251
|
Characterization of novel small RNAs from tea (Camellia sinensis L.). Mol Biol Rep 2011; 39:3977-86. [DOI: 10.1007/s11033-011-1178-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/02/2011] [Indexed: 11/26/2022]
|
252
|
Li Y, Li C, Ding G, Jin Y. Evolution of MIR159/319 microRNA genes and their post-transcriptional regulatory link to siRNA pathways. BMC Evol Biol 2011; 11:122. [PMID: 21569383 PMCID: PMC3118147 DOI: 10.1186/1471-2148-11-122] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 05/12/2011] [Indexed: 12/20/2022] Open
Abstract
Background MicroRNAs (miRNAs) are prevalent and important endogenous gene regulators in eukaryotes. MiR159 and miR319 are highly conserved miRNAs essential for plant development and fertility. Despite high similarity in conservation pattern and mature miRNA sequences, miR159 and miR319 have distinct expression patterns, targets and functions. In addition, both MIR319 and MIR159 precursors produce multiple miRNAs in a phased loop-to-base manner. Thus, MIR159 and MIR319 appear to be related in origin and considerably diverged. However the phylogeny of MIR159 and MIR319 genes and why such unusual style of miRNA production has been conserved during evolution is not well understood. Results We reconstructed the phylogeny of MIR159/319 genes and analyzed their mature miRNA expression. The inferred phylogeny suggests that the MIR159/319 genes may have formed at least ten extant early-branching clades through gene duplication and loss. A series of duplications occurred in the common ancestor of seed plants leading to the original split of flowering plant MIR159 and MIR319. The results also indicate that the expression of MIR159/319 is regulated at post-transcriptional level to switch on the expression of alternative miRNAs during development in a highly spatio-temporal specific manner, and to selectively respond to the disruption of defensive siRNA pathways. Such intra-stem-loop regulation appears diverged across the early-branching clades of MIR159/319 genes. Conclusions Our results support that the MIR159 and MIR319 genes evolve from a common ancestor, which is likely to be a phased stem-loop small RNA. Through duplication and loss of genes this miRNA gene family formed clades specific to moss, lycopods, gymnosperms and angiosperms including the two major clades of flowering plants containing the founding members of MIR319 and MIR159 genes in A.thaliana. Our analyses also suggest that some MIR159/319 have evolved into unusual miRNA genes that are regulated at post-transcriptional level to express multiple mature products with variable proportions under different circumstances. Moreover, our analyses reveal conserved regulatory link of MIR159/319 genes to siRNA pathway through post-transcriptional regulation.
Collapse
Affiliation(s)
- Yang Li
- School of Life Sciences, Shanghai University, 200444, Shanghai, P,R,China
| | | | | | | |
Collapse
|
253
|
Wong CE, Zhao YT, Wang XJ, Croft L, Wang ZH, Haerizadeh F, Mattick JS, Singh MB, Carroll BJ, Bhalla PL. MicroRNAs in the shoot apical meristem of soybean. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2495-506. [PMID: 21504877 DOI: 10.1093/jxb/erq437] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant microRNAs (miRNAs) play crucial regulatory roles in various developmental processes. In this study, we characterize the miRNA profile of the shoot apical meristem (SAM) of an important legume crop, soybean, by integrating high-throughput sequencing data with miRNA microarray analysis. A total of 8423 non-redundant sRNAs were obtained from two libraries derived from micro-dissected SAM or mature leaf tissue. Sequence analysis allowed the identification of 32 conserved miRNA families as well as 8 putative novel miRNAs. Subsequent miRNA profiling with microarrays verified the expression of the majority of these conserved and novel miRNAs. It is noteworthy that several miRNAs* were expressed at a level similar to or higher than their corresponding mature miRNAs in SAM or mature leaf, suggesting a possible biological function for the star species. In situ hybridization analysis revealed a distinct spatial localization pattern for a conserved miRNA, miR166, and its star speciessuggesting that they serve different roles in regulating leaf development. Furthermore, localization studies showed that a novel soybean miRNA, miR4422a, was nuclear-localized. This study also indicated a novel expression pattern of miR390 in soybean. Our approach identified potential key regulators and provided vital spatial information towards understanding the regulatory circuits in the SAM of soybean during shoot development.
Collapse
Affiliation(s)
- Chui E Wong
- ARC Centre of Excellence for Integrative Legume Research, Faculty of Land and Food Resources, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
254
|
Omelyanchuck NA, Ponomarenko PM, Ponomarenko MP. Specific features of the mature microrna nucleotide sequences can influence the affinity for the human Ago2 and Ago3 proteins. Mol Biol 2011. [DOI: 10.1134/s0026893311020130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
255
|
Xing H, Pudake RN, Guo G, Xing G, Hu Z, Zhang Y, Sun Q, Ni Z. Genome-wide identification and expression profiling of auxin response factor (ARF) gene family in maize. BMC Genomics 2011; 12:178. [PMID: 21473768 PMCID: PMC3082248 DOI: 10.1186/1471-2164-12-178] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 04/07/2011] [Indexed: 02/06/2023] Open
Abstract
Background Auxin signaling is vital for plant growth and development, and plays important role in apical dominance, tropic response, lateral root formation, vascular differentiation, embryo patterning and shoot elongation. Auxin Response Factors (ARFs) are the transcription factors that regulate the expression of auxin responsive genes. The ARF genes are represented by a large multigene family in plants. The first draft of full maize genome assembly has recently been released, however, to our knowledge, the ARF gene family from maize (ZmARF genes) has not been characterized in detail. Results In this study, 31 maize (Zea mays L.) genes that encode ARF proteins were identified in maize genome. It was shown that maize ARF genes fall into related sister pairs and chromosomal mapping revealed that duplication of ZmARFs was associated with the chromosomal block duplications. As expected, duplication of some ZmARFs showed a conserved intron/exon structure, whereas some others were more divergent, suggesting the possibility of functional diversification for these genes. Out of these 31 ZmARF genes, 14 possess auxin-responsive element in their promoter region, among which 7 appear to show small or negligible response to exogenous auxin. The 18 ZmARF genes were predicted to be the potential targets of small RNAs. Transgenic analysis revealed that increased miR167 level could cause degradation of transcripts of six potential targets (ZmARF3, 9, 16, 18, 22 and 30). The expressions of maize ARF genes are responsive to exogenous auxin treatment. Dynamic expression patterns of ZmARF genes were observed in different stages of embryo development. Conclusions Maize ARF gene family is expanded (31 genes) as compared to Arabidopsis (23 genes) and rice (25 genes). The expression of these genes in maize is regulated by auxin and small RNAs. Dynamic expression patterns of ZmARF genes in embryo at different stages were detected which suggest that maize ARF genes may be involved in seed development and germination.
Collapse
Affiliation(s)
- Hongyan Xing
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
256
|
Takuno S, Innan H. Selection Fine-Tunes the Expression of MicroRNA Target Genes in Arabidopsis thaliana. Mol Biol Evol 2011; 28:2429-34. [DOI: 10.1093/molbev/msr084] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
257
|
Zhou J, Zhuo R, Liu M, Qiao G, Jiang J, Li H, Qiu W, Zhang X, Lin S. Identification and Characterization of Novel MicroRNAs from Populus cathayana Rehd. PLANT MOLECULAR BIOLOGY REPORTER 2011; 29:242-251. [DOI: 10.1007/s11105-010-0225-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
|
258
|
Cuperus JT, Fahlgren N, Carrington JC. Evolution and functional diversification of MIRNA genes. THE PLANT CELL 2011; 23:431-42. [PMID: 21317375 PMCID: PMC3077775 DOI: 10.1105/tpc.110.082784] [Citation(s) in RCA: 522] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
MicroRNAs (miRNAs) are small regulatory RNAs found in diverse eukaryotic lineages. In plants, a minority of annotated MIRNA gene families are conserved between plant families, while the majority are family- or species-specific, suggesting that most known MIRNA genes arose relatively recently in evolutionary time. Given the high proportion of young MIRNA genes in plant species, new MIRNA families are likely spawned and then lost frequently. Unlike highly conserved, ancient miRNAs, young miRNAs are often weakly expressed, processed imprecisely, lack targets, and display patterns of neutral variation, suggesting that young MIRNA loci tend to evolve neutrally. Genome-wide analyses from several plant species have revealed that variation in miRNA foldback expression, structure, processing efficiency, and miRNA size have resulted in the unique functionality of MIRNA loci and resulting miRNAs. Additionally, some miRNAs have evolved specific properties and functions that regulate other transcriptional or posttranscriptional silencing pathways. The evolution of miRNA processing and functional diversity underscores the dynamic nature of miRNA-based regulation in complex regulatory networks.
Collapse
Affiliation(s)
- Josh T. Cuperus
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon 97331
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
| | - Noah Fahlgren
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon 97331
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
| | - James C. Carrington
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
- Address correspondence to
| |
Collapse
|
259
|
Lang QL, Zhou XC, Zhang XL, Drabek R, Zuo ZX, Ren YL, Li TB, Chen JS, Gao XL. Microarray-based identification of tomato microRNAs and time course analysis of their response to Cucumber mosaic virus infection. J Zhejiang Univ Sci B 2011; 12:116-25. [PMID: 21265043 PMCID: PMC3030956 DOI: 10.1631/jzus.b1000278] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 11/05/2010] [Indexed: 01/23/2023]
Abstract
A large number of plant microRNAs (miRNAs) are now documented in the miRBase, among which only 30 are for Solanum lycopersicum (tomato). Clearly, there is a far-reaching need to identify and profile the expression of miRNAs in this important crop under various physiological and pathological conditions. In this study, we used an in situ synthesized custom microarray of plant miRNAs to examine the expression and temporal presence of miRNAs in the leaves of tomato plants infected with Cucumber mosaic virus (CMV). Following computational sequence homology search and hairpin structure prediction, we identified three novel tomato miRNA precursor genes. Our results also show that, in accordance with the phenotype of the developing leaves, the tomato miRNAs are differentially expressed at different stages of plant development and that CMV infection can induce or suppress the expression of miRNAs as well as up-regulate some star miRNAs (miRNA*s) which are normally present at much lower levels. The results indicate that developmental anomalies elicited by virus infection may be caused by more complex biological processes.
Collapse
Affiliation(s)
- Qiu-lei Lang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiao-chuan Zhou
- LC Sciences, 2575 W. Bellfort, Suite 270, Houston, TX 77054, USA
| | - Xiao-lin Zhang
- LC Sciences, 2575 W. Bellfort, Suite 270, Houston, TX 77054, USA
| | - Rafal Drabek
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA
| | - Zhi-xiang Zuo
- LC Sciences, 2575 W. Bellfort, Suite 270, Houston, TX 77054, USA
| | - Yong-liang Ren
- LC Sciences, 2575 W. Bellfort, Suite 270, Houston, TX 77054, USA
| | - Tong-bin Li
- LC Sciences, 2575 W. Bellfort, Suite 270, Houston, TX 77054, USA
| | - Ji-shuang Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiao-lian Gao
- LC Sciences, 2575 W. Bellfort, Suite 270, Houston, TX 77054, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA
| |
Collapse
|
260
|
Zhu QH, Helliwell CA. Regulation of flowering time and floral patterning by miR172. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:487-95. [PMID: 20952628 DOI: 10.1093/jxb/erq295] [Citation(s) in RCA: 241] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Since the discovery of miRNAs in plants it has become clear that they are central to the regulation of many aspects of plant development and responses to the environment. miR172 regulates expression of a small group of AP2-like transcription factors in an evolutionarily ancient interaction. miR172 functions in regulating the transitions between developmental stages and in specifying floral organ identity. These two roles are conserved across monocotyledons and dicotyledons. Investigations into the roles of miR172 and its targets in phase changes in the model plant Arabidopsis have illustrated that this process is governed by complex regulatory systems. In addition to its conserved roles, miR172 has also acquired specialized species-specific functions in other aspects of plant development such as cleistogamy and tuberization.
Collapse
Affiliation(s)
- Qian-Hao Zhu
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| | | |
Collapse
|
261
|
Small RNA discovery and characterisation in eukaryotes using high-throughput approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 722:239-54. [PMID: 21915794 DOI: 10.1007/978-1-4614-0332-6_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RNA silencing is a mechanism of genetic regulation that is mediated by short noncoding RNAs, or small RNAs (sRNAs). Regulatory interactions are established based on nucleotide sequence complementarity between the sRNAs and their targets. The development of new high-throughput sequencing technologies has accelerated the discovery of sRNAs in a variety of plants and animals. The use of these and other high-throughput technologies, such as microarrays, to measure RNA and protein concentrations of gene products potentially regulated by sRNAs has also been important for their functional characterisation. mRNAs targeted by sRNAs can produce new sRNAs or the protein encoded by the target mRNA can regulate other mRNAs. In either case the targeting sRNAs are parts of complex RNA networks therefore identifying and characterising sRNAs contribute to better understanding of RNA networks. In this chapter we will review RNA silencing, the different types of sRNAs that mediate it and the computational methods that have been developed to use high-throughput technologies in the study of sRNAs and their targets.
Collapse
|
262
|
Sahu S, Khushwaha A, Dixit R. Computational identification of miRNAs in medicinal plant Senecio vulgaris (Groundsel). Bioinformation 2011. [PMID: 22347777 DOI: 10.6026/bioinformation] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
RNAs Interference plays a very important role in gene silencing. In vitro identification of miRNAs is a slow process as it is difficult to isolate them. Nucleotide sequences of miRNAs are highly conserved among the plants and, this form the key feature behind the identification of miRNAs in plant species by homology alignment. In silico identification of miRNAs from EST database is emerging as a novel, faster and reliable approach. Here EST sequences of Senecio vulgaris (Groundsel) were searched against known miRNA sequences by using BLASTN tool. A total of 10 miRNAs were identified from 1956 EST sequences and 115 GSS sequences. The most stable miRNA identified is svu-mir-1. This approach will accelerate advance research in regulation of gene expression in Groundsel by interfering RNAs.
Collapse
|
263
|
Wang L, Gu X, Xu D, Wang W, Wang H, Zeng M, Chang Z, Huang H, Cui X. miR396-targeted AtGRF transcription factors are required for coordination of cell division and differentiation during leaf development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:761-73. [PMID: 21036927 PMCID: PMC3003814 DOI: 10.1093/jxb/erq307] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/12/2010] [Accepted: 09/13/2010] [Indexed: 05/06/2023]
Abstract
In plants, cell proliferation and polarized cell differentiation along the adaxial-abaxial axis in the primordium is critical for leaf morphogenesis, while the temporal-spatial relationships between these two processes remain largely unexplored. Here, it is reported that microRNA396 (miR396)-targeted Arabidopsis growth-regulating factors (AtGRFs) are required for leaf adaxial-abaxial polarity in Arabidopsis. Reduction of the expression of AtGRF genes by transgenic miR396 overexpression in leaf polarity mutants asymmetric leaves1 (as1) and as2 resulted in plants with enhanced leaf adaxial-abaxial defects, as a consequence of reduced cell proliferation. Moreover, transgenic miR396 overexpression markedly decreased the cell division activity and the expression of cell cycle-related genes, but resulted in an increased percentage of leaf cells with a higher ploidy level, indicating that miR396 negatively regulates cell proliferation by controlling entry into the mitotic cell cycle. miR396 is mainly expressed in the leaf cells arrested for cell division, coinciding with its roles in cell cycle regulation. These results together suggest that cell division activity mediated by miR396-targeted AtGRFs is important for polarized cell differentiation along the adaxial-abaxial axis during leaf morphogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Li Wang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
- College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiaolu Gu
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Deyang Xu
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Wei Wang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Hua Wang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Minhuan Zeng
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Zhaoyang Chang
- College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Hai Huang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Xiaofeng Cui
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
264
|
Adam H, Marguerettaz M, Qadri R, Adroher B, Richaud F, Collin M, Thuillet AC, Vigouroux Y, Laufs P, Tregear JW, Jouannic S. Divergent expression patterns of miR164 and CUP-SHAPED COTYLEDON genes in palms and other monocots: implication for the evolution of meristem function in angiosperms. Mol Biol Evol 2010; 28:1439-54. [PMID: 21135149 DOI: 10.1093/molbev/msq328] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In order to understand how the morphology of plant species has diversified over time, it is necessary to decipher how the underlying developmental programs have evolved. The regulatory network controlling shoot meristem activity is likely to have played an important role in morphological diversification and useful insights can be gained by comparing monocots and eudicots. These two distinct monophyletic groups of angiosperms diverged 130 Ma and are characterized by important differences in their morphology. Several studies of eudicot species have revealed a conserved role for NAM and CUC3 genes in meristem functioning and pattern formation through the definition of morphogenetic boundaries during development. In this study, we show that NAM- and CUC3-related genes are conserved in palms and grasses, their diversification having predated the radiation of monocots and eudicots. Moreover, the NAM-miR164 posttranscriptional regulatory module is also conserved in palm species. However, in contrast to the CUC3-related genes, which share a similar expression pattern between the two angiosperm groups, the expression domain of the NAM-miR164 module differs between monocot and eudicot species. In our studies of spatial expression patterns, we compared existing eudicot data with novel results from our work using two palm species (date palm and oil palm) and two members of the Poaceae (rice and millet). In addition to contrasting results obtained at the gene expression level, major differences were also observed between eudicot and monocot NAM-related genes in the occurrence of putative cis-regulatory elements in their promoter sequences. Overall, our results suggest that although NAM- and CUC3-related proteins are functionally equivalent between monocots and eudicots, evolutionary radiation has resulted in heterotopy through alterations in the expression domain of the NAM-miR164 regulatory module.
Collapse
Affiliation(s)
- Hélène Adam
- IRD, UMR DIAPC, IRD/CIRAD Palm Development Group, Montpellier Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
265
|
Wang QH, Zhou M, Sun J, Ning SW, Li Y, Chen L, Zheng Y, Li X, Lv SL, Li X. Systematic analysis of human microRNA divergence based on evolutionary emergence. FEBS Lett 2010; 585:240-8. [PMID: 21130764 DOI: 10.1016/j.febslet.2010.11.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 11/23/2010] [Accepted: 11/29/2010] [Indexed: 12/26/2022]
|
266
|
Bazzini AA, Asís R, González V, Bassi S, Conte M, Soria M, Fernie AR, Asurmendi S, Carrari F. miSolRNA: A tomato micro RNA relational database. BMC PLANT BIOLOGY 2010; 10:240. [PMID: 21059227 PMCID: PMC3095322 DOI: 10.1186/1471-2229-10-240] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 11/08/2010] [Indexed: 05/22/2023]
Abstract
BACKGROUND The economic importance of Solanaceae plant species is well documented and tomato has become a model for functional genomics studies. In plants, important processes are regulated by microRNAs (miRNA). DESCRIPTION We describe here a data base integrating genetic map positions of miRNA-targeted genes, their expression profiles and their relations with quantitative fruit metabolic loci and yield associated traits. miSolRNA provides a metadata source to facilitate the construction of hypothesis aimed at defining physiological modes of action of regulatory process underlying the metabolism of the tomato fruit. CONCLUSIONS The MiSolRNA database allows the simple extraction of metadata for the proposal of new hypothesis concerning possible roles of miRNAs in the regulation of tomato fruit metabolism. It permits i) to map miRNAs and their predicted target sites both on expressed (SGN-UNIGENES) and newly annotated sequences (BAC sequences released), ii) to co-locate any predicted miRNA-target interaction with metabolic QTL found in tomato fruits, iii) to retrieve expression data of target genes in tomato fruit along their developmental period and iv) to design further experiments for unresolved questions in complex trait biology based on the use of genetic materials that have been proven to be a useful tools for map-based cloning experiments in Solanaceae plant species.
Collapse
Affiliation(s)
- Ariel A Bazzini
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA) (Partner group of Institution 5), P.O. BOX 25, B1712WAA Castelar, Argentina
| | - Ramón Asís
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA) (Partner group of Institution 5), P.O. BOX 25, B1712WAA Castelar, Argentina
- CIBICI, Facultad de Ciencias Químicas Universidad Nacional de Córdoba, CC 5000, Haya de la Torre y Medina Allende, Córdoba, Argentina
| | | | | | - Mariana Conte
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA) (Partner group of Institution 5), P.O. BOX 25, B1712WAA Castelar, Argentina
| | - Marcelo Soria
- Facultad de Agronomía. Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alisdair R Fernie
- Max Planck Institute for Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, Potsdam-Golm, D-14476, Germany
| | - Sebastián Asurmendi
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA) (Partner group of Institution 5), P.O. BOX 25, B1712WAA Castelar, Argentina
| | - Fernando Carrari
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA) (Partner group of Institution 5), P.O. BOX 25, B1712WAA Castelar, Argentina
| |
Collapse
|
267
|
Zhou Y, Zhang J, Lin H, Guo G, Guo Y. MORPHEUS' MOLECULE1 is required to prevent aberrant RNA transcriptional read-through in Arabidopsis. PLANT PHYSIOLOGY 2010; 154:1272-80. [PMID: 20826701 PMCID: PMC2971605 DOI: 10.1104/pp.110.162131] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 08/31/2010] [Indexed: 05/24/2023]
Abstract
Several pathways function to remove aberrant mRNA in eukaryotic cells; however, the exact mechanisms underlying the restriction of aberrant mRNA transcription are poorly understood. In this study, we found that MORPHEUS' MOLECULE1 (MOM1) is a key component of this regulatory machinery. The Arabidopsis (Arabidopsis thaliana) mom1-44 mutation was identified by luciferase imaging in transgenic plants harboring a cauliflower mosaic virus 35S promoter-LUCIFERASE transgene lacking the 3'-untranslated region. In the mom1-44 mutant, transcriptional read-though occurred in genes with an aberrant RNA structure. Analysis of an RNA-dependent RNA polymerase2 mom1 double mutant revealed that the RNA-directed DNA methylation pathway is not involved in this regulatory process. Moreover, the prevention of aberrant mRNA transcriptional read-through by MOM1 is gene locus and transgene copy number independent.
Collapse
Affiliation(s)
| | | | | | | | - Yan Guo
- Corresponding author; e-mail
| |
Collapse
|
268
|
Wang TY, Dong YY, Li HY, Li XK. [Molecular evolution and regulatory mechanism of microRNAs]. YI CHUAN = HEREDITAS 2010; 32:874-80. [PMID: 20870607 DOI: 10.3724/sp.j.1005.2010.00874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
MicroRNAs, a type of small non-coding RNA specialized in regulation of gene expression, extensively participate in biological development, cell differentiation, apoptosis, and other cellular processes. MiRNAs evolved independently in different strains and generally conserved in the process of evolution. This review summarized the origin, regulation of methylation, and evolutionary conservation of miRNAs. In addition, application of miRNAs in diseases, animals and plants was discussed.
Collapse
Affiliation(s)
- Tian-Yu Wang
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | | | | | | |
Collapse
|
269
|
Yakovlev IA, Fossdal CG, Johnsen Ø. MicroRNAs, the epigenetic memory and climatic adaptation in Norway spruce. THE NEW PHYTOLOGIST 2010; 187:1154-1169. [PMID: 20561211 DOI: 10.1111/j.1469-8137.2010.03341.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
*Norway spruce expresses a temperature-dependent epigenetic memory from the time of embryo development, which thereafter influences the timing bud phenology. MicroRNAs (miRNAs)are endogenous small RNAs, exerting epigenetic gene regulatory impacts. We have tested for their presence and differential expression. *We prepared concatemerized small RNA libraries from seedlings of two full-sib families, originated from seeds developed in a cold and warm environment. One family expressed distinct epigenetic effects while the other not. We used available plant miRNA query sequences to search for conserved miRNAs and from the sequencing we found novel ones; the miRNAs were monitored using relative real time-PCR. *Sequencing identified 24 novel and four conserved miRNAs. Further screening of the conserved miRNAs confirmed the presence of 16 additional miRNAs. Most of the miRNAs were targeted to unknown genes. The expression of seven conserved and nine novel miRNAs showed significant differences in transcript levels in the full-sib family showing distinct epigenetic difference in bud set, but not in the nonresponding full-sib family. Putative miRNA targets were studied. *Norway spruce contains a set of conserved miRNAs as well as a large proportion of novel nonconserved miRNAs. The differentially expression of specific miRNAs indicate their putative participation in the epigenetic regulation.
Collapse
Affiliation(s)
- Igor A Yakovlev
- Norwegian Forest and Landscape Institute, PO Box 115, N-1431 Ås, Norway
| | | | - Øystein Johnsen
- University of Life Sciences, Department of Plant and Environmental Sciences, PO Box 5003, N-1432 Ås, Norway
| |
Collapse
|
270
|
Plant microRNAs: an insight into their gene structures and evolution. Semin Cell Dev Biol 2010; 21:782-9. [PMID: 20691276 DOI: 10.1016/j.semcdb.2010.07.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 07/26/2010] [Accepted: 07/28/2010] [Indexed: 11/21/2022]
Abstract
MicroRNAs (miRNAs) are 21-23 nucleotide (nt) non-coding RNAs that play a key role in regulating the expression of protein-coding genes at post-transcriptional levels in plants and animals. MiRNA genes, which serve as genetic buffers and regulators, are primarily located in the intergenic regions of the plant genome. The similar structure of a miRNA promoter to that of a protein-coding gene signifies the likely origin of miRNA genes from the latter. Imperfect "inverted repeats", the hallmark of miRNA genes that defines the asymmetry of the "stem-loop" region of the miRNA precursors (pre-miRNAs), reflect the evolution of miRNA genes from the inverted duplication of their target genes over a long period of time. The deep conservation of most miRNAs and the presence of some of the non-conserved, species-specific miRNAs among various plant species demonstrate a continuous, but frequently an uneven evolutionary process of miRNA genes. Thus, duplication, inversion, mutation, amplification, and other types of genetic drift from protein-coding genes might be the primary events in the genesis and evolution of the miRNA genes. Subsequent co-evolution of the miRNA genes and their target genes ensures the maintenance and the fine-tuning nature of a dynamic gene regulatory network governed by miRNAs in plants.
Collapse
|
271
|
Varkonyi-Gasic E, Gould N, Sandanayaka M, Sutherland P, MacDiarmid RM. Characterisation of microRNAs from apple (Malus domestica 'Royal Gala') vascular tissue and phloem sap. BMC PLANT BIOLOGY 2010. [PMID: 20682080 DOI: 10.1186/1471-222910-159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND Plant microRNAs (miRNAs) are a class of small, non-coding RNAs that play an important role in development and environmental responses. Hundreds of plant miRNAs have been identified to date, mainly from the model species for which there are available genome sequences. The current challenge is to characterise miRNAs from plant species with agricultural and horticultural importance, to aid our understanding of important regulatory mechanisms in crop species and enable improvement of crops and rootstocks. RESULTS Based on the knowledge that many miRNAs occur in large gene families and are highly conserved among distantly related species, we analysed expression of twenty-one miRNA sequences in different tissues of apple (Malus x domestica 'Royal Gala'). We identified eighteen sequences that are expressed in at least one of the tissues tested. Some, but not all, miRNAs expressed in apple tissues including the phloem tissue were also detected in the phloem sap sample derived from the stylets of woolly apple aphids. Most of the miRNAs detected in apple phloem sap were also abundant in the phloem sap of herbaceous species. Potential targets for apple miRNAs were identified that encode putative proteins shown to be targets of corresponding miRNAs in a number of plant species. Expression patterns of potential targets were analysed and correlated with expression of corresponding miRNAs. CONCLUSIONS This study validated tissue-specific expression of apple miRNAs that target genes responsible for plant growth, development, and stress response. A subset of characterised miRNAs was also present in the apple phloem translocation stream. A comparative analysis of phloem miRNAs in herbaceous species and woody perennials will aid our understanding of non-cell autonomous roles of miRNAs in plants.
Collapse
Affiliation(s)
- Erika Varkonyi-Gasic
- The New Zealand Institute for Plant & Food Research Limited, Plant & Food Research, Auckland Mail Centre, Mt Albert, Private Bag 92169, Auckland 1142, New Zealand.
| | | | | | | | | |
Collapse
|
272
|
Varkonyi-Gasic E, Gould N, Sandanayaka M, Sutherland P, MacDiarmid RM. Characterisation of microRNAs from apple (Malus domestica 'Royal Gala') vascular tissue and phloem sap. BMC PLANT BIOLOGY 2010; 10:159. [PMID: 20682080 PMCID: PMC3095296 DOI: 10.1186/1471-2229-10-159] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 08/04/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plant microRNAs (miRNAs) are a class of small, non-coding RNAs that play an important role in development and environmental responses. Hundreds of plant miRNAs have been identified to date, mainly from the model species for which there are available genome sequences. The current challenge is to characterise miRNAs from plant species with agricultural and horticultural importance, to aid our understanding of important regulatory mechanisms in crop species and enable improvement of crops and rootstocks. RESULTS Based on the knowledge that many miRNAs occur in large gene families and are highly conserved among distantly related species, we analysed expression of twenty-one miRNA sequences in different tissues of apple (Malus x domestica 'Royal Gala'). We identified eighteen sequences that are expressed in at least one of the tissues tested. Some, but not all, miRNAs expressed in apple tissues including the phloem tissue were also detected in the phloem sap sample derived from the stylets of woolly apple aphids. Most of the miRNAs detected in apple phloem sap were also abundant in the phloem sap of herbaceous species. Potential targets for apple miRNAs were identified that encode putative proteins shown to be targets of corresponding miRNAs in a number of plant species. Expression patterns of potential targets were analysed and correlated with expression of corresponding miRNAs. CONCLUSIONS This study validated tissue-specific expression of apple miRNAs that target genes responsible for plant growth, development, and stress response. A subset of characterised miRNAs was also present in the apple phloem translocation stream. A comparative analysis of phloem miRNAs in herbaceous species and woody perennials will aid our understanding of non-cell autonomous roles of miRNAs in plants.
Collapse
Affiliation(s)
- Erika Varkonyi-Gasic
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Nick Gould
- Plant & Food Research Ruakura, Private Bag 3123, Waikato Mail Centre, Hamilton 3240, New Zealand
| | - Manoharie Sandanayaka
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Paul Sutherland
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Robin M MacDiarmid
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| |
Collapse
|
273
|
Salem M, Xiao C, Womack J, Rexroad CE, Yao J. A microRNA repertoire for functional genome research in rainbow trout (Oncorhynchus mykiss). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:410-429. [PMID: 19816740 DOI: 10.1007/s10126-009-9232-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 09/08/2009] [Indexed: 05/28/2023]
Abstract
MicroRNAs (miRNAs) are small, highly conserved, non-coding RNAs that regulate gene expression of target mRNAs through cleavage or translational inhibition. miRNAs are most often identified through computational prediction from genome sequences. The rainbow trout genome sequence is not available yet, which does not allow miRNA prediction for this species which is of great economic interest for aquaculture and sport fisheries, and is a model research organism for studies related to carcinogenesis, toxicology, comparative immunology, disease ecology, physiology and nutrition. To identify miRNAs from rainbow trout, we constructed a miRNA library from a pool of nine somatic tissues. Analysis of the library identified 210 unique sequences representing 54 distinct miRNAs; 50 with conserved sequences matching previously identified miRNAs and four novel miRNAs. In addition, 13 miRNAs were computationally predicted from the rainbow trout transcriptome. Real-time PCR was used to measure miRNA expression patterns in adult somatic tissues and unfertilized eggs. The majority of the miRNAs showed characteristic tissue-specific expression patterns suggesting potential roles in maintaining tissue identity. Potential miRNA-target interactions were computationally predicted and single nucleotide polymorphisms (SNPs) were identified in the miRNAs and their target sites in the rainbow trout transcripts. The rainbow trout miRNAs identified and characterized in this study provide a new tool for functional genome research in salmonids. Tissue-specific miRNAs may serve as molecular markers, predictive of specific functional and diagnostic implications. The data on genetic polymorphisms in miRNA-target interactions is particularly useful for rainbow trout breeding programs.
Collapse
Affiliation(s)
- Mohamed Salem
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506-6108, USA
| | | | | | | | | |
Collapse
|
274
|
A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genet 2010; 6:e1001031. [PMID: 20661442 PMCID: PMC2908682 DOI: 10.1371/journal.pgen.1001031] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 06/17/2010] [Indexed: 01/04/2023] Open
Abstract
Many targets of plant microRNAs (miRNAs) are thought to play important roles in plant physiology and development. However, because plant miRNAs are typically encoded by medium-size gene families, it has often been difficult to assess their precise function. We report the generation of a large-scale collection of knockdowns for Arabidopsis thaliana miRNA families; this has been achieved using artificial miRNA target mimics, a recently developed technique fashioned on an endogenous mechanism of miRNA regulation. Morphological defects in the aerial part were observed for ∼20% of analyzed families, all of which are deeply conserved in land plants. In addition, we find that non-cleavable mimic sites can confer translational regulation in cis. Phenotypes of plants expressing target mimics directed against miRNAs involved in development were in several cases consistent with previous reports on plants expressing miRNA–resistant forms of individual target genes, indicating that a limited number of targets mediates most effects of these miRNAs. That less conserved miRNAs rarely had obvious effects on plant morphology suggests that most of them do not affect fundamental aspects of development. In addition to insight into modes of miRNA action, this study provides an important resource for the study of miRNA function in plants. MiRNAs are small RNA molecules that play an important role in regulating gene function, both in animals and in plants. In plants, miRNA target mimicry is an endogenous mechanism used to negatively regulate the activity of a specific miRNA family, through the production of a false target transcript that cannot be cleaved. This mechanism can be engineered to target different miRNA families. Using this technique, we have generated artificial target mimics predicted to reduce the activity of most of the miRNA families in Arabidopsis thaliana and have observed their effects on plant development. We found that deeply conserved miRNAs tend to have a strong impact on plant growth, while more recently evolved ones had generally less obvious effects, suggesting either that they primarily affect processes other than development, or else that they have more subtle or conditional functions or are even dispensable. In several cases, the effects on plant development that we observed closely resembled those seen in plants expressing miRNA–resistant versions of the major predicted targets, indicating that a limited number of targets mediates most effects of these miRNAs. Analyses of mimic expressing plants also support that plant miRNAs affect both transcript stability and protein accumulation. The artificial target mimic collection will be a useful resource to further investigate the function of individual miRNA families.
Collapse
|
275
|
Song C, Wang C, Zhang C, Korir NK, Yu H, Ma Z, Fang J. Deep sequencing discovery of novel and conserved microRNAs in trifoliate orange (Citrus trifoliata). BMC Genomics 2010; 11:431. [PMID: 20626894 PMCID: PMC2996959 DOI: 10.1186/1471-2164-11-431] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 07/13/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) play a critical role in post-transcriptional gene regulation and have been shown to control many genes involved in various biological and metabolic processes. There have been extensive studies to discover miRNAs and analyze their functions in model plant species, such as Arabidopsis and rice. Deep sequencing technologies have facilitated identification of species-specific or lowly expressed as well as conserved or highly expressed miRNAs in plants. RESULTS In this research, we used Solexa sequencing to discover new microRNAs in trifoliate orange (Citrus trifoliata) which is an important rootstock of citrus. A total of 13,106,753 reads representing 4,876,395 distinct sequences were obtained from a short RNA library generated from small RNA extracted from C. trifoliata flower and fruit tissues. Based on sequence similarity and hairpin structure prediction, we found that 156,639 reads representing 63 sequences from 42 highly conserved miRNA families, have perfect matches to known miRNAs. We also identified 10 novel miRNA candidates whose precursors were all potentially generated from citrus ESTs. In addition, five miRNA* sequences were also sequenced. These sequences had not been earlier described in other plant species and accumulation of the 10 novel miRNAs were confirmed by qRT-PCR analysis. Potential target genes were predicted for most conserved and novel miRNAs. Moreover, four target genes including one encoding IRX12 copper ion binding/oxidoreductase and three genes encoding NB-LRR disease resistance protein have been experimentally verified by detection of the miRNA-mediated mRNA cleavage in C. trifoliata. CONCLUSION Deep sequencing of short RNAs from C. trifoliata flowers and fruits identified 10 new potential miRNAs and 42 highly conserved miRNA families, indicating that specific miRNAs exist in C. trifoliata. These results show that regulatory miRNAs exist in agronomically important trifoliate orange and may play an important role in citrus growth, development, and response to disease.
Collapse
Affiliation(s)
- Changnian Song
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Changqing Zhang
- Department of Horticulture, Nanjing Jinling Institute of Technology, Nanjing 210038, China
| | | | - Huaping Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhengqiang Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
276
|
Wahid F, Shehzad A, Khan T, Kim YY. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:1231-43. [PMID: 20619301 DOI: 10.1016/j.bbamcr.2010.06.013] [Citation(s) in RCA: 602] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 06/30/2010] [Accepted: 06/30/2010] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are a class of small, endogenous RNAs of 21-25 nucleotides (nts) in length. They play an important regulatory role in animals and plants by targeting specific mRNAs for degradation or translation repression. Recent scientific advances have revealed the synthesis pathways and the regulatory mechanisms of miRNAs in animals and plants. miRNA-based regulation is implicated in disease etiology and has been studied for treatment. Furthermore, several preclinical and clinical trials have been initiated for miRNA-based therapeutics. In this review, the existing knowledge about miRNAs synthesis, mechanisms for regulation of the genome, and their widespread functions in animals and plants is summarized. The current status of preclinical and clinical trials regarding miRNA therapeutics is also reviewed. The recent findings in miRNA studies, summarized in this review, may add new dimensions to small RNA biology and miRNA therapeutics.
Collapse
Affiliation(s)
- Fazli Wahid
- School of life Sciences and Biotechnology, College of Natural sciences, Kyungpook National University, Buk-ku, Taegu, Korea
| | | | | | | |
Collapse
|
277
|
RNA-mediated trans-communication can establish paramutation at the b1 locus in maize. Proc Natl Acad Sci U S A 2010; 107:12986-91. [PMID: 20616013 DOI: 10.1073/pnas.1007972107] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Paramutation is the epigenetic transfer of information between alleles that leads to the heritable change of expression of one allele. Paramutation at the b1 locus in maize requires seven noncoding tandem repeat (b1TR) sequences located approximately 100 kb upstream of the transcription start site of b1, and mutations in several genes required for paramutation implicate an RNA-mediated mechanism. The mediator of paramutation (mop1) gene, which encodes a protein closely related to RNA-dependent RNA polymerases, is absolutely required for paramutation. Herein, we investigate the potential function of mop1 and the siRNAs that are produced from the b1TR sequences. Production of siRNAs from the b1TR sequences depends on a functional mop1 gene, but transcription of the repeats is not dependent on mop1. Further nuclear transcription assays suggest that the b1TR sequences are likely transcribed predominantly by RNA polymerase II. To address whether production of b1TR-siRNAs correlated with paramutation, we examined siRNA production in alleles that cannot undergo paramutation. Alleles that cannot participate in paramutation also produce b1TR-siRNAs, suggesting that b1TR-siRNAs are not sufficient for paramutation in the tissues analyzed. However, when b1TR-siRNAs are produced from a transgene expressing a hairpin RNA, b1 paramutation can be recapitulated. We hypothesize that either the b1TR-siRNAs or the dsRNA template mediates the trans-communication between the alleles that establishes paramutation. In addition, we uncovered a role for mop1 in the biogenesis of a subset of microRNAs (miRNAs) and show that it functions at the level of production of the primary miRNA transcripts.
Collapse
|
278
|
Pantaleo V, Szittya G, Moxon S, Miozzi L, Moulton V, Dalmay T, Burgyan J. Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:960-976. [PMID: 20230504 DOI: 10.1111/j.1365-313x.2010.04208.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In plants, microRNAs (miRNAs) comprise one of three classes of small RNAs regulating gene expression at the post-transcriptional level. Many plant miRNAs are conserved, and play a role in development, abiotic stress responses or pathogen responses. However, some miRNAs have only been found in certain species. Here, we use deep-sequencing, computational and molecular methods to identify, profile, and describe conserved and non-conserved miRNAs in four grapevine (Vitis vinifera) tissues. A total of 24 conserved miRNA families were identified in all four tissues, and 26 known but non-conserved miRNAs were also found. In addition to known miRNAs, we also found 21 new grapevine-specific miRNAs together with their star strands. We have also shown that almost all of them originated from single genes. Furthermore, 21 other plausible miRNA candidates have been described. We have found that many known and new miRNAs showed tissue-specific expression. Finally, 112 target mRNAs of known and 44 target mRNAs of new grapevine-specific miRNAs were identified by genomic-scale high-throughput sequencing of miRNA cleaved mRNAs.
Collapse
Affiliation(s)
- Vitantonio Pantaleo
- Istituto di Virologia Vegetale, Consiglio Nazionale delle Ricerche, Torino, Italy
| | | | | | | | | | | | | |
Collapse
|
279
|
Liang G, Yang F, Yu D. MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:1046-57. [PMID: 20374528 DOI: 10.1111/j.1365-313x.2010.04216.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Sulfur is a macronutrient that is necessary for plant growth and development. Sulfate, a major source of sulfur, is taken up by plant roots and transported into various tissues for assimilation. During sulfate limitation, expression of miR395 is significantly up-regulated. miR395 targets two families of genes, ATP sulfurylases (encoded by APS genes) and sulfate transporter 2;1 (SULTR2;1, also called AST68), both of which are involved in the sulfate metabolism pathway. Their transcripts are suppressed strongly in miR395-over-expressing transgenic Arabidopsis, which over-accumulates sulfate in the shoot but not in the root. APS1 knockdown mutants accumulate twice as much sulfate as the wild-type. By constructing APS4-RNAi transgenic plants, we found that silencing the APS4 gene also results in over-accumulation of sulfate. Even though miR395-over-expressing transgenic plants over-accumulate sulfate in the shoot, they display sulfur deficiency symptoms. Additionally, the distribution of sulfate from older to younger leaves is impaired in miR395-over-expressing plants, similar to a SULTR2;1 loss-of-function mutant. The aps1-1 sultr2;1 APS4-RNAi triply repressed mutants phenocopied miR395-over-expressing plants. Our research showed that miR395 is involved in the regulation of sulfate accumulation and allocation by targeting APS genes and SULTR2;1, respectively.
Collapse
Affiliation(s)
- Gang Liang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | | | | |
Collapse
|
280
|
Werner S, Wollmann H, Schneeberger K, Weigel D. Structure determinants for accurate processing of miR172a in Arabidopsis thaliana. Curr Biol 2010; 20:42-8. [PMID: 20015654 DOI: 10.1016/j.cub.2009.10.073] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 09/29/2009] [Accepted: 10/29/2009] [Indexed: 12/21/2022]
Abstract
Plant microRNAs (miRNAs) are processed by the RNase III-like enzyme DICER-LIKE1 acting in concert with the double-stranded RNA-binding protein HYPONASTIC LEAVES1 and the zinc finger protein SERRATE. Together, they excise a miRNA/miRNA( *) duplex with a 2 nucleotide 3' overhang from the primary miRNA (pri-miRNA) transcript. pri-miRNAs include a partially self-complementary foldback or stem loop, which gives rise to the mature miRNA. In animals, pri-miRNAs are very similar, with a stereotypic position of the miRNA within the foldback. Accordingly, rules for miRNA excision from the precursor are quite simple in animals. In contrast, how miRNA sequences are recognized in the structurally much more diverse foldbacks of plants is unknown. We have performed an extensive in vivo structure-function analysis of Arabidopsis thaliana pri-miRNA 172a (pri-miR172a). A junction of single-stranded and double-stranded RNA 15 nucleotides proximal from the miRNA/miRNA(*) duplex appears to be essential for accurate miR172a processing. This attribute is found in several other but not all plant miRNA foldbacks. In addition, we have identified features of the distal foldback structure important for miR172a processing. Our ability to engineer de novo a functional minimal miRNA precursor highlights that we have discovered several elements both necessary and sufficient for accurate miRNA processing.
Collapse
Affiliation(s)
- Schallum Werner
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
281
|
Identification of miRNA from Porphyra yezoensis by high-throughput sequencing and bioinformatics analysis. PLoS One 2010; 5:e10698. [PMID: 20502668 PMCID: PMC2873431 DOI: 10.1371/journal.pone.0010698] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 04/26/2010] [Indexed: 11/29/2022] Open
Abstract
Background miRNAs are a class of non-coding, small RNAs that are approximately 22 nucleotides long and play important roles in the translational level regulation of gene expression by either directly binding or cleaving target mRNAs. The red alga, Porphyra yezoensis is one of the most important marine economic crops worldwide. To date, only a few miRNAs have been identified in green unicellar alga and there is no report about Porphyra miRNAs. Methodology/Principal Findings To identify miRNAs in Porphyra yezoensis, a small RNA library was constructed. Solexa technology was used to perform high throughput sequencing of the library and subsequent bioinformatics analysis to identify novel miRNAs. Specifically, 180,557,942 reads produced 13,324 unique miRNAs representing 224 conserved miRNA families that have been identified in other plants species. In addition, seven novel putative miRNAs were predicted from a limited number of ESTs. The potential targets of these putative miRNAs were also predicted based on sequence homology search. Conclusions/Significance This study provides a first large scale cloning and characterization of Porphyra miRNAs and their potential targets. These miRNAs belong to 224 conserved miRNA families and 7 miRNAs are novel in Porphyra. These miRNAs add to the growing database of new miRNA and lay the foundation for further understanding of miRNA function in the regulation of Porphyra yezoensis development.
Collapse
|
282
|
Buhtz A, Pieritz J, Springer F, Kehr J. Phloem small RNAs, nutrient stress responses, and systemic mobility. BMC PLANT BIOLOGY 2010; 10:64. [PMID: 20388194 PMCID: PMC2923538 DOI: 10.1186/1471-2229-10-64] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 04/13/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Nutrient availabilities and needs have to be tightly coordinated between organs to ensure a balance between uptake and consumption for metabolism, growth, and defense reactions. Since plants often have to grow in environments with sub-optimal nutrient availability, a fine tuning is vital. To achieve this, information has to flow cell-to-cell and over long-distance via xylem and phloem. Recently, specific miRNAs emerged as a new type of regulating molecules during stress and nutrient deficiency responses, and miR399 was suggested to be a phloem-mobile long-distance signal involved in the phosphate starvation response. RESULTS We used miRNA microarrays containing all known plant miRNAs and a set of unknown small (s) RNAs earlier cloned from Brassica phloem sap 1, to comprehensively analyze the phloem response to nutrient deficiency by removing sulfate, copper or iron, respectively, from the growth medium. We show that phloem sap contains a specific set of sRNAs that is distinct from leaves and roots, and that the phloem also responds specifically to stress. Upon S and Cu deficiencies phloem sap reacts with an increase of the same miRNAs that were earlier characterized in other tissues, while no clear positive response to -Fe was observed. However, -Fe led to a reduction of Cu- and P-responsive miRNAs. We further demonstrate that under nutrient starvation miR399 and miR395 can be translocated through graft unions from wild type scions to rootstocks of the miRNA processing hen1-1 mutant. In contrast, miR171 was not transported. Translocation of miR395 led to a down-regulation of one of its targets in rootstocks, suggesting that this transport is of functional relevance, and that miR395, in addition to the well characterized miR399, could potentially act as a long-distance information transmitter. CONCLUSIONS Phloem sap contains a specific set of sRNAs, of which some specifically accumulate in response to nutrient deprivation. From the observation that miR395 and miR399 are phloem-mobile in grafting experiments we conclude that translocatable miRNAs might be candidates for information-transmitting molecules, but that grafting experiments alone are not sufficient to convincingly assign a signaling function.
Collapse
Affiliation(s)
- Anja Buhtz
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus de Montegancedo, M40 (km38), 28223 Pozuelo de Alarcón/Madrid, Spain
| | - Janin Pieritz
- Max Planck Institute of Molecular Plant Physiology, Department Lothar Willmitzer, 14476 Potsdam, Germany
| | - Franziska Springer
- Max Planck Institute of Molecular Plant Physiology, Department Lothar Willmitzer, 14476 Potsdam, Germany
| | - Julia Kehr
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus de Montegancedo, M40 (km38), 28223 Pozuelo de Alarcón/Madrid, Spain
| |
Collapse
|
283
|
Fahlgren N, Jogdeo S, Kasschau KD, Sullivan CM, Chapman EJ, Laubinger S, Smith LM, Dasenko M, Givan SA, Weigel D, Carrington JC. MicroRNA gene evolution in Arabidopsis lyrata and Arabidopsis thaliana. THE PLANT CELL 2010; 22:1074-89. [PMID: 20407027 PMCID: PMC2879733 DOI: 10.1105/tpc.110.073999] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/16/2010] [Accepted: 04/05/2010] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are short regulatory RNAs processed from partially self-complementary foldbacks within longer MIRNA primary transcripts. Several MIRNA families are conserved deeply through land plants, but many are present only in closely related species or are species specific. The finding of numerous evolutionarily young MIRNA, many with low expression and few if any targets, supports a rapid birth-death model for MIRNA evolution. A systematic analysis of MIRNA genes and families in the close relatives, Arabidopsis thaliana and Arabidopsis lyrata, was conducted using both whole-genome comparisons and high-throughput sequencing of small RNAs. Orthologs of 143 A. thaliana MIRNA genes were identified in A. lyrata, with nine having significant sequence or processing changes that likely alter function. In addition, at least 13% of MIRNA genes in each species are unique, despite their relatively recent speciation (approximately 10 million years ago). Alignment of MIRNA foldbacks to the Arabidopsis genomes revealed evidence for recent origins of 32 families by inverted or direct duplication of mostly protein-coding gene sequences, but less than half of these yield miRNA that are predicted to target transcripts from the originating gene family. miRNA nucleotide divergence between A. lyrata and A. thaliana orthologs was higher for young MIRNA genes, consistent with reduced purifying selection compared with deeply conserved MIRNA genes. Additionally, target sites of younger miRNA were lost more frequently than for deeply conserved families. In summary, our systematic analyses emphasize the dynamic nature of the MIRNA complement of plant genomes.
Collapse
Affiliation(s)
- Noah Fahlgren
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Sanjuro Jogdeo
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Kristin D. Kasschau
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Christopher M. Sullivan
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Elisabeth J. Chapman
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Sascha Laubinger
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Lisa M. Smith
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Mark Dasenko
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
| | - Scott A. Givan
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - James C. Carrington
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
- Address correspondence to
| |
Collapse
|
284
|
|
285
|
Abstract
Small RNAs associated with post-transcriptional gene silencing were first discovered in plants in 1999. Although this study marked the beginning of small RNA biology in plants, the sequence of the Arabidopsis genome and related genomic resources that were soon to become available to the Arabidopsis community launched the research on small RNAs at a remarkable pace. In 2000, when the genetic blueprint of the first plant species was revealed, the tens of thousands of endogenous small RNA species as we know today remained hidden features of the genome. However, the subsequent 10 years have witnessed an explosion of our knowledge of endogenous small RNAs: their widespread existence, diversity, biogenesis, mode of action and biological functions. As key sequence-specific regulators of gene expression in the nucleus and the cytoplasm, small RNAs influence almost all aspects of plant biology. Because of the extensive conservation of mechanisms concerning the biogenesis and molecular actions of small RNAs, research in the model plant Arabidopsis has contributed vital knowledge to the small RNA field in general. Our knowledge of small RNAs gained primarily from Arabidopsis has also led to the invention of effective gene knock-down technologies that are applicable to diverse plant species, including crop plants. Here, I attempt to recount the developments of the small RNA field in the pre- and post-genomic era, in celebration of the 10th anniversary of the completion of the first plant genome.
Collapse
Affiliation(s)
- Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
286
|
Pulido A, Laufs P. Co-ordination of developmental processes by small RNAs during leaf development. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1277-91. [PMID: 20097843 DOI: 10.1093/jxb/erp397] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Leaf development entails the transition from a small group of undifferentiated cells to a structure of defined size and shape, highly organized into different cell types with specialized functions. During this developmental sequence, patterning, growth, and differentiation have to be tightly coordinated by intricate regulatory networks in which small RNAs [microRNAs (miRNAs) and trans-acting small interfering RNAs (ta-siRNAs)] have emerged during the last years as essential players. In this review, after having given an overview of miRNA and ta-siRNA biogenesis and mode of action, their contribution to the life of a leaf from initiation to senescence is described. MiRNA and ta-siRNA are not merely regulators of gene expression patterns, but, by acting both locally and at the whole organ scale, they have an essential role in the coordination of complex developmental processes and are fully integrated in genetic networks and signalling pathways.
Collapse
Affiliation(s)
- Amada Pulido
- Laboratoire de Biologie Cellulaire, Institut Jean Pierre Bourgin, INRA, 78026 Versailles Cedex, France
| | | |
Collapse
|
287
|
Rodriguez RE, Mecchia MA, Debernardi JM, Schommer C, Weigel D, Palatnik JF. Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development 2010; 137:103-12. [PMID: 20023165 DOI: 10.1242/dev.043067] [Citation(s) in RCA: 371] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell proliferation is an important determinant of plant form, but little is known about how developmental programs control cell division. Here, we describe the role of microRNA miR396 in the coordination of cell proliferation in Arabidopsis leaves. In leaf primordia, miR396 is expressed at low levels that steadily increase during organ development. We found that miR396 antagonizes the expression pattern of its targets, the GROWTH-REGULATING FACTOR (GRF) transcription factors. miR396 accumulates preferentially in the distal part of young developing leaves, restricting the expression of GRF2 to the proximal part of the organ. This, in turn, coincides with the activity of the cell proliferation marker CYCLINB1;1. We show that miR396 attenuates cell proliferation in developing leaves, through the repression of GRF activity and a decrease in the expression of cell cycle genes. We observed that the balance between miR396 and the GRFs controls the final number of cells in leaves. Furthermore, overexpression of miR396 in a mutant lacking GRF-INTERACTING FACTOR 1 severely compromises the shoot meristem. We found that miR396 is expressed at low levels throughout the meristem, overlapping with the expression of its target, GRF2. In addition, we show that miR396 can regulate cell proliferation and the size of the meristem. Arabidopsis plants with an increased activity of the transcription factor TCP4, which reduces cell proliferation in leaves, have higher miR396 and lower GRF levels. These results implicate miR396 as a significant module in the regulation of cell proliferation in plants.
Collapse
Affiliation(s)
- Ramiro E Rodriguez
- Instituto de Biología Molecular y Celular de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | | | | | | | | | | |
Collapse
|
288
|
Dassanayake M, Haas JS, Bohnert HJ, Cheeseman JM. Comparative transcriptomics for mangrove species: an expanding resource. Funct Integr Genomics 2010; 10:523-32. [PMID: 20107865 DOI: 10.1007/s10142-009-0156-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 11/30/2009] [Accepted: 12/24/2009] [Indexed: 11/30/2022]
Abstract
We present here the Mangrove Transcriptome Database (MTDB), an integrated, web-based platform providing transcript information from all 28 mangrove species for which information is available. Sequences are annotated, and when possible, GO clustered and assigned to KEGG pathways, making MTDB a valuable resource for approaching mangrove or other extremophile biology from the transcriptomic level. As one example outlining the potential of MTDB, we highlight the analysis of mangrove microRNA (miRNA) precursor sequences, miRNA target sites, and their conservation and divergence compared with model plants. MTDB is available at http://mangrove.illinois.edu .
Collapse
Affiliation(s)
- Maheshi Dassanayake
- Department of Plant Biology, University of Illinois, 505 S Goodwin Ave, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
289
|
Abstract
Development of multi-cellular organisms depends on the correct spatial and temporal expression of numerous genes acting in concert to form regulatory networks. The expression of individual genes can be controlled at different levels, e.g. at the transcriptional level by sequence-specific binding of transcription factors and/or by epigenetic modifications, or at the post-transcriptional level, e.g., by modulating translation or protein stability. Within the last decade the picture of gene regulatory mechanisms has been substantially enriched by the identification of small RNAs (sRNAs) of several distinct subspecies. Non-coding regulatory sRNAs contribute to transcriptional and post-transcriptional gene regulation by different modes of sequence-specific interaction with their targets. MicroRNAs (miRNAs), which guide post-transcriptional gene silencing, have been found to contribute to a variety of developmental programs in plants and animals. Here we provide an overview about generation and action of miRNAs and other small RNAs, and their contribution to an important developmental process in plants, flower formation.
Collapse
Affiliation(s)
- Heike Wollmann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | | |
Collapse
|
290
|
Abstract
miRNAs have emerged as key regulators of gene expression in both plants and animals. These small (generally 21-22 nt) RNA molecules, originated from primary "hairpin" transcripts, can induce translational suppression or direct mRNA cleavage. Similar to regular mRNAs, the expression of miRNAs is highly regulated. Their expression pattern could provide critical clues to understanding miRNA functions. However, many previously identified miRNA families have multiple paralogous loci. Within each family, different members are often closely related and sometimes give rise to identical miRNAs. This poses critical challenges in the analysis of individual miRNA genes. This chapter describes several methods that are commonly used for miRNA expression analysis, including high-throughput sequencing, microarrays, and briefly discusses qRT-PCR, northern blotting, and other approaches used for data validation.
Collapse
Affiliation(s)
- Cheng Lu
- DuPont Agricultural Biotechnology, RT 141 & Henry Clay, Wilmington, DE, USA
| | | |
Collapse
|
291
|
Lu Y, Feng Z, Bian L, Xie H, Liang J. miR398 regulation in rice of the responses to abiotic and biotic stresses depends on CSD1 and CSD2 expression. FUNCTIONAL PLANT BIOLOGY : FPB 2010; 38:44-53. [PMID: 32480861 DOI: 10.1071/fp10178] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 10/24/2010] [Indexed: 05/04/2023]
Abstract
MiR398 targets two Cu or Zn superoxide dismutases (CSD1 and CSD2) in Arabidopsis thaliana (L.) Heynh. Here we provide evidence that rice (Oryza sativa L.) miR398 mediates responses to abiotic and biotic stresses through regulating the expression of its target genes, Os-CSD1 and Os-CSD2. Rice plants were exposed to various stresses, including high Cu2+, high salinity, high light, methyl viologen, water stress, pathogens and ethylene, and the molecular response was investigated. Rice plants overexpressing Os-miR398 and the miR398-resistant form of Os-CSD2 were also exposed to these stresses. Both abiotic and biotic stresses significantly inhibited Os-miR398 expression and thus stimulated the expression of Os-CSD1 and Os-CSD2. The plant hormone ethylene produced an especially marked response. Transgenic rice lines that overexpressed Os-miR398 had a lower expression of CSD1 and -2 and were more sensitive to environmental stress. Conversely, transgenic rice lines which overexpressed the miR398-resistant form of Os-CSD2 showed more tolerance to high salinity and water stress than non-transgenic rice. We conclude that Os-miR398 regulates the responses of rice to a wide range of environmental stresses and to ethylene, and exerts its role through mediating CSDs expression and cellular ROS levels.
Collapse
Affiliation(s)
- Yuzhu Lu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou 225009, China
| | - Zhen Feng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Liying Bian
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Hong Xie
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou 225009, China
| | - Jiansheng Liang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou 225009, China
| |
Collapse
|
292
|
Pietrzykowski AZ. The role of microRNAs in drug addiction: a big lesson from tiny molecules. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 91:1-24. [PMID: 20813238 DOI: 10.1016/s0074-7742(10)91001-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Alcoholism is a multifactorial disease of unclear molecular underpinnings. Currently, we are witnessing a major shift in our understanding of the functional elements of the genome, which could help us to discover novel insights into the nature of alcoholism. In humans, the vast majority of the genome encodes non-protein-coding DNA with unclear function. Recent research has started to unveil this mystery by describing the functional relevance of microRNAs, and examining which genes are regulated by non-protein-coding DNA. Here, I describe alcohol regulation of microRNAs and provide examples of microRNAs that control the expression of alcohol-relevant genes. Emphasis is put on the potential of microRNAs in explaining the polygenic nature of alcoholism and prospects of microRNA research and future directions of this burgeoning field.
Collapse
|
293
|
Abstract
Small RNAs play an important role in plant development, stress responses, and epigenetic regulation, primarily through their role in transcriptional and post-transcriptional silencing of specific target genes and loci. Most if not all plants utilize these small RNA signaling networks. We have developed a deep-sequencing based dataset of plant small RNAs, based on the hypothesis that comparisons among the complex pool of small RNAs from diverse plants will identify novel types of conserved, regulated, or species-specific molecules. A database containing upward of hundreds of millions of plant small RNA sequences is being created for comparative analyses. This small RNA database will allow the experimental characterization of the majority of the biologically important small RNAs for a range of plant species. This database can be accessed from our website (http://smallrna.udel.edu/). A variety of web-based tools have been developed for analyses of these data. Here, we focus on these tools, and we describe how the users can implement these tools to analyze and interpret the small RNA data and how the users could use similar approaches for other sets of plant small RNAs from diverse species.
Collapse
|
294
|
Yoon EK, Yang JH, Lim J, Kim SH, Kim SK, Lee WS. Auxin regulation of the microRNA390-dependent transacting small interfering RNA pathway in Arabidopsis lateral root development. Nucleic Acids Res 2009; 38:1382-91. [PMID: 19969544 PMCID: PMC2831332 DOI: 10.1093/nar/gkp1128] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
MicroRNA (miR)390 cleaves the non-coding TAS3 precursor RNA for the production of tasiRNA-ARF, a group of an endogenous trans-acting small-interfering RNAs which cleave the transcripts of auxin response factor (ARF) 3/4. miR390-cleaved TAS3 RNA is polymerized and diced into tasiRNA-ARF by RNA-dependent RNA polymerase6 (RDR6) and Dicer-like4 (DCL4), respectively. tasiRNA-ARF-dependent post-transcriptional gene silencing (PTGS) of ARF3/4 is involved in auxin-mediated polarity establishment in the development of aerial lateral organs, such as leaf and flower. To understand how auxin regulates ARF4 expression, we examined auxin responsiveness of miR390 expression, which comprises a regulatory step for the biogenesis pathway of tasiRNA-ARF (the tasiRNA-ARF pathway), in Arabidopsis thaliana lateral root (LR) development. The results of this study provide evidence that miR390 expression is sensitive to TIR1-dependent transcriptional regulation and auxin concentration, and also that mutual negative-regulation between the tasiRNA-ARF pathway and ARF4 modulates the spatiotemporal expression of ARF4. We propose that, together with auxin concentration sensing through miR390 transcription, the tasiRNA-ARF pathway mediates the auxin response and ARF4-mediated LR developmental processes.
Collapse
Affiliation(s)
- Eun Kyung Yoon
- Department of Biological Science and the Basic Science Research Institute, Chun-chun Dong 300, Jang-An Gu, Sungkyunkwan University, Suwon, 440-746, Korea
| | | | | | | | | | | |
Collapse
|
295
|
Guerra Cardoso H, Doroteia Campos M, Rita Costa A, Catarina Campos M, Nothnagel T, Arnholdt-Schmitt B. Carrot alternative oxidase gene AOX2a demonstrates allelic and genotypic polymorphisms in intron 3. PHYSIOLOGIA PLANTARUM 2009; 137:592-608. [PMID: 19941625 DOI: 10.1111/j.1399-3054.2009.01299.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Single nucleotide polymorphisms (SNPs) and insertion-deletions (InDels) are becoming important genetic markers for major crop species. In this study, we focus on variations at genomic level of the Daucus carota L. AOX2a gene. The use of gene-specific primers designed in exon regions on the boundaries of introns permitted to recognize intron length polymorphism (ILP) in intron 3 AOX2a by simple polymerase chain reaction (PCR) assays. The length of intron 3 can vary in individual carrot plants. Thus, allelic variation can be used as a tool to discriminate between single plant genotypes. Using this approach, individual plants from cv. Rotin and from diverse breeding lines and cultivars were identified that showed genetic variability by AOX2a ILPs. Repetitive patterns of intron length variation have been observed which allows grouping of genotypes. Polymorphic and identical PCR fragments revealed underlying high levels of sequence polymorphism. Variability was due to InDel events and intron single nucleotide polymorphisms (ISNPs), with a repetitive deletion in intron 3 affecting a putative pre-miRNA site. The results suggest that high AOX2a gene diversity in D. carota can be explored for the development of functional markers related to agronomic traits.
Collapse
Affiliation(s)
- Hélia Guerra Cardoso
- EU Marie Curie Chair, ICAAM, University of Evora, Apartado 94, 7002-554 Evora, Portugal
| | | | | | | | | | | |
Collapse
|
296
|
Chen R, Hu Z, Zhang H. Identification of microRNAs in wild soybean (Glycine soja). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2009; 51:1071-9. [PMID: 20021554 DOI: 10.1111/j.1744-7909.2009.00887.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
MicroRNAs (miRNAs) play important roles in post-transcriptional gene silencing by directing target mRNA cleavage or translational inhibition. Currently, hundreds of miRNAs have been identified in plants, but no report has been published of wild soybean (Glycine soja Sieb). We constructed a small-RNA library consisting of 2 880 sequences with high quality, in which 1 347 were 19-24 nt in length. By utilizing the miRNA, Rfam and domesticated soybean expressed sequence tag database, we have analyzed and predicted the secondary structure of these small RNAs. As a result, 15 conserved miRNA candidates belonging to eight different families and nine novel miRNA candidates comprising eight families were identified in wild soybean seedlings. All these miRNA candidates were validated by northern blot and the novel candidates expressed in a tissue-specific manner. Furthermore, putative target genes were predicted for novel miRNA candidates and two of them were verified by 5'-rapid amplification of cDNA ends experiments. These results provided useful information for miRNA research in wild soybean and plants.
Collapse
Affiliation(s)
- Rui Chen
- The National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | |
Collapse
|
297
|
Santos Macedo E, Cardoso HG, Hernández A, Peixe AA, Polidoros A, Ferreira A, Cordeiro A, Arnholdt-Schmitt B. Physiologic responses and gene diversity indicate olive alternative oxidase as a potential source for markers involved in efficient adventitious root induction. PHYSIOLOGIA PLANTARUM 2009; 137:532-52. [PMID: 19941624 DOI: 10.1111/j.1399-3054.2009.01302.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Olive (Olea europaea L.) trees are mainly propagated by adventitious rooting of semi-hardwood cuttings. However, efficient commercial propagation of valuable olive tree cultivars or landraces by semi-hardwood cuttings can often be restricted by a low rooting capacity. We hypothesize that root induction is a plant cell reaction linked to oxidative stress and that activity of stress-induced alternative oxidase (AOX) is importantly involved in adventitious rooting. To identify AOX as a source for potential functional marker sequences that may assist tree breeding, genetic variability has to be demonstrated that can affect gene regulation. The paper presents an applied, multidisciplinary research approach demonstrating first indications of an important relationship between AOX activity and differential adventitious rooting in semi-hardwood cuttings. Root induction in the easy-to-root Portuguese cultivar 'Cobrançosa' could be significantly reduced by treatment with salicyl-hydroxamic acid, an inhibitor of AOX activity. On the contrary, treatment with H2O2 or pyruvate, both known to induce AOX activity, increased the degree of rooting. Recently, identification of several O. europaea (Oe) AOX gene sequences has been reported from our group. Here we present for the first time partial sequences of OeAOX2. To search for polymorphisms inside of OeAOX genes, partial OeAOX2 sequences from the cultivars 'Galega vulgar', 'Cobrançosa' and 'Picual' were cloned from genomic DNA and cDNA, including exon, intron and 3'-untranslated regions (3'-UTRs) sequences. The data revealed polymorphic sites in several regions of OeAOX2. The 3'-UTR was the most important source for polymorphisms showing 5.7% of variability. Variability in the exon region accounted 3.4 and 2% in the intron. Further, analysis performed at the cDNA from microshoots of 'Galega vulgar' revealed transcript length variation for the 3'-UTR of OeAOX2 ranging between 76 and 301 bp. The identified polymorphisms and 3'-UTR length variation can be explored in future studies for effects on gene regulation and a potential linkage to olive rooting phenotypes in view of marker-assisted plant selection.
Collapse
|
298
|
Cohu CM, Abdel-Ghany SE, Gogolin Reynolds KA, Onofrio AM, Bodecker JR, Kimbrel JA, Niyogi KK, Pilon M. Copper delivery by the copper chaperone for chloroplast and cytosolic copper/zinc-superoxide dismutases: regulation and unexpected phenotypes in an Arabidopsis mutant. MOLECULAR PLANT 2009; 2:1336-50. [PMID: 19969519 DOI: 10.1093/mp/ssp084] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Copper (Cu) is an important mineral nutrient found in chloroplasts as a cofactor associated with plastocyanin and Cu/Zn superoxide dismutase (Cu/ZnSOD). Superoxide dismutases are metallo-enzymes found in most oxygenic organisms with proposed roles in reducing oxidative stress. Several recent studies in Arabidopsis have shown that microRNAs and a SQUAMOSA promoter binding protein-like7 (SPL7) transcription factor function to down-regulate the expression of many Cu-proteins, including Cu/ZnSOD in both plastids and the cytosol, during growth on low Cu. Plants contain the Cu Chaperone for SOD (CCS) that delivers Cu to Cu/ZnSODs, and, in Arabidopsis, both cytosolic and plastidic CCS versions are encoded by one gene. In this study, we demonstrate that Arabidopsis CCS transcript levels are regulated by Cu, mediated by microRNA 398 that was not previously predicted to target CCS. The microRNA target site is conserved in CCS of Oryza sativa. The data suggest that Cu-regulated microRNAs may have more mRNA targets than was previously predicted. A CCS null mutant has no measurable SOD activity in the chloroplast and cytosol, indicating an absolute requirement for CCS. When the CCS null mutant was grown on high Cu media, it lacked both Fe superoxide dismutase (FeSOD) and Cu/ZnSOD activity. However, this did not lead to a visual phenotype and no photosynthetic deficiencies were detected, even after high light stress. These results indicate that Cu/ZnSOD is not a pivotal component of the photosynthetic anti-oxidant system during growth in laboratory conditions.
Collapse
Affiliation(s)
- Christopher M Cohu
- Biology Department, Colorado State University, Fort Collins, CO 80523-1878, USA
| | | | | | | | | | | | | | | |
Collapse
|
299
|
Dickinson HG, Grant-Downton R. Bridging the generation gap: flowering plant gametophytes and animal germlines reveal unexpected similarities. Biol Rev Camb Philos Soc 2009; 84:589-615. [DOI: 10.1111/j.1469-185x.2009.00088.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
300
|
Yang W, Liu X, Zhang J, Feng J, Li C, Chen J. Prediction and validation of conservative microRNAs of Solanum tuberosum L. Mol Biol Rep 2009; 37:3081-7. [DOI: 10.1007/s11033-009-9881-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 10/01/2009] [Indexed: 01/20/2023]
|