251
|
Conservation and divergence of the histone code in nucleomorphs. Biol Direct 2016; 11:18. [PMID: 27048461 PMCID: PMC4822330 DOI: 10.1186/s13062-016-0119-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/22/2016] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Nucleomorphs, the remnant nuclei of photosynthetic algae that have become endosymbionts to other eukaryotes, represent a unique example of convergent reductive genome evolution in eukaryotes, having evolved independently on two separate occasions in chlorarachniophytes and cryptophytes. The nucleomorphs of the two groups have evolved in a remarkably convergent manner, with numerous very similar features. Chief among them is the extreme reduction and compaction of nucleomorph genomes, with very small chromosomes and extremely short or even completely absent intergenic spaces. These characteristics pose a number of intriguing questions regarding the mechanisms of transcription and gene regulation in such a crowded genomic context, in particular in terms of the functioning of the histone code, which is common to almost all eukaryotes and plays a central role in chromatin biology. RESULTS This study examines the sequences of nucleomorph histone proteins in order to address these issues. Remarkably, all classical transcription- and repression-related components of the histone code seem to be missing from chlorarachniophyte nucleomorphs. Cryptophyte nucleomorph histones are generally more similar to the conventional eukaryotic state; however, they also display significant deviations from the typical histone code. Based on the analysis of specific components of the code, we discuss the state of chromatin and the transcriptional machinery in these nuclei. CONCLUSIONS The results presented here shed new light on the mechanisms of nucleomorph transcription and gene regulation and provide a foundation for future studies of nucleomorph chromatin and transcriptional biology.
Collapse
|
252
|
Rošić S, Erhardt S. No longer a nuisance: long non-coding RNAs join CENP-A in epigenetic centromere regulation. Cell Mol Life Sci 2016; 73:1387-98. [PMID: 26748759 PMCID: PMC11108473 DOI: 10.1007/s00018-015-2124-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/08/2015] [Accepted: 12/17/2015] [Indexed: 01/02/2023]
Abstract
Centromeres represent the basis for kinetochore formation, and are essential for proper chromosome segregation during mitosis. Despite these essential roles, centromeres are not defined by specific DNA sequences, but by epigenetic means. The histone variant CENP-A controls centromere identity epigenetically and is essential for recruiting kinetochore components that attach the chromosomes to the mitotic spindle during mitosis. Recently, a new player in centromere regulation has emerged: long non-coding RNAs transcribed from repetitive regions of centromeric DNA function in regulating centromeres epigenetically. This review summarizes recent findings on the essential roles that transcription, pericentromeric transcripts, and centromere-derived RNAs play in centromere biology.
Collapse
Affiliation(s)
- Silvana Rošić
- Medical Research Council Clinical Sciences Centre, Imperial College London, London, UK
| | - Sylvia Erhardt
- ZMBH, DKFZ-ZMBH-Alliance and CellNetworks Excellence Cluster, University of Heidelberg, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.
| |
Collapse
|
253
|
Are VN, Ghosh B, Kumar A, Gadre R, Makde RD. Crystal structure and dynamics of Spt16N-domain of FACT complex from Cicer arietinum. Int J Biol Macromol 2016; 88:36-43. [PMID: 26995613 DOI: 10.1016/j.ijbiomac.2016.03.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/24/2016] [Accepted: 03/15/2016] [Indexed: 11/18/2022]
Abstract
The facilitates chromatin transcription (FACT) complex, a heterodimer of SSRP1 and Spt16 proteins, is an essential histone chaperone that transiently reorganizes nucleosomes during transcription, replication and repair. N-terminal domain of Spt16 subunit (Spt16N) is strictly conserved in all the known Spt16 orthologs. Genetic studies in yeast have revealed a partially redundant role of Spt16N for the FACT functionality. Here, we report the crystal structure of Spt16N from a plant origin (Spt16Nca, Cicer arietinum) and its comparisons with the known Spt16N structures from yeasts and human. The inter-domain angle in Spt16Nca is significantly different from that of the yeast and human Spt16N structures. Normal mode analysis and classical molecular dynamics simulations reveal inter-domain movement in Spt16Nca and later also shows conformational flexibility of the critical loops. Spt16Nca binds to histone H3/H4 complex, similar to its orthologs from yeast and human origins. Further, conservation of electrostatic surface potentials in Spt16N structures from evolutionary distinct domains of eukaryotes (plant, human and fungi) have provided the potential sites on Spt16N for histone interactions. The structural comparisons with M24 peptidases show that the hydrophobic pocket shielded by a flexible loop of C-terminal domain of Spt16N that may be functionally important.
Collapse
Affiliation(s)
- Venkat N Are
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, India; School of Biochemistry, Devi Ahilya University, Indore, India
| | - Biplab Ghosh
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Ashwani Kumar
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Rekha Gadre
- School of Biochemistry, Devi Ahilya University, Indore, India
| | - Ravindra D Makde
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, India.
| |
Collapse
|
254
|
Wenderski W, Maze I. Histone turnover and chromatin accessibility: Critical mediators of neurological development, plasticity, and disease. Bioessays 2016; 38:410-9. [PMID: 26990528 DOI: 10.1002/bies.201500171] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In postmitotic neurons, nucleosomal turnover was long considered to be a static process that is inconsequential to transcription. However, our recent studies in human and rodent brain indicate that replication-independent (RI) nucleosomal turnover, which requires the histone variant H3.3, is dynamic throughout life and is necessary for activity-dependent gene expression, synaptic connectivity, and cognition. H3.3 turnover also facilitates cellular lineage specification and plays a role in suppressing the expression of heterochromatic repetitive elements, including mutagenic transposable sequences, in mouse embryonic stem cells. In this essay, we review mechanisms and functions for RI nucleosomal turnover in brain and present the hypothesis that defects in histone dynamics may represent a common mechanism underlying neurological aging and disease.
Collapse
Affiliation(s)
- Wendy Wenderski
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Ian Maze
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
255
|
Jeronimo C, Robert F. Histone chaperones FACT and Spt6 prevent histone variants from turning into histone deviants. Bioessays 2016; 38:420-6. [PMID: 26990181 DOI: 10.1002/bies.201500122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Histone variants are specialized histones which replace their canonical counterparts in specific nucleosomes. Together with histone post-translational modifications and DNA methylation, they contribute to the epigenome. Histone variants are incorporated at specific locations by the concerted action of histone chaperones and ATP-dependent chromatin remodelers. Recent studies have shown that the histone chaperone FACT plays key roles in preventing pervasive incorporation of two histone variants: H2A.Z and CenH3/CENP-A. In addition, Spt6, another histone chaperone, was also shown to be important for appropriate H2A.Z localization. FACT and Spt6 are both associated with elongating RNA polymerase II. Based on these two examples, we propose that the establishment and maintenance of histone variant genomic distributions depend on a transcription-coupled epigenome editing (or surveillance) function of histone chaperones.
Collapse
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada.,Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
256
|
Tsunaka Y, Fujiwara Y, Oyama T, Hirose S, Morikawa K. Integrated molecular mechanism directing nucleosome reorganization by human FACT. Genes Dev 2016; 30:673-86. [PMID: 26966247 PMCID: PMC4803053 DOI: 10.1101/gad.274183.115] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/05/2016] [Indexed: 11/24/2022]
Abstract
Facilitates chromatin transcription (FACT) plays essential roles in chromatin remodeling during DNA transcription, replication, and repair. Tsunaka et al. studied human FACT–histone interactions that present precise views of nucleosome reorganization, conducted by the FACT-SPT16 Mid domain and its adjacent acidic AID segment. Facilitates chromatin transcription (FACT) plays essential roles in chromatin remodeling during DNA transcription, replication, and repair. Our structural and biochemical studies of human FACT–histone interactions present precise views of nucleosome reorganization, conducted by the FACT-SPT16 (suppressor of Ty 16) Mid domain and its adjacent acidic AID segment. AID accesses the H2B N-terminal basic region exposed by partial unwrapping of the nucleosomal DNA, thereby triggering the invasion of FACT into the nucleosome. The crystal structure of the Mid domain complexed with an H3–H4 tetramer exhibits two separate contact sites; the Mid domain forms a novel intermolecular β structure with H4. At the other site, the Mid–H2A steric collision on the H2A-docking surface of the H3–H4 tetramer within the nucleosome induces H2A–H2B displacement. This integrated mechanism results in disrupting the H3 αN helix, which is essential for retaining the nucleosomal DNA ends, and hence facilitates DNA stripping from histone.
Collapse
Affiliation(s)
- Yasuo Tsunaka
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Sakyo-ku, Kyoto 606-8501, Japan; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-konoemachi, Sakyo-ku, Kyoto 606-8501, Japan; International Institute for Advanced Studies, Kizugawa-shi, Kyoto 619-0225, Japan
| | - Yoshie Fujiwara
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-konoemachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takuji Oyama
- Department of Biotechnology, Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Susumu Hirose
- Department of Developmental Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Kosuke Morikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-konoemachi, Sakyo-ku, Kyoto 606-8501, Japan; International Institute for Advanced Studies, Kizugawa-shi, Kyoto 619-0225, Japan
| |
Collapse
|
257
|
Krajewski WA. On the role of inter-nucleosomal interactions and intrinsic nucleosome dynamics in chromatin function. Biochem Biophys Rep 2016; 5:492-501. [PMID: 28955857 PMCID: PMC5600426 DOI: 10.1016/j.bbrep.2016.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/05/2016] [Accepted: 02/15/2016] [Indexed: 01/10/2023] Open
Abstract
Evidence is emerging that many diseases result from defects in gene functions, which, in turn, depend on the local chromatin environment of a gene. However, it still remains not fully clear how chromatin activity code is 'translated' to the particular 'activating' or 'repressing' chromatin structural transition. Commonly, chromatin remodeling in vitro was studied using mononucleosomes as a model. However, recent data suggest that structural reorganization of a single mononucleosome is not equal to remodeling of a nucleosome particle under multinucleosomal content - such as, interaction of nucleosomes via flexible histone termini could significantly alter the mode (and the resulting products) of nucleosome structural transitions. It is becoming evident that a nucleosome array does not constitute just a 'polymer' of individual 'canonical' nucleosomes due to multiple inter-nucleosomal interactions which affect nucleosome dynamics and structure. It could be hypothesized, that inter-nucleosomal interactions could act in cooperation with nucleosome inherent dynamics to orchestrate DNA-based processes and promote formation and stabilization of highly-dynamic, accessible structure of a nucleosome array. In the proposed paper we would like to discuss the nucleosome dynamics within the chromatin fiber mainly as it pertains to the roles of the structural changes mediated by inter-nucleosomal interactions.
Collapse
Affiliation(s)
- Wladyslaw A Krajewski
- Institute of Developmental Biology of Russian Academy of Sciences, ul. Vavilova 26, Moscow, 119334 Russia
| |
Collapse
|
258
|
Morgan MT, Haj-Yahya M, Ringel AE, Bandi P, Brik A, Wolberger C. Structural basis for histone H2B deubiquitination by the SAGA DUB module. Science 2016; 351:725-8. [PMID: 26912860 PMCID: PMC4863942 DOI: 10.1126/science.aac5681] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Monoubiquitinated histone H2B plays multiple roles in transcription activation. H2B is deubiquitinated by the Spt-Ada-Gcn5 acetyltransferase (SAGA) coactivator, which contains a four-protein subcomplex known as the deubiquitinating (DUB) module. The crystal structure of the Ubp8/Sgf11/Sus1/Sgf73 DUB module bound to a ubiquitinated nucleosome reveals that the DUB module primarily contacts H2A/H2B, with an arginine cluster on the Sgf11 zinc finger domain docking on the conserved H2A/H2B acidic patch. The Ubp8 catalytic domain mediates additional contacts with H2B, as well as with the conjugated ubiquitin. We find that the DUB module deubiquitinates H2B both in the context of the nucleosome and in H2A/H2B dimers complexed with the histone chaperone, FACT, suggesting that SAGA could target H2B at multiple stages of nucleosome disassembly and reassembly during transcription.
Collapse
Affiliation(s)
- Michael T Morgan
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mahmood Haj-Yahya
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Alison E Ringel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Prasanthi Bandi
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
259
|
Smyk M, Poluha A, Jaszczuk I, Bartnik M, Bernaciak J, Nowakowska B. Novel 14q11.2 microduplication including the CHD8 and SUPT16H genes associated with developmental delay. Am J Med Genet A 2016; 170A:1325-9. [PMID: 26834018 DOI: 10.1002/ajmg.a.37579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 01/21/2016] [Indexed: 11/06/2022]
Abstract
Neurodevelopmental disorders have long been associated with chromosomal abnormalities, including microdeletions and microduplications. Submicroscopic 14q11.2 deletions involving the CHD8 and SUPT16H genes have been reported in patients with developmental delay (DD)/intellectual disability (ID) or autism spectrum disorders (ASDs) and/or macrocephaly. Recently, disruptive CHD8 mutations were described in patients with similar phenotypes further showing pivotal role of CHD8 gene in the pathogenesis of DD/ID or ASDs. We report here the first case of ~445 kb de novo microduplication, encompassing the minimal critical 14q11.2 deletion region, in 8-year-old boy showing DD, cognitive impairment and facial dysmorphism. Our results suggest that gain of the chromosomal region 14q11.2 is causative for clinical findings present in the patient.
Collapse
Affiliation(s)
- Marta Smyk
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Anna Poluha
- Department of Pediatric Hematology, Oncology and Transplantology Children's University Hospital, Lublin, Poland
| | - Ilona Jaszczuk
- Department of Pediatric Hematology, Oncology and Transplantology Children's University Hospital, Lublin, Poland
| | - Magdalena Bartnik
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Joanna Bernaciak
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Beata Nowakowska
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| |
Collapse
|
260
|
Marcianò G, Huang DT. Structure of the human histone chaperone FACT Spt16 N-terminal domain. Acta Crystallogr F Struct Biol Commun 2016; 72:121-8. [PMID: 26841762 PMCID: PMC4741192 DOI: 10.1107/s2053230x15024565] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/21/2015] [Indexed: 11/16/2022] Open
Abstract
The histone chaperone FACT plays an important role in facilitating nucleosome assembly and disassembly during transcription. FACT is a heterodimeric complex consisting of Spt16 and SSRP1. The N-terminal domain of Spt16 resembles an inactive aminopeptidase. How this domain contributes to the histone chaperone activity of FACT remains elusive. Here, the crystal structure of the N-terminal domain (NTD) of human Spt16 is reported at a resolution of 1.84 Å. The structure adopts an aminopeptidase-like fold similar to those of the Saccharomyces cerevisiae and Schizosaccharomyces pombe Spt16 NTDs. Isothermal titration calorimetry analyses show that human Spt16 NTD binds histones H3/H4 with low-micromolar affinity, suggesting that Spt16 NTD may contribute to histone binding in the FACT complex. Surface-residue conservation and electrostatic analysis reveal a conserved acidic patch that may be involved in histone binding.
Collapse
Affiliation(s)
- G. Marcianò
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, Scotland
| | - D. T. Huang
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, Scotland
| |
Collapse
|
261
|
Yang J, Zhang X, Feng J, Leng H, Li S, Xiao J, Liu S, Xu Z, Xu J, Li D, Wang Z, Wang J, Li Q. The Histone Chaperone FACT Contributes to DNA Replication-Coupled Nucleosome Assembly. Cell Rep 2016; 14:1128-1141. [PMID: 26804921 DOI: 10.1016/j.celrep.2015.12.096] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/17/2015] [Accepted: 12/21/2015] [Indexed: 11/25/2022] Open
Abstract
DNA replication-coupled (RC) nucleosome assembly is mediated by histone chaperones and is fundamental for epigenetic inheritance and maintenance of genomic integrity. The mechanisms that promote this process are only partially understood. Here, we show that the histone chaperone FACT (facilitates chromatin transactions), consisting of Spt16 and Pob3, promotes newly synthesized histone H3-H4 deposition. We describe an allele of Spt16 (spt16-m) that has a defect in binding to H3-H4 and impairs their deposition onto DNA. Consistent with a direct role for FACT in RC nucleosome assembly, spt16-m displays synthetic defects with other histone chaperones associated with this process, CAF-1 and Rtt106. Importantly, we show that FACT physically associates with Rtt106 and that the acetylation of H3K56, a mark on newly synthesized H3, modulates this interaction. Therefore, FACT collaborates with CAF-1 and Rtt106 in RC nucleosome assembly.
Collapse
Affiliation(s)
- Jiayi Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xu Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jianxun Feng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - He Leng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shuqi Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Junyu Xiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Shaofeng Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhiyun Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jiawei Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Di Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhongshi Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jingyang Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
262
|
Zhang W, Zeng F, Liu Y, Shao C, Li S, Lv H, Shi Y, Niu L, Teng M, Li X. Crystal Structure of Human SSRP1 Middle Domain Reveals a Role in DNA Binding. Sci Rep 2015; 5:18688. [PMID: 26687053 PMCID: PMC4685450 DOI: 10.1038/srep18688] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/23/2015] [Indexed: 02/06/2023] Open
Abstract
SSRP1 is a subunit of the FACT complex, an important histone chaperone required for transcriptional regulation, DNA replication and damage repair. SSRP1 also plays important roles in transcriptional regulation independent of Spt16 and interacts with other proteins. Here, we report the crystal structure of the middle domain of SSRP1. It consists of tandem pleckstrin homology (PH) domains. These domains differ from the typical PH domain in that PH1 domain has an extra conserved βαβ topology. SSRP1 contains the well-characterized DNA-binding HMG-1 domain. Our studies revealed that SSRP1-M can also participate in DNA binding, and that this binding involves one positively charged patch on the surface of the structure. In addition, SSRP1-M did not bind to histones, which was assessed through pull-down assays. This aspect makes the protein different from other related proteins adopting the double PH domain structure. Our studies facilitate the understanding of SSRP1 and provide insights into the molecular mechanisms of interaction with DNA and histones of the FACT complex.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China.,Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China
| | - Fuxing Zeng
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China.,Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China
| | - Yiwei Liu
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China.,Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China
| | - Chen Shao
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China.,Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China
| | - Sai Li
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China.,Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China
| | - Hui Lv
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China.,Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China
| | - Yunyu Shi
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China.,Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China
| | - Liwen Niu
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China.,Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China
| | - Maikun Teng
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China.,Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China
| | - Xu Li
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China.,Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui, 230026, People's Republic of China
| |
Collapse
|
263
|
Hoffmann C, Neumann H. In Vivo Mapping of FACT-Histone Interactions Identifies a Role of Pob3 C-terminus in H2A-H2B Binding. ACS Chem Biol 2015; 10:2753-63. [PMID: 26414936 DOI: 10.1021/acschembio.5b00493] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Histone chaperones assist nucleosomal rearrangements to facilitate the passage of DNA and RNA polymerases through chromatin. The FACT (facilitates chromatin transcription) complex is a conserved histone chaperone involved in transcription, replication, and repair. The complex consists of two major subunits, Spt16 and SSRP1/Pob3 in mammals and yeast, which engage histones and DNA by multiple contacts. However, the precise mechanism of FACT function is largely unclear. Here, we used the genetically installed UV-activatable cross-linker amino acid p-benzoylphenylalanine (pBPA) to map the interaction network of FACT in living yeast. Unexpectedly, we found the acidic C-terminus of Pob3 forming cross-links to histone H2A and H2B most efficiently. This observation was independent of the performed cross-linking chemistry since similar histone cross-links were obtained using p-azidophenylalanine (pAzF). Further analyses identified a C-terminal nuclear localization sequence in Pob3. Its interaction with Importin-α interfered with H2A-H2B binding, which suggests a possible regulatory role in FACT recruitment to chromatin. Deletion of acidic residues from the Pob3 C-terminus creates a hydroxyurea-sensitive phenotype in budding yeast, suggesting a potential role for this domain in DNA replication.
Collapse
Affiliation(s)
- Christian Hoffmann
- Free Floater (Junior) Research
Group “Applied Synthetic Biology”, Georg-August University Göttingen, Institute
for Microbiology and Genetics, Justus-von-Liebig
Weg 11, 37077 Göttingen, Germany
| | - Heinz Neumann
- Free Floater (Junior) Research
Group “Applied Synthetic Biology”, Georg-August University Göttingen, Institute
for Microbiology and Genetics, Justus-von-Liebig
Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
264
|
Abstract
Short DNA fragments containing single nucleosomes have been extensively employed as simple model experimental systems for analysis of many intranuclear processes, including binding of proteins to nucleosomes, covalent histone modifications, transcription, DNA repair, and ATP-dependent chromatin remodeling. Here we describe several recently developed procedures for obtaining and analysis of mononucleosomes assembled on 200-350-bp DNA fragments.
Collapse
|
265
|
Lawrence M, Daujat S, Schneider R. Lateral Thinking: How Histone Modifications Regulate Gene Expression. Trends Genet 2015; 32:42-56. [PMID: 26704082 DOI: 10.1016/j.tig.2015.10.007] [Citation(s) in RCA: 571] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 12/21/2022]
Abstract
The DNA of each cell is wrapped around histone octamers, forming so-called 'nucleosomal core particles'. These histone proteins have tails that project from the nucleosome and many residues in these tails can be post-translationally modified, influencing all DNA-based processes, including chromatin compaction, nucleosome dynamics, and transcription. In contrast to those present in histone tails, modifications in the core regions of the histones had remained largely uncharacterised until recently, when some of these modifications began to be analysed in detail. Overall, recent work has shown that histone core modifications can not only directly regulate transcription, but also influence processes such as DNA repair, replication, stemness, and changes in cell state. In this review, we focus on the most recent developments in our understanding of histone modifications, particularly those on the lateral surface of the nucleosome. This region is in direct contact with the DNA and is formed by the histone cores. We suggest that these lateral surface modifications represent a key insight into chromatin regulation in the cell. Therefore, lateral surface modifications form a key area of interest and a focal point of ongoing study in epigenetics.
Collapse
|
266
|
Shono N, Ohzeki JI, Otake K, Martins NMC, Nagase T, Kimura H, Larionov V, Earnshaw WC, Masumoto H. CENP-C and CENP-I are key connecting factors for kinetochore and CENP-A assembly. J Cell Sci 2015; 128:4572-87. [PMID: 26527398 PMCID: PMC4696500 DOI: 10.1242/jcs.180786] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/26/2015] [Indexed: 12/18/2022] Open
Abstract
Although it is generally accepted that chromatin containing the histone H3 variant CENP-A is an epigenetic mark maintaining centromere identity, the pathways leading to the formation and maintenance of centromere chromatin remain unclear. We previously generated human artificial chromosomes (HACs) whose centromeres contain a synthetic alpha-satellite (alphoid) DNA array containing the tetracycline operator (alphoid(tetO)). We also obtained cell lines bearing the alphoid(tetO) array at ectopic integration sites on chromosomal arms. Here, we have examined the regulation of CENP-A assembly at centromeres as well as de novo assembly on the ectopic arrays by tethering tetracycline repressor (tetR) fusions of substantial centromeric factors and chromatin modifiers. This analysis revealed four classes of factors that influence CENP-A assembly. Interestingly, many kinetochore structural components induced de novo CENP-A assembly at the ectopic site. We showed that these components work by recruiting CENP-C and subsequently recruiting M18BP1. Furthermore, we found that CENP-I can also recruit M18BP1 and, as a consequence, enhances M18BP1 assembly on centromeres in the downstream of CENP-C. Thus, we suggest that CENP-C and CENP-I are key factors connecting kinetochore to CENP-A assembly.
Collapse
Affiliation(s)
- Nobuaki Shono
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Jun-ichirou Ohzeki
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Koichiro Otake
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Nuno M C Martins
- Wellcome Trust Centre for Cell Biology University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Takahiro Nagase
- Public Relations Team, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Hiroshi Kimura
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Vladimir Larionov
- Developmental Therapeutic Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Hiroshi Masumoto
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| |
Collapse
|
267
|
Zan H, Casali P. Epigenetics of Peripheral B-Cell Differentiation and the Antibody Response. Front Immunol 2015; 6:631. [PMID: 26697022 PMCID: PMC4677338 DOI: 10.3389/fimmu.2015.00631] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/30/2015] [Indexed: 12/13/2022] Open
Abstract
Epigenetic modifications, such as histone post-translational modifications, DNA methylation, and alteration of gene expression by non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are heritable changes that are independent from the genomic DNA sequence. These regulate gene activities and, therefore, cellular functions. Epigenetic modifications act in concert with transcription factors and play critical roles in B cell development and differentiation, thereby modulating antibody responses to foreign- and self-antigens. Upon antigen encounter by mature B cells in the periphery, alterations of these lymphocytes epigenetic landscape are induced by the same stimuli that drive the antibody response. Such alterations instruct B cells to undergo immunoglobulin (Ig) class switch DNA recombination (CSR) and somatic hypermutation (SHM), as well as differentiation to memory B cells or long-lived plasma cells for the immune memory. Inducible histone modifications, together with DNA methylation and miRNAs modulate the transcriptome, particularly the expression of activation-induced cytidine deaminase, which is essential for CSR and SHM, and factors central to plasma cell differentiation, such as B lymphocyte-induced maturation protein-1. These inducible B cell-intrinsic epigenetic marks guide the maturation of antibody responses. Combinatorial histone modifications also function as histone codes to target CSR and, possibly, SHM machinery to the Ig loci by recruiting specific adaptors that can stabilize CSR/SHM factors. In addition, lncRNAs, such as recently reported lncRNA-CSR and an lncRNA generated through transcription of the S region that form G-quadruplex structures, are also important for CSR targeting. Epigenetic dysregulation in B cells, including the aberrant expression of non-coding RNAs and alterations of histone modifications and DNA methylation, can result in aberrant antibody responses to foreign antigens, such as those on microbial pathogens, and generation of pathogenic autoantibodies, IgE in allergic reactions, as well as B cell neoplasia. Epigenetic marks would be attractive targets for new therapeutics for autoimmune and allergic diseases, and B cell malignancies.
Collapse
Affiliation(s)
- Hong Zan
- Department of Microbiology and Immunology, University of Texas School of Medicine, UT Health Science Center , San Antonio, TX , USA
| | - Paolo Casali
- Department of Microbiology and Immunology, University of Texas School of Medicine, UT Health Science Center , San Antonio, TX , USA
| |
Collapse
|
268
|
Bondarenko MT, Maluchenko NV, Valieva ME, Gerasimova NS, Kulaeva OI, Georgiev PG, Studitsky VM. Structure and function of histone chaperone FACT. Mol Biol 2015. [DOI: 10.1134/s0026893315060023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
269
|
Global mapping of the regulatory interactions of histone residues. FEBS Lett 2015; 589:4061-70. [PMID: 26602082 DOI: 10.1016/j.febslet.2015.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 11/23/2022]
Abstract
Histone residues can serve as platforms for specific regulatory function. Here we constructed a map of regulatory associations between histone residues and a wide spectrum of chromatin regulation factors based on gene expression changes by histone point mutations in Saccharomyces cerevisiae. Detailed analyses of this map revealed novel associations. Regarding the modulation of H3K4 and K36 methylation by Set1, Set2, or Jhd2, we proposed a role for H4K91 acetylation in early Pol II elongation, and for H4K16 deacetylation in late elongation and crosstalk with H3K4 demethylation for gene silencing. The association of H3K56 with nucleosome positioning suggested that this lysine residue and its acetylation might contribute to nucleosome mobility for transcription activation. Further insights into chromatin regulation are expected from this approach.
Collapse
|
270
|
Gal C, Murton HE, Subramanian L, Whale AJ, Moore KM, Paszkiewicz K, Codlin S, Bähler J, Creamer KM, Partridge JF, Allshire RC, Kent NA, Whitehall SK. Abo1, a conserved bromodomain AAA-ATPase, maintains global nucleosome occupancy and organisation. EMBO Rep 2015; 17:79-93. [PMID: 26582768 PMCID: PMC4718406 DOI: 10.15252/embr.201540476] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 10/26/2015] [Indexed: 12/28/2022] Open
Abstract
Maintenance of the correct level and organisation of nucleosomes is crucial for genome function. Here, we uncover a role for a conserved bromodomain AAA‐ATPase, Abo1, in the maintenance of nucleosome architecture in fission yeast. Cells lacking abo1+ experience both a reduction and mis‐positioning of nucleosomes at transcribed sequences in addition to increased intragenic transcription, phenotypes that are hallmarks of defective chromatin re‐establishment behind RNA polymerase II. Abo1 is recruited to gene sequences and associates with histone H3 and the histone chaperone FACT. Furthermore, the distribution of Abo1 on chromatin is disturbed by impaired FACT function. The role of Abo1 extends to some promoters and also to silent heterochromatin. Abo1 is recruited to pericentromeric heterochromatin independently of the HP1 ortholog, Swi6, where it enforces proper nucleosome occupancy. Consequently, loss of Abo1 alleviates silencing and causes elevated chromosome mis‐segregation. We suggest that Abo1 provides a histone chaperone function that maintains nucleosome architecture genome‐wide.
Collapse
Affiliation(s)
- Csenge Gal
- Institute for Cell & Molecular Biosciences, Newcastle University, Newcastle, UK
| | - Heather E Murton
- Institute for Cell & Molecular Biosciences, Newcastle University, Newcastle, UK
| | - Lakxmi Subramanian
- Wellcome Trust Centre for Cell Biology & Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Alex J Whale
- Institute for Cell & Molecular Biosciences, Newcastle University, Newcastle, UK
| | - Karen M Moore
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Exeter, UK
| | - Konrad Paszkiewicz
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Exeter, UK
| | - Sandra Codlin
- Department of Genetics, Evolution & Environment and UCL Cancer Institute, University College London, London, UK
| | - Jürg Bähler
- Department of Genetics, Evolution & Environment and UCL Cancer Institute, University College London, London, UK
| | - Kevin M Creamer
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Janet F Partridge
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Robin C Allshire
- Wellcome Trust Centre for Cell Biology & Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Nicholas A Kent
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - Simon K Whitehall
- Institute for Cell & Molecular Biosciences, Newcastle University, Newcastle, UK
| |
Collapse
|
271
|
Nakagawa T, Ikehara T, Doiguchi M, Imamura Y, Higashi M, Yoneda M, Ito T. Enhancer of Acetyltransferase Chameau (EAChm) Is a Novel Transcriptional Co-Activator. PLoS One 2015; 10:e0142305. [PMID: 26555228 PMCID: PMC4640846 DOI: 10.1371/journal.pone.0142305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/19/2015] [Indexed: 11/18/2022] Open
Abstract
Acetylation of nucleosomal histones by diverse histone acetyltransferases (HAT) plays pivotal roles in many cellular events. Discoveries of novel HATs and HAT related factors have provided new insights to understand the roles and mechanisms of histone acetylation. In this study, we identified prominent Histone H3 acetylation activity in vitro and purified its activity, showing that it is composed of the MYST acetyltransferase Chameau and Enhancer of the Acetyltransferase Chameau (EAChm) family. EAChm is a negatively charged acidic protein retaining aspartate and glutamate. Furthermore, we identified that Chameau and EAChm stimulate transcription in vitro together with purified general transcription factors. In addition, RNA-seq analysis of Chameu KD and EAChm KD S2 cells suggest that Chameau and EAChm regulate transcription of common genes in vivo. Our results suggest that EAChm regulates gene transcription in Drosophila embryos by enhancing Acetyltransferase Chameau activity.
Collapse
Affiliation(s)
- Takeya Nakagawa
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, 852–8523, Japan
| | - Tsuyoshi Ikehara
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, 852–8523, Japan
| | - Masamichi Doiguchi
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, 852–8523, Japan
| | - Yuko Imamura
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, 852–8523, Japan
| | - Miki Higashi
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, 852–8523, Japan
| | - Mitsuhiro Yoneda
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, 852–8523, Japan
| | - Takashi Ito
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, 852–8523, Japan
- * E-mail:
| |
Collapse
|
272
|
Experimental analysis of hFACT action during Pol II transcription in vitro. Methods Mol Biol 2015; 1276:315-26. [PMID: 25665573 DOI: 10.1007/978-1-4939-2392-2_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
FACT (facilitates chromatin transcription) is a histone chaperone that facilitates transcription through chromatin and promotes histone recovery during transcription. Here, we describe a highly purified experimental system that recapitulates many important properties of transcribed chromatin and the key aspects of hFACT action during this process in vitro. We present the protocols describing how to prepare different forms of nucleosomes, including intact nucleosome, covalently conjugated nucleosome, nucleosome missing one of the two H2A/2B dimers (hexasome) and tetrasome (a nucleosome missing both H2A/2B dimers). These complexes allow analysis of various aspects of FACT's function. These approaches and other methods described below can also be applied to the study of other chromatin remodelers and chromatin-targeted factors.
Collapse
|
273
|
Abstract
Thousands of human and Drosophila genes are regulated at the level of transcript elongation and nucleosomes are likely targets for this regulation. However, the molecular mechanisms of formation of the nucleosomal barrier to transcribing RNA polymerase II (Pol II) and nucleosome survival during/after transcription remain unknown. Here we show that both DNA-histone interactions and Pol II backtracking contribute to formation of the barrier and that nucleosome survival during transcription likely occurs through allosterically stabilized histone-histone interactions. Structural analysis indicates that after Pol II encounters the barrier, the enzyme backtracks and nucleosomal DNA recoils on the octamer, locking Pol II in the arrested state. DNA is displaced from one of the H2A/H2B dimers that remains associated with the octamer. The data reveal the importance of intranucleosomal DNA-protein and protein-protein interactions during conformational changes in the nucleosome structure on transcription. Mechanisms of nucleosomal barrier formation and nucleosome survival during transcription are proposed.
Collapse
|
274
|
FACT Disrupts Nucleosome Structure by Binding H2A-H2B with Conserved Peptide Motifs. Mol Cell 2015; 60:294-306. [PMID: 26455391 DOI: 10.1016/j.molcel.2015.09.008] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 07/31/2015] [Accepted: 09/04/2015] [Indexed: 11/24/2022]
Abstract
FACT, a heterodimer of Spt16 and Pob3, is an essential histone chaperone. We show that the H2A-H2B binding activity that is central to FACT function resides in short acidic regions near the C termini of each subunit. Mutations throughout these regions affect binding and cause correlated phenotypes that range from mild to lethal, with the largest individual contributions unexpectedly coming from an aromatic residue and a nearby carboxylate residue within each domain. Spt16 and Pob3 bind overlapping sites on H2A-H2B, and Spt16-Pob3 heterodimers simultaneously bind two H2A-H2B dimers, the same stoichiometry as the components of a nucleosome. An Spt16:H2A-H2B crystal structure explains the biochemical and genetic data, provides a model for Pob3 binding, and implies a mechanism for FACT reorganization that we confirm biochemically. Moreover, unexpected similarity to binding of ANP32E and Swr1 with H2A.Z-H2B reveals that diverse H2A-H2B chaperones use common mechanisms of histone binding and regulating nucleosome functions.
Collapse
|
275
|
Huang H, Santoso N, Power D, Simpson S, Dieringer M, Miao H, Gurova K, Giam CZ, Elledge SJ, Zhu J. FACT Proteins, SUPT16H and SSRP1, Are Transcriptional Suppressors of HIV-1 and HTLV-1 That Facilitate Viral Latency. J Biol Chem 2015; 290:27297-27310. [PMID: 26378236 DOI: 10.1074/jbc.m115.652339] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Indexed: 11/06/2022] Open
Abstract
Our functional genomic RNAi screens have identified the protein components of the FACT (facilitates chromatin transcription) complex, SUPT16H and SSRP1, as top host factors that negatively regulate HIV-1 replication. FACT interacts specifically with histones H2A/H2B to affect assembly and disassembly of nucleosomes, as well as transcription elongation. We further investigated the suppressive role of FACT proteins in HIV-1 transcription. First, depletion of SUPT16H or SSRP1 protein enhances Tat-mediated HIV-1 LTR (long terminal repeat) promoter activity. Second, HIV-1 Tat interacts with SUPT16H but not SSRP1 protein. However, both SUPT16H and SSRP1 are recruited to LTR promoter. Third, the presence of SUPT16H interferes with the association of Cyclin T1 (CCNT1), a subunit of P-TEFb, with the Tat-LTR axis. Removing inhibitory mechanisms to permit HIV-1 transcription is an initial and key regulatory step to reverse post-integrated latent HIV-1 proviruses for purging of reservoir cells. We therefore evaluated the role of FACT proteins in HIV-1 latency and reactivation. Depletion of SUPT16H or SSRP1 protein affects both HIV-1 transcriptional initiation and elongation and spontaneously reverses latent HIV-1 in U1/HIV and J-LAT cells. Similar effects were observed with a primary CD4+ T cell model of HIV-1 latency. FACT proteins also interfere with HTLV-1 Tax-LTR-mediated transcription and viral latency, indicating that they may act as general transcriptional suppressors for retroviruses. We conclude that FACT proteins SUPT16H and SSRP1 play a key role in suppressing HIV-1 transcription and promoting viral latency, which may serve as promising gene targets for developing novel HIV-1 latency-reversing agents.
Collapse
Affiliation(s)
- Huachao Huang
- Departments of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642
| | - Netty Santoso
- Departments of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642
| | - Derek Power
- Departments of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642
| | - Sydney Simpson
- the School of Arts and Sciences, University of Rochester, Rochester, New York 14627
| | - Michael Dieringer
- the School of Arts and Sciences, University of Rochester, Rochester, New York 14627
| | - Hongyu Miao
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York 14642
| | - Katerina Gurova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Chou-Zen Giam
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Stephen J Elledge
- the Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, Massachusetts 02115; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Jian Zhu
- Departments of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642; Departments of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642.
| |
Collapse
|
276
|
Chen S, Rufiange A, Huang H, Rajashankar KR, Nourani A, Patel DJ. Structure-function studies of histone H3/H4 tetramer maintenance during transcription by chaperone Spt2. Genes Dev 2015; 29:1326-40. [PMID: 26109053 PMCID: PMC4495402 DOI: 10.1101/gad.261115.115] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this study, Patel and colleagues determined the crystal structure of the conserved C terminus of the hSpt2C histone chaperone bound to an H3/H4 tetramer. The results suggest that Spt2 interacts with the periphery of the H3/H4 tetramer and promotes its recycling. Cells use specific mechanisms such as histone chaperones to abrogate the inherent barrier that the nucleosome poses to transcribing polymerases. The current model postulates that nucleosomes can be transiently disrupted to accommodate passage of RNA polymerases and that histones H3 and H4 possess their own chaperones dedicated to the recovery of nucleosomes. Here, we determined the crystal structure of the conserved C terminus of human Suppressors of Ty insertions 2 (hSpt2C) chaperone bound to an H3/H4 tetramer. The structural studies demonstrate that hSpt2C is bound to the periphery of the H3/H4 tetramer, mimicking the trajectory of nucleosomal-bound DNA. These structural studies have been complemented with in vitro binding and in vivo functional studies on mutants that disrupt key intermolecular contacts involving two acidic patches and hydrophobic residues on Spt2C. We show that contacts between both human and yeast Spt2C with the H3/H4 tetramer are required for the suppression of H3/H4 exchange as measured by H3K56ac and new H3 deposition. These interactions are also crucial for the inhibition of spurious transcription from within coding regions. Together, our data indicate that Spt2 interacts with the periphery of the H3/H4 tetramer and promotes its recycling in the wake of RNA polymerase.
Collapse
Affiliation(s)
- Shoudeng Chen
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Anne Rufiange
- Groupe St-Patrick de Recherche en Oncologie Fondamentale, L'Hôtel-Dieu de Québec (Université Laval), Québec G1R 2J6, Canada
| | - Hongda Huang
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Kanagalaghatta R Rajashankar
- Northeastern Collaborative Access Team (NE-CAT), Advanced Photon Source, Argonne National Laboratory, Chicago, Illinois 60439, USA; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Amine Nourani
- Groupe St-Patrick de Recherche en Oncologie Fondamentale, L'Hôtel-Dieu de Québec (Université Laval), Québec G1R 2J6, Canada
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
277
|
Lercher L, Raj R, Patel NA, Price J, Mohammed S, Robinson CV, Schofield CJ, Davis BG. Generation of a synthetic GlcNAcylated nucleosome reveals regulation of stability by H2A-Thr101 GlcNAcylation. Nat Commun 2015; 6:7978. [PMID: 26305776 PMCID: PMC4560749 DOI: 10.1038/ncomms8978] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 07/02/2015] [Indexed: 02/06/2023] Open
Abstract
O-GlcNAcylation is a newly discovered histone modification implicated in transcriptional regulation, but no structural information on the physical effect of GlcNAcylation on chromatin exists. Here, we generate synthetic, pure GlcNAcylated histones and nucleosomes and reveal that GlcNAcylation can modulate structure through direct destabilization of H2A/H2B dimers in the nucleosome, thus promoting an 'open' chromatin state. The results suggest that a plausible molecular basis for one role of histone O-GlcNAcylation in epigenetic regulation is to lower the barrier for RNA polymerase passage and hence increase transcription.
Collapse
Affiliation(s)
- Lukas Lercher
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| | - Ritu Raj
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| | - Nisha A. Patel
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, UK
| | - Joshua Price
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| | - Shabaz Mohammed
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| | - Carol V. Robinson
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, UK
| | - Christopher J. Schofield
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| | - Benjamin G. Davis
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
278
|
Saito Y, Komatsu K. Functional Role of NBS1 in Radiation Damage Response and Translesion DNA Synthesis. Biomolecules 2015; 5:1990-2002. [PMID: 26308066 PMCID: PMC4598784 DOI: 10.3390/biom5031990] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/11/2015] [Accepted: 08/13/2015] [Indexed: 12/15/2022] Open
Abstract
Nijmegen breakage syndrome (NBS) is a recessive genetic disorder characterized by increased sensitivity to ionizing radiation (IR) and a high frequency of malignancies. NBS1, a product of the mutated gene in NBS, contains several protein interaction domains in the N-terminus and C-terminus. The C-terminus of NBS1 is essential for interactions with MRE11, a homologous recombination repair nuclease, and ATM, a key player in signal transduction after the generation of DNA double-strand breaks (DSBs), which is induced by IR. Moreover, NBS1 regulates chromatin remodeling during DSB repair by histone H2B ubiquitination through binding to RNF20 at the C-terminus. Thus, NBS1 is considered as the first protein to be recruited to DSB sites, wherein it acts as a sensor or mediator of DSB damage responses. In addition to DSB response, we showed that NBS1 initiates Polη-dependent translesion DNA synthesis by recruiting RAD18 through its binding at the NBS1 C-terminus after UV exposure, and it also functions after the generation of interstrand crosslink DNA damage. Thus, NBS1 has multifunctional roles in response to DNA damage from a variety of genotoxic agents, including IR.
Collapse
Affiliation(s)
- Yuichiro Saito
- Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Kenshi Komatsu
- Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
279
|
Cucinotta CE, Young AN, Klucevsek KM, Arndt KM. The Nucleosome Acidic Patch Regulates the H2B K123 Monoubiquitylation Cascade and Transcription Elongation in Saccharomyces cerevisiae. PLoS Genet 2015; 11:e1005420. [PMID: 26241481 PMCID: PMC4524731 DOI: 10.1371/journal.pgen.1005420] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 07/05/2015] [Indexed: 02/06/2023] Open
Abstract
Eukaryotes regulate gene expression and other nuclear processes through the posttranslational modification of histones. In S. cerevisiae, the mono-ubiquitylation of histone H2B on lysine 123 (H2B K123ub) affects nucleosome stability, broadly influences gene expression and other DNA-templated processes, and is a prerequisite for additional conserved histone modifications that are associated with active transcription, namely the methylation of lysine residues in H3. While the enzymes that promote these chromatin marks are known, regions of the nucleosome required for the recruitment of these enzymes are undefined. To identify histone residues required for H2B K123ub, we exploited a functional interaction between the ubiquitin-protein ligase, Rkr1/Ltn1, and H2B K123ub in S. cerevisiae. Specifically, we performed a synthetic lethal screen with cells lacking RKR1 and a comprehensive library of H2A and H2B residue substitutions, and identified H2A residues that are required for H2B K123ub. Many of these residues map to the nucleosome acidic patch. The substitutions in the acidic patch confer varying histone modification defects downstream of H2B K123ub, indicating that this region contributes differentially to multiple histone modifications. Interestingly, substitutions in the acidic patch result in decreased recruitment of H2B K123ub machinery to active genes and defects in transcription elongation and termination. Together, our findings reveal a role for the nucleosome acidic patch in recruitment of histone modification machinery and maintenance of transcriptional integrity. Chromatin, a complex of DNA wrapped around histone proteins, impacts all DNA-templated processes, including gene expression. Cells employ various strategies to alter chromatin structure and control access to the genetic material. Nucleosomes, the building blocks of chromatin, are subject to a myriad of modifications on their constituent histone proteins. One highly conserved modification with important connections to human health is the addition of ubiquitin to histone H2B. H2B ubiquitylation modulates chromatin structure during gene transcription and acts as a master regulator for downstream histone modifications. The proteins that promote H2B ubiquitylation have been identified; however, little is known about how these proteins interface with the nucleosome. Here, we exploited the genetic tools of budding yeast to reveal features of the nucleosome that are required for H2B ubiquitylation. Our genetic screen identified amino acids on the nucleosome acidic patch, a negatively charged region on the nucleosome surface, as being important for this process. The acidic patch is critical for regulating chromatin transactions, and, in our study, we identified roles for the acidic patch throughout transcription. Our data reveal that the acidic patch recruits histone modifiers, regulates histone modifications within the H2B ubiquitylation cascade, and maintains transcriptional fidelity.
Collapse
Affiliation(s)
- Christine E. Cucinotta
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Alexandria N. Young
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Kristin M. Klucevsek
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Karen M. Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
280
|
Galvani A, Thiriet C. Nucleosome Dancing at the Tempo of Histone Tail Acetylation. Genes (Basel) 2015; 6:607-21. [PMID: 26184324 PMCID: PMC4584320 DOI: 10.3390/genes6030607] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/26/2015] [Accepted: 07/08/2015] [Indexed: 12/12/2022] Open
Abstract
The impact of histone acetylation on transcription was revealed over 50 years ago by Allfrey and colleagues. However, it took decades for an understanding of the fine mechanism by which this posttranslational modification affects chromatin structure and promotes transcription. Here, we review breakthroughs linking histone tail acetylation, histone dynamics, and transcription. We also discuss the histone exchange during transcription and highlight the important function of a pool of non-chromatinized histones in chromatin dynamics.
Collapse
Affiliation(s)
- Angélique Galvani
- UMR CNRS 6286 UFIP, Université de Nantes, Epigénétique: Proliferation et Différenciation, 2 rue de Houssinière, 44322 Nantes Cedex 03, France.
| | - Christophe Thiriet
- UMR CNRS 6286 UFIP, Université de Nantes, Epigénétique: Proliferation et Différenciation, 2 rue de Houssinière, 44322 Nantes Cedex 03, France.
| |
Collapse
|
281
|
Chen CC, Bowers S, Lipinszki Z, Palladino J, Trusiak S, Bettini E, Rosin L, Przewloka MR, Glover DM, O'Neill RJ, Mellone BG. Establishment of Centromeric Chromatin by the CENP-A Assembly Factor CAL1 Requires FACT-Mediated Transcription. Dev Cell 2015; 34:73-84. [PMID: 26151904 PMCID: PMC4495351 DOI: 10.1016/j.devcel.2015.05.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 04/09/2015] [Accepted: 05/18/2015] [Indexed: 01/09/2023]
Abstract
Centromeres are essential chromosomal structures that mediate accurate chromosome segregation during cell division. Centromeres are specified epigenetically by the heritable incorporation of the centromeric histone H3 variant CENP-A. While many of the primary factors that mediate centromeric deposition of CENP-A are known, the chromatin and DNA requirements of this process have remained elusive. Here, we uncover a role for transcription in Drosophila CENP-A deposition. Using an inducible ectopic centromere system that uncouples CENP-A deposition from endogenous centromere function and cell-cycle progression, we demonstrate that CENP-A assembly by its loading factor, CAL1, requires RNAPII-mediated transcription of the underlying DNA. This transcription depends on the CAL1 binding partner FACT, but not on CENP-A incorporation. Our work establishes RNAPII passage as a key step in chaperone-mediated CENP-A chromatin establishment and propagation.
Collapse
Affiliation(s)
- Chin-Chi Chen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Sarion Bowers
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Zoltan Lipinszki
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK; Biological Research Centre of the Hungarian Academy of Sciences, Institute of Biochemistry, P.O. Box 521, 6701 Szeged, Hungary
| | - Jason Palladino
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Sarah Trusiak
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Emily Bettini
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Leah Rosin
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | | - David M Glover
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Rachel J O'Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Barbara G Mellone
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
282
|
Zhou W, Zhu Y, Dong A, Shen WH. Histone H2A/H2B chaperones: from molecules to chromatin-based functions in plant growth and development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:78-95. [PMID: 25781491 DOI: 10.1111/tpj.12830] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 05/06/2023]
Abstract
Nucleosomal core histones (H2A, H2B, H3 and H4) must be assembled, replaced or exchanged to preserve or modify chromatin organization and function according to cellular needs. Histone chaperones escort histones, and play key functions during nucleosome assembly/disassembly and in nucleosome structure configuration. Because of their location at the periphery of nucleosome, histone H2A-H2B dimers are remarkably dynamic. Here we focus on plant histone H2A/H2B chaperones, particularly members of the NUCLEOSOME ASSEMBLY PROTEIN-1 (NAP1) and FACILITATES CHROMATIN TRANSCRIPTION (FACT) families, discussing their molecular features, properties, regulation and function. Covalent histone modifications (e.g. ubiquitination, phosphorylation, methylation, acetylation) and H2A variants (H2A.Z, H2A.X and H2A.W) are also discussed in view of their crucial importance in modulating nucleosome organization and function. We further discuss roles of NAP1 and FACT in chromatin-based processes, such as transcription, DNA replication and repair. Specific functions of NAP1 and FACT are evident when their roles are considered with respect to regulation of plant growth and development and in plant responses to environmental stresses. Future major challenges remain in order to define in more detail the overlapping and specific roles of various members of the NAP1 family as well as differences and similarities between NAP1 and FACT family members, and to identify and characterize their partners as well as new families of chaperones to understand histone variant incorporation and chromatin target specificity.
Collapse
Affiliation(s)
- Wangbin Zhou
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 20043, China
| | - Yan Zhu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 20043, China
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 20043, China
| | - Wen-Hui Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 20043, China
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| |
Collapse
|
283
|
The role of the chromatin assembly complex (CAF-1) and its p60 subunit (CHAF1b) in homeostasis and disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:979-86. [PMID: 26066981 DOI: 10.1016/j.bbagrm.2015.05.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 11/23/2022]
Abstract
Nucleosome assembly following DNA synthesis is critical for maintaining genomic stability. The proteins directly responsible for shuttling newly synthesized histones H3 and H4 from the cytoplasm to the assembly fork during DNA replication comprise the Chromatin Assembly Factor 1 complex (CAF-1). Whereas the diverse functions of the large (CAF-1-p150, CHAF1a) and small (RbAp48, p48) subunits of the CAF-1 complex have been well-characterized in many tissues and extend beyond histone chaperone activity, the contributions of the medium subunit (CAF-1-p60, CHAF1b) are much less well understood. Although it is known that CHAF1b has multiple functional domains (7× WD repeat domain, B-like domain, and a PEST domain), how these components come together to elicit the functions of this protein are still unclear. Here, we review the biology of the CAF-1 complex, with an emphasis on CHAF1b, including its structure, regulation, and function. In addition, we discuss the possible contributions of CHAF1b and the CAF-1 complex to human diseases. Of note, CHAF1b is located within the Down syndrome critical region (DSCR) of chromosome 21. Therefore, we also address the putative contributions of its trisomy to the various manifestations of DS.
Collapse
|
284
|
Svensson JP, Shukla M, Menendez-Benito V, Norman-Axelsson U, Audergon P, Sinha I, Tanny JC, Allshire RC, Ekwall K. A nucleosome turnover map reveals that the stability of histone H4 Lys20 methylation depends on histone recycling in transcribed chromatin. Genome Res 2015; 25:872-83. [PMID: 25778913 PMCID: PMC4448683 DOI: 10.1101/gr.188870.114] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/12/2015] [Indexed: 12/16/2022]
Abstract
Nucleosome composition actively contributes to chromatin structure and accessibility. Cells have developed mechanisms to remove or recycle histones, generating a landscape of differentially aged nucleosomes. This study aimed to create a high-resolution, genome-wide map of nucleosome turnover in Schizosaccharomyces pombe. The recombination-induced tag exchange (RITE) method was used to study replication-independent nucleosome turnover through the appearance of new histone H3 and the disappearance or preservation of old histone H3. The genome-wide location of histones was determined by chromatin immunoprecipitation-exonuclease methodology (ChIP-exo). The findings were compared with diverse chromatin marks, including histone variant H2A.Z, post-translational histone modifications, and Pol II binding. Finally, genome-wide mapping of the methylation states of H4K20 was performed to determine the relationship between methylation (mono, di, and tri) of this residue and nucleosome turnover. Our analysis showed that histone recycling resulted in low nucleosome turnover in the coding regions of active genes, stably expressed at intermediate levels. High levels of transcription resulted in the incorporation of new histones primarily at the end of transcribed units. H4K20 was methylated in low-turnover nucleosomes in euchromatic regions, notably in the coding regions of long genes that were expressed at low levels. This transcription-dependent accumulation of histone methylation was dependent on the histone chaperone complex FACT. Our data showed that nucleosome turnover is highly dynamic in the genome and that several mechanisms are at play to either maintain or suppress stability. In particular, we found that FACT-associated transcription conserves histones by recycling them and is required for progressive H4K20 methylation.
Collapse
Affiliation(s)
- J Peter Svensson
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, 141 57 Huddinge, Sweden
| | - Manu Shukla
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JR, Scotland, United Kingdom
| | | | - Ulrika Norman-Axelsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, 141 57 Huddinge, Sweden
| | - Pauline Audergon
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JR, Scotland, United Kingdom
| | - Indranil Sinha
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, 141 57 Huddinge, Sweden
| | - Jason C Tanny
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Robin C Allshire
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JR, Scotland, United Kingdom
| | - Karl Ekwall
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, 141 57 Huddinge, Sweden
| |
Collapse
|
285
|
Dembowski JA, DeLuca NA. Selective recruitment of nuclear factors to productively replicating herpes simplex virus genomes. PLoS Pathog 2015; 11:e1004939. [PMID: 26018390 PMCID: PMC4446364 DOI: 10.1371/journal.ppat.1004939] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/07/2015] [Indexed: 01/01/2023] Open
Abstract
Much of the HSV-1 life cycle is carried out in the cell nucleus, including the expression, replication, repair, and packaging of viral genomes. Viral proteins, as well as cellular factors, play essential roles in these processes. Isolation of proteins on nascent DNA (iPOND) was developed to label and purify cellular replication forks. We adapted aspects of this method to label viral genomes to both image, and purify replicating HSV-1 genomes for the identification of associated proteins. Many viral and cellular factors were enriched on viral genomes, including factors that mediate DNA replication, repair, chromatin remodeling, transcription, and RNA processing. As infection proceeded, packaging and structural components were enriched to a greater extent. Among the more abundant proteins that copurified with genomes were the viral transcription factor ICP4 and the replication protein ICP8. Furthermore, all seven viral replication proteins were enriched on viral genomes, along with cellular PCNA and topoisomerases, while other cellular replication proteins were not detected. The chromatin-remodeling complexes present on viral genomes included the INO80, SWI/SNF, NURD, and FACT complexes, which may prevent chromatinization of the genome. Consistent with this conclusion, histones were not readily recovered with purified viral genomes, and imaging studies revealed an underrepresentation of histones on viral genomes. RNA polymerase II, the mediator complex, TFIID, TFIIH, and several other transcriptional activators and repressors were also affinity purified with viral DNA. The presence of INO80, NURD, SWI/SNF, mediator, TFIID, and TFIIH components is consistent with previous studies in which these complexes copurified with ICP4. Therefore, ICP4 is likely involved in the recruitment of these key cellular chromatin remodeling and transcription factors to viral genomes. Taken together, iPOND is a valuable method for the study of viral genome dynamics during infection and provides a comprehensive view of how HSV-1 selectively utilizes cellular resources.
Collapse
Affiliation(s)
- Jill A. Dembowski
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Neal A. DeLuca
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
286
|
The Histone Chaperones FACT and Spt6 Restrict H2A.Z from Intragenic Locations. Mol Cell 2015; 58:1113-23. [PMID: 25959393 DOI: 10.1016/j.molcel.2015.03.030] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/25/2015] [Accepted: 03/25/2015] [Indexed: 12/14/2022]
Abstract
H2A.Z is a highly conserved histone variant involved in several key nuclear processes. It is incorporated into promoters by SWR-C-related chromatin remodeling complexes, but whether it is also actively excluded from non-promoter regions is not clear. Here we provide genomic and biochemical evidence that the RNA polymerase II (RNA Pol II) elongation-associated histone chaperones FACT and Spt6 both contribute to restricting H2A.Z from intragenic regions. In the absence of FACT or Spt6, the lack of efficient nucleosome reassembly coupled to pervasive incorporation of H2A.Z by mislocalized SWR-C alters chromatin composition and contributes to cryptic initiation. Therefore, chaperone-mediated H2A.Z confinement is crucial for restricting the chromatin signature of gene promoters that otherwise may license or promote cryptic transcription.
Collapse
|
287
|
Bowman GD, Poirier MG. Post-translational modifications of histones that influence nucleosome dynamics. Chem Rev 2015; 115:2274-95. [PMID: 25424540 PMCID: PMC4375056 DOI: 10.1021/cr500350x] [Citation(s) in RCA: 353] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Gregory D. Bowman
- T.
C. Jenkins Department of Biophysics, Johns
Hopkins University, Baltimore, Maryland 21218, United States
| | - Michael G. Poirier
- Department of Physics, and Department of
Chemistry and Biochemistry, The Ohio State
University, Columbus, Ohio 43210, United
States
| |
Collapse
|
288
|
Erkina TY, Erkine A. ASF1 and the SWI/SNF complex interact functionally during nucleosome displacement, while FACT is required for nucleosome reassembly at yeast heat shock gene promoters during sustained stress. Cell Stress Chaperones 2015; 20:355-69. [PMID: 25416387 PMCID: PMC4326380 DOI: 10.1007/s12192-014-0556-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/14/2014] [Accepted: 11/10/2014] [Indexed: 12/22/2022] Open
Abstract
Histone chaperones are an integral part of the transcription regulatory machinery. We investigated the involvement of histone chaperones and their functional interactions with ATP-dependent chromatin remodeling complexes in the regulation of yeast heat shock genes. Strong functional interaction between the histone chaperone ASF1 and the ATP-dependent chromatin remodeling complex SWI/SNF is exhibited in synergistic diminishment of nucleosome displacement during heat shock in the ΔASF1/ΔSNF2 strain in comparison to individual ASF1 or SNF2 inactivation. A similar but less pronounced effect was observed for ISW1/ASF1 inactivation but not for ASF1/STH1 (RSC complex) combinatorial inactivation. The depletion of Spt16, which is a major subunit of the FACT histone chaperone complex, leads to a severe growth defect phenotype associated with unusual thermotolerance. The acquired thermotolerance in the Spt16-depleted strain is associated with a defect in the reassembly of nucleosomes at the promoters of heat shock genes during sustained heat stress, leading to increased recruitment of the transcriptional activator HSF and RNA polymerase II. The defect in nucleosome assembly associated with Spt16 depletion also leads to an increased tolerance to stress due to an increased concentration of NaCl.
Collapse
Affiliation(s)
- Tamara Y. Erkina
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN 46208 USA
| | - Alexandre Erkine
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN 46208 USA
| |
Collapse
|
289
|
Histone exchange, chromatin structure and the regulation of transcription. Nat Rev Mol Cell Biol 2015; 16:178-89. [DOI: 10.1038/nrm3941] [Citation(s) in RCA: 650] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
290
|
Gurard-Levin ZA, Quivy JP, Almouzni G. Histone chaperones: assisting histone traffic and nucleosome dynamics. Annu Rev Biochem 2015; 83:487-517. [PMID: 24905786 DOI: 10.1146/annurev-biochem-060713-035536] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The functional organization of eukaryotic DNA into chromatin uses histones as components of its building block, the nucleosome. Histone chaperones, which are proteins that escort histones throughout their cellular life, are key actors in all facets of histone metabolism; they regulate the supply and dynamics of histones at chromatin for its assembly and disassembly. Histone chaperones can also participate in the distribution of histone variants, thereby defining distinct chromatin landscapes of importance for genome function, stability, and cell identity. Here, we discuss our current knowledge of the known histone chaperones and their histone partners, focusing on histone H3 and its variants. We then place them into an escort network that distributes these histones in various deposition pathways. Through their distinct interfaces, we show how they affect dynamics during DNA replication, DNA damage, and transcription, and how they maintain genome integrity. Finally, we discuss the importance of histone chaperones during development and describe how misregulation of the histone flow can link to disease.
Collapse
Affiliation(s)
- Zachary A Gurard-Levin
- Institut Curie, Centre de Recherche; CNRS UMR 3664; Equipe Labellisée, Ligue contre le Cancer; and Université Pierre et Marie Curie, Paris F-75248, France;
| | | | | |
Collapse
|
291
|
Abstract
Histones package and compact DNA by assembling into nucleosome core particles. Most histones are synthesized at S phase for rapid deposition behind replication forks. In addition, the replacement of histones deposited during S phase by variants that can be deposited independently of replication provide the most fundamental level of chromatin differentiation. Alternative mechanisms for depositing different variants can potentially establish and maintain epigenetic states. Variants have also evolved crucial roles in chromosome segregation, transcriptional regulation, DNA repair, and other processes. Investigations into the evolution, structure, and metabolism of histone variants provide a foundation for understanding the participation of chromatin in important cellular processes and in epigenetic memory.
Collapse
Affiliation(s)
- Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024
| | - M Mitchell Smith
- Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
292
|
Squillaro T, Severino V, Alessio N, Farina A, Di Bernardo G, Cipollaro M, Peluso G, Chambery A, Galderisi U. De-regulated expression of the BRG1 chromatin remodeling factor in bone marrow mesenchymal stromal cells induces senescence associated with the silencing of NANOG and changes in the levels of chromatin proteins. Cell Cycle 2015; 14:1315-1326. [PMID: 25724006 PMCID: PMC4614278 DOI: 10.4161/15384101.2014.995053] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 12/17/2022] Open
Abstract
Stem cells have a peculiar chromatin architecture that contributes to their unique properties, including uncommitted status, multi/pluripotency and self-renewal. We analyzed the effect of the de-regulation of the SWI/SNF chromatin remodeling complex in mesenchymal stromal cells (MSC) through the silencing and up-regulation of BRG1, which is the ATPase subunit of the complex. The altered expression of BRG1 promoted the senescence of MSC with suppression of the NANOG transcription, which is part of the transcriptional circuitry governing stem cell functions. To gain insight on the way NANOG was silenced, we evaluated how the de-regulated BRG1 expression affect the binding of activators and repressors on the NANOG promoter. We found 4 E2F binding motifs on NANOG promoter, which can be occupied by RB1 and RB2/P130. These are members of the retinoblastoma gene family. In MSC with a silenced BRG1, the relative binding of the 2 retinoblastoma proteins increased, and this was associated with the recruitment of DNMT1. This induced the methylation of CpG on the NANOG promoter. Opposingly, when a high level of BRG1 was present, the same E2F binding motifs were docking sites for BRG1, which induced chromatin compaction without CpG methylation but with increased histone deacetylation, associated with the presence of HDAC1 on E2F binding sites. Besides the sharp regulation of the NANOG expression, we evidenced, through proteomic analysis, that the de-regulation of the SWI/SNF function affected the expression of histones and other nuclear proteins involved in "nuclear architecture," suggesting that BRG1 may act as global regulator of gene expression.
Collapse
Affiliation(s)
- Tiziana Squillaro
- Department of Experimental Medicine; Biotechnology and Molecular Biology Section; Second University of Naples; Naples, Italy
| | - Valeria Severino
- Department of Environmental; Biological and Pharmaceutical Sciences and Technologies; Second University of Naples; Naples, Italy
| | - Nicola Alessio
- Biomedical Proteomics Research Group; Department of Human Protein Science; Geneva University; Geneva, Switzerland
| | - Annarita Farina
- Biomedical Proteomics Research Group; Department of Human Protein Science; Geneva University; Geneva, Switzerland
| | - Giovanni Di Bernardo
- Department of Experimental Medicine; Biotechnology and Molecular Biology Section; Second University of Naples; Naples, Italy
| | - Marilena Cipollaro
- Department of Experimental Medicine; Biotechnology and Molecular Biology Section; Second University of Naples; Naples, Italy
| | | | - Angela Chambery
- Department of Environmental; Biological and Pharmaceutical Sciences and Technologies; Second University of Naples; Naples, Italy
- IRCCS; Multimedica, Milano, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine; Biotechnology and Molecular Biology Section; Second University of Naples; Naples, Italy
- Institute Bioscience and BioResources; CNR; Naples, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine; Center for Biotechnology; Temple University; Philadelphia, PA USA
| |
Collapse
|
293
|
Transcribing through the nucleosome. Trends Biochem Sci 2014; 39:577-86. [DOI: 10.1016/j.tibs.2014.10.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 11/20/2022]
|
294
|
Kanno T, Kanno Y, LeRoy G, Campos E, Sun HW, Brooks SR, Vahedi G, Heightman TD, Garcia BA, Reinberg D, Siebenlist U, O’Shea JJ, Ozato K. BRD4 assists elongation of both coding and enhancer RNAs by interacting with acetylated histones. Nat Struct Mol Biol 2014; 21:1047-57. [PMID: 25383670 PMCID: PMC4720983 DOI: 10.1038/nsmb.2912] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023]
Abstract
Small-molecule BET inhibitors interfere with the epigenetic interactions between acetylated histones and the bromodomains of the BET family proteins, including BRD4, and they potently inhibit growth of malignant cells by targeting cancer-promoting genes. BRD4 interacts with the pause-release factor P-TEFb and has been proposed to release RNA polymerase II (Pol II) from promoter-proximal pausing. We show that BRD4 occupies widespread genomic regions in mouse cells and directly stimulates elongation of both protein-coding transcripts and noncoding enhancer RNAs (eRNAs), in a manner dependent on bromodomain function. BRD4 interacts with elongating Pol II complexes and assists Pol II in progression through hyperacetylated nucleosomes by interacting with acetylated histones via bromodomains. On active enhancers, the BET inhibitor JQ1 antagonizes BRD4-associated eRNA synthesis. Thus, BRD4 is involved in multiple steps of the transcription hierarchy, primarily by facilitating transcript elongation both at enhancers and on gene bodies independently of P-TEFb.
Collapse
Affiliation(s)
- Tomohiko Kanno
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
- Program in Genomics of Differentiation, National Institutes of Child Health and Human Development, Bethesda, MD, USA
| | - Yuka Kanno
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | - Gary LeRoy
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, USA
| | - Eric Campos
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, USA
| | - Hong-Wei Sun
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | - Stephen R Brooks
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | - Golnaz Vahedi
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | - Tom D Heightman
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, UK
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, USA
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - John J O’Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | - Keiko Ozato
- Program in Genomics of Differentiation, National Institutes of Child Health and Human Development, Bethesda, MD, USA
| |
Collapse
|
295
|
Thompson LL, Guppy BJ, Sawchuk L, Davie JR, McManus KJ. Regulation of chromatin structure via histone post-translational modification and the link to carcinogenesis. Cancer Metastasis Rev 2014; 32:363-76. [PMID: 23609752 DOI: 10.1007/s10555-013-9434-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The loss of genome integrity contributes to the development of tumors. Although genome instability is associated with virtually all tumor types including both solid and liquid tumors, the aberrant molecular origins that drive this instability are poorly understood. It is now becoming clear that epigenetics and specific histone post-translational modifications (PTMs) have essential roles in maintaining genome stability under normal conditions. A strong relationship exists between aberrant histone PTMs, genome instability, and tumorigenesis. Changes in the genomic location of specific histone PTMs or alterations in the steady-state levels of the PTM are the consequence of imbalances in the enzymes and their activities catalyzing the addition of PTMs ("writers") or removal of PTMs ("erasers"). This review focuses on the misregulation of three specific types of histone PTMs: histone H3 phosphorylation at serines 10 and 28, H4 mono-methylation at lysine 20, and H2B ubiquitination at lysine 120. We discuss the normal regulation of these PTMs by the respective "writers" and "erasers" and the impact of their misregulation on genome stability.
Collapse
Affiliation(s)
- Laura L Thompson
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | |
Collapse
|
296
|
Dahlin JL, Chen X, Walters MA, Zhang Z. Histone-modifying enzymes, histone modifications and histone chaperones in nucleosome assembly: Lessons learned from Rtt109 histone acetyltransferases. Crit Rev Biochem Mol Biol 2014; 50:31-53. [PMID: 25365782 DOI: 10.3109/10409238.2014.978975] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
During DNA replication, nucleosomes ahead of replication forks are disassembled to accommodate replication machinery. Following DNA replication, nucleosomes are then reassembled onto replicated DNA using both parental and newly synthesized histones. This process, termed DNA replication-coupled nucleosome assembly (RCNA), is critical for maintaining genome integrity and for the propagation of epigenetic information, dysfunctions of which have been implicated in cancers and aging. In recent years, it has been shown that RCNA is carefully orchestrated by a series of histone modifications, histone chaperones and histone-modifying enzymes. Interestingly, many features of RCNA are also found in processes involving DNA replication-independent nucleosome assembly like histone exchange and gene transcription. In yeast, histone H3 lysine K56 acetylation (H3K56ac) is found in newly synthesized histone H3 and is critical for proper nucleosome assembly and for maintaining genomic stability. The histone acetyltransferase (HAT) regulator of Ty1 transposition 109 (Rtt109) is the sole enzyme responsible for H3K56ac in yeast. Much research has centered on this particular histone modification and histone-modifying enzyme. This Critical Review summarizes much of our current understanding of nucleosome assembly and highlights many important insights learned from studying Rtt109 HATs in fungi. We highlight some seminal features in nucleosome assembly conserved in mammalian systems and describe some of the lingering questions in the field. Further studying fungal and mammalian chromatin assembly may have important public health implications, including deeper understandings of human cancers and aging as well as the pursuit of novel anti-fungal therapies.
Collapse
Affiliation(s)
- Jayme L Dahlin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine , Rochester, MN , USA
| | | | | | | |
Collapse
|
297
|
Ishibashi N, Kitakura S, Terakura S, Machida C, Machida Y. Protein encoded by oncogene 6b from Agrobacterium tumefaciens has a reprogramming potential and histone chaperone-like activity. FRONTIERS IN PLANT SCIENCE 2014; 5:572. [PMID: 25389429 PMCID: PMC4211554 DOI: 10.3389/fpls.2014.00572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/05/2014] [Indexed: 05/31/2023]
Abstract
Crown gall tumors are formed mainly by actions of a group of genes in the T-DNA that is transferred from Agrobacterium tumefaciens and integrated into the nuclear DNA of host plants. These genes encode enzymes for biosynthesis of auxin and cytokinin in plant cells. Gene 6b in the T-DNA affects tumor morphology and this gene alone is able to induce small tumors on certain plant species. In addition, unorganized calli are induced from leaf disks of tobacco that are incubated on phytohormone-free media; shooty teratomas, and morphologically abnormal plants, which might be due to enhanced competence of cell division and meristematic states, are regenerated from the calli. Thus, the 6b gene appears to stimulate a reprogramming process in plants. To uncover mechanisms behind this process, various approaches including the yeast-two-hybrid system have been exploited and histone H3 was identified as one of the proteins that interact with 6b. It has been also demonstrated that 6b acts as a histone H3 chaperon in vitro and affects the expression of various genes related to cell division competence and the maintenance of meristematic states. We discuss current views on a role of 6b protein in tumorigenesis and reprogramming in plants.
Collapse
Affiliation(s)
- Nanako Ishibashi
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoya, Japan
| | - Saeko Kitakura
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoya, Japan
- Graduate School of Bioscience and Biotechnology, Chubu UniversityKasugai, Japan
| | - Shinji Terakura
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoya, Japan
| | - Chiyoko Machida
- Graduate School of Bioscience and Biotechnology, Chubu UniversityKasugai, Japan
| | - Yasunori Machida
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoya, Japan
| |
Collapse
|
298
|
Denninger V, Rudenko G. FACT plays a major role in histone dynamics affecting VSG expression site control in Trypanosoma brucei. Mol Microbiol 2014; 94:945-62. [PMID: 25266856 PMCID: PMC4625058 DOI: 10.1111/mmi.12812] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2014] [Indexed: 12/21/2022]
Abstract
Chromatin remodelling is involved in the transcriptional regulation of the RNA polymerase I transcribed variant surface glycoprotein (VSG) expression sites (ESs) of Trypanosoma brucei. We show that the T. brucei FACT complex contains the Pob3 and Spt16 subunits, and plays a key role in ES silencing. We see an inverse correlation between transcription and condensed chromatin, whereby FACT knockdown results in ES derepression and more open chromatin around silent ES promoters. Derepressed ESs show increased sensitivity to micrococcal nuclease (MNase) digestion, and a decrease in histones at silent ES promoters but not telomeres. In contrast, FACT knockdown results in more histones at the active ES, correlated with transcription shut-down. ES promoters are derepressed in cells stalled at the G2/M cell cycle stage after knockdown of FACT, but not in G2/M cells stalled after knockdown of cyclin 6. This argues that the observed ES derepression is a direct consequence of histone chaperone activity by FACT at the G2/M cell cycle stage which could affect transcription elongation, rather than an indirect consequence of a cell cycle checkpoint. These experiments highlight the role of the FACT complex in cell cycle-specific chromatin remodelling within VSG ESs.
Collapse
Affiliation(s)
- Viola Denninger
- Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | | |
Collapse
|
299
|
Zhu J, Davoli T, Perriera JM, Chin CR, Gaiha GD, John SP, Sigiollot FD, Gao G, Xu Q, Qu H, Pertel T, Sims JS, Smith JA, Baker RE, Maranda L, Ng A, Elledge SJ, Brass AL. Comprehensive identification of host modulators of HIV-1 replication using multiple orthologous RNAi reagents. Cell Rep 2014; 9:752-66. [PMID: 25373910 PMCID: PMC4926641 DOI: 10.1016/j.celrep.2014.09.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/06/2014] [Accepted: 09/16/2014] [Indexed: 11/17/2022] Open
Abstract
RNAi screens have implicated hundreds of host proteins as HIV-1 dependency factors (HDFs). While informative, these early studies overlap poorly due to false positives and false negatives. To ameliorate these issues, we combined information from the existing HDF screens together with new screens performed with multiple orthologous RNAi reagents (MORR). In addition to being traditionally validated, the MORR screens and the historical HDF screens were quantitatively integrated by the adaptation of an established analysis program, RIGER, for the collective interpretation of each gene’s phenotypic significance. False positives were addressed by the removal of poorly expressed candidates through gene expression filtering, as well as with GESS, which identifies off-target effects. This workflow produced a quantitatively integrated network of genes that modulate HIV-1 replication. We further investigated the roles of GOLGI49, SEC13, and COG in HIV-1 replication. Collectively, the MORR-RIGER method minimized the caveats of RNAi screening and improved our understanding of HIV-1–host cell interactions.
Collapse
Affiliation(s)
- Jian Zhu
- Department of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02127, USA
| | - Teresa Davoli
- Department of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02127, USA
| | - Jill M Perriera
- Microbiology and Physiological Systems (MaPS) Department, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Christopher R Chin
- Microbiology and Physiological Systems (MaPS) Department, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Gaurav D Gaiha
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard University, Charlestown, MA 02129, USA
| | - Sinu P John
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard University, Charlestown, MA 02129, USA
| | | | - Geng Gao
- Department of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02127, USA
| | - Qikai Xu
- Department of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02127, USA
| | - Hongjing Qu
- Department of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02127, USA
| | - Thomas Pertel
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard University, Charlestown, MA 02129, USA
| | - Jennifer S Sims
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard University, Charlestown, MA 02129, USA
| | - Jennifer A Smith
- ICCB-Longwood Screening Facility, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Richard E Baker
- Microbiology and Physiological Systems (MaPS) Department, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Louise Maranda
- Department of Quantitative Health Sciences, University of Massachusetts Medical School, 55 Lake Avenue, North Worcester, MA 01655, USA
| | - Aylwin Ng
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Stephen J Elledge
- Department of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02127, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Abraham L Brass
- Microbiology and Physiological Systems (MaPS) Department, University of Massachusetts Medical School, Worcester, MA 01655, USA; Ragon Institute of Massachusetts General Hospital, MIT and Harvard University, Charlestown, MA 02129, USA.
| |
Collapse
|
300
|
Filipescu D, Müller S, Almouzni G. Histone H3 Variants and Their Chaperones During Development and Disease: Contributing to Epigenetic Control. Annu Rev Cell Dev Biol 2014; 30:615-46. [DOI: 10.1146/annurev-cellbio-100913-013311] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dan Filipescu
- Institut Curie, Centre de Recherche, Paris, F-75248 France; , ,
| | | | | |
Collapse
|