251
|
Eggler AL, Savinov SN. Chemical and biological mechanisms of phytochemical activation of Nrf2 and importance in disease prevention. RECENT ADVANCES IN PHYTOCHEMISTRY 2013; 43:121-155. [PMID: 26855455 DOI: 10.1007/978-3-319-00581-2_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Plants are an incredibly rich source of compounds that activate the Nrf2 transcription factor, leading to upregulation of a battery of cytoprotective genes. This perspective surveys established and proposed molecular mechanisms of Nrf2 activation by phytochemicals with a special emphasis on a common chemical property of Nrf2 activators: the ability as "soft" electrophiles to modify cellular thiols, either directly or as oxidized biotransformants. In addition, the role of reactive oxygen/nitrogen species as secondary messengers in Nrf2 activation is discussed. While the uniquely reactive C151 of Keap1, an Nrf2 repressor protein, is highlighted as a key target of cytoprotective phytochemicals, also reviewed are other stress-responsive proteins, including kinases, which play non-redundant roles in the activation of Nrf2 by plant-derived agents. Finally, the perspective presents two key factors accounting for the enhanced therapeutic windows of effective phytochemical activators of the Keap1-Nrf2 axis: enhanced selectivity toward sensor cysteines and reversibility of addition to thiolate molecules.
Collapse
Affiliation(s)
- Aimee L Eggler
- Department of Chemistry, Villanova University, 215a Mendel Science Hall, 800 Lancaster Avenue, Villanova, PA 19085
| | - Sergey N Savinov
- Purdue University Center for Cancer Research, West Lafayette, Indiana, 47907
| |
Collapse
|
252
|
Frendo P, Baldacci-Cresp F, Benyamina SM, Puppo A. Glutathione and plant response to the biotic environment. Free Radic Biol Med 2013; 65:724-730. [PMID: 23912161 DOI: 10.1016/j.freeradbiomed.2013.07.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 07/22/2013] [Accepted: 07/23/2013] [Indexed: 11/22/2022]
Abstract
Glutathione (GSH) is a major antioxidant molecule in plants. It is involved in regulating plant development and responses to the abiotic and biotic environment. In recent years, numerous reports have clarified the molecular processes involving GSH in plant-microbe interactions. In this review, we summarize recent studies, highlighting the roles of GSH in interactions between plants and microbes, whether pathogenic or beneficial to plants.
Collapse
Affiliation(s)
- Pierre Frendo
- Université de Nice-Sophia Antipolis, Institut Sophia Agrobiotech, F-06903 Sophia Antipolis Cedex, France; INRA UMR 1355, Institut Sophia Agrobiotech, F-06903 Sophia Antipolis Cedex, France; CNRS UMR 7254, Institut Sophia Agrobiotech, F-06903 Sophia Antipolis Cedex, France.
| | - Fabien Baldacci-Cresp
- Université de Nice-Sophia Antipolis, Institut Sophia Agrobiotech, F-06903 Sophia Antipolis Cedex, France; INRA UMR 1355, Institut Sophia Agrobiotech, F-06903 Sophia Antipolis Cedex, France; CNRS UMR 7254, Institut Sophia Agrobiotech, F-06903 Sophia Antipolis Cedex, France
| | - Sofiane M Benyamina
- Université de Nice-Sophia Antipolis, Institut Sophia Agrobiotech, F-06903 Sophia Antipolis Cedex, France; INRA UMR 1355, Institut Sophia Agrobiotech, F-06903 Sophia Antipolis Cedex, France; CNRS UMR 7254, Institut Sophia Agrobiotech, F-06903 Sophia Antipolis Cedex, France
| | - Alain Puppo
- Université de Nice-Sophia Antipolis, Institut Sophia Agrobiotech, F-06903 Sophia Antipolis Cedex, France; INRA UMR 1355, Institut Sophia Agrobiotech, F-06903 Sophia Antipolis Cedex, France; CNRS UMR 7254, Institut Sophia Agrobiotech, F-06903 Sophia Antipolis Cedex, France
| |
Collapse
|
253
|
Timme-Laragy AR, Goldstone JV, Imhoff BR, Stegeman JJ, Hahn ME, Hansen JM. Glutathione redox dynamics and expression of glutathione-related genes in the developing embryo. Free Radic Biol Med 2013; 65:89-101. [PMID: 23770340 PMCID: PMC3823629 DOI: 10.1016/j.freeradbiomed.2013.06.011] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/14/2013] [Accepted: 06/05/2013] [Indexed: 01/18/2023]
Abstract
Embryonic development involves dramatic changes in cell proliferation and differentiation that must be highly coordinated and tightly regulated. Cellular redox balance is critical for cell fate decisions, but it is susceptible to disruption by endogenous and exogenous sources of oxidative stress. The most abundant endogenous nonprotein antioxidant defense molecule is the tripeptide glutathione (γ-glutamylcysteinylglycine, GSH), but the ontogeny of GSH concentration and redox state during early life stages is poorly understood. Here, we describe the GSH redox dynamics during embryonic and early larval development (0-5 days postfertilization) in the zebrafish (Danio rerio), a model vertebrate embryo. We measured reduced and oxidized glutathione using HPLC and calculated the whole embryo total glutathione (GSHT) concentrations and redox potentials (Eh) over 0-120 h of zebrafish development (including mature oocytes, fertilization, midblastula transition, gastrulation, somitogenesis, pharyngula, prehatch embryos, and hatched eleutheroembryos). GSHT concentration doubled between 12h postfertilization (hpf) and hatching. The GSH Eh increased, becoming more oxidizing during the first 12h, and then oscillated around -190 mV through organogenesis, followed by a rapid change, associated with hatching, to a more negative (more reducing) Eh (-220 mV). After hatching, Eh stabilized and remained steady through 120 hpf. The dynamic changes in GSH redox status and concentration defined discrete windows of development: primary organogenesis, organ differentiation, and larval growth. We identified the set of zebrafish genes involved in the synthesis, utilization, and recycling of GSH, including several novel paralogs, and measured how expression of these genes changes during development. Ontogenic changes in the expression of GSH-related genes support the hypothesis that GSH redox state is tightly regulated early in development. This study provides a foundation for understanding the redox regulation of developmental signaling and investigating the effects of oxidative stress during embryogenesis.
Collapse
Affiliation(s)
- Alicia R. Timme-Laragy
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
- Division of Environmental Health, Department of Public Health, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Jared V. Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Barry R. Imhoff
- Division of Pulmonary, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - John J. Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Jason M. Hansen
- Division of Pulmonary, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
254
|
Michelet L, Zaffagnini M, Morisse S, Sparla F, Pérez-Pérez ME, Francia F, Danon A, Marchand CH, Fermani S, Trost P, Lemaire SD. Redox regulation of the Calvin-Benson cycle: something old, something new. FRONTIERS IN PLANT SCIENCE 2013; 4:470. [PMID: 24324475 PMCID: PMC3838966 DOI: 10.3389/fpls.2013.00470] [Citation(s) in RCA: 277] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/30/2013] [Indexed: 05/18/2023]
Abstract
Reversible redox post-translational modifications such as oxido-reduction of disulfide bonds, S-nitrosylation, and S-glutathionylation, play a prominent role in the regulation of cell metabolism and signaling in all organisms. These modifications are mainly controlled by members of the thioredoxin and glutaredoxin families. Early studies in photosynthetic organisms have identified the Calvin-Benson cycle, the photosynthetic pathway responsible for carbon assimilation, as a redox regulated process. Indeed, 4 out of 11 enzymes of the cycle were shown to have a low activity in the dark and to be activated in the light through thioredoxin-dependent reduction of regulatory disulfide bonds. The underlying molecular mechanisms were extensively studied at the biochemical and structural level. Unexpectedly, recent biochemical and proteomic studies have suggested that all enzymes of the cycle and several associated regulatory proteins may undergo redox regulation through multiple redox post-translational modifications including glutathionylation and nitrosylation. The aim of this review is to detail the well-established mechanisms of redox regulation of Calvin-Benson cycle enzymes as well as the most recent reports indicating that this pathway is tightly controlled by multiple interconnected redox post-translational modifications. This redox control is likely allowing fine tuning of the Calvin-Benson cycle required for adaptation to varying environmental conditions, especially during responses to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Laure Michelet
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie CurieParis, France
| | - Mirko Zaffagnini
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology (FaBiT), University of BolognaBologna, Italy
| | - Samuel Morisse
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie CurieParis, France
| | - Francesca Sparla
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology (FaBiT), University of BolognaBologna, Italy
| | - María Esther Pérez-Pérez
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie CurieParis, France
| | - Francesco Francia
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology (FaBiT), University of BolognaBologna, Italy
| | - Antoine Danon
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie CurieParis, France
| | - Christophe H. Marchand
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie CurieParis, France
| | - Simona Fermani
- Department of Chemistry “G. Ciamician”, University of BolognaBologna, Italy
| | - Paolo Trost
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology (FaBiT), University of BolognaBologna, Italy
| | - Stéphane D. Lemaire
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie CurieParis, France
| |
Collapse
|
255
|
Glutaredoxin regulates vascular development by reversible glutathionylation of sirtuin 1. Proc Natl Acad Sci U S A 2013; 110:20057-62. [PMID: 24277839 DOI: 10.1073/pnas.1313753110] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Embryonic development depends on complex and precisely orchestrated signaling pathways including specific reduction/oxidation cascades. Oxidoreductases of the thioredoxin family are key players conveying redox signals through reversible posttranslational modifications of protein thiols. The importance of this protein family during embryogenesis has recently been exemplified for glutaredoxin 2, a vertebrate-specific glutathione-disulfide oxidoreductase with a critical role for embryonic brain development. Here, we discovered an essential function of glutaredoxin 2 during vascular development. Confocal microscopy and time-lapse studies based on two-photon microscopy revealed that morpholino-based knockdown of glutaredoxin 2 in zebrafish, a model organism to study vertebrate embryogenesis, resulted in a delayed and disordered blood vessel network. We were able to show that formation of a functional vascular system requires glutaredoxin 2-dependent reversible S-glutathionylation of the NAD(+)-dependent protein deacetylase sirtuin 1. Using mass spectrometry, we identified a cysteine residue in the conserved catalytic region of sirtuin 1 as target for glutaredoxin 2-specific deglutathionylation. Thereby, glutaredoxin 2-mediated redox regulation controls enzymatic activity of sirtuin 1, a mechanism we found to be conserved between zebrafish and humans. These results link S-glutathionylation to vertebrate development and successful embryonic angiogenesis.
Collapse
|
256
|
Halloran M, Parakh S, Atkin JD. The role of s-nitrosylation and s-glutathionylation of protein disulphide isomerase in protein misfolding and neurodegeneration. Int J Cell Biol 2013; 2013:797914. [PMID: 24348565 PMCID: PMC3852308 DOI: 10.1155/2013/797914] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/19/2013] [Accepted: 09/02/2013] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases involve the progressive loss of neurons, and a pathological hallmark is the presence of abnormal inclusions containing misfolded proteins. Although the precise molecular mechanisms triggering neurodegeneration remain unclear, endoplasmic reticulum (ER) stress, elevated oxidative and nitrosative stress, and protein misfolding are important features in pathogenesis. Protein disulphide isomerase (PDI) is the prototype of a family of molecular chaperones and foldases upregulated during ER stress that are increasingly implicated in neurodegenerative diseases. PDI catalyzes the rearrangement and formation of disulphide bonds, thus facilitating protein folding, and in neurodegeneration may act to ameliorate the burden of protein misfolding. However, an aberrant posttranslational modification of PDI, S-nitrosylation, inhibits its protective function in these conditions. S-nitrosylation is a redox-mediated modification that regulates protein function by covalent addition of nitric oxide- (NO-) containing groups to cysteine residues. Here, we discuss the evidence for abnormal S-nitrosylation of PDI (SNO-PDI) in neurodegeneration and how this may be linked to another aberrant modification of PDI, S-glutathionylation. Understanding the role of aberrant S-nitrosylation/S-glutathionylation of PDI in the pathogenesis of neurodegenerative diseases may provide insights into novel therapeutic interventions in the future.
Collapse
Affiliation(s)
- M. Halloran
- Department of Neuroscience in the School of Psychological Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - S. Parakh
- Department of Biochemistry, La Trobe University, Bundoora, VIC 3086, Australia
| | - J. D. Atkin
- Department of Biochemistry, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
257
|
Hanschmann EM, Godoy JR, Berndt C, Hudemann C, Lillig CH. Thioredoxins, glutaredoxins, and peroxiredoxins--molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal 2013; 19:1539-605. [PMID: 23397885 PMCID: PMC3797455 DOI: 10.1089/ars.2012.4599] [Citation(s) in RCA: 507] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 02/01/2013] [Accepted: 02/07/2013] [Indexed: 12/19/2022]
Abstract
Thioredoxins (Trxs), glutaredoxins (Grxs), and peroxiredoxins (Prxs) have been characterized as electron donors, guards of the intracellular redox state, and "antioxidants". Today, these redox catalysts are increasingly recognized for their specific role in redox signaling. The number of publications published on the functions of these proteins continues to increase exponentially. The field is experiencing an exciting transformation, from looking at a general redox homeostasis and the pathological oxidative stress model to realizing redox changes as a part of localized, rapid, specific, and reversible redox-regulated signaling events. This review summarizes the almost 50 years of research on these proteins, focusing primarily on data from vertebrates and mammals. The role of Trx fold proteins in redox signaling is discussed by looking at reaction mechanisms, reversible oxidative post-translational modifications of proteins, and characterized interaction partners. On the basis of this analysis, the specific regulatory functions are exemplified for the cellular processes of apoptosis, proliferation, and iron metabolism. The importance of Trxs, Grxs, and Prxs for human health is addressed in the second part of this review, that is, their potential impact and functions in different cell types, tissues, and various pathological conditions.
Collapse
Affiliation(s)
- Eva-Maria Hanschmann
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| | - José Rodrigo Godoy
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Duesseldorf, Germany
| | - Christoph Hudemann
- Institute of Laboratory Medicine, Molecular Diagnostics, Philipps University, Marburg, Germany
| | - Christopher Horst Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| |
Collapse
|
258
|
Janssen-Heininger YMW, Nolin JD, Hoffman SM, van der Velden JL, Tully JE, Lahue KG, Abdalla ST, Chapman DG, Reynaert NL, van der Vliet A, Anathy V. Emerging mechanisms of glutathione-dependent chemistry in biology and disease. J Cell Biochem 2013; 114:1962-8. [PMID: 23554102 DOI: 10.1002/jcb.24551] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 03/14/2013] [Indexed: 01/18/2023]
Abstract
Glutathione has traditionally been considered as an antioxidant that protects cells against oxidative stress. Hence, the loss of reduced glutathione and formation of glutathione disulfide is considered a classical parameter of oxidative stress that is increased in diseases. Recent studies have emerged that demonstrate that glutathione plays a more direct role in biological and pathophysiological processes through covalent modification to reactive cysteines within proteins, a process known as S-glutathionylation. The formation of an S-glutathionylated moiety within the protein can lead to structural and functional modifications. Activation, inactivation, loss of function, and gain of function have all been attributed to S-glutathionylation. In pathophysiological settings, S-glutathionylation is tightly regulated. This perspective offers a concise overview of the emerging field of protein thiol redox modifications. We will also cover newly developed methodology to detect S-glutathionylation in situ, which will enable further discovery into the role of S-glutathionylation in biology and disease.
Collapse
|
259
|
Pastore A, Piemonte F. Protein glutathionylation in cardiovascular diseases. Int J Mol Sci 2013; 14:20845-76. [PMID: 24141185 PMCID: PMC3821647 DOI: 10.3390/ijms141020845] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/02/2013] [Accepted: 10/08/2013] [Indexed: 02/07/2023] Open
Abstract
The perturbation of thiol-disulfide homeostasis is an important consequence of many diseases, with redox signals implicated in several physio-pathological processes. A prevalent form of cysteine modification is the reversible formation of protein mixed disulfides with glutathione (S-glutathionylation). The abundance of glutathione in cells and the ready conversion of sulfenic acids to S-glutathione mixed disulfides supports the reversible protein S-glutathionylation as a common feature of redox signal transduction, able to regulate the activities of several redox sensitive proteins. In particular, protein S-glutathionylation is emerging as a critical signaling mechanism in cardiovascular diseases, because it regulates numerous physiological processes involved in cardiovascular homeostasis, including myocyte contraction, oxidative phosphorylation, protein synthesis, vasodilation, glycolytic metabolism and response to insulin. Thus, perturbations in protein glutathionylation status may contribute to the etiology of many cardiovascular diseases, such as myocardial infarction, cardiac hypertrophy and atherosclerosis. Various reports show the importance of oxidative cysteine modifications in modulating cardiovascular function. In this review, we illustrate tools and strategies to monitor protein S-glutathionylation and describe the proteins so far identified as glutathionylated in myocardial contraction, hypertrophy and inflammation.
Collapse
Affiliation(s)
- Anna Pastore
- Laboratory of Biochemistry, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; E-Mail:
| | - Fiorella Piemonte
- Unit of Neuromuscular and Neurodegenerative Diseases, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| |
Collapse
|
260
|
Gellert M, Venz S, Mitlöhner J, Cott C, Hanschmann EM, Lillig CH. Identification of a dithiol-disulfide switch in collapsin response mediator protein 2 (CRMP2) that is toggled in a model of neuronal differentiation. J Biol Chem 2013; 288:35117-25. [PMID: 24133216 DOI: 10.1074/jbc.m113.521443] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Vertebrate-specific glutaredoxin 2 (Grx2) is expressed in at least two isoforms, mitochondrial Grx2a and cytosolic Grx2c. We have previously shown that cytosolic Grx2 is essential for embryonic development of the brain. In particular, we identified collapsin response mediator protein 2 (CRMP2/DPYSL2), a mediator of the semaphorin-plexin signaling pathway, as redox-regulated target of Grx2c and demonstrated that this regulation is required for normal axonal outgrowth. In this study, we demonstrate the molecular mechanism of this regulation, a specific and reversible intermolecular Cys-504-Cys-504 dithiol-disulfide switch in homotetrameric CRMP2. This switch determines two conformations of the quaternary CRMP2 complex that controls axonal outgrowth and thus neuronal development.
Collapse
Affiliation(s)
- Manuela Gellert
- From the Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz-Arndt-University Greifswald, 17475 Greifswald, Germany and
| | | | | | | | | | | |
Collapse
|
261
|
Martínez-Ruiz A, Araújo IM, Izquierdo-Álvarez A, Hernansanz-Agustín P, Lamas S, Serrador JM. Specificity in S-nitrosylation: a short-range mechanism for NO signaling? Antioxid Redox Signal 2013. [PMID: 23157283 DOI: 10.1089/ars.2012.5066[epubaheadofprint]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
SIGNIFICANCE Nitric oxide (NO) classical and less classical signaling mechanisms (through interaction with soluble guanylate cyclase and cytochrome c oxidase, respectively) operate through direct binding of NO to protein metal centers, and rely on diffusibility of the NO molecule. S-Nitrosylation, a covalent post-translational modification of protein cysteines, has emerged as a paradigm of nonclassical NO signaling. RECENT ADVANCES Several nonenzymatic mechanisms for S-nitrosylation formation and destruction have been described. Enzymatic mechanisms for transnitrosylation and denitrosylation have been also studied as regulators of the modification of specific subsets of proteins. The advancement of modification-specific proteomic methodologies has allowed progress in the study of diverse S-nitrosoproteomes, raising clues and questions about the parameters for determining the protein specificity of the modification. CRITICAL ISSUES We propose that S-nitrosylation is mainly a short-range mechanism of NO signaling, exerted in a relatively limited range of action around the NO sources, and tightly related to the very controlled regulation of subcellular localization of nitric oxide synthases. We review the nonenzymatic and enzymatic mechanisms that support this concept, as well as physiological examples of mammalian systems that illustrate well the precise compartmentalization of S-nitrosylation. FUTURE DIRECTIONS Individual and proteomic studies of protein S-nitrosylation-based signaling should take into account the subcellular localization in order to gain further insight into the functional role of this modification in (patho)physiological settings.
Collapse
Affiliation(s)
- Antonio Martínez-Ruiz
- 1 Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IP) , Madrid, Spain
| | | | | | | | | | | |
Collapse
|
262
|
Martínez-Ruiz A, Araújo IM, Izquierdo-Álvarez A, Hernansanz-Agustín P, Lamas S, Serrador JM. Specificity in S-nitrosylation: a short-range mechanism for NO signaling? Antioxid Redox Signal 2013; 19:1220-35. [PMID: 23157283 PMCID: PMC3785806 DOI: 10.1089/ars.2012.5066] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Nitric oxide (NO) classical and less classical signaling mechanisms (through interaction with soluble guanylate cyclase and cytochrome c oxidase, respectively) operate through direct binding of NO to protein metal centers, and rely on diffusibility of the NO molecule. S-Nitrosylation, a covalent post-translational modification of protein cysteines, has emerged as a paradigm of nonclassical NO signaling. RECENT ADVANCES Several nonenzymatic mechanisms for S-nitrosylation formation and destruction have been described. Enzymatic mechanisms for transnitrosylation and denitrosylation have been also studied as regulators of the modification of specific subsets of proteins. The advancement of modification-specific proteomic methodologies has allowed progress in the study of diverse S-nitrosoproteomes, raising clues and questions about the parameters for determining the protein specificity of the modification. CRITICAL ISSUES We propose that S-nitrosylation is mainly a short-range mechanism of NO signaling, exerted in a relatively limited range of action around the NO sources, and tightly related to the very controlled regulation of subcellular localization of nitric oxide synthases. We review the nonenzymatic and enzymatic mechanisms that support this concept, as well as physiological examples of mammalian systems that illustrate well the precise compartmentalization of S-nitrosylation. FUTURE DIRECTIONS Individual and proteomic studies of protein S-nitrosylation-based signaling should take into account the subcellular localization in order to gain further insight into the functional role of this modification in (patho)physiological settings.
Collapse
Affiliation(s)
- Antonio Martínez-Ruiz
- 1 Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IP) , Madrid, Spain
| | | | | | | | | | | |
Collapse
|
263
|
Kowalczyk-Pachel D, Chwatko G, Iciek M, Czyżyk J, Filip M, Włodek L, Lorenc-Koci E. The effects of cocaine on different redox forms of cysteine and homocysteine, and on labile, reduced sulfur in the rat plasma following active versus passive drug injections. Neurotox Res 2013; 24:377-92. [PMID: 23677450 PMCID: PMC3753498 DOI: 10.1007/s12640-013-9403-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 04/19/2013] [Accepted: 05/06/2013] [Indexed: 01/15/2023]
Abstract
The aim of the present studies was to evaluate cocaine-induced changes in the concentrations of different redox forms of cysteine (Cys) and homocysteine (Hcy), and products of anaerobic Cys metabolism, i.e., labile, reduced sulfur (LS) in the rat plasma. The above-mentioned parameters were determined after i.p. acute and subchronic cocaine treatment as well as following i.v. cocaine self-administration using the yoked procedure. Additionally, Cys, Hcy, and LS levels were measured during the 10-day extinction training in rats that underwent i.v. cocaine administration. Acute i.p. cocaine treatment increased the total and protein-bound Hcy contents, decreased LS, and did not change the concentrations of Cys fractions in the rat plasma. In turn, subchronic i.p. cocaine administration significantly increased free Hcy and lowered the total and protein-bound Cys concentrations while LS level was unchanged. Cocaine self-administration enhanced the total and protein-bound Hcy levels, decreased LS content, and did not affect the Cys fractions. On the other hand, yoked cocaine infusions did not alter the concentration of Hcy fractions while decreased the total and protein-bound Cys and LS content. This extinction training resulted in the lack of changes in the examined parameters in rats with a history of cocaine self-administration while in the yoked cocaine group an increase in the plasma free Cys fraction and LS was seen. Our results demonstrate for the first time that cocaine does evoke significant changes in homeostasis of thiol amino acids Cys and Hcy, and in some products of anaerobic Cys metabolism, which are dependent on the way of cocaine administration.
Collapse
Affiliation(s)
- Danuta Kowalczyk-Pachel
- The Chair of Medical Biochemistry, Jagiellonian University Collegium Medicum, 7, Kopernika St., 31-034 Kraków, Poland
| | - Grażyna Chwatko
- Department of Environmental Chemistry, University of Łódź, 163, Pomorska St., 90-236 Łódź, Poland
| | - Małgorzata Iciek
- The Chair of Medical Biochemistry, Jagiellonian University Collegium Medicum, 7, Kopernika St., 31-034 Kraków, Poland
| | - Joanna Czyżyk
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12, Smętna St., 31-343 Kraków, Poland
| | - Małgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12, Smętna St., 31-343 Kraków, Poland
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University College of Medicine, Medyczna 9, 30-688 Kraków, Poland
| | - Lidia Włodek
- The Chair of Medical Biochemistry, Jagiellonian University Collegium Medicum, 7, Kopernika St., 31-034 Kraków, Poland
| | - Elżbieta Lorenc-Koci
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12, Smętna St., 31-343 Kraków, Poland
| |
Collapse
|
264
|
Ratnayake S, Dias IH, Lattman E, Griffiths HR. Stabilising cysteinyl thiol oxidation and nitrosation for proteomic analysis. J Proteomics 2013; 92:160-70. [DOI: 10.1016/j.jprot.2013.06.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 06/05/2013] [Accepted: 06/09/2013] [Indexed: 10/26/2022]
|
265
|
Molecular analysis of the inhibitory effect of N-acetyl-L-cysteine on the proliferation and invasiveness of pancreatic cancer cells. Anticancer Drugs 2013; 24:504-18. [PMID: 23511429 DOI: 10.1097/cad.0b013e32836009d7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Preliminary studies have suggested that the reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine (NAC) may be effective in inhibiting the growth of pancreatic cancer cells. In-depth cellular and molecular analyses were carried out to determine NAC's mode of action in inhibiting the growth of a well-characterized pancreatic cancer cell line (AsPC-1). Standardized assays were used to monitor cellular growth, apoptosis, levels of ROS, cellular senescence, migration, and invasiveness. Cell stiffness was measured using atomic force microscopy. Gene expression was monitored by quantitative PCR. NAC significantly inhibits the growth and metastatic potential of AsPC-1 cells by inducing cell-cycle arrest in G1 and subsequent cellular senescence and decreased invasiveness. These anticancer properties are associated with an unexpected increase in the intracellular concentrations of ROS. NAC does not decrease the susceptibility of AsPC-1 cells to the anticancer drugs gemcitabine, mitomycin C, and doxorubicin. NAC-induced changes in gene expression are consistent with the onset of mesenchymal-to-epithelial transition. In conclusion, our findings indicate that NAC induces an integrated series of responses in AsPC-1 cells that make it a highly promising candidate for development as a pancreatic cancer therapeutic.
Collapse
|
266
|
Telianidis J, Hung YH, Materia S, Fontaine SL. Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis. Front Aging Neurosci 2013; 5:44. [PMID: 23986700 PMCID: PMC3750203 DOI: 10.3389/fnagi.2013.00044] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/05/2013] [Indexed: 12/21/2022] Open
Abstract
Over the past two decades there have been significant advances in our understanding of copper homeostasis and the pathological consequences of copper dysregulation. Cumulative evidence is revealing a complex regulatory network of proteins and pathways that maintain copper homeostasis. The recognition of copper dysregulation as a key pathological feature in prominent neurodegenerative disorders such as Alzheimer's, Parkinson's, and prion diseases has led to increased research focus on the mechanisms controlling copper homeostasis in the brain. The copper-transporting P-type ATPases (copper-ATPases), ATP7A and ATP7B, are critical components of the copper regulatory network. Our understanding of the biochemistry and cell biology of these complex proteins has grown significantly since their discovery in 1993. They are large polytopic transmembrane proteins with six copper-binding motifs within the cytoplasmic N-terminal domain, eight transmembrane domains, and highly conserved catalytic domains. These proteins catalyze ATP-dependent copper transport across cell membranes for the metallation of many essential cuproenzymes, as well as for the removal of excess cellular copper to prevent copper toxicity. A key functional aspect of these copper transporters is their copper-responsive trafficking between the trans-Golgi network and the cell periphery. ATP7A- and ATP7B-deficiency, due to genetic mutation, underlie the inherited copper transport disorders, Menkes and Wilson diseases, respectively. Their importance in maintaining brain copper homeostasis is underscored by the severe neuropathological deficits in these disorders. Herein we will review and update our current knowledge of these copper transporters in the brain and the central nervous system, their distribution and regulation, their role in normal brain copper homeostasis, and how their absence or dysfunction contributes to disturbances in copper homeostasis and neurodegeneration.
Collapse
Affiliation(s)
- Jonathon Telianidis
- Strategic Research Centre for Molecular and Medical Research, School of Life and Environmental Sciences, Deakin UniversityBurwood, VIC, Australia
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin UniversityBurwood, VIC, Australia
| | - Ya Hui Hung
- Oxidation Biology Unit, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
- Centre for Neuroscience Research, The University of MelbourneParkville, VIC, Australia
| | - Stephanie Materia
- Strategic Research Centre for Molecular and Medical Research, School of Life and Environmental Sciences, Deakin UniversityBurwood, VIC, Australia
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin UniversityBurwood, VIC, Australia
| | - Sharon La Fontaine
- Strategic Research Centre for Molecular and Medical Research, School of Life and Environmental Sciences, Deakin UniversityBurwood, VIC, Australia
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin UniversityBurwood, VIC, Australia
| |
Collapse
|
267
|
Varlamova EG, Goltyaev MV, Novoselov SV, Novoselov VI, Fesenko EE. Characterization of several members of the thiol oxidoreductase family. Mol Biol 2013. [DOI: 10.1134/s0026893313040146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
268
|
Petrillo S, Piemonte F, Pastore A, Tozzi G, Aiello C, Pujol A, Cappa M, Bertini E. Glutathione imbalance in patients with X-linked adrenoleukodystrophy. Mol Genet Metab 2013; 109:366-70. [PMID: 23768953 PMCID: PMC3732387 DOI: 10.1016/j.ymgme.2013.05.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/13/2013] [Accepted: 05/13/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND X-linked adrenoleukodystrophy (X-ALD) is a genetic disorder of X-linked inheritance caused by a mutation in the ABCD1 gene which determines an accumulation of long-chain fatty acids in plasma and tissues. Recent evidence shows that oxidative stress may be a hallmark in the pathogenesis of X-ALD and glutathione plays an important role in the defense against free radicals. In this study we have analyzed glutathione homeostasis in lymphocytes of 14 patients with X-ALD and evaluated the balance between oxidized and reduced forms of glutathione, in order to define the role of this crucial redox marker in this condition. METHODS Lymphocytes, plasma and erythrocytes were obtained from the whole blood of 14 subjects with X-ALD and in 30 healthy subjects. Total, reduced and protein-bound glutathione levels were measured in lymphocytes by HPLC analysis. Erythrocyte free glutathione and antioxidant enzyme activities, plasma thiols and carbonyl content were determined by spectrophotometric assays. RESULTS A significant decrease of total and reduced glutathione was found in lymphocytes of patients, associated to high levels of all oxidized glutathione forms. A decline of free glutathione was particularly significant in erythrocytes. The increased oxidative stress in X-ALD was additionally confirmed by the decrease of plasma thiols and the high level of carbonyls. CONCLUSION Our results strongly support a role for oxidative stress in the pathophysiology of X-ALD and strengthen the importance of the balance among glutathione forms as a hallmark and a potential biomarker of the disease.
Collapse
Affiliation(s)
- Sara Petrillo
- Unit for Neuromuscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Fiorella Piemonte
- Unit for Neuromuscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anna Pastore
- Laboratory of Metabolomics and Proteomics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giulia Tozzi
- Unit for Neuromuscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Chiara Aiello
- Unit for Neuromuscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Aurora Pujol
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain
- Institut de Neuropatologia, Bellvitge Biomedical Research Institute (IDIBELL), Hospital Universitari de Bellvitge, Universitat de Barcelona, Spain
| | - Marco Cappa
- Unit of Endocrinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Correspondence to: M. Cappa, Unit of Endocrinology, Bambino Gesù Children's Hospital, IRCCS, P.zza S. Onofrio, 4-00165 Roma, Italy. Fax: + 39 06/6859 2024.
| | - Enrico Bertini
- Unit for Neuromuscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Correspondence to: E. Bertini, Unit for Neuromuscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, P.zza S. Onofrio, 4-00165 Roma, Italy. Fax: + 39 06/6859 2024.
| |
Collapse
|
269
|
Espinosa A, Campos C, Díaz-Vegas A, Galgani JE, Juretic N, Osorio-Fuentealba C, Bucarey JL, Tapia G, Valenzuela R, Contreras-Ferrat A, Llanos P, Jaimovich E. Insulin-dependent H2O2 production is higher in muscle fibers of mice fed with a high-fat diet. Int J Mol Sci 2013; 14:15740-54. [PMID: 23899788 PMCID: PMC3759883 DOI: 10.3390/ijms140815740] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 07/20/2013] [Accepted: 07/24/2013] [Indexed: 12/13/2022] Open
Abstract
Insulin resistance is defined as a reduced ability of insulin to stimulate glucose utilization. C57BL/6 mice fed with a high-fat diet (HFD) are a model of insulin resistance. In skeletal muscle, hydrogen peroxide (H2O2) produced by NADPH oxidase 2 (NOX2) is involved in signaling pathways triggered by insulin. We evaluated oxidative status in skeletal muscle fibers from insulin-resistant and control mice by determining H2O2 generation (HyPer probe), reduced-to-oxidized glutathione ratio and NOX2 expression. After eight weeks of HFD, insulin-dependent glucose uptake was impaired in skeletal muscle fibers when compared with control muscle fibers. Insulin-resistant mice showed increased insulin-stimulated H2O2 release and decreased reduced-to-oxidized glutathione ratio (GSH/GSSG). In addition, p47phox and gp91phox (NOX2 subunits) mRNA levels were also high (~3-fold in HFD mice compared to controls), while protein levels were 6.8- and 1.6-fold higher, respectively. Using apocynin (NOX2 inhibitor) during the HFD feeding period, the oxidative intracellular environment was diminished and skeletal muscle insulin-dependent glucose uptake restored. Our results indicate that insulin-resistant mice have increased H2O2 release upon insulin stimulation when compared with control animals, which appears to be mediated by an increase in NOX2 expression.
Collapse
Affiliation(s)
- Alejandra Espinosa
- School of Medical Technology, Faculty of Medicine, University of Chile, Santiago 8380455, Chile; E-Mails: (C.C.); (A.D.-V.)
- Center for Molecular Studies of the Cell, Santiago 8380453, Chile; E-Mails: (C.O.-F.); (A.C.-F.); (P.L.); (E.J.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +56-02-297-866-64; Fax: +56-02-297-866-82
| | - Cristian Campos
- School of Medical Technology, Faculty of Medicine, University of Chile, Santiago 8380455, Chile; E-Mails: (C.C.); (A.D.-V.)
| | - Alexis Díaz-Vegas
- School of Medical Technology, Faculty of Medicine, University of Chile, Santiago 8380455, Chile; E-Mails: (C.C.); (A.D.-V.)
- Center for Molecular Studies of the Cell, Santiago 8380453, Chile; E-Mails: (C.O.-F.); (A.C.-F.); (P.L.); (E.J.)
| | - José E. Galgani
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; E-Mail:
| | - Nevenka Juretic
- Faculty of Medicine, Institute of Biomedical Sciences, Santiago 8380453, Chile; E-Mails: (N.J.); (G.T.); (R.V.)
| | - César Osorio-Fuentealba
- Center for Molecular Studies of the Cell, Santiago 8380453, Chile; E-Mails: (C.O.-F.); (A.C.-F.); (P.L.); (E.J.)
| | - José L. Bucarey
- School of Medicine, University of Valparaíso, Valparaíso 2341369, Chile; E-Mail:
| | - Gladys Tapia
- Faculty of Medicine, Institute of Biomedical Sciences, Santiago 8380453, Chile; E-Mails: (N.J.); (G.T.); (R.V.)
| | - Rodrigo Valenzuela
- Faculty of Medicine, Institute of Biomedical Sciences, Santiago 8380453, Chile; E-Mails: (N.J.); (G.T.); (R.V.)
| | - Ariel Contreras-Ferrat
- Center for Molecular Studies of the Cell, Santiago 8380453, Chile; E-Mails: (C.O.-F.); (A.C.-F.); (P.L.); (E.J.)
| | - Paola Llanos
- Center for Molecular Studies of the Cell, Santiago 8380453, Chile; E-Mails: (C.O.-F.); (A.C.-F.); (P.L.); (E.J.)
| | - Enrique Jaimovich
- Center for Molecular Studies of the Cell, Santiago 8380453, Chile; E-Mails: (C.O.-F.); (A.C.-F.); (P.L.); (E.J.)
- Faculty of Medicine, Institute of Biomedical Sciences, Santiago 8380453, Chile; E-Mails: (N.J.); (G.T.); (R.V.)
| |
Collapse
|
270
|
Menon D, Board PG. A role for glutathione transferase Omega 1 (GSTO1-1) in the glutathionylation cycle. J Biol Chem 2013; 288:25769-25779. [PMID: 23888047 DOI: 10.1074/jbc.m113.487785] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The glutathionylation of intracellular protein thiols can protect against irreversible oxidation and can act as a redox switch regulating metabolic pathways. In this study we discovered that the Omega class glutathione transferase GSTO1-1 plays a significant role in the glutathionylation cycle. The catalytic activity of GSTO1-1 was determined in vitro by assaying the deglutathionylation of a synthetic peptide by tryptophan fluorescence quenching and in T47-D epithelial breast cancer cells by both immunoblotting and the direct determination of total glutathionylation. Mutating the active site cysteine residue (Cys-32) ablated the deglutathionylating activity of GSTO1-1. Furthermore, we demonstrate that the expression of GSTO1-1 in T47-D cells that are devoid of endogenous GSTO1-1 resulted in a 50% reduction in total glutathionylation levels. Mass spectrometry and immunoprecipitation identified β-actin as a protein that is specifically deglutathionylated by GSTO1-1 in T47-D cells. In contrast to the deglutathionylation activity, we also found that GSTO1-1 is associated with the rapid glutathionylation of cellular proteins when the cells are exposed to S-nitrosoglutathione. The common A140D genetic polymorphism in GSTO1 was found to have significant effects on the kinetics of both the deglutathionylation and glutathionylation reactions. Genetic variation in GSTO1-1 has been associated with a range of diseases, and the discovery that a frequent GSTO1-1 polymorphism affects glutathionylation cycle reactions reveals a common mechanism where it can act on multiple proteins and pathways.
Collapse
Affiliation(s)
- Deepthi Menon
- From the Department of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, Canberra ACT-2600, Australia
| | - Philip G Board
- From the Department of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, Canberra ACT-2600, Australia.
| |
Collapse
|
271
|
Ullevig S, Kim HS, Asmis R. S-glutathionylation in monocyte and macrophage (dys)function. Int J Mol Sci 2013; 14:15212-32. [PMID: 23887649 PMCID: PMC3759857 DOI: 10.3390/ijms140815212] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 06/15/2013] [Accepted: 06/18/2013] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease involving the accumulation of monocytes and macrophages in the vascular wall. Monocytes and macrophages play a central role in the initiation and progression of atherosclerotic lesion development. Oxidative stress, which occurs when reactive oxygen species (ROS) overwhelm cellular antioxidant systems, contributes to the pathophysiology of many chronic inflammatory diseases, including atherosclerosis. Major targets of ROS are reactive thiols on cysteine residues in proteins, which when oxidized can alter cellular processes, including signaling pathways, metabolic pathways, transcription, and translation. Protein-S-glutathionylation is the process of mixed disulfide formation between glutathione (GSH) and protein thiols. Until recently, protein-S-glutathionylation was associated with increased cellular oxidative stress, but S-glutathionylation of key protein targets has now emerged as a physiologically important redox signaling mechanism, which when dysregulated contributes to a variety of disease processes. In this review, we will explore the role of thiol oxidative stress and protein-S-glutathionylation in monocyte and macrophage dysfunction as a mechanistic link between oxidative stress associated with metabolic disorders and chronic inflammatory diseases, including atherosclerosis.
Collapse
Affiliation(s)
- Sarah Ullevig
- Department of Biochemistry, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; E-Mail:
| | - Hong Seok Kim
- Department of Clinical Laboratory Sciences, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; E-Mail:
| | - Reto Asmis
- Department of Biochemistry, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; E-Mail:
- Department of Clinical Laboratory Sciences, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-210-567-3411; Fax: +1-210-567-3719
| |
Collapse
|
272
|
Choong G, Liu Y, Xiao W, Templeton DM. Cadmium-induced glutathionylation of actin occurs through a ROS-independent mechanism: implications for cytoskeletal integrity. Toxicol Appl Pharmacol 2013; 272:423-30. [PMID: 23872096 DOI: 10.1016/j.taap.2013.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/27/2013] [Accepted: 07/05/2013] [Indexed: 12/27/2022]
Abstract
Cadmium disrupts the actin cytoskeleton in rat mesangial cells, and we have previously shown that this involves a complex interplay involving activation of kinase signaling, protein translocation, and disruption of focal adhesions. Here we investigate the role that glutathionylation of actin plays in Cd(2+)-associated cytoskeletal reorganization. Low concentrations of Cd(2+) (0.5-2 μM) caused an increase in actin glutathionylation by 6h, whereas at higher concentrations glutathionylation remained at basal levels. Although oxidation with diamide increased glutathionylation, reactive oxygen species (ROS) were not involved in the Cd(2+)-dependent effect, as only Cd(2+) concentrations above 2 μM were sufficient to increase ROS. However, low [Cd(2+)] increased total glutathione levels without affecting the ratio of reduced/oxidized glutathione, and inhibition of glutathione synthesis suppressed actin glutathionylation. Cadmium increased the activity of the enzyme glutaredoxin, which influences the equilibrium between glutathionylated and deglutathionylated proteins and thus may influence levels of glutathionylated actin. Together these observations show that cadmium-dependent effects on actin glutathionylation are affected by glutathione metabolism and not by direct effects of ROS on thiol chemistry. In vitro polymerization assays with glutathionylated actin show a decreased rate of polymerization. In contrast, immunofluorescence of cytoskeletal structure in intact cells suggests that increases in actin glutathionylation accompanying increased glutathione levels occurring under low Cd(2+) exposure are protective in vivo, with cytoskeletal disruption ensuing only when higher Cd(2+) concentrations increase ROS levels and prevent an increase in actin-glutathione conjugates.
Collapse
Affiliation(s)
- Grace Choong
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada
| | | | | | | |
Collapse
|
273
|
Thiol redox sensitivity of two key enzymes of heme biosynthesis and pentose phosphate pathways: uroporphyrinogen decarboxylase and transketolase. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:932472. [PMID: 23970950 PMCID: PMC3730168 DOI: 10.1155/2013/932472] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/10/2013] [Accepted: 06/19/2013] [Indexed: 12/22/2022]
Abstract
Uroporphyrinogen decarboxylase (Hem12p) and transketolase (Tkl1p) are key mediators of two critical processes within the cell, heme biosynthesis, and the nonoxidative part of the pentose phosphate pathway (PPP). The redox properties of both Hem12p and Tkl1p from Saccharomyces cerevisiae were investigated using proteomic techniques (SRM and label-free quantification) and biochemical assays in cell extracts and in vitro with recombinant proteins. The in vivo analysis revealed an increase in oxidized Cys-peptides in the absence of Grx2p, and also after treatment with H2O2 in the case of Tkl1p, without corresponding changes in total protein, demonstrating a true redox response. Out of three detectable Cys residues in Hem12p, only the conserved residue Cys52 could be modified by glutathione and efficiently deglutathionylated by Grx2p, suggesting a possible redox control mechanism for heme biosynthesis. On the other hand, Tkl1p activity was sensitive to thiol redox modification and although Cys622 could be glutathionylated to a limited extent, it was not a natural substrate of Grx2p. The human orthologues of both enzymes have been involved in certain cancers and possess Cys residues equivalent to those identified as redox sensitive in yeast. The possible implication for redox regulation in the context of tumour progression is put forward.
Collapse
|
274
|
Abstract
The redox proteome consists of reversible and irreversible covalent modifications that link redox metabolism to biologic structure and function. These modifications, especially of Cys, function at the molecular level in protein folding and maturation, catalytic activity, signaling, and macromolecular interactions and at the macroscopic level in control of secretion and cell shape. Interaction of the redox proteome with redox-active chemicals is central to macromolecular structure, regulation, and signaling during the life cycle and has a central role in the tolerance and adaptability to diet and environmental challenges.
Collapse
Affiliation(s)
- Young-Mi Go
- From the Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322
| | | |
Collapse
|
275
|
Grek CL, Zhang J, Manevich Y, Townsend DM, Tew KD. Causes and consequences of cysteine S-glutathionylation. J Biol Chem 2013; 288:26497-504. [PMID: 23861399 DOI: 10.1074/jbc.r113.461368] [Citation(s) in RCA: 251] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Post-translational S-glutathionylation occurs through the reversible addition of a proximal donor of glutathione to thiolate anions of cysteines in target proteins, where the modification alters molecular mass, charge, and structure/function and/or prevents degradation from sulfhydryl overoxidation or proteolysis. Catalysis of both the forward (glutathione S-transferase P) and reverse (glutaredoxin) reactions creates a functional cycle that can also regulate certain protein functional clusters, including those involved in redox-dependent cell signaling events. For translational application, S-glutathionylated serum proteins may be useful as biomarkers in individuals (who may also have polymorphic expression of glutathione S-transferase P) exposed to agents that cause oxidative or nitrosative stress.
Collapse
Affiliation(s)
- Christina L Grek
- From the Departments of Cell and Molecular Pharmacology and Experimental Therapeutics and
| | | | | | | | | |
Collapse
|
276
|
Lock JT, Sinkins WG, Schilling WP. Protein S-glutathionylation enhances Ca2+-induced Ca2+ release via the IP3 receptor in cultured aortic endothelial cells. J Physiol 2013. [PMID: 22855054 DOI: 10.1113/jphysiol.2012.230656] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In non-excitable cells, thiol-oxidizing agents have been shown to evoke oscillations in cytosolic free Ca(2+) concentration ([Ca(2+)](i)) by increasing the sensitivity of the inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R) to IP(3). Although thiol modification of the IP(3)R is implicated in this response, the molecular nature of the modification(s) responsible for changes in channel activity is still not well understood. Diamide is a chemical oxidant that selectively converts reduced glutathione (GSH) to its disulfide (GSSG) and promotes the formation of protein–glutathione (P-SSG) mixed disulfide, i.e. glutathionylation. In the present study, we examined the effect of diamide, and the model oxidant hydrogen peroxide (H(2)O(2)), on oscillations in [Ca(2+)](i) in fura-2-loaded bovine (BAECs) and human (HAECs) aortic endo-thelial cells using time-lapse fluorescence video microscopy. In the absence of extracellular Ca(2+), acute treatment with either diamide or H(2)O(2) increased the number of BAECs exhibiting asynchronous Ca(2+) oscillations, whereas HAECs were unexpectedly resistant. Diamide pretreatment increased the sensitivity of HAECs to histamine-stimulated Ca(2+) oscillations and BAECs to bradykinin-stimulated Ca(2+) oscillations. Moreover, in both HAECs and BAECs, diamide dramatically increased both the rate and magnitude of the thapsigargin-induced Ca(2+) transient suggesting that Ca(2+)-induced Ca(2+) release (CICR) via the IP(3)R is enhanced by glutathionylation. Similar to diamide, H(2)O(2) increased the sensitivity of HAECs to both histamine and thapsigargin. Lastly, biochemical studies showed that glutathionylation of native IP(3)R(1) is increased in cells challenged with H(2)O(2). Collectively our results reveal that thiol-oxidizing agents primarily increase the sensitivity of the IP(3)R to Ca(2+), i.e. enhanced CICR, and suggest that glutathionylation may represent a fundamental mechanism for regulating IP(3)R activity during physiological redox signalling and during pathologicalical oxidative stress.
Collapse
Affiliation(s)
- Jeffrey T Lock
- W. P. Schilling: Rammelkamp Center, Rm R-322, MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | | | | |
Collapse
|
277
|
Lock JT, Sinkins WG, Schilling WP. Protein S-glutathionylation enhances Ca2+-induced Ca2+ release via the IP3 receptor in cultured aortic endothelial cells. J Physiol 2013; 590:3631-2. [PMID: 22855054 DOI: 10.1113/jphysiol.2012.232645] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In non-excitable cells, thiol-oxidizing agents have been shown to evoke oscillations in cytosolic free Ca(2+) concentration ([Ca(2+)](i)) by increasing the sensitivity of the inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R) to IP(3). Although thiol modification of the IP(3)R is implicated in this response, the molecular nature of the modification(s) responsible for changes in channel activity is still not well understood. Diamide is a chemical oxidant that selectively converts reduced glutathione (GSH) to its disulfide (GSSG) and promotes the formation of protein–glutathione (P-SSG) mixed disulfide, i.e. glutathionylation. In the present study, we examined the effect of diamide, and the model oxidant hydrogen peroxide (H(2)O(2)), on oscillations in [Ca(2+)](i) in fura-2-loaded bovine (BAECs) and human (HAECs) aortic endo-thelial cells using time-lapse fluorescence video microscopy. In the absence of extracellular Ca(2+), acute treatment with either diamide or H(2)O(2) increased the number of BAECs exhibiting asynchronous Ca(2+) oscillations, whereas HAECs were unexpectedly resistant. Diamide pretreatment increased the sensitivity of HAECs to histamine-stimulated Ca(2+) oscillations and BAECs to bradykinin-stimulated Ca(2+) oscillations. Moreover, in both HAECs and BAECs, diamide dramatically increased both the rate and magnitude of the thapsigargin-induced Ca(2+) transient suggesting that Ca(2+)-induced Ca(2+) release (CICR) via the IP(3)R is enhanced by glutathionylation. Similar to diamide, H(2)O(2) increased the sensitivity of HAECs to both histamine and thapsigargin. Lastly, biochemical studies showed that glutathionylation of native IP(3)R(1) is increased in cells challenged with H(2)O(2). Collectively our results reveal that thiol-oxidizing agents primarily increase the sensitivity of the IP(3)R to Ca(2+), i.e. enhanced CICR, and suggest that glutathionylation may represent a fundamental mechanism for regulating IP(3)R activity during physiological redox signalling and during pathologicalical oxidative stress.
Collapse
Affiliation(s)
- Jeffrey T Lock
- W. P. Schilling: Rammelkamp Center, Rm R-322, MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | | | | |
Collapse
|
278
|
Pastore A, Petrillo S, Tozzi G, Carrozzo R, Martinelli D, Dionisi-Vici C, Di Giovamberardino G, Ceravolo F, Klein MB, Miller G, Enns GM, Bertini E, Piemonte F. Glutathione: a redox signature in monitoring EPI-743 therapy in children with mitochondrial encephalomyopathies. Mol Genet Metab 2013; 109:208-14. [PMID: 23583222 DOI: 10.1016/j.ymgme.2013.03.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/14/2013] [Accepted: 03/14/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND Genetically defined Leigh syndrome (LS) is a rare, fatal inherited neurodegenerative disorder that predominantly affects children. Although mitochondrial dysfunction has clearly been associated with oxidative stress, few studies have specifically examined Leigh syndrome patients' blood glutathione levels. In this study, we analyzed the balance between oxidized and reduced glutathione in lymphocytes of 10 patients with genetically confirmed LS and monitored the effects of glutathione status following 6 months of treatment with EPI-743, a novel redox therapeutic. METHODS Lymphocytes were obtained from blood samples of 10 children with a genetically confirmed diagnosis of LS and in 20 healthy subjects. Total, reduced, oxidized and protein-bound glutathione levels were determined by HPLC analysis. Erythrocyte superoxide dismutase and glutathione peroxidase enzyme activities were measured by spectrophotometric assays. Plasma total thiols, carbonyl contents and malondialdehyde were assessed by spectrophotometric and fluorometric assays. RESULTS A significant impairment of all glutathione forms was detected in patients, including a profound decrease of total and reduced glutathione (GSH) associated with high levels of all oxidized glutathione forms (GSSG+GS-Pro; OX). These findings negatively correlated with the glutathione peroxidase activity, which underwent a significant decrease in patients. After treatment with EPI-743, all patients showed a significant increase in reduced glutathione levels and 96% decrease of OX/GSH ratio. CONCLUSIONS The data presented here strongly support glutathione as a "redox blood signature" in mitochondrial disorders and its use as a clinical trial endpoint in the development of mitochondrial disease therapies.
Collapse
Affiliation(s)
- Anna Pastore
- Laboratory of Metabolomics and Proteomics, Bambino Gesù Children's Hospital, IRCCS - Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
279
|
Pillay CS, Hofmeyr JH, Mashamaite LN, Rohwer JM. From top-down to bottom-up: computational modeling approaches for cellular redoxin networks. Antioxid Redox Signal 2013; 18:2075-86. [PMID: 23249367 DOI: 10.1089/ars.2012.4771] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Thioredoxin, glutaredoxin, and peroxiredoxin systems play critical roles in a large number of redox-sensitive cellular processes. These systems are linked to each other by coupled redox cycles and common reaction intermediates into a larger network. Given the scale and connectivity of this network, computational approaches are required to analyze its dynamics and organization. RECENT ADVANCES Theoretical advances, as well as new redox proteomic methods, have led to the development of both top-down and bottom-up systems biology approaches to analyze the these systems and the network as a whole. Top-down approaches have been based on modifications to the Nernst equation or on graph theoretical approaches, while bottom-up approaches have been based on kinetic or stoichiometric modeling techniques. CRITICAL ISSUES This review will consider the rationale behind these approaches and focus on their advantages and limitations. Further, the review will discuss modeling standards to ensure model accuracy and availability. FUTURE DIRECTIONS Top-down and bottom-up approaches have distinct strengths and limitations in describing cellular redoxin networks. The availability of methods to overcome these limitations, together with the adoption of common modeling standards, is expected to increase the pace of model-led discovery within the redox biology field.
Collapse
Affiliation(s)
- Ché S Pillay
- School of Life Sciences, University of Kwa-Zulu Natal, Scottsville, South Africa.
| | | | | | | |
Collapse
|
280
|
Bindoli A, Rigobello MP. Principles in redox signaling: from chemistry to functional significance. Antioxid Redox Signal 2013; 18:1557-93. [PMID: 23244515 DOI: 10.1089/ars.2012.4655] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reactive oxygen and nitrogen species are currently considered not only harmful byproducts of aerobic respiration but also critical mediators of redox signaling. The molecules and the chemical principles sustaining the network of cellular redox regulated processes are described. Special emphasis is placed on hydrogen peroxide (H(2)O(2)), now considered as acting as a second messenger, and on sulfhydryl groups, which are the direct targets of the oxidant signal. Cysteine residues of some proteins, therefore, act as sensors of redox conditions and are oxidized in a reversible reaction. In particular, the formation of sulfenic acid and disulfide, the initial steps of thiol oxidation, are described in detail. The many cell pathways involved in reactive oxygen species formation are reported. Central to redox signaling processes are the glutathione and thioredoxin systems controlling H(2)O(2) levels and, hence, the thiol/disulfide balance. Lastly, some of the most important redox-regulated processes involving specific enzymes and organelles are described. The redox signaling area of research is rapidly expanding, and future work will examine new pathways and clarify their importance in cellular pathophysiology.
Collapse
Affiliation(s)
- Alberto Bindoli
- Institute of Neuroscience (CNR), Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | | |
Collapse
|
281
|
Abstract
SIGNIFICANCE Glutaredoxins (Grxs) are small oxidoreductases of the thioredoxin family of proteins regulating the thiol redox state of several proteins. Thereby, Grxs are key elements in redox signaling. RECENT ADVANCES Redox signaling via protein thiols depends on reversible oxidative modifications induced mainly by reactive oxygen/nitrogen species and glutathione (GSH) in form of its oxidized disulfide or S-nitroso-glutathione. Grxs contribute to redox signaling by the catalysis of glutathionylation, de-glutathionylation, as well as reduction of disulfide bridges via two distinct enzymatic mechanisms. The dithiol mechanism utilizes both active site cysteines to reduce disulfides, whereas the monothiol mechanism utilizes only the N-terminal active site cysteine for the reduction of GSH mixed disulfides. The sphere of action of Grxs continues to grow with the recent identification of novel targets. CRITICAL ISSUES Because of limited methodological tools, the identification of new substrates for oxidoreductases in general is one of the biggest challenges in this research area. FUTURE DIRECTIONS With this review, we provide a condensed summary of the current knowledge of thiol/disulfide exchange reactions catalyzed by Grxs regarding the mechanistic, structural, and functional aspects. The latter will be of high importance for future research directions, gaining novel insights into redox signaling in general, and the role of Grxs in particular.
Collapse
Affiliation(s)
- Christopher Horst Lillig
- Institut für Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Ernst Moritz Arndt-Universität Greifswald, Greifswald, Germany
| | | |
Collapse
|
282
|
Deponte M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta Gen Subj 2013; 1830:3217-66. [DOI: 10.1016/j.bbagen.2012.09.018] [Citation(s) in RCA: 625] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 09/25/2012] [Indexed: 12/12/2022]
|
283
|
Qin X, Teesch LM, Duffel MW. Modification of the catalytic function of human hydroxysteroid sulfotransferase hSULT2A1 by formation of disulfide bonds. Drug Metab Dispos 2013; 41:1094-103. [PMID: 23444386 PMCID: PMC3629806 DOI: 10.1124/dmd.112.050534] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/26/2013] [Indexed: 01/01/2023] Open
Abstract
The human cytosolic sulfotransferase hSULT2A1 catalyzes the sulfation of a broad range of xenobiotics, as well as endogenous hydroxysteroids and bile acids. Reversible modulation of the catalytic activity of this enzyme could play important roles in its physiologic functions. Whereas other mammalian sulfotransferases are known to be reversibly altered by changes in their redox environment, this has not been previously shown for hSULT2A1. We have examined the hypothesis that the formation of disulfide bonds in hSULT2A1 can reversibly regulate the catalytic function of the enzyme. Three thiol oxidants were used as model compounds to investigate their effects on homogeneous preparations of hSULT2A1: glutathione disulfide, 5,5'-dithiobis(2-nitrobenzoic acid), and 1,1'-azobis(N,N-dimethylformamide) (diamide). Examination of the effects of disulfide bond formation with these agents indicated that the activity of the enzyme is reversibly altered. Studies on the kinetics of the hSULT2A1-catalyzed sulfation of dehydroepiandrosterone (DHEA) showed the effects of disulfide bond formation on the substrate inhibition characteristics of the enzyme. The effects of these agents on the binding of substrates and products, liquid chromatography-mass spectrometry identification of the disulfides formed, and structural modeling of the modified enzyme were examined. Our results indicate that conformational changes at cysteines near the nucleotide binding site affect the binding of both the nucleotide and DHEA to the enzyme, with the specific effects dependent on the structure of the resulting disulfide. Thus, the formation of disulfide bonds in hSULT2A1 is a potentially important reversible mechanism for alterations in the rates of sulfation of both endogenous and xenobiotic substrates.
Collapse
Affiliation(s)
- Xiaoyan Qin
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa, USA
| | | | | |
Collapse
|
284
|
Abstract
SIGNIFICANCE Oxidative stress is widely invoked in inflammation, aging, and complex diseases. To avoid unwanted oxidations, the redox environment of cellular compartments needs to be tightly controlled. The complementary action of oxidoreductases and of high concentrations of low-molecular-weight (LMW) nonprotein thiols plays an essential role in maintaining the redox potential of the cell in balance. RECENT ADVANCES While LMW thiols are central players in an extensive range of redox regulation/metabolism processes, not all organisms use the same thiol cofactors to this effect, as evidenced by the recent discovery of mycothiol (MSH) and bacillithiol (BSH) among different gram-positive bacteria. CRITICAL ISSUES LMW thiol-disulfide exchange processes and their cellular implications are often oversimplified, as only the biology of the free thiols and their symmetrical disulfides is considered. In bacteria under oxidative stress, especially where concentrations of different LMW thiols are comparable [e.g., BSH, coenzyme A (CoA), and cysteine (Cys) in many low-G+C gram-positive bacteria (Firmicutes)], mixed disulfides (e.g., CoASSB and CySSCoA) must surely be major thiol-redox metabolites that need to be taken into consideration. FUTURE DIRECTIONS There are many microorganisms whose LMW thiol-redox buffers have not yet been identified (either bioinformatically or experimentally). Many elements of BSH and MSH redox biochemistry remain to be explored. The fundamental biophysical properties, thiol pK(a) and redox potential, have not yet been determined, and the protein interactome in which the biothiols MSH and BSH are involved needs further exploration.
Collapse
Affiliation(s)
- Koen Van Laer
- Department of Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
| | | | | |
Collapse
|
285
|
Prediction of S-glutathionylation sites based on protein sequences. PLoS One 2013; 8:e55512. [PMID: 23418443 PMCID: PMC3572087 DOI: 10.1371/journal.pone.0055512] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 12/30/2012] [Indexed: 01/10/2023] Open
Abstract
S-glutathionylation, the reversible formation of mixed disulfides between glutathione(GSH) and cysteine residues in proteins, is a specific form of post-translational modification that plays important roles in various biological processes, including signal transduction, redox homeostasis, and metabolism inside cells. Experimentally identifying S-glutathionylation sites is labor-intensive and time consuming, whereas bioinformatics methods provide an alternative way to this problem by predicting S-glutathionylation sites in silico. The bioinformatics approaches give not only candidate sites for further experimental verification but also bio-chemical insights into the mechanism of S-glutathionylation. In this paper, we firstly collect experimentally determined S-glutathionylated proteins and their corresponding modification sites from the literature, and then propose a new method for predicting S-glutathionylation sites by employing machine learning methods based on protein sequence data. Promising results are obtained by our method with an AUC (area under ROC curve) score of 0.879 in 5-fold cross-validation, which demonstrates the predictive power of our proposed method. The datasets used in this work are available at http://csb.shu.edu.cn/SGDB.
Collapse
|
286
|
Chung HS, Wang SB, Venkatraman V, Murray CI, Van Eyk JE. Cysteine oxidative posttranslational modifications: emerging regulation in the cardiovascular system. Circ Res 2013; 112:382-92. [PMID: 23329793 PMCID: PMC4340704 DOI: 10.1161/circresaha.112.268680] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 10/05/2012] [Indexed: 12/22/2022]
Abstract
In the cardiovascular system, changes in oxidative balance can affect many aspects of cellular physiology through redox-signaling. Depending on the magnitude, fluctuations in the cell's production of reactive oxygen and nitrogen species can regulate normal metabolic processes, activate protective mechanisms, or be cytotoxic. Reactive oxygen and nitrogen species can have many effects including the posttranslational modification of proteins at critical cysteine thiols. A subset can act as redox-switches, which elicit functional effects in response to changes in oxidative state. Although the general concepts of redox-signaling have been established, the identity and function of many regulatory switches remains unclear. Characterizing the effects of individual modifications is the key to understand how the cell interprets oxidative signals under physiological and pathological conditions. Here, we review the various cysteine oxidative posttranslational modifications and their ability to function as redox-switches that regulate the cell's response to oxidative stimuli. In addition, we discuss how these modifications have the potential to influence other posttranslational modifications' signaling pathways though cross-talk. Finally, we review the increasing number of tools being developed to identify and quantify the various cysteine oxidative posttranslational modifications and how this will advance our understanding of redox-regulation.
Collapse
Affiliation(s)
- Heaseung S Chung
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
287
|
Mailloux RJ, Xuan JY, Beauchamp B, Jui L, Lou M, Harper ME. Glutaredoxin-2 is required to control proton leak through uncoupling protein-3. J Biol Chem 2013; 288:8365-8379. [PMID: 23335511 DOI: 10.1074/jbc.m112.442905] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Glutathionylation has emerged as a key modification required for controlling protein function in response to changes in cell redox status. Recently, we showed that the glutathionylation state of uncoupling protein-3 (UCP3) modulates the leak of protons back into the mitochondrial matrix, thus controlling reactive oxygen species production. However, whether or not UCP3 glutathionylation is mediated enzymatically has remained unknown because previous work relied on the use of pharmacological agents, such as diamide, to alter the UCP3 glutathionylation state. Here, we demonstrate that glutaredoxin-2 (Grx2), a matrix oxidoreductase, is required to glutathionylate and inhibit UCP3. Analysis of bioenergetics in skeletal muscle mitochondria revealed that knock-out of Grx2 (Grx2(-/-)) increased proton leak in a UCP3-dependent manner. These effects were reversed using diamide, a glutathionylation catalyst. Importantly, the increased leak did not compromise coupled respiration. Knockdown of Grx2 augmented proton leak-dependent respiration in primary myotubes from wild type mice, an effect that was absent in UCP3(-/-) cells. These results confirm that Grx2 deactivates UCP3 by glutathionylation. To our knowledge, this is the first enzyme identified to regulate UCP3 by glutathionylation and is the first study on the role of Grx2 in the regulation of energy metabolism.
Collapse
Affiliation(s)
- Ryan J Mailloux
- Department of Biochemistry, Immunology, and Microbiology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Jian Ying Xuan
- Department of Biochemistry, Immunology, and Microbiology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Brittany Beauchamp
- Department of Biochemistry, Immunology, and Microbiology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Linda Jui
- Department of Biochemistry, Immunology, and Microbiology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Marjorie Lou
- Center of Redox Biology and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska 68583
| | - Mary-Ellen Harper
- Department of Biochemistry, Immunology, and Microbiology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
288
|
Iavarone F, Cabras T, Pisano E, Sanna MT, Nemolato S, Vento G, Tirone C, Romagnoli C, Cordaro M, Fanos V, Faa G, Messana I, Castagnola M. Top-down HPLC-ESI-MS detection of S-glutathionylated and S-cysteinylated derivatives of cystatin B and its 1-53 and 54-98 fragments in whole saliva of human preterm newborns. J Proteome Res 2013; 12:917-26. [PMID: 23278499 DOI: 10.1021/pr300960f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Analysis by a HPLC-ESI-MS top-down proteomic platform of specimens of human preterm newborn whole saliva evidenced high relative amounts of cystatin B and its S-glutathionylated,S-cysteinylated, and S-S 2-mer (on Cys(3)) derivatives, decreasing as a function of postconceptional age (PCA). The percentage of S-unmodified cystatin B was higher than the S-modified isoforms in the early PCA period, differently from adults where cystatin B was detectable only as S-modified derivatives. The percentage of S-modified derivatives increased as a function of PCA, reaching at the normal term of delivery values similar to those determined in at-term newborns, babies, and adults. Moreover, in the early PCA period, high relative amounts of the 1-53 and 54-98 cystatin B fragments were detected, decreasing as a function of PCA and disappearing at the normal term of delivery. In agreement with intact cystatin B, fragment 1-53 was detectable as S-unmodified and S-modified derivatives, and their percentages changed accordingly with the percentages of intact proteins, suggesting that the fragmentation process could be subsequent to and independent from the S-modification of the protein. This study highlights specific enzymatic activity in the oral cavity of preterm newborns not present in at-term newborns and adults, which can be a clue to specialized pathways occurring during fetal oral development.
Collapse
Affiliation(s)
- Federica Iavarone
- Istituto di Biochimica e di Biochimica Clinica, Università Cattolica and/or Istituto per la Chimica del Riconoscimento Molecolare, CNR, Istituto Scientifico Internazionale (ISI) Paolo VI, Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
289
|
Yamaguchi H, Miyazaki M. Enzyme-immobilized reactors for rapid and efficient sample preparation in MS-based proteomic studies. Proteomics 2013; 13:457-66. [DOI: 10.1002/pmic.201200272] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 11/03/2012] [Accepted: 11/14/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Hiroshi Yamaguchi
- Liberal Arts Education Center; Tokai University; Minamiaso Kumamoto Japan
| | - Masaya Miyazaki
- Measurement Solution Research Center; National Institute of Advanced Industrial Science and Technology; Tosu Saga Japan
- Interdisciplinary Graduate School of Engineering Science; Kyushu University; Kasuga Fukuoka Japan
| |
Collapse
|
290
|
Go YM, Duong DM, Peng J, Jones DP. Protein Cysteines Map to Functional Networks According to Steady-state Level of Oxidation. ACTA ACUST UNITED AC 2013; 4:196-209. [PMID: 22605892 DOI: 10.4172/jpb.1000190] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The cysteine (Cys) proteome serves critical roles in protein structure, function and regulation, and includes key targets in oxidative mechanisms of disease. Thioredoxins maintain Cys residues in thiol forms, and previous research shows that the redox potential of thioredoxin in mitochondria and nuclei is more reduced than cytoplasm, suggesting that proteins in these compartments may have different steady-state oxidation. This study measured fractional oxidation of 641 peptidyl Cys residues from 333 proteins in HT29 cells by mass spectrometry. Average oxidation of cytoplasmic, nuclear and mitochondrial proteins was similar (15.8, 15.5, 14%, respectively). Pathway analysis showed that more reduced cytoplasmic Cys were in proteins associated with the cytoskeleton, more reduced nuclear Cys with Ran signaling and RNA post-transcriptional modifcation, and more reduced mitochondrial Cys with energy metabolism, cell growth and cell proliferation. More oxidized cytoplasmic Cys included associations with PI3/Akt, Myc-mediated apoptosis and 14-3-3-mediated signaling. Weaker associations of oxidized nuclear and mitochondrial Cys occurred with granzyme B signaling and intermediary metabolism, respectively. Thus, steady-state peptidyl Cys oxidation is associated with functional pathways rather than simply with organellar distribution. This suggests that oxidative mechanisms of disease could target functional pathways or networks rather than individual proteins or subcellular compartments.
Collapse
Affiliation(s)
- Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory Proteomics Service Center, Emory University, Atlanta, Georgia 30322 USA
| | | | | | | |
Collapse
|
291
|
Armeni T, Ercolani L, Urbanelli L, Magini A, Magherini F, Pugnaloni A, Piva F, Modesti A, Emiliani C, Principato G. Cellular redox imbalance and changes of protein S-glutathionylation patterns are associated with senescence induced by oncogenic H-ras. PLoS One 2012; 7:e52151. [PMID: 23284910 PMCID: PMC3527427 DOI: 10.1371/journal.pone.0052151] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 11/09/2012] [Indexed: 12/31/2022] Open
Abstract
H-Ras oncogene requires deregulation of additional oncogenes or inactivation of tumor suppressor proteins to increase cell proliferation rate and transform cells. In fact, the expression of the constitutively activated H-RasV12 induces cell growth arrest and premature senescence, which act like barriers in pre-neoplastic lesions. In our experimental model, human fibroblasts transfected with H-RasV12 show a dramatic modification of morphology. H-RasV12 expressing cells also show premature senescence followed by cell death, induced by autophagy and apoptosis. In this context, we provide evidence that in H-RasV12 expressing cells, the premature senescence is associated with cellular redox imbalance as well as with altered post-translation protein modification. In particular, redox imbalance is due to a strong reduction of total antioxidant capacity, and significant decrease of glutathione level. As the reversible addition of glutathione to cysteinyl residues of proteins is an important post-translational regulative modification, we investigated S-glutathionylation in cells expressing active H-Ras. In this contest we observed different S-glutathionylation patterns in control and H-RasV12 expressing cells. Particularly, the GAPDH enzyme showed S-glutathionylation increase and significant enzyme activity depletion in H-Ras V12 cells. In conclusion, we proposed that antioxidant defense reduction, glutathione depletion and subsequent modification of S-glutathionylation of target proteins contribute to arrest cell growth, leading to death of fibroblasts expressing constitutively active H-Ras oncogene, thus acting as oncogenic barriers that obstacle the progression of cell transformation.
Collapse
Affiliation(s)
- Tatiana Armeni
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
292
|
Holland RJ, Maciag AE, Kumar V, Shi L, Saavedra JE, Prud'homme RK, Chakrapani H, Keefer LK. Cross-linking protein glutathionylation mediated by O2-arylated bis-diazeniumdiolate "Double JS-K". Chem Res Toxicol 2012; 25:2670-7. [PMID: 23106594 PMCID: PMC3524378 DOI: 10.1021/tx3003142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Attachment of glutathione (GSH) to cysteine residues in proteins (S-glutathionylation) is a reversible post-translational modification that can profoundly alter protein structure and function. Often serving in a protective role, for example, by temporarily saving protein thiols from irreversible oxidation and inactivation, glutathionylation can be identified and semiquantitatively assessed using anti-GSH antibodies, thought to be specific for recognition of the S-glutathionylation modification. Here, we describe an alternate mechanism of protein glutathionylation in which the sulfur atoms of the GSH and the protein's thiol group are covalently bound via a cross-linking agent, rather than through a disulfide bond. This form of thiol cross-linking has been shown to occur and has been confirmed by mass spectrometry at the solution chemistry level, as well as in experiments documenting the potent antiproliferative activity of the bis-diazeniumdiolate Double JS-K in H1703 cells in vitro and in vivo. The modification is recognized by the anti-GSH antibody as if it were authentic S-glutathionylation, requiring mass spectrometry to distinguish between them.
Collapse
Affiliation(s)
- Ryan J Holland
- Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States.
| | | | | | | | | | | | | | | |
Collapse
|
293
|
Morgan B, Ezeriņa D, Amoako TNE, Riemer J, Seedorf M, Dick TP. Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis. Nat Chem Biol 2012; 9:119-25. [PMID: 23242256 DOI: 10.1038/nchembio.1142] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 11/15/2012] [Indexed: 12/13/2022]
Abstract
Glutathione is central to cellular redox chemistry. The majority of glutathione redox research has been based on the chemical analysis of whole-cell extracts, which unavoidably destroy subcellular compartment-specific information. Compartment-specific real-time measurements based on genetically encoded fluorescent probes now suggest that the cytosolic glutathione redox potential is about 100 mV more reducing than previously thought. Using these probes in yeast, we show that even during severe oxidative stress, the cytosolic glutathione disulfide (GSSG) concentration is much more tightly regulated than expected and provides a mechanistic explanation for the discrepancy with conventional measurements. GSSG that is not immediately reduced in the cytosol is rapidly transported into the vacuole by the ABC-C transporter Ycf1. The amount of whole-cell GSSG is entirely dependent on Ycf1 and uninformative about the cytosolic glutathione pool. Applying these insights, we identify Trx2 and Grx2 as efficient backup systems to glutathione reductase for cytosolic GSSG reduction.
Collapse
Affiliation(s)
- Bruce Morgan
- Division of Redox Regulation, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
294
|
Rodriguez-Rocha H, Garcia Garcia A, Zavala-Flores L, Li S, Madayiputhiya N, Franco R. Glutaredoxin 1 protects dopaminergic cells by increased protein glutathionylation in experimental Parkinson's disease. Antioxid Redox Signal 2012; 17:1676-93. [PMID: 22816731 PMCID: PMC3474191 DOI: 10.1089/ars.2011.4474] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS Chronic exposure to environmental toxicants, such as paraquat, has been suggested as a risk factor for Parkinson's disease (PD). Although dopaminergic cell death in PD is associated with oxidative damage, the molecular mechanisms involved remain elusive. Glutaredoxins (GRXs) utilize the reducing power of glutathione to modulate redox-dependent signaling pathways by protein glutathionylation. We aimed to determine the role of GRX1 and protein glutathionylation in dopaminergic cell death. RESULTS In dopaminergic cells, toxicity induced by paraquat or 6-hydroxydopamine (6-OHDA) was inhibited by GRX1 overexpression, while its knock-down sensitized cells to paraquat-induced cell death. Dopaminergic cell death was paralleled by protein deglutathionylation, and this was reversed by GRX1. Mass spectrometry analysis of immunoprecipitated glutathionylated proteins identified the actin binding flightless-1 homolog protein (FLI-I) and the RalBP1-associated Eps domain-containing protein 2 (REPS2/POB1) as targets of glutathionylation in dopaminergic cells. Paraquat induced the degradation of FLI-I and REPS2 proteins, which corresponded with the activation of caspase 3 and cell death progression. GRX1 overexpression reduced both the degradation and deglutathionylation of FLI-I and REPS2, while stable overexpression of REPS2 reduced paraquat toxicity. A decrease in glutathionylated proteins and REPS2 levels was also observed in the substantia nigra of mice treated with paraquat. INNOVATION We have identified novel protein targets of glutathionylation in dopaminergic cells and demonstrated the protective role of GRX1-mediated protein glutathionylation against paraquat-induced toxicity. CONCLUSIONS These results demonstrate a protective role for GRX1 and increased protein glutathionylation in dopaminergic cell death induced by paraquat, and identify a novel protective role for REPS2.
Collapse
|
295
|
Garcia-Garcia A, Zavala-Flores L, Rodriguez-Rocha H, Franco R. Thiol-redox signaling, dopaminergic cell death, and Parkinson's disease. Antioxid Redox Signal 2012; 17:1764-84. [PMID: 22369136 PMCID: PMC3474187 DOI: 10.1089/ars.2011.4501] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Parkinson's disease (PD) is characterized by the selective loss of dopaminergic neurons of the substantia nigra pars compacta, which has been widely associated with oxidative stress. However, the mechanisms by which redox signaling regulates cell death progression remain elusive. RECENT ADVANCES Early studies demonstrated that depletion of glutathione (GSH), the most abundant low-molecular-weight thiol and major antioxidant defense in cells, is one of the earliest biochemical events associated with PD, prompting researchers to determine the role of oxidative stress in dopaminergic cell death. Since then, the concept of oxidative stress has evolved into redox signaling, and its complexity is highlighted by the discovery of a variety of thiol-based redox-dependent processes regulating not only oxidative damage, but also the activation of a myriad of signaling/enzymatic mechanisms. CRITICAL ISSUES GSH and GSH-based antioxidant systems are important regulators of neurodegeneration associated with PD. In addition, thiol-based redox systems, such as peroxiredoxins, thioredoxins, metallothioneins, methionine sulfoxide reductases, transcription factors, as well as oxidative modifications in protein thiols (cysteines), including cysteine hydroxylation, glutathionylation, and nitrosylation, have been demonstrated to regulate dopaminergic cell loss. FUTURE DIRECTIONS In this review, we summarize major advances in the understanding of the role of thiol-redox signaling in dopaminergic cell death in experimental PD. Future research is still required to clearly understand how integrated thiol-redox signaling regulates the activation of the cell death machinery, and the knowledge generated should open new avenues for the design of novel therapeutic approaches against PD.
Collapse
Affiliation(s)
- Aracely Garcia-Garcia
- Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | | | | | | |
Collapse
|
296
|
Abstract
SIGNIFICANCE Glutathione (GSH) depletion is a central signaling event that regulates the activation of cell death pathways. GSH depletion is often taken as a marker of oxidative stress and thus, as a consequence of its antioxidant properties scavenging reactive species of both oxygen and nitrogen (ROS/RNS). RECENT ADVANCES There is increasing evidence demonstrating that GSH loss is an active phenomenon regulating the redox signaling events modulating cell death activation and progression. CRITICAL ISSUES In this work, we review the role of GSH depletion by its efflux, as an important event regulating alterations in the cellular redox balance during cell death independent from oxidative stress and ROS/RNS formation. We discuss the mechanisms involved in GSH efflux during cell death progression and the redox signaling events by which GSH depletion regulates the activation of the cell death machinery. FUTURE DIRECTIONS The evidence summarized here clearly places GSH transport as a central mechanism mediating redox signaling during cell death progression. Future studies should be directed toward identifying the molecular identity of GSH transporters mediating GSH extrusion during cell death, and addressing the lack of sensitive approaches to quantify GSH efflux.
Collapse
Affiliation(s)
- Rodrigo Franco
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | | |
Collapse
|
297
|
Allen EMG, Mieyal JJ. Protein-thiol oxidation and cell death: regulatory role of glutaredoxins. Antioxid Redox Signal 2012; 17:1748-63. [PMID: 22530666 PMCID: PMC3474186 DOI: 10.1089/ars.2012.4644] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE Glutaredoxin (Grx) is the primary enzyme responsible for catalysis of deglutathionylation of protein-mixed disulfides with glutathione (GSH) (protein-SSG). This reversible post-translational modification alters the activity and function of many proteins important in regulation of critical cellular processes. Aberrant regulation of protein glutathionylation/deglutathionylation reactions due to changes in Grx activity can disrupt both apoptotic and survival signaling pathways. RECENT ADVANCES Grx is known to regulate the activity of many proteins through reversible glutathionylation, such as Ras, Fas, ASK1, NFκB, and procaspase-3, all of which play important roles in control of apoptosis. Reactive oxygen species and/or reactive nitrogen species mediate oxidative modifications of critical Cys residues on these apoptotic mediators, facilitating protein-SSG formation and thereby altering protein function and apoptotic signaling. CRITICAL ISSUES Much of what is known about the regulation of apoptotic mediators by Grx and reversible glutathionylation has been gleaned from in vitro studies of discrete apoptotic pathways. To relate these results to events in vivo it is important to examine changes in protein-SSG status in situ under natural cellular conditions, maintaining relevant GSH:GSSG ratios and using appropriate inducers of apoptosis. FUTURE DIRECTIONS Apoptosis is a highly complex, tightly regulated process involving many different checks and balances. The influence of Grx activity on the interconnectivity among these various pathways remains unknown. Knowledge of the effects of Grx is essential for developing novel therapeutic approaches for treating diseases involving dysregulated apoptosis, such as cancer, heart disease, diabetes, and neurodegenerative diseases, where alterations in redox homeostasis are hallmarks for pathogenesis.
Collapse
Affiliation(s)
- Erin M G Allen
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA
| | | |
Collapse
|
298
|
Board PG, Menon D. Glutathione transferases, regulators of cellular metabolism and physiology. Biochim Biophys Acta Gen Subj 2012. [PMID: 23201197 DOI: 10.1016/j.bbagen.2012.11.019] [Citation(s) in RCA: 275] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND The cytosolic glutathione transferases (GSTs) comprise a super family of proteins that can be categorized into multiple classes with a mixture of highly specific and overlapping functions. SCOPE OF REVIEW The review covers the genetics, structure and function of the human cytosolic GSTs with particular attention to their emerging roles in cellular metabolism. MAJOR CONCLUSIONS All the catalytically active GSTs contribute to the glutathione conjugation or glutathione dependant-biotransformation of xenobiotics and many catalyze glutathione peroxidase or thiol transferase reactions. GSTs also catalyze glutathione dependent isomerization reactions required for the synthesis of several prostaglandins and steroid hormones and the catabolism of tyrosine. An increasing body of work has implicated several GSTs in the regulation of cell signaling pathways mediated by stress-activated kinases like Jun N-terminal kinase. In addition, some members of the cytosolic GST family have been shown to form ion channels in intracellular membranes and to modulate ryanodine receptor Ca(2+) channels in skeletal and cardiac muscle. GENERAL SIGNIFICANCE In addition to their well established roles in the conjugation and biotransformation of xenobiotics, GSTs have emerged as significant regulators of pathways determining cell proliferation and survival and as regulators of ryanodine receptors that are essential for muscle function. This article is part of a Special Issue entitled Cellular functions of glutathione.
Collapse
Affiliation(s)
- Philip G Board
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | |
Collapse
|
299
|
Bachi A, Dalle-Donne I, Scaloni A. Redox Proteomics: Chemical Principles, Methodological Approaches and Biological/Biomedical Promises. Chem Rev 2012. [DOI: 10.1021/cr300073p] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Angela Bachi
- Biological Mass Spectrometry Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| |
Collapse
|
300
|
Buchanan BB, Holmgren A, Jacquot JP, Scheibe R. Fifty years in the thioredoxin field and a bountiful harvest. Biochim Biophys Acta Gen Subj 2012; 1820:1822-9. [DOI: 10.1016/j.bbagen.2012.07.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
|