251
|
Xu S, Chan P. Interaction between Neuromelanin and Alpha-Synuclein in Parkinson's Disease. Biomolecules 2015; 5:1122-42. [PMID: 26057626 PMCID: PMC4496713 DOI: 10.3390/biom5021122] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 04/29/2015] [Indexed: 12/27/2022] Open
Abstract
Parkinson's disease (PD) is a very common neurodegenerative disorder characterized by the accumulation of α-synuclein (α-syn) into Lewy body (LB) inclusions and the loss of neuronmelanin (NM) containing dopamine (DA) neurons in the substantia nigra (SN). Pathological α-syn and NM are two prominent hallmarks in this selective and progressive neurodegenerative disease. Pathological α-syn can induce dopaminergic neuron death by various mechanisms, such as inducing oxidative stress and inhibiting protein degradation systems. Therefore, to explore the factors that trigger α-syn to convert from a non-toxic protein to toxic one is a pivotal question to clarify the mechanisms of PD pathogenesis. Many triggers for pathological α-syn aggregation have been identified, including missense mutations in the α-syn gene, higher concentration, and posttranslational modifications of α-Syn. Recently, the role of NM in inducing α-syn expression and aggregation has been suggested as a mechanism for this pigment to modulate neuronal vulnerability in PD. NM may be responsible for PD and age-associated increase and aggregation in α-syn. Here, we reviewed our previous study and other recent findings in the area of interaction between NM and α-syn.
Collapse
Affiliation(s)
- Shengli Xu
- Beijing Institute of Geriatrics, Xuanwu Hospital of Capital University of Medical Sciences, No.45 changchun St., Xicheng District, Beijing 100053, China.
- Parkinson's disease Center of Beijing Institute for Brain Disorders, Beijing 100053, China.
| | - Piu Chan
- Beijing Institute of Geriatrics, Xuanwu Hospital of Capital University of Medical Sciences, No.45 changchun St., Xicheng District, Beijing 100053, China.
- Parkinson's disease Center of Beijing Institute for Brain Disorders, Beijing 100053, China.
| |
Collapse
|
252
|
Takahashi M, Suzuki M, Fukuoka M, Fujikake N, Watanabe S, Murata M, Wada K, Nagai Y, Hohjoh H. Normalization of Overexpressed α-Synuclein Causing Parkinson's Disease By a Moderate Gene Silencing With RNA Interference. MOLECULAR THERAPY. NUCLEIC ACIDS 2015; 4:e241. [PMID: 25965551 DOI: 10.1038/mtna.2015.14] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 03/30/2015] [Indexed: 12/21/2022]
Abstract
The α-synuclein (SNCA) gene is a responsible gene for Parkinson's disease (PD); and not only nucleotide variations but also overexpression of SNCA appears to be involved in the pathogenesis of PD. A specific inhibition against mutant SNCA genes carrying nucleotide variations may be feasible by a specific silencing such as an allele-specific RNA interference (RNAi); however, there is no method for restoring the SNCA overexpression to a normal level. Here, we show that an atypical RNAi using small interfering RNAs (siRNAs) that confer a moderate level of gene silencing is capable of controlling overexpressed SNCA genes to return to a normal level; named "expression-control RNAi" (ExCont-RNAi). ExCont-RNAi exhibited little or no significant off-target effects in its treated PD patient's fibroblasts that carry SNCA triplication. To further assess the therapeutic effect of ExCont-RNAi, PD-model flies that carried the human SNCA gene underwent an ExCont-RNAi treatment. The treated PD-flies demonstrated a significant improvement in their motor function. Our current findings suggested that ExCont-RNAi might be capable of becoming a novel therapeutic procedure for PD with the SNCA overexpression, and that siRNAs conferring a moderate level of gene silencing to target genes, which have been abandoned as useless siRNAs so far, might be available for controlling abnormally expressed disease-causing genes without producing adverse effects.
Collapse
Affiliation(s)
- Masaki Takahashi
- 1] Department of Molecular Pharmacology, National Institute of Neuroscience, NCNP, Tokyo, Japan [2] Present address: Division of RNA Medical Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mari Suzuki
- Department of Degenerative Neurological Disease, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Masashi Fukuoka
- Department of Molecular Pharmacology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Nobuhiro Fujikake
- Department of Degenerative Neurological Disease, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | | | - Miho Murata
- National Center Hospital, NCNP, Tokyo, Japan
| | - Keiji Wada
- Department of Degenerative Neurological Disease, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Yoshitaka Nagai
- Department of Degenerative Neurological Disease, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Hirohiko Hohjoh
- Department of Molecular Pharmacology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| |
Collapse
|
253
|
Acosta SA, Tajiri N, de la Pena I, Bastawrous M, Sanberg PR, Kaneko Y, Borlongan CV. Alpha-synuclein as a pathological link between chronic traumatic brain injury and Parkinson's disease. J Cell Physiol 2015; 230:1024-32. [PMID: 25251017 PMCID: PMC4328145 DOI: 10.1002/jcp.24830] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/18/2014] [Indexed: 12/14/2022]
Abstract
The long-term consequences of traumatic brain injury (TBI) are closely associated with the development of histopathological deficits. Notably, TBI may predispose long-term survivors to age-related neurodegenerative diseases, such as Parkinson's disease (PD), which is characterized by a gradual degeneration of the nigrostriatal dopaminergic neurons. However, preclinical studies on the pathophysiological changes in substantia nigra (SN) after chronic TBI are lacking. In the present in vivo study, we examined the pathological link between PD-associated dopaminergic neuronal loss and chronic TBI. Sixty days post-TBI, rats were euthanized and brain tissues harvested. Immunostaining was performed using tyrosine hydroxylase (TH), an enzyme required for the synthesis of dopamine in neurons, α-synuclein, a presynaptic protein that plays a role in synaptic vesicle recycling, and major histocompatibility complex II (MHCII), a protein found in antigen presenting cells such as inflammatory microglia cells, all key players in PD pathology. Unbiased stereology analyses revealed significant decrease of TH-positive expression in the surviving dopaminergic neurons of the SN pars compacta (SNpc) relative to sham control. In parallel, increased α-synuclein accumulation was detected in the ipsilateral SN compared to the contralateral SN in TBI animals or sham control. In addition, exacerbation of MHCII+ cells was recognized in the SN and cerebral peduncle ipsilateral to injury relative to contralateral side and sham control. These results suggest α-synuclein as a pathological link between chronic effects of TBI and PD symptoms as evidenced by significant overexpression and abnormal accumulation of α-synuclein in inflammation-infiltrated SN of rats exposed to chronic TBI. J. Cell. Physiol. 230: 1024–1032, 2015. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sandra A Acosta
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida
| | | | | | | | | | | | | |
Collapse
|
254
|
Takamura A, Hattori M, Yoshimura H, Ozawa T. Simultaneous time-lamination imaging of protein association using a split fluorescent timer protein. Anal Chem 2015; 87:3366-72. [PMID: 25679333 DOI: 10.1021/ac504583t] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Studies of temporal behaviors of protein association in living cells are crucially important for elucidating the fundamental roles and the mechanism of interactive coordination for cell activities. We developed a method for investigating the temporal alternation of a particular protein assembly using monomeric fluorescent proteins, fluorescent timers (FTs), of which the fluorescent color changes from blue to red over time. We identified a dissection site of the FTs, which allows complementation of the split FT fragments. The split fragments of each FT variant recovered their fluorescence and maintained inherent rates of the color changes upon the reassembly of the fragments in vitro. We applied this method to visualize the aggregation process of α-synuclein in living cells. The size of the aggregates with the temporal information was analyzed from ratio values of the blue and red fluorescence of the reconstituted FTs, from which the aggregation rates were evaluated. This method using the split FT fragments enables tracing and visualizing temporal alternations of various protein associations by single fluorescence measurements at a given time point.
Collapse
Affiliation(s)
- Ayari Takamura
- †Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsuru Hattori
- †Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hideaki Yoshimura
- †Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takeaki Ozawa
- †Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
255
|
Chen X, Guo C, Kong J. Oxidative stress in neurodegenerative diseases. Neural Regen Res 2015; 7:376-85. [PMID: 25774178 PMCID: PMC4350122 DOI: 10.3969/j.issn.1673-5374.2012.05.009] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 11/22/2011] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species are constantly produced in aerobic organisms as by-products of normal oxygen metabolism and include free radicals such as superoxide anion (O2−) and hydroxyl radical (OH−), and non-radical hydrogen peroxide (H2O2). The mitochondrial respiratory chain and enzymatic reactions by various enzymes are endogenous sources of reactive oxygen species. Exogenous reactive oxygen species -inducing stressors include ionizing radiation, ultraviolet light, and divergent oxidizing chemicals. At low concentrations, reactive oxygen species serve as an important second messenger in cell signaling; however, at higher concentrations and long-term exposure, reactive oxygen species can damage cellular macromolecules such as DNA, proteins, and lipids, which leads to necrotic and apoptotic cell death. Oxidative stress is a condition of imbalance between reactive oxygen species formation and cellular antioxidant capacity due to enhanced ROS generation and/or dysfunction of the antioxidant system. Biochemical alterations in these macromolecular components can lead to various pathological conditions and human diseases, especially neurodegenerative diseases. Neurodegenerative diseases are morphologically featured by progressive cell loss in specific vulnerable neuronal cells, often associated with cytoskeletal protein aggregates forming inclusions in neurons and/or glial cells. Deposition of abnormal aggregated proteins and disruption of metal ions homeostasis are highly associated with oxidative stress. The main aim of this review is to present as much detailed information as possible that is available on various neurodegenerative disorders and their connection with oxidative stress. A variety of therapeutic strategies designed to address these pathological processes are also described. For the future therapeutic direction, one specific pathway that involves the transcription factor nuclear factor erythroid 2-related factor 2 is receiving considerable attention.
Collapse
Affiliation(s)
- Xueping Chen
- Department of Human Anatomy and Cell Science, University of Manitoba, Manitoba, Canada
| | - Chunyan Guo
- Department of Pharmacy, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, Manitoba, Canada
| |
Collapse
|
256
|
Grey M, Dunning CJ, Gaspar R, Grey C, Brundin P, Sparr E, Linse S. Acceleration of α-synuclein aggregation by exosomes. J Biol Chem 2014; 290:2969-82. [PMID: 25425650 PMCID: PMC4317028 DOI: 10.1074/jbc.m114.585703] [Citation(s) in RCA: 297] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Exosomes are small vesicles released from cells into extracellular space. We have isolated exosomes from neuroblastoma cells and investigated their influence on the aggregation of α-synuclein, a protein associated with Parkinson disease pathology. Using cryo-transmission electron microscopy of exosomes, we found spherical unilamellar vesicles with a significant protein content, and Western blot analysis revealed that they contain, as expected, the proteins Flotillin-1 and Alix. Using thioflavin T fluorescence to monitor aggregation kinetics, we found that exosomes catalyze the process in a similar manner as a low concentration of preformed α-synuclein fibrils. The exosomes reduce the lag time indicating that they provide catalytic environments for nucleation. The catalytic effects of exosomes derived from naive cells and cells that overexpress α-synuclein do not differ. Vesicles prepared from extracted exosome lipids accelerate aggregation, suggesting that the lipids in exosomes are sufficient for the catalytic effect to arise. Using mass spectrometry, we found several phospholipid classes in the exosomes, including phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, phosphatidylinositol, and the gangliosides GM2 and GM3. Within each class, several species with different acyl chains were identified. We then prepared vesicles from corresponding pure lipids or defined mixtures, most of which were found to retard α-synuclein aggregation. As a striking exception, vesicles containing ganglioside lipids GM1 or GM3 accelerate the process. Understanding how α-synuclein interacts with biological membranes to promote neurological disease might lead to the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Marie Grey
- From the Departments of Physical Chemistry
| | - Christopher J Dunning
- the Neuronal Survival Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, SE-22100 Lund, Sweden and the Center for Neurodegenerative Science, Biochemistry and Structural Biology, and
| | - Ricardo Gaspar
- From the Departments of Physical Chemistry, Biochemistry and Structural Biology, and
| | | | - Patrik Brundin
- the Neuronal Survival Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, SE-22100 Lund, Sweden and the Center for Neurodegenerative Science, The Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Emma Sparr
- From the Departments of Physical Chemistry,
| | - Sara Linse
- Biochemistry and Structural Biology, and
| |
Collapse
|
257
|
Cardiac sympathetic denervation in 6-OHDA-treated nonhuman primates. PLoS One 2014; 9:e104850. [PMID: 25133405 PMCID: PMC4136781 DOI: 10.1371/journal.pone.0104850] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/15/2014] [Indexed: 12/11/2022] Open
Abstract
Cardiac sympathetic neurodegeneration and dysautonomia affect patients with sporadic and familial Parkinson's disease (PD) and are currently proposed as prodromal signs of PD. We have recently developed a nonhuman primate model of cardiac dysautonomia by iv 6-hydroxydopamine (6-OHDA). Our in vivo findings included decreased cardiac uptake of a sympathetic radioligand and circulating catecholamines; here we report the postmortem characterization of the model. Ten adult rhesus monkeys (5–17 yrs old) were used in this study. Five animals received 6-OHDA (50 mg/kg iv) and five were age-matched controls. Three months post-neurotoxin the animals were euthanized; hearts and adrenal glands were processed for immunohistochemistry. Quantification of immunoreactivity (ir) of stainings was performed by an investigator blind to the treatment group using NIH ImageJ software (for cardiac bundles and adrenals, area above threshold and optical density) and MBF StereoInvestigator (for cardiac fibers, area fraction fractionator probe). Sympathetic cardiac nerve bundle analysis and fiber area density showed a significant reduction in global cardiac tyrosine hydroxylase-ir (TH; catecholaminergic marker) in 6-OHDA animals compared to controls. Quantification of protein gene protein 9.5 (pan-neuronal marker) positive cardiac fibers showed a significant deficit in 6-OHDA monkeys compared to controls and correlated with TH-ir fiber area. Semi-quantitative evaluation of human leukocyte antigen-ir (inflammatory marker) and nitrotyrosine-ir (oxidative stress marker) did not show significant changes 3 months post-neurotoxin. Cardiac nerve bundle α-synuclein-ir (presynaptic protein) was reduced (trend) in 6-OHDA treated monkeys; insoluble proteinase-K resistant α-synuclein (typical of PD pathology) was not observed. In the adrenal medulla, 6-OHDA monkeys had significantly reduced TH-ir and aminoacid decarboxylase-ir. Our results confirm that systemic 6-OHDA dosing to nonhuman primates induces cardiac sympathetic neurodegeneration and loss of catecholaminergic enzymes in the adrenal medulla, and suggests that this model can be used as a platform to evaluate disease-modifying strategies aiming to induce peripheral neuroprotection.
Collapse
|
258
|
Cox D, Carver JA, Ecroyd H. Preventing α-synuclein aggregation: the role of the small heat-shock molecular chaperone proteins. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1830-43. [PMID: 24973551 DOI: 10.1016/j.bbadis.2014.06.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/28/2014] [Accepted: 06/19/2014] [Indexed: 12/21/2022]
Abstract
Protein homeostasis, or proteostasis, is the process of maintaining the conformational and functional integrity of the proteome. The failure of proteostasis can result in the accumulation of non-native proteins leading to their aggregation and deposition in cells and in tissues. The amyloid fibrillar aggregation of the protein α-synuclein into Lewy bodies and Lewy neuritis is associated with neurodegenerative diseases classified as α-synucleinopathies, which include Parkinson's disease and dementia with Lewy bodies. The small heat-shock proteins (sHsps) are molecular chaperones that are one of the cell's first lines of defence against protein aggregation. They act to stabilise partially folded protein intermediates, in an ATP-independent manner, to maintain cellular proteostasis under stress conditions. Thus, the sHsps appear ideally suited to protect against α-synuclein aggregation, yet these fail to do so in the context of the α-synucleinopathies. This review discusses how sHsps interact with α-synuclein to prevent its aggregation and, in doing so, highlights the multi-faceted nature of the mechanisms used by sHsps to prevent the fibrillar aggregation of proteins. It also examines what factors may contribute to α-synuclein escaping the sHsp chaperones in the context of the α-synucleinopathies.
Collapse
Affiliation(s)
- Dezerae Cox
- School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - John A Carver
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory, 0200, Australia
| | - Heath Ecroyd
- School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia.
| |
Collapse
|
259
|
Yan J. Interplay between HDAC6 and its interacting partners: essential roles in the aggresome-autophagy pathway and neurodegenerative diseases. DNA Cell Biol 2014; 33:567-80. [PMID: 24932665 DOI: 10.1089/dna.2013.2300] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cytoplasmic localization and possession of two deacetylase domains and a ubiquitin-binding domain make histone deacetylase 6 (HDAC6) a unique histone deacetylase. HDAC6 interacts with a number of proteins in the cytoplasm. Some of these proteins can be deacetylated by HDAC6 deacetylase activity. Others can affect HDAC6 functions by modulating its catalytic activity or ubiquitin-binding capability. Over the last decade, HDAC6 has been shown to play important roles in the aggresome-autophagy pathway, which selectively targets on protein aggregates or damaged organelles for their accumulation and clearance in cells. HDAC6-interacting partners are integral components in this pathway with regard to their regulatory roles through interaction with HDAC6. The aggresome-autophagy pathway appears to be an attractive therapeutic target for the treatment of neurodegenerative diseases as accumulation of protein aggregates are hallmarks in these diseases. In the current review, I discuss the molecular details of how HDAC6 and its interacting partners regulate each individual step in the aggresome-autophagy pathway and also provide perspectives of how HDAC6 can be targeted in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Jin Yan
- Department of Biological Sciences, Auburn University , Auburn, Alabama
| |
Collapse
|
260
|
Synphilin-1A is a phosphoprotein phosphatase 1-interacting protein and affects PPP1 sorting to subcellular compartments. J Mol Neurosci 2014; 55:385-95. [PMID: 24902662 DOI: 10.1007/s12031-014-0343-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 05/27/2014] [Indexed: 12/24/2022]
Abstract
Lewy bodies (LBs) are synphilin-1 (Sph1)-containing aggregates and histological hallmarks of Parkinson's disease. Therefore, understanding processes which modulate the aggregation of Sph1, or its isoform Sph1A, will contribute to our understanding of LBs formation. Protein phosphorylation promotes aggregation, but protein phosphatases with activity towards Sph1 have not been described. The present study documents the identification of a novel Sph1A/phosphoprotein phosphatase 1 (PPP1) complex and unravels its regulatory effect on Sph1A aggregation. Using yeast co-transformation and overlay blot assay, the interaction between Sph1A and PPP1 was mapped to the Sph1A RVTF motif. Then, Sph1A overexpression in human embryonic kidney 293 cells demonstrated that Sph1A specifically targets endogenous PPP1 isoforms to inclusion bodies and that Sph1A/PPP1 complex disruption enhances inclusion bodies formation. Finally, as Sph1A interacted with PPP1CC2, a PPP1 sperm-specific isoform, Sph1 and Sph1A expression was addressed in male germ cells by qRT-PCR, revealing high expression levels in round spermatids. Together, these observations established Sph1A as a novel PPP1-interacting protein able to affect PPP1 sorting to subcellular compartments and Sph1A/PPP1 complex as a negative modulator of LBs formation. Contrarily, in physiological conditions, Sph1 isoforms are pointed as putative participants in vesicle dynamics with implications in neurotransmission and spermiogenesis.
Collapse
|
261
|
Chatterjee P, Bhattacharyya M, Bandyopadhyay S, Roy D. Studying the system-level involvement of microRNAs in Parkinson's disease. PLoS One 2014; 9:e93751. [PMID: 24690883 PMCID: PMC3972105 DOI: 10.1371/journal.pone.0093751] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/08/2014] [Indexed: 12/15/2022] Open
Abstract
Background Parkinson's Disease (PD) is a progressive neurologic disorder that affects movement and balance. Recent studies have revealed the importance of microRNA (miR) in PD. However, the detailed role of miR and its regulation by Transcription Factor (TF) remain unexplored. In this work for the first time we have studied TF-miR-mRNA regulatory network as well as miR co-expression network in PD. Result We compared the 204 differentially expressed miRs from microarray data with 73 PD related miRs obtained from literature, Human MicroRNA Disease Database and found a significant overlap of 47 PD related miRs (p-value<0.05). Functional enrichment analyses of these 47 common (Group1) miRs and the remaining 157 (Group2) miRs revealed similar kinds of over-representative GO Biological Processes and KEGG pathways. This strengthens the possibility that some of the Group 2 miRs can have functional roles in PD progression, hitherto unidentified in any study. In order to explore the cross talk between TF, miR and target mRNA, regulatory networks were constructed. Study of these networks resulted in 14 Inter-Regulatory hub miRs whereas miR co-expression network revealed 18 co-expressed hub miRs. Of these 32 hub miRs, 23 miRs were previously unidentified with respect to their association with PD. Hierarchical clustering analysis further strengthens the roles of these novel miRs in different PD pathways. Furthermore hsa-miR-92a appeared as novel hub miR in both regulatory and co-expression network indicating its strong functional role in PD. High conservation patterns were observed for most of these 23 novel hub miRs across different species including human. Thus these 23 novel hub miRs can be considered as potential biomarkers for PD. Conclusion Our study identified 23 novel miR markers which can open up new avenues for future studies and shed lights on potential therapeutic targets for PD.
Collapse
Affiliation(s)
- Paulami Chatterjee
- Department of Biophysics, Bose Institute, Acharya J.C. Bose Centenary Building, Kolkata, India
| | | | | | - Debjani Roy
- Department of Biophysics, Bose Institute, Acharya J.C. Bose Centenary Building, Kolkata, India
- * E-mail:
| |
Collapse
|
262
|
Fagan SG, Campbell VA. The influence of cannabinoids on generic traits of neurodegeneration. Br J Pharmacol 2014; 171:1347-60. [PMID: 24172185 PMCID: PMC3954477 DOI: 10.1111/bph.12492] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/14/2013] [Accepted: 09/16/2013] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED In an increasingly ageing population, the incidence of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Huntington's disease are rising. While the aetiologies of these disorders are different, a number of common mechanisms that underlie their neurodegenerative components have been elucidated; namely neuroinflammation, excitotoxicity, mitochondrial dysfunction and reduced trophic support. Current therapies focus on treatment of the symptoms and attempt to delay the progression of these diseases but there is currently no cure. Modulation of the endogenous cannabinoid system is emerging as a potentially viable option in the treatment of neurodegeneration. Endocannabinoid signalling has been found to be altered in many neurodegenerative disorders. To this end, pharmacological manipulation of the endogenous cannabinoid system, as well as application of phytocannabinoids and synthetic cannabinoids have been investigated. Signalling from the CB1 and CB2 receptors are known to be involved in the regulation of Ca(2+) homeostasis, mitochondrial function, trophic support and inflammatory status, respectively, while other receptors gated by cannabinoids such as PPARγ, are gaining interest in their anti-inflammatory properties. Through multiple lines of evidence, this evolutionarily conserved neurosignalling system has shown neuroprotective capabilities and is therefore a potential target for neurodegenerative disorders. This review details the mechanisms of neurodegeneration and highlights the beneficial effects of cannabinoid treatment. LINKED ARTICLES This article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-6.
Collapse
Affiliation(s)
- S G Fagan
- Trinity College Institute of Neuroscience, Department of Physiology, School of Medicine, University of Dublin, Trinity CollegeDublin 2, Ireland
| | - V A Campbell
- Trinity College Institute of Neuroscience, Department of Physiology, School of Medicine, University of Dublin, Trinity CollegeDublin 2, Ireland
| |
Collapse
|
263
|
Oxidative Stress-Induced Signaling Pathways Implicated in the Pathogenesis of Parkinson’s Disease. Neuromolecular Med 2014; 16:217-30. [DOI: 10.1007/s12017-014-8294-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 02/03/2014] [Indexed: 01/05/2023]
|
264
|
Robinson PA. Understanding the molecular basis of Parkinson’s disease, identification of biomarkers and routes to therapy. Expert Rev Proteomics 2014; 7:565-78. [DOI: 10.1586/epr.10.40] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
265
|
Van Kampen JM, Baranowski DB, Shaw CA, Kay DG. Panax ginseng is neuroprotective in a novel progressive model of Parkinson's disease. Exp Gerontol 2013; 50:95-105. [PMID: 24316034 DOI: 10.1016/j.exger.2013.11.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 11/18/2013] [Accepted: 11/25/2013] [Indexed: 10/25/2022]
Abstract
Panax ginseng has been used in traditional Chinese medicine for centuries. Among its various benefits is a pluripotent targeting of the various events involved in neuronal cell death. This includes anti-inflammatory, anti-oxidant, and anti-apoptotic effects. Indeed, ginseng extract and its individual ginsenosides have been demonstrated to influence a number of biochemical markers implicated in Parkinson's disease (PD) pathogenesis. We have reported previously that administration of the ginseng extract, G115, afforded robust neuroprotection in two rodent models of PD. However, these traditional rodent models are acute in nature and do accurately recapitulate the progressive nature of the disease. Chronic exposure to the dietary phytosterol glucoside, β-sitosterol β-d-glucoside (BSSG) triggers the progressive development of neurological deficits, with behavioral and cellular features that closely approximate those observed in PD patients. Clinical signs and histopathology continue to develop for several months following cessation of exposure to the neurotoxic insult. Here, we utilized this model to further characterize the neuroprotective effects of the ginseng extract, G115. Oral administration of this extract significantly reduced dopaminergic cell loss, microgliosis, and accumulation of α-synuclein aggregates. Further, G115 administration fully prevented the development of locomotor deficits, in the form of reduced locomotor activity and coordination. These results suggest that ginseng extract may be a potential neuroprotective therapy for the treatment of PD.
Collapse
Affiliation(s)
- Jackalina M Van Kampen
- Neurodyn Inc., 550 University Ave., Charlottetown, PE C1A 4P3, Canada; Department of Biomedical Science, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada.
| | | | - Christopher A Shaw
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 828W. 10th Ave., Vancouver, BC V5Z 1L8, Canada
| | - Denis G Kay
- Neurodyn Inc., 550 University Ave., Charlottetown, PE C1A 4P3, Canada; Department of Biochemistry, University of Prince Edward Island
| |
Collapse
|
266
|
Yang NY, Lee YN, Lee HJ, Kim YS, Lee SJ. Glucocerebrosidase, a new player changing the old rules in Lewy body diseases. Biol Chem 2013; 394:807-18. [PMID: 23435096 DOI: 10.1515/hsz-2012-0322] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/15/2013] [Indexed: 11/15/2022]
Abstract
Mutations in the gene encoding glucocerebrosidase (GBA1) cause Gaucher disease (GD), a lysosomal storage disease with recessive inheritance. Glucocerebrosidase (GCase) is a lysosomal lipid hydrolase that digests glycolipid substrates, such as glucosylceramide and glucosylsphingosine. GBA1 mutations have been implicated in Lewy body diseases (LBDs), such as Parkinson's disease and dementia with Lewy bodies. Parkinsonism occurs more frequently in certain types of GD, and GBA1 mutation carriers are more likely to have LBDs than non-carriers. Furthermore, GCase is often found in Lewy bodies, which are composed of α-synuclein fibrils as well as a variety of proteins and vesicles. In this review, we discuss potential mechanisms of action of GBA1 mutations in LBDs with particular emphasis on α-synuclein aggregation by reviewing the current literature on the role of GCase in lysosomal functions and glycolipid metabolism.
Collapse
Affiliation(s)
- Na-Young Yang
- Department of Biomedical Science and Technology , Konkuk University, Seoul 143-701, Korea
| | | | | | | | | |
Collapse
|
267
|
Hellstrand E, Grey M, Ainalem ML, Ankner J, Forsyth VT, Fragneto G, Haertlein M, Dauvergne MT, Nilsson H, Brundin P, Linse S, Nylander T, Sparr E. Adsorption of α-synuclein to supported lipid bilayers: positioning and role of electrostatics. ACS Chem Neurosci 2013; 4:1339-51. [PMID: 23823878 DOI: 10.1021/cn400066t] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
An amyloid form of the protein α-synuclein is the major component of the intraneuronal inclusions called Lewy bodies, which are the neuropathological hallmark of Parkinson's disease (PD). α-Synuclein is known to associate with anionic lipid membranes, and interactions between aggregating α-synuclein and cellular membranes are thought to be important for PD pathology. We have studied the molecular determinants for adsorption of monomeric α-synuclein to planar model lipid membranes composed of zwitterionic phosphatidylcholine alone or in a mixture with anionic phosphatidylserine (relevant for plasma membranes) or anionic cardiolipin (relevant for mitochondrial membranes). We studied the adsorption of the protein to supported bilayers, the position of the protein within and outside the bilayer, and structural changes in the model membranes using two complementary techniques-quartz crystal microbalance with dissipation monitoring, and neutron reflectometry. We found that the interaction and adsorbed conformation depend on membrane charge, protein charge, and electrostatic screening. The results imply that α-synuclein adsorbs in the headgroup region of anionic lipid bilayers with extensions into the bulk but does not penetrate deeply into or across the hydrophobic acyl chain region. The adsorption to anionic bilayers leads to a small perturbation of the acyl chain packing that is independent of anionic headgroup identity. We also explored the effect of changing the area per headgroup in the lipid bilayer by comparing model systems with different degrees of acyl chain saturation. An increase in area per lipid headgroup leads to an increase in the level of α-synuclein adsorption with a reduced water content in the acyl chain layer. In conclusion, the association of α-synuclein to membranes and its adsorbed conformation are of electrostatic origin, combined with van der Waals interactions, but with a very weak correlation to the molecular structure of the anionic lipid headgroup. The perturbation of the acyl chain packing upon monomeric protein adsorption favors association with unsaturated phospholipids preferentially found in the neuronal membrane.
Collapse
Affiliation(s)
- Erik Hellstrand
- Biophysical Chemistry, Department
of Chemistry, Lund University, SE-22100
Lund, Sweden
| | - Marie Grey
- Physical Chemistry,
Department of Chemistry, Lund University, SE-22100 Lund, Sweden
| | | | - John Ankner
- Oak Ridge National Laboratory, Spallation Neutron Source,
Oak Ridge, Tennessee 37831, United States
| | - V. Trevor Forsyth
- Institut Laue-Langevin, 6, rue Jules Horowitz, 38042 Grenoble, France
- EPSAM/ISTM, Keele
University, Staffordshire, ST5 5BG, UK
| | - Giovanna Fragneto
- Institut Laue-Langevin, 6, rue Jules Horowitz, 38042 Grenoble, France
| | - Michael Haertlein
- Institut Laue-Langevin, 6, rue Jules Horowitz, 38042 Grenoble, France
| | | | - Hanna Nilsson
- Biophysical Chemistry, Department
of Chemistry, Lund University, SE-22100
Lund, Sweden
| | - Patrik Brundin
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Lund University, BMC B11, 221 84 Lund, Sweden
- Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Avenue Northeast,
Grand Rapids, Michigan 49503, United States
| | - Sara Linse
- Biochemistry and Structural Biology, Department of
Chemistry, Lund University, SE-22100 Lund,
Sweden
| | - Tommy Nylander
- Physical Chemistry,
Department of Chemistry, Lund University, SE-22100 Lund, Sweden
| | - Emma Sparr
- Physical Chemistry,
Department of Chemistry, Lund University, SE-22100 Lund, Sweden
| |
Collapse
|
268
|
Hellstrand E, Nowacka A, Topgaard D, Linse S, Sparr E. Membrane lipid co-aggregation with α-synuclein fibrils. PLoS One 2013; 8:e77235. [PMID: 24146972 PMCID: PMC3795653 DOI: 10.1371/journal.pone.0077235] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 08/30/2013] [Indexed: 11/27/2022] Open
Abstract
Amyloid deposits from several human diseases have been found to contain membrane lipids. Co-aggregation of lipids and amyloid proteins in amyloid aggregates, and the related extraction of lipids from cellular membranes, can influence structure and function in both the membrane and the formed amyloid deposit. Co-aggregation can therefore have important implications for the pathological consequences of amyloid formation. Still, very little is known about the mechanism behind co-aggregation and molecular structure in the formed aggregates. To address this, we study in vitro co-aggregation by incubating phospholipid model membranes with the Parkinson's disease-associated protein, α-synuclein, in monomeric form. After aggregation, we find spontaneous uptake of phospholipids from anionic model membranes into the amyloid fibrils. Phospholipid quantification, polarization transfer solid-state NMR and cryo-TEM together reveal co-aggregation of phospholipids and α-synuclein in a saturable manner with a strong dependence on lipid composition. At low lipid to protein ratios, there is a close association of phospholipids to the fibril structure, which is apparent from reduced phospholipid mobility and morphological changes in fibril bundling. At higher lipid to protein ratios, additional vesicles adsorb along the fibrils. While interactions between lipids and amyloid-protein are generally discussed within the perspective of different protein species adsorbing to and perturbing the lipid membrane, the current work reveals amyloid formation in the presence of lipids as a co-aggregation process. The interaction leads to the formation of lipid-protein co-aggregates with distinct structure, dynamics and morphology compared to assemblies formed by either lipid or protein alone.
Collapse
Affiliation(s)
- Erik Hellstrand
- Division of Biophysical Chemistry, Center of Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | - Agnieszka Nowacka
- Division of Physical Chemistry, Center of Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | - Daniel Topgaard
- Division of Physical Chemistry, Center of Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | - Sara Linse
- Division of Biochemistry, Center of Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | - Emma Sparr
- Division of Physical Chemistry, Center of Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| |
Collapse
|
269
|
Kuru S, Yoshida M, Tatsumi S, Mimuro M. Immunohistochemical localization of spatacsin in α-synucleinopathies. Neuropathology 2013; 34:135-9. [PMID: 24112408 DOI: 10.1111/neup.12069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/19/2013] [Indexed: 12/01/2022]
Abstract
Spatacsin (SPG11) is a major mutated gene in autosomal recessive spastic paraplegia with thin corpus callosum (ARHSP-TCC) and is responsible for juvenile Parkinsonism. To elucidate the role of spatacsin in the pathogenesis of α-synucleinopathies, an immunohistochemical investigation was performed on the brain of patients with Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA) using anti-spatacsin antibody. In PD, Lewy bodies (LBs) in the brain stem were positive for spatacsin. These LBs showed intense staining in their peripheral portions and occasionally in the central cores. Lewy neurites were also spatacsin-positive. In DLB, cortical LBs were immunolabeled by spatacsin. In MSA, glial cytoplasmic inclusions (GCI) and a small fraction of neuronal cytoplasmic inclusions (NCI) were positive for spatacsin. The widespread accumulation of spatacsin observed in pathologic α-synuclein-containing inclusions suggests that spatacsin may be involved in the pathogenesis of α-synucleinopathies.
Collapse
Affiliation(s)
- Satoshi Kuru
- Department of Neurology, National Organization Suzuka Hospital, Suzuka, Japan
| | | | | | | |
Collapse
|
270
|
Kolisek M, Sponder G, Mastrototaro L, Smorodchenko A, Launay P, Vormann J, Schweigel-Röntgen M. Substitution p.A350V in Na⁺/Mg²⁺ exchanger SLC41A1, potentially associated with Parkinson's disease, is a gain-of-function mutation. PLoS One 2013; 8:e71096. [PMID: 23976986 PMCID: PMC3744568 DOI: 10.1371/journal.pone.0071096] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/24/2013] [Indexed: 12/31/2022] Open
Abstract
Parkinson's disease (PD) is a complex multifactorial ailment predetermined by the interplay of various environmental and genetic factors. Systemic and intracellular magnesium (Mg) deficiency has long been suspected to contribute to the development and progress of PD and other neurodegenerative diseases. However, the molecular background is unknown. Interestingly, gene SLC41A1 located in the novel PD locus PARK16 has recently been identified as being a Na+/Mg2+ exchanger (NME, Mg2+ efflux system), a key component of cellular magnesium homeostasis. Here, we demonstrate that the substitution p.A350V potentially associated with PD is a gain-of-function mutation that enhances a core function of SLC41A1, namely Na+-dependent Mg2+ efflux by 69±10% under our experimental conditions (10-minute incubation in high-Na+ (145 mM) and completely Mg2+-free medium). The increased efflux capacity is accompanied by an insensitivity of mutant NME to cAMP stimulation suggesting disturbed hormonal regulation and leads to a reduced proliferation rate in p.A350V compared with wt cells. We hypothesize that enhanced Mg2+-efflux conducted by SLC41A1 variant p.A350V might result, in the long-term, in chronic intracellular Mg2+-deficiency, a condition that is found in various brain regions of PD patients and that exacerbates processes triggering neuronal damage.
Collapse
Affiliation(s)
- Martin Kolisek
- Institute of Veterinary-Physiology, Free University Berlin, Berlin, Germany
- * E-mail: (MK); (MSR)
| | - Gerhard Sponder
- Institute of Veterinary-Physiology, Free University Berlin, Berlin, Germany
| | - Lucia Mastrototaro
- Institute of Veterinary-Physiology, Free University Berlin, Berlin, Germany
| | - Alina Smorodchenko
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | | | | | - Monika Schweigel-Röntgen
- Institute for Nutritional Physiology “Oskar Kellner”, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
- * E-mail: (MK); (MSR)
| |
Collapse
|
271
|
Reduced cardiac 123I-metaiodobenzylguanidine uptake in patients with spinocerebellar ataxia type 2: a comparative study with Parkinson's disease. Eur J Nucl Med Mol Imaging 2013; 40:1914-21. [PMID: 23929432 DOI: 10.1007/s00259-013-2524-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/17/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disorder characterized by cerebellar ataxia, supranuclear ophthalmoplegia, and peripheral neuropathy. Autonomic nervous system dysfunction is often present. This study evaluated the cardiac sympathetic function in patients with SCA2 using (123)I-metaiodobenzylguanidine (MIBG) in comparison with patients with Parkinson's disease (PD) and control subjects. METHODS Nine patients with SCA2, nine patients with PD, and nine control subjects underwent (123)I-MIBG imaging studies from which early and late heart-to-mediastinum (H/M) ratios and myocardial washout rates were calculated. RESULTS Early (F = 12.3, p < 0.0001) and late (F = 16.8, p < 0.0001) H/M ratios were significantly different among groups. In controls, early and late H/M ratios (2.2 ± 0.12 and 2.1 ± 0.20) were significantly higher than in patients with SCA2 (1.9 ± 0.23 and 1.8 ± 0.20, both p < 0.05) and with patients with PD (1.7 ± 0.29 and 1.4 ± 0.35, both p < 0.001). There was also a significant difference in washout rates among groups (F = 11.7, p < 0.0001). In controls the washout rate (19.9 ± 9.6%) was significantly lower (p < 0.005) than in patients with PD (51.0 ± 23.7%), but not different from that in SCA2 patients (19.5 ± 9.4%). In SCA2 patients, in a multivariable linear regression analysis only the Scale for the Assessment and Rating of Ataxia score was independently associated with early H/M ratio (β = -0.12, p < 0.05). CONCLUSION (123)I-MIBG myocardial scintigraphy demonstrated an impairment of cardiac sympathetic function in patients with SCA2, which was less marked than in PD patients. These results suggest that (123)I-MIBG cardiac imaging could become a useful tool for analysing the pathophysiology of SCA2.
Collapse
|
272
|
Phosphodiesterases: Regulators of cyclic nucleotide signals and novel molecular target for movement disorders. Eur J Pharmacol 2013; 714:486-97. [PMID: 23850946 DOI: 10.1016/j.ejphar.2013.06.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 06/16/2013] [Accepted: 06/21/2013] [Indexed: 12/21/2022]
Abstract
Movement disorders rank among the most common neurological disorders. During the last two decades substantial progress has been made in understanding of the pathological basis of these disorders. Although, several mechanisms have been proposed, downregulation of cyclic nucleotide mediated signaling cascade has consistently been shown to contribute to the striatal dysfunctioning as seen in movement disorders. Thus, counteracting dysregulated cyclic nucleotide signaling has been considered to be beneficial in movement disorders. Cyclic nucleotide phosphodiesterases (PDEs) are the enzymes responsible for the breakdown of cyclic nucleotides and upregulation in PDE activity has been reported in various movement disorders. Thus, PDE inhibition is considered to be a novel strategy to restore cerebral cyclic nucleotide levels and their downstream signalling cascade. Indeed, various PDE inhibitors have been tested pre-clinically and were reported to be neuroprotective in various neurodegenerative disorders associated with movement disabilities. In this review, we have discussed a putative role of PDE inhibitors in movement disorders and associated abnormalities.
Collapse
|
273
|
Meiser J, Weindl D, Hiller K. Complexity of dopamine metabolism. Cell Commun Signal 2013; 11:34. [PMID: 23683503 PMCID: PMC3693914 DOI: 10.1186/1478-811x-11-34] [Citation(s) in RCA: 456] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/10/2013] [Indexed: 01/15/2023] Open
Abstract
: Parkinson's disease (PD) coincides with a dramatic loss of dopaminergic neurons within the substantia nigra. A key player in the loss of dopaminergic neurons is oxidative stress. Dopamine (DA) metabolism itself is strongly linked to oxidative stress as its degradation generates reactive oxygen species (ROS) and DA oxidation can lead to endogenous neurotoxins whereas some DA derivatives show antioxidative effects. Therefore, DA metabolism is of special importance for neuronal redox-homeostasis and viability.In this review we highlight different aspects of dopamine metabolism in the context of PD and neurodegeneration. Since most reviews focus only on single aspects of the DA system, we will give a broader overview by looking at DA biosynthesis, sequestration, degradation and oxidation chemistry at the metabolic level, as well as at the transcriptional, translational and posttranslational regulation of all enzymes involved. This is followed by a short overview of cellular models currently used in PD research. Finally, we will address the topic from a medical point of view which directly aims to encounter PD.
Collapse
Affiliation(s)
- Johannes Meiser
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362 Esch-Belval, Luxembourg
| | - Daniel Weindl
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362 Esch-Belval, Luxembourg
| | - Karsten Hiller
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362 Esch-Belval, Luxembourg
| |
Collapse
|
274
|
Ser129D mutant alpha-synuclein induces earlier motor dysfunction while S129A results in distinctive pathology in a rat model of Parkinson's disease. Neurobiol Dis 2013; 56:47-58. [PMID: 23567651 DOI: 10.1016/j.nbd.2013.03.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 03/19/2013] [Accepted: 03/26/2013] [Indexed: 02/04/2023] Open
Abstract
Alpha-synuclein phosphorylated at serine 129 (S129) is highly elevated in Parkinson's disease patients where it mainly accumulates in the Lewy bodies. Several groups have studied the role of phosphorylation at the S129 in α-synuclein in a rat model for Parkinson's disease using recombinant adeno-associated viral (rAAV) vectors. The results obtained are inconsistent and accordingly the role of S129 phosphorylation in α-synuclein toxicity remains unclear. This prompted us to re-examine the neuropathological and behavioral effects of the S129 modified α-synuclein species in vivo. For this purpose, we used two mutated forms of human α-synuclein in which the S129 was replaced either with an alanine (S129A), to block phosphorylation, or with an aspartate (S129D), to mimic phosphorylation, and compared them with the wild type α-synuclein. This approach was similar in design to previous studies, however our investigation of dopaminergic degeneration also included performing a detailed study of the α-synuclein induced pathology in the striatum and the analysis of motor deficits. Our results showed that overexpressing S129D or wild type α-synuclein resulted in an accelerated dopaminergic fiber loss as compared with S129A α-synuclein. Furthermore, the motor deficit seen in the group treated with the mutant S129D α-synuclein appeared earlier than the other two forms of α-synuclein. Conversely, S129A α-synuclein showed significantly larger pathological α-synuclein-positive inclusions, and slower dopaminergic fiber loss, when compared to the other two forms of α-synuclein, suggesting a neuroprotective effect of the mutation. When examined at long-term, all three α-synuclein forms resulted in pathological accumulations of α-synuclein in striatal fibers and dopaminergic cell death in the substantia nigra. Our data show that changes in the S129 residue of α-synuclein influence the rate of pathology and neurodegeneration, with an overall deleterious effect of exchanging S129 to a residue mimicking its phosphorylated state.
Collapse
|
275
|
Tanik SA, Schultheiss CE, Volpicelli-Daley LA, Brunden KR, Lee VMY. Lewy body-like α-synuclein aggregates resist degradation and impair macroautophagy. J Biol Chem 2013; 288:15194-210. [PMID: 23532841 DOI: 10.1074/jbc.m113.457408] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytoplasmic α-synuclein (α-syn) aggregates, referred to as Lewy bodies, are pathological hallmarks of a number of neurodegenerative diseases, most notably Parkinson disease. Activation of macroautophagy is suggested to facilitate degradation of certain proteinaceous inclusions, but it is unclear if this pathway is capable of degrading α-syn aggregates. Here, we examined this issue by utilizing cellular models in which intracellular Lewy body-like α-syn inclusions accumulate after internalization of pre-formed α-syn fibrils into α-syn-expressing HEK293 cells or cultured primary neurons. We demonstrate that α-syn inclusions cannot be effectively degraded, even though they co-localize with essential components of both the autophagic and proteasomal protein degradation pathways. The α-syn aggregates persist even after soluble α-syn levels have been substantially reduced, suggesting that once formed, the α-syn inclusions are refractory to clearance. Importantly, we also find that α-syn aggregates impair overall macroautophagy by reducing autophagosome clearance, which may contribute to the increased cell death that is observed in aggregate-bearing cells.
Collapse
Affiliation(s)
- Selcuk A Tanik
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
276
|
Catecholamines and Neurodegeneration in Parkinson's Disease-From Diagnostic Marker to Aggregations of α-Synuclein. Diagnostics (Basel) 2013; 3:210-21. [PMID: 26835675 PMCID: PMC4665535 DOI: 10.3390/diagnostics3020210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/22/2013] [Accepted: 03/04/2013] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease is the second most prevalent disease of the brain. It is characterized by midbrain dopaminergic neuronal degeneration accompanied by Lewy bodies, intra-cytoplasmic neuronal inclusions that consist mainly of alpha-synuclein. The cardinal motor features are muscular rigidity, bradykinesia, and resting tremor and, in advanced cases, postural instability. Symptoms are relieved by dopamine replacement therapy, but progress slowly. Clinical diagnosis is made according to medical history, neurological examinations and the response to anti-Parkinsonian drugs. There are no laboratory tests for diagnosis of the disease; however, for development of disease-modifying treatment, early diagnosis by objective laboratory test is required. Recently, postsynaptic sympathetic norepinephrine nerve terminals were found to be degenerated as well as mesencephalic dopaminergic neurons. Cardiac norepinephrine denervation can be seen by meta-iodine-benzyl guanidine scintigraphy, and may be a reliable diagnostic marker. Degeneration of norepinephrinergic and dopaminergic neurons suggests that catecholamines may play a central role in the neurodegeneration in Parkinson's disease. Recently several studies showed that alpha-synuclein aggregates in cells exposed to dopamine. Here, we review findings relating to an early diagnostic marker for detecting degeneration of the peripheral sympathetic nerves, and propose the hypothesis that catecholamines cause alpha-synuclein to aggregate and play an important role in disease pathogenesis.
Collapse
|
277
|
Cronin-Furman EN, Borland MK, Bergquist KE, Bennett JP, Trimmer PA. Mitochondrial quality, dynamics and functional capacity in Parkinson's disease cybrid cell lines selected for Lewy body expression. Mol Neurodegener 2013; 8:6. [PMID: 23351342 PMCID: PMC3577453 DOI: 10.1186/1750-1326-8-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 01/21/2013] [Indexed: 12/13/2022] Open
Abstract
Background Lewy bodies (LB) are a neuropathological hallmark of Parkinson’s disease (PD) and other synucleinopathies. The role their formation plays in disease pathogenesis is not well understood, in part because studies of LB have been limited to examination of post-mortem tissue. LB formation may be detrimental to neuronal survival or merely an adaptive response to other ongoing pathological processes. In a human cytoplasmic hybrid (cybrid) neural cell model that expresses mitochondrial DNA from PD patients, we observed spontaneous formation of intracellular protein aggregates (“cybrid LB” or CLB) that replicate morphological and biochemical properties of native, cortical LB. We studied mitochondrial morphology, bioenergetics and biogenesis signaling by creating stable sub-clones of three PD cybrid cell lines derived from cells expressing CLB. Results Cloning based on CLB expression had a differential effect on mitochondrial morphology, movement and oxygen utilization in each of three sub-cloned lines, but no long-term change in CLB expression. In one line (PD63CLB), mitochondrial function declined compared to the original PD cybrid line (PD63Orig) due to low levels of mtDNA in nucleoids. In another cell line (PD61Orig), the reverse was true, and cellular and mitochondrial function improved after sub-cloning for CLB expression (PD61CLB). In the third cell line (PD67Orig), there was no change in function after selection for CLB expression (PD67CLB). Conclusions Expression of mitochondrial DNA derived from PD patients in cybrid cell lines induced the spontaneous formation of CLB. The creation of three sub-cloned cybrid lines from cells expressing CLB resulted in differential phenotypic changes in mitochondrial and cellular function. These changes were driven by the expression of patient derived mitochondrial DNA in nucleoids, rather than by the presence of CLB. Our studies suggest that mitochondrial DNA plays an important role in cellular and mitochondrial dysfunction in PD. Additional studies will be needed to assess the direct effect of CLB expression on cellular and mitochondrial function.
Collapse
Affiliation(s)
- Emily N Cronin-Furman
- Parkinson's and Movement Disorders Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | |
Collapse
|
278
|
Abstract
Parkinson's disease (PD) is characterized by a progressive degeneration of dopamine (DA) neurons and a chronic loss of motor functions. The investigation of progressive degenerative mechanisms and possible neuroprotective approaches for PD depends upon the development of an experimental animal model that reproduces the neuropathology observed in humans. This chapter describes the generation of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTPp) chronic mouse model of PD. This model displays key features of PD, including impairment of motor and olfactory functions associated with partial loss of tyrosine hydroxylase-positive neurons and DA levels in the brain. The MPTPp mouse model provides an important tool for the study of mechanisms contributing to the pathological dysfunction of PD at the cellular and whole animal level.
Collapse
Affiliation(s)
- Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.
| | | | | |
Collapse
|
279
|
Smith LM, Schiess MC, Coffey MP, Klaver AC, Loeffler DA. α-Synuclein and anti-α-synuclein antibodies in Parkinson's disease, atypical Parkinson syndromes, REM sleep behavior disorder, and healthy controls. PLoS One 2012; 7:e52285. [PMID: 23284971 PMCID: PMC3524108 DOI: 10.1371/journal.pone.0052285] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 11/15/2012] [Indexed: 12/02/2022] Open
Abstract
α-synuclein is thought to play a key role in Parkinson’s disease (PD) because it is the major protein in Lewy bodies, and because its gene mutations, duplication, and triplication are associated with early-onset PD. There are conflicting reports as to whether serum and plasma concentrations of α-synuclein and anti-α-synuclein antibodies differ between PD and control subjects. The objectives of this study were to compare the levels of α-synuclein and its antibodies between individuals with typical PD (n = 14), atypical Parkinson syndromes (n = 11), idiopathic rapid eye movement sleep behavior disorder (n = 10), and healthy controls (n = 9), to assess the strength of association between these serum proteins, and to determine group sizes needed for a high probability (80% power) of detecting statistical significance for 25% or 50% differences between typical PD and control subjects for these measurements. Analysis of log-transformed data found no statistically significant differences between groups for either α-synuclein or its antibodies. The concentrations of these proteins were weakly correlated (Spearman rho = 0.16). In subjects with typical PD and atypical Parkinson syndromes, anti-α-synuclein antibody levels above 1.5 µg/ml were detected only in subjects with no more than four years of clinical disease. Power analysis indicated that 236 and 73 samples per group would be required for an 80% probability that 25% and 50% differences, respectively, in mean α-synuclein levels between typical PD and control subjects would be statistically significant; for anti-α-synuclein antibodies, 283 and 87 samples per group would be required. Our findings are consistent with those previous studies which suggested that serum concentrations of α-synuclein and its antibodies are not significantly altered in PD.
Collapse
Affiliation(s)
- Lynnae M. Smith
- Department of Neurology Research, Beaumont Health System, Royal Oak, Michigan, United States of America
| | - Mya C. Schiess
- Department of Neurology, University of Texas Houston Medical School, Houston, Texas, United States of America
| | - Mary P. Coffey
- Department of Biostatistics, Beaumont Health System, Royal Oak, Michigan, United States of America
| | - Andrea C. Klaver
- Department of Neurology Research, Beaumont Health System, Royal Oak, Michigan, United States of America
| | - David A. Loeffler
- Department of Neurology Research, Beaumont Health System, Royal Oak, Michigan, United States of America
- * E-mail:
| |
Collapse
|
280
|
Rendón WO, Martínez-Alonso E, Tomás M, Martínez-Martínez N, Martínez-Menárguez JA. Golgi fragmentation is Rab and SNARE dependent in cellular models of Parkinson’s disease. Histochem Cell Biol 2012; 139:671-84. [DOI: 10.1007/s00418-012-1059-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2012] [Indexed: 10/27/2022]
|
281
|
Latourelle JC, Dumitriu A, Hadzi TC, Beach TG, Myers RH. Evaluation of Parkinson disease risk variants as expression-QTLs. PLoS One 2012; 7:e46199. [PMID: 23071545 PMCID: PMC3465315 DOI: 10.1371/journal.pone.0046199] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/29/2012] [Indexed: 11/18/2022] Open
Abstract
The recent Parkinson Disease GWAS Consortium meta-analysis and replication study reports association at several previously confirmed risk loci SNCA, MAPT, GAK/DGKQ, and HLA and identified a novel risk locus at RIT2. To further explore functional consequences of these associations, we investigated modification of gene expression in prefrontal cortex brain samples of pathologically confirmed PD cases (N = 26) and controls (N = 24) by 67 associated SNPs in these 5 loci. Association between the eSNPs and expression was evaluated using a 2-degrees of freedom test of both association and difference in association between cases and controls, adjusted for relevant covariates. SNPs at each of the 5 loci were tested for cis-acting effects on all probes within 250 kb of each locus. Trans-effects of the SNPs on the 39,122 probes passing all QC on the microarray were also examined. From the analysis of cis-acting SNP effects, several SNPs in the MAPT region show significant association to multiple nearby probes, including two strongly correlated probes targeting the gene LOC644246 and the duplicated genes LRRC37A and LRRC37A2, and a third uncorrelated probe targeting the gene DCAKD. Significant cis-associations were also observed between SNPs and two probes targeting genes in the HLA region on chromosome 6. Expanding the association study to examine trans effects revealed an additional 23 SNP-probe associations reaching statistical significance (p<2.8 × 10(-8)) including SNPs from the SNCA, MAPT and RIT2 regions. These findings provide additional context for the interpretation of PD associated SNPs identified in recent GWAS as well as potential insight into the mechanisms underlying the observed SNP associations.
Collapse
Affiliation(s)
- Jeanne C Latourelle
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America.
| | | | | | | | | |
Collapse
|
282
|
Ferrer I, López-Gonzalez I, Carmona M, Dalfó E, Pujol A, Martínez A. Neurochemistry and the non-motor aspects of PD. Neurobiol Dis 2012; 46:508-26. [PMID: 22737710 DOI: 10.1016/j.nbd.2011.10.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
Parkinson disease (PD) is a systemic disease with variegated non-motor deficits and neurological symptoms, including impaired olfaction, autonomic failure, cognitive impairment and psychiatric symptoms, in addition to the classical motor symptoms. Many non-motor symptoms appear before or in parallel with motor deficits and then worsen with disease progression. Although there is a relationship, albeit not causal, between motor symptoms and the presence of Lewy bodies (LBs) and neurites filled with abnormal α-synuclein, other neurological alterations are independent of the amount of α-synuclein inclusions in neurons and neurites, thereby indicating that different mechanisms probably converge in the degenerative process. This may apply to complex alterations interfering with olfactory and autonomic nervous systemfunctions, emotions, sleep regulation, and behavioral, cognitive and mental performance. Involvement of the cerebral cortex leading to impaired behavior and cognition is related to several convergent altered factors including: a. dopaminergic, noradrenergic, serotoninergic and cholinergic cortical innervation; b. synapses; c. cortical metabolism; d. mitochondrial function and energy production; e. oxidative damage; f. transcription; g. protein expression; h. lipid composition; and i. ubiquitin–proteasome system and autophagy, among others. This complex situation indicates that multiple subcellular failure in selected cell populations is difficult to reconcilewith a reductionistic scenario of a single causative cascade of events leading to non-motor symptoms in PD. Furthermore, these alterationsmay appear at early stages of the disease and may precede the appearance of substantial irreversible cell loss by years. These observations have important implications in the design of therapeutic approaches geared to prevention and treatment of PD.
Collapse
Affiliation(s)
- I Ferrer
- Institute of Neuropathology, Service of Pathology, University Hospital of Bellvitge, Spain.
| | | | | | | | | | | |
Collapse
|
283
|
Dumitriu A, Latourelle JC, Hadzi TC, Pankratz N, Garza D, Miller JP, Vance JM, Foroud T, Beach TG, Myers RH. Gene expression profiles in Parkinson disease prefrontal cortex implicate FOXO1 and genes under its transcriptional regulation. PLoS Genet 2012; 8:e1002794. [PMID: 22761592 PMCID: PMC3386245 DOI: 10.1371/journal.pgen.1002794] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 05/13/2012] [Indexed: 12/20/2022] Open
Abstract
Parkinson disease (PD) is a complex neurodegenerative disorder with largely unknown genetic mechanisms. While the degeneration of dopaminergic neurons in PD mainly takes place in the substantia nigra pars compacta (SN) region, other brain areas, including the prefrontal cortex, develop Lewy bodies, the neuropathological hallmark of PD. We generated and analyzed expression data from the prefrontal cortex Brodmann Area 9 (BA9) of 27 PD and 26 control samples using the 44K One-Color Agilent 60-mer Whole Human Genome Microarray. All samples were male, without significant Alzheimer disease pathology and with extensive pathological annotation available. 507 of the 39,122 analyzed expression probes were different between PD and control samples at false discovery rate (FDR) of 5%. One of the genes with significantly increased expression in PD was the forkhead box O1 (FOXO1) transcription factor. Notably, genes carrying the FoxO1 binding site were significantly enriched in the FDR-significant group of genes (177 genes covered by 189 probes), suggesting a role for FoxO1 upstream of the observed expression changes. Single-nucleotide polymorphisms (SNPs) selected from a recent meta-analysis of PD genome-wide association studies (GWAS) were successfully genotyped in 50 out of the 53 microarray brains, allowing a targeted expression-SNP (eSNP) analysis for 52 SNPs associated with PD affection at genome-wide significance and the 189 probes from FoxO1 regulated genes. A significant association was observed between a SNP in the cyclin G associated kinase (GAK) gene and a probe in the spermine oxidase (SMOX) gene. Further examination of the FOXO1 region in a meta-analysis of six available GWAS showed two SNPs significantly associated with age at onset of PD. These results implicate FOXO1 as a PD-relevant gene and warrant further functional analyses of its transcriptional regulatory mechanisms.
Collapse
Affiliation(s)
- Alexandra Dumitriu
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
284
|
Wakabayashi K, Tanji K, Odagiri S, Miki Y, Mori F, Takahashi H. The Lewy body in Parkinson's disease and related neurodegenerative disorders. Mol Neurobiol 2012; 47:495-508. [PMID: 22622968 DOI: 10.1007/s12035-012-8280-y] [Citation(s) in RCA: 297] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/10/2012] [Indexed: 12/20/2022]
Abstract
The histopathological hallmark of Parkinson's disease (PD) is the presence of fibrillar aggregates referred to as Lewy bodies (LBs), in which α-synuclein is a major constituent. Pale bodies, the precursors of LBs, may serve the material for that LBs continue to expand. LBs consist of a heterogeneous mixture of more than 90 molecules, including PD-linked gene products (α-synuclein, DJ-1, LRRK2, parkin, and PINK-1), mitochondria-related proteins, and molecules implicated in the ubiquitin-proteasome system, autophagy, and aggresome formation. LB formation has been considered to be a marker for neuronal degeneration because neuronal loss is found in the predilection sites for LBs. However, recent studies have indicated that nonfibrillar α-synuclein is cytotoxic and that fibrillar aggregates of α-synuclein (LBs and pale bodies) may represent a cytoprotective mechanism in PD.
Collapse
Affiliation(s)
- Koichi Wakabayashi
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan.
| | | | | | | | | | | |
Collapse
|
285
|
Guilarte TR. Manganese and Parkinson's disease: a critical review and new findings. CIENCIA & SAUDE COLETIVA 2012; 16:4549-66. [PMID: 22124833 DOI: 10.1590/s1413-81232011001200028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 04/19/2010] [Indexed: 11/22/2022] Open
Abstract
The goal of this review was to examine whether chronic Mn exposure produces dopamine neuron degeneration and PD or whether it has a distinct neuropathology and clinical presentation. I reviewed available clinical, neuroimaging, and neuropathological studies in humans and nonhuman primates exposed to Mn or other human conditions that result in elevated brain Mn concentrations. Human and nonhuman primate literature was examined to compare clinical, neuroimaging, and neuropathological changes associated with Mn-induced parkinsonism. Clinical, neuroimaging, and neuropathological evidence was used to examine whether Mn-induced parkinsonism involves degeneration of the nigrostriatal dopaminergic system as is the case in PD. The overwhelming evidence shows that Mn-induced parkinsonism does not involve degeneration of midbrain dopamine neurons and that l-dopa is not an effective therapy. New evidence is presented on a putative mechanism by which Mn may produce movement abnormalities. Confirmation of this hypothesis in humans is essential to make rational decisions about treatment, devise effective therapeutic strategies, and set regulatory guidelines.
Collapse
Affiliation(s)
- Tomás R Guilarte
- Neurotoxicology and Molecular Imaging Laboratory, Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
| |
Collapse
|
286
|
Abstract
Ageing leads to a functional deterioration of many brain systems, including the circadian clock--an internal time-keeping system that generates ∼24-hour rhythms in physiology and behaviour. Numerous clinical studies have established a direct correlation between abnormal circadian clock functions and the severity of neurodegenerative and sleep disorders. Latest data from experiments in model organisms, gene expression studies and clinical trials imply that dysfunctions of the circadian clock contribute to ageing and age-associated pathologies, thereby suggesting a functional link between the circadian clock and age-associated decline of brain functions. Potential molecular mechanisms underlying this link include the circadian control of physiological processes such as brain metabolism, reactive oxygen species homeostasis, hormone secretion, autophagy and stem cell proliferation.
Collapse
|
287
|
Hasegawa T, Konno M, Baba T, Sugeno N, Kikuchi A, Kobayashi M, Miura E, Tanaka N, Tamai K, Furukawa K, Arai H, Mori F, Wakabayashi K, Aoki M, Itoyama Y, Takeda A. The AAA-ATPase VPS4 regulates extracellular secretion and lysosomal targeting of α-synuclein. PLoS One 2011; 6:e29460. [PMID: 22216284 PMCID: PMC3245276 DOI: 10.1371/journal.pone.0029460] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 11/29/2011] [Indexed: 11/18/2022] Open
Abstract
Many neurodegenerative diseases share a common pathological feature: the deposition of amyloid-like fibrils composed of misfolded proteins. Emerging evidence suggests that these proteins may spread from cell-to-cell and encourage the propagation of neurodegeneration in a prion-like manner. Here, we demonstrated that α-synuclein (αSYN), a principal culprit for Lewy pathology in Parkinson's disease (PD), was present in endosomal compartments and detectably secreted into the extracellular milieu. Unlike prion protein, extracellular αSYN was mainly recovered in the supernatant fraction rather than in exosome-containing pellets from the neuronal culture medium and cerebrospinal fluid. Surprisingly, impaired biogenesis of multivesicular body (MVB), an organelle from which exosomes are derived, by dominant-negative mutant vacuolar protein sorting 4 (VPS4) not only interfered with lysosomal targeting of αSYN but facilitated αSYN secretion. The hypersecretion of αSYN in VPS4-defective cells was efficiently restored by the functional disruption of recycling endosome regulator Rab11a. Furthermore, both brainstem and cortical Lewy bodies in PD were found to be immunoreactive for VPS4. Thus, VPS4, a master regulator of MVB sorting, may serve as a determinant of lysosomal targeting or extracellular secretion of αSYN and thereby contribute to the intercellular propagation of Lewy pathology in PD.
Collapse
Affiliation(s)
- Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
288
|
Diaz-Corrales FJ, Miyazaki I, Asanuma M, Ruano D, Rios RM. Centrosomal aggregates and Golgi fragmentation disrupt vesicular trafficking of DAT. Neurobiol Aging 2011; 33:2462-77. [PMID: 22177721 DOI: 10.1016/j.neurobiolaging.2011.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/08/2011] [Accepted: 11/10/2011] [Indexed: 12/13/2022]
Abstract
Lewy bodies containing the centrosomal protein γ-tubulin and fragmentation of Golgi apparatus (GA) have been described in nigral neurons of Parkinson's disease (PD) patients. However, the relevance of these features in PD pathophysiology remains unknown. We analyzed the impact of proteasome inhibition in the formation of γ-tubulin-containing aggregates as well as on GA structure. SH-SY5Y cells were treated with the proteasome inhibitor Z-Leu-Leu-Leu-al (MG132) to induce centrosomal-protein aggregates. Then, microtubules (MTs) and Golgi dynamics, as well as the vesicular transport of dopamine transporter (DAT) were evaluated both in vitro and in living cells. MG132 treatment induced γ-tubulin aggregates which altered microtubule nucleation. MG132-treated cells containing γ-tubulin aggregates showed fragmentation of GA and perturbation of the trans-Golgi network. Under these conditions, the DAT accumulated at the centrosomal-Golgi region indicating that the vesicular transport of DAT was disrupted. Thus, centrosomal aggregates and fragmentation of GA are 2 closely related processes that could result in the disruption of the vesicular transport of DAT toward the plasma membrane in a model of dopaminergic neuronal degeneration.
Collapse
Affiliation(s)
- Francisco J Diaz-Corrales
- Departamento de Señalización Celular, Centro Andaluz de Biología Molecular y Medicina Regenerativa, Seville, Spain.
| | | | | | | | | |
Collapse
|
289
|
Carrotta R, Canale C, Diaspro A, Trapani A, Biagio PLS, Bulone D. Inhibiting effect of α(s1)-casein on Aβ(1-40) fibrillogenesis. Biochim Biophys Acta Gen Subj 2011; 1820:124-32. [PMID: 22155633 DOI: 10.1016/j.bbagen.2011.11.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 01/16/2023]
Abstract
BACKGROUND α(s1)-Casein is one of the four types of caseins, the largest protein component of bovine milk. The lack of a compact folded conformation and the capability to form micelles suggest a relationship of α(s1)-casein with the class of the intrinsically disordered (or natively unfolded) proteins. These proteins are known to exert a stabilizing activity on biomolecules through specific interaction with hydrophobic surfaces. In the present work we focused on the effect of α(s1)-casein on the fibrillogenesis of 1-40 β-amyloid peptide, involved in Alzheimer's disease. METHODS The aggregation kinetics of β-peptide in presence and absence of α(s1)-casein was followed under shear at 37°C by recording the Thioflavine fluorescence, usually taken as an indicator of fibers formation. Measurements of Static and Dynamic Light Scattering, Circular Dichroism, and AFM imaging were done to reveal the details of α(s1)-casein-Aβ(1-40) interaction. RESULTS AND DISCUSSIONS α(s1)-Casein addition sizably increases the lag-time of the nucleation phase and slows down the entire fibrillization process. α(s1)-Casein sequesters the amyloid peptide on its surface thus exerting a chaperone-like activity by means a colloidal inhibition mechanism. GENERAL SIGNIFICANCE Insights on the working mechanism of natural chaperones in preventing or controlling the amyloid aggregation.
Collapse
Affiliation(s)
- R Carrotta
- Inst. of Biophysics, National Research Council, Via U. La Malfa 153, I-90146, Palermo, Italy
| | | | | | | | | | | |
Collapse
|
290
|
Bellucci A, Navarria L, Zaltieri M, Missale C, Spano P. α-Synuclein synaptic pathology and its implications in the development of novel therapeutic approaches to cure Parkinson's disease. Brain Res 2011; 1432:95-113. [PMID: 22153624 DOI: 10.1016/j.brainres.2011.11.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 11/11/2011] [Accepted: 11/11/2011] [Indexed: 12/24/2022]
Abstract
Parkinson's disease (PD) is characterized by a progressive loss of dopamine (DA) neurons of the nigrostriatal system and by the presence of Lewy bodies (LB), proteinaceous inclusions mainly composed of filamentous α-synuclein aggregates. Alpha-synuclein is a natively unfolded protein which plays a central role in the control of dopaminergic neuronal functions and which is thought to be critically implicated in PD pathophysiology. Indeed, besides the fact that α-synuclein is the main protein component of LB, genetic studies showed that mutations and multiplications of the α-synuclein gene are responsible for the onset of familial forms of PD. A large body of evidence indicates that α-synuclein pathology at dopaminergic synapses may underlie the onset of neuronal cell dysfunction and degeneration in the PD brain. Thus, since the available therapeutic approaches to cure this disease are still limited, we hypothesized that the analysis of the α-synuclein synaptic proteome/lipidome may represent a tool to identify novel potential therapeutic targets to cure this disorder. We thus performed a critical review of studies describing α-synuclein pathophysiology at synaptic sites in experimental models of PD and in this paper we outline the most relevant findings regarding the specific modulatory effects exerted by α-synuclein in the control of synaptic functions in physiological and pathological conditions. The conclusions of these studies allow to single out novel potential therapeutic targets among the α-synuclein synaptic partners. These targets may be considered for the development of new pharmacological and gene-based strategies to cure PD.
Collapse
Affiliation(s)
- Arianna Bellucci
- Division of Pharmacology, Department of Biomedical Sciences and Biotechnology and National Institute of Neuroscience - Italy, School of Medicine, University of Brescia, Brescia, Italy.
| | | | | | | | | |
Collapse
|
291
|
Archer T, Kostrzewa RM, Beninger RJ, Palomo T. Staging neurodegenerative disorders: structural, regional, biomarker, and functional progressions. Neurotox Res 2011; 19:211-34. [PMID: 20393891 DOI: 10.1007/s12640-010-9190-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 03/02/2010] [Accepted: 03/30/2010] [Indexed: 12/11/2022]
Abstract
The notion of staging in the neurodegenerative disorders is modulated by the constant and progressive loss of several aspects of brain structural integrity, circuitry, and neuronal processes. These destructive processes eventually remove individuals' abilities to perform at sufficient and necessary functional capacity at several levels of disease severity. The classification of (a) patients on the basis of diagnosis, risk prognosis, and intervention outcome, forms the basis of clinical staging, and (b) laboratory animals on the basis of animal model of brain disorder, extent of insult, and dysfunctional expression, provides the components for the clinical staging and preclinical staging, respectively, expressing associated epidemiological, biological, and genetic characteristics. The major focus of clinical staging in the present account stems from the fundamental notions of Braak staging as they describe the course and eventual prognosis for Alzheimer's disease, Lewy Body dementia, and Parkinson's disease. Mild cognitive impairment, which expresses the decline in episodic and semantic memory performance below the age-adjusted normal range without marked loss of global cognition or activities of daily living, and the applications of longitudinal magnetic resonance imaging, major instruments for the monitoring of either disease progression in dementia, present important challenges for staging concepts. Although Braak notions present the essential basis for further developments, current staging conceptualizations seem inadequate to comply with the massive influx of information dealing with neurodegenerative processes in brain, advanced both under clinical realities, and discoveries in the laboratory setting. The contributions of various biomarkers of disease progression, e.g., amyloid precursor protein, and neurotransmitter system imbalances, e.g., dopamine receptor supersensitivity and interactive propensities, await their incorporation into the existing staging models thereby underlining the ongoing, dynamic feature of the staging of brain disorders.
Collapse
Affiliation(s)
- Trevor Archer
- Department of Psychology, University of Gothenburg, Box 500, SE-405 30 Gothenburg, Sweden.
| | | | | | | |
Collapse
|
292
|
Derrey S, Ouelaa W, Lecointre M, Maltête D, Chastan N, Leroi AM, Proust F, Fréger P, Weber J, Gourcerol G. Effect of unilateral subthalamic deep brain stimulation on rat digestive motor activity. Neuroscience 2011; 195:89-99. [PMID: 21878371 DOI: 10.1016/j.neuroscience.2011.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/07/2011] [Accepted: 08/01/2011] [Indexed: 12/30/2022]
Abstract
UNLABELLED A significant proportion of patients with Parkinson's disease suffers from digestive symptoms. Bilateral deep brain stimulation of the subthalamic nucleus has become a reliable therapeutic option for parkinsonian patients, but its effects on digestive motility remain poorly investigated. The aim of our study was to assess whether subthalamic stimulation could induce changes in gastric, colonic, and rectal motility and modulate brain centers involved in gut motility. METHODS In anesthetized rats, unilateral subthalamic nucleus stereotactic implantation was performed while intra-gastric, -colonic, and -rectal pressures were recorded during the ON and OFF periods of the stimulation. c-Fos protein expression was quantified by immunostaining in the nucleus of the solitary tract, the dorsal motor nucleus of the vagus nerve, the locus coeruleus, and the Barrington's nucleus. RESULTS Compared to baseline, sham stimulation did not change phasic gastric, colonic or rectal motor activity. Unilateral subthalamic stimulation increased colonic phasic motility (P<0.05) compared to baseline and the OFF period with no change in gastric and rectal motility. Pre-treatment with atropine, or specific D1 and D2 receptors antagonists prevented the rise in colonic motor activity. An increase in c-Fos protein-positive cells within all the studied nuclei was observed in the stimulated group compared to the sham group. CONCLUSIONS Unilateral subthalamic stimulation impacts on gut motility in anesthetized rats with a significant increase in colonic motility probably via the modulation of several brain centers. These findings warrant further confirmation in parkinsonian rat models before being transposed to clinical conditions.
Collapse
Affiliation(s)
- S Derrey
- Appareil Digestif Environnement Nutrition (ADEN EA4311), Institute for Biomedical Research, European Institute for Peptide Research (IFR 23), Rouen University, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
293
|
Braak H, Del Tredici K. Non‐Dopaminergic Pathology of Parkinson's Disease. PARKINSON'S DISEASE 2011. [DOI: 10.1002/9781444397970.ch3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
294
|
Sun X, Cao YB, Hu LF, Yang YP, Li J, Wang F, Liu CF. ASICs mediate the modulatory effect by paeoniflorin on alpha-synuclein autophagic degradation. Brain Res 2011; 1396:77-87. [DOI: 10.1016/j.brainres.2011.04.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 04/02/2011] [Accepted: 04/05/2011] [Indexed: 11/28/2022]
|
295
|
Shachar T, Lo Bianco C, Recchia A, Wiessner C, Raas-Rothschild A, Futerman AH. Lysosomal storage disorders and Parkinson's disease: Gaucher disease and beyond. Mov Disord 2011; 26:1593-604. [PMID: 21618611 DOI: 10.1002/mds.23774] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 03/28/2011] [Accepted: 04/06/2011] [Indexed: 01/01/2023] Open
Abstract
Parkinson's disease is associated with mutations in the glucocerebrosidase gene, which result in the enzyme deficiency causing Gaucher disease, the most common lysosomal storage disorder. We have performed an exhaustive literature search and found that additional lysosomal storage disorders might be associated with Parkinson's disease, based on case reports, the appearance of pathological features such as α-synuclein deposits in the brain, and substantia nigra pathology. Our findings suggest that the search for biochemical and cellular pathways that link Parkinson's disease with lysosomal storage disorders should not be limited exclusively to changes that occur in Gaucher disease, such as changes in glucocerebrosidase activity or in glucosylceramide levels, but rather include changes that might be common to a wide variety of lysosomal storage disorders. Moreover, we propose that additional genetic, epidemiological, and clinical studies should be performed to check the precise incidence of mutations in genes encoding lysosomal proteins in patients displaying Parkinson's symptoms.
Collapse
Affiliation(s)
- Tamar Shachar
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
296
|
Tamura T, Yoshida M, Hashizume Y, Sobue G. Lewy body-related α-synucleinopathy in the spinal cord of cases with incidental Lewy body disease. Neuropathology 2011; 32:13-22. [PMID: 22243359 DOI: 10.1111/j.1440-1789.2011.01211.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Incidental Lewy body disease (ILBD) represents the early asymptomatic phase of Lewy body diseases (LBD), including idiopathic Parkinson's disease (PD). Although pathological disturbances in the spinal cord, which connects the brain to the peripheral nervous system, plays an important role, the pathology of ILBD has not been adequately examined. Eighteen ILBD and eight age-matched LBD cases were enrolled in the present study. LB-related pathology was immunohistochemically evaluated using anti-phosphorylated α-synuclein (pαSyn) antibodies, revealing LB-related pathology in the spinal cords of 15 (83.3%) of the ILBD cases. Attempts were made to identify the early pattern of pαSyn deposition in the spinal cord by comparing the cervical, thoracic, lumbar and sacral segments in detail. Most pαSyn-positive structures were distributed in and around the autonomic nuclei of the spinal cord. The intermediolateral nuclei in the thoracic segments (Th/IML) were the most frequently and severely affected region, suggesting that Th/IML are the first structures affected. Furthermore, following analysis of the distribution pattern of the pαSyn-positive structures, it is suspected that LB-related pathology progresses toward the caudal vertebrae by involving neurons in the spinal cord that are vulnerable to αSyn. It should be noted that the ILBD cases enrolled in the present study were in an earlier stage than the PD cases enrolled in the previous study, and that the present study provides new, previously undescribed information.
Collapse
Affiliation(s)
- Takuya Tamura
- Department of Neurology, National Hospital Organization Higashi Nagoya National Hospital, Japan.
| | | | | | | |
Collapse
|
297
|
Keane PC, Kurzawa M, Blain PG, Morris CM. Mitochondrial dysfunction in Parkinson's disease. PARKINSONS DISEASE 2011; 2011:716871. [PMID: 21461368 PMCID: PMC3065167 DOI: 10.4061/2011/716871] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/03/2011] [Accepted: 01/16/2011] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a progressive, neurodegenerative condition that has increasingly been linked with mitochondrial dysfunction and inhibition of the electron transport chain. This inhibition leads to the generation of reactive oxygen species and depletion of cellular energy levels, which can consequently cause cellular damage and death mediated by oxidative stress and excitotoxicity. A number of genes that have been shown to have links with inherited forms of PD encode mitochondrial proteins or proteins implicated in mitochondrial dysfunction, supporting the central involvement of mitochondria in PD. This involvement is corroborated by reports that environmental toxins that inhibit the mitochondrial respiratory chain have been shown to be associated with PD.
This paper aims to illustrate the considerable body of evidence linking mitochondrial dysfunction with neuronal cell death in the substantia nigra pars compacta (SNpc) of PD patients and to highlight the important need for further research in this area.
Collapse
Affiliation(s)
- P C Keane
- Medical Toxicology Centre, Wolfson Unit, Newcastle University, Claremont Place, Newcastle upon Tyne NE2 4AA, UK
| | | | | | | |
Collapse
|
298
|
Pan T, Li X, Jankovic J. The association between Parkinson's disease and melanoma. Int J Cancer 2011; 128:2251-60. [PMID: 21207412 DOI: 10.1002/ijc.25912] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 12/20/2010] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by a loss of melanin-positive, dopaminergic neurons in the substantia nigra. Although there is convincing epidemiologic evidence of a negative association between PD and most cancers, a notable exception to this is that melanoma, a malignant tumor of melanin-producing cells in skin, occurs with higher-than-expected frequency among subjects with PD and that melanoma patients are more likely to have PD. A clear biological explanation for this epidemiological observation is lacking. Here, we present a comprehensive review of published literature exploring the association between PD and melanoma. On the basis of published findings, we conclude that (i) changes in pigmentation including melanin synthesis and/or melanin synthesis enzymes, such as tyrosinase and tyrosine hydroxylase, play important roles in altered vulnerability for both PD and melanoma; (ii) changes of PD-related genes such as Parkin, LRRK2 and α-synuclein may increase the risk of melanoma; (iii) changes in some low-penetrance genes such as cytochrome p450 debrisoquine hydroxylase locus, glutathione S-transferase M1 and vitamin D receptor could increase the risk for both PD and melanoma and (iv) impaired autophagy in both PD and melanoma could also explain the association between PD and melanoma. Future studies are required to address whether altered pigmentation, PD- or melanoma-related gene changes and/or changes in autophagy function induce oncogenesis or apoptosis. From a clinical point of view, early diagnosis of melanoma in PD patients is critical and can be enhanced by periodic dermatological surveillance, including skin biopsies.
Collapse
Affiliation(s)
- Tianhong Pan
- Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
| | | | | |
Collapse
|
299
|
Ferrer I. Neuropathology and neurochemistry of nonmotor symptoms in Parkinson's disease. PARKINSON'S DISEASE 2011; 2011:708404. [PMID: 21403906 PMCID: PMC3043318 DOI: 10.4061/2011/708404] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 12/16/2010] [Indexed: 02/02/2023]
Abstract
Parkinson disease (PD) is no longer considered a complex motor disorder characterized by Parkinsonism but rather a systemic disease with variegated non-motor deficits and neurological symptoms, including impaired olfaction, autonomic failure, cognitive impairment, and psychiatric symptoms. Many of these alterations appear before or in parallel with motor deficits and then worsen with disease progression. Although there is a close relation between motor symptoms and the presence of Lewy bodies (LBs) and neurites filled with abnormal α-synuclein, other neurological alterations are independent of the amount of α-synuclein inclusions in neurons and neurites, thereby indicating that different mechanisms probably converge in the degenerative process. Involvement of the cerebral cortex that may lead to altered behaviour and cognition are related to several convergent factors such as (a) abnormal α-synuclein and other proteins at the synapses, rather than LBs and neurites, (b) impaired dopaminergic, noradrenergic, cholinergic and serotoninergic cortical innervation, and (c) altered neuronal function resulting from reduced energy production and increased energy demands. These alterations appear at early stages of the disease and may precede by years the appearance of cell loss and cortical atrophy.
Collapse
Affiliation(s)
- Isidro Ferrer
- Institut de Neuropatologia, Servei Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, carrer Feixa LLarga sn, CIBERNED, 08907 Hospitalet de LLobregat, Spain
| |
Collapse
|
300
|
Miki Y, Mori F, Tanji K, Kakita A, Takahashi H, Wakabayashi K. Accumulation of histone deacetylase 6, an aggresome-related protein, is specific to Lewy bodies and glial cytoplasmic inclusions. Neuropathology 2011; 31:561-8. [DOI: 10.1111/j.1440-1789.2011.01200.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|