251
|
Lee K, Lee HG, Yoon S, Kim HU, Seo PJ. The Arabidopsis MYB96 Transcription Factor Is a Positive Regulator of ABSCISIC ACID-INSENSITIVE4 in the Control of Seed Germination. PLANT PHYSIOLOGY 2015; 168:677-89. [PMID: 25869652 PMCID: PMC4453784 DOI: 10.1104/pp.15.00162] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/10/2015] [Indexed: 05/18/2023]
Abstract
Seed germination is a key developmental transition that initiates the plant life cycle. The timing of germination is determined by the coordinated action of two phytohormones, gibberellin and abscisic acid (ABA). In particular, ABA plays a key role in integrating environmental information and inhibiting the germination process. The utilization of embryonic lipid reserves contributes to seed germination by acting as an energy source, and ABA suppresses lipid degradation to modulate the germination process. Here, we report that the ABA-responsive R2R3-type MYB transcription factor MYB96, which is highly expressed in embryo, regulates seed germination by controlling the expression of abscisic acid-insensitive4 (ABI4) in Arabidopsis (Arabidopsis thaliana). In the presence of ABA, germination was accelerated in MYB96-deficient myb96-1 seeds, whereas the process was significantly delayed in MYB96-overexpressing activation-tagging myb96-ox seeds. Consistently, myb96-1 seeds degraded a larger extent of lipid reserves even in the presence of ABA, while reduced lipid mobilization was observed in myb96-ox seeds. MYB96 directly regulates ABI4, which acts as a repressor of lipid breakdown, to define its spatial and temporal expression. Genetic analysis further demonstrated that ABI4 is epistatic to MYB96 in the control of seed germination. Taken together, the MYB96-ABI4 module regulates lipid mobilization specifically in the embryo to ensure proper seed germination under suboptimal conditions.
Collapse
Affiliation(s)
- Kyounghee Lee
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials (K.L., H.G.L., P.J.S.) and Department of Chemistry and Research Institute of Physics and Chemistry (P.J.S.), Chonbuk National University, Jeonju 561-756, Republic of Korea; andDepartment of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Republic of Korea (S.Y., H.U.K.)
| | - Hong Gil Lee
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials (K.L., H.G.L., P.J.S.) and Department of Chemistry and Research Institute of Physics and Chemistry (P.J.S.), Chonbuk National University, Jeonju 561-756, Republic of Korea; andDepartment of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Republic of Korea (S.Y., H.U.K.)
| | - Seongmun Yoon
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials (K.L., H.G.L., P.J.S.) and Department of Chemistry and Research Institute of Physics and Chemistry (P.J.S.), Chonbuk National University, Jeonju 561-756, Republic of Korea; andDepartment of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Republic of Korea (S.Y., H.U.K.)
| | - Hyun Uk Kim
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials (K.L., H.G.L., P.J.S.) and Department of Chemistry and Research Institute of Physics and Chemistry (P.J.S.), Chonbuk National University, Jeonju 561-756, Republic of Korea; andDepartment of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Republic of Korea (S.Y., H.U.K.)
| | - Pil Joon Seo
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials (K.L., H.G.L., P.J.S.) and Department of Chemistry and Research Institute of Physics and Chemistry (P.J.S.), Chonbuk National University, Jeonju 561-756, Republic of Korea; andDepartment of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Republic of Korea (S.Y., H.U.K.)
| |
Collapse
|
252
|
Livne S, Lor VS, Nir I, Eliaz N, Aharoni A, Olszewski NE, Eshed Y, Weiss D. Uncovering DELLA-Independent Gibberellin Responses by Characterizing New Tomato procera Mutants. THE PLANT CELL 2015; 27:1579-94. [PMID: 26036254 PMCID: PMC4498196 DOI: 10.1105/tpc.114.132795] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 04/14/2015] [Accepted: 05/21/2015] [Indexed: 05/18/2023]
Abstract
Gibberellin (GA) regulates plant development primarily by triggering the degradation/deactivation of the DELLA proteins. However, it remains unclear whether all GA responses are regulated by DELLAs. Tomato (Solanum lycopersicum) has a single DELLA gene named PROCERA (PRO), and its recessive pro allele exhibits constitutive GA activity but retains responsiveness to external GA. In the loss-of-function mutant pro(ΔGRAS), all examined GA developmental responses were considerably enhanced relative to pro and a defect in seed desiccation tolerance was uncovered. As pro, but not pro(ΔGRAS), elongation was promoted by GA treatment, pro may retain residual DELLA activity. In agreement with homeostatic feedback regulation of the GA biosynthetic pathway, we found that GA20oxidase1 expression was suppressed in pro(ΔGRAS) and was not affected by exogenous GA3. In contrast, expression of GA2oxidase4 was not affected by the elevated GA signaling in pro(ΔGRAS) but was strongly induced by exogenous GA3. Since a similar response was found in Arabidopsis thaliana plants with impaired activity of all five DELLA genes, we suggest that homeostatic GA responses are regulated by both DELLA-dependent and -independent pathways. Transcriptome analysis of GA-treated pro(ΔGRAS) leaves suggests that 5% of all GA-regulated genes in tomato are DELLA independent.
Collapse
Affiliation(s)
- Sivan Livne
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Vai S Lor
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Ido Nir
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Natanella Eliaz
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Asaph Aharoni
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Neil E Olszewski
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Yuval Eshed
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - David Weiss
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
253
|
Tamiru M, Undan JR, Takagi H, Abe A, Yoshida K, Undan JQ, Natsume S, Uemura A, Saitoh H, Matsumura H, Urasaki N, Yokota T, Terauchi R. A cytochrome P450, OsDSS1, is involved in growth and drought stress responses in rice (Oryza sativa L.). PLANT MOLECULAR BIOLOGY 2015; 88:85-99. [PMID: 25800365 DOI: 10.1007/s11103-015-0310-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 03/16/2015] [Indexed: 05/05/2023]
Abstract
Cytochrome P450s are among the largest protein coding gene families in plant genomes. However, majority of the genes remain uncharacterized. Here, we report the characterization of dss1, a rice mutant showing dwarfism and reduced grain size. The dss1 phenotype is caused by a non-synonymous point mutation we identified in DSS1, which is member of a P450 gene cluster located on rice chromosome 3 and corresponds to the previously reported CYP96B4/SD37 gene. Phenotypes of several dwarf mutants characterized in rice are associated with defects in the biosynthesis or perception of the phytohormones gibberellins (GAs) and brassinosteroids (BRs). However, both GA and BR failed to rescue the dss1 phenotype. Hormone profiling revealed the accumulation of abscisic acid (ABA) and ABA metabolites, as well as significant reductions in GA19 and GA53 levels, precursors of the bioactive GA1, in the mutant. The dss1 contents of cytokinin and auxins were not significantly different from wild-type plants. Consistent with the accumulation of ABA and metabolites, germination and early growth was delayed in dss1, which also exhibited an enhanced tolerance to drought. Additionally, expressions of members of the DSS1/CYP96B gene cluster were regulated by drought stress and exogenous ABA. RNA-seq-based transcriptome profiling revealed, among others, that cell wall-related genes and genes involved in lipid metabolism were up- and down-regulated in dss1, respectively. Taken together, these findings suggest that DSS1 mediates growth and stress responses in rice by fine-tuning GA-to-ABA balance, and might as well play a role in lipid metabolism.
Collapse
Affiliation(s)
- Muluneh Tamiru
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate, 024-0003, Japan,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
254
|
Kondhare K, Farrell A, Kettlewell P, Hedden P, Monaghan J. Pre-maturity α-amylase in wheat: The role of abscisic acid and gibberellins. J Cereal Sci 2015. [DOI: 10.1016/j.jcs.2015.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
255
|
WRKY transcription factors: links between phytohormones and plant processes. SCIENCE CHINA-LIFE SCIENCES 2015; 58:501-2. [PMID: 25863498 DOI: 10.1007/s11427-015-4849-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/13/2015] [Indexed: 10/23/2022]
|
256
|
Nozue K, Tat AV, Kumar Devisetty U, Robinson M, Mumbach MR, Ichihashi Y, Lekkala S, Maloof JN. Shade avoidance components and pathways in adult plants revealed by phenotypic profiling. PLoS Genet 2015; 11:e1004953. [PMID: 25874869 PMCID: PMC4398415 DOI: 10.1371/journal.pgen.1004953] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 12/11/2014] [Indexed: 01/01/2023] Open
Abstract
Shade from neighboring plants limits light for photosynthesis; as a consequence, plants have a variety of strategies to avoid canopy shade and compete with their neighbors for light. Collectively the response to foliar shade is called the shade avoidance syndrome (SAS). The SAS includes elongation of a variety of organs, acceleration of flowering time, and additional physiological responses, which are seen throughout the plant life cycle. However, current mechanistic knowledge is mainly limited to shade-induced elongation of seedlings. Here we use phenotypic profiling of seedling, leaf, and flowering time traits to untangle complex SAS networks. We used over-representation analysis (ORA) of shade-responsive genes, combined with previous annotation, to logically select 59 known and candidate novel mutants for phenotyping. Our analysis reveals shared and separate pathways for each shade avoidance response. In particular, auxin pathway components were required for shade avoidance responses in hypocotyl, petiole, and flowering time, whereas jasmonic acid pathway components were only required for petiole and flowering time responses. Our phenotypic profiling allowed discovery of seventeen novel shade avoidance mutants. Our results demonstrate that logical selection of mutants increased success of phenotypic profiling to dissect complex traits and discover novel components.
Collapse
Affiliation(s)
- Kazunari Nozue
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| | - An V. Tat
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| | - Upendra Kumar Devisetty
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| | - Matthew Robinson
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| | - Maxwell R. Mumbach
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| | - Yasunori Ichihashi
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| | - Saradadevi Lekkala
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| | - Julin N. Maloof
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
257
|
Yano K, Aya K, Hirano K, Ordonio RL, Ueguchi-Tanaka M, Matsuoka M. Comprehensive gene expression analysis of rice aleurone cells: probing the existence of an alternative gibberellin receptor. PLANT PHYSIOLOGY 2015; 167:531-44. [PMID: 25511432 PMCID: PMC4326742 DOI: 10.1104/pp.114.247940] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 12/14/2014] [Indexed: 05/21/2023]
Abstract
Current gibberellin (GA) research indicates that GA must be perceived in plant nuclei by its cognate receptor, GIBBERELLIN INSENSITIVE DWARF1 (GID1). Recognition of GA by GID1 relieves the repression mediated by the DELLA protein, a model known as the GID1-DELLA GA perception system. There have been reports of potential GA-binding proteins in the plasma membrane that perceive GA and induce α-amylase expression in cereal aleurone cells, which is mechanistically different from the GID1-DELLA system. Therefore, we examined the expression of the rice (Oryza sativa) α-amylase genes in rice mutants impaired in the GA receptor (gid1) and the DELLA repressor (slender rice1; slr1) and confirmed their lack of response to GA in gid1 mutants and constitutive expression in slr1 mutants. We also examined the expression of GA-regulated genes by genome-wide microarray and quantitative reverse transcription-polymerase chain reaction analyses and confirmed that all GA-regulated genes are modulated by the GID1-DELLA system. Furthermore, we studied the regulatory network involved in GA signaling by using a set of mutants defective in genes involved in GA perception and gene expression, namely gid1, slr1, gid2 (a GA-related F-box protein mutant), and gamyb (a GA-related trans-acting factor mutant). Almost all GA up-regulated genes were regulated by the four named GA-signaling components. On the other hand, GA down-regulated genes showed different expression patterns with respect to GID2 and GAMYB (e.g. a considerable number of genes are not controlled by GAMYB or GID2 and GAMYB). Based on these observations, we present a comprehensive discussion of the intricate network of GA-regulated genes in rice aleurone cells.
Collapse
Affiliation(s)
- Kenji Yano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Koichiro Aya
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Ko Hirano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | | | - Miyako Ueguchi-Tanaka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Makoto Matsuoka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
258
|
Hedden P, Sponsel V. A Century of Gibberellin Research. JOURNAL OF PLANT GROWTH REGULATION 2015; 34:740-60. [PMID: 26523085 PMCID: PMC4622167 DOI: 10.1007/s00344-015-9546-1] [Citation(s) in RCA: 280] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 09/25/2015] [Indexed: 05/17/2023]
Abstract
Gibberellin research has its origins in Japan in the 19th century, when a disease of rice was shown to be due to a fungal infection. The symptoms of the disease including overgrowth of the seedling and sterility were later shown to be due to secretions of the fungus Gibberella fujikuroi (now reclassified as Fusarium fujikuroi), from which the name gibberellin was derived for the active component. The profound effect of gibberellins on plant growth and development, particularly growth recovery in dwarf mutants and induction of bolting and flowering in some rosette species, prompted speculation that these fungal metabolites were endogenous plant growth regulators and this was confirmed by chemical characterisation in the late 1950s. Gibberellins are now known to be present in vascular plants, and some fungal and bacterial species. The biosynthesis of gibberellins in plants and the fungus has been largely resolved in terms of the pathways, enzymes, genes and their regulation. The proposal that gibberellins act in plants by removing growth limitation was confirmed by the demonstration that they induce the degradation of the growth-inhibiting DELLA proteins. The mechanism by which this is achieved was clarified by the identification of the gibberellin receptor from rice in 2005. Current research on gibberellin action is focussed particularly on the function of DELLA proteins as regulators of gene expression. This review traces the history of gibberellin research with emphasis on the early discoveries that enabled the more recent advances in this field.
Collapse
Affiliation(s)
- Peter Hedden
- />Rothamsted Research, West Common, Harpenden, AL5 2JQ Hertfordshire UK
| | - Valerie Sponsel
- />Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249 USA
| |
Collapse
|
259
|
Yamaguchi N, Winter CM, Wellmer F, Wagner D. Identification of direct targets of plant transcription factors using the GR fusion technique. Methods Mol Biol 2015; 1284:123-38. [PMID: 25757770 PMCID: PMC5757826 DOI: 10.1007/978-1-4939-2444-8_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The glucocorticoid receptor-dependent activation of plant transcription factors has proven to be a powerful tool for the identification of their direct target genes. In the absence of the synthetic steroid hormone dexamethasone (dex), transcription factors fused to the hormone-binding domain of the glucocorticoid receptor (TF-GR) are held in an inactive state, due to their cytoplasmic localization. This requires physical interaction with the heat shock protein 90 (HSP90) complex. Hormone binding leads to disruption of the interaction between GR and HSP90 and allows TF-GR fusion proteins to enter the nucleus. Once inside the nucleus, they bind to specific DNA sequences and immediately activate or repress expression of their targets. This system is well suited for the identification of direct target genes of transcription factors in plants, as (A) there is little basal protein activity in the absence of dex, (B) steroid application leads to rapid transcription factor activation, (C) no side effects of dex treatment are observed on the physiology of the plant, and (D) secondary effects of transcription factor activity can be eliminated by simultaneous application of an inhibitor of protein biosynthesis, cycloheximide (cyc). In this chapter, we describe detailed protocols for the preparation of plant material, for dex and cyc treatment, for RNA extraction, and for the PCR-based or genome-wide identification of direct targets of transcription factors fused to GR.
Collapse
Affiliation(s)
- Nobutoshi Yamaguchi
- Department of Biology, University of Pennsylvania, 415 S. University Ave., Philadelphia, PA, 19104-6018, USA
| | | | | | | |
Collapse
|
260
|
Fukazawa J, Ito T, Kamiya Y, Yamaguchi S, Takahashi Y. Binding of GID1 to DELLAs promotes dissociation of GAF1 from DELLA in GA dependent manner. PLANT SIGNALING & BEHAVIOR 2015; 10:e1052923. [PMID: 26237582 PMCID: PMC4883832 DOI: 10.1080/15592324.2015.1052923] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Gibberellins (GAs) are important phytohormones for plant growth and development. DELLAs are members of the plant-specific GRAS protein family and act as repressors of GA signaling. DELLAs are rapidly degraded in the presence of GAs. GA-GID1-DELLA complexes are recognized and ubiquitinated by the SCF(SLY) complex. The sleepy1 (sly1) F-box mutant exhibits dwarfism and low-germination phenotypes due to high accumulation of DELLAs. Overexpression of GID1 in the sly1 mutant partially rescues these phenotypes without degradation of DELLAs suggesting that proteolysis independent regulation of DELLAs exists in GA signaling. But the molecular mechanisms of non-proteolytic regulation of DELLA are largely unknown. Recently we identified a DELLA binding transcription factor, GAI-ASSOCIATED FACTOR1 (GAF1). GAF1 also interacts with co-repressor TOPLESS RELATED (TPR) in nuclei. DELLAs and TPR act as coactivator and corepressor of GAF1, respectively. GAs converts the GAF1 complex from transcriptional activator to repressor via degradation of DELLAs. The overexpression of ΔPAM, lacking of DELLAs binding region of GAF1, partially rescue dwarf phenotypes of GA deficient or GA insensitive mutant. In this study, we investigate the relationship between non-proteolytic regulation of DELLAs and GA signaling via DELLA-GAF1 complex using modified yeast two-hybrid system.
Collapse
Affiliation(s)
- Jutarou Fukazawa
- Department of Biological Science; Graduate School of Science, Hiroshima University; Kagamiyama, Higashi-Hiroshima, Japan
- RIKEN Plant Science Center; Yokohama, Kanagawa, Japan
- Correspondence to: Jutarou Fukazawa;
| | - Takeshi Ito
- Department of Biological Science; Graduate School of Science, Hiroshima University; Kagamiyama, Higashi-Hiroshima, Japan
| | - Yuji Kamiya
- RIKEN Plant Science Center; Yokohama, Kanagawa, Japan
| | | | - Yohsuke Takahashi
- Department of Biological Science; Graduate School of Science, Hiroshima University; Kagamiyama, Higashi-Hiroshima, Japan
| |
Collapse
|
261
|
Wang F, Ning D, Chen Y, Dang C, Han NS, Liu Y, Ye GY. Comparing Gene Expression Profiles Between Bt and non-Bt Rice in Response to Brown Planthopper Infestation. FRONTIERS IN PLANT SCIENCE 2015; 6:1181. [PMID: 26734057 PMCID: PMC4689863 DOI: 10.3389/fpls.2015.01181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/09/2015] [Indexed: 05/02/2023]
Abstract
Bt proteins are the most widely used insecticidal proteins in transgenic crops for improving insect resistance. We previously observed longer nymphal developmental duration and lower fecundity in brown planthopper (BPH) fed on Bt rice line KMD2, although Bt insecticidal protein Cry1Ab could rarely concentrate in this non-target rice pest. In the present study, we performed microarray analysis in an effort to detect Bt-independent variation, which might render Bt rice more defensive and/or less nutritious to BPH. We detected 3834 and 3273 differentially expressed probe-sets in response to BPH infestation in non-Bt parent Xiushui 11 and Bt rice KMD2, respectively, only 439 of which showed significant differences in expression between rice lines. Our analysis revealed a shift from growth to defense responses in response to BPH infestation, which was also detected in many other studies of plants suffering biotic and abiotic stresses. Chlorophyll biosynthesis and basic metabolism pathways were inhibited in response to infestation. IAA and GA levels decreased as a result of the repression of biosynthesis-related genes or the induction of inactivation-related genes. In accordance with these observations, a number of IAA-, GA-, BR-signaling genes were downregulated in response to BPH. Thus, the growth of rice plants under BPH attack was reduced and defense related hormone signaling like JA, SA and ET were activated. In addition, growth-related hormone signaling pathways, such as GA, BR, and auxin signaling pathways, as well as ABA, were also found to be involved in BPH-induced defense. On the other side, 51 probe-sets (represented 50 genes) that most likely contribute to the impact of Bt rice on BPH were identified, including three early nodulin genes, four lipid metabolic genes, 14 stress response genes, three TF genes and genes with other functions. Two transcription factor genes, bHLH and MYB, together with lipid transfer protein genes LTPL65 and early nodulin gene ENOD93, are the most likely candidates for improving herbivore resistance in plants.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Agricultural Entomology, Insect Physiology and Biochemistry, Institute of Insect Sciences, Zhejiang UniversityHangzhou, China
| | - Duo Ning
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Agricultural Entomology, Insect Physiology and Biochemistry, Institute of Insect Sciences, Zhejiang UniversityHangzhou, China
| | - Yang Chen
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Cong Dang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Agricultural Entomology, Insect Physiology and Biochemistry, Institute of Insect Sciences, Zhejiang UniversityHangzhou, China
| | - Nai-Shun Han
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Agricultural Entomology, Insect Physiology and Biochemistry, Institute of Insect Sciences, Zhejiang UniversityHangzhou, China
| | - Yu'e Liu
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Agricultural Entomology, Insect Physiology and Biochemistry, Institute of Insect Sciences, Zhejiang UniversityHangzhou, China
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Agricultural Entomology, Insect Physiology and Biochemistry, Institute of Insect Sciences, Zhejiang UniversityHangzhou, China
- *Correspondence: Gong-Yin Ye
| |
Collapse
|
262
|
Li C, He X, Luo X, Xu L, Liu L, Min L, Jin L, Zhu L, Zhang X. Cotton WRKY1 mediates the plant defense-to-development transition during infection of cotton by Verticillium dahliae by activating JASMONATE ZIM-DOMAIN1 expression. PLANT PHYSIOLOGY 2014; 166:2179-94. [PMID: 25301887 PMCID: PMC4256851 DOI: 10.1104/pp.114.246694] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 10/07/2014] [Indexed: 05/18/2023]
Abstract
Plants have evolved an elaborate signaling network to ensure an appropriate level of immune response to meet the differing demands of developmental processes. Previous research has demonstrated that DELLA proteins physically interact with JASMONATE ZIM-DOMAIN1 (JAZ1) and dynamically regulate the interaction of the gibberellin (GA) and jasmonate (JA) signaling pathways. However, whether and how the JAZ1-DELLA regulatory node is regulated at the transcriptional level in plants under normal growth conditions or during pathogen infection is not known. Here, we demonstrate multiple functions of cotton (Gossypium barbadense) GbWRKY1 in the plant defense response and during development. Although GbWRKY1 expression is induced rapidly by methyl jasmonate and infection by Verticillium dahliae, our results show that GbWRKY1 is a negative regulator of the JA-mediated defense response and plant resistance to the pathogens Botrytis cinerea and V. dahliae. Under normal growth conditions, GbWRKY1-overexpressing lines displayed GA-associated phenotypes, including organ elongation and early flowering, coupled with the down-regulation of the putative targets of DELLA. We show that the GA-related phenotypes of GbWRKY1-overexpressing plants depend on the constitutive expression of Gossypium hirsutum GhJAZ1. We also show that GhJAZ1 can be transactivated by GbWRKY1 through TGAC core sequences, and the adjacent sequences of this binding site are essential for binding specificity and affinity to GbWRKY1, as revealed by dual-luciferase reporter assays and electrophoretic mobility shift assays. In summary, our data suggest that GbWRKY1 is a critical regulator mediating the plant defense-to-development transition during V. dahliae infection by activating JAZ1 expression.
Collapse
Affiliation(s)
- Chao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xin He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiangyin Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Li Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Linlin Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ling Min
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Li Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
263
|
Ma H, Feng L, Chen Z, Chen X, Zhao H, Xiang Y. Genome-wide identification and expression analysis of the IQD gene family in Populus trichocarpa. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 229:96-110. [PMID: 25443837 DOI: 10.1016/j.plantsci.2014.08.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 08/28/2014] [Accepted: 08/30/2014] [Indexed: 06/04/2023]
Abstract
IQD proteins are downstream targets of calcium sensors, which play important roles in development and responses to environmental cues in plants. Comprehensive analyses of IQD genes have been conducted in Arabidopsis, rice, tomato, and Brachypodium distachyon, but have not been reported from poplar. The availability of the Populus trichocarpa genome sequence allowed us to conduct phylogenetic, gene structure, chromosomal location, and microarray analyses of the predicted IQD genes in P. trichocarpa. We identified 40 IQD genes (PtIQD1-40) classified in four subfamilies (I-IV). Gene structure and protein motif analyses showed that these genes are relatively conserved within each subfamily. The 40 PtIQD genes are distributed on 18 of the 19 chromosomes, with 16 gene pairs involved in segmental duplication events. The Ka/Ks ratios of the 16 segmentally-duplicated gene pairs show that the duplicated pairs underwent purifying selection with restrictive functional divergence after the duplication events. Analyses of microarray data for 38 PtIQD genes showed tissue/organ-specific expression patterns. We also performed quantitative real-time RT-PCR (qRT-PCR) analyses of twelve selected PtIQD genes in plants treated with MeJA and PEG in order to explore their stress-related expression patterns. Our results will be valuable for further analysis of poplar IQD genes to characterize their important biological functions.
Collapse
Affiliation(s)
- Hui Ma
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Lin Feng
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Zhu Chen
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Xue Chen
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Hualin Zhao
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Biology of Anhui Agriculture University, Hefei 230036, China.
| |
Collapse
|
264
|
Tan L, Rong W, Luo H, Chen Y, He C. The Xanthomonas campestris effector protein XopDXcc8004 triggers plant disease tolerance by targeting DELLA proteins. THE NEW PHYTOLOGIST 2014; 204:595-608. [PMID: 25040905 DOI: 10.1111/nph.12918] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/29/2014] [Indexed: 05/09/2023]
Abstract
Plants protect themselves from the harmful effects of pathogens by resistance and tolerance. Disease resistance, which eliminates pathogens, can be modulated by bacterial type III effectors. Little is known about whether disease tolerance, which sustains host fitness with a given pathogen burden, is regulated by effectors. Here, we examined the effects of the Xanthomonas effector protein XopDXcc8004 on plant disease defenses by constructing knockout and complemented Xanthomonas strains, and performing inoculation studies in radish (Raphanus sativus L. var. radiculus XiaoJinZhong) and Arabidopsis plants. XopDXcc8004 suppresses disease symptoms without changing bacterial titers in infected leaves. In Arabidopsis, XopDXcc8004 delays the hormone gibberellin (GA)-mediated degradation of RGA (repressor of ga1-3), one of five DELLA proteins that repress GA signaling and promote plant tolerance under biotic and abiotic stresses. The ERF-associated amphiphilic repression (EAR) motif-containing region of XopDXcc8004 interacts with the DELLA domain of RGA and might interfere with the GA-induced binding of GID1, a GA receptor, to RGA. The EAR motif was found to be present in a number of plant transcriptional regulators. Thus, our data suggest that bacterial pathogens might have evolved effectors, which probably mimic host components, to initiate disease tolerance and enhance their survival.
Collapse
Affiliation(s)
- Leitao Tan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, 570228, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Wei Rong
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, 570228, China
| | - Hongli Luo
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, 570228, China
| | - Yinhua Chen
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, 570228, China
| | - Chaozu He
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, 570228, China
| |
Collapse
|
265
|
Feng L, Chen Z, Ma H, Chen X, Li Y, Wang Y, Xiang Y. The IQD gene family in soybean: structure, phylogeny, evolution and expression. PLoS One 2014; 9:e110896. [PMID: 25343341 PMCID: PMC4208818 DOI: 10.1371/journal.pone.0110896] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/19/2014] [Indexed: 01/28/2023] Open
Abstract
Members of the plant-specific IQ67-domain (IQD) protein family are involved in plant development and the basal defense response. Although systematic characterization of this family has been carried out in Arabidopsis, tomato (Solanum lycopersicum), Brachypodium distachyon and rice (Oryza sativa), systematic analysis and expression profiling of this gene family in soybean (Glycine max) have not previously been reported. In this study, we identified and structurally characterized IQD genes in the soybean genome. A complete set of 67 soybean IQD genes (GmIQD1-67) was identified using Blast search tools, and the genes were clustered into four subfamilies (IQD I-IV) based on phylogeny. These soybean IQD genes are distributed unevenly across all 20 chromosomes, with 30 segmental duplication events, suggesting that segmental duplication has played a major role in the expansion of the soybean IQD gene family. Analysis of the Ka/Ks ratios showed that the duplicated genes of the GmIQD family primarily underwent purifying selection. Microsynteny was detected in most pairs: genes in clade 1-3 might be present in genome regions that were inverted, expanded or contracted after the divergence; most gene pairs in clade 4 showed high conservation with little rearrangement among these gene-residing regions. Of the soybean IQD genes examined, six were most highly expressed in young leaves, six in flowers, one in roots and two in nodules. Our qRT-PCR analysis of 24 soybean IQD III genes confirmed that these genes are regulated by MeJA stress. Our findings present a comprehensive overview of the soybean IQD gene family and provide insights into the evolution of this family. In addition, this work lays a solid foundation for further experiments aimed at determining the biological functions of soybean IQD genes in growth and development.
Collapse
Affiliation(s)
- Lin Feng
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Zhu Chen
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Hui Ma
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Xue Chen
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Yuan Li
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Yiyi Wang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
- Key Laboratory of Crop Biology of Anhui Agriculture University, Hefei, China
| |
Collapse
|
266
|
Rojas-Pierce M, Whippo CW, Davis PA, Hangarter RP, Springer PS. PLASTID MOVEMENT IMPAIRED1 mediates ABA sensitivity during germination and implicates ABA in light-mediated Chloroplast movements. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 83:185-193. [PMID: 25154696 DOI: 10.1016/j.plaphy.2014.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/17/2014] [Indexed: 06/03/2023]
Abstract
The plant hormone abscisic acid (ABA) controls many aspects of plant growth and development, including seed development, germination and responses to water-deficit stress. A complex ABA signaling network integrates environmental signals including water availability and light intensity and quality to fine-tune the response to a changing environment. To further define the regulatory pathways that control water-deficit and ABA responses, we carried out a gene-trap tagging screen for water-deficit-regulated genes in Arabidopsis thaliana. This screen identified PLASTID MOVEMENT IMPAIRED1 (PMI1), a gene involved in blue-light-induced chloroplast movement, as functioning in ABA-response pathways. We provide evidence that PMI1 is involved in the regulation of seed germination by ABA, acting upstream of the intersection between ABA and low-glucose signaling pathways. Furthermore, PMI1 participates in the regulation of ABA accumulation during periods of water deficit at the seedling stage. The combined phenotypes of pmi1 mutants in chloroplast movement and ABA responses indicate that ABA signaling may modulate chloroplast motility. This result was further supported by the detection of altered chloroplast movements in the ABA mutants aba1-6, aba2-1 and abi1-1.
Collapse
Affiliation(s)
- Marcela Rojas-Pierce
- Department of Botany and Plant Sciences and the Center for Plant Cell Biology, University of California, Riverside, CA 92521, USA; Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA.
| | - Craig W Whippo
- Department of Biology, Indiana University, Bloomington, IN 47405-3700, USA; Department of Natural Science, Dickinson State University, Dickinson, ND 58601, USA
| | - Phillip A Davis
- Department of Biology, Indiana University, Bloomington, IN 47405-3700, USA
| | - Roger P Hangarter
- Department of Biology, Indiana University, Bloomington, IN 47405-3700, USA
| | - Patricia S Springer
- Department of Botany and Plant Sciences and the Center for Plant Cell Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
267
|
Wang W, Zhang J, Qin Q, Yue J, Huang B, Xu X, Yan L, Hou S. The six conserved serine/threonine sites of REPRESSOR OF ga1-3 protein are important for its functionality and stability in gibberellin signaling in Arabidopsis. PLANTA 2014; 240:763-79. [PMID: 25056926 DOI: 10.1007/s00425-014-2113-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/21/2014] [Indexed: 05/15/2023]
Abstract
Our results provide further insight into the regulation of DELLA proteins in Arabidopsis . We clarified that phosphorylation modification of the six conserved sites is important for RGA functions and stability. The DELLA proteins, important plant growth and development repressors mediate the gibberellin (GA) signaling pathway. Although these proteins exhibit phosphorylation and de-phosphorylation states at the molecular level, little is known regarding the effects of different modifications of DELLA proteins on the regulation of their bioactivity and stability at the genetic level. In this study, six conserved serine (Ser)/threonine (Thr) sites of REPRESSOR OF ga1-3 (RGA) were substituted with alanine (RGA6A) or aspartic acid (RGA6D) to mimic the states of constitutive de-phosphorylation and phosphorylation, respectively. We found that the overexpression of de-phosphomimic RGA in Col-0 plants caused GA-overdose phenotypes, which were similar to DELLA-deficient mutant. These phenotypes were probably attributed to de-phosphomimic RGA, which retained its transcriptional activation activity that induces GA biosynthetic genes, but lost the transcription repressor function that inhibits GA-responsive genes. Further, de-phosphomimic RGA was unstable and easily degradable unlike the wild-type RGA, suggesting that the de-phosphorylated form is necessary for its degradation. In contrast, phosphomimic RGA overexpression caused GA-deficient phenotypes with non-degradable RGA. These phenotypes were probably due to phosphomimic RGA, which represses GA-responsive gene expression instead of inducing GA biosynthetic genes. In addition, phosphomimic RGA was stable and hardly degradable, which aggravated the RGA-inhibiting function in GA signaling. In conclusion, we show that the six conserved Ser/Thr sites are important for the different bioactivities of the RGA protein that regulate the GA response, and also for RGA stability via the mimicking of phosphorylation/de-phosphorylation.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
268
|
Colebrook EH, Thomas SG, Phillips AL, Hedden P. The role of gibberellin signalling in plant responses to abiotic stress. ACTA ACUST UNITED AC 2014; 217:67-75. [PMID: 24353205 DOI: 10.1242/jeb.089938] [Citation(s) in RCA: 452] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Plant hormones are small molecules that regulate plant growth and development, as well as responses to changing environmental conditions. By modifying the production, distribution or signal transduction of these hormones, plants are able to regulate and coordinate both growth and/or stress tolerance to promote survival or escape from environmental stress. A central role for the gibberellin (GA) class of growth hormones in the response to abiotic stress is becoming increasingly evident. Reduction of GA levels and signalling has been shown to contribute to plant growth restriction on exposure to several stresses, including cold, salt and osmotic stress. Conversely, increased GA biosynthesis and signalling promote growth in plant escape responses to shading and submergence. In several cases, GA signalling has also been linked to stress tolerance. The transcriptional regulation of GA metabolism appears to be a major point of regulation of the GA pathway, while emerging evidence for interaction of the GA-signalling molecule DELLA with components of the signalling pathway for the stress hormone jasmonic acid suggests additional mechanisms by which GA signalling may integrate multiple hormone signalling pathways in the response to stress. Here, we review the evidence for the role of GA in these processes, and the regulation of the GA signalling pathway on exposure to abiotic stress. The potential mechanisms by which GA signalling modulates stress tolerance are also discussed.
Collapse
|
269
|
Livne S, Weiss D. Cytosolic Activity of the Gibberellin Receptor GIBBERELLIN INSENSITIVE DWARF1A. ACTA ACUST UNITED AC 2014; 55:1727-33. [DOI: 10.1093/pcp/pcu104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
270
|
Rodriguez MC, Conti G, Zavallo D, Manacorda CA, Asurmendi S. TMV-Cg Coat Protein stabilizes DELLA proteins and in turn negatively modulates salicylic acid-mediated defense pathway during Arabidopsis thaliana viral infection. BMC PLANT BIOLOGY 2014; 14:210. [PMID: 25084837 PMCID: PMC4422269 DOI: 10.1186/s12870-014-0210-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/24/2014] [Indexed: 05/26/2023]
Abstract
BACKGROUND Plant viral infections disturb defense regulatory networks during tissue invasion. Emerging evidence demonstrates that a significant proportion of these alterations are mediated by hormone imbalances. Although the DELLA proteins have been reported to be central players in hormone cross-talk, their role in the modulation of hormone signaling during virus infections remains unknown. RESULTS This work revealed that TMV-Cg coat protein (CgCP) suppresses the salicylic acid (SA) signaling pathway without altering defense hormone SA or jasmonic acid (JA) levels in Arabidopsis thaliana. Furthermore, it was observed that the expression of CgCP reduces plant growth and delays the timing of floral transition. Quantitative RT-qPCR analysis of DELLA target genes showed that CgCP alters relative expression of several target genes, indicating that the DELLA proteins mediate transcriptional changes produced by CgCP expression. Analyses by fluorescence confocal microscopy showed that CgCP stabilizes DELLA proteins accumulation in the presence of gibberellic acid (GA) and that the DELLA proteins are also stabilized during TMV-Cg virus infections. Moreover, DELLA proteins negatively modulated defense transcript profiles during TMV-Cg infection. As a result, TMV-Cg accumulation was significantly reduced in the quadruple-DELLA mutant Arabidopsis plants compared to wild type plants. CONCLUSIONS Taken together, these results demonstrate that CgCP negatively regulates the salicylic acid-mediated defense pathway by stabilizing the DELLA proteins during Arabidopsis thaliana viral infection, suggesting that CgCP alters the stability of DELLAs as a mechanism of negative modulation of antiviral defense responses.
Collapse
Affiliation(s)
- Maria Cecilia Rodriguez
- Instituto de Biotecnología, CICVyA-INTA, 1686, Hurlingham, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina.
| | - Gabriela Conti
- Instituto de Biotecnología, CICVyA-INTA, 1686, Hurlingham, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina.
| | - Diego Zavallo
- Instituto de Biotecnología, CICVyA-INTA, 1686, Hurlingham, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina.
| | | | - Sebastian Asurmendi
- Instituto de Biotecnología, CICVyA-INTA, 1686, Hurlingham, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina.
| |
Collapse
|
271
|
Qin Q, Wang W, Guo X, Yue J, Huang Y, Xu X, Li J, Hou S. Arabidopsis DELLA protein degradation is controlled by a type-one protein phosphatase, TOPP4. PLoS Genet 2014; 10:e1004464. [PMID: 25010794 PMCID: PMC4091783 DOI: 10.1371/journal.pgen.1004464] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/12/2014] [Indexed: 11/17/2022] Open
Abstract
Gibberellins (GAs) are a class of important phytohormones regulating a variety of physiological processes during normal plant growth and development. One of the major events during GA-mediated growth is the degradation of DELLA proteins, key negative regulators of GA signaling pathway. The stability of DELLA proteins is thought to be controlled by protein phosphorylation and dephosphorylation. Up to date, no phosphatase involved in this process has been identified. We have identified a dwarfed dominant-negative Arabidopsis mutant, named topp4-1. Reduced expression of TOPP4 using an artificial microRNA strategy also resulted in a dwarfed phenotype. Genetic and biochemical analyses indicated that TOPP4 regulates GA signal transduction mainly via promoting DELLA protein degradation. The severely dwarfed topp4-1 phenotypes were partially rescued by the DELLA deficient mutants rga-t2 and gai-t6, suggesting that the DELLA proteins RGA and GAI are required for the biological function of TOPP4. Both RGA and GAI were greatly accumulated in topp4-1 but significantly decreased in 35S-TOPP4 transgenic plants compared to wild-type plants. Further analyses demonstrated that TOPP4 is able to directly bind and dephosphorylate RGA and GAI, confirming that the TOPP4-controlled phosphorylation status of DELLAs is associated with their stability. These studies provide direct evidence for a crucial role of protein dephosphorylation mediated by TOPP4 in the GA signaling pathway. Gibberellins (GAs) are essential regulators of plant growth and development. They are tightly related to crop productivity in the first “green revolution.” GA triggers its responses by targeting DELLA proteins, the important repressors, for degradation. This process is believed to be regulated by protein phosphorylation and dephosphorylation, but there are not any reports describing the identification of phosphatases regulating this critical event. By screening an ethyl methane sulfonate (EMS)-mutagenized Arabidopsis thaliana population, we identified a protein phosphatase TOPP4, a member of protein phosphatase 1 (PP1), that acts as a positive regulator in the GA signaling pathway. TOPP4 promotes the GA-induced degradation of DELLA proteins by directly dephosphorylating these proteins. This study provides an important insight for the switch role of protein phosphorylation and dephosphorylation in GA signal transduction and sheds light on PP1 protein phosphatases in regulating plant growth and development.
Collapse
Affiliation(s)
- Qianqian Qin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Wei Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Xiaola Guo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Jing Yue
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Yan Huang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Xiufei Xu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Suiwen Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| |
Collapse
|
272
|
Fukazawa J, Teramura H, Murakoshi S, Nasuno K, Nishida N, Ito T, Yoshida M, Kamiya Y, Yamaguchi S, Takahashi Y. DELLAs function as coactivators of GAI-ASSOCIATED FACTOR1 in regulation of gibberellin homeostasis and signaling in Arabidopsis. THE PLANT CELL 2014; 26:2920-38. [PMID: 25035403 PMCID: PMC4145123 DOI: 10.1105/tpc.114.125690] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/11/2014] [Accepted: 06/25/2014] [Indexed: 05/19/2023]
Abstract
Gibberellins (GAs) are essential regulators of plant development, and DELLAs are negative regulators of GA signaling. The mechanism of GA-dependent transcription has been explained by DELLA-mediated titration of transcriptional activators and their release through the degradation of DELLAs in response to GA. However, the effect of GA on genome-wide expression is predominantly repression, suggesting the existence of unknown mechanisms of GA function. In this study, we identified an Arabidopsis thaliana DELLA binding transcription factor, GAI-ASSOCIATED FACTOR1 (GAF1). GAF1 shows high homology to INDETERMINATE DOMAIN1 (IDD1)/ENHYDROUS. GA responsiveness was decreased in the double mutant gaf1 idd1, whereas it was enhanced in a GAF1 overexpressor. GAF1 binds to genes that are subject to GA feedback regulation. Furthermore, we found that GAF1 interacts with the corepressor TOPLESS RELATED (TPR) and that DELLAs and TPR act as coactivators and a corepressor of GAF1, respectively. GA converts the GAF1 complex from transcriptional activator to repressor via the degradation of DELLAs. These results indicate that DELLAs turn on or off two sets of GA-regulated genes via dual functions, namely titration and coactivation, providing a mechanism for the integrative regulation of plant growth and GA homeostasis.
Collapse
Affiliation(s)
- Jutarou Fukazawa
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa 230-0045, Japan Department of Biological Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Hiroshi Teramura
- Department of Biological Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Satoru Murakoshi
- Department of Biological Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Kei Nasuno
- Department of Biological Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Naotaka Nishida
- Department of Biological Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Takeshi Ito
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Michiteru Yoshida
- Department of Biological Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yuji Kamiya
- RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | | | - Yohsuke Takahashi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
273
|
De Bruyne L, Höfte M, De Vleesschauwer D. Connecting growth and defense: the emerging roles of brassinosteroids and gibberellins in plant innate immunity. MOLECULAR PLANT 2014; 7:943-959. [PMID: 24777987 DOI: 10.1093/mp/ssu050] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Brassinosteroids (BRs) and gibberellins (GAs) are two groups of phytohormones that regulate many common developmental processes throughout the plant life cycle. Fueled by large-scale 'omics' technologies and the burgeoning field of plant computational biology, the past few years have witnessed paradigm-shifting advances in our understanding of how BRs and GA are perceived and their signals transduced. Accumulating evidence also implicates BR and GA in the coordination and integration of plant immune responses. Similarly to other growth regulators, BR and GA play ambiguous roles in molding pathological outcomes, the effects of which may depend not only on the pathogen's lifestyle and infection strategy, but also on specialized features of each interaction. Analysis of the underpinning molecular mechanisms points to a crucial role of GA-inhibiting DELLA proteins and the BR-regulated transcription factor BZR1. Acting at the interface of developmental and defense signaling, these proteins likely serve as central hubs for pathway crosstalk and signal integration, allowing appropriate modulation of plant growth and defense in response to various stimuli. In this review, we outline the latest discoveries dealing with BR and GA modulation of plant innate immunity and highlight interactions between BR and GA signaling, plant defense, and microbial virulence.
Collapse
Affiliation(s)
- Lieselotte De Bruyne
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - David De Vleesschauwer
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium.
| |
Collapse
|
274
|
Yamaguchi N, Winter CM, Wu MF, Kanno Y, Yamaguchi A, Seo M, Wagner D. Gibberellin acts positively then negatively to control onset of flower formation in Arabidopsis. Science 2014; 344:638-41. [PMID: 24812402 DOI: 10.1126/science.1250498] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The switch to reproductive development is biphasic in many plants, a feature important for optimal pollination and yield. We show that dual opposite roles of the phytohormone gibberellin underpin this phenomenon in Arabidopsis. Although gibberellin promotes termination of vegetative development, it inhibits flower formation. To overcome this effect, the transcription factor LEAFY induces expression of a gibberellin catabolism gene; consequently, increased LEAFY activity causes reduced gibberellin levels. This allows accumulation of gibberellin-sensitive DELLA proteins. The DELLA proteins are recruited by SQUAMOSA PROMOTER BINDING PROTEIN-LIKE transcription factors to regulatory regions of the floral commitment gene APETALA1 and promote APETALA1 up-regulation and floral fate synergistically with LEAFY. The two opposing functions of gibberellin may facilitate evolutionary and environmental modulation of plant inflorescence architecture.
Collapse
Affiliation(s)
- Nobutoshi Yamaguchi
- Department of Biology, University of Pennsylvania, 415 South University Avenue, Philadelphia, PA 19104-6018, USA
| | | | | | | | | | | | | |
Collapse
|
275
|
DELLA protein functions as a transcriptional activator through the DNA binding of the indeterminate domain family proteins. Proc Natl Acad Sci U S A 2014; 111:7861-6. [PMID: 24821766 DOI: 10.1073/pnas.1321669111] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DELLA protein is a key negative regulator of gibberellin (GA) signaling. Although how DELLA regulates downstream gene expression remains unclear, DELLA has been proposed to function as a transcriptional activator. However, because DELLA lacks a DNA-binding domain, intermediate protein(s) mediating the DELLA/DNA interaction are believed to be necessary for activating DELLA target genes. Here, using yeast hybrid screenings, we identified five members of indeterminate domain (IDD) protein family which bind physically to both DELLA and the promoter sequence of the GA-positive regulator SCARECROW-LIKE 3 (SCL3), which previously was characterized as a DELLA direct target gene. Transient assays using Arabidopsis protoplasts demonstrated that a luciferase reporter controlled by the SCL3 promoter was additively transactivated by REPRESSOR of ga1-3 (RGA) and IDDs. Phenotypic analysis of transgenic plants expressing AtIDD3 (one of the 16 IDDs in the Arabidopsis genome) fused with the plant-specific repression domain (SRDX) supported the possibility that AtIDD3 is positively involved in GA signaling. In addition, we found that SCL3 protein also interacts with IDDs, resulting in the suppression of its target gene expression. In this context, DELLA and SCL3 interact competitively with IDD proteins to regulate downstream gene expression. These results suggest that the coregulators DELLA and SCL3, using IDDs as transcriptional scaffolds for DNA binding, antagonistically regulate the expression of their downstream targets to control the GA signaling pathway.
Collapse
|
276
|
Nonogaki M, Sall K, Nambara E, Nonogaki H. Amplification of ABA biosynthesis and signaling through a positive feedback mechanism in seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:527-39. [PMID: 24520869 DOI: 10.1111/tpj.12472] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 01/28/2014] [Accepted: 02/06/2014] [Indexed: 05/03/2023]
Abstract
Abscisic acid is an essential hormone for seed dormancy. Our previous study using the plant gene switch system, a chemically induced gene expression system, demonstrated that induction of 9-cis-epoxycarotenoid dioxygenase (NCED), a rate-limiting ABA biosynthesis gene, was sufficient to suppress germination in imbibed Arabidopsis seeds. Here, we report development of an efficient experimental system that causes amplification of NCED expression during seed maturation. The system was created with a Triticum aestivum promoter containing ABA responsive elements (ABREs) and a Sorghum bicolor NCED to cause ABA-stimulated ABA biosynthesis and signaling, through a positive feedback mechanism. The chimeric gene pABRE:NCED enhanced NCED and ABF (ABRE-binding factor) expression in Arabidopsis Columbia-0 seeds, which caused 9- to 73-fold increases in ABA levels. The pABRE:NCED seeds exhibited unusually deep dormancy which lasted for more than 3 months. Interestingly, the amplified ABA pathways also caused enhanced expression of Arabidopsis NCED5, revealing the presence of positive feedback in the native system. These results demonstrated the robustness of positive feedback mechanisms and the significance of NCED expression, or single metabolic change, during seed maturation. The pABRE:NCED system provides an excellent experimental system producing dormant and non-dormant seeds of the same maternal origin, which differ only in zygotic ABA. The pABRE:NCED seeds contain a GFP marker which enables seed sorting between transgenic and null segregants and are ideal for comparative analysis. In addition to its utility in basic research, the system can also be applied to prevention of pre-harvest sprouting during crop production, and therefore contributes to translational biology.
Collapse
Affiliation(s)
- Mariko Nonogaki
- Department of Horticulture, Oregon State University, Corvallis, OR, 97331, USA
| | | | | | | |
Collapse
|
277
|
Claeys H, De Bodt S, Inzé D. Gibberellins and DELLAs: central nodes in growth regulatory networks. TRENDS IN PLANT SCIENCE 2014; 19:231-9. [PMID: 24182663 DOI: 10.1016/j.tplants.2013.10.001] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/27/2013] [Accepted: 10/04/2013] [Indexed: 05/22/2023]
Abstract
Gibberellins (GAs) are growth-promoting phytohormones that were crucial in breeding improved semi-dwarf varieties during the green revolution. However, the molecular basis for GA-induced growth stimulation is poorly understood. In this review, we use light-regulated hypocotyl elongation as a case study, combined with a meta-analysis of available transcriptome data, to discuss the role of GAs as central nodes in networks connecting environmental inputs to growth. These networks are highly tissue-specific, with dynamic and rapid regulation that mostly occurs at the protein level, directly affecting the activity and transcription of effectors. New systems biology approaches addressing the role of GAs in growth should take these properties into account, combining tissue-specific interactomics, transcriptomics and modeling, to provide essential knowledge to fuel a second green revolution.
Collapse
Affiliation(s)
- Hannes Claeys
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Stefanie De Bodt
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.
| |
Collapse
|
278
|
Song H, Wang P, Nan Z, Wang X. The WRKY Transcription Factor Genes in Lotus japonicus. Int J Genomics 2014; 2014:420128. [PMID: 24745006 PMCID: PMC3976811 DOI: 10.1155/2014/420128] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/15/2013] [Accepted: 01/27/2014] [Indexed: 11/28/2022] Open
Abstract
WRKY transcription factor genes play critical roles in plant growth and development, as well as stress responses. WRKY genes have been examined in various higher plants, but they have not been characterized in Lotus japonicus. The recent release of the L. japonicus whole genome sequence provides an opportunity for a genome wide analysis of WRKY genes in this species. In this study, we identified 61 WRKY genes in the L. japonicus genome. Based on the WRKY protein structure, L. japonicus WRKY (LjWRKY) genes can be classified into three groups (I-III). Investigations of gene copy number and gene clusters indicate that only one gene duplication event occurred on chromosome 4 and no clustered genes were detected on chromosomes 3 or 6. Researchers previously believed that group II and III WRKY domains were derived from the C-terminal WRKY domain of group I. Our results suggest that some WRKY genes in group II originated from the N-terminal domain of group I WRKY genes. Additional evidence to support this hypothesis was obtained by Medicago truncatula WRKY (MtWRKY) protein motif analysis. We found that LjWRKY and MtWRKY group III genes are under purifying selection, suggesting that WRKY genes will become increasingly structured and functionally conserved.
Collapse
Affiliation(s)
- Hui Song
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Pengfei Wang
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China
| | - Zhibiao Nan
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xingjun Wang
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China
| |
Collapse
|
279
|
Muñiz García MN, Stritzler M, Capiati DA. Heterologous expression of Arabidopsis ABF4 gene in potato enhances tuberization through ABA-GA crosstalk regulation. PLANTA 2014; 239:615-31. [PMID: 24288009 DOI: 10.1007/s00425-013-2001-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 11/14/2013] [Indexed: 05/23/2023]
Abstract
Potato (Solanum tuberosum L.) tuberization is regulated by many signals, such as abscisic acid (ABA), sucrose and gibberellic acid (GA). ABA and sucrose are positive modulators, while GA is an inhibitor of the process. ABF (ABRE-binding factor) proteins are transcription factors involved in ABA and stress signaling. Previously, we reported that S. tuberosum StABF1 could mediate the ABA effects on tuberization. The aim of the present study was to evaluate the potential use of ABF genes to enhance tuberization and to determine the molecular mechanism involved. For this purpose, transgenic potato plants expressing the Arabidopsis ABF4 or ABF2 genes were generated, and their tuberization capacity and response to tuberization-related signals were analyzed in vitro. The results indicate that both ABF4 and ABF2 proteins positively regulate potato tuber induction; however, only ABF4 expression significantly increases the number and weight of the tubers obtained, without stunting growth. ABF4 and ABF2 transgenic plants exhibit ABA hypersensitivity during tuberization, accompanied by a GA-deficient phenotype. ABF4 expression triggers a significant rise in ABA levels in stolons under tuber-inducing conditions as compared with wild-type plants and a transcriptional deregulation of GA metabolism genes. Our results demonstrate that Arabidopsis ABF4 functions in potato ABA-GA signaling crosstalk during tuberization by regulating the expression of ABA- and GA-metabolism genes. ABF4 gene might be a potential tool to increase tuber production, since its heterologous expression in potato enhances tuber induction without affecting plant growth.
Collapse
Affiliation(s)
- María Noelia Muñiz García
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Vuelta de Obligado 2490 2º piso, C1428ADN, Buenos Aires, Argentina
| | | | | |
Collapse
|
280
|
Plackett ARG, Ferguson AC, Powers SJ, Wanchoo-Kohli A, Phillips AL, Wilson ZA, Hedden P, Thomas SG. DELLA activity is required for successful pollen development in the Columbia ecotype of Arabidopsis. THE NEW PHYTOLOGIST 2014; 201:825-836. [PMID: 24400898 PMCID: PMC4291109 DOI: 10.1111/nph.12571] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/15/2013] [Indexed: 05/18/2023]
Abstract
Excessive gibberellin (GA) signalling, mediated through the DELLA proteins, has a negative impact on plant fertility. Loss of DELLA activity in the monocot rice (Oryza sativa) causes complete male sterility, but not in the dicot model Arabidopsis (Arabidopsis thaliana) ecotype Landsberg erecta (Ler), in which DELLA function has been studied most extensively, leading to the assumption that DELLA activity is not essential for Arabidopsis pollen development. A novel DELLA fertility phenotype was identified in the Columbia (Col-0) ecotype that necessitates re-evaluation of the general conclusions drawn from Ler. Fertility phenotypes were compared between the Col-0 and Ler ecotypes under conditions of chemical and genetic GA overdose, including mutants in both ecotypes lacking the DELLA paralogues REPRESSOR OF ga1-3 (RGA) and GA INSENSITIVE (GAI). Ler displays a less severe fertility phenotype than Col-0 under GA treatment. Col-0 rga gai mutants, in contrast with the equivalent Ler phenotype, were entirely male sterile, caused by post-meiotic defects in pollen development, which were rescued by the reintroduction of DELLA into either the tapetum or developing pollen. We conclude that DELLA activity is essential for Arabidopsis pollen development. Differences between the fertility responses of Col-0 and Ler might be caused by differences in downstream signalling pathways or altered DELLA expression.
Collapse
Affiliation(s)
- Andrew R G Plackett
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Alison C Ferguson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Stephen J Powers
- Biomathematics and Bioinformatics Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Aakriti Wanchoo-Kohli
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Andrew L Phillips
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Zoe A Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Peter Hedden
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Stephen G Thomas
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| |
Collapse
|
281
|
Zawaski C, Busov VB. Roles of gibberellin catabolism and signaling in growth and physiological response to drought and short-day photoperiods in Populus trees. PLoS One 2014; 9:e86217. [PMID: 24465967 PMCID: PMC3896445 DOI: 10.1371/journal.pone.0086217] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/07/2013] [Indexed: 11/23/2022] Open
Abstract
Survival and productivity of perennial plants in temperate zones are dependent on robust responses to prolonged and seasonal cycles of unfavorable conditions. Here we report whole-genome microarray, expression, physiological, and transgenic evidence in hybrid poplar (Populus tremula × Populus alba) showing that gibberellin (GA) catabolism and repressive signaling mediates shoot growth inhibition and physiological adaptation in response to drought and short-day (SD) induced bud dormancy. Both water deprivation and SDs elicited activation of a suite of poplar GA2ox and DELLA encoding genes. Poplar transgenics with up-regulated GA 2-oxidase (GA2ox) and DELLA domain proteins showed hypersensitive growth inhibition in response to both drought and SDs. In addition, the transgenic plants displayed greater drought resistance as evidenced by increased pigment concentrations (chlorophyll and carotenoid) and reductions in electrolyte leakage (EL). Comparative transcriptome analysis using whole-genome microarray showed that the GA-deficiency and GA-insensitivity, SD-induced dormancy, and drought response in poplar share a common regulon of 684 differentially-expressed genes, which suggest GA metabolism and signaling plays a role in plant physiological adaptations in response to alterations in environmental factors. Our results demonstrate that GA catabolism and repressive signaling represents a major route for control of growth and physiological adaptation in response to immediate or imminent adverse conditions.
Collapse
Affiliation(s)
- Christine Zawaski
- School of Forest Research and Environmental Science, Michigan Technological University, Houghton, Michigan, United States of America
| | - Victor B. Busov
- School of Forest Research and Environmental Science, Michigan Technological University, Houghton, Michigan, United States of America
- * E-mail:
| |
Collapse
|
282
|
Regulatory Networks Acted Upon by the GID1–DELLA System After Perceiving Gibberellin. SIGNALING PATHWAYS IN PLANTS 2014; 35:1-25. [DOI: 10.1016/b978-0-12-801922-1.00001-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
283
|
Golldack D, Li C, Mohan H, Probst N. Tolerance to drought and salt stress in plants: Unraveling the signaling networks. FRONTIERS IN PLANT SCIENCE 2014; 5:151. [PMID: 24795738 PMCID: PMC4001066 DOI: 10.3389/fpls.2014.00151] [Citation(s) in RCA: 566] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/01/2014] [Indexed: 05/17/2023]
Abstract
Tolerance of plants to abiotic stressors such as drought and salinity is triggered by complex multicomponent signaling pathways to restore cellular homeostasis and promote survival. Major plant transcription factor families such as bZIP, NAC, AP2/ERF, and MYB orchestrate regulatory networks underlying abiotic stress tolerance. Sucrose non-fermenting 1-related protein kinase 2 and mitogen-activated protein kinase pathways contribute to initiation of stress adaptive downstream responses and promote plant growth and development. As a convergent point of multiple abiotic cues, cellular effects of environmental stresses are not only imbalances of ionic and osmotic homeostasis but also impaired photosynthesis, cellular energy depletion, and redox imbalances. Recent evidence of regulatory systems that link sensing and signaling of environmental conditions and the intracellular redox status have shed light on interfaces of stress and energy signaling. ROS (reactive oxygen species) cause severe cellular damage by peroxidation and de-esterification of membrane-lipids, however, current models also define a pivotal signaling function of ROS in triggering tolerance against stress. Recent research advances suggest and support a regulatory role of ROS in the cross talks of stress triggered hormonal signaling such as the abscisic acid pathway and endogenously induced redox and metabolite signals. Here, we discuss and review the versatile molecular convergence in the abiotic stress responsive signaling networks in the context of ROS and lipid-derived signals and the specific role of stomatal signaling.
Collapse
Affiliation(s)
- Dortje Golldack
- *Correspondence: Dortje Golldack, Department of Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany e-mail:
| | | | | | | |
Collapse
|
284
|
Tank JG, Pandya RV, Thaker VS. Phytohormones in regulation of the cell division and endoreduplication process in the plant cell cycle. RSC Adv 2014. [DOI: 10.1039/c3ra45367g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
285
|
Yoshida H, Ueguchi-Tanaka M. DELLA and SCL3 balance gibberellin feedback regulation by utilizing INDETERMINATE DOMAIN proteins as transcriptional scaffolds. PLANT SIGNALING & BEHAVIOR 2014; 9:e29726. [PMID: 25763707 PMCID: PMC4205140 DOI: 10.4161/psb.29726] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 06/25/2014] [Indexed: 05/20/2023]
Abstract
DELLA proteins are key negative regulators in the phytohormone gibberellin's (GA) signaling. In addition to this role, the DELLA proteins upregulate the gene expression levels of the positive regulators in GA signaling, such as GA 20-oxidase, GA receptor, and a transcriptional regulator, SCARECROW-LIKE3 (SCL3), which enables the regulation of GA feedback. Since DELLAs lack a known DNA binding domain, other transcription factor(s) that recruit DELLAs to DNA are essential for this regulation. Recently, we showed that the INDETERMINATE DOMAIN family proteins serve as transcriptional scaffolds to exert the transactivation activity of DELLAs. This finding and further analyses regarding the function of SCL3 indicate that the balance of the DELLAs and SCL3 protein levels (both are GRAS proteins) regulates downstream gene expression through IDDs binding to DNA. Here, we review the regulatory system in plants similar to ours and also discuss the interactive network between GRAS and IDD proteins.
Collapse
|
286
|
Nonogaki H. Seed dormancy and germination-emerging mechanisms and new hypotheses. FRONTIERS IN PLANT SCIENCE 2014; 5:233. [PMID: 24904627 PMCID: PMC4036127 DOI: 10.3389/fpls.2014.00233] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/10/2014] [Indexed: 05/18/2023]
Abstract
Seed dormancy has played a significant role in adaptation and evolution of seed plants. While its biological significance is clear, molecular mechanisms underlying seed dormancy induction, maintenance and alleviation still remain elusive. Intensive efforts have been made to investigate gibberellin and abscisic acid metabolism in seeds, which greatly contributed to the current understanding of seed dormancy mechanisms. Other mechanisms, which might be independent of hormones, or specific to the seed dormancy pathway, are also emerging from genetic analysis of "seed dormancy mutants." These studies suggest that chromatin remodeling through histone ubiquitination, methylation and acetylation, which could lead to transcription elongation or gene silencing, may play a significant role in seed dormancy regulation. Small interfering RNA and/or long non-coding RNA might be a trigger of epigenetic changes at the seed dormancy or germination loci, such as DELAY OF GERMINATION1. While new mechanisms are emerging from genetic studies of seed dormancy, novel hypotheses are also generated from seed germination studies with high throughput gene expression analysis. Recent studies on tissue-specific gene expression in tomato and Arabidopsis seeds, which suggested possible "mechanosensing" in the regulatory mechanisms, advanced our understanding of embryo-endosperm interaction and have potential to re-draw the traditional hypotheses or integrate them into a comprehensive scheme. The progress in basic seed science will enable knowledge translation, another frontier of research to be expanded for food and fuel production.
Collapse
Affiliation(s)
- Hiroyuki Nonogaki
- *Correspondence: Hiroyuki Nonogaki, Department of Horticulture, Oregon State University, 4017 ALS Bldg., Corvallis OR 97331, USA e-mail:
| |
Collapse
|
287
|
Floss DS, Levy JG, Lévesque-Tremblay V, Pumplin N, Harrison MJ. DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 2013; 110:E5025-34. [PMID: 24297892 PMCID: PMC3870710 DOI: 10.1073/pnas.1308973110] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Most flowering plants are able to form endosymbioses with arbuscular mycorrhizal fungi. In this mutualistic association, the fungus colonizes the root cortex and establishes elaborately branched hyphae, called arbuscules, within the cortical cells. Arbuscule development requires the cellular reorganization of both symbionts, and the resulting symbiotic interface functions in nutrient exchange. A plant symbiosis signaling pathway controls the development of the symbiosis. Several components of the pathway have been identified, but transcriptional regulators that control downstream pathways for arbuscule formation are still unknown. Here we show that DELLA proteins, which are repressors of gibberellic acid (GA) signaling and function at the nexus of several signaling pathways, are required for arbuscule formation. Arbuscule formation is severely impaired in a Medicago truncatula Mtdella1/Mtdella2 double mutant; GA treatment of wild-type roots phenocopies the della double mutant, and a dominant DELLA protein (della1-Δ18) enables arbuscule formation in the presence of GA. Ectopic expression of della1-Δ18 suggests that DELLA activity in the vascular tissue and endodermis is sufficient to enable arbuscule formation in the inner cortical cells. In addition, expression of della1-Δ18 restores arbuscule formation in the symbiosis signaling pathway mutant cyclops/ipd3, indicating an intersection between DELLA and symbiosis signaling for arbuscule formation. GA signaling also influences arbuscule formation in monocots, and a Green Revolution wheat variety carrying dominant DELLA alleles shows enhanced colonization but a limited growth response to arbuscular mycorrhizal symbiosis.
Collapse
|
288
|
Wang Y, Deng D. Molecular basis and evolutionary pattern of GA-GID1-DELLA regulatory module. Mol Genet Genomics 2013; 289:1-9. [PMID: 24322346 DOI: 10.1007/s00438-013-0797-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/03/2013] [Indexed: 11/26/2022]
Abstract
The tetracyclic diterpenoid carboxylic acids, gibberellins (GAs), orchestrate a broad spectrum of biological programs. In nature, GAs or GA-like substance is produced in bacteria, fungi, and plants. The function of GAs in microorganisms remains largely unknown. Phytohormones GAs mediate diverse growth and developmental processes through the life cycle of plants. The GA biosynthetic and metabolic pathways in bacteria, fungi, and plants are remarkably divergent. In vascular plants, phytohormone GA, receptor GID1, and repressor DELLA shape the GA-GID1-DELLA module in GA signaling cascade. Sequence reshuffling, functional divergence, and adaptive selection are main driving forces during the evolution of GA pathway components. The GA-GID1-DELLA complex interacts with second messengers and other plant hormones to integrate environmental and endogenous cues, which is beneficial to phytohormones homeostasis and other biological events. In this review, we first briefly describe GA metabolism pathway, signaling perception, and its second messengers. Then, we examine the evolution of GA pathway genes. Finally, we focus on reviewing the crosstalk between GA-GID1-DELLA module and phytohormones. Deciphering mechanisms underlying plant hormonal interactions are not only beneficial to addressing basic biological questions, but also have practical implications for developing crops with ideotypes to meet the future demand.
Collapse
Affiliation(s)
- Yijun Wang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou, 225009, China,
| | | |
Collapse
|
289
|
Lim S, Park J, Lee N, Jeong J, Toh S, Watanabe A, Kim J, Kang H, Kim DH, Kawakami N, Choi G. ABA-insensitive3, ABA-insensitive5, and DELLAs Interact to activate the expression of SOMNUS and other high-temperature-inducible genes in imbibed seeds in Arabidopsis. THE PLANT CELL 2013. [PMID: 24326588 DOI: 10.1105/tpc.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Seeds monitor the environment to germinate at the proper time, but different species respond differently to environmental conditions, particularly light and temperature. In Arabidopsis thaliana, light promotes germination but high temperature suppresses germination. We previously reported that light promotes germination by repressing SOMNUS (SOM). Here, we examined whether high temperature also regulates germination through SOM and found that high temperature activates SOM expression. Consistent with this, som mutants germinated more frequently than the wild type at high temperature. The induction of SOM mRNA at high temperature required abscisic acid (ABA) and gibberellic acid biosynthesis, and ABA-insensitive3 (ABI3), ABI5, and DELLAs positively regulated SOM expression. Chromatin immunoprecipitation assays indicated that ABI3, ABI5, and DELLAs all target the SOM promoter. At the protein level, ABI3, ABI5, and DELLAs all interact with each other, suggesting that they form a complex on the SOM promoter to activate SOM expression at high temperature. We found that high-temperature-inducible genes frequently have RY motifs and ABA-responsive elements in their promoters, some of which are targeted by ABI3, ABI5, and DELLAs in vivo. Taken together, our data indicate that ABI3, ABI5, and DELLAs mediate high-temperature signaling to activate the expression of SOM and other high-temperature-inducible genes, thereby inhibiting seed germination.
Collapse
Affiliation(s)
- Soohwan Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
290
|
Lim S, Park J, Lee N, Jeong J, Toh S, Watanabe A, Kim J, Kang H, Kim DH, Kawakami N, Choi G. ABA-insensitive3, ABA-insensitive5, and DELLAs Interact to activate the expression of SOMNUS and other high-temperature-inducible genes in imbibed seeds in Arabidopsis. THE PLANT CELL 2013; 25:4863-78. [PMID: 24326588 PMCID: PMC3903992 DOI: 10.1105/tpc.113.118604] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/07/2013] [Accepted: 11/16/2013] [Indexed: 05/18/2023]
Abstract
Seeds monitor the environment to germinate at the proper time, but different species respond differently to environmental conditions, particularly light and temperature. In Arabidopsis thaliana, light promotes germination but high temperature suppresses germination. We previously reported that light promotes germination by repressing SOMNUS (SOM). Here, we examined whether high temperature also regulates germination through SOM and found that high temperature activates SOM expression. Consistent with this, som mutants germinated more frequently than the wild type at high temperature. The induction of SOM mRNA at high temperature required abscisic acid (ABA) and gibberellic acid biosynthesis, and ABA-insensitive3 (ABI3), ABI5, and DELLAs positively regulated SOM expression. Chromatin immunoprecipitation assays indicated that ABI3, ABI5, and DELLAs all target the SOM promoter. At the protein level, ABI3, ABI5, and DELLAs all interact with each other, suggesting that they form a complex on the SOM promoter to activate SOM expression at high temperature. We found that high-temperature-inducible genes frequently have RY motifs and ABA-responsive elements in their promoters, some of which are targeted by ABI3, ABI5, and DELLAs in vivo. Taken together, our data indicate that ABI3, ABI5, and DELLAs mediate high-temperature signaling to activate the expression of SOM and other high-temperature-inducible genes, thereby inhibiting seed germination.
Collapse
Affiliation(s)
- Soohwan Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Jeongmoo Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Nayoung Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Jinkil Jeong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Shigeo Toh
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Asuka Watanabe
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Junghyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Hyojin Kang
- National Institute of Supercomputing and Networking, Korea Institute of Science and Technology Information, Daejeon 305-806, Korea
| | - Dong Hwan Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Naoto Kawakami
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Giltsu Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
- Address correspondence to
| |
Collapse
|
291
|
Luo J, Ma N, Pei H, Chen J, Li J, Gao J. A DELLA gene, RhGAI1, is a direct target of EIN3 and mediates ethylene-regulated rose petal cell expansion via repressing the expression of RhCesA2. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5075-84. [PMID: 24014864 PMCID: PMC3830487 DOI: 10.1093/jxb/ert296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Ethylene plays an important role in organ growth. In Arabidopsis, ethylene can inhibit root elongation by stabilizing DELLA proteins. In previous work, it was found that ethylene suppressed cell expansion in rose petals, and five unisequences of DELLA genes are induced by ethylene. However, the mechanism of transcriptional regulation of DELLA genes by ethylene is still not clear. The results showed that the expression of RhGAI1 was induced in both ethylene-treated and ETR gene-silenced rose petals, and the promoter activity of RhGAI1 was strongly induced by RhEIN3-3 in Arabidopsis protoplasts. What is more, RhEIN3-3 could bind to the promoter of RhGAI1 directly in an electrophoretic mobility shift assay (EMSA). Cell expansion was suppressed in RhGAI1-Δ17-overexpressed Arabidopsis petals and promoted in RhGAI1-silenced rose petals. Moreover, in RhGAI1-silenced petals, the expression of nine cell expansion-related genes was clearly changed, and RhGAI1 can bind to the promoter of RhCesA2 in an EMSA. These results suggested that RhGAI1 was regulated by ethylene at the transcriptional level, and RhGAI1 was a direct target of RhEIN3-3. Also, RhGAI1 was shown to be involved in cell expansion partially through regulating the expression of cell expansion-related genes. Furthermore, RhCesA2 was a direct target of RhGAI1. This work uncovers the transcriptional regulation of RhGAI1 by ethylene and provides a better understanding of how ethylene regulates petal expansion in roses.
Collapse
Affiliation(s)
| | | | | | | | | | - Junping Gao
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
292
|
Stewart Lilley JL, Gan Y, Graham IA, Nemhauser JL. The effects of DELLAs on growth change with developmental stage and brassinosteroid levels. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:165-73. [PMID: 23834248 DOI: 10.1111/tpj.12280] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/26/2013] [Accepted: 07/02/2013] [Indexed: 05/03/2023]
Abstract
There are two stages in photomorphogenesis. First, seedlings detect light and open their cotyledons. Second, seedlings optimize their light environment by controlled elongation of the seedling stem or hypocotyl. In this study, we used time-lapse imaging to investigate the relationship between the brassinosteroid (BR) and gibberellin (GA) hormones across both stages of photomorphogenesis. During the transition between one stage and the other, growth promotion by BRs and GAs switched from an additive to a synergistic relationship. Molecular genetic analysis revealed unexpected roles for known participants in the GA pathway during this period. Members of the DELLA family could either repress or enhance BR growth responses, depending on developmental stage. At the transition point for seedling growth dynamics, the BR and GA pathways had opposite effects on DELLA protein levels. In contrast to GA-induced DELLA degradation, BR treatments increased the levels of REPRESSOR of ga1-3 (RGA) and mimicked the molecular effects of stabilizing DELLAs. In addition, DELLAs showed complex regulation of genes involved in BR biosynthesis, implicating them in BR homeostasis. Growth promotion by GA alone depended on the PHYTOCHROME INTERACTING FACTOR (PIF) family of master growth regulators. The effects of BR, including the synergistic effects with GA, were largely independent of PIFs. These results point to a multi-level, dynamic relationship between the BR and GA pathways.
Collapse
|
293
|
de Saint Germain A, Ligerot Y, Dun EA, Pillot JP, Ross JJ, Beveridge CA, Rameau C. Strigolactones stimulate internode elongation independently of gibberellins. PLANT PHYSIOLOGY 2013; 163:1012-25. [PMID: 23943865 PMCID: PMC3793021 DOI: 10.1104/pp.113.220541] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/08/2013] [Indexed: 05/18/2023]
Abstract
Strigolactone (SL) mutants in diverse species show reduced stature in addition to their extensive branching. Here, we show that this dwarfism in pea (Pisum sativum) is not attributable to the strong branching of the mutants. The continuous supply of the synthetic SL GR24 via the root system using hydroponics can restore internode length of the SL-deficient rms1 mutant but not of the SL-response rms4 mutant, indicating that SLs stimulate internode elongation via RMS4. Cytological analysis of internode epidermal cells indicates that SLs control cell number but not cell length, suggesting that SL may affect stem elongation by stimulating cell division. Consequently, SLs can repress (in axillary buds) or promote (in the stem) cell division in a tissue-dependent manner. Because gibberellins (GAs) increase internode length by affecting both cell division and cell length, we tested if SLs stimulate internode elongation by affecting GA metabolism or signaling. Genetic analyses using SL-deficient and GA-deficient or DELLA-deficient double mutants, together with molecular and physiological approaches, suggest that SLs act independently from GAs to stimulate internode elongation.
Collapse
Affiliation(s)
| | | | - Elizabeth A. Dun
- Institut Jean-Pierre Bourgin, INRA UMR1318, INRA-AgroParisTech, F–78000 Versailles, France (A.d.S.G., Y.L., J-P.P., C.R.)
- University of Queensland, School of Biological Sciences, St. Lucia, Queensland 4072 Australia (E.A.D., C.A.B.); and
- School of Plant Science, University of Tasmania, Sandy Bay, Tasmania 7005 Australia (J.J.R.)
| | - Jean-Paul Pillot
- Institut Jean-Pierre Bourgin, INRA UMR1318, INRA-AgroParisTech, F–78000 Versailles, France (A.d.S.G., Y.L., J-P.P., C.R.)
- University of Queensland, School of Biological Sciences, St. Lucia, Queensland 4072 Australia (E.A.D., C.A.B.); and
- School of Plant Science, University of Tasmania, Sandy Bay, Tasmania 7005 Australia (J.J.R.)
| | - John J. Ross
- Institut Jean-Pierre Bourgin, INRA UMR1318, INRA-AgroParisTech, F–78000 Versailles, France (A.d.S.G., Y.L., J-P.P., C.R.)
- University of Queensland, School of Biological Sciences, St. Lucia, Queensland 4072 Australia (E.A.D., C.A.B.); and
- School of Plant Science, University of Tasmania, Sandy Bay, Tasmania 7005 Australia (J.J.R.)
| | - Christine A. Beveridge
- Institut Jean-Pierre Bourgin, INRA UMR1318, INRA-AgroParisTech, F–78000 Versailles, France (A.d.S.G., Y.L., J-P.P., C.R.)
- University of Queensland, School of Biological Sciences, St. Lucia, Queensland 4072 Australia (E.A.D., C.A.B.); and
- School of Plant Science, University of Tasmania, Sandy Bay, Tasmania 7005 Australia (J.J.R.)
| | | |
Collapse
|
294
|
Liang Z, Ma Y, Xu T, Cui B, Liu Y, Guo Z, Yang D. Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in salvia miltiorrhiza bunge hairy roots. PLoS One 2013; 8:e72806. [PMID: 24023778 PMCID: PMC3759372 DOI: 10.1371/journal.pone.0072806] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/24/2013] [Indexed: 11/30/2022] Open
Abstract
Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants because of its excellent performance in treating coronary heart disease. Phenolic acids mainly including caffeic acid, rosmarinic acid and salvianolic acid B are a group of active ingredients in S. miltiorrhiza. Abscisic acid (ABA), gibberellin (GA) and ethylene are three important phytohormones. In this study, effects of the three phytohormones and their interactions on phenolic production in S.miltiorrhiza hairy roots were investigated. The results showed that ABA, GA and ethylene were all effective to induce production of phenolic acids and increase activities of PAL and TAT in S. miltiorrhiza hairy roots. Effects of phytohormones were reversed by their biosynthetic inhibitors. Antagonistic actions between the three phytohormones played important roles in the biosynthesis of phenolic acids. GA signaling is necessary for ABA and ethylene-induced phenolic production. Yet, ABA and ethylene signaling is probably not necessary for GA3-induced phenolic production. The complex interactions of phytohormones help us reveal regulation mechanism of secondary metabolism and scale-up production of active ingredients in plants.
Collapse
Affiliation(s)
- Zongsuo Liang
- College of Life Science of Zhejiang Sci-Tech University, Hangzhou, China
| | - Yini Ma
- College of Life Science of Zhejiang Sci-Tech University, Hangzhou, China
| | - Tao Xu
- College of Life Science of Zhejiang Sci-Tech University, Hangzhou, China
| | - Beimi Cui
- College of Life Science of Northwest A&F University, Yangling, China
| | - Yan Liu
- Tianjin Tasly Modern TCM Resources Co., Ltd., Tianjin, China
| | | | - Dongfeng Yang
- College of Life Science of Zhejiang Sci-Tech University, Hangzhou, China
- * E-mail:
| |
Collapse
|
295
|
Sarnowska EA, Rolicka AT, Bucior E, Cwiek P, Tohge T, Fernie AR, Jikumaru Y, Kamiya Y, Franzen R, Schmelzer E, Porri A, Sacharowski S, Gratkowska DM, Zugaj DL, Taff A, Zalewska A, Archacki R, Davis SJ, Coupland G, Koncz C, Jerzmanowski A, Sarnowski TJ. DELLA-interacting SWI3C core subunit of switch/sucrose nonfermenting chromatin remodeling complex modulates gibberellin responses and hormonal cross talk in Arabidopsis. PLANT PHYSIOLOGY 2013; 163:305-17. [PMID: 23893173 PMCID: PMC3762652 DOI: 10.1104/pp.113.223933] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/17/2013] [Indexed: 05/18/2023]
Abstract
Switch (SWI)/Sucrose Nonfermenting (SNF)-type chromatin-remodeling complexes (CRCs) are involved in regulation of transcription, DNA replication and repair, and cell cycle. Mutations of conserved subunits of plant CRCs severely impair growth and development; however, the underlying causes of these phenotypes are largely unknown. Here, we show that inactivation of SWI3C, the core component of Arabidopsis (Arabidopsis thaliana) SWI/SNF CRCs, interferes with normal functioning of several plant hormone pathways and alters transcriptional regulation of key genes of gibberellin (GA) biosynthesis. The resulting reduction of GA4 causes severe inhibition of hypocotyl and root elongation, which can be rescued by exogenous GA treatment. In addition, the swi3c mutation inhibits DELLA-dependent transcriptional activation of GIBBERELLIN-INSENSITIVE DWARF1 (GID1) GA receptor genes. Down-regulation of GID1a in parallel with the DELLA repressor gene REPRESSOR OF GA1-3 1 in swi3c indicates that lack of SWI3C also leads to defects in GA signaling. Together with the recent demonstration of function of SWI/SNF ATPase BRAHMA in the GA pathway, these results reveal a critical role of SWI/SNF CRC in the regulation of GA biosynthesis and signaling. Moreover, we demonstrate that SWI3C is capable of in vitro binding to, and shows in vivo bimolecular fluorescence complementation interaction in cell nuclei with, the DELLA proteins RGA-LIKE2 and RGA-LIKE3, which affect transcriptional activation of GID1 and GA3ox (GIBBERELLIN 3-OXIDASE) genes controlling GA perception and biosynthesis, respectively. Furthermore, we show that SWI3C also interacts with the O-GlcNAc (O-linked N-acetylglucosamine) transferase SPINDLY required for proper functioning of DELLAs and acts hypostatically to (SPINDLY) in the GA response pathway. These findings suggest that DELLA-mediated effects in GA signaling as well as their role as a hub in hormonal cross talk may be, at least in part, dependent on their direct physical interaction with complexes responsible for modulation of chromatin structure.
Collapse
|
296
|
Ariizumi T, Hauvermale AL, Nelson SK, Hanada A, Yamaguchi S, Steber CM. Lifting della repression of Arabidopsis seed germination by nonproteolytic gibberellin signaling. PLANT PHYSIOLOGY 2013; 162:2125-39. [PMID: 23818171 PMCID: PMC3729787 DOI: 10.1104/pp.113.219451] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
DELLA repression of Arabidopsis (Arabidopsis thaliana) seed germination can be lifted either through DELLA proteolysis by the ubiquitin-proteasome pathway or through proteolysis-independent gibberellin (GA) hormone signaling. GA binding to the GIBBERELLIN-INSENSITIVE DWARF1 (GID1) GA receptors stimulates GID1-GA-DELLA complex formation, which in turn triggers DELLA protein ubiquitination and proteolysis via the SCF(SLY1) E3 ubiquitin ligase and 26S proteasome. Although DELLA cannot be destroyed in the sleepy1-2 (sly1-2) F-box mutant, long dry after-ripening and GID1 overexpression can relieve the strong sly1-2 seed dormancy phenotype. It appears that sly1-2 seed dormancy results from abscisic acid (ABA) signaling downstream of DELLA, since dormant sly1-2 seeds accumulate high levels of ABA hormone and loss of ABA sensitivity rescues sly1-2 seed germination. DELLA positively regulates the expression of XERICO, an inducer of ABA biosynthesis. GID1b overexpression rescues sly1-2 germination through proteolysis-independent DELLA down-regulation associated with increased expression of GA-inducible genes and decreased ABA accumulation, apparently as a result of decreased XERICO messenger RNA levels. Higher levels of GID1 overexpression are associated with more efficient sly1 germination and increased GID1-GA-DELLA complex formation, suggesting that GID1 down-regulates DELLA through protein binding. After-ripening results in increased GA accumulation and GID1a-dependent GA signaling, suggesting that after-ripening triggers GA-stimulated GID1-GA-DELLA protein complex formation, which in turn blocks DELLA transcriptional activation of the XERICO inhibitor of seed germination.
Collapse
|
297
|
Locascio A, Blázquez MA, Alabadí D. Genomic analysis of DELLA protein activity. PLANT & CELL PHYSIOLOGY 2013; 54:1229-37. [PMID: 23784221 DOI: 10.1093/pcp/pct082] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Changes in gene expression are the main outcome of hormone signaling cascades that widely control plant physiology. In the case of the hormones gibberellins, the transcriptional control is exerted through the activity of the DELLA proteins, which act as negative regulators in the signaling pathway. This review focuses on recent transcriptomic approaches in the context of gibberellin signaling, which have provided useful information on new processes regulated by these hormones such as the regulation of photosynthesis and gravitropism. Moreover, the enrichment of specific cis-elements among DELLA primary targets has also helped extend the view that DELLA proteins regulate gene expression through the interaction with multiple transcription factors from different families.
Collapse
Affiliation(s)
- Antonella Locascio
- Instituto de Biología Molecular y Celular de Plantas-CSIC-U. Politécnica de Valencia, Valencia, Spain
| | | | | |
Collapse
|
298
|
Golldack D, Li C, Mohan H, Probst N. Gibberellins and abscisic acid signal crosstalk: living and developing under unfavorable conditions. PLANT CELL REPORTS 2013; 32:1007-16. [PMID: 23525744 DOI: 10.1007/s00299-013-1409-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/27/2013] [Accepted: 03/01/2013] [Indexed: 05/08/2023]
Abstract
Plants adapt to adverse environments by integrating growth and development to environmentally activated cues. Within the adaptive signaling networks, plant hormones tightly control convergent developmental and stress adaptive processes and coordinate cellular responses to external and internal conditions. Recent studies have uncovered novel antagonizing roles of the plant hormones gibberellin (GA) and abscisic acid (ABA) in integrating growth and development in plants with environmental signaling. According to current concepts, GRAS transcription factors of the DELLA and SCARECROW-LIKE (SCL) types have a key role as major growth regulators and have pivotal functions in modulating GA signaling. Significantly, current models emphasize a function of DELLA proteins as central regulators in GA homeostasis. DELLA proteins interact with the cellular GA receptor GID1 (GA-INSENSITIVE DWARF1) and degradation of DELLAs activates the function of GA. Supplementary to the prevailing view of a pivotal role of GRAS family transcriptional factors in plant growth regulation, recent work has suggested that the DELLA and SCL proteins integrate generic GA responses into ABA-controlled abiotic stress tolerance. Here, we review and discuss how GRAS type proteins influence plant development and versatile adaptation as hubs in GA and ABA triggered signaling pathways.
Collapse
Affiliation(s)
- Dortje Golldack
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany.
| | | | | | | |
Collapse
|
299
|
Li QF, He JX. Mechanisms of signaling crosstalk between brassinosteroids and gibberellins. PLANT SIGNALING & BEHAVIOR 2013; 8:e24686. [PMID: 23603943 PMCID: PMC3909037 DOI: 10.4161/psb.24686] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Brassinosteroids (BRs) and Gibberellins (GAs) are two principal groups of growth-promoting phytohormones. Accumulating evidence supports that there are crosstalks between BR and GA signaling pathways. However, a molecular mechanism for direct signaling crosstalk between BRs and GAs was not revealed until recently. Works from three different groups demonstrated that an interaction between BZR1/BES1 and DELLAs, two groups of key transcriptional regulators from the BR and GA signaling pathways, respectively, mediates the direct signaling crosstalk between BRs and GAs in controlling cell elongation in Arabidopsis. It was shown that DELLA proteins not only affect the protein stability but also inhibit the transcriptional activity of BZR1. Thus, GAs promote cell elongation, at least in part, through releasing DELLA-mediated inhibition of BZR1. This review aims to introduce these recent advances in our understanding of how BRs and GAs coordinate to regulate plant growth and development at the molecular level.
Collapse
|
300
|
Kurepin LV, Dahal KP, Savitch LV, Singh J, Bode R, Ivanov AG, Hurry V, Hüner NPA. Role of CBFs as integrators of chloroplast redox, phytochrome and plant hormone signaling during cold acclimation. Int J Mol Sci 2013; 14:12729-63. [PMID: 23778089 PMCID: PMC3709810 DOI: 10.3390/ijms140612729] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/24/2013] [Accepted: 06/06/2013] [Indexed: 11/16/2022] Open
Abstract
Cold acclimation of winter cereals and other winter hardy species is a prerequisite to increase subsequent freezing tolerance. Low temperatures upregulate the expression of C-repeat/dehydration-responsive element binding transcription factors (CBF/DREB1) which in turn induce the expression of COLD-REGULATED (COR) genes. We summarize evidence which indicates that the integration of these interactions is responsible for the dwarf phenotype and enhanced photosynthetic performance associated with cold-acclimated and CBF-overexpressing plants. Plants overexpressing CBFs but grown at warm temperatures mimic the cold-tolerant, dwarf, compact phenotype; increased photosynthetic performance; and biomass accumulation typically associated with cold-acclimated plants. In this review, we propose a model whereby the cold acclimation signal is perceived by plants through an integration of low temperature and changes in light intensity, as well as changes in light quality. Such integration leads to the activation of the CBF-regulon and subsequent upregulation of COR gene and GA 2-oxidase (GA2ox) expression which results in a dwarf phenotype coupled with increased freezing tolerance and enhanced photosynthetic performance. We conclude that, due to their photoautotrophic nature, plants do not rely on a single low temperature sensor, but integrate changes in light intensity, light quality, and membrane viscosity in order to establish the cold-acclimated state. CBFs appear to act as master regulators of these interconnecting sensing/signaling pathways.
Collapse
Affiliation(s)
- Leonid V. Kurepin
- Department of Biology and the Biotron Center for Experimental Climate Change Research, Western University, London, ON N6A 5B7, Canada; E-Mails: (R.B.); (A.G.I.)
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå 901 87, Sweden; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (L.V.K.); (N.P.A.H.); Tel.: +1-519-661-2111 (ext. 86638) (L.V.K.); +1-519-661-2111 (ext. 86488) (N.P.A.H.); Fax: +1-519-850-2343(L.V.K. & N.P.A.H.)
| | - Keshav P. Dahal
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada; E-Mail:
| | - Leonid V. Savitch
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada; E-Mails: (L.V.S.); (J.S.)
| | - Jas Singh
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada; E-Mails: (L.V.S.); (J.S.)
| | - Rainer Bode
- Department of Biology and the Biotron Center for Experimental Climate Change Research, Western University, London, ON N6A 5B7, Canada; E-Mails: (R.B.); (A.G.I.)
| | - Alexander G. Ivanov
- Department of Biology and the Biotron Center for Experimental Climate Change Research, Western University, London, ON N6A 5B7, Canada; E-Mails: (R.B.); (A.G.I.)
| | - Vaughan Hurry
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå 901 87, Sweden; E-Mail:
| | - Norman P. A. Hüner
- Department of Biology and the Biotron Center for Experimental Climate Change Research, Western University, London, ON N6A 5B7, Canada; E-Mails: (R.B.); (A.G.I.)
- Authors to whom correspondence should be addressed; E-Mails: (L.V.K.); (N.P.A.H.); Tel.: +1-519-661-2111 (ext. 86638) (L.V.K.); +1-519-661-2111 (ext. 86488) (N.P.A.H.); Fax: +1-519-850-2343(L.V.K. & N.P.A.H.)
| |
Collapse
|