251
|
Disruption by SaCas9 Endonuclease of HERV-K env, a Retroviral Gene with Oncogenic and Neuropathogenic Potential, Inhibits Molecules Involved in Cancer and Amyotrophic Lateral Sclerosis. Viruses 2018; 10:v10080412. [PMID: 30087231 PMCID: PMC6115762 DOI: 10.3390/v10080412] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 12/14/2022] Open
Abstract
The human endogenous retrovirus (HERV)-K, human mouse mammary tumor virus like-2 (HML-2) subgroup of HERVs is activated in several tumors and has been related to prostate cancer progression and motor neuron diseases. The cellular splicing factor 2/alternative splicing factor (SF2/ASF) is a positive regulator of gene expression, coded by a potent proto-oncogene, amplified, and abnormally expressed in tumors. TAR DNA-binding protein-43 (TDP-43) is a DNA/RNA-binding protein, negative regulator of alternative splicing, known for causing neurodegeneration, and with complex roles in oncogenesis. We used the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology, with the Cas9 system from Staphylococcus aureus (SaCas9), to disrupt the HERV-K(HML-2)env gene, and evaluated the effects on cultured cells. The tool was tested on human prostate cancer LNCaP cells, whose HERV-Kenv transcription profile is known. It caused HERV-K(HML-2)env disruption (the first reported of a HERV gene), as evaluated by DNA sequencing, and inhibition of env transcripts and proteins. The HERV-K(HML-2)env disruption was found to interfere with important regulators of cell expression and proliferation, involved in manaling, RNA-binding, and alternative splicing, such as epidermal growth factor receptor (EGF-R), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), SF2/ASF, and TDP-43. These novel findings suggest that HERV-K is not an innocent bystander, they reinforce its links to oncogenesis and motor neuron diseases, and they open potential innovative therapeutic options.
Collapse
|
252
|
Mayer J, Harz C, Sanchez L, Pereira GC, Maldener E, Heras SR, Ostrow LW, Ravits J, Batra R, Meese E, García-Pérez JL, Goodier JL. Transcriptional profiling of HERV-K(HML-2) in amyotrophic lateral sclerosis and potential implications for expression of HML-2 proteins. Mol Neurodegener 2018; 13:39. [PMID: 30068350 PMCID: PMC6091006 DOI: 10.1186/s13024-018-0275-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder. About 90% of ALS cases are without a known genetic cause. The human endogenous retrovirus multi-copy HERV-K(HML-2) group was recently reported to potentially contribute to neurodegeneration and disease pathogenesis in ALS because of transcriptional upregulation and toxic effects of HML-2 Envelope (Env) protein. Env and other proteins are encoded by some transcriptionally active HML-2 loci. However, more detailed information is required regarding which HML-2 loci are transcribed in ALS, which of their proteins are expressed, and differences between the disease and non-disease states. METHODS For brain and spinal cord tissue samples from ALS patients and controls, we identified transcribed HML-2 loci by generating and mapping HML-2-specific cDNA sequences. We predicted expression of HML-2 env gene-derived proteins based on the observed cDNA sequences. Furthermore, we determined overall HML-2 transcript levels by RT-qPCR and investigated presence of HML-2 Env protein in ALS and control tissue samples by Western blotting. RESULTS We identified 24 different transcribed HML-2 loci. Some of those loci are transcribed at relatively high levels. However, significant differences in HML-2 loci transcriptional activities were not seen when comparing ALS and controls. Likewise, overall HML-2 transcript levels, as determined by RT-qPCR, were not significantly different between ALS and controls. Indeed, we were unable to detect full-length HML-2 Env protein in ALS and control tissue samples despite reasonable sensitivity. Rather our analyses suggest that a number of HML-2 protein variants other than full-length Env may potentially be expressed in ALS patients. CONCLUSIONS Our results expand and refine recent publications on HERV-K(HML-2) and ALS. Some of our results are in conflict with recent findings and call for further specific analyses. Our profiling of HML-2 transcription in ALS opens up the possibility that HML-2 proteins other than canonical full-length Env may have to be considered when studying the role of HML-2 in ALS disease.
Collapse
Affiliation(s)
- Jens Mayer
- Department of Human Genetics, University of Saarland, Homburg, Germany
| | - Christian Harz
- Department of Human Genetics, University of Saarland, Homburg, Germany
| | - Laura Sanchez
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - Gavin C. Pereira
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Esther Maldener
- Department of Human Genetics, University of Saarland, Homburg, Germany
| | - Sara R. Heras
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain
| | - Lyle W. Ostrow
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 28217 USA
| | - John Ravits
- Department of Neurosciences, School of Medicine, UCSD, San Diego, CA USA
| | - Ranjan Batra
- Department of Neurosciences, School of Medicine, UCSD, San Diego, CA USA
| | - Eckart Meese
- Department of Human Genetics, University of Saarland, Homburg, Germany
| | - Jose Luis García-Pérez
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - John L. Goodier
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
253
|
Riancho J, Bosque-Varela P, Perez-Pereda S, Povedano M, de Munaín AL, Santurtun A. The increasing importance of environmental conditions in amyotrophic lateral sclerosis. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2018; 62:1361-1374. [PMID: 29713861 DOI: 10.1007/s00484-018-1550-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/15/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common neurodegenerative disease affecting motor neurons (MNs). Although a small percentage of ALS has a familial origin, the vast majority of cases are sporadic in which genetic factors and environment interact with each other leading to disease onset in genetically predisposed individuals. In the current model of the disease, each individual has a determined genetic load, some degree of cell degeneration related to age and several risky environmental exposures. In this scenario, MN degeneration would occur when the sum of these factors reach a certain threshold. To date, an extensive list of environmental factors has been associated to ALS, including different categories, such as exposure to heavy metals and other toxicants, cyanotoxins or infectious agents. In addition, in recent years, lifestyle and other demographic parameters are gaining relevance in the genesis of the disease. Among them, physical activity, nutrition, body mass index, cardiovascular risk factors, autoimmune diseases and cancer are some of the conditions which have been related to the disease. In this review, we will discuss the potential mechanisms of environmental conditions in motor neuron degeneration. Understanding the role of each one of these factors as well as their interactions appears as a crucial step in order to develop new preventive, diagnostic and therapeutic approaches for ALS patients.
Collapse
Affiliation(s)
- Javier Riancho
- Service of Neurology, Hospital Sierrallana, Institute of Research Valdecilla (IDIVAL), Torrelavega, Spain.
- Department of Medicine, University of Cantabria, Santander, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, CIBERNED, Instituto Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.
| | - Pilar Bosque-Varela
- Service of Neurology, University Hospital Marques de Valdecilla, Santander, Spain
| | - Sara Perez-Pereda
- Service of Neurology, University Hospital Marques de Valdecilla, Santander, Spain
| | - Mónica Povedano
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, CIBERNED, Instituto Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
- Service of Neurology-Motor Neuron Unit, IDIBELL, Bellvitge University Hospital, Barcelona, Spain
| | - Adolfo López de Munaín
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, CIBERNED, Instituto Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
- ALS Multidisciplinary Unit, Hospital Donostia- Neuroscience Area, Donostia Health Research Institute, San Sebastián, Spain
| | - Ana Santurtun
- Toxicology Unit, Physiology and Farmacology Department, University of Cantabria-IDIVAL, Santander, Spain
| |
Collapse
|
254
|
Saldi TK, Gonzales P, Garrido-Lecca A, Dostal V, Roberts CM, Petrucelli L, Link CD. The Caenorhabditis elegans Ortholog of TDP-43 Regulates the Chromatin Localization of the Heterochromatin Protein 1 Homolog HPL-2. Mol Cell Biol 2018; 38:e00668-17. [PMID: 29760282 PMCID: PMC6048318 DOI: 10.1128/mcb.00668-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/04/2018] [Accepted: 05/01/2018] [Indexed: 12/13/2022] Open
Abstract
TDP-1 is the Caenorhabditis elegans ortholog of mammalian TDP-43, which is strongly implicated in the etiology of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). We discovered that deletion of the tdp-1 gene results in enhanced nuclear RNA interference (RNAi). As nuclear RNAi in C. elegans involves chromatin changes moderated by HPL-2, a homolog of heterochromatin protein 1 (HP1), we investigated the interaction of TDP-1 and HPL-2. We found that TDP-1 and HPL-2 interact directly and that loss of TDP-1 dramatically alters the chromatin association of HPL-2. We showed previously that deletion of the tdp-1 gene results in transcriptional alterations and the accumulation of double-stranded RNA (dsRNA). These molecular changes are replicated in an hpl-2 deletion strain, consistent with HPL-2 acting in consort with TDP-1 to modulate these aspects of RNA metabolism. Our observations identify novel mechanisms by which HP1 homologs can be recruited to chromatin and by which nuclear depletion of human TDP-43 may lead to changes in RNA metabolism that are relevant to disease.
Collapse
Affiliation(s)
- Tassa K Saldi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Patrick Gonzales
- Integrative Physiology, University of Colorado, Boulder, Colorado, USA
| | - Alfonso Garrido-Lecca
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Vishantie Dostal
- Integrative Physiology, University of Colorado, Boulder, Colorado, USA
| | | | | | - Christopher D Link
- Integrative Physiology, University of Colorado, Boulder, Colorado, USA
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
255
|
Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative tauopathies. Nat Neurosci 2018; 21:1038-1048. [PMID: 30038280 PMCID: PMC6095477 DOI: 10.1038/s41593-018-0194-1] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 06/12/2018] [Indexed: 12/27/2022]
Abstract
Transposable elements, known colloquially as “jumping genes,” constitute approximately 45% of the human genome. Cells utilize epigenetic defenses to limit transposable element jumping, including formation of silencing heterochromatin and generation of piwi-interacting RNAs (piRNAs), small RNAs that facilitate clearance of transposable element transcripts. Here we identify transposable element dysregulation as a key mediator of neuronal death in tauopathies, a group of neurodegenerative disorders that are pathologically characterized by deposits of tau protein in the brain. Mechanistically, we find that heterochromatin decondensation and reduction of piwi/piRNAs drive transposable element dysregulation in tauopathy. We further report a significant increase in transcripts of the endogenous retrovirus class of transposable elements in human Alzheimer’s disease and progressive supranuclear palsy, suggesting that transposable element dysregulation is conserved in human tauopathy. Taken together, our data identify heterochromatin decondensation, piwi/piRNA depletion and consequent transposable element dysregulation as a novel, pharmacologically targetable, mechanistic driver of neurodegeneration in tauopathy.
Collapse
|
256
|
Turnbull MG, Douville RN. Related Endogenous Retrovirus-K Elements Harbor Distinct Protease Active Site Motifs. Front Microbiol 2018; 9:1577. [PMID: 30072963 PMCID: PMC6058741 DOI: 10.3389/fmicb.2018.01577] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023] Open
Abstract
Background: Endogenous retrovirus-K is a group of related genomic elements descending from retroviral infections in human ancestors. HML2 is the clade of these viruses which contains the most intact provirus copies. These elements can be transcribed and translated in healthy and diseased tissues, and some of them produce active retroviral enzymes, such as protease. Retroviral gene products, including protease, contribute to illness in exogenous retroviral infections. There are ongoing efforts to test anti-retroviral regimens against endogenous retroviruses. Herein, we examine the potential activity and diversity of human endogenous retrovirus-K proteases, and their potential for impact on immunity and human disease. Results: Sequences similar to the endogenous retrovirus-K HML2 protease and reverse transcriptase were identified in the human genome, classified by phylogenetic inference and compared to Repbase reference sequences. The topologies of trees inferred from protease and reverse transcriptase sequences were similar and agreed with the classification using reference sequences. Surprisingly, only 62/480 protease sequences identified by BLAST were classified as HML2; the remainder were classified as other HML groups, with the majority (216) classified as HML3. Variation in functionally significant protease motifs was explored, and two major active site variants were identified – the DTGAD variant is common in all groups, but the DTGVD motif appears limited to HML3, HML5, and HML6. Furthermore, distinct RNA expression patterns of protease variants are seen in disease states, such as amyotrophic lateral sclerosis, breast cancer, and prostate cancer. Conclusion: Transcribed ERVK proteases exhibit a diversity which could impact immunity and inhibitor-based treatments, and these facets should be considered when designing therapeutic regimens.
Collapse
Affiliation(s)
| | - Renée N Douville
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
257
|
Faulkner GJ, Billon V. L1 retrotransposition in the soma: a field jumping ahead. Mob DNA 2018; 9:22. [PMID: 30002735 PMCID: PMC6035798 DOI: 10.1186/s13100-018-0128-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022] Open
Abstract
Retrotransposons are transposable elements (TEs) capable of "jumping" in germ, embryonic and tumor cells and, as is now clearly established, in the neuronal lineage. Mosaic TE insertions form part of a broader landscape of somatic genome variation and hold significant potential to generate phenotypic diversity, in the brain and elsewhere. At present, the LINE-1 (L1) retrotransposon family appears to be the most active autonomous TE in most mammals, based on experimental data obtained from disease-causing L1 mutations, engineered L1 reporter systems tested in cultured cells and transgenic rodents, and single-cell genomic analyses. However, the biological consequences of almost all somatic L1 insertions identified thus far remain unknown. In this review, we briefly summarize the current state-of-the-art in the field, including estimates of L1 retrotransposition rate in neurons. We bring forward the hypothesis that an extensive subset of retrotransposition-competent L1s may be de-repressed and mobile in the soma but largely inactive in the germline. We discuss recent reports of non-canonical L1-associated sequence variants in the brain and propose that the elevated L1 DNA content reported in several neurological disorders may predominantly comprise accumulated, unintegrated L1 nucleic acids, rather than somatic L1 insertions. Finally, we consider the main objectives and obstacles going forward in elucidating the biological impact of somatic retrotransposition.
Collapse
Affiliation(s)
- Geoffrey J. Faulkner
- Mater Research Institute – University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072 Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072 Australia
| | - Victor Billon
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072 Australia
- Biology Department, École Normale Supérieure Paris-Saclay, 61 Avenue du Président Wilson, 94230 Cachan, France
| |
Collapse
|
258
|
Guo C, Jeong HH, Hsieh YC, Klein HU, Bennett DA, De Jager PL, Liu Z, Shulman JM. Tau Activates Transposable Elements in Alzheimer's Disease. Cell Rep 2018; 23:2874-2880. [PMID: 29874575 PMCID: PMC6181645 DOI: 10.1016/j.celrep.2018.05.004] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 03/19/2018] [Accepted: 05/01/2018] [Indexed: 02/06/2023] Open
Abstract
Aging and neurodegenerative disease are characterized by genomic instability in neurons, including aberrant activation and mobilization of transposable elements (TEs). Integrating studies of human postmortem brain tissue and Drosophila melanogaster models, we investigate TE activation in association with Tau pathology in Alzheimer's disease (AD). Leveraging RNA sequencing from 636 human brains, we discover differential expression for several retrotransposons in association with neurofibrillary tangle burden and highlight evidence for global TE transcriptional activation among the long interspersed nuclear element 1 and endogenous retrovirus clades. In addition, we detect Tau-associated, active chromatin signatures at multiple HERV-Fc1 genomic loci. To determine whether Tau is sufficient to induce TE activation, we profile retrotransposons in Drosophila expressing human wild-type or mutant Tau throughout the brain. We discover heterogeneous response profiles, including both age- and genotype-dependent activation of TE expression by Tau. Our results implicate TE activation and associated genomic instability in Tau-mediated AD mechanisms.
Collapse
Affiliation(s)
- Caiwei Guo
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Hyun-Hwan Jeong
- Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi-Chen Hsieh
- Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hans-Ulrich Klein
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA; Cell Circuits Program, Broad Institute, Cambridge, MA 02142, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA; Cell Circuits Program, Broad Institute, Cambridge, MA 02142, USA
| | - Zhandong Liu
- Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joshua M Shulman
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
259
|
Turner MR, Eisen A, Kiernan MC, Ravits J, Swash M. Kinnier Wilson's puzzling features of amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2018; 89:657-666. [PMID: 29122933 DOI: 10.1136/jnnp-2017-317217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 11/03/2022]
Affiliation(s)
- Martin R Turner
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Andrew Eisen
- Department of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew C Kiernan
- Brain and Mind Centre, Sydney Medical School, The University of Sydney; Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - John Ravits
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | | |
Collapse
|
260
|
Verheijen BM, Vermulst M, van Leeuwen FW. Somatic mutations in neurons during aging and neurodegeneration. Acta Neuropathol 2018; 135:811-826. [PMID: 29705908 PMCID: PMC5954077 DOI: 10.1007/s00401-018-1850-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 12/22/2022]
Abstract
The nervous system is composed of a large variety of neurons with a diverse array of morphological and functional properties. This heterogeneity is essential for the construction and maintenance of a distinct set of neural networks with unique characteristics. Accumulating evidence now indicates that neurons do not only differ at a functional level, but also at the genomic level. These genomic discrepancies seem to be the result of somatic mutations that emerge in nervous tissue during development and aging. Ultimately, these mutations bring about a genetically heterogeneous population of neurons, a phenomenon that is commonly referred to as "somatic brain mosaicism". Improved understanding of the development and consequences of somatic brain mosaicism is crucial to understand the impact of somatic mutations on neuronal function in human aging and disease. Here, we highlight a number of topics related to somatic brain mosaicism, including some early experimental evidence for somatic mutations in post-mitotic neurons of the hypothalamo-neurohypophyseal system. We propose that age-related somatic mutations are particularly interesting, because aging is a major risk factor for a variety of neuronal diseases, including Alzheimer's disease. We highlight potential links between somatic mutations and the development of these diseases and argue that recent advances in single-cell genomics and in vivo physiology have now finally made it possible to dissect the origins and consequences of neuronal mutations in unprecedented detail.
Collapse
Affiliation(s)
- Bert M Verheijen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands.
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands.
| | - Marc Vermulst
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Fred W van Leeuwen
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER, Maastricht, The Netherlands
| |
Collapse
|
261
|
Shelkovnikova TA, Kukharsky MS, An H, Dimasi P, Alexeeva S, Shabir O, Heath PR, Buchman VL. Protective paraspeckle hyper-assembly downstream of TDP-43 loss of function in amyotrophic lateral sclerosis. Mol Neurodegener 2018; 13:30. [PMID: 29859124 PMCID: PMC5984788 DOI: 10.1186/s13024-018-0263-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/25/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Paraspeckles are subnuclear bodies assembled on a long non-coding RNA (lncRNA) NEAT1. Their enhanced formation in spinal neurons of sporadic amyotrophic lateral sclerosis (ALS) patients has been reported but underlying mechanisms are unknown. The majority of ALS cases are characterized by TDP-43 proteinopathy. In current study we aimed to establish whether and how TDP-43 pathology may augment paraspeckle assembly. METHODS Paraspeckle formation in human samples was analysed by RNA-FISH and laser capture microdissection followed by qRT-PCR. Mechanistic studies were performed in stable cell lines, mouse primary neurons and human embryonic stem cell-derived neurons. Loss and gain of function for TDP-43 and other microRNA pathway factors were modelled by siRNA-mediated knockdown and protein overexpression. RESULTS We show that de novo paraspeckle assembly in spinal neurons and glial cells is a hallmark of both sporadic and familial ALS with TDP-43 pathology. Mechanistically, loss of TDP-43 but not its cytoplasmic accumulation or aggregation augments paraspeckle assembly in cultured cells. TDP-43 is a component of the microRNA machinery, and recently, paraspeckles have been shown to regulate pri-miRNA processing. Consistently, downregulation of core protein components of the miRNA pathway also promotes paraspeckle assembly. In addition, depletion of these proteins or TDP-43 results in accumulation of endogenous dsRNA and activation of type I interferon response which also stimulates paraspeckle formation. We demonstrate that human or mouse neurons in vitro lack paraspeckles, but a synthetic dsRNA is able to trigger their de novo formation. Finally, paraspeckles are protective in cells with compromised microRNA/dsRNA metabolism, and their assembly can be promoted by a small-molecule microRNA enhancer. CONCLUSIONS Our study establishes possible mechanisms behind paraspeckle hyper-assembly in ALS and suggests their utility as therapeutic targets in ALS and other diseases with abnormal metabolism of microRNA and dsRNA.
Collapse
Affiliation(s)
| | - Michail S Kukharsky
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK.,Institute of Physiologically Active Compounds Russian Academy of Sciences, 1 Severniy proezd, Chernogolovka, Moscow Region, Russian Federation, 142432
| | - Haiyan An
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Pasquale Dimasi
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Svetlana Alexeeva
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Osman Shabir
- The Sheffield Institute for Translational Neuroscience, 385A Glossop Road, Sheffield, S10 2HQ, UK
| | - Paul R Heath
- The Sheffield Institute for Translational Neuroscience, 385A Glossop Road, Sheffield, S10 2HQ, UK
| | - Vladimir L Buchman
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK.,Institute of Physiologically Active Compounds Russian Academy of Sciences, 1 Severniy proezd, Chernogolovka, Moscow Region, Russian Federation, 142432
| |
Collapse
|
262
|
Castanedo-Vazquez D, Bosque-Varela P, Sainz-Pelayo A, Riancho J. Infectious agents and amyotrophic lateral sclerosis: another piece of the puzzle of motor neuron degeneration. J Neurol 2018; 266:27-36. [PMID: 29845377 DOI: 10.1007/s00415-018-8919-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common neurodegenerative disease affecting motor neurons (MN). This fatal disease is characterized by progressive muscle wasting and lacks an effective treatment. ALS pathogenesis has not been elucidated yet. In a small proportion of ALS patients, the disease has a familial origin, related to mutations in specific genes, which directly result in MN degeneration. By contrast, the vast majority of cases are though to be sporadic, in which genes and environment interact leading to disease in genetically predisposed individuals. Lately, the role of the environment has gained relevance in this field and an extensive list of environmental conditions have been postulated to be involved in ALS. Among them, infectious agents, particularly viruses, have been suggested to play an important role in the pathogenesis of the disease. These agents could act by interacting with some crucial pathways in MN degeneration, such as gene processing, oxidative stress or neuroinflammation. In this article, we will review the main studies about the involvement of microorganisms in ALS, subsequently discussing their potential pathogenic effect and integrating them as another piece in the puzzle of ALS pathogenesis.
Collapse
Affiliation(s)
| | - Pilar Bosque-Varela
- Service of Neurology, University Hospital Marques de Valdecilla, Santander, Spain
| | | | - Javier Riancho
- Service of Neurology, Hospital Sierrallana-IDIVAL, Torrelavega, Spain. .,CIBERNED, Madrid, Spain.
| |
Collapse
|
263
|
Arru G, Mameli G, Deiana GA, Rassu AL, Piredda R, Sechi E, Caggiu E, Bo M, Nako E, Urso D, Mariotto S, Ferrari S, Zanusso G, Monaco S, Sechi G, Sechi LA. Humoral immunity response to human endogenous retroviruses K/W differentiates between amyotrophic lateral sclerosis and other neurological diseases. Eur J Neurol 2018; 25:1076-e84. [PMID: 29603839 DOI: 10.1111/ene.13648] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/26/2018] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND PURPOSE Human endogenous retroviruses (HERV) K/W seem to play a role in fostering and exacerbation of some neurological diseases, including amyotrophic lateral sclerosis (ALS). Given these findings, the immunity response against HERV-K and HERV-W envelope surface (env-su) glycoprotein antigens in serum and cerebrospinal fluid (CSF) was investigated for ALS, multiple sclerosis (MS) and Alzheimer's disease patients and in healthy controls. METHODS Four antigenic peptides derived respectively from HERV-K and HERV-W env-su proteins were studied in 21 definite or probable ALS patients, 26 possible or definite relapsing-remitting MS patients, 18 patients with Alzheimer's disease and 39 healthy controls. An indirect enzyme-linked immunosorbent assay was set up to detect specific antibodies (Abs) against env-su peptides. RESULTS Amongst the measured levels of Abs against the four different HERV-K peptide fragments, only HERV-K env-su19-37 was significantly elevated in ALS compared to other groups, both in serum and CSF. Instead, amongst the Abs levels directed against the four different HERV-W peptide fragments, only HERV-W env-su93-108 and HERV-W env-su248-262 were significantly elevated, in the serum and CSF of the MS group compared to other groups. In ALS patients, the HERV-K env-su19-37 Abs levels were significantly correlated with clinical measures of disease severity, both in serum and CSF. CONCLUSIONS Increased circulating levels of Abs directed against the HERV-W env-su93-108 and HERV-W env-su248-262 peptide fragments could serve as possible biomarkers in patients with MS. Similarly, increased circulating levels of Abs directed against the HERV-K env-su19-37 peptide fragment could serve as a possible early novel biomarker in patients with ALS.
Collapse
Affiliation(s)
- G Arru
- Department of Clinical, Surgery and Experimental Medicine, University of Sassari, Sassari, Italy
| | - G Mameli
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - G A Deiana
- Department of Clinical, Surgery and Experimental Medicine, University of Sassari, Sassari, Italy
| | - A L Rassu
- Department of Clinical, Surgery and Experimental Medicine, University of Sassari, Sassari, Italy
| | - R Piredda
- Department of Clinical, Surgery and Experimental Medicine, University of Sassari, Sassari, Italy
| | - E Sechi
- Department of Clinical, Surgery and Experimental Medicine, University of Sassari, Sassari, Italy
| | - E Caggiu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - M Bo
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - E Nako
- Department of Clinical, Surgery and Experimental Medicine, University of Sassari, Sassari, Italy
| | - D Urso
- Department of Clinical, Surgery and Experimental Medicine, University of Sassari, Sassari, Italy
| | - S Mariotto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - S Ferrari
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - G Zanusso
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - S Monaco
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - G Sechi
- Department of Clinical, Surgery and Experimental Medicine, University of Sassari, Sassari, Italy
| | - L A Sechi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
264
|
ALSUntangled 45: Antiretrovirals. Amyotroph Lateral Scler Frontotemporal Degener 2018; 19:630-634. [PMID: 29693424 DOI: 10.1080/21678421.2018.1465248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
265
|
Celeste DB, Miller MS. Reviewing the evidence for viruses as environmental risk factors for ALS: A new perspective. Cytokine 2018; 108:173-178. [PMID: 29684753 DOI: 10.1016/j.cyto.2018.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/05/2018] [Accepted: 04/07/2018] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis is a devastating neurodegenerative disease whose etiology remains poorly understood. Since the genetic basis of disease is known in only a small subset of cases, there has been substantial interest in determining whether environmental factors act as triggers of ALS. Viruses have received longstanding attention as potential ALS triggers. Yet, existing studies have not provided a compelling case for causation. This review summarizes the evidence supporting a link between viral infection and motor neuron disease, with a focus on ALS. Limitations of prior studies are discussed and contextualized, and recent work that has provided stronger mechanistic evidence for viruses in disease pathogenesis is highlighted. Finally, we offer a new perspective on the association of viruses with ALS, and underscore the need for multidisciplinary approaches bridging neurology and infectious diseases research to move the field forward in the future.
Collapse
Affiliation(s)
- Daniel B Celeste
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Matthew S Miller
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
266
|
Dubnau J. The Retrotransposon storm and the dangers of a Collyer's genome. Curr Opin Genet Dev 2018; 49:95-105. [PMID: 29705598 PMCID: PMC5975205 DOI: 10.1016/j.gde.2018.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/08/2018] [Accepted: 04/11/2018] [Indexed: 12/13/2022]
Abstract
Like the famous Collyer's mansion in NY, our genomes have accumulated vast quantities of sequences that have been referred to as 'junk DNA,' much of which consists of retrotransposons (RTEs). A recent literature establishes the phenomenology that many RTEs become expressed at progressively higher levels during the course of normal aging. This seems to reflect gradual loss of heterochromatin in old age. In addition, RTEs appear to be precociously expressed in brains of younger animals that are experiencing neurodegenerative decline. Although it is difficult to distinguish cause from consequence, several recent studies support the contention that RTE expression, and even perhaps transposition, causally contribute to both the normal deterioration seen with age and to the precipitous decline in some neurodegenerative disorders. This may reflect a two hit model in which normal age-dependent loss of heterochromatin synergizes with a disruption to posttranscriptional silencing of RTEs caused by genetic and environmental stress.
Collapse
Affiliation(s)
- Josh Dubnau
- Department of Anesthesiology, State University of New York at Stony Brook, Stony Brook, NY 11794-8480, United States; Department of Neurobiology & Behavior, Stony Brook University & Stony Brook School of Medicine, Stony Brook, NY 11794-8480, United States.
| |
Collapse
|
267
|
Fosso B, Santamaria M, D'Antonio M, Lovero D, Corrado G, Vizza E, Passaro N, Garbuglia AR, Capobianchi MR, Crescenzi M, Valiente G, Pesole G. MetaShot: an accurate workflow for taxon classification of host-associated microbiome from shotgun metagenomic data. Bioinformatics 2018; 33:1730-1732. [PMID: 28130230 PMCID: PMC5447231 DOI: 10.1093/bioinformatics/btx036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 01/19/2017] [Indexed: 11/12/2022] Open
Abstract
Summary Shotgun metagenomics by high-throughput sequencing may allow deep and accurate characterization of host-associated total microbiomes, including bacteria, viruses, protists and fungi. However, the analysis of such sequencing data is still extremely challenging in terms of both overall accuracy and computational efficiency, and current methodologies show substantial variability in misclassification rate and resolution at lower taxonomic ranks or are limited to specific life domains (e.g. only bacteria). We present here MetaShot, a workflow for assessing the total microbiome composition from host-associated shotgun sequence data, and show its overall optimal accuracy performance by analyzing both simulated and real datasets. Availability and Implementation https://github.com/bfosso/MetaShot. Contact graziano.pesole@uniba.it. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- B Fosso
- Institute of Biomembranes and Bioenergetics, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - M Santamaria
- Institute of Biomembranes and Bioenergetics, Consiglio Nazionale delle Ricerche, Bari, Italy
| | | | - D Lovero
- Institute of Biomembranes and Bioenergetics, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - G Corrado
- Department of Oncological Surgery, Gynecologic Oncology Unit, "Regina Elena" National Cancer Institute, Rome, Italy
| | - E Vizza
- Department of Oncological Surgery, Gynecologic Oncology Unit, "Regina Elena" National Cancer Institute, Rome, Italy
| | - N Passaro
- Department of Cell Biology and Neurosciences, Italian National Institute of Health, Rome, Italy
| | - A R Garbuglia
- Lazzaro Spallanzani National Institute for Infectious Diseases, Rome, Italy
| | - M R Capobianchi
- Lazzaro Spallanzani National Institute for Infectious Diseases, Rome, Italy
| | - M Crescenzi
- Department of Cell Biology and Neurosciences, Italian National Institute of Health, Rome, Italy
| | - G Valiente
- Algorithms, Bioinformatics, Complexity and Formal Methods Research Group, Technical University of Catalonia, Barcelona, Spain
| | - G Pesole
- Institute of Biomembranes and Bioenergetics, Consiglio Nazionale delle Ricerche, Bari, Italy.,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy
| |
Collapse
|
268
|
Küry P, Nath A, Créange A, Dolei A, Marche P, Gold J, Giovannoni G, Hartung HP, Perron H. Human Endogenous Retroviruses in Neurological Diseases. Trends Mol Med 2018; 24:379-394. [PMID: 29551251 PMCID: PMC7185488 DOI: 10.1016/j.molmed.2018.02.007] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 12/12/2022]
Abstract
The causes of multiple sclerosis and amyotrophic lateral sclerosis have long remained elusive. A new category of pathogenic components, normally dormant within human genomes, has been identified: human endogenous retroviruses (HERVs). These represent ∼8% of the human genome, and environmental factors have reproducibly been shown to trigger their expression. The resulting production of envelope (Env) proteins from HERV-W and HERV-K appears to engage pathophysiological pathways leading to the pathognomonic features of MS and ALS, respectively. Pathogenic HERV elements may thus provide a missing link in understanding these complex diseases. Moreover, their neutralization may represent a promising strategy to establish novel and more powerful therapeutic approaches.
Collapse
Affiliation(s)
- Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Avindra Nath
- Section of infections of the Nervous System, National Institute of Neurological Diseases and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Alain Créange
- Service de Neurologie, Groupe Hospitalier Henri Mondor, Assistance Publique Hopitaux de Paris (APHP), Université Paris Est, Créteil, France
| | - Antonina Dolei
- Department of Virology, University of Sassari, Sassari, Italy
| | - Patrice Marche
- Institute for Advanced Biosciences (IAB), University of Grenoble-Alpes, La Tronche, France; Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1209, La Tronche, France
| | - Julian Gold
- Centre for Neuroscience and Trauma, Blizard Institute, Queen Mary University, London, UK; The Albion Centre, Prince of Wales Hospital, Sydney, Australia
| | - Gavin Giovannoni
- Centre for Neuroscience and Trauma, Blizard Institute, Queen Mary University, London, UK
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| | - Hervé Perron
- Geneuro, Plan les Ouates, Geneva, Switzerland; University of Lyon, Lyon, France
| |
Collapse
|
269
|
Xue YC, Feuer R, Cashman N, Luo H. Enteroviral Infection: The Forgotten Link to Amyotrophic Lateral Sclerosis? Front Mol Neurosci 2018; 11:63. [PMID: 29593492 PMCID: PMC5857577 DOI: 10.3389/fnmol.2018.00063] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/14/2018] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that primarily attacks motor neurons in the brain and spinal cord, leading to progressive paralysis and ultimately death. Currently there is no effective therapy. The majority of ALS cases are sporadic, with no known family history; unfortunately the etiology remains largely unknown. Contribution of Enteroviruses (EVs), a family of positive-stranded RNA viruses including poliovirus, coxsackievirus, echovirus, enterovirus-A71 and enterovirus-D68, to the development of ALS has been suspected as they can target motor neurons, and patients with prior poliomyelitis show a higher risk of motor neuron disease. Multiple efforts have been made to detect enteroviral genome in ALS patient tissues over the past two decades; however the clinical data are controversial and a causal relationship has not yet been established. Recent evidence from in vitro and animal studies suggests that enterovirus-induced pathology remarkably resembles the cellular and molecular phenotype of ALS, indicating a possible link between enteroviral infection and ALS pathogenesis. In this review, we summarize the nature of enteroviral infection, including route of infection, cells targeted, and viral persistence within the central nervous system (CNS). We review the molecular mechanisms underlying viral infection and highlight the similarity between viral pathogenesis and the molecular and pathological features of ALS, and finally, discuss the potential role of enteroviral infection in frontotemporal dementia (FTD), a disease that shares common clinical, genetic, and pathological features with ALS, and the significance of anti-viral therapy as an option for the treatment of ALS.
Collapse
Affiliation(s)
- Yuan Chao Xue
- Centre for Heart and Lung Innovation, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ralph Feuer
- The Integrated Regenerative Research Institute at San Diego State University, San Diego, CA, United States
| | - Neil Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Honglin Luo
- Centre for Heart and Lung Innovation, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
270
|
Guallar D, Bi X, Pardavila JA, Huang X, Saenz C, Shi X, Zhou H, Faiola F, Ding J, Haruehanroengra P, Yang F, Li D, Sanchez-Priego C, Saunders A, Pan F, Valdes VJ, Kelley K, Blanco MG, Chen L, Wang H, Sheng J, Xu M, Fidalgo M, Shen X, Wang J. RNA-dependent chromatin targeting of TET2 for endogenous retrovirus control in pluripotent stem cells. Nat Genet 2018; 50:443-451. [PMID: 29483655 PMCID: PMC5862756 DOI: 10.1038/s41588-018-0060-9] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 01/16/2018] [Indexed: 12/13/2022]
Abstract
Ten-eleven translocation (TET) proteins play key roles in the regulation of DNA-methylation status by oxidizing 5-methylcytosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), which can both serve as a stable epigenetic mark and participate in active demethylation. Unlike the other members of the TET family, TET2 does not contain a DNA-binding domain, and it remains unclear how it is recruited to chromatin. Here we show that TET2 is recruited by the RNA-binding protein Paraspeckle component 1 (PSPC1) through transcriptionally active loci, including endogenous retroviruses (ERVs) whose long terminal repeats (LTRs) have been co-opted by mammalian genomes as stage- and tissue-specific transcriptional regulatory modules. We found that PSPC1 and TET2 contribute to ERVL and ERVL-associated gene regulation by both transcriptional repression via histone deacetylases and post-transcriptional destabilization of RNAs through 5hmC modification. Our findings provide evidence for a functional role of transcriptionally active ERVs as specific docking sites for RNA epigenetic modulation and gene regulation.
Collapse
Affiliation(s)
- Diana Guallar
- The Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,CiMUS, Universidade de Santiago de Compostela-Health Research Institute (IDIS), Santiago de Compostela, Coruña, Spain
| | - Xianju Bi
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Jose Angel Pardavila
- CiMUS, Universidade de Santiago de Compostela-Health Research Institute (IDIS), Santiago de Compostela, Coruña, Spain
| | - Xin Huang
- The Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carmen Saenz
- The Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xianle Shi
- The Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Hongwei Zhou
- The Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francesco Faiola
- The Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Junjun Ding
- The Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Phensinee Haruehanroengra
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - Fan Yang
- The Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Dan Li
- The Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carlos Sanchez-Priego
- The Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arven Saunders
- The Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Feng Pan
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, USA
| | - Victor Julian Valdes
- Department of Cell Biology and Development, Instituto de Fisiologia Celular, UNAM, Mexico City, Mexico
| | - Kevin Kelley
- The Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miguel G Blanco
- CiMUS, Universidade de Santiago de Compostela-Health Research Institute (IDIS), Santiago de Compostela, Coruña, Spain
| | - Lingyi Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Huayan Wang
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Jia Sheng
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - Mingjiang Xu
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, USA
| | - Miguel Fidalgo
- CiMUS, Universidade de Santiago de Compostela-Health Research Institute (IDIS), Santiago de Compostela, Coruña, Spain
| | - Xiaohua Shen
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Jianlong Wang
- The Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
271
|
Gröger V, Cynis H. Human Endogenous Retroviruses and Their Putative Role in the Development of Autoimmune Disorders Such as Multiple Sclerosis. Front Microbiol 2018; 9:265. [PMID: 29515547 PMCID: PMC5826199 DOI: 10.3389/fmicb.2018.00265] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/05/2018] [Indexed: 12/13/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of retroviral germ line infections of human ancestors and make up ~8% of the human genome. Under physiological conditions, these elements are frequently inactive or non-functional due to deactivating mutations and epigenetic control. However, they can be reactivated under certain pathological conditions and produce viral transcripts and proteins. Several disorders, like multiple sclerosis or amyotrophic lateral sclerosis are associated with increased HERV expression. Although their detailed contribution to individual diseases has yet to be elucidated, an increasing number of studies in vitro and in vivo suggest HERVs as potent modulators of the immune system. They are able to affect the transcription of other immune-related genes, interact with pattern recognition receptors, and influence the positive and negative selection of developing thymocytes. Interestingly, HERV envelope proteins can both stimulate and suppress immune responses based on different mechanisms. In the light of HERV proteins becoming an emerging drug target for autoimmune-related disorders and cancer, we will provide an overview on recent findings of the complex interactions between HERVs and the human immune system with a focus on autoimmunity.
Collapse
Affiliation(s)
| | - Holger Cynis
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle, Germany
| |
Collapse
|
272
|
Faiq MA, Kumar A, Singh HN, Pareek V, Kumar P. Commentary: A Possible Mechanism of Zika Virus Associated Microcephaly: Imperative Role of Retinoic Acid Response Element (RARE) Consensus Sequence Repeats in the Viral Genome. Front Microbiol 2018. [PMID: 29515529 PMCID: PMC5826298 DOI: 10.3389/fmicb.2018.00190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Muneeb A Faiq
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India.,Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India.,Medical Biotechnology Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi, India.,Etiologically Elusive Disorders Research Network, New Delhi, India
| | - Ashutosh Kumar
- Etiologically Elusive Disorders Research Network, New Delhi, India.,Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Himanshu N Singh
- Etiologically Elusive Disorders Research Network, New Delhi, India.,Functional Genomics Unit, Institute of Genomics and Integrative Biology, New Delhi, India.,Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Vikas Pareek
- Etiologically Elusive Disorders Research Network, New Delhi, India.,Computational Neuroscience and Neuroimaging Division, National Brain Research Centre, Manesar, India
| | - Pavan Kumar
- Etiologically Elusive Disorders Research Network, New Delhi, India.,Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
273
|
Rosario K, Fierer N, Miller S, Luongo J, Breitbart M. Diversity of DNA and RNA Viruses in Indoor Air As Assessed via Metagenomic Sequencing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1014-1027. [PMID: 29298386 DOI: 10.1021/acs.est.7b04203] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Diverse bacterial and fungal communities inhabit human-occupied buildings and circulate in indoor air; however, viral diversity in these man-made environments remains largely unknown. Here we investigated DNA and RNA viruses circulating in the air of 12 university dormitory rooms by analyzing dust accumulated over a one-year period on heating, ventilation, and air conditioning (HVAC) filters. A metagenomic sequencing approach was used to determine the identity and diversity of viral particles extracted from the HVAC filters. We detected a broad diversity of viruses associated with a range of hosts, including animals, arthropods, bacteria, fungi, humans, plants, and protists, suggesting that disparate organisms can contribute to indoor airborne viral communities. Viral community composition and the distribution of human-infecting papillomaviruses and polyomaviruses were distinct in the different dormitory rooms, indicating that airborne viral communities are variable in human-occupied spaces and appear to reflect differential rates of viral shedding from room occupants. This work significantly expands the known airborne viral diversity found indoors, enabling the design of sensitive and quantitative assays to further investigate specific viruses of interest and providing new insight into the likely sources of viruses found in indoor air.
Collapse
Affiliation(s)
- Karyna Rosario
- College of Marine Science, University of South Florida , Saint Petersburg, Florida 33701, United States
| | - Noah Fierer
- Department of Ecology and Evolutionary Biology, University of Colorado , Boulder, Colorado 80309, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado , Boulder, Colorado 80309, United States
| | - Shelly Miller
- Department of Mechanical Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - Julia Luongo
- Department of Mechanical Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - Mya Breitbart
- College of Marine Science, University of South Florida , Saint Petersburg, Florida 33701, United States
| |
Collapse
|
274
|
Neuromuscular diseases associated with Human Immunodeficiency Virus infection. J Neurol Sci 2018; 387:27-36. [PMID: 29571868 DOI: 10.1016/j.jns.2018.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/15/2017] [Accepted: 01/12/2018] [Indexed: 01/31/2023]
Abstract
From the most common distal symmetric polyneuropathy (Bilgrami and O'Keefe, 2014) to the rare motor neuron diseases, HIV infection is associated with pathology at all levels of the peripheral nervous system. HIV infection can cause these conditions due to viral exposure itself, the resulting immune dysregulation, opportunistic infections found in untreated patients, and from the therapy used in treatment of the virus. Before the advent of antiretroviral therapy, 5 neuromuscular diseases associated with HIV often resulted from opportunistic infections. With advances in antiretroviral therapy, the etiologies of neuromuscular complications more frequently become the result of prolonged HIV exposure, comorbid diseases, and side effects of medications. In this article we review the literature on HIV associated neuromuscular diseases, emphasizing the more recent studies in the post antiretroviral era, but also reviewing conditions more prevalent in the pre antiretroviral era which continue to be seen in developing countries and resource poor areas. This discussion includes the following conditions: distal symmetric polyneuropathy, autonomic neuropathy, inflammatory demyelinating polyneuropathy, mononeuropathy, mononeuropathy multiplex, polyradiculopathies, myelopathy, myopathy, motor neuron disease, and antiretroviral treatment related conditions.
Collapse
|
275
|
Prudencio M, Gonzales PK, Cook CN, Gendron TF, Daughrity LM, Song Y, Ebbert MTW, van Blitterswijk M, Zhang YJ, Jansen-West K, Baker MC, DeTure M, Rademakers R, Boylan KB, Dickson DW, Petrucelli L, Link CD. Repetitive element transcripts are elevated in the brain of C9orf72 ALS/FTLD patients. Hum Mol Genet 2018. [PMID: 28637276 PMCID: PMC5886204 DOI: 10.1093/hmg/ddx233] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Significant transcriptome alterations are detected in the brain of patients with amyotrophic lateral sclerosis (ALS), including carriers of the C9orf72 repeat expansion and C9orf72-negative sporadic cases. Recently, the expression of repetitive element transcripts has been associated with toxicity and, while increased repetitive element expression has been observed in several neurodegenerative diseases, little is known about their contribution to ALS. To assess whether aberrant expression of repetitive element sequences are observed in ALS, we analysed RNA sequencing data from C9orf72-positive and sporadic ALS cases, as well as healthy controls. Transcripts from multiple classes and subclasses of repetitive elements (LINEs, endogenous retroviruses, DNA transposons, simple repeats, etc.) were significantly increased in the frontal cortex of C9orf72 ALS patients. A large collection of patient samples, representing both C9orf72 positive and negative ALS, ALS/FTLD, and FTLD cases, was used to validate the levels of several repetitive element transcripts. These analyses confirmed that repetitive element expression was significantly increased in C9orf72-positive compared to C9orf72-negative or control cases. While previous studies suggest an important link between TDP-43 and repetitive element biology, our data indicate that TDP-43 pathology alone is insufficient to account for the observed changes in repetitive elements in ALS/FTLD. Instead, we found that repetitive element expression positively correlated with RNA polymerase II activity in postmortem brain, and pharmacologic modulation of RNA polymerase II activity altered repetitive element expression in vitro. We conclude that increased RNA polymerase II activity in ALS/FTLD may lead to increased repetitive element transcript expression, a novel pathological feature of ALS/FTLD.
Collapse
Affiliation(s)
- Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA
| | - Patrick K Gonzales
- Integrative Physiology, Institute for Behavioral Genetics University of Colorado, CO 80309, USA
| | - Casey N Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Yuping Song
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Mark T W Ebbert
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Marka van Blitterswijk
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA
| | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA
| | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Matthew C Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA
| | - Kevin B Boylan
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA
| | - Christopher D Link
- Integrative Physiology, Institute for Behavioral Genetics University of Colorado, CO 80309, USA
| |
Collapse
|
276
|
Abstract
PURPOSE OF REVIEW Although there is no cure for motor neurone disease (MND), the advent of multidisciplinary care and neuroprotective agents has improved treatment interventions and enhanced quality of life for MND patients and their carers. RECENT FINDINGS Evidence-based multidisciplinary care, respiratory management and disease-modifying therapy have improved the outcomes of patients diagnosed with MND. Supportive approaches to nutritional maintenance and optimization of symptomatic treatments, including management of communication and neuropsychiatric issues, improve the quality of life for MND patients. SUMMARY Recent progress in the understanding of the clinical, pathophysiological and genetic heterogeneity of MND has improved the approach of clinicians to treatment. Notwithstanding improvement to care and quality of life, survival benefit has become evident with the advent of a multidisciplinary care framework, early treatment with riluzole and noninvasive ventilation. Weight maintenance remains critical, with weight loss associated with more rapid disease progression. The end-of-life phase is poorly defined and treatment is challenging, but effective symptom control through palliative care is achievable and essential. Encouragingly, current progress of clinical trials continues to close the gap towards the successful development of curative treatment in MND.
Collapse
|
277
|
Abstract
Ribonucleic acid (RNA) homeostasis is dynamically modulated in response to changing physiological conditions. Tight regulation of RNA abundance through both transcription and degradation determines the amount, timing, and location of protein translation. This balance is of particular importance in neurons, which are among the most metabolically active and morphologically complex cells in the body. As a result, any disruptions in RNA degradation can have dramatic consequences for neuronal health. In this chapter, we will first discuss mechanisms of RNA stabilization and decay. We will then explore how the disruption of these pathways can lead to neurodegenerative disease.
Collapse
|
278
|
Abstract
The pathophysiology of amyotrophic lateral sclerosis (ALS) is particularly challenging due to the heterogeneity of its clinical presentation and the diversity of cellular, molecular and genetic peculiarities involved. Molecular insights unveiled several novel genetic factors to be inherent in both familial and sporadic disease entities, whose characterizations in terms of phenotype prediction, pathophysiological impact and putative prognostic value are a topic of current researches. However, apart from genetically well-defined high-confidence and other susceptibility loci, the role of DNA damage and repair strategies of the genome as a whole, either elicited as a direct consequence of the underlying genetic mutation or seen as an autonomous parameter, in the initiation and progression of ALS, and the different cues involved in either process are still incompletely understood. This mini review summarizes current knowledge on DNA alterations and counteracting DNA repair strategies in ALS pathology and discusses the putative role of unconventional DNA entities including transposable elements and extrachromosomal circular DNA in the disease process. Focus is set on SOD1-related pathophysiology, with extension to FUS, TDP-43 and C9ORF72 mutations. Advancing our knowledge in the field will contribute to an improved understanding of this relentless disease, for which therapeutic options others than symptomatic approaches are almost unavailable.
Collapse
Affiliation(s)
- Diane Penndorf
- Hans Berger Department of Neurology, University Hospital Jena, Jena, Thuringia, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, University Hospital Jena, Jena, Thuringia, Germany
| | - Alexandra Kretz
- Hans Berger Department of Neurology, University Hospital Jena, Jena, Thuringia, Germany
| |
Collapse
|
279
|
Suarez NA, Macia A, Muotri AR. LINE-1 retrotransposons in healthy and diseased human brain. Dev Neurobiol 2017; 78:434-455. [PMID: 29239145 DOI: 10.1002/dneu.22567] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
Abstract
Long interspersed element-1 (LINE-1 or L1) is a transposable element with the ability to self-mobilize throughout the human genome. The L1 elements found in the human brain is hypothesized to date back 56 million years ago and has survived evolution, currently accounting for 17% of the human genome. L1 retrotransposition has been theorized to contribute to somatic mosaicism. This review focuses on the presence of L1 in the healthy and diseased human brain, such as in autism spectrum disorders. Throughout this exploration, we will discuss the impact L1 has on neurological disorders that can occur throughout the human lifetime. With this, we hope to better understand the complex role of L1 in the human brain development and its implications to human cognition. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 434-455, 2018.
Collapse
Affiliation(s)
- Nicole A Suarez
- Department of Pediatrics/Rady Children's Hospital San Diego, University of California San Diego, La Jolla, California, 92093
| | - Angela Macia
- Department of Pediatrics/Rady Children's Hospital San Diego, University of California San Diego, La Jolla, California, 92093
| | - Alysson R Muotri
- Department of Pediatrics/Rady Children's Hospital San Diego, University of California San Diego, La Jolla, California, 92093
| |
Collapse
|
280
|
Maguire G. Amyotrophic lateral sclerosis as a protein level, non-genomic disease: Therapy with S2RM exosome released molecules. World J Stem Cells 2017; 9:187-202. [PMID: 29312526 PMCID: PMC5745587 DOI: 10.4252/wjsc.v9.i11.187] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/10/2017] [Accepted: 09/04/2017] [Indexed: 02/06/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disease that leads to death. No effective treatments are currently available. Based on data from epidemiological, etiological, laboratory, and clinical studies, I offer a new way of thinking about ALS and its treatment. This paper describes a host of extrinsic factors, including the exposome, that disrupt the extracellular matrix and protein function such that a spreading, prion-like disease leads to neurodegeneration in the motor tracts. A treatment regimen is described using the stem cell released molecules from a number of types of adult stem cells to provide tissue dependent molecules that restore homeostasis, including proteostasis, in the ALS patient. Because stem cells themselves as a therapeutic are cumbersome and expensive, and when implanted in a host cause aging of the host tissue and often fail to engraft or remain viable, only the S2RM molecules are used. Rebuilding of the extracellular matrix and repair of the dysfunctional proteins in the ALS patient ensues.
Collapse
Affiliation(s)
- Greg Maguire
- BioRegenerative Sciences, Inc., La Jolla, CA 92037, United States
| |
Collapse
|
281
|
Susceptibility of Human Endogenous Retrovirus Type K to Reverse Transcriptase Inhibitors. J Virol 2017; 91:JVI.01309-17. [PMID: 28931682 DOI: 10.1128/jvi.01309-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/14/2017] [Indexed: 12/13/2022] Open
Abstract
Human endogenous retroviruses (HERVs) make up 8% of the human genome. The HERV type K (HERV-K) HML-2 (HK2) family contains proviruses that are the most recent entrants into the human germ line and are transcriptionally active. In HIV-1 infection and cancer, HK2 genes produce retroviral particles that appear to be infectious, yet the replication capacity of these viruses and potential pathogenicity has been difficult to ascertain. In this report, we screened the efficacy of commercially available reverse transcriptase inhibitors (RTIs) at inhibiting the enzymatic activity of HK2 RT and HK2 genomic replication. Interestingly, only one provirus, K103, was found to encode a functional RT among those examined. Several nucleoside analogue RTIs (NRTIs) blocked K103 RT activity and consistently inhibited the replication of HK2 genomes. The NRTIs zidovudine (AZT), stavudine (d4T), didanosine (ddI), and lamivudine (3TC), and the nucleotide RTI inhibitor tenofovir (TDF), show efficacy in blocking K103 RT. HIV-1-specific nonnucleoside RTIs (NNRTIs), protease inhibitors (PIs), and integrase inhibitors (IIs) did not affect HK2, except for the NNRTI etravirine (ETV). The inhibition of HK2 infectivity by NRTIs appears to take place at either the reverse transcription step of the viral genome prior to HK2 viral particle formation and/or in the infected cells. Inhibition of HK2 by these drugs will be useful in suppressing HK2 infectivity if these viruses prove to be pathogenic in cancer, neurological disorders, or other diseases associated with HK2. The present studies also elucidate a key aspect of the life cycle of HK2, specifically addressing how they do, and/or did, replicate.IMPORTANCE Endogenous retroviruses are relics of ancestral virus infections in the human genome. The most recent of these infections was caused by HK2. While HK2 often remains silent in the genome, this group of viruses is activated in HIV-1-infected and cancer cells. Recent evidence suggests that these viruses are infectious, and the potential exists for HK2 to contribute to disease. We show that HK2, and specifically the enzyme that mediates virus replication, can be inhibited by a panel of drugs that are commercially available. We show that several drugs block HK2 with different efficacies. The inhibition of HK2 replication by antiretroviral drugs appears to occur in the virus itself as well as after infection of cells. Therefore, these drugs might prove to be an effective treatment by suppressing HK2 infectivity in diseases where these viruses have been implicated, such as cancer and neurological syndromes.
Collapse
|
282
|
van Es MA, Hardiman O, Chio A, Al-Chalabi A, Pasterkamp RJ, Veldink JH, van den Berg LH. Amyotrophic lateral sclerosis. Lancet 2017; 390:2084-2098. [PMID: 28552366 DOI: 10.1016/s0140-6736(17)31287-4] [Citation(s) in RCA: 878] [Impact Index Per Article: 109.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 03/13/2017] [Accepted: 03/20/2017] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis is characterised by the progressive loss of motor neurons in the brain and spinal cord. This neurodegenerative syndrome shares pathobiological features with frontotemporal dementia and, indeed, many patients show features of both diseases. Many different genes and pathophysiological processes contribute to the disease, and it will be necessary to understand this heterogeneity to find effective treatments. In this Seminar, we discuss clinical and diagnostic approaches as well as scientific advances in the research fields of genetics, disease modelling, biomarkers, and therapeutic strategies.
Collapse
Affiliation(s)
- Michael A van Es
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland; Department of Neurology, Beaumont Hospital, Beaumont, Ireland
| | - Adriano Chio
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy; Azienda Ospedaliero Universitaria Citta della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin, Turin, Italy
| | - Ammar Al-Chalabi
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK; NIHR Dementia Biomedical Research Unit, King's College London, London, UK
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands
| | - Jan H Veldink
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands
| | - Leonard H van den Berg
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands.
| |
Collapse
|
283
|
Polymenidou M, Cleveland DW. Biological Spectrum of Amyotrophic Lateral Sclerosis Prions. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a024133. [PMID: 28062558 DOI: 10.1101/cshperspect.a024133] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD) are two neurodegenerative diseases with distinct clinical features but common genetic causes and neuropathological signatures. Ten years after the RNA-binding protein TDP-43 was discovered as the main protein in the cytoplasmic inclusions that characterize ALS and FTLD, their pathogenic mechanisms have never seemed more complex. Indeed, discoveries of the past decade have revolutionized our understanding of these diseases, highlighting their genetic heterogeneity and the involvement of protein-RNA assemblies in their pathogenesis. Importantly, these assemblies serve as the foci of protein misfolding and mature into insoluble structures, which further recruit native proteins, turning them into misfolded forms. This self-perpetuating mechanism is a twisted version of classical prion replication that leads to amplification of pathological protein complexes that spread throughout the neuraxis, offering a pathogenic principle that underlies the rapid disease progression that characterizes ALS and FTLD.
Collapse
Affiliation(s)
- Magdalini Polymenidou
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Don W Cleveland
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California, 9500 Gilman Drive, San Diego, La Jolla, California 92093-0670
| |
Collapse
|
284
|
Eksmond U, Jenkins B, Merkenschlager J, Mothes W, Stoye JP, Kassiotis G. Mutation of the Putative Immunosuppressive Domain of the Retroviral Envelope Glycoprotein Compromises Infectivity. J Virol 2017; 91:e01152-17. [PMID: 28814524 PMCID: PMC5640850 DOI: 10.1128/jvi.01152-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/13/2017] [Indexed: 01/30/2023] Open
Abstract
The envelope glycoprotein of diverse endogenous and exogenous retroviruses is considered inherently immunosuppressive. Extensive work mapped the immunosuppressive activity to a highly conserved domain, termed the immunosuppressive domain (ISD), in the transmembrane (TM) subunit of the envelope glycoprotein and identified two naturally polymorphic key residues that afford immunosuppressive activity to distinct envelope glycoproteins. Concurrent mutation of these two key residues (E14R and A20F) in the envelope glycoprotein of the Friend murine leukemia virus (F-MLV) ISD has been reported to abolish its immunosuppressive activity, without affecting its fusogenicity, and to weaken the ability of the virus to replicate specifically in immunocompetent hosts. Here, we show that mutation of these key residues did, in fact, result in a substantial loss of F-MLV infectivity, independently of host immunity, challenging whether associations exist between the two. Notably, a loss of infectivity incurred by the F-MLV mutant with the E14R and A20F double ISD mutation was conditional on expression of the ecotropic envelope receptor murine cationic amino acid transporter-1 (mCAT1) in the virus-producing cell. Indeed, the F-MLV mutant retained infectivity when it was produced by human cells, which naturally lack mCAT1 expression, but not by murine cells. Furthermore, mCAT1 overexpression in human cells impaired the infectivity of both the F-MLV double mutant and the wild-type F-MLV strain, suggesting a finely tuned relationship between the levels of mCAT1 in the producer cell and the infectivity of the virions produced. An adverse effect on this relationship, rather than disruption of the putative ISD, is therefore more likely to explain the loss of F-MLV infectivity incurred by mutations in key ISD residues E14 and A20.IMPORTANCE Retroviruses can interact with their hosts in ways that, although not entirely understood, can greatly influence their pathogenic potential. One such example is a putative immunosuppressive activity, which has been mapped to a conserved domain of the retroviral envelope glycoprotein of several exogenous as well as endogenous retroviruses. In this study, mutations naturally found in some envelope glycoproteins lacking immunosuppressive activity were shown to affect retrovirus infectivity only if the host cell that produced the retrovirus also expressed the cellular entry receptor. These findings shed light on a novel role for this conserved domain in providing the necessary stability to the envelope glycoprotein in order to withstand the interaction with the cellular receptor during virus formation. This function of the domain is critical for further elucidation of the mechanism of immunosuppression mediated by the retroviral envelope glycoprotein.
Collapse
Affiliation(s)
- Urszula Eksmond
- Retroviral Immunology, The Francis Crick Institute, London, United Kingdom
| | - Bryony Jenkins
- Retroviral Immunology, The Francis Crick Institute, London, United Kingdom
| | | | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jonathan P Stoye
- Retrovirus-Host Interactions, The Francis Crick Institute, London, United Kingdom
- Department of Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, London, United Kingdom
- Department of Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
285
|
Douville RN, Nath A. Human Endogenous Retrovirus-K and TDP-43 Expression Bridges ALS and HIV Neuropathology. Front Microbiol 2017; 8:1986. [PMID: 29075249 PMCID: PMC5641584 DOI: 10.3389/fmicb.2017.01986] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/27/2017] [Indexed: 12/12/2022] Open
Abstract
Despite the repetitive association of endogenous retroviruses in human disease, the mechanisms behind their pathological contributions remain to be resolved. Here we discuss how neuronal human endogenous retrovirus-K (HERV-K) expression in human immunodeficiency virus (HIV)-infected individuals is a distinct pathological aspect of HIV-associated neurological conditions, such as HIV encephalitis and HIV-associated neurocognitive disorders. Enhanced neuronal HERV-K levels were observed in the majority of HIV-infected individuals, and to a higher degree in brain tissue marked by HIV replication. Moreover, we highlight an important neuropathological overlap between amyotrophic lateral sclerosis and HIV encephalitis, that being the formation of neurotoxic TDP-43 deposits in neurons. Herein, we argue for enhanced transdisciplinary research in the field of ERV biology, using an example of how HERV-K expression has novel mechanistic and therapeutic implications for HIV neuropathology.
Collapse
Affiliation(s)
- Renée N Douville
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
286
|
Nath A. Grand Challenges in Neuroinfectious Diseases. Front Neurol 2017; 8:480. [PMID: 28959232 PMCID: PMC5603653 DOI: 10.3389/fneur.2017.00480] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/29/2017] [Indexed: 12/16/2022] Open
Affiliation(s)
- Avindra Nath
- Section of Neuroinfectious Diseases, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
287
|
Levet S, Medina J, Joanou J, Demolder A, Queruel N, Réant K, Normand M, Seffals M, Dimier J, Germi R, Piofczyk T, Portoukalian J, Touraine JL, Perron H. An ancestral retroviral protein identified as a therapeutic target in type-1 diabetes. JCI Insight 2017; 2:94387. [PMID: 28878130 DOI: 10.1172/jci.insight.94387] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/25/2017] [Indexed: 12/16/2022] Open
Abstract
Human endogenous retroviruses (HERVs), remnants of ancestral viral genomic insertions, are known to represent 8% of the human genome and are associated with several pathologies. In particular, the envelope protein of HERV-W family (HERV-W-Env) has been involved in multiple sclerosis pathogenesis. Investigations to detect HERV-W-Env in a few other autoimmune diseases were negative, except in type-1 diabetes (T1D). In patients suffering from T1D, HERV-W-Env protein was detected in 70% of sera, and its corresponding RNA was detected in 57% of peripheral blood mononuclear cells. While studies on human Langerhans islets evidenced the inhibition of insulin secretion by HERV-W-Env, this endogenous protein was found to be expressed by acinar cells in 75% of human T1D pancreata. An extensive immunohistological analysis further revealed a significant correlation between HERV-W-Env expression and macrophage infiltrates in the exocrine part of human pancreata. Such findings were corroborated by in vivo studies on transgenic mice expressing HERV-W-env gene, which displayed hyperglycemia and decreased levels of insulin, along with immune cell infiltrates in their pancreas. Altogether, these results strongly suggest an involvement of HERV-W-Env in T1D pathogenesis. They also provide potentially novel therapeutic perspectives, since unveiling a pathogenic target in T1D.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Julie Dimier
- IBS, UMR 5075 CEA-CNRS-Université Grenoble-Alpes, Grenoble, France
| | - Raphaële Germi
- IBS, UMR 5075 CEA-CNRS-Université Grenoble-Alpes, Grenoble, France.,Department of Virology, Grenoble University Hospital, Grenoble, France
| | | | | | | | - Hervé Perron
- GeNeuro Innovation, Lyon, France.,Laboratoire des déficits immunitaires, University of Lyon, France.,GeNeuro SA, Plan-les-Ouates, Geneva, Switzerland
| |
Collapse
|
288
|
Retroviral envelope proteins: Involvement in neuropathogenesis. J Neurol Sci 2017; 380:151-163. [DOI: 10.1016/j.jns.2017.07.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/23/2017] [Accepted: 07/18/2017] [Indexed: 02/07/2023]
|
289
|
Affiliation(s)
- Haig H Kazazian
- From the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore (H.H.K.), and the Departments of Human Genetics and Internal Medicine, University of Michigan Medical School, Ann Arbor (J.V.M.)
| | - John V Moran
- From the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore (H.H.K.), and the Departments of Human Genetics and Internal Medicine, University of Michigan Medical School, Ann Arbor (J.V.M.)
| |
Collapse
|
290
|
Affiliation(s)
- Robert H Brown
- From the Department of Neurology, University of Massachusetts Medical School, Worcester (R.H.B.); and the Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, King's College London, London (A.A.-C.)
| | - Ammar Al-Chalabi
- From the Department of Neurology, University of Massachusetts Medical School, Worcester (R.H.B.); and the Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, King's College London, London (A.A.-C.)
| |
Collapse
|
291
|
Medicine's movable feast: What jumping genes can teach us about treating disease. Nat Med 2017; 23:791-795. [DOI: 10.1038/nm0717-791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
292
|
Prehistoric enemies within: The contribution of human endogenous retroviruses to neurological diseases. Meeting report: "Second International Workshop on Human Endogenous Retroviruses and Disease", Washington DC, March 13th and 14th 2017. Mult Scler Relat Disord 2017. [PMID: 28641767 DOI: 10.1016/j.msard.2017.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Second International Workshop on Human Endogenous Retroviruses and Disease, Washington DC, March 13-14 2017 brought together international basic and clinical scientists investigating the involvement of human endogenous retroviruses (HERVs) in complex human diseases.
Collapse
|
293
|
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterised by a rapid loss of lower and upper motor neurons. As a complex disease, the ageing process and complicated gene-environment interactions are involved in the majority of cases. Main body Significant advances have been made in unravelling the genetic susceptibility to ALS with massively parallel sequencing technologies, while environmental insults remain a suspected but largely unexplored source of risk. Several studies applying the strategy of Mendelian randomisation have strengthened the link between environmental insults and ALS, but none so far has proved conclusive. We propose a new ALS model which links the current knowledge of genetic factors, ageing and environmental insults. This model provides a mechanism as to how ALS is initiated, with environmental insults playing a critical role. Conclusion The available evidence has suggested that inherited defect(s) could cause mitochondrial dysfunction, which would establish the primary susceptibility to ALS. Further study of the underlying mechanism may shed light on ALS pathogenesis. Environmental insults are a critical trigger for ALS, particularly in the aged individuals with other toxicant susceptible genes. The identification of ALS triggers could lead to preventive strategies for those individuals at risk.
Collapse
Affiliation(s)
- Bing Yu
- Sydney Medical School (Central), The University of Sydney, Camperdown, NSW 2006 Australia.,Department of Medical Genomics, Royal Prince Alfred Hospital and NSW Health Pathology, Camperdown, NSW 2050 Australia
| | - Roger Pamphlett
- Discipline of Pathology, Brain and Mind Centre, The University of Sydney, 94 Mallett St, Camperdown, NSW 2050 Australia.,Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050 Australia
| |
Collapse
|
294
|
Buzdin AA, Prassolov V, Garazha AV. Friends-Enemies: Endogenous Retroviruses Are Major Transcriptional Regulators of Human DNA. Front Chem 2017. [PMID: 28642863 PMCID: PMC5462908 DOI: 10.3389/fchem.2017.00035] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Endogenous retroviruses are mobile genetic elements hardly distinguishable from infectious, or “exogenous,” retroviruses at the time of insertion in the host DNA. Human endogenous retroviruses (HERVs) are not rare. They gave rise to multiple families of closely related mobile elements that occupy ~8% of the human genome. Together, they shape genomic regulatory landscape by providing at least ~320,000 human transcription factor binding sites (TFBS) located on ~110,000 individual HERV elements. The HERVs host as many as 155,000 mapped DNaseI hypersensitivity sites, which denote loci active in the regulation of gene expression or chromatin structure. The contemporary view of the HERVs evolutionary dynamics suggests that at the early stages after insertion, the HERV is treated by the host cells as a foreign genetic element, and is likely to be suppressed by the targeted methylation and mutations. However, at the later stages, when significant number of mutations has been already accumulated and when the retroviral genes are broken, the regulatory potential of a HERV may be released and recruited to modify the genomic balance of transcription factor binding sites. This process goes together with further accumulation and selection of mutations, which reshape the regulatory landscape of the human DNA. However, developmental reprogramming, stress or pathological conditions like cancer, inflammation and infectious diseases, can remove the blocks limiting expression and HERV-mediated host gene regulation. This, in turn, can dramatically alter the gene expression equilibrium and shift it to a newer state, thus further amplifying instability and exacerbating the stressful situation.
Collapse
Affiliation(s)
- Anton A Buzdin
- Department of Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia.,Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, National Research Centre "Kurchatov Institute,"Moscow, Russia
| | - Vladimir Prassolov
- Department of Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Andrew V Garazha
- Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryMoscow, Russia.,Department of Biomedicine, Moscow Institute of Physics and TechnologyMoscow, Russia
| |
Collapse
|
295
|
Groh S, Schotta G. Silencing of endogenous retroviruses by heterochromatin. Cell Mol Life Sci 2017; 74:2055-2065. [PMID: 28160052 PMCID: PMC11107624 DOI: 10.1007/s00018-017-2454-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/14/2016] [Accepted: 01/03/2017] [Indexed: 02/05/2023]
Abstract
Endogenous retroviruses (ERV) are an abundant class of repetitive elements in mammalian genomes. To ensure genomic stability, ERVs are largely transcriptionally silent. However, these elements also feature physiological roles in distinct developmental contexts, under which silencing needs to be partially relieved. ERV silencing is mediated through a heterochromatic structure, which is established by histone modification and DNA methylation machineries. This heterochromatic structure is largely refractory to transcriptional stimulation, however, challenges to the heterochromatic state, such as DNA replication, require re-establishment of the heterochromatic state in competition with transcriptional activators. In this review, we discuss the major pathways leading to efficient establishment of robust and inaccessible heterochromatin across ERVs.
Collapse
Affiliation(s)
- Sophia Groh
- Biomedical Center and Center for Integrated Protein Science Munich, Ludwig-Maximilians-University, 82152, Planegg-Martinsried, Germany
| | - Gunnar Schotta
- Biomedical Center and Center for Integrated Protein Science Munich, Ludwig-Maximilians-University, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
296
|
Filiano AJ, Gadani SP, Kipnis J. How and why do T cells and their derived cytokines affect the injured and healthy brain? Nat Rev Neurosci 2017; 18:375-384. [PMID: 28446786 PMCID: PMC5823005 DOI: 10.1038/nrn.2017.39] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The evolution of adaptive immunity provides enhanced defence against specific pathogens, as well as homeostatic immune surveillance of all tissues. Despite being 'immune privileged', the CNS uses the assistance of the immune system in physiological and pathological states. In this Opinion article, we discuss the influence of adaptive immunity on recovery after CNS injury and on cognitive and social brain function. We further extend a hypothesis that the pro-social effects of interferon-regulated genes were initially exploited by pathogens to increase host-host transmission, and that these genes were later recycled by the host to form part of an immune defence programme. In this way, the evolution of adaptive immunity may reflect a host-pathogen 'arms race'.
Collapse
Affiliation(s)
- Anthony J Filiano
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Sachin P Gadani
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
297
|
Kawamura Y, Yamamoto Y, Sato TA, Ochiya T. Extracellular vesicles as trans-genomic agents: Emerging roles in disease and evolution. Cancer Sci 2017; 108:824-830. [PMID: 28256033 PMCID: PMC5448650 DOI: 10.1111/cas.13222] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 02/23/2017] [Indexed: 12/17/2022] Open
Abstract
The composition of genetic material in extracellular vesicles (EV) has sparked interest particularly in the potential for horizontal gene transfer by EV. Although the RNA content of EV has been studied extensively, few reports have examined the DNA content of EV. It is still unclear how DNA is packaged inside EV, and whether they are functional in recipient cells. In this review, we describe the biological significance of genetic material in EV and their possible impacts in recipient cells, with focus on DNA from cancer cell-derived EV and the potential roles they may play in the cancer microenvironment. Another important feature of the genetic content of EV is the presence of retrotransposon elements. In this review, we discuss the possibility of an EV-mediated mechanism for the dispersal of retrotransposon elements, and their potential involvement in the development of genetically influenced diseases. In addition to this, we discuss the potential involvement of EV in the transfer of genetic material across species, and their possible impacts in modulating genome evolution.
Collapse
Affiliation(s)
- Yumi Kawamura
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.,Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Yusuke Yamamoto
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Taka-Aki Sato
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
298
|
Medina J, Charvet B, Leblanc P, Germi R, Horvat B, Marche PN, Perron H. [Endogenous retroviral sequences in the human genome can play a physiological or pathological role]. Med Sci (Paris) 2017; 33:397-403. [PMID: 28497735 DOI: 10.1051/medsci/20173304009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Human endogenous retroviruses (HERV) represent a large part of our genome and the few elements that have retained a potential of expression still remain "dormant" in physiological conditions. In some instances, they can be awakened by environmental factors activating their expression. The best studied conditions of HERV activation are infections caused by microorganisms such as viruses of the Herpesvirus family. This activation can thus lead to the expression of pathogenic proteins such as envelope proteins belonging to the HERV-W and HERV-K families, respectively involved in Multiple Sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Endogenous retroviral proteins can also acquire a physiological function beneficial for humans. This is the case of Syncytin-1 from the HERV-W family, that is involved in placenta formation.
Collapse
Affiliation(s)
- Julie Medina
- GeNeuro Innovation, Bioparc Laënnec, 60, avenue Rockefeller, 69008 Lyon, France
| | - Benjamin Charvet
- CIRI, Centre International de Recherche en Infectiologie; - Inserm, U1111, Lyon, France - CNRS, UMR5308, Lyon, France - Université Lyon-1, Faculté de Médecine Laënnec, 69008 Lyon, France - Institut NeuroMyogène (INMG), CNRS UMR5310, Inserm U1217, LBMC, École Normale Supérieure de Lyon, France - Laboratoire d'Excellence ECOFECT, Lyon, France
| | - Pascal Leblanc
- Institut NeuroMyogène (INMG), CNRS UMR5310, Inserm U1217, LBMC, École Normale Supérieure de Lyon, France - UMR 5239 CNRS-ENS, Université Lyon 1, Lyon, France
| | - Raphaële Germi
- Laboratoire de Virologie, Institut de Biologie et Pathologie, CHU de Grenoble, France - Institut de Biologie Structurale, UMR 5075 CEA/CNRS/UGA, Grenoble, France
| | - Branka Horvat
- CIRI, Centre International de Recherche en Infectiologie; - Inserm, U1111, Lyon, France - CNRS, UMR5308, Lyon, France - Université Lyon-1, Faculté de Médecine Laënnec, 69008 Lyon, France - Institut NeuroMyogène (INMG), CNRS UMR5310, Inserm U1217, LBMC, École Normale Supérieure de Lyon, France - Laboratoire d'Excellence ECOFECT, Lyon, France
| | - Patrice N Marche
- Inserm U1209, Grenoble, France - Institut Advance Biosciences, CNRS UMR5309, Université Grenoble Alpes
| | - Hervé Perron
- GeNeuro Innovation, Bioparc Laënnec, 60, avenue Rockefeller, 69008 Lyon, France - Université Lyon-1, Faculté de Médecine Laënnec, 69008 Lyon, France - GeNeuro, 18, chemin des Aulx, 1228 Plan-Les-Ouates, Genève, Suisse
| |
Collapse
|
299
|
Meyer TJ, Rosenkrantz JL, Carbone L, Chavez SL. Endogenous Retroviruses: With Us and against Us. Front Chem 2017; 5:23. [PMID: 28439515 PMCID: PMC5384584 DOI: 10.3389/fchem.2017.00023] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/20/2017] [Indexed: 12/13/2022] Open
Abstract
Mammalian genomes are scattered with thousands of copies of endogenous retroviruses (ERVs), mobile genetic elements that are relics of ancient retroviral infections. After inserting copies into the germ line of a host, most ERVs accumulate mutations that prevent the normal assembly of infectious viral particles, becoming trapped in host genomes and unable to leave to infect other cells. While most copies of ERVs are inactive, some are transcribed and encode the proteins needed to generate new insertions at novel loci. In some cases, old copies are removed via recombination and other mechanisms. This creates a shifting landscape of ERV copies within host genomes. New insertions can disrupt normal expression of nearby genes via directly inserting into key regulatory elements or by containing regulatory motifs within their sequences. Further, the transcriptional silencing of ERVs via epigenetic modification may result in changes to the epigenetic regulation of adjacent genes. In these ways, ERVs can be potent sources of regulatory disruption as well as genetic innovation. Here, we provide a brief review of the association between ERVs and gene expression, especially as observed in pre-implantation development and placentation. Moreover, we will describe how disruption of the regulated mechanisms of ERVs may impact somatic tissues, mostly in the context of human disease, including cancer, neurodegenerative disorders, and schizophrenia. Lastly, we discuss the recent discovery that some ERVs may have been pressed into the service of their host genomes to aid in the innate immune response to exogenous viral infections.
Collapse
Affiliation(s)
- Thomas J Meyer
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science UniversityPortland, OR, USA
| | - Jimi L Rosenkrantz
- Department of Molecular and Medical Genetics, Oregon Health & Science UniversityPortland, OR, USA.,Division of Reproductive & Developmental Sciences, Oregon National Primate Research CenterPortland, OR, USA
| | - Lucia Carbone
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science UniversityPortland, OR, USA.,Department of Molecular and Medical Genetics, Oregon Health & Science UniversityPortland, OR, USA.,Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science UniversityPortland, OR, USA
| | - Shawn L Chavez
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research CenterPortland, OR, USA.,Departments of Obstetrics and Gynecology and Physiology and Pharmacology, Oregon Health & Science University School of MedicinePortland, OR, USA
| |
Collapse
|
300
|
Sivaramakrishnan S, Lynch WP. Rebound from Inhibition: Self-Correction against Neurodegeneration? JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2017; 8:492. [PMID: 28775912 PMCID: PMC5538264 DOI: 10.4172/2155-9899.1000492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neural networks play a critical role in establishing constraints on excitability in the central nervous system. Several recent studies have suggested that network dysfunction in the brain and spinal cord are compromised following insult by a neurodegenerative trigger and might precede eventual neuronal loss and neurological impairment. Early intervention of network excitability and plasticity might therefore be critical in resetting hyperexcitability and preventing later neuronal damage. Here, the behavior of neurons that generate burst firing upon recovery from inhibitory input or intrinsic membrane hyperpolarization (rebound neurons) is examined in the context of neural networks that underlie rhythmic activity observed in areas of the brain and spinal cord that are vulnerable to neurodegeneration. In a non-inflammatory rodent model of spongiform neurodegenerative disease triggered by retrovirus infection of glia, rebound neurons are particularly vulnerable to neurodegeneration, likely due to an inherently low calcium buffering capacity. The dysfunction of rebound neurons translates into a dysfunction of rhythmic neural circuits, compromising normal neurological function and leading to eventual morbidity. Understanding how virus infection of glia can mediate dysfunction of rebound neurons, induce hyperexcitability and loss of rhythmic function, pathologic features observed in neurodegenerative disorders ranging from epilepsy to motor neuron disease, might therefore suggest a common pathway for early therapeutic intervention.
Collapse
Affiliation(s)
- Shobhana Sivaramakrishnan
- Department of Otolaryngology, Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - William P. Lynch
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| |
Collapse
|