251
|
Abstract
The T cell and antigen-presenting cell communicate to initiate an immune response through formation of an immunological synapse. This specialized cell-cell junction is compartmentalized into adhesion molecule and T cell receptor enriched regions or SMACs. Distinct signals seem to be generated in the T cell receptor and adhesion molecule-dominated regions. This review focuses on how these distinct signaling pathways may be integrated within the T cell to set thresholds for T cell activation, proliferation, and survival.
Collapse
Affiliation(s)
- M L Dustin
- Department of Pathology, Skirball Institute of Molecular Medicine, New York University School of Medicine, New York 10016, USA.
| |
Collapse
|
252
|
Woods ML, Shimizu Y. Signaling networks regulating β1 integrin‐mediated adhesion of T lymphocytes to extracellular matrix. J Leukoc Biol 2001. [DOI: 10.1189/jlb.69.6.874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Melody L. Woods
- Department of Laboratory Medicine and Pathology, Center for Immunology, Cancer Center, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Yoji Shimizu
- Department of Laboratory Medicine and Pathology, Center for Immunology, Cancer Center, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
253
|
Liao Y, Satoh T, Gao X, Jin TG, Hu CD, Kataoka T. RA-GEF-1, a guanine nucleotide exchange factor for Rap1, is activated by translocation induced by association with Rap1*GTP and enhances Rap1-dependent B-Raf activation. J Biol Chem 2001; 276:28478-83. [PMID: 11359771 DOI: 10.1074/jbc.m101737200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously identified RA-GEF-1, a novel guanine nucleotide exchange factor (GEF) for Rap1 with the ability to associate with Rap1.GTP at its Ras/Rap1-associating (RA) domain. Because it possesses a PSD-95/DlgA/ZO-1 (PDZ) domain, it was also named PDZ-GEF. In this report, we have examined the role of the RA domain of this protein in Rap1-mediated cellular responses. A mutant of RA-GEF-1 (RA-GEF-1DeltaRA) carrying a 21-residue deletion at its RA domain fully retains the in vitro GEF activity toward Rap1 but completely loses the Rap1 binding activity. In contrast, RA-GEF-1DeltaRA, expressed in COS-7 cells, exhibits a 3-fold reduction in its in vivo GEF activity toward Rap1 compared with wild-type RA-GEF-1 as examined by the Rap1 pull-down assay. Correspondingly, when coexpressed with wild-type Rap1, RA-GEF-1DeltaRA is unable to further activate B-Raf, whereas RA-GEF-1 stimulates B-Raf as efficiently as activated Rap1. Consistent with these observations, coexpression of activated Rap1 induces translocation of RA-GEF-1, which is otherwise located in the cytoplasm, to the perinuclear compartment, where Rap1 is also predominantly localized. This localization almost coincides with that of the Golgi apparatus, which was detected by anti-trans-Golgi-network 38 antibody. RA-GEF-1DeltaRA fails to show the translocation. These results indicate that RA-GEF-1 defines a novel category of GEF that is translocated to a particular subcellular compartment by association with the GTP-bound form of a small GTPase and catalyzes activation of the GDP-bound form present in the compartment, thereby causing an amplification of cellular responses induced by the small GTPase.
Collapse
Affiliation(s)
- Y Liao
- Division of Molecular Biology, Department of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | |
Collapse
|
254
|
Abstract
Ras-like GTPases are ubiquitously expressed, evolutionarily conserved molecular switches that couple extracellular signals to various cellular responses. Rap1, the closest relative of Ras, has attracted much attention because of the possibility that it regulates Ras-mediated signalling. Rap1 is activated by extracellular signals through several regulatory proteins, and it might function in diverse processes, ranging from modulation of growth and differentiation to secretion, integrin-mediated cell adhesion and morphogenesis.
Collapse
Affiliation(s)
- J L Bos
- Department of Physiological Chemistry and Centre for Biomedical Genetics, University Medical Centre Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands.
| | | | | |
Collapse
|
255
|
Wang J, Chen H, Brown EJ. L-plastin peptide activation of alpha(v)beta(3)-mediated adhesion requires integrin conformational change and actin filament disassembly. J Biol Chem 2001; 276:14474-81. [PMID: 11278342 DOI: 10.1074/jbc.m007324200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
L-plastin (LPL) is a leukocyte actin binding protein previously implicated in the activation of the integrin alpha(M)beta(2) on polymorphonuclear neutrophils. To determine the role for LPL in integrin activation, K562 cell adhesion to vitronectin via alpha(v)beta(3), a well-studied model for activable integrins, was examined. Cell permeant versions of peptides based on the N-terminal sequence of LPL and the LPL headpiece domain both activated alpha(v)beta(3)-mediated adhesion. In contrast to adhesion induced by treatment with phorbol 12-myristate 13-acetate (PMA), LPL peptide-activated adhesion was independent of integrin beta(3) cytoplasmic domain tyrosines and was not inhibited by cytochalasin D. Also in contrast to PMA, LPL peptides synergized with RGD ligand or Mn(2+) for generation of a conformational change in alpha(v)beta(3) associated with the high affinity state of the integrin, as determined by binding of a ligand-induced binding site antibody. Although LPL and ligand showed synergy for ligand-induced binding site expression when actin depolymerization was inhibited by jasplakinolide, LPL peptide-induced adhesion was inhibited. Thus, both actin depolymerization and ligand-induced integrin conformational change are required for LPL peptide-induced adhesion. We hypothesize that the critical steps of increased integrin diffusion and affinity enhancement may be linked via modulation of the function of the actin binding protein L-plastin.
Collapse
Affiliation(s)
- J Wang
- Program in Molecular Cell Biology, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
256
|
Soede RD, Zeelenberg IS, Wijnands YM, Kamp M, Roos E. Stromal cell-derived factor-1-induced LFA-1 activation during in vivo migration of T cell hybridoma cells requires Gq/11, RhoA, and myosin, as well as Gi and Cdc42. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:4293-301. [PMID: 11254681 DOI: 10.4049/jimmunol.166.7.4293] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dissemination of T cell hybridomas in mice, a model for in vivo migration of memory T cells and for T lymphoma metastasis, depends on the chemokine stromal cell-derived factor-1 (SDF-1) and the integrin LFA-1 and correlates well with invasion into fibroblast cultures. In addition to the known role of the pertussis toxin-sensitive heterotrimeric GTPase G(i), we show that also the pertussis toxin-insensitive GTPase G(q/11) is required for dissemination and invasion. Furthermore, we show that the small GTPases, Cdc42 and RhoA, are involved, and that invasion is blocked by inhibitors of actinomyosin contraction. G(q/11), RhoA, and contraction are specifically required for LFA-1 activation, since 1) they are essential for LFA-1-dependent migration toward low SDF-1 concentrations through ICAM-1-coated filters, but not for migration toward high SDF-1 levels, which is LFA-1 independent; 2) G protein (AlF(4)(-))-induced adhesion to ICAM-1 requires RhoA and contraction; 3) constitutively active G(q) induces aggregation, mediated by LFA-1. We previously reported that binding of this activated LFA-1 to ICAM-1 triggers a signal, transduced by the zeta-associated protein 70 tyrosine kinase, that activates additional LFA-1 molecules. This amplification of LFA-1 activation is essential for invasion. We show here that zeta-associated protein 70-induced LFA-1 activation requires neither Cdc42 and RhoA nor contraction and is thus quite different from that induced by SDF-1. We conclude that two modes of LFA-1 activation, with distinct underlying mechanisms, are required for the in vivo migration of T cell hybridomas.
Collapse
Affiliation(s)
- R D Soede
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
257
|
Arai A, Nosaka Y, Kanda E, Yamamoto K, Miyasaka N, Miura O. Rap1 is activated by erythropoietin or interleukin-3 and is involved in regulation of beta1 integrin-mediated hematopoietic cell adhesion. J Biol Chem 2001; 276:10453-62. [PMID: 11124936 DOI: 10.1074/jbc.m004627200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The CrkL adaptor protein is involved in signaling from the receptor for erythropoietin (Epo) as well as interleukin (IL)-3 and activates beta(1) integrin-mediated hematopoietic cell adhesion through its interaction with C3G, a guanine nucleotide exchange factor for Rap1. We demonstrate here that Epo as well as IL-3 activates Rap1 in an IL-3-dependent hematopoietic cell line, 32D, expressing the Epo receptor. The cytokine-induced activation of Rap1 was augmented in cells that inducibly overexpress CrkL or C3G. The CrkL-mediated enhancement of cell adhesion was inhibited by expression of a dominant negative mutant of Rap1, Rap1A-17N, whereas an activated mutant of Rap1, Rap1A-63E, activated beta(1) integrin-dependent adhesion of hematopoietic cells. In 32D cells, Rap1 was also activated by phorbol 12-myristate 13-acetate and ionomycin, which also enhanced cell adhesion to fibronectin, whereas, an inhibitor of phospholipase C, inhibited both cytokine-induced activation of Rap1 and cell adhesion. It was also demonstrated that Rap1 as well as CrkL is involved in signaling from the EpoR endogenously expressed in a human leukemic cell line, UT-7. These results suggest that Epo and IL-3 activate Rap1 at least partly through the CrkL-C3G complex as well as through additional pathways most likely involving phospholipase Cgamma and strongly implicate Rap1 in regulation of beta(1) integrin-mediated hematopoietic cell adhesion.
Collapse
Affiliation(s)
- A Arai
- Department of Hematology and Oncology and the Department of Bioregulatory Medicine and Rheumatology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo 113, Japan
| | | | | | | | | | | |
Collapse
|
258
|
Bleijs DA, van Duijnhoven GC, van Vliet SJ, Thijssen JP, Figdor CG, van Kooyk Y. A single amino acid in the cytoplasmic domain of the beta 2 integrin lymphocyte function-associated antigen-1 regulates avidity-dependent inside-out signaling. J Biol Chem 2001; 276:10338-46. [PMID: 11134023 DOI: 10.1074/jbc.m008967200] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The leukocyte-specific beta(2) integrin lymphocyte function-associated antigen-1 (LFA-1) (alpha(L)/beta(2)) mediates activation-dependent adhesion to intercellular adhesion molecule (ICAM)-1. In leukocytes, LFA-1 requires activation by intracellular messengers to bind ICAM-1. We observed malfunctioning of LFA-1 activation in leukemic T cells and K562-transfected cells. This defective inside-out integrin activation is only restricted to beta(2) integrins, since beta(1) integrins expressed in K562 readily respond to activation signals, such as phorbol 12-myristate 13-acetate. To unravel these differences in inside-out signaling between beta(1) and beta(2) integrins, we searched for amino acids in the beta(2) cytoplasmic domain that are critical in the activation of LFA-1. We provide evidence that substitution of a single amino acid (L732R) in the beta(2) cytoplasmic DLRE motif, creating the DRRE motif, is sufficient to completely restore PMA responsiveness of LFA-1 expressed in K562. In addition, an intact TTT motif in the C-terminal domain is necessary for the acquired PMA responsiveness. We observed that restoration of the PMA response altered neither LFA-1 affinity nor the phosphorylation status of LFA-1. In contrast, strong differences were observed in the capacity of LFA-1 to form clusters, which indicates that inside-out activation of LFA-1 strongly depends on cytoskeletal induced receptor reorganization that was induced by activation of the Ca(2+)-dependent protease calpain.
Collapse
Affiliation(s)
- D A Bleijs
- Department of Tumor Immunology, University Medical Center Nijmegen, Philips van Leydenlaan 25, Nijmegen 6525 EX, The Netherlands
| | | | | | | | | | | |
Collapse
|
259
|
Teckchandani AM, Feshchenko EA, Tsygankov AY. c-Cbl facilitates fibronectin matrix production by v-Abl-transformed NIH3T3 cells via activation of small GTPases. Oncogene 2001; 20:1739-55. [PMID: 11313921 DOI: 10.1038/sj.onc.1204246] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2000] [Revised: 01/04/2001] [Accepted: 01/09/2001] [Indexed: 11/09/2022]
Abstract
The protooncogenic protein c-Cbl has been shown to act as a multivalent adaptor and a negative regulator of protein tyrosine kinase-mediated signaling. Recent studies have implicated it in the regulation of cell adhesion-related events. We have previously shown that c-Cbl facilitates adhesion and spreading of v-Abl-transformed fibroblasts, and that these effects are dependent on its tyrosine phosphorylation. However, the mechanisms mediating effects of c-Cbl on fibroblast adhesion remain poorly understood. In this study we demonstrate that the tyrosine phosphorylation-dependent effect of c-Cbl on adhesion of v-Abl-transformed fibroblasts is primarily mediated by an increase in fibronectin matrix deposition by these cells. This increase in fibronectin matrix deposition and, hence, in cell adhesion is dependent on cytoskeletal rearrangements induced by RhoA, Rac1 and, possibly, Rap1 activation caused by c-Cbl. The observed activation of these GTPases is mediated by the recruitment of phosphatidylinositol-3' kinase, CrkL and Vav2 to the C-terminal tyrosine residues of c-Cbl. The results of this study also demonstrate that ubiquitination is essential for the observed effects of c-Cbl on fibronectin matrix production and cell adhesion.
Collapse
Affiliation(s)
- A M Teckchandani
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania, PA 19140, USA
| | | | | |
Collapse
|
260
|
Kranenburg O, Moolenaar WH. Ras-MAP kinase signaling by lysophosphatidic acid and other G protein-coupled receptor agonists. Oncogene 2001; 20:1540-6. [PMID: 11313900 DOI: 10.1038/sj.onc.1204187] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are extracellular lipid mediators that signal through distinct members of the Edg/LP subfamily of G protein-coupled receptors (GPCRs). LPA and S1P receptors are expressed in almost every cell type and can couple to multiple G proteins (G(i), G(q) and G(12/13)) to mediate a great variety of responses, ranging from rapid morphological changes to long-term stimulation of cell proliferation. LPA serves as the prototypic GPCR agonist that activates the small GTPases Ras (via G(i)) and RhoA (via G(12/13)), leading to activation of the mitogen-activated protein kinase (MAPK) cascade and reorganization of the actin cytoskeleton, respectively. This review focuses on our current insights into how Ras-MAPK signaling is regulated by GPCR agonists in general, and by LPA in particular.
Collapse
Affiliation(s)
- O Kranenburg
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | |
Collapse
|
261
|
Woods ML, Kivens WJ, Adelsman MA, Qiu Y, August A, Shimizu Y. A novel function for the Tec family tyrosine kinase Itk in activation of beta 1 integrins by the T-cell receptor. EMBO J 2001; 20:1232-44. [PMID: 11250890 PMCID: PMC145515 DOI: 10.1093/emboj/20.6.1232] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Stimulation of T cells via the CD3--T-cell receptor (TCR) complex results in rapid increases in beta 1 integrin-mediated adhesion via poorly defined intracellular signaling events. We demonstrate that TCR-mediated activation of beta 1 integrins requires activation of the Tec family tyrosine kinase Itk and phosphatidylinositol 3-kinase (PI 3-K)-dependent recruitment of Itk to detergent-insoluble glycosphingolipid-enriched microdomains (DIGs) via binding of the pleckstrin homology domain of Itk to the PI 3-K product PI(3,4,5)-P(3). Activation of PI 3-K and the src family kinase Lck, via stimulation of the CD4 co-receptor, can initiate beta 1 integrin activation that is dependent on Itk function. Targeting of Itk specifically to DIGs, coupled with CD4 stimulation, can also activate beta 1 integrin function independently of TCR stimulation. Changes in beta 1 integrin function mediated by TCR activation of Itk are also accompanied by Itk-dependent modulation of the actin cytoskeleton. Thus, TCR-mediated activation of beta 1 integrins involves membrane relocalization and activation of Itk via coordinate action of PI 3-K and a src family tyrosine kinase.
Collapse
Affiliation(s)
- Melody L. Woods
- Department of Laboratory Medicine and Pathology, Center for Immunology and Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455 and Immunology Research Laboratories, Department of Veterinary Science, The Pennsylvania State University, University Park, PA 16802, USA Corresponding author e-mail:
| | - Wendy J. Kivens
- Department of Laboratory Medicine and Pathology, Center for Immunology and Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455 and Immunology Research Laboratories, Department of Veterinary Science, The Pennsylvania State University, University Park, PA 16802, USA Corresponding author e-mail:
| | - Margaret A. Adelsman
- Department of Laboratory Medicine and Pathology, Center for Immunology and Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455 and Immunology Research Laboratories, Department of Veterinary Science, The Pennsylvania State University, University Park, PA 16802, USA Corresponding author e-mail:
| | - Yun Qiu
- Department of Laboratory Medicine and Pathology, Center for Immunology and Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455 and Immunology Research Laboratories, Department of Veterinary Science, The Pennsylvania State University, University Park, PA 16802, USA Corresponding author e-mail:
| | - Avery August
- Department of Laboratory Medicine and Pathology, Center for Immunology and Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455 and Immunology Research Laboratories, Department of Veterinary Science, The Pennsylvania State University, University Park, PA 16802, USA Corresponding author e-mail:
| | - Yoji Shimizu
- Department of Laboratory Medicine and Pathology, Center for Immunology and Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455 and Immunology Research Laboratories, Department of Veterinary Science, The Pennsylvania State University, University Park, PA 16802, USA Corresponding author e-mail:
| |
Collapse
|
262
|
Kraemer A, Rehmann HR, Cool RH, Theiss C, de Rooij J, Bos JL, Wittinghofer A. Dynamic interaction of cAMP with the Rap guanine-nucleotide exchange factor Epac1. J Mol Biol 2001; 306:1167-77. [PMID: 11237625 DOI: 10.1006/jmbi.2001.4444] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epac1 is a Rap-specific guanine-nucleotide exchange factor (GEF) which is activated by the binding of cAMP to a cyclic nucleotide monophosphate (cNMP)-binding domain. We investigated the equilibrium and dynamics of the interaction of cAMP and Epac1 using a newly designed fluorescence analogue of cAMP, 8-MABA-cAMP. We observed that the interaction of cAMP, measured by competition with 8-MABA-cAMP, with an isolated cNMP binding domain of Epac1 has an overall equilibrium constant (Kd) of 4 microM and that the kinetics of the interaction are highly dynamic. The binding properties of cAMP are apparently not affected when the catalytic domain is present, despite the fact that binding of cAMP results in activation of Epac1. This indicates that for the activation process, no appreciable binding energy is required. However, when bound to Rap1b, the apparent Kd of Epac to cAMP was about fivefold lower, suggesting that substrate interaction stabilizes cAMP binding. Since the fluorescent analogues used here were either less able or unable to induce activation of Epac1, we concluded that the binding of nucleotide to Epac and the activation of GEF activity are uncoupled processes and that thus appropriate cAMP analogues can be used as inhibitors of the Epac1-mediated signal transduction pathway of Rap.
Collapse
Affiliation(s)
- A Kraemer
- Max-Planck-Institut fuer Molekulare Physiologie, Otto-Hahn-Strasse 11, Dortmund, 44227, Germany
| | | | | | | | | | | | | |
Collapse
|
263
|
Gulli MP, Peter M. Temporal and spatial regulation of Rho-type guanine-nucleotide exchange factors: the yeast perspective. Genes Dev 2001; 15:365-79. [PMID: 11230144 DOI: 10.1101/gad.876901] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- M P Gulli
- Swiss Institute for Experimental Cancer Research (ISREC), 1066 Epalinges/VD, Switzerland
| | | |
Collapse
|
264
|
Suga K, Katagiri K, Kinashi T, Harazaki M, Iizuka T, Hattori M, Minato N. CD98 induces LFA-1-mediated cell adhesion in lymphoid cells via activation of Rap1. FEBS Lett 2001; 489:249-53. [PMID: 11165259 DOI: 10.1016/s0014-5793(00)02222-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CD98 is a multifunctional heterodimeric membrane protein involved in the regulation of cell adhesion as well as amino acid transport. We show that CD98 cross-linking persistently activates Rap1 GTPase in a LFA-1-dependent manner and induces LFA-1/ICAM-1-mediated cell adhesion in lymphocytes. Specific phosphatidylinositol-3-kinase (PI3K) inhibitors suppressed both LFA-1 activation and Rap1GTP generation, and abrogation of Rap1GTP by retroviral over-expression of a specific Rap1 GTPase activating protein, SPA-1, totally inhibited the LFA-1/ICAM-1-mediated cell adhesion. These results suggest that CD98 cross-linking activates LFA-1 via the PI3K signaling pathway and induces accumulation of Rap1GTP in a LFA-1-dependent manner, which in turn mediates the cytoskeleton-dependent cell adhesion process.
Collapse
Affiliation(s)
- K Suga
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
265
|
Song C, Hu CD, Masago M, Kariyai K, Yamawaki-Kataoka Y, Shibatohge M, Wu D, Satoh T, Kataoka T. Regulation of a novel human phospholipase C, PLCepsilon, through membrane targeting by Ras. J Biol Chem 2001; 276:2752-7. [PMID: 11022048 DOI: 10.1074/jbc.m008324200] [Citation(s) in RCA: 247] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Phosphoinositide-specific phospholipase C (PI-PLC) plays a pivotal role in regulation of intracellular signal transduction from various receptor molecules. More than 10 members of human PI-PLC isoforms have been identified and classified into three classes beta, gamma, and delta, which are regulated by distinct mechanisms. Here we report identification of a novel class of human PI-PLC, named PLCepsilon, which is characterized by the presence of a Ras-associating domain at its C terminus and a CDC25-like domain at its N terminus. The Ras-associating domain of PLCepsilon specifically binds to the GTP-bound forms of Ha-Ras and Rap1A. The dissociation constant for Ha-Ras is estimated to be approximately 40 nm, comparable with those of other Ras effectors. Co-expression of an activated Ha-Ras mutant with PLCepsilon induces its translocation from the cytosol to the plasma membrane. Upon stimulation with epidermal growth factor, similar translocation of ectopically expressed PLCepsilon is observed, which is inhibited by co-expression of dominant-negative Ha-Ras. Furthermore, using a liposome-based reconstitution assay, it is shown that the phosphatidylinositol 4,5-bisphosphate-hydrolyzing activity of PLCepsilon is stimulated in vitro by Ha-Ras in a GTP-dependent manner. These results indicate that Ras directly regulates phosphoinositide breakdown through membrane targeting of PLCepsilon.
Collapse
Affiliation(s)
- C Song
- Department of Physiology II, Kobe University School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
266
|
Czyzyk J, Leitenberg D, Taylor T, Bottomly K. Combinatorial effect of T-cell receptor ligation and CD45 isoform expression on the signaling contribution of the small GTPases Ras and Rap1. Mol Cell Biol 2000; 20:8740-7. [PMID: 11073975 PMCID: PMC86498 DOI: 10.1128/mcb.20.23.8740-8747.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By using ligands with various affinities for the T-cell receptor (TCR) and by altering the contribution of the CD45 tyrosine phosphatase, the effects of the potency of TCR-induced signals on the function of small GTPases Ras and Rap1 were studied. T cells expressing low-molecular-weight CD45 isoforms (e.g., CD45RO) exhibited the strongest activation of the Ras-dependent Elk-1 transcription factor and the highest sensitivity to the inhibitory action of dominant negative mutant Ras compared to T cells expressing high-molecular-weight CD45 isoforms (ABC). Moreover, stimulation of CD45RO(+), but not CD45ABC(+), T cells with a high-affinity TCR ligand induced suboptimal Elk-1 activation compared with the stimulation induced by an intermediate-affinity TCR-ligand interaction. This observation suggested that the Ras-dependent signaling pathway is safeguarded in CD45RO(+) expressors by a negative regulatory mechanism(s) which prohibits maximal activation of the Ras-dependent signaling events following high-avidity TCR-ligand engagement. Interestingly, the biochemical activity of another small GTPase, the Ras-like protein Rap1, which has been implicated in the functional suppression of Ras signaling, was inversely correlated with the extent of Elk-1 activation induced by different-affinity TCR ligands. Consistently, overexpression of putative Rap dominant negative mutant RapN17 or the physiologic inhibitor of Rap1, the Rap GTPase-activating protein RapGAP, augmented the Elk-1 response in CD45RO(+) T cells. This is in contrast to the suppressive effect of RapN17 and RapGAP on CD45ABC(+) T cells, underscoring the possibility that Rap1 can act as either a repressor or a potentiator of Ras effector signals, depending on CD45 isoform expression. These observations suggest that cells expressing distinct isoforms of CD45 employ different signal transduction schemes to optimize Ras-mediated signal transduction in activated T lymphocytes.
Collapse
Affiliation(s)
- J Czyzyk
- Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
267
|
Abstract
Members of the integrin family of cell adhesion receptors influence several important aspects of cancer cell behavior, including motility and invasiveness, cell growth, and cell survival. Engagement of integrins with extracellular matrix (ECM) proteins can activate members of the Rho-family of small GTPases; conversely, Rho- and Ras-family proteins can influence the ability of integrins to bind their ligands. These events impinge on the control of cell motility, and ultimately on invasive and metastatic behavior. Integrin engagement with ECM also has important effects on cell survival, particularly for cells of epithelial origin. In some cases, specific integrins have selective effects on the efficiency of signal transduction in cell survival pathways.
Collapse
Affiliation(s)
- L V Parise
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
268
|
|
269
|
Abstract
Motility is essential for many important biological events, including embryonic development, inflammatory responses, wound healing, and tumor metastasis. During these events cells are in dynamic contact with the extracellular matrix through integrins. Integrins are the primary receptors for extracellular matrix proteins and consequently are required for cell motility. Cells have evolved multiple mechanisms to modulate integrin adhesive functions, which impact cell migration. In addition to providing a mechanism that allows cells to contact the extracellular matrix, integrins also promote intracellular signals that stimulate and regulate cell movement. Here we discuss the role of integrins during the multiple steps of cell migration.
Collapse
Affiliation(s)
- S P Holly
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
270
|
Amsen D, Kruisbeek A, Bos JL, Reedquist K. Activation of the Ras-related GTPase Rap1 by thymocyte TCR engagement and during selection. Eur J Immunol 2000; 30:2832-41. [PMID: 11069064 DOI: 10.1002/1521-4141(200010)30:10<2832::aid-immu2832>3.0.co;2-d] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Signals mediated by activation of the small GTPase Ras play an essential role both in thymocyte development and in TCR-mediated activation of mature T cells. Given the critical requirement of Ras signaling pathways in thymocyte development, and recent indications that Rap1 may negatively regulate Ras-dependent signaling pathways, we examined the possible involvement of Rap1 in thymocyte TCR signaling. We find that Rap1 and proposed regulators of Rap1 (the proto-oncogene product Cbl, Crk family adaptor proteins, and the Rap1 guanine nucleotide exchange factor C3G) are expressed at equivalent levels in both double-negative and double-positive murine thymocytes. Rap1 was transiently activated following TCR stimulation of both total thymocytes and purified double-positive thymocytes, and this activation correlated with tyrosine phosphorylation of Cbl and Cbl association with CrkL. TCR-dependent Rap1 activation was enhanced by co-stimulation through CD28 and could be mimicked by treatment of thymocytes with phorbol ester and calcium. In contrast to mature peripheral T lymphocytes, Rap1 stimulation by CD3 ligation in thymocytes did not require intracellular calcium mobilization. Intriguingly, we found a clear elevation of activated Rap1 in thymocytes undergoing positive selection, suggesting a functional role for Rap1 in thymocyte development and selection.
Collapse
Affiliation(s)
- D Amsen
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam
| | | | | | | |
Collapse
|
271
|
Abstract
The activity of integrins on leukocytes is tightly controlled, and their adhesion capacity shifts rapidly when cells emigrate from the blood to the tissues. The leukocyte-specific beta2 integrin LFA-1 (alphaLbeta2) is the most important integrin expressed by leukocytes that regulate lymphocyte migration and the initiation of an immune response through binding to ICAM-1,-2 or-3. The binding activity of LFA-1 is rapidly altered by intracellular stimuli that activate LFA-1. Although alterations in the affinity of LFA-1, which leads to enhanced ICAM-1 binding, have been proposed, evidence is emerging that dynamic reorganisation of LFA-1 into microclusters is the major mechanism that regulates its binding capacity.
Collapse
Affiliation(s)
- Y van Kooyk
- Department of Tumor Immunology, University Medical Center Nijmegen, St Radboud, P. Van Leydenlaan 25, 6525 EX, the, Nijmegen, Netherlands.
| | | |
Collapse
|
272
|
Caron E, Self AJ, Hall A. The GTPase Rap1 controls functional activation of macrophage integrin alphaMbeta2 by LPS and other inflammatory mediators. Curr Biol 2000; 10:974-8. [PMID: 10985384 DOI: 10.1016/s0960-9822(00)00641-2] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND beta2 integrins mediate many aspects of the inflammatory and immune responses, including adhesion of leukocytes to the endothelium, complement-mediated phagocytosis in macrophages and neutrophils, and antigen-specific conjugate formation between cytotoxic T cells and their targets. A variety of inflammatory mediators, such as tumor necrosis factor-alpha (TNF-alpha), platelet-activating factor (PAF), and lipopolysaccharide (LPS) and other bacterial products induce the functional activation of beta2 integrins, but the signaling events that link membrane receptors to integrin activation are poorly understood. RESULTS We report here that expression of the constitutively active small GTPases Rap1 or R-ras, but not Ras or RalA, is sufficient for functional activation of alphaMbeta2, the complement receptor 3 (CR3), in macrophages, allowing phagocytosis of C3bi-opsonized targets. Inhibition of Rap1, but not other Ras-like or Rho-like small GTPases, abolishes activation of alphaMbeta2 induced by phorbol esters, LPS, TNF-alpha or PAF. Finally, Rap1 activation specifically controls the binding properties of alphaMbeta2 towards its physiological ligand, namely the complement-opsonized phagocytic targets. CONCLUSIONS In macrophages, the Rap1 GTPase regulates activation of the alphaMbeta2 integrin in response to a wide variety of inflammatory mediators.
Collapse
Affiliation(s)
- E Caron
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, UK
| | | | | |
Collapse
|
273
|
Yamashita S, Mochizuki N, Ohba Y, Tobiume M, Okada Y, Sawa H, Nagashima K, Matsuda M. CalDAG-GEFIII activation of Ras, R-ras, and Rap1. J Biol Chem 2000; 275:25488-93. [PMID: 10835426 DOI: 10.1074/jbc.m003414200] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We characterized a novel guanine nucleotide exchange factor (GEF) for Ras family G proteins that is highly homologous to CalDAG-GEFI, a GEF for Rap1 and R-Ras, and to RasGRP/CalDAG-GEFII, a GEF for Ras and R-Ras. This novel GEF, referred to as CalDAG-GEFIII, increased the GTP/GDP ratio of Ha-Ras, R-Ras, and Rap1 in 293T cells. CalDAG-GEFIII promoted the guanine nucleotide exchange of Ha-Ras, R-Ras, and Rap1 in vitro also, indicating that CalDAG-GEFIII exhibited the widest substrate specificity among the known GEFs for Ras family G proteins. Expression of CalDAG-GEFIII was detected in the glial cells of the brain and the glomerular mesangial cells of the kidney by in situ hybridization. CalDAG-GEFIII activated ERK/MAPK most efficiently, followed by CalDAG-GEFII and CalDAG-GEFI in 293T cells. JNK activation was most prominent in cells expressing CalDAG-GEFII, followed by CalDAG-GEFIII and CalDAG-GEFI. Expression of CalDAG-GEFIII induced neuronal differentiation of PC12 cells and anchorage-independent growth of Rat1A cells less efficiently than did CalDAG-GEFII. Thus, co-activation of Rap1 by CalDAG-GEFIII apparently attenuated Ras-MAPK-dependent neuronal differentiation and cellular transformation. Altogether, CalDAG-GEFIII activated a broad range of Ras family G proteins and exhibited a biological activity different from that of either CalDAG-GEFI or CalDAG-GEFII.
Collapse
Affiliation(s)
- S Yamashita
- Department of Pathology, Research Institute, International Medical Center of Japan, Tokyo
| | | | | | | | | | | | | | | |
Collapse
|
274
|
Ohba Y, Mochizuki N, Matsuo K, Yamashita S, Nakaya M, Hashimoto Y, Hamaguchi M, Kurata T, Nagashima K, Matsuda M. Rap2 as a slowly responding molecular switch in the Rap1 signaling cascade. Mol Cell Biol 2000; 20:6074-83. [PMID: 10913189 PMCID: PMC86083 DOI: 10.1128/mcb.20.16.6074-6083.2000] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rap2 is a member of the Ras family of GTPases and exhibits 60% identity to Rap1, but the function and regulation of Rap2 remain obscure. We found that, unlike the other Ras family proteins, the GTP-bound active form exceeded 50% of total Rap2 protein in adherent cells. Guanine nucleotide exchange factors (GEFs) for Rap1, C3G, Epac (or cyclic AMP [cAMP]-GEF), CalDAG-GEFI, PDZ-GEF1, and GFR efficiently increased the level of GTP-Rap2 both in 293T cells and in vitro. GTPase-activating proteins (GAPs) for Rap1, rap1GAPII and SPA-1, stimulated Rap2 GTPase, but with low efficiency. The half-life of GTP-Rap2 was significantly longer than that of GTP-Rap1 in 293T cells, indicating that low sensitivity to GAPs caused a high GTP/GDP ratio on Rap2. Rap2 bound to the Ras-binding domain of Raf and inhibited Ras-dependent activation of Elk1 transcription factor, as did Rap1. The level of GTP-Rap2 in rat 3Y1 fibroblasts was decreased by the expression of v-Src, and expression of a GTPase-deficient Rap2 mutant inhibited v-Src-dependent transformation of 3Y1 cells. Altogether, Rap2 is regulated by a similar set of GEFs and GAPs as Rap1 and functions as a slowly responding molecular switch in the Rap1 signaling cascade.
Collapse
Affiliation(s)
- Y Ohba
- Department of Pathology, Research Institute, International Medical Center of Japan, Shinjuku-ku, Tokyo 162-8655, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
275
|
Kinashi T, Katagiri K, Watanabe S, Vanhaesebroeck B, Downward J, Takatsu K. Distinct mechanisms of alpha 5beta 1 integrin activation by Ha-Ras and R-Ras. J Biol Chem 2000; 275:22590-6. [PMID: 10801791 DOI: 10.1074/jbc.m000633200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the possible roles of the Ras/Rho family members in the inside-out signals to activate integrins, we examined the ability of Ras/Rho small GTPases to stimulate avidity of alpha(5)beta(1) (VLA-5) to fibronectin in bone marrow-derived mast cells. We found that both Ha-Ras(Val-12) and R-Ras(Val-38) had strong stimulatory effects on adhesion and ligand binding activity of VLA-5 to fibronectin. However, only Ha-Ras(Val-12)-, but not R-Ras(Val-38)-induced adhesion was inhibited by wortmannin, which suggests that Ha-Ras(Val-12) is dependent on phosphatidylinositol (PI) 3-kinase on adhesion whereas R-Ras(Val-38) has another PI 3-kinase independent pathway to induce adhesion. The effector loop mutant Ha-Ras(Val-12)E37G, but not Y40C retained the ability to stimulate adhesion of mast cells to fibronectin. Consistently, PI 3-kinase p110delta, predominantly expressed in mast cells, interacted with Ha-Ras(Val-12) E37G, but not Y40C, which was also correlated with the levels of Akt phosphorylation in mast cells. Furthermore, marked adhesion was induced by a membrane-targeted version of p110delta. These results indicate that Ha-Ras(Val-12) activated VLA-5 through PI 3-kinase p110delta. The mutational effects of the R-Ras effector loop region on adhesion were not correlated with PI 3-kinase activities, consistent with our contention that R-Ras has a distinct pathway to modulate avidity of VLA-5.
Collapse
Affiliation(s)
- T Kinashi
- Department of Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108, Bayer-chair, Japan.
| | | | | | | | | | | |
Collapse
|