251
|
Smider V, Rathmell WK, Brown G, Lewis S, Chu G. Failure of hairpin-ended and nicked DNA To activate DNA-dependent protein kinase: implications for V(D)J recombination. Mol Cell Biol 1998; 18:6853-8. [PMID: 9774698 PMCID: PMC109268 DOI: 10.1128/mcb.18.11.6853] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
V(D)J recombination is initiated by a coordinated cleavage reaction that nicks DNA at two sites and then forms a hairpin coding end and blunt signal end at each site. Following cleavage, the DNA ends are joined by a process that is incompletely understood but nevertheless depends on DNA-dependent protein kinase (DNA-PK), which consists of Ku and a 460-kDa catalytic subunit (DNA-PKCS or p460). Ku directs DNA-PKCS to DNA ends to efficiently activate the kinase. In vivo, the mouse SCID mutation in DNA-PKCS disrupts joining of the hairpin coding ends but spares joining of the open signal ends. To better understand the mechanism of V(D)J recombination, we measured the activation of DNA-PK by the three DNA structures formed during the cleavage reaction: open ends, DNA nicks, and hairpin ends. Although open DNA ends strongly activated DNA-PK, nicked DNA substrates and hairpin-ended DNA did not. Therefore, even though efficient processing of hairpin coding ends requires DNA-PKCS, this may occur by activation of the kinase bound to the cogenerated open signal end rather than to the hairpin end itself.
Collapse
Affiliation(s)
- V Smider
- Departments of Medicine and Biochemistry, Stanford University Medical Center, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
252
|
Bharti A, Kraeft SK, Gounder M, Pandey P, Jin S, Yuan ZM, Lees-Miller SP, Weichselbaum R, Weaver D, Chen LB, Kufe D, Kharbanda S. Inactivation of DNA-dependent protein kinase by protein kinase Cdelta: implications for apoptosis. Mol Cell Biol 1998; 18:6719-28. [PMID: 9774685 PMCID: PMC109255 DOI: 10.1128/mcb.18.11.6719] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein kinase Cdelta (PKCdelta) is proteolytically cleaved and activated at the onset of apoptosis induced by DNA-damaging agents, tumor necrosis factor, and anti-Fas antibody. A role for PKCdelta in apoptosis is supported by the finding that overexpression of the catalytic fragment of PKCdelta (PKCdelta CF) in cells is associated with the appearance of certain characteristics of apoptosis. However, the functional relationship between PKCdelta cleavage and induction of apoptosis is unknown. The present studies demonstrate that PKCdelta associates constitutively with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). The results show that PKCdelta CF phosphorylates DNA-PKcs in vitro. Interaction of DNA-PKcs with PKCdelta CF inhibits the function of DNA-PKcs to form complexes with DNA and to phosphorylate its downstream target, p53. The results also demonstrate that cells deficient in DNA-PK are resistant to apoptosis induced by overexpressing PKCdelta CF. These findings support the hypothesis that functional interactions between PKCdelta and DNA-PK contribute to DNA damage-induced apoptosis.
Collapse
Affiliation(s)
- A Bharti
- Cancer Pharmacology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
253
|
West RB, Yaneva M, Lieber MR. Productive and nonproductive complexes of Ku and DNA-dependent protein kinase at DNA termini. Mol Cell Biol 1998; 18:5908-20. [PMID: 9742108 PMCID: PMC109177 DOI: 10.1128/mcb.18.10.5908] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/1998] [Accepted: 06/26/1998] [Indexed: 11/20/2022] Open
Abstract
DNA-dependent protein kinase (DNA-PK) is the only eukaryotic protein kinase known to be specifically activated by double-stranded DNA (dsDNA) termini, accounting for its importance in repair of dsDNA breaks and its role in physiologic processes involving dsDNA breaks, such as V(D)J recombination. In this study we conducted kinase and binding analyses using DNA-PK on DNA termini of various lengths in the presence and absence of Ku. We confirmed our previous observations that DNA-PK can bind DNA termini in the absence of Ku, and we determined rate constants for binding. However, in the presence of Ku, DNA-PK can assume either a productive or a nonproductive configuration, depending on the length of the DNA terminus. For dsDNA greater than 26 bp, the productive mode is achieved and Ku increases the affinity of the DNA-PK for the Ku:DNA complex. The change in affinity is achieved by increases in both the kinetic association rate and reduction in the kinetic dissociation rate. For dsDNA smaller than 26 bp, the nonproductive mode, in which DNA-PK is bound to Ku:DNA but is inactive as a kinase, is assumed. Both the productive and nonproductive configurations are likely to be of physiologic importance, depending on the distance of the dsDNA break site to other protein complexes, such as nucleosomes.
Collapse
Affiliation(s)
- R B West
- Departments of Pathology and of Biochemistry and Molecular Biology, University of Southern California School of Medicine, Los Angeles, California 90033, USA
| | | | | |
Collapse
|
254
|
Yu E, Song K, Moon H, Maul GG, Lee I. Characteristic immunolocalization of Ku protein as nuclear matrix. Hybridoma (Larchmt) 1998; 17:413-20. [PMID: 9873986 DOI: 10.1089/hyb.1998.17.413] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Two hybridoma clones, NMB1 and NML90, were established using nuclear matrix proteins from normal human thymi or malignant lymphoma as immunogens. They reacted with human Ku70 and Ku80, respectively, by immunoblotting. When HeLa cell nuclear proteins were fractionated and applied to immunoblotting, both Ku70 and Ku80 were detected in the nuclear matrix as well as the soluble nuclear protein fractions. By confocal scanning microscopy, the immunoreactivity of Ku70 and Ku80 was localized to distinct nucleoplasmic fibrillar network and fine granules in the interphase cell nuclei. When HeLa cells were fractionated in situ using DNase I and buffers containing 0.25 M (NH4)2SO4 and 2 M NaCl, the nucleoplasmic reticular structure was largely preserved, but granules disappeared. The nucleoplasmic distribution of Ku in the tissue and in cultured cells was distinct from each other. In the adult tissue, it consisted mostly of either distinct curvilinear lines along the nuclear periphery or of tangled, beaded lines throughout the nuclei. When xenotransplants of HeLa cell in Scid mice were examined, the "tissue type" immunolocalization pattern was reproduced consistently. In most fetal tissues, "tissue type" and "cell type" patterns were admixed. Monoclonal antibodies described here are useful tools for studying the structure and function of the nuclear matrix.
Collapse
Affiliation(s)
- E Yu
- Department of Pathology, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | | | | | | | | |
Collapse
|
255
|
Grawunder U, Zimmer D, Fugmann S, Schwarz K, Lieber MR. DNA ligase IV is essential for V(D)J recombination and DNA double-strand break repair in human precursor lymphocytes. Mol Cell 1998; 2:477-84. [PMID: 9809069 DOI: 10.1016/s1097-2765(00)80147-1] [Citation(s) in RCA: 268] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Nonhomologous DNA end joining (NHEJ) is the major pathway for repairing double-strand DNA breaks. V(D)J recombination is a double-strand DNA breakage and rejoining process that relies on NHEJ for the joining steps. Here we show that the targeted disruption of both DNA ligase IV alleles in a human pre-B cell line renders the cells sensitive to ionizing radiation and ablates V(D)J recombination. This phenotype can only be reversed by complementation with DNA ligase IV but not by expression of either of the remaining two ligases, DNA ligase I or III. Hence, DNA ligase IV is the activity responsible for the ligation step in NHEJ and in V(D)J recombination.
Collapse
Affiliation(s)
- U Grawunder
- University of Southern California School of Medicine, Norris Comprehensive Cancer Center, Department of Pathology, Los Angeles 90033, USA
| | | | | | | | | |
Collapse
|
256
|
Grawunder U, Zimmer D, Kulesza P, Lieber MR. Requirement for an interaction of XRCC4 with DNA ligase IV for wild-type V(D)J recombination and DNA double-strand break repair in vivo. J Biol Chem 1998; 273:24708-14. [PMID: 9733770 DOI: 10.1074/jbc.273.38.24708] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The XRCC4 gene is required for the repair of DNA double-strand breaks in mammalian cells. Without XRCC4, cells are hypersensitive to ionizing radiation and deficient for V(D)J recombination. It has been demonstrated that XRCC4 binds and stimulates DNA ligase IV, which has led to the hypothesis that DNA ligase IV is essential for both of these processes. In this study deletion mutants of XRCC4 were tested for their ability to associate with DNA ligase IV in vitro and for their ability to reconstitute XRCC4-deficient cells in vivo. We find that a central region of XRCC4 from amino acids 100-250 is necessary for DNA ligase IV binding and that deletions within this region functionally inactivates XRCC4. Deletions within the C-terminal 84 amino acids neither affect DNA ligase IV binding nor the in vivo function of XRCC4. The correlation between the ability or inability of XRCC4 to bind DNA ligase IV and its ability or failure to reconstitute wild-type DNA repair in vivo, respectively, demonstrates for the first time that the physical interaction with DNA ligase IV is crucial for the in vivo function of XRCC4. Deletions within the N-terminal 100 amino acids inactivate XRCC4 in vivo but leave DNA ligase IV binding unaffected. This indicates further DNA ligase IV-independent functions of XRCC4.
Collapse
Affiliation(s)
- U Grawunder
- University of Southern California School of Medicine, Norris Comprehensive Cancer Center, Department of Pathology, Los Angeles, California 90033, USA
| | | | | | | |
Collapse
|
257
|
Leber R, Wiler R, Perryman LE, Meek K. Equine SCID: mechanistic analysis and comparison with murine SCID. Vet Immunol Immunopathol 1998; 65:1-9. [PMID: 9802572 DOI: 10.1016/s0165-2427(98)00174-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
V(D)J rearrangement is the molecular mechanism by which an almost limitless number of unique immune receptors is generated. V(D)J rearrangement involves two DNA breaks and religations resulting in two DNA joints; coding and signal joints. If V(D)J recombination is impaired (as in murine SCID (C.B-17 mouse] or RAG [Recombinase Activating Genes) deficient mice), B lymphocyte and T lymphocyte development is blocked and severe immunodeficiency results. The first animal model of SCID was reported in Arabian foals in 1973. Recently we demonstrated that the mechanistic defect in SCID foals is V(D)J recombination. However, the impairment of V(D)J recombination in SCID foals is phenotypically distinct from SCID mice in that both signal and coding joint ligation are impaired. Furthermore, though equine SCID and murine SCID have definite phenotypic differences, both defects are likely to be the result of defective expression of the catalytic subunit of the DNA-dependent protein kinase.
Collapse
Affiliation(s)
- R Leber
- Harold C. Simmons Arthritis Research Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | | | |
Collapse
|
258
|
Verkoczy LK, Marsden PA, Berinstein NL. hBRAG, a novel B cell lineage cDNA encoding a type II transmembrane glycoprotein potentially involved in the regulation of recombination activating gene 1 (RAG1). Eur J Immunol 1998; 28:2839-53. [PMID: 9754571 DOI: 10.1002/(sici)1521-4141(199809)28:09<2839::aid-immu2839>3.0.co;2-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The different display reverse transcription-PCR (DD RT-PCR) technique was used to identify novel cDNA detecting mRNA transcripts co-expressed with human recombination activating gene-1 (RAG1). A 5.0-kb transcript detected by the differential display amplicon 3G1 was found to correlate strongly with RAG1 mRNA expression in various human cell lines. Subsequent screenings of a pre-B cDNA library with 3G1 led to the identification of a complete cDNA we have termed hBRAG (human B-cell RAG-Associated Gene). The hBRAG cDNA encodes a 503-amino acid (aa) protein with no known homology to any nucleotide or protein sequence. The predicted molecular mass of 55 kDa was confirmed by in vitro translation. Based on sequence analysis, the predicted open reading frame encodes for a type II transmembrane spanning glycoprotein with the N-terminal 81 -aa in the cytoplasm, a 17-aa transmembrane domain, and a C-terminal 405-aa extracellular domain with four potential N-glycosylation sites. Northern blot analysis indicated a close association of the 5.0-kb hBRAG mRNA transcript with RAG1 in numerous human pro-B, pre-B and mature B cell lines assessed, but not in human T cell lines. In human tissues, hBRAG is expressed at highest levels in B cell-enriched tissues, but is not expressed in fetal or adult thymus. Southern blotting analysis revealed that this gene is conserved across eukaryotes, is expressed as a single copy in the human genome, and is likely not a multigene family member. The hBRAG gene was localized to the long arm of chromosome 10 (10q26). Transfection of the full-length hBRAG cDNA increased levels of human RAG1 transcripts in the B cell line OCI LY8-C3P, but not in the non-lymphoid line K562, suggesting a B cell-specific role for the hBRAG product in regulating RAG expression.
Collapse
Affiliation(s)
- L K Verkoczy
- Department of Immunology, University of Toronto, Canada
| | | | | |
Collapse
|
259
|
Taccioli GE, Amatucci AG, Beamish HJ, Gell D, Xiang XH, Torres Arzayus MI, Priestley A, Jackson SP, Marshak Rothstein A, Jeggo PA, Herrera VL. Targeted disruption of the catalytic subunit of the DNA-PK gene in mice confers severe combined immunodeficiency and radiosensitivity. Immunity 1998; 9:355-66. [PMID: 9768755 DOI: 10.1016/s1074-7613(00)80618-4] [Citation(s) in RCA: 251] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The DNA-dependent protein kinase is a mammalian protein complex composed of Ku70, Ku80, and DNA-PKcs subunits that has been implicated in DNA double-strand break repair and V(D)J recombination. Here, by gene targeting, we have constructed a mouse with a disruption in the kinase domain of DNA-PKcs, generating an animal model completely devoid of DNA-PK activity. Our results demonstrate that DNA-PK activity is required for coding but not for signal join formation in mice. Although our DNA-PKcs defective mice closely resemble Scid mice, they differ by having elevated numbers of CD4+CD8+ thymocytes. This suggests that the Scid mice may not represent a null phenotype and may retain some residual DNA-PKcs function.
Collapse
Affiliation(s)
- G E Taccioli
- Department of Microbiology, Boston University School of Medicine, Massachusetts 02118, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
260
|
Kulesza P, Lieber MR. DNA-PK is essential only for coding joint formation in V(D)J recombination. Nucleic Acids Res 1998; 26:3944-8. [PMID: 9705502 PMCID: PMC147799 DOI: 10.1093/nar/26.17.3944] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The analysis of the role of DNA-dependent protein kinase (DNA-PK) in DNA double-strand break repair and V(D)J recombination is based primarily on studies of murine scid, in which only the C-terminal 2% of the protein is deleted and the remaining 98% is expressed at levels that are within an order of magnitude of normal. In murine scid, signal joint formation is observed at normal levels, even though coding joint formation is reduced over three orders of magnitude. In contrast, a closely associated protein, Ku, is necessary for both coding and signal joint formation. Based on these observations, a reasonable hypothesis has been that absence of the DNA-PK protein (rather than merely its C-terminal 2% truncation) would ablate signal joint formation along with coding joint formation. In fact, a study of equine SCID, in which there is a much larger truncation of the DNA-PK protein, has suggested that signal joints do fail to form. In our current study, we have analyzed signal and coding joint formation in a malignant glioma cell line, M059J, which was previously shown to be deficient in DNA-PK. Our quantitative analysis shows that full-length protein levels are reduced at least 200-fold, to a level that is undetectable, yet signal joint formation occurs at wild-type levels. This result demonstrates that at least this form of non-homologous DNA end joining can occur in the absence of DNA-PK.
Collapse
Affiliation(s)
- P Kulesza
- Department of Pathology, Norris Comprehensive Cancer Center, Room 5425, University of Southern California School of Medicine, 1441 Eastlake Avenue, Los Angeles, CA 9003, USA
| | | |
Collapse
|
261
|
Bishop DK, Ear U, Bhattacharyya A, Calderone C, Beckett M, Weichselbaum RR, Shinohara A. Xrcc3 is required for assembly of Rad51 complexes in vivo. J Biol Chem 1998; 273:21482-8. [PMID: 9705276 DOI: 10.1074/jbc.273.34.21482] [Citation(s) in RCA: 214] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rad51 is a member of a family of eukaryotic proteins related to the bacterial recombinational repair protein RecA. Rad51 protein localizes to multiple subnuclear foci in Chinese hamster ovary cells. Subnuclear Rad51 foci are induced by ionizing radiation or the DNA cross-linking agent cisplatin. Formation of these foci is likely to reflect assembly of a multimeric form of Rad51 that promotes DNA repair. Formation of damage-induced Rad51 foci does not occur in the Chinese hamster ovary cell line irs1SF, which is sensitive to DNA damaging agents. The Rad51 focus formation defect of irs1SF cells is corrected by a construct that encodes the repair protein Xrcc3. Xrcc3 is a human homolog of Rad51 previously isolated by virtue of its ability to correct the radiation sensitivity of irs1SF cells. Changes in the steady state level of Rad51 protein do not account for the irs1SF defect nor do they account for the appearance of foci following DNA damage. These results suggest that Xrcc3 is required for the assembly or stabilization of a multimeric form of Rad51 during DNA repair. Cell lines defective in two different components of DNA protein kinase formed Rad51 foci in response to damage, indicating DNA protein kinase is not required for damaged-induced mobilization of Rad51.
Collapse
Affiliation(s)
- D K Bishop
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | | | | | |
Collapse
|
262
|
Nicolas N, Moshous D, Cavazzana-Calvo M, Papadopoulo D, de Chasseval R, Le Deist F, Fischer A, de Villartay JP. A human severe combined immunodeficiency (SCID) condition with increased sensitivity to ionizing radiations and impaired V(D)J rearrangements defines a new DNA recombination/repair deficiency. J Exp Med 1998; 188:627-34. [PMID: 9705945 PMCID: PMC2213354 DOI: 10.1084/jem.188.4.627] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The products of recombination activating gene (RAG)1 and RAG2 initiate the lymphoid-specific phase of the V(D)J recombination by creating a DNA double-strand break (dsb), leaving hairpin-sealed coding ends. The next step uses the general DNA repair machinery of the cells to resolve this dsb. Several genes involved in both V(D)J recombination and DNA repair have been identified through the analysis of in vitro mutants (Chinese hamster ovary cells) and in vivo situations of murine and equine severe combined immunodeficiency (scid). These studies lead to the description of the Ku-DNA-dependent protein kinase complex and the XRCC4 factor. A human SCID condition is characterized by an absence of B and T lymphocytes. One subset of these patients also demonstrates an increased sensitivity to the ionizing radiation of their fibroblasts and bone marrow precursor cells. This phenotype is accompanied by a profound defect in V(D)J recombination with a lack of coding joint formation, whereas signal joints are normal. Functional and genetic analyses distinguish these patients from the other recombination/repair mutants, and thus define a new group of mutants whose affected gene(s) is involved in sensitivity to ionizing radiation and V(D)J recombination.
Collapse
Affiliation(s)
- N Nicolas
- Institut National de la Santé et de la Recherche Médicale U429, Développement Normal et Pathologique du Système Immunitaire, Hôpital Necker-Enfants Malades, 75015 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
263
|
Torrance H, Giffin W, Rodda DJ, Pope L, Haché RJ. Sequence-specific binding of Ku autoantigen to single-stranded DNA. J Biol Chem 1998; 273:20810-9. [PMID: 9694826 DOI: 10.1074/jbc.273.33.20810] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucocorticoid-induced transcription of mouse mammary tumor virus is repressed by Ku antigen/DNA-dependent protein kinase (DNA-PK) through a DNA sequence element (NRE1) in the viral long terminal repeat. Nuclear factors binding to the separated single strands of NRE1 have been identified that may also be important for transcriptional regulation through this element. We report the separation of the upper-stranded NRE1 binding activity in Jurkat T cell nuclear extracts into two components. One component was identified as Ku antigen. The DNA sequence preference for Ku binding to single-stranded DNA closely paralleled the sequence requirements of Ku for double-stranded DNA. Recombinant Ku bound the single, upper strand of NRE1 with an affinity that was 3-4-fold lower than its affinity for double-stranded NRE1. Sequence-specific single-stranded Ku binding occurred rapidly (t1/2 on = 2.0 min) and was exceptionally stable, with an off rate of t1/2= 68 min. While Ku70 cross-linked to the upper strand of NRE1 when Ku was bound to double-stranded and single-stranded DNAs, the Ku80 subunit only cross-linked to single-stranded NRE1. Intriguingly, addition of Mg2+ and ATP, the cofactors required for Ku helicase activity, induced the cross-linking of Ku80 to a double-stranded NRE1-containing oligonucleotide, without completely unwinding the two strands.
Collapse
Affiliation(s)
- H Torrance
- Graduate Program in Biochemistry, University of Ottawa, Loeb Institute for Medical Research, Ottawa Civic Hospital, Ottawa, Ontario K1Y 4E9, Canada
| | | | | | | | | |
Collapse
|
264
|
Boothman DA, Odegaard E, Yang CR, Hosley K, Mendonca MS. Molecular analyses of adaptive survival responses (ASRs): role of ASRs in radiotherapy. Hum Exp Toxicol 1998; 17:448-53. [PMID: 9756139 DOI: 10.1177/096032719801700809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adaptive survival responses (ASRs), whereby cells demonstrate a survival advantage when exposed to very low doses of ionizing radiation (IR) 4 - 24 h prior to a high dose challenge, were first reported over 15 years ago. These responses were linked to hormesis, which implied that exposure to low levels of IR may be beneficial to the cell. We postulate that increased survival does not necessarily mean that the treatment is beneficial. Studies at the molecular level indicate that ASRs are the result of misregulated cell cycle checkpoint responses, occurring in the G1 phase of the cell cycle after IR. Specific gene products (i.e., PCNA, cyclin D1, cyclin A, XIP8, xip5 and xip13) appear to control these cell cycle checkpoint responses. Certain neoplastic cells show potent ASRs because they bypass checkpoints which would otherwise lead to apoptosis or other forms of cell death (possibly necrosis), and/or these cancer cells lack genetic factors, such as specific caspases (cysteine aspartate-specific proteases), that control apoptosis. Alterations in these cell cycle checkpoints or apoptotic responses may also occur during IR-induced stress responses in normal cells, at critical times (10-18 days posttreatment) following IR. One IR-induced protein, XIP8, may be a critical controlling factor at this point where delayed-onset apoptosis occurs. Additionally, we have shown that the presence or absence (i.e., SCID cells) of nonhomologous DNA double strand break repair did not seem to influence ASRs, suggesting that ASRs may be caused by signal transduction stress responses. ASRs may be beneficial to survival, however, the consequence(s) of that survival may be dire. For example, many neoplastic cells exhibited far greater ASRs than normal cells. Additionally, ASRs were induced by as little as 1 cGy and and were enhanced by repeated exposures of low level radiation. The implications for radiotherapy are that when a patient arrives for port film imaging during the course of therapy, the dose-rate, overall level of exposure, and time between port film exposure and high dose IR treatment become potentially important factors for improved efficacy of treatment of certain cancers. Further research is warranted to determine what molecular factors are most important for ASRs, and current work is focusing on XIP8.
Collapse
Affiliation(s)
- D A Boothman
- Department of Human Oncology, K4/626 Clinical Science Center, Madison, Wisconsin 53792, USA
| | | | | | | | | |
Collapse
|
265
|
Chan DW, Gately DP, Urban S, Galloway AM, Lees-Miller SP, Yen T, Allalunis-Turner J. Lack of correlation between ATM protein expression and tumour cell radiosensitivity. Int J Radiat Biol 1998; 74:217-24. [PMID: 9712550 DOI: 10.1080/095530098141591] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE Cells derived from individuals in which the ataxia telangiectasia (ATM) gene is mutated are hypersensitive to ionizing radiation. Whether differences in ATM protein levels exist among human malignant glioma cell lines and whether such differences are correlated with cellular radiosensitivity were determined. MATERIALS AND METHODS Polyclonal antibodies were raised to separate regions of the ATM protein. ATM protein expression in human malignant glioma cell lines, SV40 transformed normal human fibroblasts and SV40 transformed AT fibroblasts was analysed by Western blotting. Reverse transcriptase polymerase chain reaction (RT-PCR) was used to assess the presence of ATM transcript. RESULTS While ATM protein was detected in all cell extracts, significant differences in the level of expression were observed. There was no apparent correlation between cellular radiosensitivity and differences in ATM protein levels in these human glioma cells. Extremely low levels of ATM protein were observed in M059J cells, which provide the only example of DNA-dependent protein kinase (DNA-PKcs) deficiency in a cell line of human origin. CONCLUSIONS Variations in the levels of ATM protein are insufficient to explain the differences in cellular radiosensitivity observed in a panel of human malignant glioma cell lines.
Collapse
Affiliation(s)
- D W Chan
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
266
|
Jeggo PA, Carr AM, Lehmann AR. Splitting the ATM: distinct repair and checkpoint defects in ataxia-telangiectasia. Trends Genet 1998; 14:312-6. [PMID: 9724963 DOI: 10.1016/s0168-9525(98)01511-x] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ataxia-telangiectasia (A-T) is an autosomal recessive human disorder that, because of its multisystem nature, is of interest to scientists and clinicians from many disciplines. A-T patients have defects in the neurological and immune systems, telangiectasia in the eyes and face, and are, in addition, cancer-prone and radiation-sensitive. A-T cell lines have a range of diverse phenotypes including sensitivity to ionizing radiation and defects in cell-cycle checkpoint control. The ATM protein is a member of the PI 3-kinase-like superfamily, and it has been widely accepted that A-T cells represent mammalian cell-cycle checkpoint mutants and that the radiation sensitivity is a consequence of this defect. However, several lines of evidence suggest that A-T cells have distinct repair and checkpoint defects. A-T cells therefore appear to harbour dual checkpoint/repair defects. Here, we review the evidence supporting this contention and consider its implications for an analysis of the A-T phenotype.
Collapse
Affiliation(s)
- P A Jeggo
- MRC Cell Mutation Unit, University of Sussex, Brighton, UK.
| | | | | |
Collapse
|
267
|
Abstract
For many years it has been evident that mammalian cells differ dramatically from yeast and rejoin the majority of their DNA DSBs by a nonhomologous mechanism, recently termed NHEJ. In the last few years a number of genes and proteins have been identified that operate in the pathway providing insights into the mechanism. These proteins include the three components of DNA-PK, DNA ligase IV, and XRCC4. In yeast Sir2, -3, and -4 proteins are also involved in the process and therefore are likely to play a role in higher organisms. Studies with yeast suggest that NHEJ is an error-free mechanism. Although the process is far from understood, it is likely that the DNA-PK complex or Ku alone acts in a complex with the Sir proteins possibly protecting the ends and preventing random rejoining. Further work is required to establish the details of this mechanism and to determine whether this represents an accurate rejoining process for a complex break induced by ionizing radiation. It will be intriguing to discover how the cell achieves efficient and accurate rejoining without the use of homology. Interactions between the components of DNA-PK and other proteins playing a central role in damage response mechanisms are beginning to emerge. Interestingly, there is evidence that DNA repair and damage response mechanisms overlap in lower organisms. The overlapping defects of the yeast Ku mutants, tell mutants, and AT cell lines in telomere maintenance further suggest overlapping functions or interacting mechanisms. A challenge for the future will be to establish how these different damage response mechanisms overlap and interact.
Collapse
Affiliation(s)
- P A Jeggo
- MRC Cell Mutation Unit, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
268
|
Shen H, Schultz M, Kruh GD, Tew KD. Increased expression of DNA-dependent protein kinase confers resistance to adriamycin. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1381:131-8. [PMID: 9685611 DOI: 10.1016/s0304-4165(98)00020-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Acquired resistance to adriamycin (ADR) in an HL60 cell line is shown to be accompanied by an increase in DNA-dependent protein kinase catalytic subunit (DNA-PKcs) at both the protein and mRNA levels (15-20-fold) and an overall 3-fold increase in DNA-PK enzyme activity. The other components of the DNA-PK Ku autoantigen complex, Ku70 and Ku80, were 3-fold increased and unchanged, respectively. Time dependent repair of ADR-induced DNA damage was measured by the neutral comet assay and found to be more efficient in the drug resistant cell line (HL60/ADR). Antisense RNA transfection reduced the protein expression of DNA-PKcs to 50% in HL60/ADR and partially reversed drug resistance. A fibroblast cell line from a severe combined immunodeficient (SCID) mouse was deficient in functional DNA-PKcs and showed increased sensitivity to ADR and other DNA damaging agents compared to wild type. These studies demonstrate that alteration in DNA-PK can contribute to chronic stress response leading to acquired drug resistance. The overexpression of DNA-PK is thus shown to be a novel cellular adaptation mechanistically contributing to the resistance of cancer cells to the anthracycline drug adriamycin, and as such, may have implications for its therapeutic use.
Collapse
Affiliation(s)
- H Shen
- Department of Pharmacology, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111, USA
| | | | | | | |
Collapse
|
269
|
Lee CC, Beall EL, Rio DC. DNA binding by the KP repressor protein inhibits P-element transposase activity in vitro. EMBO J 1998; 17:4166-74. [PMID: 9670031 PMCID: PMC1170749 DOI: 10.1093/emboj/17.14.4166] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
P elements are a family of mobile DNA elements found in Drosophila. P-element transposition is tightly regulated, and P-element-encoded repressor proteins are responsible for inhibiting transposition in vivo. To investigate the molecular mechanisms by which one of these repressors, the KP protein, inhibits transposition, a variety of mutant KP proteins were prepared and tested for their biochemical activities. The repressor activities of the wild-type and mutant KP proteins were tested in vitro using several different assays for P-element transposase activity. These studies indicate that the site-specific DNA-binding activity of the KP protein is essential for repressing transposase activity. The DNA-binding domain of the KP repressor protein is also shared with the transposase protein and resides in the N-terminal 88 amino acids. Within this region, there is a C2HC putative metal-binding motif that is required for site-specific DNA binding. In vitro the KP protein inhibits transposition by competing with the transposase enzyme for DNA-binding sites near the P-element termini.
Collapse
Affiliation(s)
- C C Lee
- Department of Molecular and Cell Biology, 401 Barker Hall, University of California, Berkeley, CA 94720-3204, USA
| | | | | |
Collapse
|
270
|
Liu L, Kwak YT, Bex F, García-Martínez LF, Li XH, Meek K, Lane WS, Gaynor RB. DNA-dependent protein kinase phosphorylation of IkappaB alpha and IkappaB beta regulates NF-kappaB DNA binding properties. Mol Cell Biol 1998; 18:4221-34. [PMID: 9632806 PMCID: PMC109006 DOI: 10.1128/mcb.18.7.4221] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Regulation of the IkappaB alpha and IkappaB beta proteins is critical for modulating NF-kappaB-directed gene expression. Both IkappaB alpha and IkappaB beta are substrates for cellular kinases that phosphorylate the amino and carboxy termini of these proteins and regulate their function. In this study, we utilized a biochemical fractionation scheme to purify a kinase activity which phosphorylates residues in the amino and carboxy termini of both IkappaB alpha and IkappaB beta. Peptide microsequence analysis by capillary high-performance liquid chromatography ion trap mass spectroscopy revealed that this kinase was the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). DNA-PK phosphorylates serine residue 36 but not serine residue 32 in the amino terminus of IkappaB alpha and also phosphorylates threonine residue 273 in the carboxy terminus of this protein. To determine the biological relevance of DNA-PK phosphorylation of IkappaB alpha, murine severe combined immunodeficiency (SCID) cell lines which lack the DNA-PKcs gene were analyzed. Gel retardation analysis using extract prepared from these cells demonstrated constitutive nuclear NF-kappaB DNA binding activity, which was not detected in extracts prepared from SCID cells complemented with the human DNA-PKcs gene. Furthermore, IkappaB alpha that was phosphorylated by DNA-PK was a more potent inhibitor of NF-kappaB binding than nonphosphorylated IkappaB alpha. These results suggest that DNA-PK phosphorylation of IkappaB alpha increases its interaction with NF-kappaB to reduce NF-kappaB DNA binding properties.
Collapse
Affiliation(s)
- L Liu
- Divisions of Molecular Virology and Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | | | | | | | | | |
Collapse
|
271
|
Li GC, Ouyang H, Li X, Nagasawa H, Little JB, Chen DJ, Ling CC, Fuks Z, Cordon-Cardo C. Ku70: a candidate tumor suppressor gene for murine T cell lymphoma. Mol Cell 1998; 2:1-8. [PMID: 9702186 DOI: 10.1016/s1097-2765(00)80108-2] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We present evidence that inactivation of the Ku70 gene leads to a propensity for malignant transformation both in vitro and in vivo. In vitro, Ku70-/- mouse fibroblasts displayed an increased rate of sister chromatid exchange and a high frequency of spontaneous neoplastic transformation. In vivo, Ku70-/- mice, known to be defective in B but not T lymphocyte maturation, developed thymic and disseminated T cell lymphomas at a mean age of 6 months with CD4+CD8+ tumor cells. These findings directly demonstrate that Ku70 deficiency facilitates neoplastic growth and suggest a novel role of the Ku70 locus in tumor suppression.
Collapse
Affiliation(s)
- G C Li
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
272
|
|
273
|
Abstract
The discovery of the severe combined immunodeficiency (scid) mouse mutation has provided a tool for establishment of small animal models as hosts for the in vivo analysis of normal and malignant human pluripotent hemopoietic stem cells. Intravenous injection of irradiated scid mice with human bone marrow, cord blood, or G-CSF cytokine-mobilized peripheral blood mononuclear cells, all rich in human hemopoietic stem cell activity, results in the engraftment of a human hemopoietic system in the murine recipient. This model has been used to identify a pluripotent stem cell, termed "scid-repopulating cell" (SRC) that is more primitive than any of the hemopoietic stem cell populations identified using the currently available in vitro methodology. In this review, we describe the development and use of this model system, termed Hu-SRC-SCID, and summarize the discoveries that have resulted from the investigation of human stem cells in this model. Finally, we detail the recent extension of the original Hu-SRC-SCID model system based on the C.B-17-scid mouse as the murine host to the Hu-SRC-NOD-SCID model based on the NOD-scid mouse as the host. The engraftment of human stem cells in the Hu-SRC-NOD-SCID model is enhanced over that observed in the Hu-SRC-SCID model and results in exceptionally high levels of human hemopoietic cells in the murine recipient. Future directions to further improve the Hu-SRC-NOD-SCID model system and the potential utility of this model in the preclinical and diagnostic arenas of hematology and oncology are discussed.
Collapse
Affiliation(s)
- D L Greiner
- Department of Medicine, University of Massachusetts Medical School, Worcester, USA
| | | | | |
Collapse
|
274
|
Ruscetti T, Lehnert BE, Halbrook J, Le Trong H, Hoekstra MF, Chen DJ, Peterson SR. Stimulation of the DNA-dependent protein kinase by poly(ADP-ribose) polymerase. J Biol Chem 1998; 273:14461-7. [PMID: 9603959 DOI: 10.1074/jbc.273.23.14461] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DNA-dependent protein kinase (DNA-PK) is a heterotrimeric enzyme that binds to double-stranded DNA and is required for the rejoining of double-stranded DNA breaks in mammalian cells. It has been proposed that DNA-PK functions in this DNA repair pathway by binding to the ends of broken DNA molecules and phosphorylating proteins that bind to the damaged DNA ends. Another enzyme that binds to DNA strand breaks and may also function in the cellular response to DNA damage is the poly(ADP-ribose) polymerase (PARP). Here, we show that PARP can be phosphorylated by purified DNA-PK, and the catalytic subunit of DNA-PK is ADP-ribosylated by PARP. The protein kinase activity of DNA-PK can be stimulated by PARP in the presence of NAD+ in a reaction that is blocked by the PARP inhibitor 1, 5-dihydroxyisoquinoline. The stimulation of DNA-PK by PARP-mediated protein ADP-ribosylation occurs independent of the Ku70/80 complex. Taken together, these results show that PARP can modify the activity of DNA-PK in vitro and suggest that these enzymes may function coordinately in vivo in response to DNA damage.
Collapse
Affiliation(s)
- T Ruscetti
- Cell and Molecular Biology Group (LS-4), Life Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | | | | | | | | | |
Collapse
|
275
|
Muraguchi A, Tagoh H, Kitagawa T, Nagata T, Kishi H. Stromal cells and cytokines in the induction of recombination activating gene (RAG) expression in a human lymphoid progenitor cell. Leuk Lymphoma 1998; 30:73-85. [PMID: 9669678 DOI: 10.3109/10428199809050931] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The activation of recombination activating genes (RAGs) plays critical roles in the V(D)J gene recombination machinery and lymphocyte repertoire formation. However, the regulation of RAG gene expression in humans as well as animals is poorly understood. We show that RAG gene expression is activated in a human lymphoid progenitor cell line (FL8.2.4.4) by coculturing them on a bone marrow-derived stromal cell line (PA6) in the presence of cytokines. The RAG transcripts become detectable in 12 hours after initiation of culture, and the increased level is sustained at 24 hours. Among the cytokines, IL-3, IL-6, and IL-7, but not IL-2, IL-4, SCF, GM-CSF induces RAG activation. IL-3, IL-6, and IL-7 exert their effect synergistically on RAG activation. A cognate interaction between FL8.2.4.4 cells and PA6 stromal cells seems to be prerequisite for RAG activation. RAG transcripts are inducible in FL8.2.4.4 cells when cocultured on paraformaldehyde fixed-PA6 stromal cells in the presence of cytokines. These data indicate that two separate signals are both required for induction of RAG activation in lymphoid progenitors; one from the cell surface molecule(s) on stromal cells, and the other from recombinant cytokine(s). The expression of RAG mRNA in FL8.2.4.4 cells is concomitant with induction of recombinase activity. Thus, this system may provide a useful means for further understanding of the mechanisms controlling RAG activation and lymphocyte development in human system.
Collapse
Affiliation(s)
- A Muraguchi
- Department of Immunology, Faculty of Medicine, Toyama Medical and Pharmaceutical University, Japan.
| | | | | | | | | |
Collapse
|
276
|
Abstract
An expanding family of BCL-2 related proteins share homology, clustered within four conserved regions, namely BCL-2 homology (BH1-4) domains, which control the ability of these proteins to dimerize and function as regulators of apoptosis. Moreover, BCL-XL, BCL-2, and BAX can form ion-conductive pores in artificial membranes. The BCL-2 family, comprised of both pro-apoptotic and anti-apoptotic members, acts as a checkpoint upstream of CASPASES and mitochondrial dysfunction. BID and BAD possess the minimal death domain BH3, and the phosphorylation of BAD connects proximal survival signals to the BCL-2 family. BCL-2 and BCL-XL display a reciprocal pattern of expression during lymphocyte development. Gain- and loss-of-function models revealed stage-specific roles for BCL-2 and BCL-XL. BCL-2 can rescue maturation at several points of lymphocyte development. The BCL-2 family also reveals evidence for a cell-autonomous coordination between the opposing pathways of proliferation and cell death.
Collapse
Affiliation(s)
- D T Chao
- Howard Hughes Medical Institute, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
277
|
Verrelle P, Bourhis J. [Modulation of cellular response to ionizing radiation: towards new molecular targets?]. Cancer Radiother 1998; 1:484-93. [PMID: 9587381 DOI: 10.1016/s1278-3218(97)89592-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent advances have been made in the understanding of molecular events following cellular exposure to ionizing radiations, suggesting that new molecular targets could be used to modulate radio-induced cellular response, including genes and their encoded protein involved in DNA repair, signal transduction, apoptosis and cell cycle regulation. These potential molecular targets include some radio-induced cytokines and growth factors that could modulate radiation response in irradiated normal tissues (TGF beta). In addition, in order to increase tumor cell lethality after irradiation exposure, two promising approaches have been recently explored, including firstly the modulation of radiation-induced apoptosis via the transfer of genes involved in the regulation of apoptosis (p53), and secondly the modulation of double strand break DNA repair.
Collapse
Affiliation(s)
- P Verrelle
- Département de radiothérapie, centre Jean-Perrin, Clermont-Ferrand, France
| | | |
Collapse
|
278
|
Abstract
Radiosensitivity is a major hallmark of the human genetic disorder ataxia telangiectasia. This hypersensitivity to ionizing radiation has been demonstrated in vivo after exposure of patients to therapeutic doses of radiation and in cells in culture. Clearly an understanding of the nature of the molecular defect in ataxia telangiectasia will be of considerable assistance in delineating additional pathways that determine cellular radiosensitivity/radioresistance. Furthermore, since patients with this syndrome are also predisposed to developing a number of leukaemias and lymphomas, the possible connection between radiosensitivity and cancer predisposition is of interest. Now that the gene (ATM) responsible for this genetic disease has been cloned and identified, progress is being made in determining the role of the ATM protein in mediating the effects of cellular exposure to ionizing radiation and other forms of redox stress. Proteins such as the product of the tumour suppressor gene p53 and the proto-oncogene c-Abl (a protein tyrosine kinase) have been shown to interact with ATM. Since several intermediate steps in both the p53 and c-Abl pathways, activated by ionizing radiation, are known it will be possible to map the position of ATM in these pathways and describe its mechanism of action. What are the clinical implications of understanding the molecular basis of the defect in ataxia telangiectasia (A-T)? As outlined above, since radiosensitivity is a universal characteristic of A-T, understanding the mechanism of action of ATM will provide additional information on radiation signalling in human cells. With this information it may be possible to sensitize tumour cells to radiation and thus increase the therapeutic benefit of radiotherapy. This might involve the use of small molecules that would interfere with the normal ATM-controlled pathways and thus sensitize cells to radiation or alternatively it might involve the efficient introduction of ATM anti-sense cDNA constructs into tumours to achieve the same end-point.
Collapse
Affiliation(s)
- M F Lavin
- The Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Herston, Australia
| |
Collapse
|
279
|
Priestley A, Beamish HJ, Gell D, Amatucci AG, Muhlmann-Diaz MC, Singleton BK, Smith GC, Blunt T, Schalkwyk LC, Bedford JS, Jackson SP, Jeggo PA, Taccioli GE. Molecular and biochemical characterisation of DNA-dependent protein kinase-defective rodent mutant irs-20. Nucleic Acids Res 1998; 26:1965-73. [PMID: 9518490 PMCID: PMC147487 DOI: 10.1093/nar/26.8.1965] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) is a member of a sub-family of phosphatidylinositol (PI) 3-kinases termed PIK-related kinases. A distinguishing feature of this sub-family is the presence of a conserved C-terminal region downstream of a PI 3-kinase domain. Mutants defective in DNA-PKcs are sensitive to ionising radiation and are unable to carry out V(D)J recombination. Irs-20 is a DNA-PKcs-defective cell line with milder gamma-ray sensitivity than two previously characterised mutants, V-3 and mouse scid cells. Here we show that the DNA-PKcs protein from irs-20 cells can bind to DNA but is unable to function as a protein kinase. To verify the defect in irs-20 cells and provide insight into the function and expression of DNA-PKcs in double-strand break repair and V(D)J recombination we introduced YACs encoding human and mouse DNA-PKcs into defective mutants and achieved complementation of the defective phenotypes. Furthermore, in irs-20 we identified a mutation in DNA-PKcs that causes substitution of a lysine for a glutamic acid in the fourth residue from the C-terminus. This represents a strong candidate for the inactivating mutation and provides supportive evidence that the extreme C-terminal motif is important for protein kinase activity.
Collapse
Affiliation(s)
- A Priestley
- MRC Cell Mutation Unit, University of Sussex, Brighton BN1 9RR, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
280
|
Casellas R, Nussenzweig A, Wuerffel R, Pelanda R, Reichlin A, Suh H, Qin XF, Besmer E, Kenter A, Rajewsky K, Nussenzweig MC. Ku80 is required for immunoglobulin isotype switching. EMBO J 1998; 17:2404-11. [PMID: 9545251 PMCID: PMC1170583 DOI: 10.1093/emboj/17.8.2404] [Citation(s) in RCA: 275] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Isotype switching is the DNA recombination mechanism by which antibody genes diversify immunoglobulin effector functions. In contrast to V(D)J recombination, which is mediated by RAG1, RAG2 and DNA double-stranded break (DSB) repair proteins, little is known about the mechanism of switching. We have investigated the role of DNA DSB repair in switch recombination in mice that are unable to repair DSBs due to a deficiency in Ku80 (Ku80(-/-)). B-cell development is arrested at the pro-B cell stage in Ku80(-/-) mice because of abnormalities in V(D)J recombination, and there are no mature B cells. To reconstitute the B-cell compartment in Ku80(-/-) mice, pre-rearranged VB1-8 DJH2 (mu i) and V3-83JK2 (kappa i) genes were introduced into the Ku80(-/-) background (Ku80(-/-)mu i/+kappa i/+). Ku80(-/-)mu i/+ kappai/+ mice develop mature mIgM+ B cells that respond normally to lipopolysaccharide (LPS) or LPS plus interleukin-4 (IL-4) by producing specific germline Ig constant region transcripts and by forming switch region-specific DSBs. However, Ku80(-/-)mu i/+kappa i/+ B cells are unable to produce immunoglobulins of secondary isotypes, and fail to complete switch recombination. Thus, Ku80 is essential for switch recombination in vivo, suggesting a significant overlap between the molecular machinery that mediates DNA DSB repair, V(D)J recombination and isotype switching.
Collapse
Affiliation(s)
- R Casellas
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
281
|
Stigger E, Drissi R, Lee SH. Functional analysis of human replication protein A in nucleotide excision repair. J Biol Chem 1998; 273:9337-43. [PMID: 9535929 DOI: 10.1074/jbc.273.15.9337] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human replication protein A (RPA) is a three-subunit protein complex (70-, 34-, and 11-kDa subunits) involved in DNA replication, repair, and recombination. Both the 70- (p70) and 34-kDa (p34) subunits interact with Xeroderma pigmentosum group A complementing protein (XPA), a key protein involved in nucleotide excision repair. Our deletion analysis indicated that no particular domain(s) of RPA p70 was essential for its interaction with XPA, whereas 33 amino acids from the C terminus of p34 (p34Delta33C) were necessary for the XPA interaction. Furthermore, mutant RPA lacking the p34 C terminus failed to interact with XPA, suggesting that p34, not p70, is primarily responsible for the interaction of RPA with XPA. RPA stimulated the interaction of XPA with UV-damaged DNA through an RPA-XPA complex on damaged DNA sites because (i) the RPA mutant lacking the C terminus of p34 failed to stimulate an XPA-DNA interaction, and (ii) the ssDNA binding domain of RPA (amino acids 296-458) was necessary for the stimulation of the XPA-DNA interaction. Two separate domains of p70, a single-stranded DNA binding domain and a zinc-finger domain, were necessary for RPA function in nucleotide excision repair. The mutant RPA (RPA:p34Delta33C), which lacks its stimulatory effect on the XPA-DNA interaction, also poorly supported nucleotide excision repair, suggesting that the XPA-RPA interaction on damaged DNA is necessary for DNA repair activity.
Collapse
Affiliation(s)
- E Stigger
- Department of Virology and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | |
Collapse
|
282
|
Dynan WS, Yoo S. Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids. Nucleic Acids Res 1998; 26:1551-9. [PMID: 9512523 PMCID: PMC147477 DOI: 10.1093/nar/26.7.1551] [Citation(s) in RCA: 263] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Ku protein-DNA-dependent protein kinase system is one of the major pathways by which cells of higher eukaryotes respond to double-strand DNA breaks. The components of the system are evolutionarily conserved and homologs are known from a number of organisms. The Ku protein component binds directly to DNA ends and may help align them for ligation. Binding of Ku protein to DNA also nucleates formation of an active enzyme complex containing the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). The interaction between Ku protein, DNA-PKcs and nucleic acids has been extensively investigated. This review summarizes the results of these biochemical investigations and relates them to recent molecular genetic studies that reveal highly characteristic repair and recombination defects in mutant cells lacking Ku protein or DNA-PKcs.
Collapse
Affiliation(s)
- W S Dynan
- Program in Gene Regulation, Institute of Molecular Medicine and Genetics, Room CB-2803, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912, USA.
| | | |
Collapse
|
283
|
Beall EL, Rio DC. Transposase makes critical contacts with, and is stimulated by, single-stranded DNA at the P element termini in vitro. EMBO J 1998; 17:2122-36. [PMID: 9524133 PMCID: PMC1170556 DOI: 10.1093/emboj/17.7.2122] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
P elements transpose by a cut-and-paste mechanism. Donor DNA cleavage mediated by transposase generates 17 nucleotide (nt) 3' single-strand extensions at the P element termini which, when present on oligonucleotide substrates, stimulate both the strand-transfer and disintegration reactions in vitro. A significant amount of the strand-transfer products are the result of double-ended integration. Chemical DNA modification-interference experiments indicate that during the strand-transfer reaction, P element transposase contacts regions of the substrate DNA that include the transposase binding site and the duplex portion of the 31 bp inverted repeat, as well as regions of the terminal 17 nt single-stranded DNA. Together these data suggest that the P element transposase protein contains two DNA-binding sites and that the active oligomeric form of the transposase protein is at least a dimer.
Collapse
Affiliation(s)
- E L Beall
- Department of Molecular and Cell Biology, 401 Barker Hall, University of California, Berkeley, CA 94720-3204, USA
| | | |
Collapse
|
284
|
Schlissel MS. Structure of nonhairpin coding-end DNA breaks in cells undergoing V(D)J recombination. Mol Cell Biol 1998; 18:2029-37. [PMID: 9528775 PMCID: PMC121433 DOI: 10.1128/mcb.18.4.2029] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/1997] [Accepted: 11/24/1997] [Indexed: 02/07/2023] Open
Abstract
The V(D)J recombinase recognizes a pair of immunoglobulin or T-cell receptor gene segments flanked by recombination signal sequences and introduces double-strand breaks, generating two signal ends and two coding ends. Broken coding ends were initially identified as covalently closed hairpin DNA molecules. Before recombination, however, the hairpins must be opened and the ends must be modified by nuclease digestion and N-region addition. We have now analyzed nonhairpin coding ends associated with various immunoglobulin gene segments in cells undergoing V(D)J recombination. We found that these broken DNA ends have different nonrandom 5'-strand deletions which were characteristic for each locus examined. These deletions correlate well with the sequence characteristics of coding joints involving these gene segments. In addition, unlike broken signal ends, these nonhairpin coding-end V(D)J recombination reaction intermediates have 3' overhanging ends. We discuss the implications of these results for models of how sequence modifications occur during coding-joint formation.
Collapse
Affiliation(s)
- M S Schlissel
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| |
Collapse
|
285
|
Zheng B, Han S, Spanopoulou E, Kelsoe G. Immunoglobulin gene hypermutation in germinal centers is independent of the RAG-1 V(D)J recombinase. Immunol Rev 1998; 162:133-41. [PMID: 9602359 DOI: 10.1111/j.1600-065x.1998.tb01436.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antigen-driven somatic hypermutation in immunoglobulin genes coupled with stringent selection leads to affinity maturation in the B-lymphocyte populations present in germinal centers. To date, no gene(s) has been identified that drives the hypermutation process. The site-specific recombination of antigen-receptor gene segments in T and B lymphocytes is dependent on the expression of two recombination activating genes, RAG-1 and RAG-2. The RAG-1 and RAG-2 proteins are essential for the cleavage of DNA at highly conserved recombination signals to make double-strand breaks and their expression is sufficient to confer V(D)J recombination activity to non-lymphoid cells. Until very recently, expression of the V(D)J recombinase in adults was believed to be restricted to sites of primary lymphogenesis. However, several laboratories have now demonstrated expression of RAG-1 and RAG-2 and active V-to-(D)J recombination in germinal center B cells. This observation of active recombinase in germinal centers raises the issue of RAG-mediated nuclease activity as a component of V(D)J hypermutation. Here, we show that a transgenic kappa-light chain gene in a RAG-1-/- genetic background can acquire high frequencies of mutations. Thus, the RAG-1 protein is not essential for the machinery of immunoglobulin hypermutation. The genetic approaches to identifying the genes necessary for somatic hypermutation will require further studies on DNA-repair and immunodeficient models.
Collapse
Affiliation(s)
- B Zheng
- Department of Microbiology, University of Maryland School of Medicine, Baltimore 21201-1559, USA.
| | | | | | | |
Collapse
|
286
|
Chun RF, Semmes OJ, Neuveut C, Jeang KT. Modulation of Sp1 phosphorylation by human immunodeficiency virus type 1 Tat. J Virol 1998; 72:2615-29. [PMID: 9525578 PMCID: PMC109697 DOI: 10.1128/jvi.72.4.2615-2629.1998] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We previously reported (K. T. Jeang, R. Chun, N. H. Lin, A. Gatignol, C. G. Glabe, and H. Fan, J. Virol. 67: 6224-6233, 1993) that human immunodeficiency virus type 1 (HIV-1) Tat and Sp1 form a protein-protein complex. Here, we have characterized the physical interaction and a functional consequence of Tat-Sp1 contact. Using in vitro protein chromatography, we mapped the region in Tat that contacts Sp1 to amino acids 30 to 55. We found that in cell-free reactions, Tat augmented double-stranded DNA-dependent protein kinase (DNA-PK)-mediated Sp1 phosphorylation in a contact-dependent manner. Tat mutants that do not bind Sp1 failed to influence phosphorylation of the latter. In complementary experiments, we also found that Tat forms protein-protein contacts with DNA-PK. We confirmed that in HeLa and Jurkat cells, Tat expression indeed increased the intracellular amount of phosphorylated Sp1 in a manner consistent with the results of cell-free assays. Furthermore, using two phosphatase inhibitors and a kinase inhibitor, we demonstrated a modulation of reporter gene expression as a consequence of changes in Sp1 phosphorylation. Taken together, these findings suggest that activity at the HIV-1 promoter is influenced by phosphorylation of Sp1 which is affected by Tat and DNA-PK.
Collapse
Affiliation(s)
- R F Chun
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institutes of Allergy and Infectious Diseases, Bethesda, Maryland 20892-0460, USA
| | | | | | | |
Collapse
|
287
|
Affiliation(s)
- H Nguyen
- Department of Molecular and Cellular Pathology, University of Toronto, Canada
| | | | | |
Collapse
|
288
|
Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 1998; 273:5858-68. [PMID: 9488723 DOI: 10.1074/jbc.273.10.5858] [Citation(s) in RCA: 4115] [Impact Index Per Article: 152.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
When mammalian cell cultures or mice are exposed to ionizing radiation in survivable or lethal amounts, novel mass components are found in the histone H2A region of two-dimensional gels. Collectively referred to as gamma, these components are formed in vivo by several procedures that introduce double-stranded breaks into DNA. gamma-Components, which appeared to be the only major novel components detected by mass or 32PO4 incorporation on acetic acid-urea-Triton X-100-acetic acid-urea-cetyltrimethylammonium bromide or SDS-acetic acid-urea-cetyltrimethylammonium bromide gels after exposure of cells to ionizing radiation, are shown to be histone H2AX species that have been phosphorylated specifically at serine 139. gamma-H2AX appears rapidly after exposure of cell cultures to ionizing radiation; half-maximal amounts are reached by 1 min and maximal amounts by 10 min. At the maximum, approximately 1% of the H2AX becomes gamma-phosphorylated per gray of ionizing radiation, a finding that indicates that 35 DNA double-stranded breaks, the number introduced by each gray into the 6 x 10(9) base pairs of a mammalian G1 genome, leads to the gamma-phosphorylation of H2AX distributed over 1% of the chromatin. Thus, about 0.03% of the chromatin appears to be involved per DNA double-stranded break. This value, which corresponds to about 2 x 10(6) base pairs of DNA per double-stranded break, indicates that large amounts of chromatin are involved with each DNA double-stranded break. Thus, gamma-H2AX formation is a rapid and sensitive cellular response to the presence of DNA double-stranded breaks, a response that may provide insight into higher order chromatin structures.
Collapse
Affiliation(s)
- E P Rogakou
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
289
|
Abstract
DNA double-strand breaks formed by ionizing irradiation or other stresses are repaired by homologous recombination or DNA end-joining. This review focuses on the mechanism of double-strand break repair mediated by DNA end-joining, in which many factors have recently been identified. After DNA double-strand breakage, DNA end-joining takes place between the DNA ends that have nonhomologous sequences or very short regions ofhomology. The broken DNA is repaired if the DNA end-joining occurs in the same molecule, while it causes chromosome aberrations such as deletions, insertions, translocations and inversions if it occurs between different molecules. Rad50 and its relatives, Ku-proteins, DNA ligase VI and silencing factors, are involved in DNA end-joining in yeast and mammalian cells. These findings led us to propose a model in which the formation of a heterochromatin-like complex at broken ends is an important element in DNA end-joining.
Collapse
Affiliation(s)
- Y Tsukamoto
- Department of Molecular Biology, Institute of Medical Science, University of Tokyo, Japan
| | | |
Collapse
|
290
|
Friedl AA, Kiechle M, Fellerhoff B, Eckardt-Schupp F. Radiation-induced chromosome aberrations in Saccharomyces cerevisiae: influence of DNA repair pathways. Genetics 1998; 148:975-88. [PMID: 9539418 PMCID: PMC1460056 DOI: 10.1093/genetics/148.3.975] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Radiation-induced chromosome aberrations, particularly exchange-type aberrations, are thought to result from misrepair of DNA double-strand breaks. The relationship between individual pathways of break repair and aberration formation is not clear. By electrophoretic karyotyping of single-cell clones derived from irradiated cells, we have analyzed the induction of stable aberrations in haploid yeast cells mutated for the RAD52 gene, the RAD54 gene, the HDF1(= YKU70) gene, or combinations thereof. We found low and comparable frequencies of aberrational events in wildtype and hdf1 mutants, and assume that in these strains most of the survivors descended from cells that were in G2 phase during irradiation and therefore able to repair breaks by homologous recombination between sister chromatids. In the rad52 and the rad54 strains, enhanced formation of aberrations, mostly exchange-type aberrations, was detected, demonstrating the misrepair activity of a rejoining mechanism other than homologous recombination. No aberration was found in the rad52 hdf1 double mutant, and the frequency in the rad54 hdf1 mutant was very low. Hence, misrepair resulting in exchange-type aberrations depends largely on the presence of Hdf1, a component of the nonhomologous end-joining pathway in yeast.
Collapse
Affiliation(s)
- A A Friedl
- GSF-Forschungszentrum für Umwelt und Gesundheit, Institut für Strahlenbiologie, Oberschleissheim, Germany.
| | | | | | | |
Collapse
|
291
|
Affiliation(s)
- M Shannon
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | | |
Collapse
|
292
|
Cary RB, Chen F, Shen Z, Chen DJ. A central region of Ku80 mediates interaction with Ku70 in vivo. Nucleic Acids Res 1998; 26:974-9. [PMID: 9461456 PMCID: PMC147353 DOI: 10.1093/nar/26.4.974] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ku, the DNA binding component of DNA-dependent protein kinase (DNA-PK), is a heterodimer composed of 70 and 86 kDa subunits, known as Ku70 and Ku80 respectively . Defects in DNA-PK subunits have been shown to result in a reduced capacity to repair DNA double-strand breaks. Assembly of the Ku heterodimer is required to obtain DNA end binding activity and association of the DNA-PK catalytic subunit. The regions of the Ku subunits responsible for heterodimerization have not been clearly defined in vivo . A previous study has suggested that the C-terminus of Ku80 is required for interaction with Ku70. Here we examine Ku subunit interaction using N- and C-terminal Ku80 deletions in a GAL4-based two-hybrid system and an independent mammalian in vivo system. Our two-hybrid study suggests that the central region of Ku80, not its C-terminus, is capable of mediating interaction with Ku70. To determine if this region mediates interaction with Ku70 in mammalian cells we transfected xrs-6 cells, which lack endogenous Ku80, with epitope-tagged Ku80 deletions carrying a nuclear localization signal. Immunoprecipitation from transfected cell extracts revealed that the central domain identified by the GAL4 two-hybrid studies stabilizes and co-immunoprecipitates with endogenous xrs-6 Ku70. The central interaction domain maps to the internally deleted regions of Ku80 in the mutant cell lines XR-V9B and XR-V15B. These findings indicate that the internally deleted Ku80 mutations carried in these cell lines are incapable of heterodimerization with Ku70.
Collapse
Affiliation(s)
- R B Cary
- Life Sciences Division, Los Alamos National Laboratory, Mail Stop M888, Los Alamos, NM 87545, USA
| | | | | | | |
Collapse
|
293
|
Sharma R, Schumacher U, Adam E. Lectin histochemistry reveals the appearance of M-cells in Peyer's patches of SCID mice after syngeneic normal bone marrow transplantation. J Histochem Cytochem 1998; 46:143-8. [PMID: 9446820 DOI: 10.1177/002215549804600202] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Peyer's patches in the intestinal mucosa are characterized by the presence of several lymphatic follicles and interfollicular T-cell regions. Luminal antigens are transported across the intestinal epithelium to stimulate the Peyer's patch pre-B-cells in the follicles that proliferate and migrate to distant sites. Evidence suggests that antigen priming of B-lymphocytes is responsible for the number and location of Peyer's patches during postnatal life, but little is known about the histogenesis of Peyer's patches and their overlying membranous (M) cells. To examine whether T- and B-lymphocytes in Peyer's patches have an influence on M-cell generation, we studied the development of Peyer's patches and M-cells in severe combined immunodeficient (SCID) mice reconstituted with bone marrow cells from normal syngeneic mice. Our experiments demonstrate that the donor bone marrow cells in the host scid mice repopulate to form single (primary) follicles and aggregates of lymphoid nodules, the Peyer's patches. Use of the lectins Anguilla anguilla (AAA) and Ulex europaeus I (UEA-I) as positive markers of mouse Peyer's patch M-cells revealed that M-cells develop in the dome epithelium overlying the single primary follicles and Peyer's patches of reconstituted scid mice. This experimental system therefore allows the study of the histogenesis of Peyer's patches and M-cells.
Collapse
Affiliation(s)
- R Sharma
- Human Morphology, University of Southampton, Southampton, United Kingdom
| | | | | |
Collapse
|
294
|
Li LY, Nakajima H, Nomura T. Dose rate effectiveness and potentially lethal damage repair in normal and double-strand break repair deficient murine cells by gamma-rays and 5-fluorouracil. Cancer Lett 1998; 123:227-32. [PMID: 9489492 DOI: 10.1016/s0304-3835(97)00440-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SCID (severe combined immunodeficiency) fibroblasts established from C.B 17-scid/scid embryos showed higher sensitivity to high (1.105 Gy/min) and low (0.00069 Gy/min) dose rate gamma-rays and also to 5-fluorouracil, a cancer sedative producing double-strand breaks, than wildtype cells from C.B17- +/+ embryos. Furthermore, SCID cells were deficient in repairing DNA damage induced by high dose rate gamma-rays even after dose fractionation and after 24 h recovery periods, while wildtype cells showed an apparent repair ability on DNA damage after these gamma-ray exposures. This is the first report to prove that SCID cells lack the repair of gamma-ray-induced potentially lethal damage and also of 5-fluorouracil-induced double-strand breaks. However, SCID cells showed a significantly higher survival rate by low dose rate exposure than by high dose rate exposure as in the case of wildtype cells, indicating that SCID cells have a deficiency in DNA repair for high dose rate gamma-rays, but not for low dose rate exposure. This suggests an important finding that the dose rate effect (diminution of cell killing by low dose rate exposure) is caused not only by the repair of double-strand breaks induced by gamma-rays but in most parts by less yields of double-strand breaks due to dispersed or low intensity ionization in the cell.
Collapse
Affiliation(s)
- L Y Li
- Department of Radiation Biology, Faculty of Medicine, Osaka University, Suita, Japan
| | | | | |
Collapse
|
295
|
Hammarsten O, Chu G. DNA-dependent protein kinase: DNA binding and activation in the absence of Ku. Proc Natl Acad Sci U S A 1998; 95:525-30. [PMID: 9435225 PMCID: PMC18453 DOI: 10.1073/pnas.95.2.525] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In mammalian cells, double-strand break repair and V(D)J recombination require DNA-dependent protein kinase (DNA-PK), a serine/threonine kinase that is activated by DNA. DNA-PK consists of a 460-kDa subunit (p460) that contains a putative kinase domain and a heterodimeric subunit (Ku) that binds to double-stranded DNA ends. Previous reports suggested that the activation of DNA-PK requires the binding of Ku to DNA. To investigate this further, p460 and Ku were purified separately to homogeneity. Surprisingly, p460 was capable of binding to DNA in the absence of Ku. The binding of p460 to double-stranded DNA ends was salt-labile and could be disrupted by single-stranded or supercoiled DNA, properties distinct from the binding of Ku to DNA. Under low salt conditions, which permitted the binding of p460 to DNA ends, the kinase was activated. Under higher salt conditions, which inhibited the binding of p460, activation of the kinase required the addition of Ku. Significantly, when the length of DNA decreased to 22 bp, Ku competed with p460 for DNA binding and inhibited kinase activity. These data demonstrate that p460 is a self-contained kinase that is activated by direct interaction with double-stranded DNA and that the role of Ku is to stabilize the binding of p460 to DNA ends.
Collapse
Affiliation(s)
- O Hammarsten
- Department of Medicine, Stanford University Medical Center, CA 94305-5115, USA
| | | |
Collapse
|
296
|
Leber R, Wise TW, Mizuta R, Meek K. The XRCC4 gene product is a target for and interacts with the DNA-dependent protein kinase. J Biol Chem 1998; 273:1794-801. [PMID: 9430729 DOI: 10.1074/jbc.273.3.1794] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The gene product of XRCC4 has been implicated in both V(D)J recombination and the more general process of double strand break repair (DSBR). To date its role in these processes is unknown. Here, we describe biochemical characteristics of the murine XRCC4 protein. XRCC4 expressed in insect cells exists primarily as a disulfide-linked homodimer, although it can also form large multimers. Recombinant XRCC4 is phosphorylated during expression in insect cells. XRCC4 phosphorylation in Sf9 cells occurs on serine, threonine, and tyrosine residues. We also investigated whether XRCC4 interacts with the other factor known to be requisite for both V(D)J recombination and DSBR, the DNA-dependent protein kinase. We report that XRCC4 is an efficient in vitro substrate of DNA-PK and another unidentified serine/ threonine protein kinase(s). Both DNA-PK dependent and independent phosphorylation of XRCC4 in vitro occurs only on serine and threonine residues within the COOH-terminal 130 amino acids, a region of the molecule that is not absolutely required for XRCC4's DSBR function. Finally, recombinant XRCC4 facilitates Ku binding to DNA, promoting assembly of DNA-PK and complexing with DNA-PK bound to DNA. These data are consistent with the hypothesis that XRCC4 functions as an alignment factor in the DNA-PK complex.
Collapse
Affiliation(s)
- R Leber
- Harold C. Simmons Arthritis Research Center, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | | | |
Collapse
|
297
|
Nagawa F, Ishiguro K, Tsuboi A, Yoshida T, Ishikawa A, Takemori T, Otsuka AJ, Sakano H. Footprint analysis of the RAG protein recombination signal sequence complex for V(D)J type recombination. Mol Cell Biol 1998; 18:655-63. [PMID: 9418911 PMCID: PMC121532 DOI: 10.1128/mcb.18.1.655] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/1997] [Accepted: 10/06/1997] [Indexed: 02/05/2023] Open
Abstract
We have studied the interaction between recombination signal sequences (RSSs) and protein products of the truncated forms of recombination-activating genes (RAG) by gel mobility shift, DNase I footprinting, and methylation interference assays. Methylation interference with dimethyl sulfate demonstrated that binding was blocked by methylation in the nonamer at the second-position G residue in the bottom strand and at the sixth- and seventh-position A residues in the top strand. DNase I footprinting experiments demonstrated that RAG1 alone, or even a RAG1 homeodomain peptide, gave footprint patterns very similar to those obtained with the RAG1-RAG2 complex. In the heptamer, partial methylation interference was observed at the sixth-position A residue in the bottom strand. In DNase I footprinting, the heptamer region was weakly protected in the bottom strand by RAG1. The effects of RSS mutations on RAG binding were evaluated by DNA footprinting. Comparison of the RAG-RSS footprint data with the published Hin model confirmed the notion that sequence-specific RSS-RAG interaction takes place primarily between the Hin domain of the RAG1 protein and adjacent major and minor grooves of the nonamer DNA.
Collapse
Affiliation(s)
- F Nagawa
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
298
|
Connelly MA, Zhang H, Kieleczawa J, Anderson CW. The promoters for human DNA-PKcs (PRKDC) and MCM4: divergently transcribed genes located at chromosome 8 band q11. Genomics 1998; 47:71-83. [PMID: 9465298 DOI: 10.1006/geno.1997.5076] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A 30-kb genomic segment containing the promoter and first 9 exons of PRKDC, the gene encoding the catalytic subunit (DNA-PKcs) of the human DNA-activated protein kinase, DNA-PK, was isolated and partially sequenced. Sequence comparison with the NCBI nonredundant database revealed the locations of the first 13 exons of the upstream gene, MCM4. MCM4 is an essential component of a protein complex that prevents DNA from being replicated more than once per cell cycle. The MCM4 and DNA-PKcs promoters are in CpG islands separated by approximately 700 bp, and transcription from each initiates at multiple, closely spaced sites. Both promoters lack TATA boxes, and the MCM4 promoter also lacks an initiator (Inr) element but has an inverted CCAAT box. The DNA-PKcs promoter has an Inr-like sequence as well as a downstream MED-1 element. The two promoters appear to function independently, as sequences required for core promoter activity do not overlap, and sequences extending into the 5' region of each gene had little or no effect on transcription of the other gene, as shown in transient transfection assays. The arrangement of the PRKDC/MCM4 gene pair is similar to that of the ATM/E14(NPAT) gene pair. ATM, the product of the gene mutated in ataxia telangiectasia, and DNA-PKcs function in pathways that detect or repair DNA damage and are members of a family of large, serine/threonine kinases that are closely related to phosphatidylinositol 3 kinases.
Collapse
Affiliation(s)
- M A Connelly
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | | | | | | |
Collapse
|
299
|
Li L, Drayna D, Hu D, Hayward A, Gahagan S, Pabst H, Cowan MJ. The gene for severe combined immunodeficiency disease in Athabascan-speaking Native Americans is located on chromosome 10p. Am J Hum Genet 1998; 62:136-44. [PMID: 9443881 PMCID: PMC1376812 DOI: 10.1086/301688] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Severe combined immunodeficiency disease (SCID) consists of a group of heterogeneous genetic disorders. The most severe phenotype, T-B- SCID, is inherited as an autosomal recessive trait and is characterized by a profound deficiency of both T cell and B cell immunity. There is a uniquely high frequency of T-B- SCID among Athabascan-speaking Native Americans (A-SCID). To localize the A-SCID gene, we conducted a genomewide search, using linkage analysis of approximately 300 microsatellite markers in 14 affected Athabascan-speaking Native American families. We obtained conclusive evidence for linkage of the A-SCID locus to markers on chromosome 10p. The maximum pairwise LOD scores 4.53 and 4.60 were obtained from two adjacent markers, D10S191 and D10S1653, respectively, at a recombination fraction of straight theta=.00. Recombination events placed the gene in an interval of approximately 6.5 cM flanked by D10S1664 and D10S674. Multipoint analysis positioned the gene for the A-SCID phenotype between D10S191 and D10S1653, with a peak LOD score of 5.10 at D10S191. Strong linkage disequilibrium was found in five linked markers spanning approximately 6.5 cM in the candidate region, suggesting a founder effect with an ancestral mutation that occurred sometime before 1300 A.D.
Collapse
Affiliation(s)
- L Li
- Department of Pediatrics, Bone Marrow Transplant Division, University of California, San Francisco, CA 94143-1278, USA
| | | | | | | | | | | | | |
Collapse
|
300
|
Nussenzweig A, Sokol K, Burgman P, Li L, Li GC. Hypersensitivity of Ku80-deficient cell lines and mice to DNA damage: the effects of ionizing radiation on growth, survival, and development. Proc Natl Acad Sci U S A 1997; 94:13588-93. [PMID: 9391070 PMCID: PMC28350 DOI: 10.1073/pnas.94.25.13588] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We recently have shown that mice deficient for the 86-kDa component (Ku80) of the DNA-dependent protein kinase exhibit growth retardation and a profound deficiency in V(D)J (variable, diversity, and joining) recombination. These defects may be related to abnormalities in DNA metabolism that arise from the inability of Ku80 mutant cells to process DNA double-strand breaks. To further characterize the role of Ku80 in DNA double-strand break repair, we have generated embryonic stem cells and pre-B cells and examined their response to ionizing radiation. Ku80(-/-) embryonic stem cells are more sensitive than controls to gamma-irradiation, and pre-B cells derived from Ku80 mutant mice display enhanced spontaneous and gamma-ray-induced apoptosis. We then determined the effects of ionizing radiation on the survival, growth, and lymphocyte development in Ku80-deficient mice. Ku80(-/-) mice display a hypersensitivity to gamma-irradiation, characterized by loss of hair pigmentation, severe injury to the gastrointestinal tract, and enhanced mortality. Exposure of newborn Ku80(-/-) mice to sublethal doses of ionizing radiation enhances their growth retardation and results in the induction of T cell-specific differentiation. However, unlike severe combined immunodeficient mice, radiation-induced T cell development in Ku80(-/-) mice is not accompanied by extensive thymocyte proliferation. The response of Ku80-deficient cell lines and mice to DNA-damaging agents provides important insights into the role of Ku80 in growth regulation, lymphocyte development, and DNA repair.
Collapse
Affiliation(s)
- A Nussenzweig
- Departments of Medical Physics and Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|