251
|
Neonatal streptozotocin treatment causes type 1 diabetes and subsequent hepatocellular carcinoma in DIAR mice fed a normal diet. Hepatol Int 2014. [DOI: 10.1007/s12072-014-9541-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
252
|
Chappell G, Kutanzi K, Uehara T, Tryndyak V, Hong HH, Hoenerhoff M, Beland FA, Rusyn I, Pogribny IP. Genetic and epigenetic changes in fibrosis-associated hepatocarcinogenesis in mice. Int J Cancer 2014; 134:2778-88. [PMID: 24242335 PMCID: PMC4209252 DOI: 10.1002/ijc.28610] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 10/24/2013] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers and is rising in incidence worldwide. The molecular mechanisms leading to the development of HCC are complex and include both genetic and epigenetic events. To determine the relative contribution of these alterations in liver tumorigenesis, we evaluated epigenetic modifications at both global and gene specific levels, as well as the mutational profile of genes commonly altered in liver tumors. A mouse model of fibrosis-associated liver cancer that was designed to emulate cirrhotic liver, a prevailing disease state observed in most humans with HCC, was used. Tumor and nontumor liver samples from B6C3F1 mice treated with N-nitrosodiethylamine (DEN; a single ip injection of 1 mg/kg at 14 days of age) and carbon tetrachloride (CCl4; 0.2 ml/kg, 2 times/week ip starting at 8 weeks of age for 14 weeks), as well as corresponding vehicle control animals, were analyzed for genetic and epigenetic alterations. H-ras, Ctnnb1 and Hnf1α genes were not mutated in tumors in mice treated with DEN+CCl4 . In contrast, the increased tumor incidence in mice treated with DEN+CCl4 was associated with marked epigenetic changes in liver tumors and nontumor liver tissue, including demethylation of genomic DNA and repetitive elements, a decrease in histone 3 lysine 9 trimethylation (H3K9me3) and promoter hypermethylation and functional downregulation of Riz1, a histone lysine methyltransferase tumor suppressor gene. Additionally, the reduction in H3K9me3 was accompanied by increased expression of long interspersed nucleotide elements 1 and short interspersed nucleotide elements B2, which is an indication of genomic instability. In summary, our results suggest that epigenetic events, rather than mutations in known cancer-related genes, play a prominent role in increased incidence of liver tumors in this mouse model of fibrosis-associated liver cancer.
Collapse
Affiliation(s)
- Grace Chappell
- Department of Environmental Sciences & Engineering, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kristy Kutanzi
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Takeki Uehara
- Department of Environmental Sciences & Engineering, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Volodymyr Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Hue-Hua Hong
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences and National Toxicology Program, Research Triangle Park, North Carolina, USA
| | - Mark Hoenerhoff
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences and National Toxicology Program, Research Triangle Park, North Carolina, USA
| | - Frederick A. Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Ivan Rusyn
- Department of Environmental Sciences & Engineering, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Igor P. Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas, USA
| |
Collapse
|
253
|
Jin Y, Tong D, Shen J, Yang J, Li J. Establishment of experimental implantation tumor models of hepatocellular carcinoma in Wistar rats. Tumour Biol 2014; 35:9079-83. [PMID: 24913708 DOI: 10.1007/s13277-014-2161-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/27/2014] [Indexed: 02/06/2023] Open
Abstract
Our aims were to investigate and establish simple and reliable implanted hepatocellular carcinoma (HCC) models in Wistar rats. Concentrated suspensions of CBRH-7919 cancer cell lines were injected subcutaneously into the scapular regions of nude mice. The developing tumor tissues were then implanted into the livers of 45 adult Wistar rats. Dexamethasone (2.5 mg/day) was injected intramuscularly daily for 1 week preoperatively and 2 weeks postoperatively. After 4 weeks of implantation, ultrasonography and nuclear magnetic resonance imaging (MRI) were performed to identify model rats with liver tumor growth and to analyze the growth and characteristics of the tumors. Five of these model rats were then sacrificed, and the tumors were removed from the liver for pathological examination. Three rats died during the operation; among the remaining 42 rats, 36 possessed a total of 43 liver tumors. The success rate of tumor implantation was 85.7 % (36/42), and the diameters of the tumors ranged from 5 to 10 mm. All tumor specimens were confirmed to be HCC by pathological examination. This study provides a new approach for establishing implanted HCC models in Wistar rats, which can be used for studying numerous biological features of HCC.
Collapse
Affiliation(s)
- Yi Jin
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | |
Collapse
|
254
|
Runge A, Hu J, Wieland M, Bergeest JP, Mogler C, Neumann A, Géraud C, Arnold B, Rohr K, Komljenovic D, Schirmacher P, Goerdt S, Augustin HG. An inducible hepatocellular carcinoma model for preclinical evaluation of antiangiogenic therapy in adult mice. Cancer Res 2014; 74:4157-69. [PMID: 24906623 DOI: 10.1158/0008-5472.can-13-2311] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The limited availability of experimental tumor models that faithfully mimic the progression of human tumors and their response to therapy remains a major bottleneck to the clinical translation and application of novel therapeutic principles. To address this challenge in hepatocellular carcinoma (HCC), one of the deadliest and most common cancers in the world, we developed and validated an inducible model of hepatocarcinogenesis in adult mice. Tumorigenesis was triggered by intravenous adenoviral delivery of Cre recombinase in transgenic mice expressing the hepatocyte-specific albumin promoter, a loxP-flanked stop cassette, and the SV40 large T-antigen (iAST). Cre recombinase-mediated excision of the stop cassette led to a transient viral hepatitis and resulted in multinodular tumorigenesis within 5 to 8 weeks. Tumor nodules with histologic characteristics of human HCC established a functional vasculature by cooption, remodeling, and angiogenic expansion of the preexisting sinusoidal liver vasculature with increasing signs of vascular immaturity during tumor progression. Treatment of mice with sorafenib rapidly resulted in the induction of vascular regression, inhibition of tumor growth, and enhanced overall survival. Vascular regression was characterized by loss of endothelial cells leaving behind avascular type IV collagen-positive empty sleeves with remaining pericytes. Sorafenib treatment led to transcriptional changes of Igf1, Id1, and cMet over time, which may reflect the emergence of potential escape mechanisms. Taken together, our results established the iAST model of inducible hepatocarcinogenesis as a robust and versatile preclinical model to study HCC progression and validate novel therapies.
Collapse
Affiliation(s)
- Anja Runge
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany. Department of Vascular Biology and Tumor Angiogenesis (CBTM), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Junhao Hu
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Matthias Wieland
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany. Department of Vascular Biology and Tumor Angiogenesis (CBTM), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Jan-Philip Bergeest
- Division of Bioinformatics and Functional Genomics, BioQuant Center, Heidelberg University, Heidelberg, Germany. German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carolin Mogler
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany. Department of Pathology, Heidelberg University, Heidelberg, Germany
| | - André Neumann
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany. Department of Vascular Biology and Tumor Angiogenesis (CBTM), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Cyrill Géraud
- Department for Dermatology, Venerology, and Allergy, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Bernd Arnold
- Division of Molecular Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karl Rohr
- Division of Bioinformatics and Functional Genomics, BioQuant Center, Heidelberg University, Heidelberg, Germany. German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dorde Komljenovic
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Sergij Goerdt
- Department for Dermatology, Venerology, and Allergy, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany. Department of Vascular Biology and Tumor Angiogenesis (CBTM), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany. German Cancer Consortium, Heidelberg, Germany.
| |
Collapse
|
255
|
Lee YY, Mok MTS, Cheng ASL. Dissecting the pleiotropic actions of HBx mutants against hypoxia in hepatocellular carcinoma. Hepatobiliary Surg Nutr 2014; 3:95-7. [PMID: 24812603 DOI: 10.3978/j.issn.2304-3881.2014.02.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 02/13/2014] [Indexed: 01/05/2023]
Abstract
Error-prone integration of the hepatitis B virus X protein (HBx) into the hepatocellular genome generates a multitude of mutants exerting diverse effects on the development and progression of hepatocellular carcinoma (HCC). A recent study by Lai and colleagues revealed the disparate regulatory activity of clinically-predominant HBx mutants towards hypoxia-inducible factor-1α (HIF-1α), a central regulator of tumor angiogenesis, proliferation, metastasis and differentiation. These findings have shed insight into specific viral contribution of hypoxic response during hepatocarcinogenesis.
Collapse
Affiliation(s)
- Ying-Ying Lee
- 1 Institute of Digestive Disease and Department of Medicine and Therapeutics, 2 State Key Laboratory of Digestive Disease, 3 School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China ; 4 Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518052, China
| | - Myth T S Mok
- 1 Institute of Digestive Disease and Department of Medicine and Therapeutics, 2 State Key Laboratory of Digestive Disease, 3 School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China ; 4 Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518052, China
| | - Alfred Sze-Lok Cheng
- 1 Institute of Digestive Disease and Department of Medicine and Therapeutics, 2 State Key Laboratory of Digestive Disease, 3 School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China ; 4 Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518052, China
| |
Collapse
|
256
|
Santos NP, Oliveira PA, Arantes-Rodrigues R, Faustino-Rocha AI, Colaço A, Lopes C, Gil da Costa RM. Cytokeratin 7/19 expression in N-diethylnitrosamine-induced mouse hepatocellular lesions: implications for histogenesis. Int J Exp Pathol 2014; 95:191-8. [PMID: 24730441 DOI: 10.1111/iep.12082] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 03/06/2014] [Indexed: 01/20/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy with poor clinical outcome, whose histogenesis is the subject of intense debate. Specifically, expression of cytokeratins (CKs) 7 and 19, associated with aggressive biological behaviour, is proposed to reflect a possible progenitor cell origin or tumour dedifferentiation towards a primitive phenotype. This work addresses that problem by studying CKs 7 and 19 expression in N-diethylnitrosamine (DEN)-induced mouse HCCs. ICR mice were divided into six DEN-exposed and six matched control groups. Samples were taken from each group at consecutive time points. Hyperplastic foci (13 lesions) occurred at 29-40 weeks (groups 8, 10 and 12) with diffuse dysplastic areas (19 lesions) and with one hepatocellular adenoma (HCA) (at 29 weeks). HCCs (4 lesions) were observed 40 weeks after the first DEN administration (group 12). CKs 7 and 19 showed identical expression patterns and located to large, mature hepatocytes, isolated or in small clusters. Hyperplastic foci and the single HCA were consistently negative for both markers, while dysplastic areas and HCCs were positive. These results support the hypothesis that CKs 7 and 19 expression in hepatocellular malignancies results from a dedifferentiation process rather than from a possible progenitor cell origin.
Collapse
Affiliation(s)
- Nuno P Santos
- Veterinary Sciences Department, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Veterinary Science Department, Veterinary and Animal Science Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | | | | | | | | | | | | |
Collapse
|
257
|
Comparison of self-gated and prospectively triggered fast low angle shot (FLASH) sequences for contrast-enhanced magnetic resonance imaging of the liver at 9.4 T in a rat model of colorectal cancer metastases. Invest Radiol 2014; 48:738-44. [PMID: 23695083 DOI: 10.1097/rli.0b013e318294dd0e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The aim of this study was to compare a retrospectively self-gated fast low angle shot sequence (RSG-FLASH) with a prospectively triggered fast low angle shot sequence (PT-FLASH) using an external trigger device for dynamic contrast-enhanced magnetic resonance imaging of the liver at 9.4 T in a rat model of colorectal cancer metastases. MATERIALS AND METHODS In 10 rats with hepatic metastases, we acquired an axial RSG-FLASH sequence through the liver. A FLASH sequence with prospective triggering (PT-FLASH) using an external trigger device was acquired at the same location with the same imaging parameters. After intravenous injection of 0.2 mmol/kg body weight of Gd-DTPA, alternating acquisitions of both sequences were performed at 4 consecutive time points.Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and lesion enhancement were obtained for liver tumors and parenchyma. In addition, we assessed the total acquisition times of the different imaging approaches for each acquisition, including triggering and gating. Two independent readers performed a qualitative evaluation of each sequence. Statistical analyses included paired t tests and Wilcoxon matched pairs signed rank tests. RESULTS No statistically significant differences in SNR, CNR, or lesion enhancement were observed. Qualitative assessments of the sequences were comparable. However, acquisition times of PT-FLASH were significantly longer (mean [SD], 160.6 [25.7] seconds; P < 0.0001) and markedly variable (minimum, 120 seconds; maximum, 209 seconds), whereas the RSG-FLASH approach demonstrated a constant mean (SD) acquisition time of 59.0 (0) seconds. CONCLUSIONS The RSG-FLASH and PT-FLASH sequences do not differ qualitatively or quantitatively regarding SNR, CNR, and lesion enhancement for magnetic resonance imaging of the liver in the rats at 9.4 T. However, the variability of acquisition times for the PT-FLASH sequences is a major factor of inconsistency, and we therefore consider this approach as inappropriate for dynamic contrast-enhanced studies with multiple-measurement time points. In contrast, the RSG-FLASH sequence represents a fast, consistent, and reproducible technique suitable for contrast-agent kinetic studies in experimental small-animal imaging of the abdomen.
Collapse
|
258
|
Hydrodynamic transfection for generation of novel mouse models for liver cancer research. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:912-923. [PMID: 24480331 DOI: 10.1016/j.ajpath.2013.12.002] [Citation(s) in RCA: 284] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/10/2013] [Accepted: 12/16/2013] [Indexed: 12/18/2022]
Abstract
Primary liver cancers, including hepatocellular carcinoma and intrahepatic cholangiocarcinoma, are leading causes of cancer-related death worldwide. Recent large-scale genomic approaches have identified a wide number of genes whose deregulation is associated with hepatocellular carcinoma and intrahepatic cholangiocarcinoma development. Murine models are critical tools to determine the oncogenic potential of these genes. Conventionally, transgenic or knockout mouse models are used for this purpose. However, several limitations apply to the latter models. Herein, we review a novel approach for stable gene expression in mouse hepatocytes by hydrodynamic injection in combination with Sleeping Beauty-mediated somatic integration. This method represents a flexible, reliable, and cost-effective tool to generate preclinical murine models for liver cancer research. Furthermore, it can be used as an in vivo transfection method to study biochemical cross talks among multiple pathways along hepatocarcinogenesis and to test the therapeutic potential of drugs against liver cancer.
Collapse
|
259
|
Li YR, Wang JR, Zhang HY, Wu XF, Li SN, Wang L, Wang XY. Dynamic morphological examination and evaluation of biological characteristics of a multinodular liver cancer model in mice. Lab Anim 2013; 48:132-42. [PMID: 24362593 DOI: 10.1177/0023677213516310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Compared with single nodular liver cancer, the prominent biological characteristics of multinodular liver cancer include rapid progression and short survival. Here, we developed a multinodular liver cancer model in mice and assessed the biological characteristics of the resulting neoplasms. H22 hepatoma cells at a dose of 2 × 10(5)/mouse, suspended in 1.6 mL, 0.8 mL, or 200 µL saline were injected via the tail vein of BALB/c mice at a velocity of 200 µL per second. The mice were sacrificed at different time points after injection. And at the time of death the liver, lungs, spleen, kidneys and heart were removed for morphological study. The biological characteristics of the tumor nodules were evaluated by immunohistochemistry. In the mice treated with a large volume injection of H22 cells, by day 7, there was a 100% occurrence of multinodular tumors in the livers, determined by histology. At the time of death, there were 100%, 100%, 37.5% and 37.5% occurrences of tumors in the lungs, kidneys, spleen and heart, respectively. The neoplastic cells in the liver nodules showed pleomorphism, and exhibited high expression of proliferating cell nuclear antigen (PCNA), c-myc, vascular endothelial growth factor (VEGF) and matrix metalloproteinase 2 (MMP-2). In mice treated with a small or medium volume injection, no tumor cells were identified in the livers, spleen, kidneys or heart at any of the examined time points. By day 7 and at the time of death, there was a 100% occurrence of tumor in the lungs. A multinodular liver cancer model in mice was achieved using a large volume injection of H22 cells.
Collapse
Affiliation(s)
- Yan-Ru Li
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | | | | | | | | | | | | |
Collapse
|
260
|
Horváth Z, Kovalszky I, Fullár A, Kiss K, Schaff Z, Iozzo RV, Baghy K. Decorin deficiency promotes hepatic carcinogenesis. Matrix Biol 2013; 35:194-205. [PMID: 24361483 DOI: 10.1016/j.matbio.2013.11.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/26/2013] [Accepted: 11/26/2013] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma represents one of the most-rapidly spreading cancers in the world. In the majority of cases, an inflammation-driven fibrosis or cirrhosis precedes the development of the tumor. During malignant transformation, the tumor microenvironment undergoes qualitative and quantitative changes that modulate the behavior of the malignant cells. A key constituent for the hepatic microenvironment is the small leucine-rich proteoglycan decorin, known to interfere with cellular events of tumorigenesis mainly by blocking various receptor tyrosine kinases (RTK) such as EGFR, Met, IGF-IR, PDGFR and VEGFR2. In this study, we characterized cell signaling events evoked by decorin deficiency in two experimental models of hepatocarcinogenesis using thioacetamide or diethyl nitrosamine as carcinogens. Genetic ablation of decorin led to enhanced tumor occurrence as compared to wild-type animals. These findings correlated with decreased levels of the cyclin-dependent kinase inhibitor p21(WAF1/CIP1) and a concurrent elevation in retinoblastoma protein phosphorylation via cyclin dependent kinase 4. Decreased steady state p21(Waf1/Cip1) levels correlated with enhanced expression of transcription factor AP4, a known transcriptional repressor of p21(Waf1/Cip1), and enhanced c-Myc protein levels. In addition, translocation of β-catenin was a typical event in diethyl nitrosamine-evoked tumors. In parallel, decreased phosphorylation of both c-Myc and β-catenin was observed in Dcn(-/-) livers likely due to the hindered GSK3β-mediated targeting of these proteins to proteasomal degradation. We discovered that in a genetic background lacking decorin, four RTKs were constitutively activated (phosphorylated), including three known targets of decorin such as PDGFRα, EGFR, IGF-IR, and a novel RTK MSPR/RON. Our findings provide powerful genetic evidence for a crucial in vivo role of decorin during hepatocarcinogenesis as lack of decorin in the liver and hepatic stroma facilitates experimental carcinogenesis by providing an environment devoid of this potent pan-RTK inhibitor. Thus, our results support future utilization of decorin as an antitumor agent in liver cancer.
Collapse
Affiliation(s)
- Zsolt Horváth
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Ilona Kovalszky
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Alexandra Fullár
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Katalin Kiss
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zsuzsa Schaff
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kornélia Baghy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
261
|
Lozano E, Sanchez-Vicente L, Monte MJ, Herraez E, Briz O, Banales JM, Marin JJG, Macias RIR. Cocarcinogenic effects of intrahepatic bile acid accumulation in cholangiocarcinoma development. Mol Cancer Res 2013; 12:91-100. [PMID: 24255171 DOI: 10.1158/1541-7786.mcr-13-0503] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Bile acid accumulation in liver with cholangiolar neoplastic lesions may occur before cholestasis is clinically detected. Whether this favors intrahepatic cholangiocarcinoma development has been investigated in this study. The E. coli RecA gene promoter was cloned upstream from Luc2 to detect in vitro direct genotoxic ability by activation of SOS genes. This assay demonstrated that bile acids were not able to induce DNA damage. The genotoxic effect of the DNA-damaging agent cisplatin was neither enhanced nor hindered by the hepatotoxic and hepatoprotective glycochenodeoxycholic and glycoursodeoxycholic acids, respectively. In contrast, thioacetamide metabolites, but not thioacetamide itself, induced DNA damage. Thus, thioacetamide was used to induce liver cancer in rats, which resulted in visible tumors after 30 weeks. The effect of bile acid accumulation on initial carcinogenesis phase (8 weeks) was investigated in bile duct ligated (BDL) animals. Serum bile acid measurement and determination of liver-specific healthy and tumor markers revealed that early thioacetamide treatment induced hypercholanemia together with upregulation of the tumor marker Neu in bile ducts, which were enhanced by BDL. Bile acid accumulation was associated with increased expression of interleukin (IL)-6 and downregulation of farnesoid X receptor (FXR). Bile duct proliferation and apoptosis activation, with inverse pattern (BDL > thioacetamide + BDL >> thioacetamide vs. thioacetamide > thioacetamide + BDL > BDL), were observed. In conclusion, intrahepatic accumulation of bile acids does not induce carcinogenesis directly but facilitates a cocarcinogenic effect due to stimulation of bile duct proliferation, enhanced inflammation, and reduction in FXR-dependent chemoprotection. IMPLICATIONS This study reveals that bile acids foster cocarcinogenic events that impact cholangiocarcinoma.
Collapse
Affiliation(s)
- Elisa Lozano
- Department of Physiology and Pharmacology, Campus Miguel de Unamuno E.D. 37007-Salamanca, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
262
|
Kapanadze T, Gamrekelashvili J, Ma C, Chan C, Zhao F, Hewitt S, Zender L, Kapoor V, Felsher DW, Manns MP, Korangy F, Greten TF. Regulation of accumulation and function of myeloid derived suppressor cells in different murine models of hepatocellular carcinoma. J Hepatol 2013; 59:1007-13. [PMID: 23796475 PMCID: PMC3805787 DOI: 10.1016/j.jhep.2013.06.010] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 06/05/2013] [Accepted: 06/14/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Myeloid derived suppressor cells (MDSC) are immature myeloid cells with immunosuppressive activity. They accumulate in tumor-bearing mice and humans with different types of cancer, including hepatocellular carcinoma (HCC). The aim of this study was to examine the biology of MDSC in murine HCC models and to identify a model, which mimics the human disease. METHODS The comparative analysis of MDSC was performed in mice, bearing transplantable, diethylnitrosoamine (DEN)-induced and MYC-expressing HCC at different ages. RESULTS An accumulation of MDSC was found in mice with HCC irrespective of the model tested. Transplantable tumors rapidly induced systemic recruitment of MDSC, in contrast to slow-growing DEN-induced or MYC-expressing HCC, where MDSC numbers only increased intra-hepatically in mice with advanced tumors. MDSC derived from mice with subcutaneous tumors were more suppressive than those from mice with DEN-induced HCC. Enhanced expression of genes associated with MDSC generation (GM-CSF, VEGF, IL6, IL1β) and migration (MCP-1, KC, S100A8, S100A9) was observed in mice with subcutaneous tumors. In contrast, only KC levels increased in mice with DEN-induced HCC. Both KC and GM-CSF overexpression or anti-KC and anti-GM-CSF treatment controlled MDSC frequency in mice with HCC. Finally, the frequency of MDSC decreased upon successful anti-tumor treatment with sorafenib. CONCLUSIONS Our data indicate that MDSC accumulation is a late event during hepatocarcinogenesis and differs significantly depending on the tumor model studied.
Collapse
Affiliation(s)
- Tamar Kapanadze
- Gastrointestinal Malignancy Section, Medical Oncology Branch, National Cancer Institute, Bethesda, USA, Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Jaba Gamrekelashvili
- Gastrointestinal Malignancy Section, Medical Oncology Branch, National Cancer Institute, Bethesda, USA, Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Chi Ma
- Gastrointestinal Malignancy Section, Medical Oncology Branch, National Cancer Institute, Bethesda, USA
| | - Carmen Chan
- Gastrointestinal Malignancy Section, Medical Oncology Branch, National Cancer Institute, Bethesda, USA
| | - Fei Zhao
- Gastrointestinal Malignancy Section, Medical Oncology Branch, National Cancer Institute, Bethesda, USA
| | - Stephen Hewitt
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, USA
| | - Lars Zender
- Department of Gastroenterology, University of Tübingen, Tübingen, Germany
| | - Veena Kapoor
- Experimental Transplantation and Immunology Branch, NIH, Bethesda, USA
| | - Dean W. Felsher
- Division of Medical Oncology, Department of Medicine, Stanford University, CA, USA
| | - Michael P. Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Firouzeh Korangy
- Gastrointestinal Malignancy Section, Medical Oncology Branch, National Cancer Institute, Bethesda, USA,Correspondence should be sent to: Tim F. Greten NIH/NCI/CCR Building 10 Rm. 12N226 9000 Rockville Pike Bethesda MD 20892 USA Telephone: 1 (301) 451 4723 Fax: 1 (301) 480 8780
| | - Tim F. Greten
- Gastrointestinal Malignancy Section, Medical Oncology Branch, National Cancer Institute, Bethesda, USA,Correspondence should be sent to: Tim F. Greten NIH/NCI/CCR Building 10 Rm. 12N226 9000 Rockville Pike Bethesda MD 20892 USA Telephone: 1 (301) 451 4723 Fax: 1 (301) 480 8780
| |
Collapse
|
263
|
Liedtke C, Luedde T, Sauerbruch T, Scholten D, Streetz K, Tacke F, Tolba R, Trautwein C, Trebicka J, Weiskirchen R. Experimental liver fibrosis research: update on animal models, legal issues and translational aspects. FIBROGENESIS & TISSUE REPAIR 2013; 6:19. [PMID: 24274743 PMCID: PMC3850878 DOI: 10.1186/1755-1536-6-19] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/11/2013] [Indexed: 12/13/2022]
Abstract
Liver fibrosis is defined as excessive extracellular matrix deposition and is based on complex interactions between matrix-producing hepatic stellate cells and an abundance of liver-resident and infiltrating cells. Investigation of these processes requires in vitro and in vivo experimental work in animals. However, the use of animals in translational research will be increasingly challenged, at least in countries of the European Union, because of the adoption of new animal welfare rules in 2013. These rules will create an urgent need for optimized standard operating procedures regarding animal experimentation and improved international communication in the liver fibrosis community. This review gives an update on current animal models, techniques and underlying pathomechanisms with the aim of fostering a critical discussion of the limitations and potential of up-to-date animal experimentation. We discuss potential complications in experimental liver fibrosis and provide examples of how the findings of studies in which these models are used can be translated to human disease and therapy. In this review, we want to motivate the international community to design more standardized animal models which might help to address the legally requested replacement, refinement and reduction of animals in fibrosis research.
Collapse
Affiliation(s)
- Christian Liedtke
- Department of Internal Medicine III, RWTH University Hospital Aachen, Aachen, Germany
| | - Tom Luedde
- Department of Internal Medicine III, RWTH University Hospital Aachen, Aachen, Germany
| | - Tilman Sauerbruch
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - David Scholten
- Department of Internal Medicine III, RWTH University Hospital Aachen, Aachen, Germany
| | - Konrad Streetz
- Department of Internal Medicine III, RWTH University Hospital Aachen, Aachen, Germany
| | - Frank Tacke
- Department of Internal Medicine III, RWTH University Hospital Aachen, Aachen, Germany
| | - René Tolba
- Institute of Laboratory Animal Science, RWTH University Hospital Aachen, Aachen, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, RWTH University Hospital Aachen, Aachen, Germany
| | - Jonel Trebicka
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Ralf Weiskirchen
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital Aachen, Aachen D-52074, Germany
| |
Collapse
|
264
|
Gnatenko DV, Xu X, Zhu W, Schmidt VA. Transcript profiling identifies iqgap2(-/-) mouse as a model for advanced human hepatocellular carcinoma. PLoS One 2013; 8:e71826. [PMID: 23951254 PMCID: PMC3741273 DOI: 10.1371/journal.pone.0071826] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/05/2013] [Indexed: 02/06/2023] Open
Abstract
It is broadly accepted that genetically engineered animal models do not always recapitulate human pathobiology. Therefore identifying best-fit mouse models of human cancers that truly reflect the corresponding human disease is of vital importance in elucidating molecular mechanisms of tumorigenesis and developing preventive and therapeutic approaches. A new hepatocellular carcinoma (HCC) mouse model lacking a novel putative tumor suppressor IQGAP2 has been generated by our laboratory. The aim of this study was to obtain the molecular signature of Iqgap2−/− HCC tumors and establish the relevance of this model to human disease. Here we report a comprehensive transcriptome analysis of Iqgap2−/− livers and a cross-species comparison of human and Iqgap2−/− HCC tumors using Significance Analysis of Microarray (SAM) and unsupervised hierarchical clustering analysis. We identified the Wnt/β-catenin signaling pathway as the top canonical pathway dysregulated in Iqgap2−/− livers. We also demonstrated that Iqgap2−/− hepatic tumors shared genetic signatures with HCC tumors from patients with advanced disease as evidenced by a 78% mouse-to-human microarray data set concordance rate with 117 out of 151 identified ortholog genes having similar expression profiles across the two species. Collectively, these results indicate that the Iqgap2 knockout mouse model closely recapitulates human HCC at the molecular level and supports its further application for the study of this disease.
Collapse
Affiliation(s)
- Dmitri V. Gnatenko
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Xiao Xu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
- Department of Psychiatry, Icahn School of Medicine at Mt Sinai, New York, New York, United States of America
| | - Wei Zhu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, United States of America
| | - Valentina A. Schmidt
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
265
|
Liu B, Wen X, Huang C, Wei Y. Unraveling the complexity of hepatitis B virus: from molecular understanding to therapeutic strategy in 50 years. Int J Biochem Cell Biol 2013; 45:1987-96. [PMID: 23819994 DOI: 10.1016/j.biocel.2013.06.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 06/18/2013] [Accepted: 06/21/2013] [Indexed: 02/05/2023]
Abstract
Hepatitis B virus (HBV) is a well-known hepadnavirus with a double-stranded circular DNA genome. Although HBV was first described approximately 50 years ago, the precise mechanisms of HBV infection and effective therapeutic strategies remain unclear. Here, we focus on summarizing the complicated mechanisms of HBV replication and infection, as well as genomic factors and epigenetic regulation. Additionally, we discuss in vivo models of HBV, as well as diagnosis, prevention and therapeutic drugs for HBV. Together, the data in this 50-year review may provide new clues to elucidate molecular mechanisms of HBV pathogenesis and shed new light on the future HBV therapies.
Collapse
Affiliation(s)
- Bo Liu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | | | | |
Collapse
|
266
|
Ma G, Bai R, Jiang H, Hao X, Ling Z, Li K. Assessment of hemodynamics in a rat model of liver cirrhosis with precancerous lesions using multislice spiral CT perfusion imaging. BIOMED RESEARCH INTERNATIONAL 2013; 2013:813174. [PMID: 23865067 PMCID: PMC3705863 DOI: 10.1155/2013/813174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/02/2013] [Indexed: 12/21/2022]
Abstract
RATIONALE AND OBJECTIVES To develop an optimal scanning protocol for multislice spiral CT perfusion (CTP) imaging to evaluate hemodynamic changes in liver cirrhosis with diethylnitrosamine- (DEN-) induced precancerous lesions. MATERIALS AND METHODS Male Wistar rats were randomly divided into the control group (n = 80) and the precancerous liver cirrhosis group (n = 40). The control group received saline injection and the liver cirrhosis group received 50 mg/kg DEN i.p. twice a week for 12 weeks. All animals underwent plain CT scanning, CTP, and contrast-enhanced CT scanning. Scanning parameters were optimized by adjusting the diatrizoate concentration, the flow rate, and the delivery time. The hemodynamics of both groups was further compared using optimized multislice spiral CTP imaging. RESULTS High-quality CTP images were obtained with following parameters: 150 kV; 150 mAs; 5 mm thickness, 5 mm interval; pitch, 1; matrix, 512 × 512; and FOV, 9.6 cm. Compared to the control group, the liver cirrhosis group had a significantly increased value of the hepatic arterial fraction and the hepatic artery perfusion (P < 0.05) but significantly decreased hepatic portal perfusion and mean transit time (P < 0.05). CONCLUSION Multislice spiral CTP imaging can be used to evaluate the hemodynamic changes in the rat model of liver cirrhosis with precancerous lesions.
Collapse
Affiliation(s)
- Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China
- School of Medicine, University of California, San Diego (UCSD), San Diego, CA 92093, USA
| | - Rongjie Bai
- Department of Radiology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Huijie Jiang
- Department of Radiology, Second Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Xuejia Hao
- Department of Radiology, Second Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Zaisheng Ling
- Department of Radiology, Second Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Kefeng Li
- School of Medicine, University of California, San Diego (UCSD), San Diego, CA 92093, USA
| |
Collapse
|
267
|
Yin C, Evason KJ, Asahina K, Stainier DYR. Hepatic stellate cells in liver development, regeneration, and cancer. J Clin Invest 2013; 123:1902-10. [PMID: 23635788 DOI: 10.1172/jci66369] [Citation(s) in RCA: 560] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatic stellate cells are liver-specific mesenchymal cells that play vital roles in liver physiology and fibrogenesis. They are located in the space of Disse and maintain close interactions with sinusoidal endothelial cells and hepatic epithelial cells. It is becoming increasingly clear that hepatic stellate cells have a profound impact on the differentiation, proliferation, and morphogenesis of other hepatic cell types during liver development and regeneration. In this Review, we summarize and evaluate the recent advances in our understanding of the formation and characteristics of hepatic stellate cells, as well as their function in liver development, regeneration, and cancer. We also discuss how improved knowledge of these processes offers new perspectives for the treatment of patients with liver diseases.
Collapse
Affiliation(s)
- Chunyue Yin
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, Liver Center and Diabetes Center, Institute for Regeneration Medicine, UCSF, San Francisco, California, USA
| | | | | | | |
Collapse
|
268
|
Ju HL, Ahn SH, Kim DY, Baek S, Chung SI, Seong J, Han KH, Ro SW. Investigation of oncogenic cooperation in simple liver-specific transgenic mouse models using noninvasive in vivo imaging. PLoS One 2013; 8:e59869. [PMID: 23555816 PMCID: PMC3610734 DOI: 10.1371/journal.pone.0059869] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/19/2013] [Indexed: 01/06/2023] Open
Abstract
Liver cancer is a complex multistep process requiring genetic alterations in multiple proto-oncogenes and tumor suppressor genes. Although hundreds of genes are known to play roles in hepatocarcinogenesis, oncogenic collaboration among these genes is still largely unknown. Here, we report a simple methodology by which oncogenic cooperation between cancer-related genes can be efficiently investigated in the liver. We developed various non-germline transgenic mouse models using hydrodynamics-based transfection which express HrasG12V, SmoM2, and a short-hairpin RNA down-regulating p53 (shp53) individually or in combination in the liver. In this transgenic system, firefly luciferase was co-expressed with the oncogenes as a reporter, allowing tumor growth in the liver to be monitored over time without an invasive procedure. Very strong bioluminescence imaging (BLI) signals were observed at 4 weeks post-hydrodynamic injection (PHI) in mice co-expressing HrasG12V and shp53, while only background signals were detected in other double or single transgenic groups until 30 weeks PHI. Consistent with the BLI data, tumors were observed in the HrasG12V plus shp53 group at 4 weeks PHI, while other transgenic groups failed to exhibit a hyperplastic nodule at 30 weeks PHI. In the HrasG12V plus shp53 transgenic group, BLI signals were well-correlated with actual tumor growth in the liver, confirming the versatility of BLI-based monitoring of tumor growth in this organ. The methodology described here is expected to accelerate and facilitate in vivo studies of the hepatocarcinogenic potential of cancer-related genes by means of oncogenic cooperation.
Collapse
Affiliation(s)
- Hye-Lim Ju
- Liver Cirrhosis Clinical Research Center, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Project for Medical Science College of Medicine, Yonsei University, Seoul, Korea
| | - Sang Hoon Ahn
- Liver Cirrhosis Clinical Research Center, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Do Young Kim
- Liver Cirrhosis Clinical Research Center, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Sinhwa Baek
- Liver Cirrhosis Clinical Research Center, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Project for Medical Science College of Medicine, Yonsei University, Seoul, Korea
| | - Sook In Chung
- Liver Cirrhosis Clinical Research Center, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Project for Medical Science College of Medicine, Yonsei University, Seoul, Korea
| | - Jinsil Seong
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Kwang-Hyub Han
- Liver Cirrhosis Clinical Research Center, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Simon Weonsang Ro
- Liver Cirrhosis Clinical Research Center, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
269
|
Liu Y, Meyer C, Xu C, Weng H, Hellerbrand C, ten Dijke P, Dooley S. Animal models of chronic liver diseases. Am J Physiol Gastrointest Liver Physiol 2013; 304:G449-G468. [PMID: 23275613 DOI: 10.1152/ajpgi.00199.2012] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chronic liver diseases are frequent and potentially life threatening for humans. The underlying etiologies are diverse, ranging from viral infections, autoimmune disorders, and intoxications (including alcohol abuse) to imbalanced diets. Although at early stages of disease the liver regenerates in the absence of the insult, advanced stages cannot be healed and may require organ transplantation. A better understanding of underlying mechanisms is mandatory for the design of new drugs to be used in clinic. Therefore, rodent models are being developed to mimic human liver disease. However, no model to date can completely recapitulate the "corresponding" human disorder. Limiting factors are the time frame required in humans to establish a certain liver disease and the fact that rodents possess a distinct immune system compared with humans and have different metabolic rates affecting liver homeostasis. These features account for the difficulties in developing adequate rodent models for studying disease progression and for testing new pharmaceuticals to be translated into the clinic. Nevertheless, traditional and new promising animal models that mimic certain attributes of chronic liver diseases are established and being used to deepen our understanding in the underlying mechanisms of distinct liver diseases. This review aims at providing a comprehensive overview of recent advances in animal models recapitulating different features and etiologies of human liver diseases.
Collapse
Affiliation(s)
- Yan Liu
- Department of Medicine II, Section Molecular Hepatology-Alcohol Associated Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | | | | | | | | |
Collapse
|
270
|
Hernandez-Gea V, Toffanin S, Friedman SL, Llovet JM. Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology 2013; 144:512-27. [PMID: 23313965 PMCID: PMC3578068 DOI: 10.1053/j.gastro.2013.01.002] [Citation(s) in RCA: 585] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/03/2012] [Accepted: 01/07/2013] [Indexed: 12/02/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver tumor and the third greatest cause of cancer-related death worldwide, and its incidence is increasing. Despite the significant improvement in management of HCC over the past 30 years, there are no effective chemoprevention strategies, and only one systemic therapy has been approved for patients with advanced tumors. This drug, sorafenib, acts on tumor cells and the stroma. HCC develops from chronically damaged tissue that contains large amounts of inflammation and fibrosis, which also promote tumor progression and resistance to therapy. Increasing our understanding of how stromal components interact with cancer cells and the signaling pathways involved could help identify new therapeutic and chemopreventive targets.
Collapse
Affiliation(s)
| | - Sara Toffanin
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, New York, USA
- Gastrointestinal Surgery and Liver Transplantation Unit, National Cancer Institute, IRCSS Foundation, Milan, Italy
| | - Scott L. Friedman
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, New York, USA
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases, Tisch Cancer Institute), Mount Sinai School of Medicine, New York, New York, USA
| | - Josep M. Llovet
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, New York, USA
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases, Tisch Cancer Institute), Mount Sinai School of Medicine, New York, New York, USA
- HCC Translational Research Laboratory, Barcelona-Clínic Liver Cancer Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Liver Unit and Pathology Department. Hospital Clinic, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain
- University of Barcelona, Catalonia, Spain
| |
Collapse
|
271
|
Heindryckx F, Coulon S, Terrie E, Casteleyn C, Stassen JM, Geerts A, Libbrecht L, Allemeersch J, Carmeliet P, Colle I, Van Vlierberghe H. The placental growth factor as a target against hepatocellular carcinoma in a diethylnitrosamine-induced mouse model. J Hepatol 2013; 58:319-28. [PMID: 23046674 DOI: 10.1016/j.jhep.2012.09.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 09/25/2012] [Accepted: 09/28/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS The placental growth factor (PlGF) is a member of the vascular endothelial growth factor (VEGF) family known to stimulate endothelial cell growth, migration and survival, attract angiocompetent macrophages, and determine the metastatic niche. Unlike VEGF, genetic studies have shown that PlGF is specifically involved in pathologic angiogenesis, thus its inhibition would not affect healthy blood vessels, providing an attractive drug candidate with a good safety profile. METHODS We assess whether inhibition of PlGF could be used as a potential therapy against hepatocellular carcinoma (HCC), by using PlGF knockout mice and monoclonal anti-PlGF antibodies in a mouse model for HCC. In addition, the effect of PlGF antibodies is compared to that of sorafenib, as well as the combination of both therapies. RESULTS We have found that both in a transgenic knockout model and in a treatment model, targeting PlGF significantly decreases tumor burden. This was achieved not only by inhibiting neovascularisation, but also by decreasing hepatic macrophage recruitment and by normalising the remaining blood vessels, thereby decreasing hypoxia and reducing the prometastatic potential of HCC. CONCLUSIONS Considering the favourable safety profile and its pleiotropic effect on vascularisation, metastasis and inflammation, PlGF inhibition could become a valuable therapeutic strategy against HCC.
Collapse
Affiliation(s)
- Femke Heindryckx
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
272
|
Uehara T, Ainslie GR, Kutanzi K, Pogribny IP, Muskhelishvili L, Izawa T, Yamate J, Kosyk O, Shymonyak S, Bradford BU, Boorman GA, Bataller R, Rusyn I. Molecular mechanisms of fibrosis-associated promotion of liver carcinogenesis. Toxicol Sci 2013; 132:53-63. [PMID: 23288052 DOI: 10.1093/toxsci/kfs342] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) mostly develops in patients with advanced fibrosis; however, the mechanisms of interaction between a genotoxic insult and fibrogenesis are not well understood. This study tested a hypothesis that fibrosis promotes HCC via a mechanism that involves activation of liver stem cells. First, B6C3F1 mice were administered diethylnitrosamine (DEN; single ip injection of 1mg/kg at 14 days of age). Second, carbon tetrachloride (CCl(4); 0.2ml/kg, 2/week ip starting at 8 weeks of age) was administered for 9 or 14 weeks to develop advanced liver fibrosis. In animals treated with DEN as neonates, presence of liver fibrosis led to more than doubling (to 100%) of the liver tumor incidence as early as 5 months of age. This effect was associated with activation of cells with progenitor features in noncancerous liver tissue, including markers of replicative senescence (p16), oncofetal transformation (Afp, H19, and Bex1), and increased "stemness" (Prom1 and Epcam). In contrast, the dose of DEN used did not modify the extent of liver inflammation, fibrogenesis, oxidative stress, proliferation, or apoptosis induced by subchronic CCl(4) administration. This study demonstrates the potential role of liver stem-like cells in the mechanisms of chemical-induced, fibrosis-promoted HCC. We posit that the combination of genotoxic and fibrogenic insults is a sensible approach to model liver carcinogenesis in experimental animals. These results may contribute to identification of cirrhotic patients predisposed to HCC by analyzing the expression of hepatic progenitor cell markers in the noncancerous liver tissue.
Collapse
Affiliation(s)
- Takeki Uehara
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
273
|
Aguiar e Silva MA, Vechetti-Junior IJ, Nascimento AFD, Furtado KS, Azevedo L, Ribeiro DA, Barbisan LF. Effects of swim training on liver carcinogenesis in male Wistar rats fed a low-fat or high-fat diet. Appl Physiol Nutr Metab 2012; 37:1101-9. [DOI: 10.1139/h2012-129] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The present study aimed to investigate the beneficial effects of swim training on the promotion–progression stages of rat liver carcinogenesis. Male Wistar rats were submitted to chemically induced liver carcinogenesis and allocated into 4 major groups, according their dietary regimen (16 weeks) and swim training of 5 days per week (8 weeks): 2 groups were fed low-fat diet (LFD, 6% fat) and trained or not trained and 2 groups were fed high-fat diet (HFD, 21% fat) and trained or not trained. At week 20, the animals were killed and liver samples were processed for histological analyses; immunohistochemical detection of persistent or remodeling preneoplastic lesions (pPNL and rPNL) expressing placental glutathione S-transferase (GST-P) enzyme; or proliferating cell nuclear antigen (PCNA), cleaved caspase-3, and bcl-2 protein levels by Western blotting or malonaldehyde (MDA) and total glutathione detection by HPLC. Overall analysis indicated that swim training reduced the body weight and body fat in both LFD and HFD groups, normalized total cholesterol levels in the HFD group while decreased the MDA levels, increased glutathione levels and both number of GST-P-positive pPNL and hepatocellular adenomas in LFD group. Also, a favorable balance in PCNA, cleaved caspase-3, and bcl-2 levels was detected in the liver from the LFD-trained group in relation to LFD-untrained group. The findings of this study indicate that the swim training protocol as a result of exercise postconditioning may attenuate liver carcinogenesis under an adequate dietary regimen with lowered fat intake.
Collapse
Affiliation(s)
- Marco Aurélio Aguiar e Silva
- Post-Graduation Program in General and Applied Biology, Institute of Biosciences, UNESP, Sao Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Ivan José Vechetti-Junior
- Post-Graduation Program in General and Applied Biology, Institute of Biosciences, UNESP, Sao Paulo State University, Botucatu 18618-970, SP, Brazil
| | - André Ferreira do Nascimento
- Department of Clinical Medicine, School of Medicine, UNESP, Sao Paulo State University, 18618-970 Botucatu, SP, Brazil
| | - Kelly Silva Furtado
- School of Medicine, Department of Pathology, UNESP, Sao Paulo State University, 18618-970 Botucatu, SP, Brazil
| | - Luciana Azevedo
- Faculty of Nutrition, UNIFAL, Federal University of Alfenas, 37130-000, Alfenas, MG, Brazil
| | - Daniel Araki Ribeiro
- Department of Biosciences, UNIFESP, Federal University of Sao Paulo, 11060-001, Santos, SP, Brazil
| | - Luis Fernando Barbisan
- Department of Morphology, Institute of Biosciences, UNESP, Sao Paulo State University, 18618-970 Botucatu, SP, Brazil
| |
Collapse
|
274
|
Kuang P, Zhao W, Su W, Zhang Z, Zhang L, Liu J, Ren G, Yin Z, Wang X. 18β-glycyrrhetinic acid inhibits hepatocellular carcinoma development by reversing hepatic stellate cell-mediated immunosuppression in mice. Int J Cancer 2012; 132:1831-41. [PMID: 22991231 DOI: 10.1002/ijc.27852] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 09/05/2012] [Indexed: 01/16/2023]
Abstract
Hepatic stellate cells (HSCs) have immunosuppressive capabilities and contribute to the occurrence and development of hepatocellular carcinoma (HCC). Thus, activated HSCs may be a suitable target for HCC therapy. Our study used mixed leukocyte reactions (MLR) in vitro to demonstrate that 18β-glycyrrhetinic acid (GA) could reverse HSC-mediated immunosuppression by reducing T-cell apoptosis and regulatory T (Treg) cells expression, thereby enhancing the ability of T cells to attack tumor cells and attenuating HCC cell invasiveness. Moreover, we established a HCC orthotopic implantation model in immunocompetent C57BL/6 mice, which suggested that GA played a protective role in HCC development by reducing immunosuppression mediated by HSCs in the tumor microenvironment.
Collapse
Affiliation(s)
- Penghao Kuang
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | | | | | | | | | | | | | | | | |
Collapse
|
275
|
Induction of hepatocellular carcinoma by in vivo gene targeting. Proc Natl Acad Sci U S A 2012; 109:11264-9. [PMID: 22733778 DOI: 10.1073/pnas.1117032109] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The distinct phenotypic and prognostic subclasses of human hepatocellular carcinoma (HCC) are difficult to reproduce in animal experiments. Here we have used in vivo gene targeting to insert an enhancer-promoter element at an imprinted chromosome 12 locus in mice, thereby converting ∼1 in 20,000 normal hepatocytes into a focus of HCC with a single genetic modification. A 300-kb chromosomal domain containing multiple mRNAs, snoRNAs, and microRNAs was activated surrounding the integration site. An identical domain was activated at the syntenic locus in a specific molecular subclass of spontaneous human HCCs with a similar histological phenotype, which was associated with partial loss of DNA methylation. These findings demonstrate the accuracy of in vivo gene targeting in modeling human cancer and suggest future applications in studying various tumors in diverse animal species. In addition, similar insertion events produced by randomly integrating vectors could be a concern for liver-directed human gene therapy.
Collapse
|
276
|
Pogribny IP, Rusyn I. Role of epigenetic aberrations in the development and progression of human hepatocellular carcinoma. Cancer Lett 2012; 342:223-30. [PMID: 22306342 DOI: 10.1016/j.canlet.2012.01.038] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/18/2012] [Accepted: 01/25/2012] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal and prevalent cancers in humans. The molecular mechanisms leading to the development of HCC are extremely complicated and consist of prominent genetic, genomic, and epigenetic alterations. This review summarizes the current knowledge of the role of epigenetic aberrations, including changes in DNA methylation, histone modifications, and expression of microRNAs in the pathogenesis of HCC. It also emphasizes that identification of the underlying epigenetic alterations that drive cell transformation and promote development and progression of HCC is crucially important for understanding mechanisms of hepatocarcinogenesis, its detection, therapeutic intervention, and prevention.
Collapse
Affiliation(s)
- Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, United States.
| | | |
Collapse
|
277
|
Korkusuz H, Knau LL, Kromen W, Bihrer V, Keese D, Piiper A, Vogl TJ. Different signal intensity at Gd-EOB-DTPA compared with Gd-DTPA-enhanced MRI in hepatocellular carcinoma transgenic mouse model in delayed phase hepatobiliary imaging. J Magn Reson Imaging 2012; 35:1397-402. [PMID: 22267126 DOI: 10.1002/jmri.23584] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 12/15/2011] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To evaluate hyperintense Gd-DTPA- compared with hyper- and hypointense Gd-EOB-DTPA-enhanced magnet resonance imaging (MRI) in c-myc/TGFα transgenic mice for detecting hepatocellular carcinoma (HCC). MATERIALS AND METHODS Twenty HCC-bearing transgenic mice with overexpression of the protooncogene c-myc and transforming growth factor-alpha (TGF-α) were analyzed. MRI was performed using a 3-T MRI scanner and an MRI coil. The imaging protocol included Gd-DTPA- and Gd-EOB-DTPA-enhanced T1-weighted images. The statistically evaluated parameters are signal intensity (SI), signal intensity ratio (SIR), contrast-to-noise ratio (CNR), percentage enhancement (PE), and signal-to-noise ratio (SNR). RESULTS On Gd-DTPA-enhanced MRI compared with Gd-EOB-DTPA-enhanced MRI, the SI of liver was 265.02 to 573.02 and of HCC 350.84 to either hyperintense with 757.1 or hypointense with 372.55 enhancement. Evaluated parameters were SNR of HCC 50.1 to 56.5/111.5 and SNR of liver parenchyma 37.8 to 85.8, SIR 1.32 to 1.31/0.64, CNR 12.2 to 26.1/-30.08 and PE 42.08% to 80.5/-98.2%, (P < 0.05). CONCLUSION Gd-EOB-DTPA is superior to Gd-DTPA for detecting HCC in contrast agent-enhanced MRI in the c-myc/TGFα transgenic mouse model and there was no difference between the hyperintense or hypointense appearance of HCC. Either way, HCCs can easily be distinguished from liver parenchyma in mice.
Collapse
Affiliation(s)
- Huedayi Korkusuz
- Department of Nuclear Medicine, Johann Wolfgang Goethe University Hospital, Frankfurt, Germany.
| | | | | | | | | | | | | |
Collapse
|
278
|
Circulating tumor cells measurements in hepatocellular carcinoma. Int J Hepatol 2012; 2012:684802. [PMID: 22690340 PMCID: PMC3368319 DOI: 10.1155/2012/684802] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/24/2012] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is the fifth most common cancer in men and the seventh in women. During the past 20 years, the incidence of HCC has tripled while the 5-year survival rate has remained below 12%. The presence of circulating tumor cells (CTC) reflects the aggressiveness nature of a tumor. Many attempts have been made to develop assays that reliably detect and enumerate the CTC during the development of the HCC. In this case, the challenges are (1) there are few markers specific to the HCC (tumor cells versus nontumor cells) and (2) they can be used to quantify the number of CTC in the bloodstream. Another technical challenge consists of finding few CTC mixed with million leukocytes and billion erythrocytes. CTC detection and identification can be used to estimate prognosis and may serve as an early marker to assess antitumor activity of treatment. CTC can also be used to predict progression-free survival and overall survival. CTC are an interesting source of biological information in order to understand dissemination, drug resistance, and treatment-induced cell death. Our aim is to review and analyze the different new methods existing to detect, enumerate, and characterize the CTC in the peripheral circulation of patients with HCC.
Collapse
|
279
|
Activity of tumor necrosis factor-α blocked by phytoglycoprotein (38 kDa) at initiation stage in N-nitrosodiethylamine-induced ICR mice. Mol Cell Biochem 2011; 362:177-86. [PMID: 22045064 DOI: 10.1007/s11010-011-1140-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 10/22/2011] [Indexed: 10/15/2022]
Abstract
Hepatocellular carcinoma is becoming one of the most prominent types of cancer in the world. Recently, from Styrax japonica Siebold et al. Zuccarini (SJSZ), we isolated a glycoprotein which consists of carbohydrate moiety (52.64%) and protein moiety (42.35%). We evaluated whether SJSZ glycoprotein prevents hepatocarcinogenesis induced by N-nitrosodiethylamine (DEN). The purpose of this study was to evaluate the effect of SJSZ glycoprotein in DEN-induced hepatocarcinogenesis in ICR mice. To know chemopreventive effect of SJSZ glycoprotein on hepatocarcinogenesis, ICR mice were intraperitoneally injected with N-nitrosodiethylamine (DEN, 10 mg/kg) for 7 weeks. After sacrifice, we evaluated indicators of liver tissue damage [the activities of lactate dehydrogenase (LDH) and alanine aminotransferase (ALT), and thiobarbituric acid reactive substances (TBARS)], antioxidative enzymes [activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)], and initiating hepatocarcinogenic indicator [heat shock protein (HSP) 27 and 70] and hepatocarcinogenic signals [protein kinase C (PKC), extracellular signal-regulating kinase (ERK) 1/2, nuclear factor (NF)-κB (p50 and p65) and tumor necrosis factor-α (TNF-α)] using biochemical methods, immunoblot analysis, and RT-PCR. The results obtained from this study revealed that SJSZ glycoprotein (10 mg/kg, BW) decreased the levels of LDH, ALT, and TBARS, whereas the activities of SOD, GPx, and CAT increased in the DEN-induced ICR mice. With respect to the hepatocarcinogenic indicator and hepatocarcinogenic signals, HSP27, HSP70, PKC, ERK1/2, NF-κB (p50 and p65), and TNF-α, activity decreased. Hence, SJSZ glycoprotein might prevent expression of HSP27 and HSP70 by DEN.
Collapse
|
280
|
Abstract
Hepatocellular carcinoma (HCC) ranks as the third most common cause of death from cancer worldwide. Although major risk factors for the development of HCC have been defined, many aspects of the evolution of hepatocellular carcinogenesis and metastasis are still unknown. Suitable animal models are, therefore, essential to promote our understanding of the molecular, cellular and pathophysiological mechanisms of HCC and for the development of new therapeutic strategies. This Review provides an overview of animal models that are relevant to HCC development, metastasis and treatment. For HCC development, this Review focuses on transgenic mouse models of HBV and HCV infection, which provide experimental evidence that viral genes could initiate or promote liver carcinogenesis. Animal models of HCC metastasis provide platforms to elucidate the mechanisms of HCC metastasis, to study the interaction between the microenvironment and HCC invasion and to conduct intervention studies. In addition, animal models have been developed to investigate the effects of new treatment modalities. The criteria for establishing ideal HCC animal models are also discussed.
Collapse
|
281
|
Minichromosome maintenance helicase paralog MCM9 is dispensible for DNA replication but functions in germ-line stem cells and tumor suppression. Proc Natl Acad Sci U S A 2011; 108:17702-7. [PMID: 21987787 DOI: 10.1073/pnas.1113524108] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Effective DNA replication is critical to the health and reproductive success of organisms. The six MCM2-7 proteins, which form the replicative helicase, are essential for high-fidelity replication of the genome. Many eukaryotes have a divergent paralog, MCM9, that was reported to be essential for loading MCM2-7 onto replication origins in the Xenopus oocyte extract system. To address the in vivo role of mammalian MCM9, we created and analyzed the phenotypes of mice with various mutations in Mcm9 and an intronic DNA replication-related gene Asf1a. Ablation of Mcm9 was compatible with cell proliferation and mouse viability, showing that it is nonessential for MCM2-7 loading or DNA replication. Mcm9 mutants underwent p53-independent embryonic germ-cell depletion in both sexes, with males also exhibiting defective spermatogonial stem-cell renewal. MCM9-deficient cells had elevated genomic instability and defective cell cycle reentry following replication stress, and mutant animals were prone to sex-specific cancers, most notably hepatocellular carcinoma in males. The phenotypes of mutant mice and cells suggest that MCM9 evolved a specialized but nonessential role in DNA replication or replication-linked quality-control mechanisms that are especially important for germ-line stem cells, and also for tumor suppression and genome maintenance in the soma.
Collapse
|
282
|
Choi SM, Kim Y, Liu H, Chaudhari P, Ye Z, Jang YY. Liver engraftment potential of hepatic cells derived from patient-specific induced pluripotent stem cells. Cell Cycle 2011; 10:2423-7. [PMID: 21750407 DOI: 10.4161/cc.10.15.16869] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Human induced pluripotent stem cells (iPSCs) are potential renewable sources of hepatocytes for drug development and cell therapy. Differentiation of human iPSCs into different developmental stages of hepatic cells has been achieved and improved during the last several years. We have recently demonstrated the liver engraftment and regenerative capabilities of human iPSC-derived multistage hepatic cells in vivo. Here we describe the in vitro and in vivo activities of hepatic cells derived from patient specific iPSCs, including multiple lines established from either inherited or acquired liver diseases, and discuss basic and clinical applications of these cells for disease modeling, drug screening and discovery, gene therapy and cell replacement therapy.
Collapse
Affiliation(s)
- Su Mi Choi
- Stem Cell Biology Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
283
|
Vucur M, Roderburg C, Bettermann K, Tacke F, Heikenwalder M, Trautwein C, Luedde T. Mouse models of hepatocarcinogenesis: what can we learn for the prevention of human hepatocellular carcinoma? Oncotarget 2011; 1:373-8. [PMID: 21307402 DOI: 10.18632/oncotarget.100906] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
There is growing evidence that chronic inflammatory processes are involved in triggering the sequence from chronic liver injury to liver fibrosis, ultimately leading to liver cancer. In the last years this process has been recapitulated in a growing number of different mouse models. However, it has remained unclear whether and how these mouse models reflect the clinical reality of human hepatocellular carcinoma (HCC). Research with animal models but also human liver specimens has indicated that the NF-κB signaling pathway might withhold a crucial function in the mediation of chronic hepatic inflammation and the transition to HCC in humans. However, previous studies led to divergent and partly conflicting results with regards to the functional role of NF-κB in hepatocarcinogenesis. Here, we discuss a new genetic mouse model for HCC, the liver-specific TAK1 knockout mouse, which lacks the NF-κB activating kinase TAK1 specifically in parenchymal liver cells. Molecular findings in this mouse model and their possible significance for chemopreventive strategies against HCC are compared to other murine HCC models.
Collapse
Affiliation(s)
- Mihael Vucur
- Department of Internal Medicine III, University Hospital of RWTH Aachen, D- 52074 Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
284
|
Hoenerhoff MJ, Pandiri AR, Lahousse SA, Hong HH, Ton TV, Masinde T, Auerbach SS, Gerrish K, Bushel PR, Shockley KR, Peddada SD, Sills RC. Global gene profiling of spontaneous hepatocellular carcinoma in B6C3F1 mice: similarities in the molecular landscape with human liver cancer. Toxicol Pathol 2011; 39:678-99. [PMID: 21571946 DOI: 10.1177/0192623311407213] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is an important cause of morbidity and mortality worldwide. Although the risk factors of human HCC are well known, the molecular pathogenesis of this disease is complex, and in general, treatment options remain poor. The use of rodent models to study human cancer has been extensively pursued, both through genetically engineered rodents and rodent models used in carcinogenicity and toxicology studies. In particular, the B6C3F1 mouse used in the National Toxicology Program (NTP) two-year bioassay has been used to evaluate the carcinogenic effects of environmental and occupational chemicals, and other compounds. The high incidence of spontaneous HCC in the B6C3F1 mouse has challenged its use as a model for chemically induced HCC in terms of relevance to the human disease. Using global gene expression profiling, we identify the dysregulation of several mediators similarly altered in human HCC, including re-expression of fetal oncogenes, upregulation of protooncogenes, downregulation of tumor suppressor genes, and abnormal expression of cell cycle mediators, growth factors, apoptosis regulators, and angiogenesis and extracellular matrix remodeling factors. Although major differences in etiology and pathogenesis remain between human and mouse HCC, there are important similarities in global gene expression and molecular pathways dysregulated in mouse and human HCC. These data provide further support for the use of this model in hazard identification of compounds with potential human carcinogenicity risk, and may help in better understanding the mechanisms of tumorigenesis resulting from chemical exposure in the NTP two-year carcinogenicity bioassay.
Collapse
Affiliation(s)
- Mark J Hoenerhoff
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Science, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
285
|
Abstract
The marked heterogeneity of hepatocellular carcinoma (HCC), particularly with regard to the etiology and severity of the underlying cirrhosis, makes clinical trial design in this disease very challenging. In addition, despite the global burden of HCC, there have been relatively few randomized studies. The major advance in medical therapy in HCC has been the benefit of sorafenib, as demonstrated in two Phase III studies. However, the benefit is small, and new therapies to augment or replace sorafenib are urgently needed. These newer therapies, as well as the progress made in two important areas – clinical trial design and molecular characterization – are the subject of this article.
Collapse
Affiliation(s)
- Austin Duffy
- Medical Oncology Branch, National Cancer Institute, 9000 Rockville Pike, 10/13N240G, Bethesda, MD 20892, USA
| | | |
Collapse
|
286
|
Pakharukova M, Smetanina M, Kaledin V, Obut T, Merkulova T. The increased CAR-dependent metabolism of thyroid hormones in mice with high cancer susceptibility. Life Sci 2010; 87:439-44. [PMID: 20816995 DOI: 10.1016/j.lfs.2010.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 08/07/2010] [Accepted: 08/19/2010] [Indexed: 10/19/2022]
Abstract
AIM our aim was to compare activation of the constitutive androstane receptor (CAR), hepatic expression of its target genes, and the serum thyroid hormone levels in C3H/He, C57BL/6J, and CC57BR/Mv mice following phenobarbital treatment. These differences, if present, could help to explain the different susceptibility to phenobarbital-induced liver tumor promotion among these strains of mice. MAIN METHODS CAR DNA-binding activity and CAR content in nuclear protein extracts from mouse livers were assessed using the electrophoretic mobility shift assay and immunoblotting. Serum thyroid hormone concentrations were determined by radioimmunoassay. Real-time PCR was used to measure the hepatic expression level of CAR target genes. KEY FINDINGS we found a 2.3-fold increase of CAR DNA-binding activity in response to phenobarbital in the sensitive C3H/He mice, but no change in the relatively resistant C57BL/6J and CC57BR/Mv mice. Phenobarbital treatment caused a significant decrease in triiodothyronine and free thyroxine concentrations (17% and 40%, respectively) in the sensitive C3H/He mice by the end of 60-day treatment, while in the resistant mice, these changes were not observed. In the sensitive C3H/He mice only, the expression of a CAR target gene encoding sulfotransferase Sult2a1, the thyroid hormone inactivation enzyme, increased by 260-fold after phenobarbital administration. The expression of another CAR target gene, Mdm2, was also increased by phenobarbital treatment in C3H/He mice. SIGNIFICANCE we have shown that phenobarbital activates CAR and increases the expression of its target genes thereby accelerating the metabolism of thyroid hormones only in mice susceptible to liver tumor promotion by phenobarbital, but not in relatively resistant animals.
Collapse
|
287
|
Vucur M, Roderburg C, Bettermann K, Tacke F, Heikenwalder M, Trautwein C, Luedde T. Mouse models of hepatocarcinogenesis: what can we learn for the prevention of human hepatocellular carcinoma? Oncotarget 2010; 1:373-378. [PMID: 21307402 PMCID: PMC3157729 DOI: 10.18632/oncotarget.170] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 08/08/2010] [Indexed: 11/25/2022] Open
Abstract
There is growing evidence that chronic inflammatory processes are involved in triggering the sequence from chronic liver injury to liver fibrosis, ultimately leading to liver cancer. In the last years this process has been recapitulated in a growing number of different mouse models. However, it has remained unclear whether and how these mouse models reflect the clinical reality of human hepatocellular carcinoma (HCC). Research with animal models but also human liver specimens has indicated that the NF-κB signaling pathway might withhold a crucial function in the mediation of chronic hepatic inflammation and the transition to HCC in humans. However, previous studies led to divergent and partly conflicting results with regards to the functional role of NF-κB in hepatocarcinogenesis. Here, we discuss a new genetic mouse model for HCC, the liver-specific TAK1 knockout mouse, which lacks the NF-κB activating kinase TAK1 specifically in parenchymal liver cells. Molecular findings in this mouse model and their possible significance for chemopreventive strategies against HCC are compared to other murine HCC models.
Collapse
Affiliation(s)
- Mihael Vucur
- Department of Internal Medicine III, University Hospital of RWTH Aachen, D- 52074 Aachen, Germany
| | - Christoph Roderburg
- Department of Internal Medicine III, University Hospital of RWTH Aachen, D- 52074 Aachen, Germany
| | - Kira Bettermann
- Department of Internal Medicine III, University Hospital of RWTH Aachen, D- 52074 Aachen, Germany
| | - Frank Tacke
- Department of Internal Medicine III, University Hospital of RWTH Aachen, D- 52074 Aachen, Germany
| | - Mathias Heikenwalder
- Institute of Virology, Technical University München, Helmholtz Center München, D-81675 Munich, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital of RWTH Aachen, D- 52074 Aachen, Germany
| | - Tom Luedde
- Department of Internal Medicine III, University Hospital of RWTH Aachen, D- 52074 Aachen, Germany
| |
Collapse
|
288
|
Freimuth J, Gassler N, Moro N, Günther RW, Trautwein C, Liedtke C, Krombach GA. Application of magnetic resonance imaging in transgenic and chemical mouse models of hepatocellular carcinoma. Mol Cancer 2010; 9:94. [PMID: 20429921 PMCID: PMC2868806 DOI: 10.1186/1476-4598-9-94] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 04/29/2010] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. The molecular mechanisms underlying hepatocarcinogenesis are still poorly understood. Genetically modified mice are powerful tools to further investigate the mechanisms of HCC development. However, this approach is limited due to the lack of non-invasive detection methods in small rodents. The aim of this study was to establish a protocol for the non-invasive analysis of hepatocarcinogenesis in transgenic mice using a clinical 1.5 Tesla Magnetic Resonance Imaging scanner. RESULTS As a model system we used hepatocyte-specific c-myc transgenic mice developing hepatocellular carcinoma at the age of 12-15 months. The scans of the murine livers included axial T2-weighted turbo-spin echo (TSE) images, axial T1-weighted and contrast enhanced T1-weighted gradient echo (fast field echo, FFE) and sagittal true Fast Imaging with Steady state Precession (true-FISP) images. Application of contrast agent was performed via tail vein-catheter and confirmed by evaluation of the altered longitudinal relaxation T1 time before and after application. Through technical adaptation and optimization we could detect murine liver lesions with a minimum diameter of approximately 2 mm and provided histopathological evidence that these MR findings correspond to hepatocellular carcinoma. Tumor growth was repeatedly measured using sequential MRI with intervals of 5 weeks and subsequent volumetric analysis facilitating direct comparison of tumor progression between individual animals. We finally demonstrated that our protocol is also applicable in the widely- used chemical model of N-nitrosodiethylamine-induced hepatocarcinogenesis. CONCLUSION Our protocol allows the non-invasive, early detection of HCC and the subsequent continuous monitoring of liver tumorgenesis in transgenic mice thereby facilitating future investigations of transgenic tumor mouse models of the liver.
Collapse
Affiliation(s)
- Julia Freimuth
- UCSF Helen Diller Family Comprehensive Cancer Center 1450, 3rd Street, San Francisco, CA 94158-9001, USA
| | - Nikolaus Gassler
- Institute of Pathology, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Nives Moro
- Department of Medicine III, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Rolf W Günther
- Department of Diagnostic Radiology, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Christian Trautwein
- Department of Medicine III, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Christian Liedtke
- Department of Medicine III, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Gabriele A Krombach
- Department of Radiology, Justus-Liebig University Giessen, Rudolf-Buchheim-Straße 8, D-35392, Giessen, Germany
| |
Collapse
|
289
|
Barascuk N, Veidal SS, Larsen L, Larsen DV, Larsen MR, Wang J, Zheng Q, Xing R, Cao Y, Rasmussen LM, Karsdal MA. A novel assay for extracellular matrix remodeling associated with liver fibrosis: An enzyme-linked immunosorbent assay (ELISA) for a MMP-9 proteolytically revealed neo-epitope of type III collagen. Clin Biochem 2010; 43:899-904. [PMID: 20380828 DOI: 10.1016/j.clinbiochem.2010.03.012] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Revised: 02/18/2010] [Accepted: 03/21/2010] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Accumulation of extracellular matrix (ECM) components and increased matrix-metalloprotease (MMPs) activity are hallmarks of fibrosis. We developed an ELISA for quantification of MMP-9 derived collagen type III (CO3) degradation. DESIGN AND METHODS A monoclonal antibody targeting a specific MMP-9 cleaved fragment of CO3 was used for development of a competitive ELISA. The assay was investigated in serum and tissues from bile duct ligated rats (BDL). RESULTS The ELISA showed no cross-reaction with either intact CO3, or other collagens. The intra- and inter-assay CV were below 10%. Liver fibrosis was demonstrated in BDL animals by semi quantitative scoring (P<0.0001). Serum levels of CO3-610 increased 2.5 fold in BDL animals (P<0.001). The CO3-610 levels were 5 fold higher in ex vivo cultures of fibrotic livers compared to controls (P<0.001). CONCLUSION We have developed a novel ELISA for measuring a specific fragment CO3 generated by MMP-9 important in pathogenesis of liver fibrosis.
Collapse
|
290
|
Van de Veire S, Stalmans I, Heindryckx F, Oura H, Tijeras-Raballand A, Schmidt T, Loges S, Albrecht I, Jonckx B, Vinckier S, Van Steenkiste C, Tugues S, Rolny C, De Mol M, Dettori D, Hainaud P, Coenegrachts L, Contreres JO, Van Bergen T, Cuervo H, Xiao WH, Le Henaff C, Buysschaert I, Masouleh BK, Geerts A, Schomber T, Bonnin P, Lambert V, Haustraete J, Zacchigna S, Rakic JM, Jiménez W, Noël A, Giacca M, Colle I, Foidart JM, Tobelem G, Morales-Ruiz M, Vilar J, Maxwell P, Vinores SA, Carmeliet G, Dewerchin M, Claesson-Welsh L, Dupuy E, Van Vlierberghe H, Christofori G, Mazzone M, Detmar M, Collen D, Carmeliet P. Further Pharmacological and Genetic Evidence for the Efficacy of PlGF Inhibition in Cancer and Eye Disease. Cell 2010; 141:178-90. [DOI: 10.1016/j.cell.2010.02.039] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/05/2010] [Accepted: 02/23/2010] [Indexed: 01/03/2023]
|