251
|
Qelliny MR, Shimizu T, Elsadek NE, Emam SE, Takata H, Fathalla ZMA, Hussein AK, Khaled KA, Ando H, Ishima Y, Ishida T. Incorporating Gangliosides into PEGylated Cationic Liposomes that Complexed DNA Attenuates Anti-PEG Antibody Production but Not Anti-DNA Antibody Production in Mice. Mol Pharm 2021; 18:2406-2415. [PMID: 33896187 DOI: 10.1021/acs.molpharmaceut.1c00255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gangliosides (glycosphingolipids) reduce antibody production by inhibiting B-cell receptor (BCR) signaling. We have shown that a copresentation of gangliosides and polyethylene glycol (PEG) on the same liposomes suppresses anti-PEG IgM production in mice. In addition, we recently observed that pDNA incorporated in PEGylated cationic liposomes (PCLs) induces anti-DNA IgM, which could be a hurdle to the development of efficient gene delivery systems. Therefore, the focus of this study was to determine if the copresentation of gangliosides and DNA on the same PCL would suppress antibody production against DNA. PCLs including DNA induced both anti-PEG IgM production and anti-DNA IgM production. The extent of anti-PEG and anti-DNA IgM production was likely dependent on the immunogenicity of the complexed DNA. Treatment of clodronate-containing liposomes, which causes a depletion of phagocytic cells, suppressed anti-PEG IgM production from PCLs that did not include DNA but failed to suppress anti-PEG IgM production from PCLs that complexed DNA (PCLD). Both anti-PEG IgM and anti-DNA IgM was induced in T-cell-deficient nude mice as well as in normal mice following treatment with PCLs and PCLD, respectively. These results indicate that phagocytic cells contribute to anti-PEG IgM production but not to anti-DNA IgM production, while T-cells do not contribute to any form of antibody production. The copresentation of gangliosides and DNA significantly reduced anti-PEG IgM production but unfortunately did not reduce anti-DNA IgM production. It appears that the immunosuppressive effect of gangliosides, presumably via the CD22 signaling pathway, is limited only to anti-PEG immunity.
Collapse
Affiliation(s)
- Milad Reda Qelliny
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan.,Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Nehal E Elsadek
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Sherif E Emam
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Haruka Takata
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Zeinab M A Fathalla
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Amal K Hussein
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Khaled A Khaled
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| |
Collapse
|
252
|
Klimek L, Bergmann KC, Brehler R, Pfützner W, Zuberbier T, Hartmann K, Jakob T, Novak N, Ring J, Merk H, Hamelmann E, Ankermann T, Schmidt S, Untersmayr E, Hötzenecker W, Jensen-Jarolim E, Brockow K, Mahler V, Worm M. Practical handling of allergic reactions to COVID-19 vaccines: A position paper from German and Austrian Allergy Societies AeDA, DGAKI, GPA and ÖGAI. ALLERGO JOURNAL INTERNATIONAL 2021; 30:79-95. [PMID: 33898162 PMCID: PMC8054127 DOI: 10.1007/s40629-021-00165-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND For the preventive treatment of the 2019 coronavirus disease (COVID-19) an unprecedented global research effort studied the safety and efficacy of new vaccine platforms that have not been previously used in humans. Less than one year after the discovery of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral sequence, these vaccines were approved for use in the European Union (EU) as well as in numerous other countries and mass vaccination efforts began. The so far in the EU approved mRNA vaccines BNT162b2 and mRNA-1273 are based on similar lipid-based nanoparticle carrier technologies; however, the lipid components differ. Severe allergic reactions and anaphylaxis after COVID-19 vaccination are very rare adverse events but have drawn attention due to potentially lethal outcomes and have triggered a high degree of uncertainty. METHODS Current knowledge on anaphylactic reactions to vaccines and specifically the new mRNA COVID-19 vaccines was compiled using a literature search in Medline, PubMed, as well as the national and international study and guideline registries, the Cochrane Library, and the Internet, with special reference to official websites of the World Health Organization (WHO), US Centers for Disease Control and Prevention (CDC), Robert Koch Institute (RKI), and Paul Ehrlich Institute (PEI). RESULTS Based on the international literature and previous experience, recommendations for prophylaxis, diagnosis and therapy of these allergic reactions are given by a panel of experts. CONCLUSION Allergy testing is not necessary for the vast majority of allergic patients prior to COVID-19 vaccination with currently licensed vaccines. In case of allergic/anaphylactic reactions after vaccination, allergy workup is recommended, as it is for a small potential risk population prior to the first vaccination. Evaluation and approval of diagnostic tests should be done for this purpose.
Collapse
Affiliation(s)
- Ludger Klimek
- Center for Rhinology and Allergology, Wiesbaden, Germany
| | - Karl-Christian Bergmann
- Clinic for Dermatology, Venereology and Allergy, Charité—University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute of Health, Charité—Medical University Berlin, Berlin, Germany
| | - Randolf Brehler
- Outpatient Clinic for Allergology, Occupational Dermatology and Environmental Medicine, General Dermatology and Venereology, Department of Skin Diseases, Münster University Hospital, Münster, Germany
| | - Wolfgang Pfützner
- Department of Dermatology and Allergology, University Hospital Marburg, UKGM, Philipps University Marburg, Marburg, Germany
| | - Torsten Zuberbier
- Clinic for Dermatology, Venereology and Allergy, Charité—University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute of Health, Charité—Medical University Berlin, Berlin, Germany
| | - Karin Hartmann
- Department of Dermatology and Allergology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Thilo Jakob
- Department of Dermatology and Allergology, Giessen University Hospital, UKGM, Justus Liebig University Giessen, Giessen, Germany
| | - Natalija Novak
- Clinic and Polyclinic for Dermatology and Allergology, University Hospital Bonn, Bonn, Germany
| | - Johannes Ring
- Clinic and Polyclinic for Dermatology and Allergology at Biederstein, Technical University of Munich, Munich, Germany
| | - Hans Merk
- Department of Dermatology and Allergology, RWTH Aachen University Hospital, Aachen, Germany
| | - Eckard Hamelmann
- Pediatric and Adolescent Medicine, Bethel Children’s Center, OWL University Hospital, Bielefeld University, Bielefeld, Germany
| | - Tobias Ankermann
- Clinic for Pediatric and Adolescent Medicine, Municipal Hospital Kiel GmbH, Kiel, Germany
| | - Sebastian Schmidt
- Center for Pediatric and Adolescent Medicine, Clinic and Polyclinic for Pediatric and Adolescent Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Eva Untersmayr
- Institute for Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Wolfram Hötzenecker
- Clinic for Dermatology and Venereology, Allergy Center, Kepler University Hospital GmbH, Linz, Austria
| | - Erika Jensen-Jarolim
- Institute for Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Inter-university Messerli Research Institute Vienna, Vienna, Austria
| | - Knut Brockow
- Clinic and Polyclinic for Dermatology and Allergology at Biederstein, Technical University of Munich, Munich, Germany
| | | | - Margitta Worm
- Allergology and Immunology, Department of Dermatology, Venereology and Allergology, Charité—University Medicine Berlin, Berlin, Germany
| |
Collapse
|
253
|
Water-soluble polymer micelles formed from amphiphilic diblock copolymers bearing pendant phosphorylcholine and methoxyethyl groups. Polym J 2021. [DOI: 10.1038/s41428-021-00482-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
254
|
Jamshaid H, Din FU, Khan GM. Nanotechnology based solutions for anti-leishmanial impediments: a detailed insight. J Nanobiotechnology 2021; 19:106. [PMID: 33858436 PMCID: PMC8051083 DOI: 10.1186/s12951-021-00853-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
As a neglected tropical disease, Leishmaniasis is significantly instigating morbidity and mortality across the globe. Its clinical spectrum varies from ulcerative cutaneous lesions to systemic immersion causing hyperthermic hepato-splenomegaly. Curbing leishmanial parasite is toughly attributable to the myriad obstacles in existing chemotherapy and immunization. Since the 1990s, extensive research has been conducted for ameliorating disease prognosis, by resolving certain obstacles of conventional therapeutics viz. poor efficacy, systemic toxicity, inadequate drug accumulation inside the macrophage, scarce antigenic presentation to body's immune cells, protracted length and cost of the treatment. Mentioned hurdles can be restricted by designing nano-drug delivery system (nano-DDS) of extant anti-leishmanials, phyto-nano-DDS, surface modified-mannosylated and thiolated nano-DDS. Likewise, antigen delivery with co-transportation of suitable adjuvants would be achievable through nano-vaccines. In the past decade, researchers have engineered nano-DDS to improve the safety profile of existing drugs by restricting their release parameters. Polymerically-derived nano-DDS were found as a suitable option for oral delivery as well as SLNs due to pharmacokinetic re-modeling of drugs. Mannosylated nano-DDS have upgraded macrophage internalizing of nanosystem and the entrapped drug, provided with minimal toxicity. Cutaneous Leishmaniasis (CL) was tackling by the utilization of nano-DDS designed for topical delivery including niosomes, liposomes, and transfersomes. Transfersomes, however, appears to be superior for this purpose. The nanotechnology-based solution to prevent parasitic resistance is the use of Thiolated drug-loaded and multiple drugs loaded nano-DDS. These surfaces amended nano-DDS possess augmented IC50 values in comparison to conventional drugs and un-modified nano-DDS. Phyto-nano-DDS, another obscure horizon, have also been evaluated for their anti-leishmanial response, however, more intense assessment is a prerequisite. Impoverished Cytotoxic T-cells response followed by Leishmanial antigen proteins delivery have also been vanquished using nano-adjuvants. The eminence of nano-DDS for curtailment of anti-leishmanial chemotherapy and immunization associated challenges are extensively summed up in this review. This expedited approach is ameliorating the Leishmaniasis management successfully. Alongside, total to partial eradication of this disease can be sought along with associated co-morbidities.
Collapse
Affiliation(s)
- Humzah Jamshaid
- Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Fakhar Ud Din
- Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Gul Majid Khan
- Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
- Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
255
|
Prolonged Anaphylaxis to Pfizer Coronavirus Disease 2019 Vaccine: A Case Report and Mechanism of Action. Crit Care Explor 2021; 3:e0397. [PMID: 33834172 PMCID: PMC8021358 DOI: 10.1097/cce.0000000000000397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: In response to the devastating effects of the coronavirus disease 2019 pandemic, several vaccine prototypes have been developed, with the Pfizer/BioNTech (BNT162b2) platform being the first to receive emergency use authorization. Although taken to market on an unprecedented timeline, the safety profile of the drug during clinical trials was shown to be favorable. Shortly after release, reports from the Centers for Disease Control and Prevention demonstrated a higher-than-average rate of anaphylaxis to the vaccine that has been the cause for concern for safety officials and the general public alike. Here, we present a unique case of protracted anaphylaxis in a recipient of the BNT162b2. Case Summary: The patient is a 55-year-old female with a history of multiple allergic reactions who presented with respiratory distress and hives after receiving the first dose of the BNT162b2, despite premedication with IV steroids and diphenhydramine. The refractory nature of her reaction was demonstrated by edema of her tongue (visualized on nasolaryngoscopy), requiring an epinephrine infusion for nearly 3 days. She was discharged from the hospital with instructions not to receive the second dose of the vaccine. Conclusion: Although the exact etiology of anaphylaxis secondary to this messenger RNA-based vaccine is not completely clear, our literature search and review of the patient’s course support either polyethylene glycol versus other excipient-related allergy as a possible cause. Based on the protracted nature to our patient’s anaphylaxis, critical care management for patients with a true anaphylactic reaction to BNT162b2 may require monitoring for an extended period of time.
Collapse
|
256
|
Cell-bound nanoparticles for tissue targeting and immunotherapy: Engineering of the particle–membrane interface. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2020.101408] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
257
|
Takata H, Shimizu T, Kawaguchi Y, Ueda H, Elsadek NE, Ando H, Ishima Y, Ishida T. Nucleic acids delivered by PEGylated cationic liposomes in systemic lupus erythematosus-prone mice: A possible exacerbation of lupus nephritis in the presence of pre-existing anti-nucleic acid antibodies. Int J Pharm 2021; 601:120529. [PMID: 33781884 DOI: 10.1016/j.ijpharm.2021.120529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/04/2021] [Accepted: 03/21/2021] [Indexed: 12/18/2022]
Abstract
Nucleic acid-based therapy with plasmid DNA (pDNA) and small interfering RNA (siRNA) have received recent attention for their ability to modulate the cellular expression of genes and proteins. Polyethylene glycol-modified (PEGylated) cationic nanoparticles have been used as non-viral vectors for the in vivo delivery of these nucleic acids. We have reported that PEGylated cationic liposomes (PCL) including pDNA or siRNA induce anti-PEG antibodies upon repeated intravenous injection, leading to the formation of immune complexes and enhanced clearance from the blood of subsequent doses. However, the issue surrounding the association of nucleic acids with PCL whether induces anti-nucleic acid antibodies has not been studied. Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with the character of end-organ damage and the presence of anti-nuclear antibodies. We used a healthy mouse and an SLE mouse model to test the hypothesis that nucleic acids associated with PCL induce anti-nuclear antibodies and then induce SLE and exacerbate SLE symptoms. We report here that pDNA or siRNA associated with PCL (pDNA/PCL or siRNA/PCL) induced anti-DNA or RNA antibodies, respectively, in healthy mice. Repeated injections did not, however, cause SLE-like symptoms in the healthy mice. In addition, in SLE-prone mice with pre-existing anti-nuclear antibodies, pDNA/PCL were deposited on the kidneys and exacerbated lupus nephritis subsequent to the formation of immune complexes. These results may imply that nucleic acids associated with PCL do not contribute to the onset of SLE in healthy individuals who lack anti-nuclear antibodies, but nucleic acids may exacerbate the symptoms in SLE patients who have pre-existing anti-nuclear antibodies.
Collapse
Affiliation(s)
- Haruka Takata
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Yoshino Kawaguchi
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Hiro Ueda
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Nehal E Elsadek
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan.
| |
Collapse
|
258
|
Kyriakides TR, Raj A, Tseng TH, Xiao H, Nguyen R, Mohammed FS, Halder S, Xu M, Wu MJ, Bao S, Sheu WC. Biocompatibility of nanomaterials and their immunological properties. Biomed Mater 2021; 16:10.1088/1748-605X/abe5fa. [PMID: 33578402 PMCID: PMC8357854 DOI: 10.1088/1748-605x/abe5fa] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/12/2021] [Indexed: 12/16/2022]
Abstract
Nanomaterials (NMs) have revolutionized multiple aspects of medicine by enabling novel sensing, diagnostic, and therapeutic approaches. Advancements in processing and fabrication have also allowed significant expansion in the applications of the major classes of NMs based on polymer, metal/metal oxide, carbon, liposome, or multi-scale macro-nano bulk materials. Concomitantly, concerns regarding the nanotoxicity and overall biocompatibility of NMs have been raised. These involve putative negative effects on both patients and those subjected to occupational exposure during manufacturing. In this review, we describe the current state of testing of NMs including those that are in clinical use, in clinical trials, or under development. We also discuss the cellular and molecular interactions that dictate their toxicity and biocompatibility. Specifically, we focus on the reciprocal interactions between NMs and host proteins, lipids, and sugars and how these induce responses in immune and other cell types leading to topical and/or systemic effects.
Collapse
Affiliation(s)
- Themis R Kyriakides
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
- Department of Pathology, Yale University, New Haven, CT 06405, United States of America
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06405, United States of America
| | - Arindam Raj
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06405, United States of America
| | - Tiffany H Tseng
- Department of Pathology, Yale University, New Haven, CT 06405, United States of America
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06405, United States of America
| | - Hugh Xiao
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
| | - Ryan Nguyen
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
| | - Farrah S Mohammed
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
| | - Saiti Halder
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
| | - Mengqing Xu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06405, United States of America
| | - Michelle J Wu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
| | - Shuozhen Bao
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06405, United States of America
| | - Wendy C Sheu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
| |
Collapse
|
259
|
Synthesis of Curcumin Loaded Smart pH-Responsive Stealth Liposome as a Novel Nanocarrier for Cancer Treatment. FIBERS 2021. [DOI: 10.3390/fib9030019] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The innovation of drug delivery vehicles with controlled properties for cancer therapy is the aim of most pharmaceutical research. This study aims to fabricate a new type of smart biocompatible stealth-nanoliposome to deliver curcumin for cancer treatment. Herein, four different types of liposomes (with/without pH-responsive polymeric coating) were synthesized via the Mozafari method and then characterized with several tests, including dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), Zeta potential, and field emission scanning electron microscopes (FE-S EM). The loading and release profile of curcumin were evaluated in two pH of 7.4 and 6.6. Finally, the MTT assay was used to assess the cytotoxicity of the samples. FE-SEM results revealed a mean size of about 40 and 50 nm for smart stealth-liposome and liposome, respectively. The results of drug entrapment revealed that non-coated liposome had about 74% entrapment efficiency, while it was about 84% for PEGylated liposomes. Furthermore, the drug released pattern of the nanocarriers showed more controllable release in stealth-liposome in comparison to non-coated one. The results of the cytotoxicity test demonstrated the toxicity of drug-loaded carriers on cancer cells. Based on the results of this study, the as-prepared smart stealth pH-responsive nanoliposome could be considered as a potential candidate for cancer therapy.
Collapse
|
260
|
Mirzavi F, Barati M, Soleimani A, Vakili-Ghartavol R, Jaafari MR, Soukhtanloo M. A review on liposome-based therapeutic approaches against malignant melanoma. Int J Pharm 2021; 599:120413. [PMID: 33667562 DOI: 10.1016/j.ijpharm.2021.120413] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 01/14/2023]
Abstract
Melanoma is a highly aggressive form of skin cancer with a very poor prognosis and excessive resistance to current conventional treatments. Recently, the application of the liposomal delivery system in the management of skin melanoma has been widely investigated. Liposomal nanocarriers are biocompatible and less toxic to host cells, enabling the efficient and safe delivery of different therapeutic agents into the tumor site and further promoting their antitumor activities. Therefore, the liposomal delivery system effectively increases the success of current melanoma therapies and overcomes resistance. In this review, we present an overview of liposome-based targeted drug delivery methods and highlight recent advances towards the development of liposome-based carriers for therapeutic genes. We also discuss the new insights regarding the efficacy and clinical significance of combinatorial treatment of liposomal formulations with immunotherapy and conventional therapies in melanoma patients for a better understanding and successfully managing cancer.
Collapse
Affiliation(s)
- Farshad Mirzavi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Barati
- Department of Medical Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Anvar Soleimani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roghayyeh Vakili-Ghartavol
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
261
|
Narayanaswamy R, Torchilin VP. Targeted Delivery of Combination Therapeutics Using Monoclonal Antibody 2C5-Modified Immunoliposomes for Cancer Therapy. Pharm Res 2021; 38:429-450. [PMID: 33655395 DOI: 10.1007/s11095-021-02986-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE To develop immunoliposomes modified with monoclonal cancer-specific antibody (mAb) 2C5 and co-loaded with a combination of two chemotherapeutics, in order to simultaneously target bulk cancer cells using paclitaxel and cancer stem cells (CSCs) using salinomycin to prevent cancer growth and metastases. METHODS Breast cancer cells (MDA-MB-231 and/or SK-BR-3) were chosen as models for all in vitro testing. Liposomes composed of natural phospholipids co-loaded with salinomycin and paclitaxel were prepared and physically characterized. Immunoliposomes modified with mAb 2C5 coupled to polymeric conjugate were prepared and characterized for specific targeting. Wound healing assay was performed using the combination of free drugs in vitro. In vitro studies on cellular interaction and uptake were followed by holographic imaging to study cell-killing, cell-division and proliferation inhibiting effects of the formulation. Ex-vivo study on hemolysis was investigated to check possible toxicity of the formulation. RESULTS Physical characterization of the liposomes showed stable nanoparticles of consistent and desirable size range (170-220 nm), zeta potential (-13 mV to - 20 mV), polydispersity indices (<0.2) and drug encapsulation efficiencies (~150 μg per ml for salinomycin, ~210 μg/ml for paclitaxel and 1:1 for combination drug loaded liposomes). Combination therapy strongly affected cancer cell proliferation as shown by significant diminishing of artificial gap closure at the wound site on MDA-MB-231 cells in culture using wound healing assay. Quantitation of changes in wound widths showed ~219 μm for drug combination, ~104 μm for only paclitaxel, and ~ 7 μm for only salinomycin treatments. Statistically significant increase in cellular interaction and specific uptake of the targeted drug co-loaded liposomal nanopreparation (p value ≤ 0.05) by MDA-MB-231 and SK-BR-3 cells confirmed the effectiveness of the approach. Holographic imaging using MDA-MB-231 cells produced visible increase in cell-killing, proliferation and division in vitro. Ex-vivo experimentation showed reduced hemolysis correlating with low toxicity in athymic nude mice model. CONCLUSION The results demonstrated the enhanced therapeutic efficacy of a combination of salinomycin and paclitaxel delivered by mAb 2C5-modified liposomal preparation in cancer therapy.
Collapse
Affiliation(s)
- Radhika Narayanaswamy
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 140 The Fenway Building 360 Huntington Avenue, Boston, Massachusetts, 02115, USA
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 140 The Fenway Building 360 Huntington Avenue, Boston, Massachusetts, 02115, USA.
- Department of Oncology, Radiotherapy and Plastic Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| |
Collapse
|
262
|
Aronson MR, Medina SH, Mitchell MJ. Peptide functionalized liposomes for receptor targeted cancer therapy. APL Bioeng 2021; 5:011501. [PMID: 33532673 PMCID: PMC7837755 DOI: 10.1063/5.0029860] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Most clinically approved cancer therapies are potent and toxic small molecules that are limited by severe off-target toxicities and poor tumor-specific localization. Over the past few decades, attempts have been made to load chemotherapies into liposomes, which act to deliver the therapeutic agent directly to the tumor. Although liposomal encapsulation has been shown to decrease toxicity in human patients, reliance on passive targeting via the enhanced permeability and retention (EPR) effect has left some of these issues unresolved. Recently, investigations into modifying the surface of liposomes via covalent and/or electrostatic functionalization have offered mechanisms for tumor homing and subsequently controlled chemotherapeutic delivery. A wide variety of biomolecules can be utilized to functionalize liposomes such as proteins, carbohydrates, and nucleic acids, which enable multiple directions for cancer cell localization. Importantly, when nanoparticles are modified with such molecules, care must be taken as not to inactivate or denature the ligand. Peptides, which are small proteins with <30 amino acids, have demonstrated the exceptional ability to act as ligands for transmembrane protein receptors overexpressed in many tumor phenotypes. Exploring this strategy offers a method in tumor targeting for cancers such as glioblastoma multiforme, pancreatic, lung, and breast based on the manifold of receptors overexpressed on various tumor cell populations. In this review, we offer a comprehensive summary of peptide-functionalized liposomes for receptor-targeted cancer therapy.
Collapse
|
263
|
Hoogevest P, Tiemessen H, Metselaar JM, Drescher S, Fahr A. The Use of Phospholipids to Make Pharmaceutical Form Line Extensions. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Peter Hoogevest
- Phospholipid Research Center Im Neuenheimer Feld 515 Heidelberg 69120D‐69120 Germany
| | - Harry Tiemessen
- Technical & Research Development PHAD PDU Specialty Novartis Campus Physical Garden (WSJ 177) 2.14 Basel CH‐4002 Switzerland
| | - Josbert M. Metselaar
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic Aachen D‐52074 Germany
- Institute for Biomedical Engineering, Faculty of Medicine RWTH Aachen University Aachen D‐52074 Germany
| | - Simon Drescher
- Phospholipid Research Center Im Neuenheimer Feld 515 Heidelberg D‐69120 Germany
| | - Alfred Fahr
- Professor Emeritus, Pharmaceutical Technology Friedrich‐Schiller‐University Jena Jena Germany
| |
Collapse
|
264
|
Kósa N, Zolcsák Á, Voszka I, Csík G, Horváti K, Horváth L, Bősze S, Herenyi L. Comparison of the Efficacy of Two Novel Antitubercular Agents in Free and Liposome-Encapsulated Formulations. Int J Mol Sci 2021; 22:2457. [PMID: 33671100 PMCID: PMC7957691 DOI: 10.3390/ijms22052457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis is one of the top ten causes of death worldwide, and due to the appearance of drug-resistant strains, the development of new antituberculotic agents is a pressing challenge. Employing an in silico docking method, two coumaran (2,3-dihydrobenzofuran) derivatives-TB501 and TB515-were determined, with promising in vitro antimycobacterial activity. To enhance their effectiveness and reduce their cytotoxicity, we used liposomal drug carrier systems. Two types of small unilamellar vesicles (SUV) were prepared: multicomponent pH-sensitive stealth liposome (SUVmixed) and monocomponent conventional liposome. The long-term stability of our vesicles was obtained by the examination of particle size distribution with dynamic light scattering. Encapsulation efficiency (EE) of the two drugs was determined from absorption spectra before and after size exclusion chromatography. Cellular uptake and cytotoxicity were determined on human MonoMac-6 cells by flow cytometry. The antitubercular effect was characterized by the enumeration of colony-forming units on Mycobacterium tuberculosis H37Rv infected MonoMac-6 cultures. We found that SUVmixed + TB515 has the best long-term stability. TB515 has much higher EE in both types of SUVs. Cellular uptake for native TB501 is extremely low, but if it is encapsulated in SUVmixed it appreciably increases; in the case of TB515, quasi total uptake is accessible. It is concluded that SUVmixed + TB501 seems to be the most efficacious antitubercular formulation given the presented experiments; to find the most promising antituberculotic formulation for therapy further in vivo investigations are needed.
Collapse
Affiliation(s)
- Nikoletta Kósa
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (Á.Z.); (I.V.); (G.C.)
| | - Ádám Zolcsák
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (Á.Z.); (I.V.); (G.C.)
| | - István Voszka
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (Á.Z.); (I.V.); (G.C.)
| | - Gabriella Csík
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (Á.Z.); (I.V.); (G.C.)
| | - Kata Horváti
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Hungarian Academy of Sciences, 1518 Budapest, Hungary; (K.H.); (L.H.)
- Institute of Chemistry, Eötvös Loránd University, 1518 Budapest, Hungary
| | - Lilla Horváth
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Hungarian Academy of Sciences, 1518 Budapest, Hungary; (K.H.); (L.H.)
- Institute of Chemistry, Eötvös Loránd University, 1518 Budapest, Hungary
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Hungarian Academy of Sciences, 1518 Budapest, Hungary; (K.H.); (L.H.)
| | - Levente Herenyi
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (Á.Z.); (I.V.); (G.C.)
| |
Collapse
|
265
|
Zhang Z, Chu Y, Li C, Tang W, Qian J, Wei X, Lu W, Ying T, Zhan C. Anti-PEG scFv corona ameliorates accelerated blood clearance phenomenon of PEGylated nanomedicines. J Control Release 2021; 330:493-501. [DOI: 10.1016/j.jconrel.2020.12.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/09/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022]
|
266
|
Askenase PW. Ancient Evolutionary Origin and Properties of Universally Produced Natural Exosomes Contribute to Their Therapeutic Superiority Compared to Artificial Nanoparticles. Int J Mol Sci 2021; 22:1429. [PMID: 33572657 PMCID: PMC7866973 DOI: 10.3390/ijms22031429] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs), such as exosomes, are newly recognized fundamental, universally produced natural nanoparticles of life that are seemingly involved in all biologic processes and clinical diseases. Due to their universal involvements, understanding the nature and also the potential therapeutic uses of these nanovesicles requires innovative experimental approaches in virtually every field. Of the EV group, exosome nanovesicles and larger companion micro vesicles can mediate completely new biologic and clinical processes dependent on the intercellular transfer of proteins and most importantly selected RNAs, particularly miRNAs between donor and targeted cells to elicit epigenetic alterations inducing functional cellular changes. These recipient acceptor cells are nearby (paracrine transfers) or far away after distribution via the circulation (endocrine transfers). The major properties of such vesicles seem to have been conserved over eons, suggesting that they may have ancient evolutionary origins arising perhaps even before cells in the primordial soup from which life evolved. Their potential ancient evolutionary attributes may be responsible for the ability of some modern-day exosomes to withstand unusually harsh conditions, perhaps due to unique membrane lipid compositions. This is exemplified by ability of the maternal milk exosomes to survive passing the neonatal acid/enzyme rich stomach. It is postulated that this resistance also applies to their durable presence in phagolysosomes, thus suggesting a unique intracellular release of their contained miRNAs. A major discussed issue is the generally poorly realized superiority of these naturally evolved nanovesicles for therapies when compared to human-engineered artificial nanoparticles, e.g., for the treatment of diseases like cancers.
Collapse
Affiliation(s)
- Phillip W Askenase
- Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
267
|
Grabowska J, Affandi AJ, van Dinther D, Nijen Twilhaar MK, Olesek K, Hoogterp L, Ambrosini M, Heijnen DAM, Klaase L, Hidalgo A, Asano K, Crocker PR, Storm G, van Kooyk Y, den Haan JMM. Liposome induction of CD8 + T cell responses depends on CD169 + macrophages and Batf3-dependent dendritic cells and is enhanced by GM3 inclusion. J Control Release 2021; 331:309-320. [PMID: 33493613 DOI: 10.1016/j.jconrel.2021.01.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
Cancer vaccines aim to efficiently prime cytotoxic CD8+ T cell responses which can be achieved by vaccine targeting to dendritic cells. CD169+ macrophages have been shown to transfer antigen to dendritic cells and could act as an alternative target for cancer vaccines. Here, we evaluated liposomes containing the CD169/Siglec-1 binding ligand, ganglioside GM3, and the non-binding ligand, ganglioside GM1, for their capacity to target antigens to CD169+ macrophages and to induce immune responses. CD169+ macrophages demonstrated specific uptake of GM3 liposomes in vitro and in vivo that was dependent on a functional CD169 receptor. Robust antigen-specific CD8+ and CD4+ T and B cell responses were observed upon intravenous administration of GM3 liposomes containing the model antigen ovalbumin in the presence of adjuvant. Immunization of B16-OVA tumor bearing mice with all liposomes resulted in delayed tumor growth and improved survival. The absence of CD169+ macrophages, functional CD169 molecules, and cross-presenting Batf3-dependent dendritic cells (cDC1s) significantly impaired CD8+ T cell responses, while B cell responses were less affected. In conclusion, we demonstrate that inclusion of GM3 in liposomes enhance immune responses and that splenic CD169+ macrophages and cDC1s are required for induction of CD8+ T cell immunity after liposomal vaccination.
Collapse
Affiliation(s)
- J Grabowska
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - A J Affandi
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - D van Dinther
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - M K Nijen Twilhaar
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - K Olesek
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - L Hoogterp
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - M Ambrosini
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - D A M Heijnen
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - L Klaase
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - A Hidalgo
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - K Asano
- Laboratory of Immune Regulation, School of Life Science, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - P R Crocker
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - G Storm
- Department of Pharmaceutics, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, the Netherlands; Department of Biomaterials, Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Y van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - J M M den Haan
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
268
|
Monahan DS, Almas T, Wyile R, Cheema FH, Duffy GP, Hameed A. Towards the use of localised delivery strategies to counteract cancer therapy-induced cardiotoxicities. Drug Deliv Transl Res 2021; 11:1924-1942. [PMID: 33449342 DOI: 10.1007/s13346-020-00885-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Cancer therapies have significantly improved cancer survival; however, these therapies can often result in undesired side effects to off target organs. Cardiac disease ranging from mild hypertension to heart failure can occur as a result of cancer therapies. This can warrant the discontinuation of cancer treatment in patients which can be detrimental, especially when the treatment is effective. There is an urgent need to mitigate cardiac disease that occurs as a result of cancer therapy. Delivery strategies such as the use of nanoparticles, hydrogels, and medical devices can be used to localise the treatment to the tumour and prevent off target side effects. This review summarises the advancements in localised delivery of anti-cancer therapies to tumours. It also examines the localised delivery of cardioprotectants to the heart for patients with systemic disease such as leukaemia where localised tumour delivery might not be an option.
Collapse
Affiliation(s)
- David S Monahan
- Anatomy & Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Science, National University of Ireland Galway, Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland.,Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Talal Almas
- School of Medicine, RCSI University of Medicine and Health Sciences, 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland
| | - Robert Wyile
- Anatomy & Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Science, National University of Ireland Galway, Galway, Ireland
| | - Faisal H Cheema
- HCA Healthcare, Gulf Coast Division, Houston, TX, USA.,College of Medicine, University of Houston, Houston, TX, USA
| | - Garry P Duffy
- Anatomy & Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Science, National University of Ireland Galway, Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland.,Tissue Engineering Research Group (TERG), Department of Anatomy, RCSI University of Medicine and Health Sciences, 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland.,Advanced Materials for Biomedical Engineering and Regenerative Medicine (AMBER), National University of Ireland, Trinity College Dublin &, Galway, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Aamir Hameed
- Tissue Engineering Research Group (TERG), Department of Anatomy, RCSI University of Medicine and Health Sciences, 123, St. Stephens Green, Dublin 2, Dublin, D02 YN77, Ireland. .,Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland.
| |
Collapse
|
269
|
Sonju JJ, Dahal A, Singh SS, Jois SD. Peptide-functionalized liposomes as therapeutic and diagnostic tools for cancer treatment. J Control Release 2021; 329:624-644. [PMID: 33010333 PMCID: PMC8082750 DOI: 10.1016/j.jconrel.2020.09.055] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/26/2022]
Abstract
Clinically efficacious medication in anticancer therapy has been successfully designed with liposome-based nanomedicine. The liposomal formulation in cancer drug delivery can be facilitated with a functionalized peptide that mediates the specific drug delivery opportunities with increased drug penetrability, specific accumulation in the targeted site, and enhanced therapeutic efficacy. This review aims to focus on recent advances in peptide-functionalized liposomal formulation techniques in cancer diagnosis and treatment regarding recently published literature. It also will highlight different aspects of novel liposomal formulation techniques that incorporate surface functionalization with peptides for better anticancer effect and current challenges in peptide-functionalized liposomal drug formulation.
Collapse
Affiliation(s)
- Jafrin Jobayer Sonju
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Achyut Dahal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Sitanshu S Singh
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Seetharama D Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
270
|
Jung HS, Neuman KC. Surface Modification of Fluorescent Nanodiamonds for Biological Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E153. [PMID: 33435443 PMCID: PMC7826955 DOI: 10.3390/nano11010153] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/29/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
Fluorescent nanodiamonds (FNDs) are a new class of carbon nanomaterials that offer great promise for biological applications such as cell labeling, imaging, and sensing due to their exceptional optical properties and biocompatibility. Implementation of these applications requires reliable and precise surface functionalization. Although diamonds are generally considered inert, they typically possess diverse surface groups that permit a range of different functionalization strategies. This review provides an overview of nanodiamond surface functionalization methods including homogeneous surface termination approaches (hydrogenation, halogenation, amination, oxidation, and reduction), in addition to covalent and non-covalent surface modification with different functional moieties. Furthermore, the subsequent coupling of biomolecules onto functionalized nanodiamonds is reviewed. Finally, biomedical applications of nanodiamonds are discussed in the context of functionalization.
Collapse
Affiliation(s)
| | - Keir C. Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
271
|
Paroha S, Verma J, Dubey RD, Dewangan RP, Molugulu N, Bapat RA, Sahoo PK, Kesharwani P. Recent advances and prospects in gemcitabine drug delivery systems. Int J Pharm 2021; 592:120043. [DOI: 10.1016/j.ijpharm.2020.120043] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/17/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
|
272
|
Tumban E. Lead SARS-CoV-2 Candidate Vaccines: Expectations from Phase III Trials and Recommendations Post-Vaccine Approval. Viruses 2020; 13:54. [PMID: 33396343 PMCID: PMC7824305 DOI: 10.3390/v13010054] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted primarily through respiratory droplets/aerosols and it causes COVID-19. The virus infects epithelial cells by using the spike protein on its surface to bind to angiotensin-converting enzyme 2 receptor on the cells. Thus, candidate vaccines targeting the spike protein are currently being developed to prevent against infections. Approximately 44 SARS-CoV-2 candidate vaccines are in clinical trials (phase I-III) and an additional 164 candidates are in preclinical stages. The efficacy data from phase I/II trials of lead candidate vaccines look very promising with virus-neutralizing geometric mean antibody titers in the range of 16.6-3906. Most recently, two SARS-CoV-2 candidate vaccines, BNT162b2 and mRNA-1273, have been granted the first emergency use authorization (EUA) in the U.S.; BNT162b2 has also been granted an EUA in the United Kingdom, Canada, and in the European Union. This review assesses whether SARS-CoV-2 candidate vaccines (with approved EUA or in phase III trials) meet the criteria for an ideal SARS-CoV-2 vaccine. The review concludes with expectations from phase III trials and recommendations for phase IV studies (post-vaccine approval).
Collapse
Affiliation(s)
- Ebenezer Tumban
- Texas Tech University School of Veterinary Medicine, Amarillo, TX 79106, USA
| |
Collapse
|
273
|
Nanoparticles as Adjuvants and Nanodelivery Systems for mRNA-Based Vaccines. Pharmaceutics 2020; 13:pharmaceutics13010045. [PMID: 33396817 PMCID: PMC7823281 DOI: 10.3390/pharmaceutics13010045] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Messenger RNA (mRNA)-based vaccines have shown promise against infectious diseases and several types of cancer in the last two decades. Their promise can be attributed to their safety profiles, high potency, and ability to be rapidly and affordably manufactured. Now, many RNA-based vaccines are being evaluated in clinical trials as prophylactic and therapeutic vaccines. However, until recently, their development has been limited by their instability and inefficient in vivo transfection. The nanodelivery system plays a dual function in RNA-based vaccination by acting as a carrier system and as an adjuvant. That is due to its similarity to microorganisms structurally and size-wise; the nanodelivery system can augment the response by the immune system via simulating the natural infection process. Nanodelivery systems allow non-invasive mucosal administration, targeted immune cell delivery, and controlled delivery, reducing the need for multiple administrations. They also allow co-encapsulating with immunostimulators to improve the overall adjuvant capacity. The aim of this review is to discuss the recent developments and applications of biodegradable nanodelivery systems that improve RNA-based vaccine delivery and enhance the immunological response against targeted diseases.
Collapse
|
274
|
Juszkiewicz K, Sikorski AF, Czogalla A. Building Blocks to Design Liposomal Delivery Systems. Int J Mol Sci 2020; 21:E9559. [PMID: 33334048 PMCID: PMC7765547 DOI: 10.3390/ijms21249559] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
The flexibility of liposomal carriers does not just simply rely on their capability to encapsulate various types of therapeutic substances, but also on the large array of components used for designing liposome-based nanoformulations. Each of their components plays a very specific role in the formulation and can be easily replaced whenever a different therapeutic effect is desired. It is tempting to describe this by an analogy to Lego blocks, since a whole set of structures, differing in their features, can be designed using a certain pool of blocks. In this review, we focus on different design strategies, where a broad variety of liposomal components facilitates the attainment of straightforward control over targeting and drug release, which leads to the design of the most promising systems for drug delivery. The key aspects of this block-based architecture became evident after its implementation in our recent works on liposomal carriers of antisense oligonucleotides and statins, which are described in the last chapter of this review.
Collapse
Affiliation(s)
- Katarzyna Juszkiewicz
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland;
| | - Aleksander F. Sikorski
- Research and Development Center, Regional Specialist Hospital, Kamieńskiego 73a, 51-124 Wroclaw, Poland;
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland;
| |
Collapse
|
275
|
Zhang M, Zhang F, Liu T, Shao P, Duan L, Yan J, Mu X, Jiang J. Polydopamine Nanoparticles Camouflaged by Stem Cell Membranes for Synergistic Chemo-Photothermal Therapy of Malignant Bone Tumors. Int J Nanomedicine 2020; 15:10183-10197. [PMID: 33363374 PMCID: PMC7754090 DOI: 10.2147/ijn.s282931] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/20/2020] [Indexed: 12/23/2022] Open
Abstract
Purpose Nanoparticle (NP)-based chemo-photothermal therapy (CPT) has been shown to be a promising non-invasive approach for antitumor treatment. However, NPs must overcome the limitations of opsonization, clearance of the reticuloendothelial system, and ineffective targeting of tumor tissue sites. To solve these problems, stem cell membrane (SCM)-camouflaged polydopamine nanoparticles (PDA@SCM NPs) carrying the hydrophobic anticancer drug 7-ethyl-10-hydroxycamptothecin (SN38) were constructed for CPT of malignant bone tumors. Methods We developed umbilical-cord mesenchymal stem cell membrane-coated polydopamine nanoparticles encapsulating SN38 (PDA-SN38@SCM NPs) as an efficient tumor-targeting drug-delivery platform for CPT of malignant bone tumors. We characterized PDA@SCM NPs and evaluated the biocompatibility and anti-phagocytosis properties of PDA@SCM NPs. The antitumor activity of PDA-SN38@SCM NPs was evaluated in MG63 lines and an MG63 xenograft model in mice. Results Synthesized PDA-SN38@SCM NPs retained an excellent photothermal effect after SN38 loading. The drug release of PDA-SN38@SCM NPs could be triggered by near-infrared irradiation and an acidic stimulus. PDA@SCM NPs exhibited lower nonspecific macrophage uptake, longer retention in blood, and more effective accumulation at tumor sites than that shown by PDA NPs. Confocal laser scanning microscopy (CLSM) and flow cytometry showed that MG63 cells took up more PDA-SN38@SCM NPs than PDA-SN38 NPs. In vitro and in vivo antitumor studies demonstrated the outstanding performance of PDA-SN38@SCM NPs in synergistic CPT for bone tumors. Conclusion PDA-SN38@SCM NPs demonstrated an extraordinary synergistic CPT effect and could be a promising strategy for the treatment of malignant bone tumors.
Collapse
Affiliation(s)
- Meng Zhang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Fuqiang Zhang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Pu Shao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Lian Duan
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Jun Yan
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Xupeng Mu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
276
|
Alavi M, Asare-Addo K, Nokhodchi A. Lectin Protein as a Promising Component to Functionalize Micelles, Liposomes and Lipid NPs against Coronavirus. Biomedicines 2020; 8:E580. [PMID: 33297444 PMCID: PMC7762367 DOI: 10.3390/biomedicines8120580] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
The outbreak of a novel strain coronavirus as the causative agent of COVID-19 pneumonia, first identified in Wuhan, China in December 2019, has resulted in considerable focus on virulence abilities of coronavirus. Lectins are natural proteins with the ability to bind specific carbohydrates related to various microorganisms, including viruses, bacteria, fungi and parasites. Lectins have the ability to agglutinate and neutralize these pathogeneses. The delivery of the encapsulated antiviral agents or vaccines across the cell membrane can be possible by functionalized micellar and liposomal formulations. In this mini-review, recent advances and challenges related to important lectins with inhibition activities against coronaviruses are presented to obtain a novel viewpoint of microformulations or nanoformulations by micellar and liposomal cell-binding carriers.
Collapse
Affiliation(s)
- Mehran Alavi
- Nanobiotechnology Laboratory, Faculty of Science, Razi University, Kermanshah 67146, Iran
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK;
| | - Ali Nokhodchi
- Pharmaceuics Research Laboratory, Arundel Building, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK
| |
Collapse
|
277
|
Wang X, Qiu Y, Wang M, Zhang C, Zhang T, Zhou H, Zhao W, Zhao W, Xia G, Shao R. Endocytosis and Organelle Targeting of Nanomedicines in Cancer Therapy. Int J Nanomedicine 2020; 15:9447-9467. [PMID: 33268987 PMCID: PMC7701161 DOI: 10.2147/ijn.s274289] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Nanomedicines (NMs) have played an increasing role in cancer therapy as carriers to efficiently deliver therapeutics into tumor cells. For this application, the uptake of NMs by tumor cells is usually a prerequisite to deliver the cargo to intracellular locations, which mainly relies on endocytosis. NMs can enter cells through a variety of endocytosis pathways. Different endocytosis pathways exhibit different intracellular trafficking routes and diverse subcellular localizations. Therefore, a comprehensive understanding of endocytosis mechanisms is necessary for increasing cellular entry efficiency and to trace the fate of NMs after internalization. This review focuses on endocytosis pathways of NMs in tumor cells, mainly including clathrin- and caveolae-mediated endocytosis pathways, involving effector molecules, expression difference of those molecules between normal and tumor cells, as well as the intracellular trafficking route of corresponding endocytosis vesicles. Then, the latest strategies for NMs to actively employ endocytosis are described, including improving tumor cellular uptake of NMs by receptor-mediated endocytosis, transporter-mediated endocytosis and enabling drug activity by changing intracellular routes. Finally, active targeting strategies towards intracellular organelles are also mentioned. This review will be helpful not only in explicating endocytosis and the trafficking process of NMs and elucidating anti-tumor mechanisms inside the cell but also in rendering new ideas for the design of highly efficacious and cancer-targeted NMs.
Collapse
Affiliation(s)
- Xiaowei Wang
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Yuhan Qiu
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Mengyan Wang
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Conghui Zhang
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Tianshu Zhang
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Huimin Zhou
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Wenxia Zhao
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Wuli Zhao
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Guimin Xia
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Rongguang Shao
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
278
|
Wang H, Ding T, Guan J, Liu X, Wang J, Jin P, Hou S, Lu W, Qian J, Wang W, Zhan C. Interrogation of Folic Acid-Functionalized Nanomedicines: The Regulatory Roles of Plasma Proteins Reexamined. ACS NANO 2020; 14:14779-14789. [PMID: 33084315 DOI: 10.1021/acsnano.0c02821] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Folic acid (FA) has been extensively exploited to facilitate targeted delivery of nanomedicines by recognizing the folate receptor-α (FR-α) overexpressed in many human cancers. Unfortunately, none have been approved for clinical use yet. Here we reveal that FA functionalization induces heavy natural IgM absorption on the liposomal surface, depriving FA of receptor recognition and accelerating complement activation in vivo. FA functionalization does not enhance distribution of liposomes in FR-α-overexpressed tumors in comparison to plain liposomes (without FA), but leads to aggravated capture of liposomes by macrophages in the tumor, liver, and spleen. In addition, FA-functionalized polymeric nanoparticles are also vulnerable to natural IgM absorption. This work highlights the pivotal roles of natural IgM in regulating in vivo delivery of FA-functionalized nanomedicines. Due to the prevalent association of immune disorders and varying levels of immunoglobulins with cancer patients, extraordinary cautiousness is urged for clinical translation of FA-enabled targeted delivery systems.
Collapse
Affiliation(s)
- Huan Wang
- Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, People's Republic of China
| | - Tianhao Ding
- Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, People's Republic of China
| | - Juan Guan
- Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, People's Republic of China
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, People's Republic of China
| | - Xia Liu
- Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, People's Republic of China
| | - Jing Wang
- Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Pengpeng Jin
- Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, People's Republic of China
- Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, People's Republic of China
| | - Shuangxing Hou
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, People's Republic of China
| | - Weiyue Lu
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, People's Republic of China
| | - Jun Qian
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, People's Republic of China
| | - Weiping Wang
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Changyou Zhan
- Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, People's Republic of China
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, People's Republic of China
- Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, People's Republic of China
| |
Collapse
|
279
|
Gorovits B. Current Considerations for Immunoglobulin Isotype Characterization of Antibody Response against Biotherapeutics. AAPS JOURNAL 2020; 22:144. [PMID: 33161459 DOI: 10.1208/s12248-020-00530-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022]
Abstract
The ability of biotherapeutics to induce immune response in patients has been broadly accepted. Humoral immune response to biotherapeutics is expected to be polyclonal in nature with a high degree of diversity, including treatment-induced anti-drug antibodies (ADA) immunoglobulin isotype composition. Therapeutics with strong potential to induce immunity may produce a T cell-dependent response resulting in a gradual transition from initial IgM based to mature, IgG-based ADAs. Immunoglobulin class switch and transition to high affinity IgG1 and IgG4 antibodies were linked to a reduced drug efficacy, accelerated clearance, development of drug neutralizing antibodies, and modulation of hypersensitivity reaction rates. Examples presented herein demonstrate that understanding of isotype composition of ADA response can be highly important to predict future of disease progression. Isotype characterization of ADA response can be viewed highly useful, particularly for high immunogenicity risk biotherapeutics although may be less relevant or used as a research tool only for medium and low immunogenicity risk level therapeutics. Isotype-specific characteristics, methods of detection, and several case studies are presented herein.
Collapse
|
280
|
Affandi AJ, Grabowska J, Olesek K, Lopez Venegas M, Barbaria A, Rodríguez E, Mulder PPG, Pijffers HJ, Ambrosini M, Kalay H, O'Toole T, Zwart ES, Kazemier G, Nazmi K, Bikker FJ, Stöckl J, van den Eertwegh AJM, de Gruijl TD, Storm G, van Kooyk Y, den Haan JMM. Selective tumor antigen vaccine delivery to human CD169 + antigen-presenting cells using ganglioside-liposomes. Proc Natl Acad Sci U S A 2020; 117:27528-27539. [PMID: 33067394 PMCID: PMC7959579 DOI: 10.1073/pnas.2006186117] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Priming of CD8+ T cells by dendritic cells (DCs) is crucial for the generation of effective antitumor immune responses. Here, we describe a liposomal vaccine carrier that delivers tumor antigens to human CD169/Siglec-1+ antigen-presenting cells using gangliosides as targeting ligands. Ganglioside-liposomes specifically bound to CD169 and were internalized by in vitro-generated monocyte-derived DCs (moDCs) and macrophages and by ex vivo-isolated splenic macrophages in a CD169-dependent manner. In blood, high-dimensional reduction analysis revealed that ganglioside-liposomes specifically targeted CD14+ CD169+ monocytes and Axl+ CD169+ DCs. Liposomal codelivery of tumor antigen and Toll-like receptor ligand to CD169+ moDCs and Axl+ CD169+ DCs led to cytokine production and robust cross-presentation and activation of tumor antigen-specific CD8+ T cells. Finally, Axl+ CD169+ DCs were present in cancer patients and efficiently captured ganglioside-liposomes. Our findings demonstrate a nanovaccine platform targeting CD169+ DCs to drive antitumor T cell responses.
Collapse
Affiliation(s)
- Alsya J Affandi
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Joanna Grabowska
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Katarzyna Olesek
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Miguel Lopez Venegas
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- DC4U, 3621 ZA Breukelen, The Netherlands
| | - Arnaud Barbaria
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Ernesto Rodríguez
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Patrick P G Mulder
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Helen J Pijffers
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Martino Ambrosini
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Hakan Kalay
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Tom O'Toole
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Eline S Zwart
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Geert Kazemier
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Johannes Stöckl
- Institute of Immunology, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Alfons J M van den Eertwegh
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3508 TB Utrecht, The Netherlands
- Department of Biomaterials, Science and Technology, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- DC4U, 3621 ZA Breukelen, The Netherlands
| | - Joke M M den Haan
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands;
| |
Collapse
|
281
|
Wang X, Li Y, Wang D, Wang X, Yuan W, Zhao W, Xia G. Evaluation of antitumor efficacy of folate-poly(2-ethyl-2-oxazoline)-distearoyl phosphatidyl ethanolamine based liposome. Pharm Dev Technol 2020; 26:110-118. [PMID: 33104406 DOI: 10.1080/10837450.2020.1842885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This study aims to explore and evaluate the antitumor efficacy of doxorubicin (DOX)-loaded liposomes containing the novel tri-block polymer folate-poly (2-ethyl-2-oxazoline)-distearoyl phosphatidyl ethanolamine (F-PEOz-DSPE), compared with folate-polyethylene glycol-distearoyl phosphatidyl ethanolamine (F-PEG-DSPE) to offer an alternative for PEG decorated carriers. PEOz, a pH-sensitive polymer, exhibits similar solubility and segmental flexibility to PEG. In our previous study, PEOz was employed to an F-PEOz-DSPE which was segmentally similar to F-PEG-DSPE and exhibited selective targeting and pH-sensitivity in tumor cells. In this work, DOX-loaded liposomes containing F-PEOz-DSPE (F-PEOz liposome) or F-PEG-DSPE (F-PEG liposome) were prepared. In vivo/vitro antitumor efficacy and biodistribution were compared between the two liposomes. F-PEOz liposome showed higher in vitro antitumor activity and significantly stronger inhibition of tumor growth in HeLa tumor-bearing nude mice (tumor inhibition rate, 81.20 vs 52.99% with the treatment of 9 mg/kg DOX-loaded F-PEOz liposome/F-PEG liposome) and much less toxicity than free DOX. In vivo fluorescence imaging experiment confirmed that F-PEOz liposome accumulated much more than F-PEG liposome in tumor. Based on the above, F-PEOz liposome may be a promising carrier in tumor chemotherapy to achieve better therapeutic efficacy.
Collapse
Affiliation(s)
- Xiaowei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Yunfei Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Dan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Xuelei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Wei Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Wuli Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Guimin Xia
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
282
|
Yoshie K, Yada S, Ando S, Ishihara K. Effects of inner polarity and viscosity of amphiphilic phospholipid polymer aggregates on the solubility enhancement of poorly water-soluble drugs. Colloids Surf B Biointerfaces 2020; 195:111215. [DOI: 10.1016/j.colsurfb.2020.111215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 02/05/2023]
|
283
|
|
284
|
Papini E, Tavano R, Mancin F. Opsonins and Dysopsonins of Nanoparticles: Facts, Concepts, and Methodological Guidelines. Front Immunol 2020; 11:567365. [PMID: 33154748 PMCID: PMC7587406 DOI: 10.3389/fimmu.2020.567365] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/25/2020] [Indexed: 11/13/2022] Open
Abstract
Understanding the effects mediated by a set of nanoparticle (NP)-bound host biomolecules, often indicated with the umbrella term of NP corona, is essential in nanomedicine, nanopharmacology, and nanotoxicology. Among the NP-adsorbed proteome, some factors mediate cell binding, endocytosis, and clearing by macrophages and other phagocytes (opsonins), while some others display few affinities for the cell surface (dysopsonins). The functional mapping of opsonins and dysopsonins is instrumental to design long-circulating and nanotoxicologically safe next-generation nanotheranostics. In this review, we critically analyze functional data identifying specific proteins with opsonin or dysopsonin properties. Special attention is dedicated to the following: (1) the simplicity or complexity of the NP proteome and its modulation, (2) the role of specific host proteins in mediating the stealth properties of uncoated or polymer-coated NPs, and (3) the ability of the innate immune system, and, in particular, of the complement proteins, to mediate NP clearance by phagocytes. Emerging species-specific peculiarities, differentiating humans from preclinical animal models (the murine especially), are highlighted throughout this overview. The operative definition of opsonin and dysopsonin and the measurement schemes to assess their in vitro efficacy is critically re-examined. This provides a shared and unbiased approach useful for NP opsonin and dysopsonin systematic identification.
Collapse
Affiliation(s)
- Emanuele Papini
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Centre for Innovative Biotechnological Research, University of Padua, Padua, Italy
| | - Regina Tavano
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Centre for Innovative Biotechnological Research, University of Padua, Padua, Italy
| | - Fabrizio Mancin
- Department of Chemical Sciences, University of Padua, Padua, Italy
| |
Collapse
|
285
|
McSweeney MD, Shen L, DeWalle AC, Joiner JB, Ciociola EC, Raghuwanshi D, Macauley MS, Lai SK. Pre-treatment with high molecular weight free PEG effectively suppresses anti-PEG antibody induction by PEG-liposomes in mice. J Control Release 2020; 329:774-781. [PMID: 33038448 DOI: 10.1016/j.jconrel.2020.10.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
Immune responses against polyethylene glycol (PEG) can lead to the rapid clearance of PEGylated drugs and are associated with increased risk of serious adverse events such as infusion reactions and anaphylaxis. Although select PEGylated therapeutics can induce anti-PEG antibodies (APA), there is currently no readily deployable strategy to mitigate their negative effects. Given the large number of PEGylated therapeutics that are either FDA-approved or in clinical development, methods that suppress APA induction to ensure the safety and efficacy of PEGylated drugs in patients would be a valuable clinical tool. We previously showed that infusion of high molecular weight (MW) free PEG can safely and effectively restore the circulation of PEG liposomes in animals with high pre-existing titers of APA, without stimulating additional APA production. Here, we explored the effectiveness of prophylaxis with free PEG or tolerogenic PEGylated liposomes as a strategy to reduce the amount of APA induced by subsequently administered PEGylated liposomes. Surprisingly, we found that a single administration of free PEG alone was capable of markedly reducing the APA response to PEG-liposomes for ~2 months; the effectiveness was comparable to, and frequently exceeded, interventions with different tolerogenic PEG-liposomes. These results support further investigations of free PEG prophylaxis as a potential strategy to ameliorate the APA response to sensitizing PEGylated therapeutics.
Collapse
Affiliation(s)
- Morgan D McSweeney
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina - Chapel Hill, North Carolina, USA.
| | - Limei Shen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina - Chapel Hill, North Carolina, USA.
| | - Alexander C DeWalle
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina - Chapel Hill, North Carolina, USA.
| | - Jordan B Joiner
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina - Chapel Hill, North Carolina, USA.
| | - Elizabeth C Ciociola
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina - Chapel Hill, North Carolina, USA.
| | - Dharmendra Raghuwanshi
- Department of Chemistry, Department of Medical Microbiology and Immunology, University of Alberta, USA.
| | - Matthew S Macauley
- Department of Chemistry, Department of Medical Microbiology and Immunology, University of Alberta, USA.
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina - Chapel Hill, North Carolina, USA; UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina - Chapel Hill, North Carolina, USA; Department of Microbiology and Immunology, School of Medicine, University of North Carolina - Chapel Hill, North Carolina, USA.
| |
Collapse
|
286
|
Valissery P, Thapa R, Singh J, Gaur D, Bhattacharya J, Singh AP, Dhar SK. Potent in vivo antimalarial activity of water-soluble artemisinin nano-preparations. RSC Adv 2020; 10:36201-36211. [PMID: 35517081 PMCID: PMC9057047 DOI: 10.1039/d0ra05597b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
Artemisinin is a remarkable compound whose derivatives and combinations with multiple drugs have been utilized at the forefront of malaria treatment. However, the inherent issues of the parent compound such as poor bioavailability, short serum half-life, and high first-pass metabolism partially limit further applications of this drug. In this study, we enhanced the aqueous phase solubility of artemisinin by encapsulating it in two nanocarriers based on the polymer polycaprolactone (ART-PCL) and lipid-based Large Unilamellar Vesicles (ART-LIPO) respectively. Both nanoformulations exhibit in vitro parasite killing activity against Plasmodium falciparum with the ART-LIPO performing at comparable efficacy to the control drug solubilized in ethanol. These water-soluble formulations showed potent in vivo antimalarial activity as well in the mouse model of malaria at equivalent doses of the parent drug. Additionally, the artemisinin-PCL nanoformulation used in combination with either pyrimethamine or chloroquine increased the survival of the Plasmodium berghei infected mice for more than 34 days and effectively cured the mice of the infection. We highlight the potential for polymer and liposome-based nanocarriers in improving not only the aqueous phase solubility of artemisinin but also concomitantly retaining its therapeutic efficacy in vivo as well.
Collapse
Affiliation(s)
- Praveesh Valissery
- Special Centre for Molecular Medicine, Jawaharlal Nehru University New Delhi 110067 India
| | - Roshni Thapa
- Special Centre for Molecular Medicine, Jawaharlal Nehru University New Delhi 110067 India
| | - Jyoti Singh
- National Institute of Immunology New Delhi 110067 India
| | - Deepak Gaur
- School of Biotechnology, Jawaharlal Nehru University New Delhi 110067 India
| | | | | | - Suman Kumar Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University New Delhi 110067 India
| |
Collapse
|
287
|
Alavi M, Webster TJ. Nano liposomal and cubosomal formulations with platinum-based anticancer agents: therapeutic advances and challenges. Nanomedicine (Lond) 2020; 15:2399-2410. [PMID: 32945246 DOI: 10.2217/nnm-2020-0199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nephrotoxicity, neurotoxicity and multidrug resistance in tumor cells can result from platinum-based anticancer (PBA) agents which can be reduced by nano formulations. Recently, novel formulations based on liposomes and cubosomes have been described as efficient strategies to overcome nephrotoxicity, ototoxicity, neurotoxicity, cardiotoxicity, hematological toxicities, hepatotoxicity and gastrointestinal toxicity as well as multidrug resistance. The co-delivery of anticancer agents concomitant with PBAs via biocompatible and biodegradable smart liposomes and cubosomes can augment therapeutic results of chemotherapy as well as radiotherapy owing to their high accessibility of surface and internal modification. For this purpose, surface, bilayer or core sections of these formulations can be functionalized by pure PBAs or modified PBAs. In this review, recent significant advances and challenges related to various liposomal and cubosomal formulations of PBA are presented in order to emphasize suitable formulations for anticancer applications with critical thoughts provided on how the field can progress.
Collapse
Affiliation(s)
- Mehran Alavi
- Nanobiotechnology Laboratory, Biology Department, Faculty of Science, Razi University, Kermanshah, Iran
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
288
|
Abstract
Nanoparticles from natural and anthropogenic sources are abundant in the environment, thus human exposure to nanoparticles is inevitable. Due to this constant exposure, it is critically important to understand the potential acute and chronic adverse effects that nanoparticles may cause to humans. In this review, we explore and highlight the current state of nanotoxicology research with a focus on mechanistic understanding of nanoparticle toxicity at organ, tissue, cell, and biomolecular levels. We discuss nanotoxicity mechanisms, including generation of reactive oxygen species, nanoparticle disintegration, modulation of cell signaling pathways, protein corona formation, and poly(ethylene glycol)-mediated immunogenicity. We conclude with a perspective on potential approaches to advance current understanding of nanoparticle toxicity. Such improved understanding may lead to mitigation strategies that could enable safe application of nanoparticles in humans. Advances in nanotoxicity research will ultimately inform efforts to establish standardized regulatory frameworks with the goal of fully exploiting the potential of nanotechnology while minimizing harm to humans.
Collapse
Affiliation(s)
- Wen Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, USA;
| | - Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, USA;
| | - Evan M Mettenbrink
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, USA;
| | - Paul L DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, USA; .,Institute for Biomedical Engineering, Science, and Technology (IBEST), Norman, Oklahoma 73019, USA.,Stephenson Cancer Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
289
|
PEG shedding-rate-dependent blood clearance of PEGylated lipid nanoparticles in mice: Faster PEG shedding attenuates anti-PEG IgM production. Int J Pharm 2020; 588:119792. [PMID: 32827675 DOI: 10.1016/j.ijpharm.2020.119792] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/30/2020] [Accepted: 08/17/2020] [Indexed: 01/28/2023]
Abstract
PEGylation-modification with polyethylene glycol (PEG)-is useful for stabilizing lipid nanoparticles (LNPs). However, such PEGylation can prevent small interfering RNA (siRNA) encapsulated in LNPs from exerting its gene-silencing effects by disrupting the interaction of LNPs with target cells and by inducing the accelerated blood clearance phenomenon via anti-PEG IgM. PEG-lipids with short acyl chains can be used to address these issues because they are quickly shed from LNPs after administration; however, there are few reports on the relationships among PEG shedding rate, anti-PEG IgM production, and the gene-silencing activity of siRNA upon repeated LNP administration. Here, in mice, we found that LNPs conjugated to a fast-shedding PEG-lipid (short acyl chain) induced less anti-PEG IgM compared with LNPs conjugated to a slow-shedding PEG-lipid (long acyl chain). Moreover, pretreatment of mice with LNPs conjugated to the slow-shedding PEG-lipid caused loss of RNA interference activity after subsequent LNP administration because the payload siRNA was delivered primarily to Kupffer cells rather than to hepatocytes. Together, these findings imply that manipulating PEG shedding rate and anti-PEG antibody production is enormously important in the development of RNA interference-based therapeutics utilizing LNP technology.
Collapse
|
290
|
Gabizon A, Szebeni J. Complement Activation: A Potential Threat on the Safety of Poly(ethylene glycol)-Coated Nanomedicines. ACS NANO 2020; 14:7682-7688. [PMID: 32643376 DOI: 10.1021/acsnano.0c03648] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In this issue of ACS Nano, Chen et al. provide in vitro and in vivo evidence for monoclonal anti-poly(ethylene glycol) (anti-PEG) antibody-triggered, complement terminal complex-mediated damage to PEGylated liposomal doxorubicin, entailing the release of the encapsulated drug from the vesicles. These results reveal a new dimension of the potential damage of anti-PEG antibody-mediated complement activation on PEGylated nanomedicines in addition to previous observations on infusion hypersensitivity reactions and the accelerated blood clearance effect. The possibility of a destructive attack of the complement system on the liposome drug carrier may have safety implications in patients displaying high levels of preformed anti-PEG antibodies. In this Perspective, we summarize the experimental and clinical data highlighting the relationships among the above adverse immune phenomena and the options available for reducing the risk of immune damage caused by PEGylated nanomedicines.
Collapse
Affiliation(s)
- Alberto Gabizon
- Nano-oncology Research Center, Shaare Zedek Medical Center and The Hebrew University-Faculty of Medicine, Jerusalem 9103102, Israel
- Lipomedix Pharmaceuticals Ltd., Jerusalem 9139102, Israel
| | - Janos Szebeni
- Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University, Budapest 1089, Hungary
- Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, Miskolc University, Miskolc 3515, Hungary
- SeroScience Ltd., Budapest 1125, Hungary
| |
Collapse
|
291
|
Wei XQ, Ba K. Construction a Long-Circulating Delivery System of Liposomal Curcumin by Coating Albumin. ACS OMEGA 2020; 5:16502-16509. [PMID: 32685814 PMCID: PMC7364587 DOI: 10.1021/acsomega.0c00930] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/02/2020] [Indexed: 05/11/2023]
Abstract
Although the bioavailability and stability of curcumin can be greatly improved by liposomes encapsulation, its application is still limited due to the short circulating time. In this present work, we aim to construct a long-circulating delivery system of liposomal curcumin (Cur-Lips) by coating bovine serum albumin (BSA), namely, BSA-coated liposomal curcumin (BSA-Cur-Lips). The effects of coating albumin on the physicochemical properties of Cur-Lips were investigated. It was found that BSA-Cur-Lips was more spherical, more homogeneous in size, and significantly larger than Cur-Lips. Combining sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Coomassie bright blue staining, and X-ray photoelectron spectroscopy analysis (XPS), we confirmed that albumin molecules were stably located on the surface of BSA-Cur-Lips. In addition, the impacts of the coating albumin on the Cur-Lips release and phagocytosis by mouse macrophages Raw264.7 in vitro were investigated. We found that no significant initial burst drug release effect was observed for both Cur-Lips and BSA-Cur-Lips and the presence of albumin can enhance the liposome structure stability and slow down the release of Cur. More importantly, the macrophage phagocytosis of Cur-Lips was significantly reduced after coating albumin. In conclusion, coating albumin is a promising approach for developing a long-circulating delivery system of liposomal curcumin, and its properties including low phagocytosis, slow drug release, enhanced stability, and nontoxicity give this system great prospects for practical use.
Collapse
|
292
|
Hepatosplenic phagocytic cells indirectly contribute to anti-PEG IgM production in the accelerated blood clearance (ABC) phenomenon against PEGylated liposomes: Appearance of an unexplained mechanism in the ABC phenomenon. J Control Release 2020; 323:102-109. [DOI: 10.1016/j.jconrel.2020.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 01/02/2023]
|
293
|
Pegfilgrastim (PEG-G-CSF) induces anti-PEG IgM in a dose dependent manner and causes the accelerated blood clearance (ABC) phenomenon upon repeated administration in mice. Eur J Pharm Biopharm 2020; 152:56-62. [DOI: 10.1016/j.ejpb.2020.04.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/25/2020] [Accepted: 04/25/2020] [Indexed: 11/21/2022]
|
294
|
Dirauf M, Grune C, Weber C, Schubert US, Fischer D. Poly(ethylene glycol) or poly(2-ethyl-2-oxazoline) – A systematic comparison of PLGA nanoparticles from the bottom up. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
295
|
Atrafi F, Dumez H, Mathijssen RHJ, Menke van der Houven van Oordt CW, Rijcken CJF, Hanssen R, Eskens FALM, Schöffski P. A phase I dose-escalation and pharmacokinetic study of a micellar nanoparticle with entrapped docetaxel (CPC634) in patients with advanced solid tumours. J Control Release 2020; 325:191-197. [PMID: 32590047 DOI: 10.1016/j.jconrel.2020.06.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/13/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND CPC634 is docetaxel entrapped in core-cross linked polymeric micelles. In preclinical studies, CPC634 demonstrated enhanced pharmacokinetics and improved therapeutic index. This phase I dose escalation study is the first-in-human study with CPC634. METHODS adult patients with advanced solid tumours received CPC634 intravenously either 3-weekly (Q3W) (part 1, dose range 15-100 mg/m2), 2-weekly (Q2W) (part 2, 45 mg/m2) or Q3W with dexamethasone premedication (part 3, 60 mg/m2). RESULTS thirty-three patients were enrolled. Skin toxicity was dose limiting (DLT) at ≥60 mg/m2 in part 1 and at 45 mg/m2 in part 2 and was the most common CPC634 related grade ≥ 3 adverse event (24%). With dexamethasone premedication no DLTs were observed at 60 mg/m2 Q3W. CPC634 exhibited a dose-proportional pharmacokinetic profile. At 60 mg/m2, the plasma area under the curve was 4067.5 ± 2974.0 ng/h/mL and the peak plasma level 217.3 ± 91.9 ng/mL with a half-life of 39.7 ± 9.4 h for released docetaxel. CONCLUSION CPC634 could be administered safely upon pretreatment with dexamethasone. Cumulative skin toxicity was the main DLT. The recommended phase 2 dose was determined at 60 mg/m2 Q3W with dexamethasone premedication.
Collapse
Affiliation(s)
- Florence Atrafi
- Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands.
| | - Herlinde Dumez
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | | | | | - Rob Hanssen
- Cristal Therapeutics, Maastricht, the Netherlands
| | - Ferry A L M Eskens
- Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Patrick Schöffski
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
296
|
Elsadek NE, Hondo E, Shimizu T, Takata H, Abu Lila AS, Emam SE, Ando H, Ishima Y, Ishida T. Impact of Pre-Existing or Induced Anti-PEG IgM on the Pharmacokinetics of Peginterferon Alfa-2a (Pegasys) in Mice. Mol Pharm 2020; 17:2964-2970. [DOI: 10.1021/acs.molpharmaceut.0c00366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Nehal E. Elsadek
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505 Japan
| | - Eri Hondo
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505 Japan
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505 Japan
| | - Haruka Takata
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505 Japan
| | - Amr S. Abu Lila
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519 Egypt
- Department of Pharmaceutics, College of Pharmacy, Hail University, Hail 81442 Saudi Arabia
| | - Sherif E. Emam
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505 Japan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519 Egypt
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505 Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505 Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505 Japan
| |
Collapse
|
297
|
Oh Y, Niijima H, Kawahara Y, Hayase T, Shimizu T, Ishida T, Morimoto A. An immediate hypersensitivity reaction induced by PEGylated recombinant factor VIII. Haemophilia 2020; 26:e236-e239. [PMID: 32497373 DOI: 10.1111/hae.14048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 01/31/2023]
Affiliation(s)
- Yukiko Oh
- Department of Pediatrics, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Hitomi Niijima
- Department of Pediatrics, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Yuta Kawahara
- Department of Pediatrics, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Tomomi Hayase
- Department of Pediatrics, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Akira Morimoto
- Department of Pediatrics, Jichi Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|
298
|
Fan M, Jiang M. Core-shell nanotherapeutics with leukocyte membrane camouflage for biomedical applications. J Drug Target 2020; 28:873-881. [DOI: 10.1080/1061186x.2020.1757102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mingliang Fan
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Minxing Jiang
- Department of Pediatrics, Maternity and Child Health Care of Zaozhuang, Zaozhuang, China
| |
Collapse
|
299
|
Valic MS, Halim M, Schimmer P, Zheng G. Guidelines for the experimental design of pharmacokinetic studies with nanomaterials in preclinical animal models. J Control Release 2020; 323:83-101. [PMID: 32278829 DOI: 10.1016/j.jconrel.2020.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 12/14/2022]
Abstract
A shared feature in the value proposition of every nanomaterial-based drug delivery systems is the desirable improvement in the disposition (or ADME) and pharmacokinetic profiles of the encapsulated drug being delivered. Remarkable progress has been made towards understanding the complex and multifactorial relationships between pharmacokinetic profiles and nanomaterial physicochemical properties, biological interactions, species physiology, etc. These advances have fuelled the rational design of numerous nanomaterials with long-circulation times and improved tissue accumulation (e.g., in tumours). Unfortunately, a central weakness in many of these research efforts has been the inconsistent and insufficient characterisation of the pharmacokinetic profiles of nanomaterials in scientific reporting-a problem affecting the majoirty of of contemporary nanomaterials literature and innovative nanomaterials in early stages of preclinical development especially. Given the significant role of pharmacokinetic assessments to serve as guideposts for deciding whether to continue with the preclinical development and clinical translation of drug delivery systems, the prevalence of poor pharmacokinetic characterisations in nanomaterials research is particularly alarming. A conspicuous problem in many reports is the inappropriate selection of experimental designs and methodologies for studying nanomaterial pharmacokinetics, the consequences of which are increased uncertainty over the accurate interpretation of reported pharmacokinetic data and diminished experimental reproducibility throughout the field. Thus, there is renewed interest in the establishment of consistent and comprehensive strategies for designing preclinical experiments to assess the pharmacokinetics of nanomaterials with diverse physicochemical properties. Towards this end, herein are proposed simple guidelines for the experimental design of pharmacokinetic studies with nanomaterials drawn from the best research practices, principle strategies, and important considerations used in industry for collecting pharmacokinetic data in preclinical animal models. Specifically, key experimental design factors in these studies are identified and examined in the context of nanomaterials for optimality, including blood sampling strategy and technique, sample allocation and sampling time window, test species selection, experimental sources of pharmacokinetic variability, etc. Methods for noninvasive imaging-derived pharmacokinetic assessments of theranostic nanomaterials are also explored with particular focus on emission tomography imaging modalities. Taken together, this review will provide nanomaterial researchers with practical knowledge and pragmatic recommendations for selecting the best designs and methodologies for assessing the pharmacokinetic profiles of their nanomaterials, and hopefully maximise the chances of translational success of these innovative products into humans.
Collapse
Affiliation(s)
- Michael S Valic
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, 101 College Street, Room 5-354, Toronto, Ontario M5G 1L7, Canada
| | - Michael Halim
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, 101 College Street, Room 5-354, Toronto, Ontario M5G 1L7, Canada
| | - Pamela Schimmer
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, 101 College Street, Room 5-354, Toronto, Ontario M5G 1L7, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, 101 College Street, Room 5-354, Toronto, Ontario M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Research Tower, Room 15-701, Toronto, Ontario M5G 1L7, Canada.
| |
Collapse
|
300
|
Son K, Ueda M, Taguchi K, Maruyama T, Takeoka S, Ito Y. Evasion of the accelerated blood clearance phenomenon by polysarcosine coating of liposomes. J Control Release 2020; 322:209-216. [PMID: 32194174 DOI: 10.1016/j.jconrel.2020.03.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/27/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023]
Abstract
Using polyethylene glycol (PEG) to functionalize liposomes improves their stealth properties and stability in blood. However, PEG is known to induce the accelerated blood clearance (ABC) phenomenon, which occurs for multiple doses owing to anti-PEG IgM being produced after the initial injection. In this study, as an alternative to PEG, polysarcosine (PSar) was selected owing to its low antigenicity and its highly dense chains with controllable lengths, similar to PEG. Furthermore, we directly evaluate the potential of PSar for avoiding the ABC phenomenon by comparing PSar with PEG on the same liposome platform, which has similar physicochemical properties such as hydrophobic region, membrane fluidity, and size. PEG- and PSar-liposomes were prepared and characterized for comparison. PSar-liposomes showed similar physicochemical properties to PEG-liposomes in terms of size control, zeta potential, membrane polarity, and fluidity; however, ELISA results showed noticeably lower levels and faster production speeds of both IgM and IgG for PSar-liposomes than for PEG-liposomes. In addition, a pharmacokinetics experiment with multiple injections showed that PSar-PE coating of liposomes may help to circumvent the ABC phenomenon.
Collapse
Affiliation(s)
- Kon Son
- RIKEN Cluster for Pioneering Research (CPR), Japan; School of Advanced Science and Engineering, Waseda University, Japan.
| | - Motoki Ueda
- RIKEN Cluster for Pioneering Research (CPR), Japan; RIKEN Center for Emergent Matter Science (CEMS), Japan.
| | - Kazuaki Taguchi
- Faculty of Pharmacy, Keio University, Japan; Faculty of Pharmaceutical Sciences, Sojo University, Japan.
| | - Toru Maruyama
- Graduate School of Pharmaceutical Science, Kumamoto University, Japan.
| | - Shinji Takeoka
- School of Advanced Science and Engineering, Waseda University, Japan.
| | - Yoshihiro Ito
- RIKEN Cluster for Pioneering Research (CPR), Japan; RIKEN Center for Emergent Matter Science (CEMS), Japan.
| |
Collapse
|