix (ECM) deposition, and via secreted factors that impact the behaviour of fibroblasts in different dermal locations. These findings may explain some of the changes that occur in connective tissue during wound healing and cancer progression.
Collapse
Affiliation(s)
- Ryan R Driskell
- Centre for Stem Cells and Regenerative Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital Campus, London SE1 9RT, UK
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital Campus, London SE1 9RT, UK.
| |
Collapse
|
261
|
Zhang P, Kling RE, Ravuri SK, Kokai LE, Rubin JP, Chai JK, Marra KG. A review of adipocyte lineage cells and dermal papilla cells in hair follicle regeneration. J Tissue Eng 2014; 5:2041731414556850. [PMID: 25383178 PMCID: PMC4221925 DOI: 10.1177/2041731414556850] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/11/2014] [Indexed: 12/22/2022] Open
Abstract
Alopecia is an exceedingly prevalent problem effecting men and women of all ages. The standard of care for alopecia involves either transplanting existing hair follicles to bald areas or attempting to stimulate existing follicles with topical and/or oral medication. Yet, these treatment options are fraught with problems of cost, side effects, and, most importantly, inadequate long-term hair coverage. Innovative cell-based therapies have focused on the dermal papilla cell as a way to grow new hair in previously bald areas. However, despite this attention, many obstacles exist, including retention of dermal papilla inducing ability and maintenance of dermal papilla productivity after several passages of culture. The use of adipocyte lineage cells, including adipose-derived stem cells, has shown promise as a cell-based solution to regulate hair regeneration and may help in maintaining or increasing dermal papilla cells inducing hair ability. In this review, we highlight recent advances in the understanding of the cellular contribution and regulation of dermal papilla cells and summarize adipocyte lineage cells in hair regeneration.
Collapse
Affiliation(s)
- Peipei Zhang
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA ; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Russell E Kling
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sudheer K Ravuri
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lauren E Kokai
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Peter Rubin
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA ; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA ; McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| | - Jia-Ke Chai
- Department of Burns and Plastic Surgery, First Hospital Affiliated to General Hospital of PLA, Beijing, China
| | - Kacey G Marra
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA ; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA ; McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| |
Collapse
|
262
|
Zhang P, Ravuri SK, Wang J, Marra KG, Kling RE, Chai J. Exogenous connective tissue growth factor preserves the hair-inductive ability of human dermal papilla cells. Int J Cosmet Sci 2014; 36:442-50. [PMID: 24925376 DOI: 10.1111/ics.12146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 05/28/2014] [Indexed: 01/14/2023]
Abstract
Connective tissue growth factor influences human dermal papilla cells' hair inductive ability through several signaling pathways.
Collapse
Affiliation(s)
- P Zhang
- Medical School of Chinese People's Liberation Army, #28 Fuxing Road, Haidian District, Beijing, 100853, China; Department of Burns and Plastic Surgery, First Hospital Affiliated to General Hospital of PLA, #51 Fucheng Road, Haidian District, Beijing, 100048, China
| | | | | | | | | | | |
Collapse
|
263
|
Morgan BA. The dermal papilla: an instructive niche for epithelial stem and progenitor cells in development and regeneration of the hair follicle. Cold Spring Harb Perspect Med 2014; 4:a015180. [PMID: 24985131 PMCID: PMC4066645 DOI: 10.1101/cshperspect.a015180] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The dermal papilla (DP) of the hair follicle is both a chemical and physical niche for epithelial progenitor cells that regenerate the cycling portion of the hair follicle and generate the hair shaft. Here, we review experiments that revealed the importance of the DP in regulating the characteristics of the hair shaft and frequency of hair follicle regeneration. More recent work showed that the size of this niche is dynamic and actively regulated and reduction in DP cell number per follicle is sufficient to cause hair thinning and loss. The formation of the DP during follicle neogenesis provides a context to contemplate the mechanisms that maintain DP size and the potential to exploit these processes for hair preservation or restoration.
Collapse
Affiliation(s)
- Bruce A Morgan
- Department of Dermatology, Harvard Medical School and Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts 02129
| |
Collapse
|
264
|
Dong L, Hao H, Xia L, Liu J, Ti D, Tong C, Hou Q, Han Q, Zhao Y, Liu H, Fu X, Han W. Treatment of MSCs with Wnt1a-conditioned medium activates DP cells and promotes hair follicle regrowth. Sci Rep 2014; 4:5432. [PMID: 24961246 PMCID: PMC4069670 DOI: 10.1038/srep05432] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 06/05/2014] [Indexed: 12/24/2022] Open
Abstract
Hair loss (alopecia) is a common problem for people. The dermal papilla is the key signaling center that regulates hair growth and it engage in crosstalk with the microenvironment, including Wnt signaling and stem cells. In this study, we explored the effects of bone marrow mesenchymal stem cell overexpression of Wnt1a on mouse hair follicle regeneration. Wnt-CM accelerated hair follicle progression from telogen to anagen and enhanced the ALP expression in the DP area. Moreover, the hair induction-related genes were upregulated, as demonstrated by qRT-PCR. Wnt-CM treatment restored and increased DP cell expression of genes downregulated by dihydrotestosterone treatment, as demonstrated by qRT-PCR assays. Our study reveals that BM-MSC-generated Wnt1a promotes the DP's ability to induce hair cycling and regeneration.
Collapse
Affiliation(s)
- Liang Dong
- 1] Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing 100853, China [2]
| | - Haojie Hao
- 1] Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing 100853, China [2]
| | - Lei Xia
- 1] Department of Medical Administration,Chinese PLA General Hospital, Beijing 100853, China [2]
| | - Jiejie Liu
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing 100853, China
| | - Dongdong Ti
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing 100853, China
| | - Chuan Tong
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing 100853, China
| | - Qian Hou
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing 100853, China
| | - Qingwang Han
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing 100853, China
| | - Yali Zhao
- Central laboratory, Hainan branch of Chinese PLA General Hospital, Sanya, 572013, China
| | - Huiling Liu
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaobing Fu
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing 100853, China
| | - Weidong Han
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
265
|
Eungdamrong NJ, Higgins C, Guo Z, Lee WH, Gillette B, Sia S, Christiano AM. Challenges and promises in modeling dermatologic disorders with bioengineered skin. Exp Biol Med (Maywood) 2014; 239:1215-24. [PMID: 24951469 DOI: 10.1177/1535370214538747] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The tremendous cost of drug development is often attributed to the long time interval between identifying lead compounds in preclinical studies to assessing clinical efficacy in randomized clinical trials. Many candidate molecules show promise in cell culture or animal models, only to fail in late stage in human investigations. There is a need for novel technologies that allow investigators to quickly and reliably predict drug safety and efficacy. The advent of microtechnology has made it possible to integrate multiple microphysiologic organ systems into a single microfabricated chip. This review focuses on three-dimensional engineered skin, which has enjoyed a long history of uses both in clinical treatments of refractory ulcers and as a laboratory model. We discuss current biological and engineering challenges in construction of a robust bioengineered skin and provide a blueprint for its potential utility to model dermatologic disorders such as psoriasis or cutaneous drug reactions.
Collapse
Affiliation(s)
- Narat J Eungdamrong
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY 10016, USA Departments of Dermatology, Columbia University College of Physicians & Surgeons, New York, NY 10032, USA
| | - Claire Higgins
- Departments of Dermatology, Columbia University College of Physicians & Surgeons, New York, NY 10032, USA
| | - Zongyou Guo
- Departments of Dermatology, Columbia University College of Physicians & Surgeons, New York, NY 10032, USA
| | - Wen-Han Lee
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Brian Gillette
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Samuel Sia
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Angela M Christiano
- Departments of Dermatology, Columbia University College of Physicians & Surgeons, New York, NY 10032, USA Department of Genetics & Development, Columbia University College of Physicians & Surgeons, New York, NY 10032, USA
| |
Collapse
|
266
|
Higgins CA. Interrogating the integument: the role of the epidermis in hair induction. Exp Dermatol 2014; 23:714-5. [PMID: 24909914 DOI: 10.1111/exd.12465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2014] [Indexed: 11/29/2022]
Abstract
Hair follicle development is driven by interactions between the epithelium and underlying mesenchyme. These reciprocal interactions are essential for development, as a lack of response from either the mesenchyme or epithelium results in arrested growth. A large body of research has focused on the role of mesenchymal cells during hair follicle development and their inductive properties for hair neogenesis. In this commentary, the role of the epidermis during hair follicle induction will be discussed.
Collapse
Affiliation(s)
- Claire A Higgins
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
267
|
Thangapazham RL, Darling TN, Meyerle J. Alteration of skin properties with autologous dermal fibroblasts. Int J Mol Sci 2014; 15:8407-27. [PMID: 24828202 PMCID: PMC4057739 DOI: 10.3390/ijms15058407] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/19/2014] [Accepted: 05/06/2014] [Indexed: 12/16/2022] Open
Abstract
Dermal fibroblasts are mesenchymal cells found between the skin epidermis and subcutaneous tissue. They are primarily responsible for synthesizing collagen and glycosaminoglycans; components of extracellular matrix supporting the structural integrity of the skin. Dermal fibroblasts play a pivotal role in cutaneous wound healing and skin repair. Preclinical studies suggest wider applications of dermal fibroblasts ranging from skin based indications to non-skin tissue regeneration in tendon repair. One clinical application for autologous dermal fibroblasts has been approved by the Food and Drug Administration (FDA) while others are in preclinical development or various stages of regulatory approval. In this context, we outline the role of fibroblasts in wound healing and discuss recent advances and the current development pipeline for cellular therapies using autologous dermal fibroblasts. The microanatomic and phenotypic differences of fibroblasts occupying particular locations within the skin are reviewed, emphasizing the therapeutic relevance of attributes exhibited by subpopulations of fibroblasts. Special focus is provided to fibroblast characteristics that define regional differences in skin, including the thick and hairless skin of the palms and soles as compared to hair-bearing skin. This regional specificity and functional identity of fibroblasts provides another platform for developing regional skin applications such as the induction of hair follicles in bald scalp or alteration of the phenotype of stump skin in amputees to better support their prosthetic devices.
Collapse
Affiliation(s)
- Rajesh L Thangapazham
- Department of Dermatology, Uniformed Services University of the Health Sciences, Bethesda, MD 20851, USA.
| | - Thomas N Darling
- Department of Dermatology, Uniformed Services University of the Health Sciences, Bethesda, MD 20851, USA.
| | - Jon Meyerle
- Department of Dermatology, Uniformed Services University of the Health Sciences, Bethesda, MD 20851, USA.
| |
Collapse
|
268
|
Plikus MV. At the dawn of hair research - testing the limits of hair follicle regeneration. Exp Dermatol 2014; 23:314-5. [DOI: 10.1111/exd.12334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Maksim V. Plikus
- Department of Developmental and Cell Biology; Sue and Bill Gross Stem Cell Research Center; University of California; Irvine CA 92697 USA
| |
Collapse
|
269
|
Ortega I, McKean R, Ryan AJ, MacNeil S, Claeyssens F. Characterisation and evaluation of the impact of microfabricated pockets on the performance of limbal epithelial stem cells in biodegradable PLGA membranes for corneal regeneration. Biomater Sci 2014; 2:723-734. [DOI: 10.1039/c3bm60268k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
270
|
Guo Z, Higgins CA, Gillette BM, Itoh M, Umegaki N, Gledhill K, Sia SK, Christiano AM. Building a microphysiological skin model from induced pluripotent stem cells. Stem Cell Res Ther 2013; 4 Suppl 1:S2. [PMID: 24564920 PMCID: PMC4029476 DOI: 10.1186/scrt363] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The discovery of induced pluripotent stem cells (iPSCs) in 2006 was a major breakthrough for regenerative medicine. The establishment of patient-specific iPSCs has created the opportunity to model diseases in culture systems, with the potential to rapidly advance the drug discovery field. Current methods of drug discovery are inefficient, with a high proportion of drug candidates failing during clinical trials due to low efficacy and/or high toxicity. Many drugs fail toxicity testing during clinical trials, since the cells on which they have been tested do not adequately model three-dimensional tissues or their interaction with other organs in the body. There is a need to develop microphysiological systems that reliably represent both an intact tissue and also the interaction of a particular tissue with other systems throughout the body. As the port of entry for many drugs is via topical delivery, the skin is the first line of exposure, and also one of the first organs to demonstrate a reaction after systemic drug delivery. In this review, we discuss our strategy to develop a microphysiological system using iPSCs that recapitulates human skin for analyzing the interactions of drugs with the skin.
Collapse
|
271
|
Environmental reprogramming and molecular profiling in reconstitution of human hair follicles. Proc Natl Acad Sci U S A 2013; 110:19658-9. [PMID: 24272942 DOI: 10.1073/pnas.1319413110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
272
|
Cultured follicles offer hope for beating baldness. Nature 2013. [DOI: 10.1038/nature.2013.13983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|