251
|
A Parallel Tracking of Salivary and Gut Microbiota Profiles Can Reveal Maturation and Interplay of Early Life Microbial Communities in Healthy Infants. Microorganisms 2022; 10:microorganisms10020468. [PMID: 35208921 PMCID: PMC8880349 DOI: 10.3390/microorganisms10020468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/05/2023] Open
Abstract
In this study, the onset and shaping of the salivary and gut microbiota in healthy newborns during the first period of life has been followed, evaluating the impact of salivary microbiota on the development of early fecal microbial communities. The microbiota of 80 salivary and 82 fecal samples that were collected from healthy newborns in the first six months of life, was investigated by 16S rRNA amplicon profiling. The microbial relationship within and between the saliva and gut ecosystems was determined by correlation heatmaps and co-occurrence networks. Streptococcus and Staphylococcus appeared as early commensals in the salivary microbiota, dominating this ecosystem through the time, while Fusobacterium, Prevotella, Porphyromonas, Granulicatella, and Veillonella were late colonizers. Enterobacteriaceae, Staphylococcus and Streptococcus were gut pioneers, followed by the anaerobic Bifidobacterium, Veillonella, Eggerthella, and Bacteroides. Streptococcus, Staphylococcus, and Veillonella were shared by the gut and saliva ecosystems. The saliva and gut microbiota seem to evolve independently, driven by local adaptation strategies, except for the oral Streptococcus and Veillonella that are involved in gut microbiota development as seeding species. This study offers a piece of knowledge on how the oral microbiota may affect the gut microbiota in healthy newborns, shedding light onto new microbial targets for the development of therapies for early life intestinal dysbiosis.
Collapse
|
252
|
Sheng C, Yang K, He B, Du W, Cai Y, Han Y. Combination of gut microbiota and plasma amyloid-β as a potential index for identifying preclinical Alzheimer's disease: a cross-sectional analysis from the SILCODE study. Alzheimers Res Ther 2022; 14:35. [PMID: 35164860 PMCID: PMC8843023 DOI: 10.1186/s13195-022-00977-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/06/2022] [Indexed: 12/15/2022]
Abstract
Background Plasma amyloid-β (Aβ) may facilitate identification of individuals with brain amyloidosis. Gut microbial dysbiosis in Alzheimer’s disease (AD) is increasingly being recognized. However, knowledge about alterations of gut microbiota in preclinical AD, as well as whether the combination of plasma Aβ and gut microbiota could identify preclinical AD, remains largely unknown. Methods This study recruited 34 Aβ-negative cognitively normal (CN−) participants, 32 Aβ-positive cognitively normal (CN+) participants, and 22 patients with cognitive impairment (CI), including 11 patients with mild cognitive impairment (MCI) and 11 AD dementia patients. All participants underwent neuropsychological assessments and fecal microbiota analysis through 16S ribosomal RNA (rRNA) Illumina Miseq sequencing technique. Meso Scale Discovery (MSD) kits were used to quantify the plasma Aβ40, Aβ42, and Aβ42/Aβ40 in CN− and CN+ participants. Using Spearman’s correlation analysis, the associations of global standard uptake value rate (SUVR) with altered gut microbiota and plasma Aβ markers were separately evaluated. Furthermore, the discriminative power of the combination of gut microbiota and plasma Aβ markers for identifying CN+ individuals was investigated. Results Compared with the CN− group, the CN+ group showed significantly reduced plasma Aβ42 (p = 0.011) and Aβ42/Aβ40 (p = 0.003). The relative abundance of phylum Bacteroidetes was significantly enriched, whereas phylum Firmicutes and class Deltaproteobacteria were significantly decreased in CN+ individuals in comparison with that in CN− individuals. Particularly, the relative abundance of phylum Firmicutes and its corresponding SCFA-producing bacteria exhibited a progressive decline tendency from CN− to CN+ and CI. Besides, the global brain Aβ burden was negatively associated with the plasma Aβ42/Aβ40 (r = −0.298, p = 0.015), family Desulfovibrionaceae (r = −0.331, p = 0.007), genus Bilophila (r = −0.247, p = 0.046), and genus Faecalibacterium (r = −0.291, p = 0.018) for all CN participants. Finally, the combination of plasma Aβ markers, altered gut microbiota, and cognitive performance reached a relatively good discriminative power in identifying individuals with CN+ from CN− (AUC = 0.869, 95% CI 0.782 ~ 0.955). Conclusions This study provided the evidence that the gut microbial composition was altered in preclinical AD. The combination of plasma Aβ and gut microbiota may serve as a non-invasive, cost-effective diagnostic tool for early AD screening. Targeting the gut microbiota may be a novel therapeutic strategy for AD. Trial registration This study has been registered in ClinicalTrials.gov (NCT03370744, https://www.clinicaltrials.gov) in November 15, 2017. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-00977-x.
Collapse
Affiliation(s)
- Can Sheng
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Kun Yang
- Evidence-Based Medicine Center, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.,Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Beiqi He
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Wenying Du
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Yanning Cai
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.,Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing, 100053, China.,Department of Biobank, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China. .,Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China. .,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, 100053, China. .,National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
| |
Collapse
|
253
|
Effect of Different Functional Food Supplements on the Gut Microbiota of Prediabetic Indonesian Individuals during Weight Loss. Nutrients 2022; 14:nu14040781. [PMID: 35215431 PMCID: PMC8875853 DOI: 10.3390/nu14040781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 12/04/2022] Open
Abstract
The gut microbiota has been shown in recent years to be involved in the development and severity of type 2 diabetes (T2D). The aim of the present study was to test the effect of a 2-week functional food intervention on the gut microbiota composition in prediabetic individuals. A randomized double-blind, cross-over trial was conducted on prediabetic subjects. Fifteen volunteers were provided products made of: (i) 50% taro flour + 50% wheat flour; (ii) these products and the probiotic L. plantarum IS-10506; or (iii) these products with beetroot adsorbed for a period of 2 weeks with 2 weeks wash-out in between. Stool and blood samples were taken at each baseline and after each of the interventions. The gut microbiota composition was evaluated by sequencing the V3–V4 region of the 16S rRNA gene and anthropometric measures were recorded. The total weight loss over the entire period ranged from 0.5 to 11 kg. The next-generation sequencing showed a highly personalized microbiota composition. In the principal coordinate analyses, the samples of each individual clustered closer together than the samples of each treatment. For six individuals, the samples clustered closely together, indicating a stable microbiota. For nine individuals, the microbiota was less resilient and, depending on the intervention, the beta-diversity transiently differed greatly only to return to the composition close to the baseline during the wash-out. The statistical analyses showed that 202 of the total 304 taxa were significantly different between the participants. Only Butyricimonas could be correlated with taro ingestion. The results of the study show that the highly variable interindividual variation observed in the gut microbiota of the participants clouded any gut microbiota modulation that might be present due to the functional food interventions.
Collapse
|
254
|
Peh A, O'Donnell JA, Broughton BRS, Marques FZ. Gut Microbiota and Their Metabolites in Stroke: A Double-Edged Sword. Stroke 2022; 53:1788-1801. [PMID: 35135325 DOI: 10.1161/strokeaha.121.036800] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Besides damaging the brain, stroke causes systemic changes, including to the gastrointestinal system. A growing body of evidence supports the role of the gut and its microbiota in stroke, stroke prognosis, and recovery. The gut microbiota can increase the risk of a cerebrovascular event, playing a role in the onset of stroke. Conversely, stroke can induce dysbiosis of the gut microbiota and epithelial barrier integrity. This has been proposed as a contributor to systemic infections. In this review, we describe the role of the gut microbiota, microbiome and microbiota-derived metabolites in experimental and clinical stroke, and their potential use as therapeutic targets. Fourteen clinical studies have identified 62 upregulated (eg, Streptococcus, Lactobacillus, Escherichia) and 29 downregulated microbial taxa (eg, Eubacterium, Roseburia) between stroke and healthy participants. The majority found that stroke patients have reduced gut microbiome diversity. However, other nonbacterial microorganisms are yet to be studied. In experimental stroke, severity is dependent on gut microbiome composition, whereas the latter can greatly change with antibiotics, age, and diet. Consumption of foods rich in choline and L-carnitine are positively associated with stroke onset via production of trimethylamine N-oxide in experimental and clinical stroke. Conversely, in mice, consumption of dietary fiber improves stroke outcome, likely via gut microbiota-derived metabolites called short-chain fatty acids, such as acetate, propionate, and butyrate. The majority of the evidence, however, comes from experimental studies. Clinical interventions targeted at gut microbiota-derived metabolites as new therapeutic opportunities for stroke prevention and treatment are warranted.
Collapse
Affiliation(s)
- Alex Peh
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Australia (A.P., J.A.O., F.Z.M.).,Cardiovascular & Pulmonary Pharmacology Group, Department of Pharmacology, Monash University, Melbourne, Australia (A.P., B.R.S.B.)
| | - Joanne A O'Donnell
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Australia (A.P., J.A.O., F.Z.M.)
| | - Brad R S Broughton
- Cardiovascular & Pulmonary Pharmacology Group, Department of Pharmacology, Monash University, Melbourne, Australia (A.P., B.R.S.B.)
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Australia (A.P., J.A.O., F.Z.M.).,Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia (F.Z.M.)
| |
Collapse
|
255
|
Lenart-Boroń AM, Boroń PM, Prajsnar JA, Guzik MW, Żelazny MS, Pufelska MD, Chmiel MJ. COVID-19 lockdown shows how much natural mountain regions are affected by heavy tourism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151355. [PMID: 34740648 PMCID: PMC9755070 DOI: 10.1016/j.scitotenv.2021.151355] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 05/02/2023]
Abstract
Mountain areas in Poland are among the most frequented tourist destinations and such intensive tourism negatively affects the natural environment. The COVID-19 pandemic and the resulting lockdown restricted travel for a few months in 2020, providing a unique opportunity to observe the studied mountain environment without the impact of typical tourist traffic. This study is based on the determination of antibiotic content, hydrochemical parameters, enumeration of culturable bacterial water quality indicators, antimicrobial susceptibility tests together with extended spectrum beta-lactamase (ESBL) gene detection in waterborne E. coli and NGS-based bacterial community composition at six sites along the Białka river valley (one of the most popular touristic regions in Poland) in three periods: in summer and winter tourist seasons and during the COVID-19 lockdown. The results of individual measurements showed decreased numbers of bacterial indicators of water contamination (e.g. numbers of E. coli dropped from 99 × 104 CFU/100 ml to 12 CFU/100 ml at the most contaminated site) and the share of antimicrobial resistant E. coli (total resistance dropped from 21% in summer to 9% during lockdown, share of multidrug resistant strains from 100 to 44%, and ESBL from 20% in summer to none during lockdown). Antibiotic concentrations were the highest during lockdown. The use of multivariate analysis (principal component analysis - PCA and heatmaps) revealed a clear pattern of tourism-related anthropogenic pressure on the water environment and positive impact of COVID-19 lockdown on water quality. PCA distinguished three major factors determining water quality: F1 shows strong effect of anthropogenic pressure; F2 describes the lockdown-related quality restoration processes; F3 is semi-natural and describes the differences between the most pristine and most anthropogenically-impacted waters.
Collapse
Affiliation(s)
- Anna M Lenart-Boroń
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 30-059 Kraków, Poland.
| | - Piotr M Boroń
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Kraków, 29 Listopada Ave. 46, 31-425 Kraków, Poland
| | - Justyna A Prajsnar
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek Str. 8, 30-239, Kraków, Poland
| | - Maciej W Guzik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek Str. 8, 30-239, Kraków, Poland
| | - Mirosław S Żelazny
- Department of Hydrology, Institute of Geography and Spatial Management, Jagiellonian University in Kraków, Gronostajowa Str. 7, 30-387, Kraków, Poland
| | - Marta D Pufelska
- Department of Hydrology, Institute of Geography and Spatial Management, Jagiellonian University in Kraków, Gronostajowa Str. 7, 30-387, Kraków, Poland
| | - Maria J Chmiel
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 30-059 Kraków, Poland
| |
Collapse
|
256
|
Guzzardi MA, Ederveen THA, Rizzo F, Weisz A, Collado MC, Muratori F, Gross G, Alkema W, Iozzo P. Maternal pre-pregnancy overweight and neonatal gut bacterial colonization are associated with cognitive development and gut microbiota composition in pre-school-age offspring. Brain Behav Immun 2022; 100:311-320. [PMID: 34920092 DOI: 10.1016/j.bbi.2021.12.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/03/2021] [Accepted: 12/11/2021] [Indexed: 12/17/2022] Open
Abstract
Maternal gestational obesity is a risk factor for offspring's neurodevelopment and later neuro-cognitive disorders. Altered gut microbiota composition has been found in patients with neurocognitive disorders, and in relation to maternal metabolic health. We explored the associations between gut microbiota and cognitive development during infancy, and their link with maternal obesity. In groups of children from the Pisa birth Cohort (PISAC), we analysed faecal microbiota composition by 16S rRNA marker gene sequencing of first-pass meconium samples and of faecal samples collected at age 3, 6, 12, 24, 36 months, and its relationship with maternal gestational obesity or diabetes, and with cognitive development, as measured from 6 to 60 months of age by the Griffith's Mental Development Scales. Gut microbiota composition in the first phases of life is dominated by Bifidobacteria (Actinobacteria phylum), with contribution of Escherichia/Shigella and Klebsiella genera (Proteobacteria phylum), whereas Firmicutes become more dominant at 36 months of age. Maternal overweight leads to lower abundance of Bifidobacterium, Blautia and Ruminococcus, and lower practical reasoning scores in the offspring at the age of 36 months. In the whole population, microbiota in the first-pass meconium samples shows much higher alpha diversity compared to later samples, and its composition, particularly Bifidobacterium and Veillonella abundances, correlates with practical reasoning scores at 60 months of age. Maternal overweight correlates with bacterial colonization and with the development of reasoning skills at pre-school age. Associations between neonatal gut colonization and later cognitive function provide new perspectives of primary (antenatal) prevention of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Maria Angela Guzzardi
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy.
| | - Thomas H A Ederveen
- Center for Molecular and Biomolecular Informatics (CMBI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), Nijmegen, the Netherlands.
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana, University of Salerno, Baronissi, SA, Italy; Genome Research Center for Health (CRGS), Baronissi, SA, Italy.
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana, University of Salerno, Baronissi, SA, Italy; Genome Research Center for Health (CRGS), Baronissi, SA, Italy.
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain.
| | | | - Gabriele Gross
- Medical and Scientific Affairs, Nutrition, RB Mead Johnson Nutrition Institute, Nijmegen, the Netherlands.
| | - Wynand Alkema
- Center for Molecular and Biomolecular Informatics (CMBI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), Nijmegen, the Netherlands.
| | - Patricia Iozzo
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy.
| |
Collapse
|
257
|
Simas AM, Kramer CD, Genco CA. Diet-Induced Non-alcoholic Fatty Liver Disease and Associated Gut Dysbiosis Are Exacerbated by Oral Infection. FRONTIERS IN ORAL HEALTH 2022; 2:784448. [PMID: 35141703 PMCID: PMC8820505 DOI: 10.3389/froh.2021.784448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence indicates that chronic inflammation due to periodontal disease is associated with progression of non-alcoholic fatty liver disease (NAFLD) caused by a Western diet. NAFLD has also been associated with oral infection with the etiological agent of periodontal disease, Porphyromonas gingivalis. P. gingivalis oral infection has been shown to induce cardiometabolic disease features including hepatic lipid accumulation while also leading to dysbiosis of the gut microbiome. However, the impact of P. gingivalis infection on the gut microbiota of mice with diet-induced NAFLD and the potential for those changes to mediate NAFLD progression has yet to be determined. In the current study, we have demonstrated that P. gingivalis infection induced sustained alterations of the gut microbiota composition and predicted functions, which was associated with the promotion of NAFLD in steatotic mice. Reduced abundance of short-chain fatty acid-producing microbiota was observed after both acute and chronic P. gingivalis infection. Collectively, our findings demonstrate that P. gingivalis infection produces a persistent change in the gut microbiota composition and predicted functions that promotes steatosis and metabolic disease.
Collapse
Affiliation(s)
- Alexandra M. Simas
- Gerald J. and Dorothy R. Friedman School of Nutrition and Science Policy, Graduate Program in Biochemical and Molecular Nutrition, Tufts University, Boston, MA, United States
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | - Carolyn D. Kramer
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | - Caroline A. Genco
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
- Graduate Program in Immunology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, United States
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, United States
- *Correspondence: Caroline A. Genco
| |
Collapse
|
258
|
Alemohammad SMA, Noori SMR, Samarbafzadeh E, Noori SMA. The role of the gut microbiota and nutrition on spatial learning and spatial memory: a mini review based on animal studies. Mol Biol Rep 2022; 49:1551-1563. [PMID: 35028854 DOI: 10.1007/s11033-021-07078-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023]
Abstract
The gut-brain axis is believed to constitute a bidirectional communication mechanism that affects both mental and digestive processes. Recently, the role of the gut microbiota in cognitive performance has been the focus of much research. In this paper, we discuss the effects of gut microbiota and nutrition on spatial memory and learning. Studies have shown the influence of diet on cognitive capabilities such as spatial learning and memory. It has been reported that a high-fat diet can alter gut microbiota which subsequently leads to changes in spatial learning and memory. Some microorganisms in the gut that can significantly affect spatial learning and memory are Akkermansia muciniphila, Bifidobacterium, Lactobacillus, Firmicutes, Bacteroidetes, and Helicobacter pylori. For example, a reduction in the amount of A. muciniphila in the gut leads to increased intestinal permeability and induces immune response in the brain which then negatively affects cognitive performances. We suggest that more studies should be carried out regarding the indirect effects of nutrition on cognitive activities via alteration in gut microbiota.
Collapse
Affiliation(s)
| | - Seyed Mohammad Reza Noori
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Samarbafzadeh
- Department of Psychiatry and Behavioral Medicine, Carilion Clinic, Roanoke, VA, USA
| | - Seyyed Mohammad Ali Noori
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. .,Department of Nutrition, School of Allied Medical Sciences, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
259
|
Franz M, Whyte L, Atwood TC, Laidre KL, Roy D, Watson SE, Góngora E, McKinney MA. Distinct gut microbiomes in two polar bear subpopulations inhabiting different sea ice ecoregions. Sci Rep 2022; 12:522. [PMID: 35017585 PMCID: PMC8752607 DOI: 10.1038/s41598-021-04340-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/13/2021] [Indexed: 11/09/2022] Open
Abstract
Gut microbiomes were analyzed by 16S rRNA gene metabarcoding for polar bears (Ursus maritimus) from the southern Beaufort Sea (SB), where sea ice loss has led to increased use of land-based food resources by bears, and from East Greenland (EG), where persistent sea ice has allowed hunting of ice-associated prey nearly year-round. SB polar bears showed a higher number of total (940 vs. 742) and unique (387 vs. 189) amplicon sequence variants and higher inter-individual variation compared to EG polar bears. Gut microbiome composition differed significantly between the two subpopulations and among sex/age classes, likely driven by diet variation and ontogenetic shifts in the gut microbiome. Dietary tracer analysis using fatty acid signatures for SB polar bears showed that diet explained more intrapopulation variation in gut microbiome composition and diversity than other tested variables, i.e., sex/age class, body condition, and capture year. Substantial differences in the SB gut microbiome relative to EG polar bears, and associations between SB gut microbiome and diet, suggest that the shifting foraging habits of SB polar bears tied to sea ice loss may be altering their gut microbiome, with potential consequences for nutrition and physiology.
Collapse
Affiliation(s)
- Megan Franz
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Lyle Whyte
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Todd C Atwood
- United States Geological Survey (USGS), Alaska Science Center, University Drive, Anchorage, AK, 99508, USA
| | - Kristin L Laidre
- Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
- Greenland Institute of Natural Resources, P.O. Box 570, Nuuk, Greenland
| | - Denis Roy
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Sophie E Watson
- School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff, UK
| | - Esteban Góngora
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
260
|
Pham VT, Fehlbaum S, Seifert N, Richard N, Bruins MJ, Sybesma W, Rehman A, Steinert RE. Effects of colon-targeted vitamins on the composition and metabolic activity of the human gut microbiome- a pilot study. Gut Microbes 2022; 13:1-20. [PMID: 33615992 PMCID: PMC7899684 DOI: 10.1080/19490976.2021.1875774] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
An increasing body of evidence has shown that gut microbiota imbalances are linked to diseases. Currently, the possibility of regulating gut microbiota to reverse these perturbations by developing novel therapeutic and preventive strategies is being extensively investigated. The modulatory effect of vitamins on the gut microbiome and related host health benefits remain largely unclear. We investigated the effects of colon-delivered vitamins A, B2, C, D, and E on the gut microbiota using a human clinical study and batch fermentation experiments, in combination with cell models for the assessment of barrier and immune functions. Vitamins C, B2, and D may modulate the human gut microbiome in terms of metabolic activity and bacterial composition. The most distinct effect was that of vitamin C, which significantly increased microbial alpha diversity and fecal short-chain fatty acids compared to the placebo. The remaining vitamins tested showed similar effects on microbial diversity, composition, and/or metabolic activity in vitro, but in varying degrees. Here, we showed that vitamins may modulate the human gut microbiome. Follow-up studies investigating targeted delivery of vitamins to the colon may help clarify the clinical significance of this novel concept for treating and preventing dysbiotic microbiota-related human diseases. Trial registration: ClinicalTrials.gov, NCT03668964. Registered 13 September 2018 - Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT03668964.
Collapse
Affiliation(s)
- Van T. Pham
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd., Basel, Switzerland,CONTACT Van T. Pham Wurmisweg 576, 4303 Kaiseraugst203/117A+41 618 158 828
| | - Sophie Fehlbaum
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd., Basel, Switzerland
| | - Nicole Seifert
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd., Basel, Switzerland
| | - Nathalie Richard
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd., Basel, Switzerland
| | - Maaike J. Bruins
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd., Basel, Switzerland
| | - Wilbert Sybesma
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd., Basel, Switzerland
| | - Ateequr Rehman
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd., Basel, Switzerland
| | - Robert E. Steinert
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd., Basel, Switzerland,Department of Surgery, Division of Visceral and Transplantation Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
261
|
Szychowiak P, Villageois-Tran K, Patrier J, Timsit JF, Ruppé É. The role of the microbiota in the management of intensive care patients. Ann Intensive Care 2022; 12:3. [PMID: 34985651 PMCID: PMC8728486 DOI: 10.1186/s13613-021-00976-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
The composition of the gut microbiota is highly dynamic and changes according to various conditions. The gut microbiota mainly includes difficult-to-cultivate anaerobic bacteria, hence knowledge about its composition has significantly arisen from culture-independent methods based on next-generation sequencing (NGS) such as 16S profiling and shotgun metagenomics. The gut microbiota of patients hospitalized in intensive care units (ICU) undergoes many alterations because of critical illness, antibiotics, and other ICU-specific medications. It is then characterized by lower richness and diversity, and dominated by opportunistic pathogens such as Clostridioides difficile and multidrug-resistant bacteria. These alterations are associated with an increased risk of infectious complications or death. Specifically, at the time of writing, it appears possible to identify distinct microbiota patterns associated with severity or infectivity in COVID-19 patients, paving the way for the potential use of dysbiosis markers to predict patient outcomes. Correcting the microbiota disturbances to avoid their consequences is now possible. Fecal microbiota transplantation is recommended in recurrent C. difficile infections and microbiota-protecting treatments such as antibiotic inactivators are currently being developed. The growing interest in the microbiota and microbiota-associated therapies suggests that the control of the dysbiosis could be a key factor in the management of critically ill patients. The present narrative review aims to provide a synthetic overview of microbiota, from healthy individuals to critically ill patients. After an introduction to the different techniques used for studying the microbiota, we review the determinants involved in the alteration of the microbiota in ICU patients and the latter's consequences. Last, we assess the means to prevent or correct microbiota alteration.
Collapse
Affiliation(s)
- Piotr Szychowiak
- Université de Paris, IAME, INSERM, 75018, Paris, France
- Service de Médecine Intensive-Réanimation, Centre Hospitalier Régional Universitaire de Tours, 37000, Tours, France
| | - Khanh Villageois-Tran
- Université de Paris, IAME, INSERM, 75018, Paris, France
- Laboratoire de Bactériologie, AP-HP, Hôpital Beaujon, 92110, Paris, France
| | - Juliette Patrier
- Université de Paris, IAME, INSERM, 75018, Paris, France
- Service de Réanimation Médicale Et Infectieuse, AP-HP, Hôpital Bichat, 75018, Paris, France
| | - Jean-François Timsit
- Université de Paris, IAME, INSERM, 75018, Paris, France
- Service de Réanimation Médicale Et Infectieuse, AP-HP, Hôpital Bichat, 75018, Paris, France
| | - Étienne Ruppé
- Université de Paris, IAME, INSERM, 75018, Paris, France.
- Laboratoire de Bactériologie, AP-HP, Hôpital Bichat-Claude Bernard, 46 rue Henri Huchard, 75018, Paris, France.
| |
Collapse
|
262
|
D'Amico F, Barone M, Tavella T, Rampelli S, Brigidi P, Turroni S. Host microbiomes in tumor precision medicine: how far are we? Curr Med Chem 2022; 29:3202-3230. [PMID: 34986765 DOI: 10.2174/0929867329666220105121754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/13/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022]
Abstract
The human gut microbiome has received a crescendo of attention in recent years, due to the countless influences on human pathophysiology, including cancer. Research on cancer and anticancer therapy is constantly looking for new hints to improve the response to therapy while reducing the risk of relapse. In this scenario, the gut microbiome and the plethora of microbial-derived metabolites are considered a new opening in the development of innovative anticancer treatments for a better prognosis. This narrative review summarizes the current knowledge on the role of the gut microbiome in the onset and progression of cancer, as well as in response to chemo-immunotherapy. Recent findings regarding the tumor microbiome and its implications for clinical practice are also commented on. Current microbiome-based intervention strategies (i.e., prebiotics, probiotics, live biotherapeutics and fecal microbiota transplantation) are then discussed, along with key shortcomings, including a lack of long-term safety information in patients who are already severely compromised by standard treatments. The implementation of bioinformatic tools applied to microbiomics and other omics data, such as machine learning, has an enormous potential to push research in the field, enabling the prediction of health risk and therapeutic outcomes, for a truly personalized precision medicine.
Collapse
Affiliation(s)
- Federica D'Amico
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Monica Barone
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Teresa Tavella
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Simone Rampelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Patrizia Brigidi
- Microbiome Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| |
Collapse
|
263
|
Feng Y, Bui TPN, Stams AJM, Boeren S, Sánchez-Andrea I, de Vos WM. Comparative genomics and proteomics of Eubacterium maltosivorans: functional identification of trimethylamine methyltransferases and bacterial microcompartments in a human intestinal bacterium with a versatile lifestyle. Environ Microbiol 2022; 24:517-534. [PMID: 34978130 PMCID: PMC9303578 DOI: 10.1111/1462-2920.15886] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/01/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022]
Abstract
Eubacterium maltosivorans YIT is a human intestinal isolate capable of acetogenic, propionogenic and butyrogenic growth. Its 4.3-Mb genome sequence contains coding sequences for 4227 proteins, including 41 different methyltransferases. Comparative proteomics of strain YIT showed the Wood-Ljungdahl pathway proteins to be actively produced during homoacetogenic growth on H2 and CO2 while butyrogenic growth on a mixture of lactate and acetate significantly upregulated the production of proteins encoded by the recently identified lctABCDEF cluster and accessory proteins. Growth on H2 and CO2 unexpectedly induced the production of two related trimethylamine methyltransferases. Moreover, a set of 16 different trimethylamine methyltransferases together with proteins for bacterial microcompartments were produced during growth and deamination of the quaternary amines, betaine, carnitine and choline. Growth of strain YIT on 1,2-propanediol generated propionate with propanol and induced the formation of bacterial microcompartments that were also prominently visible in betaine-grown cells. The present study demonstrates that E. maltosivorans is highly versatile in converting low-energy fermentation end-products in the human gut into butyrate and propionate whilst being capable of preventing the formation of the undesired trimethylamine by converting betaine and other quaternary amines in bacterial microcompartments into acetate and butyrate.
Collapse
Affiliation(s)
- Yuan Feng
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | - Thi Phuong Nam Bui
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands.,Caelus Pharmaceuticals, Amsterdam, The Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands.,Centre of Biological Engineering, IBB - Institute for Biotechnology and Bioengineering, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands.,Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland
| |
Collapse
|
264
|
Yan M, Guo X, Ji G, Huang R, Huang D, Li Z, Zhang D, Chen S, Cao R, Yang X, Wu W. Mechanismbased role of the intestinal microbiota in gestational diabetes mellitus: A systematic review and meta-analysis. Front Immunol 2022; 13:1097853. [PMID: 36936475 PMCID: PMC10020587 DOI: 10.3389/fimmu.2022.1097853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/15/2022] [Indexed: 03/06/2023] Open
Abstract
Background Metabolic disorders caused by intestinal microbial dysregulation are considered to be important causes of gestational diabetes mellitus (GDM). Increasing evidence suggests that the diversity and composition of gut microbes are altered in disease states, yet the critical microbes and mechanisms of disease regulation remain unidentified. Methods PubMed® (National Library of Medicine, Bethesda, MD, USA), Embase® (Elsevier, Amsterdam, the Netherlands), the Web of Science™ (Clarivate™, Philadelphia, PA, USA), and the Cochrane Library databases were searched to identify articles published between 7 July 2012 and 7 July 2022 reporting on case-control and controlled studies that analyzed differences in enterobacteria between patients with GDM and healthy individuals. Information on the relative abundance of enterobacteria was collected for comparative diversity comparison, and enterobacterial differences were analyzed using random effects to calculate standardized mean differences at a p-value of 5%. Results A total of 22 studies were included in this review, involving a total of 965 GDM patients and 1,508 healthy control participants. Alpha diversity did not differ between the participant groups, but beta diversity was significantly different. Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria were the dominant bacteria, but there was no significant difference between the two groups. Qualitative analysis showed differences between the groups in the Firmicutes/Bacteroidetes ratio, Blautia, and Collinsella, but these differences were not statistically different. Conclusion Enterobacterial profiles were significantly different between the GDM and non-GDM populations. Alpha diversity in patients with GDM is similar to that in healthy people, but beta diversity is significantly different. Firmicutes/Bacteroidetes ratios were significantly increased in GDM, and this, as well as changes in the abundance of species of Blautia and Collinsella, may be responsible for changes in microbiota diversity. Although the results of our meta-analysis are encouraging, more well-conducted studies are needed to clarify the role of the gut microbiome in GDM. The systematic review was registered with PROSPERO (https://www.crd.york.ac.uk/prospero/) as CRD42022357391.
Collapse
Affiliation(s)
- Min Yan
- School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Xiaoying Guo
- School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Guiyuan Ji
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Rui Huang
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Dongyi Huang
- School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Zhifeng Li
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Dantao Zhang
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Siyi Chen
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Rong Cao
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Xingfen Yang
- School of Public Health, Southern Medical University, Guangzhou, China
- *Correspondence: Xingfen Yang, ; Wei Wu,
| | - Wei Wu
- School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- *Correspondence: Xingfen Yang, ; Wei Wu,
| |
Collapse
|
265
|
Amadieu C, Coste V, Neyrinck AM, Thijssen V, Leyrolle Q, Bindels LB, Piessevaux H, Stärkel P, de Timary P, Delzenne NM, Leclercq S. Restoring an adequate dietary fiber intake by inulin supplementation: a pilot study showing an impact on gut microbiota and sociability in alcohol use disorder patients. Gut Microbes 2022; 14:2007042. [PMID: 34923905 PMCID: PMC8726664 DOI: 10.1080/19490976.2021.2007042] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/25/2021] [Indexed: 02/08/2023] Open
Abstract
Alcohol use disorder (AUD) is a chronic relapsing disease associated with malnutrition, metabolic disturbances, and gut microbiota alterations that are correlated with the severity of psychological symptoms. This study aims at supplementing AUD patients with prebiotic fiber during alcohol withdrawal, in order to modulate the gut microbiota composition and to evaluate its effect on gastrointestinal tolerance, metabolism, and patient's behavior. A randomized, double-blind, placebo-controlled study included 50 AUD patients assigned to inulin versus maltodextrin daily supplementation for 17 days. Biological measurements (fecal microbial 16S rDNA sequencing, serum biology), dietary intake, validated psychological questionnaires, and gastrointestinal tolerance assessment were performed before and after the intervention. Inulin significantly decreased the richness and evenness and induced changes of 8 genera (q < 0.1) including Bifidobacterium and Bacteroides. Prebiotic had minor effects on gastrointestinal symptoms and nutritional intakes compared to placebo. All patients showed an improvement in depression, anxiety, and craving scores during alcohol withdrawal regardless of the intervention group. Interestingly, only patients treated with inulin significantly improved the sociability score and had an increased serum level of brain-derived neurotrophic factor. This pilot study shows that inulin is well tolerated and modulates the gut microbiota and the social behavior in AUD patients, without further improving other psychological and biological parameters as compared to placebo. Gut2Brain study, clinicaltrial.gov: NCT03803709, https://clinicaltrials.gov/ct2/show/NCT03803709.
Collapse
Affiliation(s)
- Camille Amadieu
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique De Louvain, UCLouvain, Brussels, Belgium
- Institute of Neuroscience, Université Catholique De Louvain, UCLouvain, Brussels, Belgium
| | - Valentin Coste
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique De Louvain, UCLouvain, Brussels, Belgium
| | - Audrey M. Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique De Louvain, UCLouvain, Brussels, Belgium
| | - Victoria Thijssen
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique De Louvain, UCLouvain, Brussels, Belgium
| | - Quentin Leyrolle
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique De Louvain, UCLouvain, Brussels, Belgium
| | - Laure B. Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique De Louvain, UCLouvain, Brussels, Belgium
| | - Hubert Piessevaux
- Department of Hepato-Gastroenterology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Institute of Experimental and Clinical Research, Laboratory of Hepato-Gastroenterology, Université Catholique De Louvain, UCLouvain, Belgium
| | - Peter Stärkel
- Department of Hepato-Gastroenterology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Institute of Experimental and Clinical Research, Laboratory of Hepato-Gastroenterology, Université Catholique De Louvain, UCLouvain, Belgium
| | - Philippe de Timary
- Institute of Neuroscience, Université Catholique De Louvain, UCLouvain, Brussels, Belgium
- Department of Adult Psychiatry, Cliniques Universitaires Saint Luc, Brussels, Belgium
| | - Nathalie M. Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique De Louvain, UCLouvain, Brussels, Belgium
| | - Sophie Leclercq
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique De Louvain, UCLouvain, Brussels, Belgium
- Institute of Neuroscience, Université Catholique De Louvain, UCLouvain, Brussels, Belgium
| |
Collapse
|
266
|
Sauceda C, Bayne C, Sudqi K, Gonzalez A, Dulai PS, Knight R, Gonzalez DJ, Gonzalez CG. Stool multi-omics for the study of host-microbe interactions in inflammatory bowel disease. Gut Microbes 2022; 14:2154092. [PMID: 36503356 PMCID: PMC9746627 DOI: 10.1080/19490976.2022.2154092] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/04/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is a chronic immune-mediated inflammatory disease of the gastrointestinal tract that is a growing public burden. Gut microbes and their interactions with hosts play a crucial role in disease pathogenesis and progression. These interactions are complex, spanning multiple physiological systems and data types, making comprehensive disease assessment difficult, and often overwhelming single-omic capabilities. Stool-based multi-omics is a promising approach for characterizing host-gut microbiome interactions using deep integration of technologies such as 16S rRNA sequencing, shotgun metagenomics, meta-transcriptomics, metabolomics, and metaproteomics. The wealth of information generated through multi-omic studies is poised to usher in advancements in IBD research and precision medicine. This review highlights historical and recent findings from stool-based muti-omic studies that have contributed to unraveling IBD's complexity. Finally, we discuss common pitfalls, issues, and limitations, and how future pipelines should address them to standardize multi-omics in IBD research and beyond.
Collapse
Affiliation(s)
- Consuelo Sauceda
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Charlie Bayne
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Khadijeh Sudqi
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Antonio Gonzalez
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Parambir S. Dulai
- Division of Gastroenterology and Hepatology, Northwestern University, Chicago, IL, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - David J. Gonzalez
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Carlos G. Gonzalez
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
267
|
Kim EHJ, Wilson A, Motoi L, Mishra SD, Monro JA, Parkar SG, Rosendale D, Stoklosinski H, Jobsis CMH, Wadamori Y, Hedderley D, Morgenstern M. Chewing differences in consumers affect the digestion and colonic fermentation outcomes: In vitro studies. Food Funct 2022; 13:9355-9371. [DOI: 10.1039/d1fo04364a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is important to understand variability in consumer chewing behavior for designing food products that deliver desired functionalities for target consumer segments. In this study, we selected 29 participants, representing...
Collapse
|
268
|
Gut microbiome in the emergence of antibiotic-resistant bacterial pathogens. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 192:1-31. [DOI: 10.1016/bs.pmbts.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
269
|
Kandel Gambarte PC, Wolansky MJ. The gut microbiota as a biomarker for realistic exposures to pesticides: A critical consideration. Neurotoxicol Teratol 2022; 91:107074. [DOI: 10.1016/j.ntt.2022.107074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/24/2021] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
|
270
|
Impact of gut permeability on the breast microbiome using a non-human primate model. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2022; 3:e10. [PMID: 36891249 PMCID: PMC9990890 DOI: 10.1017/gmb.2022.9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We previously demonstrated in non-human primates (NHP) that Mediterranean diet consumption shifted the proportional abundance of Lactobacillus in the breast and gut. This data highlights a potential link about gut-breast microbiome interconnectivity. To address this question, we compared bacterial populations identified in matched breast and faecal samples from our NHP study. Dietary pattern concurrently shifted two species in both regions; Streptococcus lutetiensis and Ruminococcus torques. While we observe similar trends in Lactobacillus abundances in the breast and gut, the species identified in each region vary; Mediterranean diet increased Lactobacillus_unspecified species in breast but regulated L. animalis and L. reuteri in the gut.We also investigated the impact of gut permeability on the breast microbiome. Regardless of dietary pattern, subjects that displayed increased physiological measures of gut permeability (elevated plasma lipopolysaccharide, decreased villi length, and decreased goblet cells) displayed a significantly different breast microbiome. Gut barrier dysfunction was associated with increased α-diversity and significant different β-diversity in the breast tissue. Taken together our data supports the presence of a breast microbiome influenced by diet that largely varies from the gut microbiome population but is, however, sensitive to gut permeability.
Collapse
|
271
|
Bhatti SI, Mindikoglu AL. The impact of dawn to sunset fasting on immune system and its clinical significance in Covid-19 pandemic. Metabol Open 2021; 13:100162. [PMID: 34977523 PMCID: PMC8713419 DOI: 10.1016/j.metop.2021.100162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
Dawn to sunset fasting, a type of intermittent fasting commonly practiced in the month of Ramadan, requires fasting from dawn to sunset without food or liquid intake. Dawn and dusk are two transition time zones of the day that play a critical role in the human circadian rhythm. Practicing dawn to sunset fasting requires the alignment of mealtimes and wake-sleep times with the human biological dawn and dusk. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) impairs immune cell responses at multiple levels and leads to severe Coronavirus Disease 2019 (COVID-19). It generates high levels of pro-inflammatory cytokines and chemokines, also known as a cytokine storm, leads to mitochondrial dysfunction and generation of excessive amounts of mitochondrial reactive oxygen species, downregulates autophagy to escape detection for unchecked replication, and alters gut microbiome composition. Severe cases of COVID-19 have been associated with several comorbidities that impair immune responses (e.g., obesity, diabetes, malignancy) and blood laboratory abnormalities (e.g., elevated procalcitonin, C-reactive protein, interleukin-6 (IL-6), leukocytosis, lymphopenia). Several studies of dawn to sunset fasting showed anti-inflammatory effect by suppressing several pro-inflammatory cytokines, reducing oxidative stress, inducing a proteome response associated with increased autophagy, remodeling the gut microbiome, and improving the components of metabolic syndrome (e.g., obesity, blood glucose levels, blood pressure, lipids). In conclusion, dawn to sunset fasting has the potential to optimize the immune system function against SARS-CoV-2 during the COVID-19 pandemic as it suppresses chronic inflammation and oxidative stress, improves metabolic profile, and remodels the gut microbiome. This review presents scientific literature related to the effects of dawn to sunset fasting on the immune system. Studies are needed to assess and confirm the potential benefits of dawn to sunset fasting against SARS-CoV-2.
Collapse
Affiliation(s)
- Sundus I Bhatti
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA.,Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, TX, USA
| | - Ayse L Mindikoglu
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA.,Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
272
|
Hou JJ, Wang X, Wang YM, Wang BM. Interplay between gut microbiota and bile acids in diarrhoea-predominant irritable bowel syndrome: a review. Crit Rev Microbiol 2021; 48:696-713. [PMID: 34936854 DOI: 10.1080/1040841x.2021.2018401] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Irritable bowel syndrome (IBS) is a common functional gastrointestinal disease that disturbs the physiology and psychology of patients and increases the burden on families, the healthcare system, society, and economic development, affecting more and more people around the world. Despite the multiple factors that account for IBS remaining incompletely studied, emerging evidence demonstrated the abnormal changes in gut microbiota and bile acids (BAs) metabolism closely associated with IBS. Moreover, microbiota drives significant modifications for BAs, consisting of deconjugation, 7α-dehydroxylation, oxidation, epimerization, desulfation, esterification, and so on, while BAs, in turn, affect the microbiota directly or indirectly. In light of the complex connection among gut microbiota, BAs, and IBS, it is urgent to review the latest research progress in this field. In this review, we described the disorders of intestinal microecology and BAs profiles in IBS-D and also highlighted the cross-talk between gut microbiota and BAs in the context of IBS-D. Integrating these, we suggest that new therapeutic strategies targeting the microbiota-BAs axis for IBS-D, even for other related diseases caused by bacteria-bile acid dysbiosis should be expected.
Collapse
Affiliation(s)
- Jun-Jie Hou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Yu-Ming Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Bang-Mao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
273
|
Abstract
Disturbances in the primary colonization of the infant gut can result in lifelong consequences and have been associated with a range of host conditions. Although early-life factors have been shown to affect infant gut microbiota development, our current understanding of human gut colonization in early life remains limited. To gain more insights into the unique dynamics of this rapidly evolving ecosystem, we investigated the microbiota over the first year of life in eight densely sampled infants (n = 303 total samples). To evaluate the gut microbiota maturation transition toward an adult configuration, we compared the microbiome composition of the infants to that of the Flemish Gut Flora Project (FGFP) population (n = 1,106). We observed the infant gut microbiota to mature through three distinct, conserved stages of ecosystem development. Across these successional gut microbiota maturation stages, the genus predominance was observed to shift from Escherichia over Bifidobacterium to Bacteroides. Both disease and antibiotic treatment were observed to be associated occasionally with gut microbiota maturation stage regression, a transient setback in microbiota maturation dynamics. Although the studied microbiota trajectories evolved to more adult-like constellations, microbiome community typing against the background of the FGFP cohort clustered all infant samples within the (in adults) potentially dysbiotic Bacteroides 2 (Bact2) enterotype. We confirmed the similarities between infant gut microbial colonization and adult dysbiosis. Profound knowledge about the primary gut colonization process in infants might provide crucial insights into how the secondary colonization of a dysbiotic adult gut can be redirected.
Collapse
|
274
|
Martyniak A, Medyńska-Przęczek A, Wędrychowicz A, Skoczeń S, Tomasik PJ. Prebiotics, Probiotics, Synbiotics, Paraprobiotics and Postbiotic Compounds in IBD. Biomolecules 2021; 11:1903. [PMID: 34944546 PMCID: PMC8699341 DOI: 10.3390/biom11121903] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
The increasing incidence of inflammatory bowel diseases (IBD) and the increasing severity of the course of these diseases create the need for developing new methods of therapy. The gut microbiome is extensively studied as a factor influencing the development and course of IBD. The composition of intestinal microbiota can be relatively easily modified by diet (i.e., prebiotics, mainly dietary fibers) and bacterial supplementation using beneficial bacteria strains called probiotics. Additionally, the effects of the improved microbiome could be enhanced or gained by using paraprobiotics (non-viable, inactivated bacteria or their components) and/or postbiotics (products of bacterial metabolism or equal synthetic products that beneficially modulate immunological response and inflammation). This study summarizes the recent works on prebiotics, probiotics, synbiotics (products merging pre- and probiotics), paraprobiotics and postbiotics in IBD.
Collapse
Affiliation(s)
- Adrian Martyniak
- Department of Clinical Biochemistry, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | - Aleksandra Medyńska-Przęczek
- Department of Paediatrics, Gastroenterology and Nutrition, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland; (A.M.-P.); (A.W.)
| | - Andrzej Wędrychowicz
- Department of Paediatrics, Gastroenterology and Nutrition, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland; (A.M.-P.); (A.W.)
| | - Szymon Skoczeń
- Department of Pediatric Oncology and Hematology, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | - Przemysław J. Tomasik
- Department of Clinical Biochemistry, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| |
Collapse
|
275
|
Shestakova EA, Pokrovskaya EV, Samsonova MD. Different approaches to change gut microbiota and its influence on metabolic disorders. CONSILIUM MEDICUM 2021. [DOI: 10.26442/20751753.2021.12.201289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Obesity and type 2 diabetes mellitus (T2D) are two non-infectious pandemics of the XXI century. Despite a large number of studies devoted to the development of obesity and T2D, it seems complicated to overcome the ongoing growth in the number of cases. In these situations it is necessary to investigate new approaches for the prevention and treatment of such diseases. One of these approaches is to study the role of gut microbiota in the disturbance of carbohydrate and lipid metabolism. This manuscript describes the role of the microbiota in obesity and T2D. The aim of the review was to describe various approaches to change the composition of the gut microbiota and to determine its impact on metabolic risks. To assess the relationship between T2D development and changes of microbiota composition we considered a number of studies devoted to the consequence of these pathophysiologic mechanisms in various situations: the effect of drug treatment, bariatric surgery and microbiota transplantation. Possible metabolically protective gut microbiota composition is discussed.
Collapse
|
276
|
Ding R, Xiao Z, Jiang Y, Yang Y, Ji Y, Bao X, Xing K, Zhou X, Zhu S. Calcitriol ameliorates damage in high-salt diet-induced hypertension: Evidence of communication with the gut-kidney axis. Exp Biol Med (Maywood) 2021; 247:624-640. [PMID: 34894804 DOI: 10.1177/15353702211062507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Several studies have established a link between high-salt diet, inflammation, and hypertension. Vitamin D supplementation has shown anti-inflammatory effects in many diseases; gut microbiota is also associated with a wide variety of cardiovascular diseases, but potential role of vitamin D and gut microbiota in high-salt diet-induced hypertension remains unclear. Therefore, we used rats with hypertension induced by a high-salt diet as the research object and analyzed the transcriptome of their tissues (kidney and colon) and gut microbiome to conduct an overall analysis of the gut-kidney axis. We aimed to confirm the effects of high salt and calcitriol on the gut-kidney immune system and the composition of the intestinal flora. We demonstrate that consumption of a high-salt diet results in hypertension and inflammation in the colon and kidney and alteration of gut microbiota composition and function. High-salt diet-induced hypertension was found to be associated with seven microbial taxa and mainly associated with reduced production of the protective short-chain fatty acid butyrate. Calcitriol can reduce colon and kidney inflammation, and there are gene expression changes consistent with restored intestinal barrier function. The protective effect of calcitriol may be mediated indirectly by immunological properties. Additionally, the molecular pathways of the gut microbiota-mediated blood pressure regulation may be related to circadian rhythm signals, which needs to be further investigated. An innovative association analysis of the microbiota may be a key strategy to understanding the association between gene patterns and host.
Collapse
Affiliation(s)
- Ruifeng Ding
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zilong Xiao
- Department of Cardiology, Zhongshan Hospital of Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Yufeng Jiang
- Department of Nephrology, 66329Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China.,Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
| | - Yi Yang
- Shanghai Cinoasia Institute, Shanghai 200438, China
| | - Yang Ji
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xunxia Bao
- Shanghai Cinoasia Institute, Shanghai 200438, China
| | - Kaichen Xing
- Shanghai Cinoasia Institute, Shanghai 200438, China
| | - Xinli Zhou
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Sibo Zhu
- School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
277
|
Luchan J, Choi C, Carrier RL. Reactive oxygen species limit intestinal mucosa-bacteria homeostasis in vitro. Sci Rep 2021; 11:23727. [PMID: 34887444 PMCID: PMC8660821 DOI: 10.1038/s41598-021-02080-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/28/2021] [Indexed: 11/12/2022] Open
Abstract
Interactions between epithelial and immune cells with the gut microbiota have wide-ranging effects on many aspects of human health. Therefore, there is value in developing in vitro models capable of performing highly controlled studies of such interactions. However, several critical factors that enable long term homeostasis between bacterial and mammalian cultures have yet to be established. In this study, we explored a model consisting of epithelial and immune cells, as well as four different bacterial species (Bacteroides fragilis KLE1958, Escherichia coli MG1655, Lactobacillus rhamnosus KLE2101, or Ruminococcus gnavus KLE1940), over a 50 hour culture period. Interestingly, both obligate and facultative anaerobes grew to similar extents in aerobic culture environments during the co-culture period, likely due to measured microaerobic oxygen levels near the apical surface of the epithelia. It was demonstrated that bacteria elicited reactive oxygen species (ROS) production, and that the resulting oxidative damage heavily contributed to observed epithelial barrier damage in these static cultures. Introduction of a ROS scavenger significantly mitigated oxidative damage, improving cell monolayer integrity and reducing lipid peroxidation, although not to control (bacteria-free culture) levels. These results indicate that monitoring and mitigating ROS accumulation and oxidative damage can enable longer term bacteria-intestinal epithelial cultures, while also highlighting the significance of additional factors that impact homeostasis in mammalian cell-bacteria systems.
Collapse
Affiliation(s)
- Joshua Luchan
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Christian Choi
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Rebecca L Carrier
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA.
- Department of Biology, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
278
|
Jeong Y, Jhun J, Lee SY, Na HS, Choi J, Cho KH, Lee SY, Lee AR, Park SJ, You HJ, Kim JW, Park MS, Kwon B, Cho ML, Ji GE, Park SH. Therapeutic Potential of a Novel Bifidobacterium Identified Through Microbiome Profiling of RA Patients With Different RF Levels. Front Immunol 2021; 12:736196. [PMID: 34867956 PMCID: PMC8634832 DOI: 10.3389/fimmu.2021.736196] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/08/2021] [Indexed: 02/01/2023] Open
Abstract
The potential therapeutic effects of probiotic bacteria in rheumatoid arthritis (RA) remain controversial. Thus, this study aimed to discover potential therapeutic bacteria based on the relationship between the gut microbiome and rheumatoid factor (RF) in RA. Bacterial genomic DNA was extracted from the fecal samples of 93 RA patients and 16 healthy subjects. Microbiota profiling was conducted through 16S rRNA sequencing and bioinformatics analyses. The effects of Bifidobacterium strains on human peripheral blood mononuclear cells and collagen-induced arthritis (CIA) mice were assessed. Significant differences in gut microbiota composition were observed in patients with different RF levels. The relative abundance of Bifidobacterium and Collinsella was lower in RF-high than in RF-low and RF-negative RA patients, while the relative abundance of Clostridium of Ruminococcaceae family was higher in RF-high than in RF-low and RF-negative patients. Among 10 differentially abundant Bifidobacterium, B. longum RAPO exhibited the strongest ability to inhibit IL-17 secretion. Oral administration of B. longum RAPO in CIA mice, obese CIA, and humanized avatar model significantly reduced RA incidence, arthritis score, inflammation, bone damage, cartilage damage, Th17 cells, and inflammatory cytokine secretion. Additionally, B. longum RAPO significantly inhibited Th17 cells and Th17-related genes—IL-17A, IRF4, RORC, IL-21, and IL-23R—in the PBMCs of rheumatoid arthritis patients. Our findings suggest that B. longum RAPO may alleviate RA by inhibiting the production of IL-17 and other proinflammatory mediators. The safety and efficacy of B. longum RAPO in patients with RA and other autoimmune disorders merit further investigation.
Collapse
Affiliation(s)
- Yunju Jeong
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul, South Korea.,Research Center, BIFIDO Co., Ltd., Hongcheon, South Korea
| | - JooYeon Jhun
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seon-Yeong Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun Sik Na
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - JeongWon Choi
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Keun-Hyung Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung Yoon Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - A Ram Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sang-Jun Park
- Research Center, BIFIDO Co., Ltd., Hongcheon, South Korea
| | - Hyun Ju You
- Institute of Environmental Health, School of Public Health, Seoul National University, Seoul, South Korea.,N-Bio, Seoul National University, Seoul, South Korea
| | - Ji-Won Kim
- Division of Rheumatology, Department of Internal Medicine, Daegu Catholic University School of Medicine, Daegu, South Korea
| | | | - Bin Kwon
- Research Center, BIFIDO Co., Ltd., Hongcheon, South Korea
| | - Mi-La Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Geun Eog Ji
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul, South Korea.,Research Center, BIFIDO Co., Ltd., Hongcheon, South Korea
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
279
|
Burgsdorf I, Sizikov S, Squatrito V, Britstein M, Slaby BM, Cerrano C, Handley KM, Steindler L. Lineage-specific energy and carbon metabolism of sponge symbionts and contributions to the host carbon pool. THE ISME JOURNAL 2021; 16:1163-1175. [PMID: 34876682 PMCID: PMC8941161 DOI: 10.1038/s41396-021-01165-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/30/2021] [Accepted: 11/24/2021] [Indexed: 01/19/2023]
Abstract
Marine sponges host a wide diversity of microorganisms, which have versatile modes of carbon and energy metabolism. In this study we describe the major lithoheterotrophic and autotrophic processes in 21 microbial sponge-associated phyla using novel and existing genomic and transcriptomic datasets. We show that the main microbial carbon fixation pathways in sponges are the Calvin–Benson–Bassham cycle (energized by light in Cyanobacteria, by sulfur compounds in two orders of Gammaproteobacteria, and by a wide range of compounds in filamentous Tectomicrobia), the reductive tricarboxylic acid cycle (used by Nitrospirota), and the 3-hydroxypropionate/4-hydroxybutyrate cycle (active in Thaumarchaeota). Further, we observed that some sponge symbionts, in particular Acidobacteria, are capable of assimilating carbon through anaplerotic processes. The lithoheterotrophic lifestyle was widespread and CO oxidation is the main energy source for sponge lithoheterotrophs. We also suggest that the molybdenum-binding subunit of dehydrogenase (encoded by coxL) likely evolved to benefit also organoheterotrophs that utilize various organic substrates. Genomic potential does not necessarily inform on actual contribution of autotrophs to light and dark carbon budgets. Radioisotope assays highlight variability in the relative contributions of photo- and chemoautotrophs to the total carbon pool across different sponge species, emphasizing the importance of validating genomic potential with physiology experimentation.
Collapse
Affiliation(s)
- I Burgsdorf
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - S Sizikov
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - V Squatrito
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - M Britstein
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - B M Slaby
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Ecology, RU Marine Symbioses, Kiel, Germany
| | - C Cerrano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - K M Handley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - L Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
280
|
Gutiérrez-Repiso C, Moreno-Indias I, Tinahones FJ. Shifts in gut microbiota and their metabolites induced by bariatric surgery. Impact of factors shaping gut microbiota on bariatric surgery outcomes. Rev Endocr Metab Disord 2021; 22:1137-1156. [PMID: 34287758 DOI: 10.1007/s11154-021-09676-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
Evidence suggests that bariatric surgery alters gut microbiota, although its impact at compositional and functional level is not well described. In this review, the most relevant findings, mainly described in Roux-en-Y gastric bypass and sleeve gastrectomy, are outlined. Although the number of studies has increased in the last years, conclusive assertions cannot be elaborated. An issue to address is to know the influence of these alterations on host metabolism and the contribution of gut microbiota derived metabolites. New lines of research have been focusing on analysing gut microbiota functionality rather than evaluating changes at compositional level, and the functions of gut microbiota metabolites in host metabolism, what will bring more relevant information about the influence of gut microbiota in bariatric surgery outcomes. Personalized medicine, because of the predictive value of gut microbiota, is another promising field. The possibility of a specific gut microbiota pattern that could predict type 2 diabetes remission or weight loss failure after bariatric surgery is a matter of great interest. However, little is known about how gut microbiota manipulation could contribute to the beneficial effects of bariatric surgery. Peri-operative antibiotics prophylaxis or probiotic supplementation early after surgery, are strategies barely studied so far, and could constitute a novel tool in the management of weight loss and metabolic profile improvement after surgery.
Collapse
Affiliation(s)
- Carolina Gutiérrez-Repiso
- Unidad de Gestión Clínica de Endocrinología Y Nutrición del Hospital Virgen de La Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA) Málaga. Centro de Investigación Biomédica en Red de Fisiopatología de La Obesidad Y La Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
| | - Isabel Moreno-Indias
- Unidad de Gestión Clínica de Endocrinología Y Nutrición del Hospital Virgen de La Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA) Málaga. Centro de Investigación Biomédica en Red de Fisiopatología de La Obesidad Y La Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco J Tinahones
- Unidad de Gestión Clínica de Endocrinología Y Nutrición del Hospital Virgen de La Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA) Málaga. Centro de Investigación Biomédica en Red de Fisiopatología de La Obesidad Y La Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Medicina Y Dermatología, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
281
|
Djukić-Vuković A, Meglič SH, Flisar K, Mojović L, Miklavčič D. Pulsed electric field treatment of Lacticaseibacillus rhamnosus and Lacticaseibacillus paracasei, bacteria with probiotic potential. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
282
|
Smith PL, Piadel K, Dalgleish AG. Directing T-Cell Immune Responses for Cancer Vaccination and Immunotherapy. Vaccines (Basel) 2021; 9:1392. [PMID: 34960140 PMCID: PMC8708201 DOI: 10.3390/vaccines9121392] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer vaccination and immunotherapy revolutionised the treatment of cancer, a result of decades of research into the immune system in health and disease. However, despite recent breakthroughs in treating otherwise terminal cancer, only a minority of patients respond to cancer immunotherapy and some cancers are largely refractive to immunotherapy treatment. This is due to numerous issues intrinsic to the tumour, its microenvironment, or the immune system. CD4+ and CD8+ αβ T-cells emerged as the primary effector cells of the anti-tumour immune response but their function in cancer patients is often compromised. This review details the mechanisms by which T-cell responses are hindered in the setting of cancer and refractive to immunotherapy, and details many of the approaches under investigation to direct T-cell function and improve the efficacy of cancer vaccination and immunotherapy.
Collapse
Affiliation(s)
- Peter Lawrence Smith
- Institute of Infection and Immunity, St. Georges University of London, London SW17 0RE, UK; (K.P.); (A.G.D.)
| | | | | |
Collapse
|
283
|
Wan JY, Wan JX, Wang S, Wang X, Guo W, Ma H, Wu Y, Wang CZ, Qi LW, Li P, Yao H, Yuan CS. Chemical profiling of root bark extract from Oplopanax elatus and its in vitro biotransformation by human intestinal microbiota. PeerJ 2021; 9:e12513. [PMID: 34900430 PMCID: PMC8627129 DOI: 10.7717/peerj.12513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/27/2021] [Indexed: 11/20/2022] Open
Abstract
Oplopanax elatus (Nakai) Nakai, in the Araliaceae family, has been used in traditional Chinese medicine (TCM) to treat diseases as an adaptogen for thousands of years. This study established an ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF/MS) method to identify chemical components and biotransformation metabolites of root bark extract from O. elatus. A total of 18 compounds were characterized in O. elatus extract, and 62 metabolites by human intestinal microbiota were detected. Two polyynes, falcarindiol and oplopandiol were recognized as the main components of O. elatus, whose metabolites are further illustrated. Several metabolic pathways were proposed to generate the detected metabolites, including methylation, hydrogenation, demethylation, dehydroxylation, and hydroxylation. These findings indicated that intestinal microbiota might play an essential role in mediating the bioactivity of O. elatus.
Collapse
Affiliation(s)
- Jin-Yi Wan
- School of Traditional Chinese Medicine & National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing-Xuan Wan
- School of Traditional Chinese Medicine & National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shilei Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xiaolu Wang
- School of Traditional Chinese Medicine & National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenqian Guo
- School of Traditional Chinese Medicine & National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Han Ma
- School of Traditional Chinese Medicine & National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuqi Wu
- School of Traditional Chinese Medicine & National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research & Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, USA
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Haiqiang Yao
- School of Traditional Chinese Medicine & National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research & Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, USA
| |
Collapse
|
284
|
Mokoena MP, Omatola CA, Olaniran AO. Applications of Lactic Acid Bacteria and Their Bacteriocins against Food Spoilage Microorganisms and Foodborne Pathogens. Molecules 2021; 26:7055. [PMID: 34834145 PMCID: PMC8622874 DOI: 10.3390/molecules26227055] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022] Open
Abstract
Lactic acid bacteria (LAB) are Gram-positive and catalase-negative microorganisms used to produce fermented foods. They appear morphologically as cocci or rods and they do not form spores. LAB used in food fermentation are from the Lactobacillus and Bifidobacterium genera and are useful in controlling spoilage and pathogenic microbes, due to the bacteriocins and acids that they produce. Consequently, LAB and their bacteriocins have emerged as viable alternatives to chemical food preservatives, curtesy of their qualified presumption of safety (QPS) status. There is growing interest regarding updated literature on the applications of LAB and their products in food safety, inhibition of the proliferation of food spoilage microbes and foodborne pathogens, and the mitigation of viral infections associated with food, as well as in the development of creative food packaging materials. Therefore, this review explores empirical studies, documenting applications and the extent to which LAB isolates and their bacteriocins have been used in the food industry against food spoilage microorganisms and foodborne pathogens including viruses; as well as to highlight the prospects of their numerous novel applications as components of hurdle technology to provide safe and quality food products.
Collapse
Affiliation(s)
- Mduduzi P. Mokoena
- Department of Biotechnology and Food Science, Durban University of Technology (Steve Biko Campus), P.O. Box 1334, Durban 4000, South Africa
| | - Cornelius A. Omatola
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa; (C.A.O.); (A.O.O.)
| | - Ademola O. Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa; (C.A.O.); (A.O.O.)
| |
Collapse
|
285
|
Liao G, Wu J, Peng X, Li Y, Tang L, Xu X, Deng D, Zhou X. Visualized analysis of trends and hotspots in global oral microbiome research: A bibliometric study. MedComm (Beijing) 2021; 1:351-361. [PMID: 34766127 PMCID: PMC8491219 DOI: 10.1002/mco2.47] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/05/2023] Open
Abstract
The oral microbiome contains numerous bacteria, which directly or indirectly participate in various human functions and continuously exchange signals and substances with the human body, significantly affecting human life cycle, health, and disease. This study aimed to conduct bibliometric studies on the scientific outputs of global oral microbiome research by Citespace software. The data were obtained from the Thomson Reuters' Web of Science Core Collection (WoSCC), from the first relevant literature published until December 31st, 2019, and a total of 2225 articles and reviews were identified. The top country and institutions are the United States and Harvard University. Keywords analysis showed that periodontal disease, oral microbes, and dental plaque are research hotspots. The burst word analysis indicates that early childhood caries, squamous cell carcinoma, gut microbiome, Helicobacter pylori, Candida albicans, and dysbiosis are likely to become the research hotspots of the next era. We also recommend the use of knowledge mapping methods to track specific knowledge areas efficiently and objectively regularly, which can accurately identify hotspots and frontiers and provide valuable information for practitioners in the field, including related scientists, students, journals, and editors.
Collapse
Affiliation(s)
- Ga Liao
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China.,Medical Big Data Center Sichuan University Chengdu China.,Department of Information Management Department of Stomatology Informatics, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Jinyun Wu
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China.,Department of Cariology and Endodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Xian Peng
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Li Tang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China.,Department of Cariology and Endodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Xin Xu
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China.,Department of Cariology and Endodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA) University of Amsterdam and VU University Amsterdam Amsterdam Netherlands
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China.,Department of Cariology and Endodontics, West China Hospital of Stomatology Sichuan University Chengdu China
| |
Collapse
|
286
|
Wang L, Zhang J, Zhou M, Chen Q, Yang X, Hou Y, Huang M, Man C, Jiang Y. Evaluation of the effect of antibiotics on gut microbiota in early life based on culturomics, SMRT sequencing and metagenomics sequencing methods. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5144-5156. [PMID: 34727151 DOI: 10.1039/d1ay01106e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Symbiotic gut microbiota in early life plays a vital role in human health, and changes in its communication and function are associated with various complex disorders. In this study, we analyzed the gut flora communication of 6 infants at 4 months of age and determined the disturbances related to antibiotic treatment. By the culturomics and Single Molecule Real-time sequencing methods, a total of 6234 strains were divided into 16 genera and 45 species. The alpha diversity of culturable microorganisms in amoxicillin-treated infants was significantly less than that in healthy infants (p <0.05), as indicated by Chao 1, observed species and Faith's PD index. According to metagenomics, the dominant genus and species were Bifidobacterium and B. longum in the healthy group. After treatment with amoxicillin, the dominant genus and species shifted to Enterococcus and E. faecium. Based on the functional annotation of metagenomics, amoxicillin affected the metabolic function of the gut microbiome by activating carbohydrate and lipid metabolism and inhibiting amino acid metabolism. Besides, the intake of antibiotics in early life increased the risk of neurodegenerative disease, virus infectious disease and antimicrobial resistance. The Antibiotic Resistance Genes Database annotation result indicated that the abundance of drug-resistance genes in the antibiotic group was higher than that in the healthy group. These genes were associated with resistance to bacitracin, most of which were associated with K. pneumonia. These findings can provide guidance in the clinic on the proper usage of antibiotics.
Collapse
Affiliation(s)
- Lihan Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Jiaxin Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Mengyao Zhou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Qing Chen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Yichao Hou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Mingli Huang
- First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| |
Collapse
|
287
|
Gat D, Reicher N, Schechter S, Alayof M, Tarn MD, Wyld BV, Zimmermann R, Rudich Y. Size-Resolved Community Structure of Bacteria and Fungi Transported by Dust in the Middle East. Front Microbiol 2021; 12:744117. [PMID: 34858365 PMCID: PMC8631519 DOI: 10.3389/fmicb.2021.744117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
The atmosphere plays an important role in transporting microorganisms on a global scale, yet the processes affecting the composition of the airborne microbiome, the aerobiome, are not fully outlined. Here we present the community compositions of bacteria and fungi obtained by DNA amplicon-sequencing of aerosol samples collected in a size-resolved manner during nine consecutive days in central Israel. The campaign captured dust events originating from the Sahara and the Arabian deserts, as well as days without dust ("clear days"). We found that the source of the aerosol was the main variable contributing to the composition of both fungal and bacterial communities. Significant differences were also observed between communities representing particles of different sizes. We show evidence for the significant transport of bacteria as cell-aggregates and/or via bacterial attachment to particles during dust events. Our findings further point to the mixing of local and transported bacterial communities, observed mostly in particles smaller than 0.6 μm in diameter, representing bacterial single cells. Fungal communities showed the highest dependence on the source of the aerosols, along with significant daily variability, and without significant mixing between sources, possibly due to their larger aerodynamic size and shorter atmospheric residence times. These results, obtained under highly varied atmospheric conditions, provide significant assurances to previously raised hypotheses and could set the course for future studies on aerobiome composition.
Collapse
Affiliation(s)
- Daniella Gat
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
- Joint Mass Spectrometry Centre (JMSC), Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Naama Reicher
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shai Schechter
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Matan Alayof
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Mark D. Tarn
- Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, United Kingdom
| | - Bethany V. Wyld
- Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, United Kingdom
| | - Ralf Zimmermann
- Joint Mass Spectrometry Centre (JMSC), Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Munich, Germany
- Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
288
|
Latorre-Pérez A, Hernández M, Iglesias JR, Morán J, Pascual J, Porcar M, Vilanova C, Collado L. The Spanish gut microbiome reveals links between microorganisms and Mediterranean diet. Sci Rep 2021; 11:21602. [PMID: 34759297 PMCID: PMC8580991 DOI: 10.1038/s41598-021-01002-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the increasing evidence of links between human gut and health, the number of gut microbiomes that have been studied to date at a country level are surprisingly low. Mediterranean countries, including some of the most long-lived and healthy countries in the world, have not been considered so far in those studies at a large scale. The main objective of this work is to characterize the gut microbiome of a healthy adult population of a Mediterranean, paradigmatically healthy country: Spain. Stool samples from 530 healthy volunteers were collected, total metagenomic DNA extracted, and the microbial profiles determined through 16S rRNA metataxonomic sequencing. Our results confirm the associations between several microbial markers and different variables, including sex, age, BMI and diet choices, and bring new insights into the relationship between microbiome and diet in the Spanish population. Remarkably, some of the associations found, such as the decrease of Faecalibacterium with age or the link of Flavonifractor with less healthy dietary habits, have been barely noticed in other large-scale cohorts. On the other hand, a range of links between microorganisms, diet, and lifestyle coincide with those reported in other populations, thus increasing the robustness of such associations and confirming the importance of these microbial markers across different countries. Overall, this study describes the Spanish "normal" microbiome, providing a solid baseline for future studies investigating the effects of gut microbiome composition and deviations in the adherence to the Mediterranean diet.
Collapse
Affiliation(s)
| | - Marta Hernández
- Instituto Central Lechera Asturiana para la Nutrición Personalizada (ICLANP), Siero, Spain.
| | - Jose Ramón Iglesias
- Instituto Central Lechera Asturiana para la Nutrición Personalizada (ICLANP), Siero, Spain
| | - Javier Morán
- Instituto de Innovación Alimentaria, Universidad Católica de Murcia, Murcia, Spain
| | | | - Manuel Porcar
- Darwin Bioprospecting Excellence S.L., Paterna, Spain
- Institute for Integrative Systems Biology (I2SysBio), University of València-CSIC, Paterna, Spain
| | | | - Luis Collado
- Department of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
289
|
Giannari D, Ho CH, Mahadevan R. A gap-filling algorithm for prediction of metabolic interactions in microbial communities. PLoS Comput Biol 2021; 17:e1009060. [PMID: 34723959 PMCID: PMC8584699 DOI: 10.1371/journal.pcbi.1009060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/11/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022] Open
Abstract
The study of microbial communities and their interactions has attracted the interest of the scientific community, because of their potential for applications in biotechnology, ecology and medicine. The complexity of interspecies interactions, which are key for the macroscopic behavior of microbial communities, cannot be studied easily experimentally. For this reason, the modeling of microbial communities has begun to leverage the knowledge of established constraint-based methods, which have long been used for studying and analyzing the microbial metabolism of individual species based on genome-scale metabolic reconstructions of microorganisms. A main problem of genome-scale metabolic reconstructions is that they usually contain metabolic gaps due to genome misannotations and unknown enzyme functions. This problem is traditionally solved by using gap-filling algorithms that add biochemical reactions from external databases to the metabolic reconstruction, in order to restore model growth. However, gap-filling algorithms could evolve by taking into account metabolic interactions among species that coexist in microbial communities. In this work, a gap-filling method that resolves metabolic gaps at the community level was developed. The efficacy of the algorithm was tested by analyzing its ability to resolve metabolic gaps on a synthetic community of auxotrophic Escherichia coli strains. Subsequently, the algorithm was applied to resolve metabolic gaps and predict metabolic interactions in a community of Bifidobacterium adolescentis and Faecalibacterium prausnitzii, two species present in the human gut microbiota, and in an experimentally studied community of Dehalobacter and Bacteroidales species of the ACT-3 community. The community gap-filling method can facilitate the improvement of metabolic models and the identification of metabolic interactions that are difficult to identify experimentally in microbial communities.
Collapse
Affiliation(s)
- Dafni Giannari
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | | | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- The Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
290
|
Cassini C, Zatti PH, Angeli VW, Branco CS, Salvador M. Mutual effects of free and nanoencapsulated phenolic compounds on human microbiota. Curr Med Chem 2021; 29:3160-3178. [PMID: 34720074 DOI: 10.2174/0929867328666211101095131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/08/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022]
Abstract
Phenolic compounds (PC) have many health benefits such as antioxidant, anticarcinogenic, neuroprotective, and anti-inflammatory activities. All of these activities depend on their chemical structures and their interaction with biological targets in the body. PC occur naturally in polymerized form, linked to glycosides and requires metabolic transformation from their ingestion to their absorption. The gut microbiota can transform PC into more easily absorbed metabolites. The PC, in turn, have prebiotic and antimicrobial actions on the microbiota. Despite this, their low oral bioavailability still compromises biological performance. Therefore, the use of nanocarriers has been demonstrated to be a useful strategy to improve PC absorption and, consequently, their health effects. Nanotechnology is an excellent alternative able to overcome the limits of oral bioavailability of PC, since it offers protection from degradation during their passage through the gastrointestinal tract. Moreover, nanotechnology is also capable of promoting controlled PC release and modulating the interaction between PC and the microbiota. However, little is known about the impact of the nanotechnology on PC effects on the gut microbiota. This review highlights the use of nanotechnology for PC delivery on gut microbiota, focusing on the ability of such formulations to enhance oral bioavailability by applying nanocarriers (polymeric nanoparticles, nanostructured lipid carriers, solid lipid nanoparticles). In addition, the effects of free and nanocarried PC or nanocarriers per se on gut microbiota are also described.
Collapse
Affiliation(s)
- Carina Cassini
- Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul. Brazil
| | | | | | - Catia Santos Branco
- Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul. Brazil
| | - Mirian Salvador
- Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul. Brazil
| |
Collapse
|
291
|
Mabwi HA, Hitayezu E, Mauliasari IR, Mwaikono KS, Yoon HS, Komba EVG, Pan CH, Cha KH. Simulation of the mucosal environment in the re-construction of the synthetic gut microbial ecosystem. J Microbiol Methods 2021; 191:106351. [PMID: 34710513 DOI: 10.1016/j.mimet.2021.106351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 11/28/2022]
Abstract
Human gut surface-attached mucosal microbiota plays significant roles in human health and diseases. This study sought to simulate the mucosal environment using mucin-agar gel and synthetic mucosal microbial community in vitro. To select suitable culture media, microbial communities were assembled and cultured in seven different media at 37 °C for 36 h. Among the seven media, Bryant & Burkey (BB) and Gifu Anaerobic Media (GAM) were selected considering their microbial biomass and bacterial composition. The communities were again assembled and cultured in these two media with mucin-agar. The results showed that some bacterial genus such as Bifidobacterium, Collinsella, and Roseburia could efficiently colonize in the solid mucin-agar part while Enterococcus, Clostridium, and Veilonella dominated in the liquid part. Metabolic functional prediction for the microbial community in each medium part showed that the gene expression involved in metabolism and cell motility pathways were distinctively differentiated between the liquid and solid medium part, and the functional potential was highly related to the microbial composition. The current results demonstrate that the simulation of the gut microbial ecosystem in vitro can be beneficial to the mucosal environment mimicking and the study on the mechanistic potential of the human gut microbiota for easy translation of microbiome research to therapies.
Collapse
Affiliation(s)
- Humphrey A Mabwi
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, South Korea; SACIDS Foundation for One Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro 25523, Tanzania; Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, P.O. Box 3019, Tanzania.
| | - Emmanuel Hitayezu
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, South Korea.
| | - Intan Rizki Mauliasari
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, South Korea.
| | - Kilaza Samson Mwaikono
- Department of Science and Laboratory Technology, Dar es Salaam Institute of Technology, Dar es Salaam 11000, Tanzania.
| | - Hyo Shin Yoon
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, South Korea.
| | - Erick V G Komba
- SACIDS Foundation for One Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro 25523, Tanzania.
| | - Cheol-Ho Pan
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, South Korea.
| | - Kwang Hyun Cha
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, South Korea.
| |
Collapse
|
292
|
The Interplay between Gut Microbiota and the Immune System in Liver Transplant Recipients and Its Role in Infections. Infect Immun 2021; 89:e0037621. [PMID: 34460287 DOI: 10.1128/iai.00376-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver transplantation (LT) is a life-saving strategy for patients with end-stage liver disease, hepatocellular carcinoma, and acute liver failure. LT success can be hampered by several short-term and long-term complications. Among them, bacterial infections, especially those due to multidrug-resistant germs, are particularly frequent, with a prevalence between 19 and 33% in the first 100 days after transplantation. In the last decades, a number of studies have highlighted how the gut microbiota (GM) is involved in several essential functions to ensure intestinal homeostasis, becoming one of the most important virtual metabolic organs. The GM works through different axes with other organs, and the gut-liver axis is among the most relevant and investigated ones. Any alteration or disruption of the GM is defined as dysbiosis. Peculiar phenotypes of GM dysbiosis have been associated with several liver conditions and complications, such as chronic hepatitis, fatty liver disease, cirrhosis, and hepatocellular carcinoma. Moreover, there is growing evidence of the crucial role of the GM in shaping the immune response, both locally and systemically, against pathogens. This paves the way to the manipulation of the GM as a therapeutic instrument to modulate infectious risk and outcome. In this minireview, we provide an overview of the current understanding of the interplay between the gut microbiota and the immune system in liver transplant recipients and the role of the former in infections.
Collapse
|
293
|
Cheng C, Yu X. Research Progress in Chinese Herbal Medicines for Treatment of Sepsis: Pharmacological Action, Phytochemistry, and Pharmacokinetics. Int J Mol Sci 2021; 22:11078. [PMID: 34681737 PMCID: PMC8540716 DOI: 10.3390/ijms222011078] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection; the pathophysiology of sepsis is complex. The incidence of sepsis is steadily increasing, with worldwide mortality ranging between 30% and 50%. Current treatment approaches mainly rely on the timely and appropriate administration of antimicrobials and supportive therapies, but the search for pharmacotherapies modulating the host response has been unsuccessful. Chinese herbal medicines, i.e., Chinese patent medicines, Chinese herbal prescriptions, and single Chinese herbs, play an important role in the treatment of sepsis through multicomponent, multipathway, and multitargeting abilities and have been officially recommended for the management of COVID-19. Chinese herbal medicines have therapeutic actions promising for the treatment of sepsis; basic scientific research on these medicines is increasing. However, the material bases of most Chinese herbal medicines and their underlying mechanisms of action have not yet been fully elucidated. This review summarizes the current studies of Chinese herbal medicines used for the treatment of sepsis in terms of clinical efficacy and safety, pharmacological activity, phytochemistry, bioactive constituents, mechanisms of action, and pharmacokinetics, to provide an important foundation for clarifying the pathogenesis of sepsis and developing novel antisepsis drugs based on Chinese herbal medicines.
Collapse
Affiliation(s)
- Chen Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China;
| | | |
Collapse
|
294
|
Zhong Y, Cao J, Deng Z, Ma Y, Liu J, Wang H. Effect of Fiber and Fecal Microbiota Transplantation Donor on Recipient Mice Gut Microbiota. Front Microbiol 2021; 12:757372. [PMID: 34721365 PMCID: PMC8548821 DOI: 10.3389/fmicb.2021.757372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/16/2021] [Indexed: 12/16/2022] Open
Abstract
Both fecal microbiota transplantation (FMT) and dietary fiber intervention were verified as effective ways to manipulate the gut microbiota, whereas little is known about the influence of the combined methods on gut microbiota. Here, we constructed "non-industrialized" and "industrialized" gut microbiota models to investigate the donor effect of FMT and diet effect in shaping the gut microbiota. Mice were transplanted fecal microbiota from domestic pig and received a diet with low-fiber (D) or high-fiber (DF), whereas the other two groups were transplanted fecal microbiota from wild pig and then received a diet with low-fiber (W) or high-fiber (WF), respectively. Gut microbiota of WF mice showed a lower Shannon and Simpson index (P < 0.05), whereas gut microbiota of W mice showed no significant difference than that of D and DF mice. Random forest models revealed the major differential bacteria genera between four groups, including Anaeroplasma or unclassified_o_Desulfovibrionales, which were influenced by FMT or diet intervention, respectively. Besides, we found a lower out-of-bag rate in the random forest model constructed for dietary fiber (0.086) than that for FMT (0.114). Linear discriminant analysis effective size demonstrated that FMT combined with dietary fiber altered specific gut microbiota, including Alistipes, Clostridium XIVa, Clostridium XI, and Akkermansia, in D, DF, W, and WF mice, respectively. Our results revealed that FMT from different donors coupled with dietary fiber intervention could lead to different patterns of gut microbiota composition, and dietary fiber might play a more critical role in shaping gut microbiota than FMT donor. Strategies based on dietary fiber can influence the effectiveness of FMT in the recipient.
Collapse
Affiliation(s)
| | | | | | | | | | - Haifeng Wang
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
295
|
Oya M, Tokunaga T, Tadano Y, Ogawa H, Fujii S, Murakami W, Tamai K, Ikomi F, Morimoto Y. The composition of the human fecal microbiota might be significantly associated with fecal SCFA levels under hyperbaric conditions. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2021; 40:168-175. [PMID: 34631328 PMCID: PMC8484010 DOI: 10.12938/bmfh.2020-054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 03/18/2021] [Indexed: 01/03/2023]
Abstract
The fecal microbiota and short-chain fatty acids (SCFAs) play important roles in the
human body. This study examined how hyperbaric conditions affect the fecal microbiota and
fecal SCFAs. Fecal samples were obtained from 12 divers at three points during deep-diving
training (before the diving training, at 2.1 MPa, and after decompression). At 2.1 MPa,
the changes in the frequency of Clostridium cluster IV and fecal
iso-valerate levels were positively correlated, and the changes in the frequencies of
Bacteroides and Clostridium subcluster XIVa were
inversely correlated. After decompression, positive correlations were detected between the
changes in the frequency of Bifidobacterium and fecal n-valerate levels
and between the changes in the fecal levels of iso-butyrate and iso-valerate. On the other
hand, inverse correlations were detected between the changes in the frequency of
Clostridium cluster IX and fecal iso-butyrate levels, between the
changes in the frequency of Clostridium cluster IX and fecal iso-valerate
levels, and between the changes in the frequencies of Bacteroides and
Clostridium cluster IV plus subcluster XIVa. During the study period,
the changes in fecal iso-butyrate and iso-valerate levels were positively correlated, and
inverse correlations were seen between the changes in the frequency of
Clostridium cluster IV and fecal propionate levels and between the
changes in the frequencies of Prevotella and Clostridium
subcluster XIVa. These findings suggest that hyperbaric conditions affect the fecal
microbiota and fecal SCFA levels and that intestinal conditions reversibly deteriorate
under hyperbaric conditions.
Collapse
Affiliation(s)
- Morihiko Oya
- Research Division, Maritime Self-Defense Force Undersea Medical Center, Tauraminatocho, Yokosuka 237-0071, Japan
| | - Tetsuji Tokunaga
- Clinical Division, Japan Self-Defense Force Yokosuka Hospital, Tauraminatocho, Yokosuka 237-0071, Japan
| | - Yutaka Tadano
- Research Division, Maritime Self-Defense Force Undersea Medical Center, Tauraminatocho, Yokosuka 237-0071, Japan
| | - Hitoshi Ogawa
- Research Division, Maritime Self-Defense Force Undersea Medical Center, Tauraminatocho, Yokosuka 237-0071, Japan
| | - Shigenori Fujii
- Research Division, Maritime Self-Defense Force Undersea Medical Center, Tauraminatocho, Yokosuka 237-0071, Japan
| | - Wakana Murakami
- Research Division, Maritime Self-Defense Force Undersea Medical Center, Tauraminatocho, Yokosuka 237-0071, Japan
| | - Kenji Tamai
- Research Division, Maritime Self-Defense Force Undersea Medical Center, Tauraminatocho, Yokosuka 237-0071, Japan
| | - Fumitaka Ikomi
- Research Division, Maritime Self-Defense Force Undersea Medical Center, Tauraminatocho, Yokosuka 237-0071, Japan.,National Defense Medical College Research Institute, 3-2 Namiki, Tokorozawa 359-8513, Japan
| | - Yuji Morimoto
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Japan
| |
Collapse
|
296
|
Bovine Colostrum for Human Consumption—Improving Microbial Quality and Maintaining Bioactive Characteristics through Processing. DAIRY 2021. [DOI: 10.3390/dairy2040044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The main purpose of bovine colostrum, being the milk secreted by a cow after giving birth, is to transfer passive immunity to the calf. The calves have an immature immune system as they lack immunoglobulins (Igs). Subsequently, the supply of good quality bovine colostrum is required. The quality of colostrum is classified by low bacterial counts and adequate Ig concentrations. Bacterial contamination can contain a variety of human pathogens or high counts of spoilage bacteria, which has become more challenging with the emerging use of bovine colostrum as food and food supplements. There is also a growing risk for the spread of zoonotic diseases originating from bovines. For this reason, processing based on heat treatment or other feasible techniques is required. This review provides an overview of literature on the microbial quality of bovine colostrum and processing methods to improve its microbial quality and keep its nutritional values as food. The highlights of this review are as follows: high quality colostrum is a valuable raw material in food products and supplements; the microbial safety of bovine colostrum is increased using an appropriate processing-suitable effective heat treatment which does not destroy the high nutrition value of colostrum; the heat treatment processes are cost-effective compared to other methods; and heat treatment can be performed in both small- and large-scale production.
Collapse
|
297
|
Paral J, Odlozilova S, Sirovy M, Zajak J, Kotek J, Lochman P. Perioperative intrapelvic hyaluronate application as prophylaxis against complications following rectal anastomotic dehiscence: An experimental study. Asian J Surg 2021; 45:1246-1252. [PMID: 34625335 DOI: 10.1016/j.asjsur.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 11/28/2022] Open
Abstract
PURPOSE The aim of this experimental study was to test the method of prevention of postoperative complications, especially infectious, in partial dehiscence following stapler anastomosis in rectal surgeries. METHODS The method includes the application of a hyaluronic acid-based gel in combination with triclosan, which has antibacterial properties. The gel was applied to the space around the rectum with an artificial, precisely defined dehiscence so that the dehiscence was separated from the rest of pelvis and the peritoneal cavity to avoid the spread of infection. The study included 30 female pigs. The rectosigmoid colon was mobilized and transected completely. Anastomosis was constructed with circular staplers. A perforator was then used to create precisely defined artificial dehiscence. Subsequently the lesser pelvis was filled with hyaluronic gel such that the site of artificial dehiscence was covered completely. RESULTS All animals survived for 14 days until the second-look revision with no signs of failure in the anastomosis healing, local inflammation, and sepsis or postoperative complications, such as chills, refusal of liquid or feed, abdominal distension, and bowel obstruction. CONCLUSION Hyaluronic acid applied as a precursor solution around the rectal anastomosis fills the lesser pelvis perfectly. It prevents the leakage of intestinal contents in the lesser pelvis. Triclosan as an antibacterial substance prevents the spread of inflammation in the pelvis or even in the abdominal cavity.
Collapse
Affiliation(s)
- Jiri Paral
- Department of Military Surgery, University of Defence, Faculty of Military Health Sciences, Hradec Kralove, Czech Republic; Department of Surgery, University Hospital and Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic.
| | - Sarka Odlozilova
- Department of Military Surgery, University of Defence, Faculty of Military Health Sciences, Hradec Kralove, Czech Republic; Department of Surgery, University Hospital and Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| | - Miroslav Sirovy
- Department of Military Surgery, University of Defence, Faculty of Military Health Sciences, Hradec Kralove, Czech Republic; Department of Surgery, University Hospital and Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| | - Jan Zajak
- Department of Military Surgery, University of Defence, Faculty of Military Health Sciences, Hradec Kralove, Czech Republic; Department of Surgery, University Hospital and Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| | - Jiri Kotek
- Department of Military Surgery, University of Defence, Faculty of Military Health Sciences, Hradec Kralove, Czech Republic; Department of Surgery, University Hospital and Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| | - Petr Lochman
- Department of Military Surgery, University of Defence, Faculty of Military Health Sciences, Hradec Kralove, Czech Republic; Department of Surgery, University Hospital and Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| |
Collapse
|
298
|
Park J, Kim NE, Yoon H, Shin CM, Kim N, Lee DH, Park JY, Choi CH, Kim JG, Kim YK, Shin TS, Yang J, Park YS. Fecal Microbiota and Gut Microbe-Derived Extracellular Vesicles in Colorectal Cancer. Front Oncol 2021; 11:650026. [PMID: 34595105 PMCID: PMC8477046 DOI: 10.3389/fonc.2021.650026] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022] Open
Abstract
The human microbiota comprises trillions of microbes, and the relationship between cancer and microbiota is very complex. The impact of fecal microbiota alterations on colorectal cancer (CRC) pathogenesis is emerging. This study analyzed changes in the microbial composition in CRC subjects with both fecal microbiota and gut microbe-derived extracellular vesicles (EVs). From August 2017 to August 2018, 70 CRC patients and 158 control subjects were enrolled in the study. Metagenomic profiling of fecal microbiota and gut microbe-derived EVs in stool was performed using 16S ribosomal DNA sequencing. Relative abundance, evenness, and diversity in both the gut microbiota and gut microbe-derived EVs were analyzed. Additionally, microbial composition changes according to the stage and location of CRC were analyzed. Microbial composition was significantly changed in CRC subjects compared to control subjects, with evenness and diversity significantly lower in the fecal microbiota of CRC subjects. Gut microbe-derived EVs of stool demonstrated significant differences in the microbial composition, evenness, and diversity in CRC subjects compared to the control subjects. Additionally, microbial composition, evenness, and diversity significantly changed in late CRC subjects compared to early CRC subjects with both fecal microbiota and gut microbe-derived EVs. Alistipes-derived EVs could be novel biomarkers for diagnosing CRC and predicting CRC stages. Ruminococcus 2-derived EVs significantly decreased in distal CRC subjects than in proximal CRC subjects. Gut microbe-derived EVs in CRC had a distinct microbial composition compared to the controls. Profiling of microbe-derived EVs may offer a novel biomarker for detecting and predicting CRC prognosis.
Collapse
Affiliation(s)
- Jihye Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Nam-Eun Kim
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Hyuk Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jae Yong Park
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Chang Hwan Choi
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Jae Gyu Kim
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Yoon-Keun Kim
- R&D Center, Institute of MD Healthcare Inc., Seoul, South Korea
| | - Tae-Seop Shin
- R&D Center, Institute of MD Healthcare Inc., Seoul, South Korea
| | - Jinho Yang
- R&D Center, Institute of MD Healthcare Inc., Seoul, South Korea
| | - Young Soo Park
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|
299
|
Abstract
The interaction between the gut and its eventual trillions of microbe inhabitants during microbial colonization, represents a critical time period for establishing the overall health and wellbeing of an individual. The gut microbiome represents a diverse community of microbes that are critical for many physiological roles of the host including host metabolism. These processes are controlled by a fine-tuned chemical cross talk between the host and microbiota. Although the exact mechanisms behind this cross talk remains elusive, microbiota induced epigenetic mechanisms like DNA methylation and histone modifications may be key. This review presents our perspective on the epigenome as a mediator for host-microbiota cross talk, as well as methodology to study epigenetics, the role of dysbiosis in disease, and how the gut microbiome-host axis may be used in personal medicine.
Collapse
|
300
|
Cui S, Gu J, Liu X, Li D, Mao B, Zhang H, Zhao J, Chen W. Lactulose significantly increased the relative abundance of Bifidobacterium and Blautia in mice feces as revealed by 16S rRNA amplicon sequencing. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5721-5729. [PMID: 33650140 DOI: 10.1002/jsfa.11181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 02/04/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Lactulose was one of the earliest prebiotics to be identified. To assess the potential risk of large intakes of lactulose to the intestinal microbiota, mice were fed a diet containing lactulose (0%, 5% and 15%, w/w) for 2 weeks and the changes in the fecal microbiota were evaluated by 16S rRNA high-throughput sequencing. RESULTS Lactulose intervention decreased the α-diversity of the fecal microbiota in both low-dose and high-dose groups. The relative abundance of Actinobacteria was significantly increased, while that of Bacteroidetes was significantly decreased after lactulose intervention. At the genus level, the relative abundance of Bifidobacterium belonging to Actinobacteria was significantly increased, and that of Alistipes belonging to Bacteroidetes was decreased in both low-dose and high-dose groups. The relative abundance of Blautia was significantly increased from 0.2% to 7.9% in the high-dose group and one strain of Blautia producta was isolated from the mice feces. However, the strain could not utilize lactulose. CONCLUSION Overall, the microbial diversity was decreased after lactulose treatment, with significant increases in the relative abundance of Bifidobacterium. We also provide a strategy to increase the relative abundance of Blautia in the intestine by lactulose feeding at high doses, although the mechanism is not revealed. This will help us understand the prebiotic effect of lactulose on the host health. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, P. R. China
| | - Jiayu Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Xuemei Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Dongyao Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, P. R. China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, P. R. China
- Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, P. R. China
| |
Collapse
|