251
|
Al-Atta A, Kuzemczak M, Alkhalil M. Colchicine for the prevention of ischemic stroke: An updated meta-analysis of randomized clinical trials. Brain Circ 2021; 7:187-193. [PMID: 34667902 PMCID: PMC8459694 DOI: 10.4103/bc.bc_24_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/06/2021] [Accepted: 05/21/2021] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Inflammation is increasingly recognized as a target to reduce residual cardiovascular risk. Colchicine is an anti-inflammatory drug that was associated with improved cardiovascular outcomes. However, its effect on stroke reduction was not consistent across studies. Therefore, the aim of this study-level meta-analysis was to evaluate the influence of colchicine on stroke in patients with coronary artery disease (CAD). METHODS Electronic databases were searched through October 2020, to identify randomized controlled trials using colchicine in patients with CAD. The incidence of clinical endpoints such as stroke, death, myocardial infarction (MI), study-defined major adverse cardiovascular events (MACE), and atrial fibrillation (AF) was compared between colchicine and placebo groups. RESULTS A total number of 11,594 (5,806 in the colchicine arm) patients from 4 eligible studies were included in the final analysis. Stroke incidence was lower in the colchicine arm compared to placebo (rate ratio [RR] 0.48 [95% confidence interval [CI], 0.29-0.78], P = 0.003) whereby no significant difference was observed in the incidence of AF (odds ratio [OR] 0.86 [95% CI, 0.69-1.06], P = 0.16). Furthermore, a significant effect of colchicine on MACE [RR 0.65 (95% CI, 0.51-0.83), P = 0.0006] and MI (RR 0.65 (95% CI, 0.54-0.95], P = 0.02) was detected, with no influence on all-cause mortality (RR 1.04 [95% CI, 0.61-1.78], P = 0.88). CONCLUSIONS This meta-analysis confirms a significant influence of colchicine on stroke in CAD patients. Despite its neutral effect on AF occurrence, other mechanisms related to plaque stabilization are plausible. The concept seems to be supported by contemporaneous MI reduction and posits that anti-inflammatory properties of colchicine may translate into a reduction of stroke risk.
Collapse
Affiliation(s)
- Ayman Al-Atta
- Cardiothoracic Centre, Freeman Hospital, Newcastle upon Tyne, Newcastle, UK
| | - Michał Kuzemczak
- Department of Medical Rescue, Chair of Emergency Medicine, Poznan University of Medical Sciences, Poznań, Poland.,Department of Invasive Cardiology, Central Clinical Hospital of the Ministry of Interior and Administration, Warsaw, Poland
| | - Mohammad Alkhalil
- Cardiothoracic Centre, Freeman Hospital, Newcastle upon Tyne, Newcastle, UK.,Vascular Biology, Newcastle University, Newcastle upon Tyne, Newcastle, UK
| |
Collapse
|
252
|
Licari C, Tenori L, Giusti B, Sticchi E, Kura A, De Cario R, Inzitari D, Piccardi B, Nesi M, Sarti C, Arba F, Palumbo V, Nencini P, Marcucci R, Gori AM, Luchinat C, Saccenti E. Analysis of Metabolite and Lipid Association Networks Reveals Molecular Mechanisms Associated with 3-Month Mortality and Poor Functional Outcomes in Patients with Acute Ischemic Stroke after Thrombolytic Treatment with Recombinant Tissue Plasminogen Activator. J Proteome Res 2021; 20:4758-4770. [PMID: 34473513 PMCID: PMC8491161 DOI: 10.1021/acs.jproteome.1c00406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Here, we present
an integrated multivariate, univariate, network
reconstruction and differential analysis of metabolite–metabolite
and metabolite–lipid association networks built from an array
of 18 serum metabolites and 110 lipids identified and quantified through
nuclear magnetic resonance spectroscopy in a cohort of 248 patients,
of which 22 died and 82 developed a poor functional outcome within
3 months from acute ischemic stroke (AIS) treated with intravenous
recombinant tissue plasminogen activator. We explored differences
in metabolite and lipid connectivity of patients who did not develop
a poor outcome and who survived the ischemic stroke from the related
opposite conditions. We report statistically significant differences
in the connectivity patterns of both low- and high-molecular-weight
metabolites, implying underlying variations in the metabolic pathway
involving leucine, glycine, glutamine, tyrosine, phenylalanine, citric,
lactic, and acetic acids, ketone bodies, and different lipids, thus
characterizing patients’ outcomes. Our results evidence the
promising and powerful role of the metabolite–metabolite and
metabolite–lipid association networks in investigating molecular
mechanisms underlying AIS patient’s outcome.
Collapse
Affiliation(s)
- Cristina Licari
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, Florence 50019, Italy
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, Florence 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), Via Luigi Sacconi 6, Sesto Fiorentino, Florence 50019, Italy.,Department of Chemistry, University of Florence, Via della Lastruccia, 3, Sesto Fiorentino, Florence 50019, Italy
| | - Betti Giusti
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, Florence 50134, Italy.,Atherothrombotic Diseases Center, Careggi Hospital, Florence, Largo Brambilla 3, Florence 50134, Italy.,Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE), University of Florence, Viale Pieraccini 6, Firenze 50139, Italy
| | - Elena Sticchi
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, Florence 50134, Italy
| | - Ada Kura
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, Florence 50134, Italy.,Atherothrombotic Diseases Center, Careggi Hospital, Florence, Largo Brambilla 3, Florence 50134, Italy
| | - Rosina De Cario
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, Florence 50134, Italy
| | - Domenico Inzitari
- Stroke Unit, Careggi University Hospital, Florence 50134, Italy.,Institute of Neuroscience, Italian National Research Council (CNR), Via Madonna del Piano, 10, Sesto Fiorentino, Florence 50019, Italy
| | | | - Mascia Nesi
- Stroke Unit, Careggi University Hospital, Florence 50134, Italy
| | - Cristina Sarti
- NEUROFARBA Department, Neuroscience Section, University of Florence, Largo Brambilla 3, Florence 50134, Italy
| | - Francesco Arba
- Department of Neurology, Careggi University Hospital, Largo Brambilla 3, Florence 50134, Italy
| | - Vanessa Palumbo
- Stroke Unit, Careggi University Hospital, Florence 50134, Italy
| | | | - Rossella Marcucci
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, Florence 50134, Italy.,Atherothrombotic Diseases Center, Careggi Hospital, Florence, Largo Brambilla 3, Florence 50134, Italy.,Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE), University of Florence, Viale Pieraccini 6, Firenze 50139, Italy
| | - Anna Maria Gori
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, Florence 50134, Italy.,Atherothrombotic Diseases Center, Careggi Hospital, Florence, Largo Brambilla 3, Florence 50134, Italy.,Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE), University of Florence, Viale Pieraccini 6, Firenze 50139, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, Florence 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), Via Luigi Sacconi 6, Sesto Fiorentino, Florence 50019, Italy.,Department of Chemistry, University of Florence, Via della Lastruccia, 3, Sesto Fiorentino, Florence 50019, Italy
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, Wageningen 6708 WE, the Netherlands
| |
Collapse
|
253
|
Zeng M, Zhou H, He Y, Du H, Yin J, Hou Y, Zhu J, Zhang Y, Shao C, Yang J, Wan H. Danhong injection enhances the therapeutic effect of mannitol on hemispheric ischemic stroke by ameliorating blood-brain barrier disruption. Biomed Pharmacother 2021; 142:112048. [PMID: 34435588 DOI: 10.1016/j.biopha.2021.112048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 01/01/2023] Open
Abstract
Mannitol, a representative of hyperosmolar therapy, is indispensable for the treatment of malignant cerebral infarction, but its therapeutic effect is limited by its exacerbation of blood-brain barrier (BBB) disruption. This study was to explore whether Danhong injection (DHI), a standardized product extracted from Salvia miltiorrhiza Bunge and Carthamus tinctorius L., inhibits the destructive effect of mannitol on BBB and thus enhancing the treatment of hemispheric ischemic stroke. SD rats were subjected to pMCAO followed by intravenous bolus injections of mannitol with/without DHI intervention. Neurological deficit score, brain edema, infarct volume at 24 h after MCAO and histopathology, microvascular ultrastructure, immunohistochemistry and immunofluorescence staining of endothelial cell junctions, energy metabolism in the ischemic penumbra were assessed. Intravenous mannitol after MCAO resulted in a decrease in 24 h mortality and cerebral edema, whereas no significant benefit on neurological deficits, infarct volume and microvascular ultrastructure. Moreover, mannitol led to the loss of endothelial integrity, manifested by the decreased expression of occludin, junctional adhesion molecule-1 (JAM-1) and zonula occluden-1 (ZO-1) and the discontinuity of occludin staining around the periphery of endothelial cells. Meanwhile, after mannitol treatment, energy-dependent vimentin and F-actin, ATP content, and ATP5D expression were down-regulated, while MMP2 and MMP9 expression increased in the ischemic penumbra. All the insults after mannitol treatment were attenuated by addition of intravenous DHI. The results suggest DHI as a potential remedy to attenuate mannitol-related BBB disruption, and the potential of DHI to upregulate energy metabolism and inhibit the activity of MMPs is likely attributable to its effects observed.
Collapse
Affiliation(s)
- Miaolin Zeng
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Huifen Zhou
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yu He
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Haixia Du
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Junjun Yin
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yongchun Hou
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiaqi Zhu
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yangyang Zhang
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chongyu Shao
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiehong Yang
- Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
254
|
Li C, Zhao Z, Luo Y, Ning T, Liu P, Chen Q, Chu Y, Guo Q, Zhang Y, Zhou W, Chen H, Zhou Z, Wang Y, Su B, You H, Zhang T, Li X, Song H, Li C, Sun T, Jiang C. Macrophage-Disguised Manganese Dioxide Nanoparticles for Neuroprotection by Reducing Oxidative Stress and Modulating Inflammatory Microenvironment in Acute Ischemic Stroke. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101526. [PMID: 34436822 PMCID: PMC8529435 DOI: 10.1002/advs.202101526] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/14/2021] [Indexed: 05/06/2023]
Abstract
Reperfusion injury is still a major challenge that impedes neuronal survival in ischemic stroke. However, the current clinical treatments are remained on single pathological process, which are due to lack of comprehensive neuroprotective effects. Herein, a macrophage-disguised honeycomb manganese dioxide (MnO2 ) nanosphere loaded with fingolimod (FTY) is developed to salvage the ischemic penumbra. In particular, the biomimetic nanoparticles can accumulate actively in the damaged brain via macrophage-membrane protein-mediated recognition with cell adhesion molecules that are overexpressed on the damaged vascular endothelium. MnO2 nanosphere can consume excess hydrogen peroxide (H2 O2 ) and convert it into desiderated oxygen (O2 ), and can be decomposed in acidic lysosome for cargo release, so as to reduce oxidative stress and promote the transition of M1 microglia to M2 type, eventually reversing the proinflammatory microenvironment and reinforcing the survival of damaged neuron. This biomimetic nanomedicine raises new strategy for multitargeted combined treatment of ischemic stroke.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Zhenhao Zhao
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Yifan Luo
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Tingting Ning
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Peixin Liu
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Qinjun Chen
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Yongchao Chu
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Qin Guo
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Yiwen Zhang
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Wenxi Zhou
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Hongyi Chen
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Zheng Zhou
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Yu Wang
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Boyu Su
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Haoyu You
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Tongyu Zhang
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Xuwen Li
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Haolin Song
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Chufeng Li
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Tao Sun
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| | - Chen Jiang
- Key Laboratory of Smart Drug DeliveryMinistry of EducationState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan UniversityShanghai201203China
| |
Collapse
|
255
|
Overexpression of miR-149-5p Attenuates Cerebral Ischemia/Reperfusion (I/R) Injury by Targeting Notch2. Neuromolecular Med 2021; 24:279-289. [PMID: 34581980 DOI: 10.1007/s12017-021-08685-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Ischemic stroke is one of the leading causes of death and disability worldwide. Although miR-149-5p downregulation is observed in rats after ischemia/reperfusion (I/R) injury, its function and role in ischemic stroke remain unclear. This study aimed to investigate the roles of miR-149-5p in I/R injury. The results showed that miR-149-5p was significantly downregulated in brain tissues of rats subjected to middle cerebral artery occlusion (MCAO) and primary cortical neurons subject to oxygen and glucose deprivation (OGD). MiR-149-5p overexpression effectively reduced MCAO/R-induced infarct volume, neurological score, and brain water content as well as OGD/R-induced cortical neurons apoptosis and OGD/R-induced expression of TNF-α, IL-4, IL-6, IL-1β, and COX-2. Moreover, Notch2 was identified as a target of miR-149-5p and Notch2 overexpression significantly attenuated the inhibitory effects of miR-149-5p mimics on inflammation and apoptosis. Taken together, our study revealed that miR-149-5p overexpression protects the rat brain against I/R injury by regulating Notch2-mediated inflammation and apoptosis pathway.
Collapse
|
256
|
Jin J, Li M, Li J, Li B, Duan L, Yang F, Gu N. Xenon Nanobubbles for the Image-Guided Preemptive Treatment of Acute Ischemic Stroke via Neuroprotection and Microcirculatory Restoration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43880-43891. [PMID: 34493044 DOI: 10.1021/acsami.1c06014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Early lesion site diagnosis and neuroprotection are crucial to the theranostics of acute ischemic stroke. Xenon (Xe), as a nontoxic gaseous neuroprotectant, holds great promise for ischemic stroke therapy. In this study, Xe-encapsulated lipid nanobubbles (Xe-NBs) have been prepared for the real-time ultrasound image-guided preemptive treatment of the early stroke. The lipids are self-assembled at the interface of free Xe bubbles, and the mean diameter of Xe-NBs is 225 ± 11 nm with a Xe content of 73 ± 2 μL/mL. The in vitro results show that Xe-NBs can protect oxygen/glucose-deprived PC12 cells against apoptosis and oxidative stress. Based on the ischemic stroke mice model, the biodistribution, timely ultrasound imaging, and the therapeutic effects of Xe-NBs for stroke lesions were investigated in vivo. The accumulation of Xe-NBs to the ischemic lesion endows ultrasound contrast imaging with the lesion area. The cerebral blood flow measurement indicates that the administration of Xe-NBs can improve microcirculatory restoration, resulting in reduced acute microvascular injury in the lesion area. Furthermore, local delivery of therapeutic Xe can significantly reduce the volume of cerebral infarction and restore the neurological function with reduced neuron injury against apoptosis. Therefore, Xe-NBs provide a novel nanosystem for the safe and rapid theranostics of acute ischemic stroke, which is promising to translate into the clinical management of stroke.
Collapse
Affiliation(s)
- Juan Jin
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, P. R. China
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Mei Li
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, P. R. China
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, P. R. China
| | - Jing Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Bin Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Lei Duan
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, P. R. China
| | - Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Ning Gu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, P. R. China
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
257
|
Lin C, Pan H, Qiao Y, Huang P, Su J, Liu J. Fibrinogen Level Combined With Platelet Count for Predicting Hemorrhagic Transformation in Acute Ischemic Stroke Patients Treated With Mechanical Thrombectomy. Front Neurol 2021; 12:716020. [PMID: 34531815 PMCID: PMC8439152 DOI: 10.3389/fneur.2021.716020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/04/2021] [Indexed: 12/02/2022] Open
Abstract
A serious complication of acute ischemic stroke (AIS) after mechanical thrombectomy (MT) is hemorrhagic transformation (HT), which is potentially associated with clinical deterioration. This study examined predictors of HT following MT in AIS patients. Patients with AIS due to large artery occlusion in the anterior circulation, treated with MT and successfully recanalized (modified Thrombolysis in Cerebral Infarction score 2b/3), were studied retrospectively. HT was evaluated by computed tomography (CT) 24 h after MT and was diagnosed and classified into parenchymal hematoma (PH) and hemorrhagic infarction (HI). Multivariate logistic regression models were used to determine the risk factors for HT. Receiver operating characteristic (ROC) curve analysis was performed to determine the predictive utility of risk factors for HT. We enrolled 135 patients: 49 in the HT group and 86 in the non-HT group. The two groups differed significantly in baseline fibrinogen levels (p = 0.003) and platelet counts (p = 0.006). Multivariate logistic regression analyses showed that lower fibrinogen levels [odds ratio (OR), 0.41; 95% CI, 0.23–0.72; p = 0.002] and platelet counts (OR, 0.58; 95% CI, 0.33–0.99; p = 0.048) were independently associated with a higher risk of HT. Together, the binary variates fibrinogen and platelets well-predicted HT (area under the curve, 0.703; specificity, 77.9%; sensitivity, 55.1%). The combination of fibrinogen <2.165 g/L and platelets <171.5 × 109/L was the strongest predictor of HT (OR, 23.17; 95% CI, 5.75–126.80; p < 0.0001). Our study suggests that lower baseline fibrinogen levels and platelet counts may be risk factors for HT in AIS patients following MT and reperfusion. Specifically, the combination of fibrinogen level and platelet count may predict the risk of HT after MT in these patients.
Collapse
Affiliation(s)
- Changchun Lin
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Pan
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Qiao
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peisheng Huang
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingjing Su
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianren Liu
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
258
|
Xu ZH, Deng QW, Zhai Q, Zhang Q, Wang ZJ, Chen WX, Gu MM, Jiang T, Zhou JS, Zhang YD. Clinical significance of stroke nurse in patients with acute ischemic stroke receiving intravenous thrombolysis. BMC Neurol 2021; 21:359. [PMID: 34530757 PMCID: PMC8447702 DOI: 10.1186/s12883-021-02375-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/01/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Reports have proven that shorter door-to-needle time (DTN time) indicates better outcomes in AIS patients received intravenous thrombolysis. Efforts have been made by hospitals and centers to minimize DTN time in many ways including introducing a stroke nurse. However, there are few studies to discuss the specific effect of stroke nurse on patients' prognosis. This study aimed to compare consecutive AIS patients before and after the intervention to analyze the effect of stroke nurse on clinical outcome of AIS patients. METHODS In this retrospective study, we observed 1003 patients from November 2016 to December 2020 dividing in two groups, collected and analyzed AIS patients' medical history, clinical assessment information, important timelines, 90 mRS score, etc. Comparative analysis and mediation analysis were also used in this study. RESULTS A total of 418 patients was included in this study, and 199 patients were enrolled in the stroke nurse group and 219 was in the preintervention group. Baseline characteristics of patients showed no significant difference except there seems more patients with previous ischemic stroke history in the group of stroke nurse. (p = 0.008). The median DTN time significantly decreased in the stroke nurse group (25 min versus 36 min, p < 0.001) and multivariate logistic regression analysis showed the 90-day mRS clinical outcome significantly improved in the stroke nurse group (p = 0.001). Mediation analysis indicated the reduction of DTN time plays a partial role on the 90 days mRS score and the stroke nurse has some direct effect on the improvement of clinical outcome (p = 0.006). CONCLUSIONS The introduction of stroke nurse is beneficial to clinical outcome of AIS patients and can be use of reference in other hospitals or centers.
Collapse
Affiliation(s)
- Zhao-Han Xu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| | - Qi-Wen Deng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| | - Qian Zhai
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| | - Qing Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| | - Zhen-Jie Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| | - Wen-Xia Chen
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| | - Meng-Meng Gu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China.
| | - Jun-Shan Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China.
| | - Ying-Dong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China.
| |
Collapse
|
259
|
Chen S, Shao L, Ma L. Cerebral Edema Formation After Stroke: Emphasis on Blood-Brain Barrier and the Lymphatic Drainage System of the Brain. Front Cell Neurosci 2021; 15:716825. [PMID: 34483842 PMCID: PMC8415457 DOI: 10.3389/fncel.2021.716825] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/20/2021] [Indexed: 01/01/2023] Open
Abstract
Brain edema is a severe stroke complication that is associated with prolonged hospitalization and poor outcomes. Swollen tissues in the brain compromise cerebral perfusion and may also result in transtentorial herniation. As a physical and biochemical barrier between the peripheral circulation and the central nervous system (CNS), the blood–brain barrier (BBB) plays a vital role in maintaining the stable microenvironment of the CNS. Under pathological conditions, such as ischemic stroke, the dysfunction of the BBB results in increased paracellular permeability, directly contributing to the extravasation of blood components into the brain and causing cerebral vasogenic edema. Recent studies have led to the discovery of the glymphatic system and meningeal lymphatic vessels, which provide a channel for cerebrospinal fluid (CSF) to enter the brain and drain to nearby lymph nodes and communicate with the peripheral immune system, modulating immune surveillance and brain responses. A deeper understanding of the function of the cerebral lymphatic system calls into question the known mechanisms of cerebral edema after stroke. In this review, we first discuss how BBB disruption after stroke can cause or contribute to cerebral edema from the perspective of molecular and cellular pathophysiology. Finally, we discuss how the cerebral lymphatic system participates in the formation of cerebral edema after stroke and summarize the pathophysiological process of cerebral edema formation after stroke from the two directions of the BBB and cerebral lymphatic system.
Collapse
Affiliation(s)
- Sichao Chen
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linqian Shao
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Ma
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
260
|
Oleske DM, Cheng X, Jeong A, Arndt TJ. Pediatric Acute Ischemic Stroke by Age-Group: A Systematic Review and Meta-Analysis of Published Studies and Hospitalization Records. Neuroepidemiology 2021; 55:331-341. [PMID: 34464952 DOI: 10.1159/000518281] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 07/01/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Although stroke is rare among the pediatric population, it is nevertheless associated with serious or life-threatening consequences. The etiologic factors of acute ischemic stroke (AIS) are likely to vary over the course of childhood development. The incidence rates of AIS, not previously systematically examined by pediatric age subgroup, could guide studies of its etiology. OBJECTIVE The aim of this study is to evaluate the incidence rate of AIS by age-group in the pediatric population (aged 0-17/18 years) and identify any common trends or sources of variability across different countries. METHODS Rates of pediatric AIS were collated from a systematic literature review of published studies globally (1983-2020) and hospitalization records from Europe and the USA (2015-2018). Records that were included in the analysis reported the code or description used for AIS diagnosis and age-specific data for children aged 0-17/18 years. AIS incidence rates were summarized by age-group, data source, country, and geographic region. A meta-analysis was conducted to assess the heterogeneity of AIS rates in neonates. RESULTS The pooled AIS incidence rate was 5.6 per 100,000 children across all records. When only records reporting the AIS incidence rates for children across the full age range (0-17/18 years) were analyzed, the pooled AIS incidence rate was 4.6 per 100,000 children and ranged from 7.0 per 100,000 (Germany) to 1.3 per 100,000 (Denmark). The highest pooled rates were observed in the 0-28-day age-group (24.6 per 100,000 live births), declining to the lowest rates in the 5-9-year age-group, and rising again in the 10-17/18-year age-group. AIS rates were the most heterogeneous in the 0-28-day age-group and across European countries. Significantly higher AIS rates in neonates were observed from hospital databases (35.9 per 100,000) than in the literature (19.4 per 100,000). AIS rates may be underestimated as pediatric AIS events are rare and challenging to diagnose, and limited age-specific data are available. CONCLUSIONS Incidence rates of pediatric AIS by age-groups followed a consistent overall pattern of a reverse J-shaped curve, with the highest rates in neonates, across predominantly European and North American countries. Further research is warranted to examine if this pattern is observed in other geographic regions and to identify AIS risk factors specific to different phases of childhood development.
Collapse
Affiliation(s)
| | - Xianbin Cheng
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Anna Jeong
- Neuroscience Clinical Development, AbbVie, North Chicago, Illinois, USA
| | - Thomas J Arndt
- Epidemiology, Decision Resources Group (a Clarivate business), Burlington, Massachusetts, USA
| |
Collapse
|
261
|
Bi R, Chen S, Chen S, Peng Q, Jin H, Hu B. The role of leukocytes in acute ischemic stroke-related thrombosis: a notable but neglected topic. Cell Mol Life Sci 2021; 78:6251-6264. [PMID: 34398251 PMCID: PMC11072166 DOI: 10.1007/s00018-021-03897-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/15/2021] [Accepted: 07/02/2021] [Indexed: 12/19/2022]
Abstract
Ischemic stroke is one of the most serious diseases today, and only a minority of patients are provided with effective clinical treatment. Importantly, leukocytes have gradually been discovered to play vital roles in stroke thrombosis, including promoting the activation of thrombin and the adhesion and aggregation of platelets. However, they have not received enough attention in the field of acute ischemic stroke. It is possible that we could not only prevent stroke-related thrombosis by inhibiting leukocyte activation, but also target leukocyte components to dissolve thrombi in the cerebral artery. In this review, we expound the mechanisms by which leukocytes are activated and participate in the formation of stroke thrombus, then describe the histopathology of leukocytes in thrombi of stroke patients and the influence of leukocyte composition on vascular recanalization effects and patient prognosis. Finally, we discuss the relevant antithrombotic strategies targeting leukocytes.
Collapse
Affiliation(s)
- Rentang Bi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Shengcai Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Shaolin Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Qiwei Peng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
262
|
Phenothiazine Inhibits Neuroinflammation and Inflammasome Activation Independent of Hypothermia After Ischemic Stroke. Mol Neurobiol 2021; 58:6136-6152. [PMID: 34455546 DOI: 10.1007/s12035-021-02542-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023]
Abstract
A depressive or hibernation-like effect of chlorpromazine and promethazine (C + P) on brain activity was reported to induce neuroprotection, with or without induced-hypothermia. However, the underlying mechanisms remain unclear. The current study evaluated the pharmacological function of C + P on the inhibition of neuroinflammatory response and inflammasome activation after ischemia/reperfusion. A total of 72 adult male Sprague-Dawley rats were subjected to 2 h middle cerebral artery occlusion (MCAO) followed by 6 or 24 h reperfusion. At the onset of reperfusion, rats received C + P (8 mg/kg) with temperature control. Brain cell death was detected by measuring CD68 and myeloperoxidase (MPO) levels. Inflammasome activation was measured by mRNA levels of NLRP3, IL-1β, and TXNIP, and protein quantities of NLRP3, IL-1β, TXNIP, cleaved-Caspase-1, and IL-18. Activation of JAK2/STAT3 pathway was detected by the phosphorylation of STAT3 (p-STAT3) and JAK2 (p-JAK2), and the co-localization of p-STAT3 and NLRP3. Activation of the p38 pathway was assessed with the protein levels of p-p38/p38. The mRNA and protein levels of HIF-1α, FoxO1, and p-FoxO1, and the co-localization of p-STAT3 with HIF-1α or FoxO1 were quantitated. As expected, C + P significantly reduced cell death and attenuated the neuroinflammatory response as determined by reduced CD68 and MPO. C + P decreased ischemia-induced inflammasome activation, shown by reduced mRNA and protein expressions of NLRP3, IL-1β, TXNIP, cleaved-Caspase-1, and IL-18. Phosphorylation of JAK2/STAT3 and p38 pathways and the co-localization of p-STAT3 with NLRP3 were also inhibited by C + P. Furthermore, mRNA levels of HIF-1α and FoxO1 were decreased in the C + P group. While C + P inhibited HIF-1α protein expression, it increased FoxO1 phosphorylation, which promoted the exclusion of FoxO1 from the nucleus and inhibited FoxO1 activity. At the same time, C + P reduced the co-localization of p-STAT3 with HIF-1α or FoxO1. In conclusion, C + P treatment conferred neuroprotection in stroke by suppressing neuroinflammation and NLRP3 inflammasome activation. The present study suggests that JAK2/STAT3/p38/HIF-1α/FoxO1 are vital regulators and potential targets for efficacious therapy following ischemic stroke.
Collapse
|
263
|
Komane PP, Kumar P, Choonara YE. Atrial Natriuretic Peptide Antibody-Functionalised, PEGylated Multiwalled Carbon Nanotubes for Targeted Ischemic Stroke Intervention. Pharmaceutics 2021; 13:pharmaceutics13091357. [PMID: 34575433 PMCID: PMC8471373 DOI: 10.3390/pharmaceutics13091357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/14/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Stroke is one of the major causes of disability and the second major cause of death around the globe. There is a dire need for an ultrasensitive detection tool and an effective and efficient therapeutic system for both detection and treatment of stroke at its infancy stage. Carbon nanotubes are promising nanomaterials for tackling these challenges. The loading of dexamethasone and decoration of PEGylated multiwalled carbon nanotube with atrial natriuretic peptide (ANP) antibody and fluorescein isothiocyanate for targeting ischemic site in the rat stroke model is presented here. Functionalisation of carbon nanotubes with dexamethasone (DEX), polyethylene glycol (PEG), fluorescein isothiocyanate (FITC), and ANP antibody caused a 63-fold increase in the D band intensity as illustrated by Raman. The characteristic band intensity increase was observed at 1636 nm following functionalisation of carbon nanotubes with polyethylene glycol and dexamethasone as confirmed by Fourier Transform Infrared. These findings have demonstrated the coupling capability of atrial natriuretic peptide antibody to DEX-PEG-CNTs. The baseline plasma atrial natriuretic peptide levels were ranging from 118 to 135.70 pg/mL prior to surgery and from 522.09 to 552.37 following common carotid artery occlusion. A decrease in atrial natriuretic peptide levels to 307.77 was observed when the rats were treated with FITC-DEX-PEG-ANP-CNTs, PEG-CNTs and DEX with a significant drop in the FITC-DEX-PEG-ANP-CNTs treated group. Fluorescence was detected in FITC-DEX-PEG-CNTs and FITC-DEX-PEG-ANP-CNTs treated ischemic stroke rats. The highest fluorescence intensity was reported in plasma (2179) followed by the kidney (1563) and liver (1507). These findings suggest a beneficial role that is played by the FITC-DEX-PEG-ANP-CNTs in the reduction of inflammation in the ischemic stroke induced rats that could induce a successful treatment of ischemic stroke.
Collapse
Affiliation(s)
- Patrick P. Komane
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Johannesburg 2193, South Africa; (P.P.K.); (P.K.)
- Department of Chemical Sciences, University of Johannesburg, 27 Nind Street, Johannesburg 2028, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Johannesburg 2193, South Africa; (P.P.K.); (P.K.)
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Johannesburg 2193, South Africa; (P.P.K.); (P.K.)
- Correspondence:
| |
Collapse
|
264
|
Ahn H, Lee SY, Jung WJ, Lee KH. Treatment of acute ischemic stroke by minimally manipulated umbilical cord-derived mesenchymal stem cells transplantation: A case report. World J Stem Cells 2021; 13:1151-1159. [PMID: 34567432 PMCID: PMC8422927 DOI: 10.4252/wjsc.v13.i8.1151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/23/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Stroke is one of the major causes of disability and death worldwide. Some treatments for stroke exist, but existing treatment methods have limitations such as difficulty in the regeneration of damaged neuronal cells of the brain. Recently, mesenchymal stem cells (MSCs) have been studied as a therapeutic alternative for stroke, and various preclinical and case studies have been reported.
CASE SUMMARY A 55-year-old man suffered an acute stroke, causing paralysis in the left upper and lower limbs. He intravenously transplanted the minimally manipulated human umbilical cord-derived MSCs (MM-UC-MSCs) twice with an 8-d interval. At 65 wk after transplantation, the patient returned to his previous occupation as a veterinarian with no adverse reactions.
CONCLUSION MM-UC-MSCs transplantation potentially treats patients who suffer from acute ischemic stroke.
Collapse
Affiliation(s)
- Hyunjun Ahn
- bio Beauty&Health Company (bBHC)-Stem Cell Treatment & Research Institute (STRI), Seoul 04420, South Korea
| | - Sang Yeon Lee
- bio Beauty&Health Company (bBHC)-Stem Cell Treatment & Research Institute (STRI), Seoul 04420, South Korea
| | - Won Ju Jung
- 97.7 Beauty&Health (B&H) Clinics, Seoul 04420, South Korea
| | - Kye-Ho Lee
- bio Beauty&Health Company (bBHC)-Stem Cell Treatment & Research Institute (STRI), Seoul 04420, South Korea
| |
Collapse
|
265
|
Farina M, Vieira LE, Buttari B, Profumo E, Saso L. The Nrf2 Pathway in Ischemic Stroke: A Review. Molecules 2021; 26:5001. [PMID: 34443584 PMCID: PMC8399750 DOI: 10.3390/molecules26165001] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke, characterized by the sudden loss of blood flow in specific area(s) of the brain, is the leading cause of permanent disability and is among the leading causes of death worldwide. The only approved pharmacological treatment for acute ischemic stroke (intravenous thrombolysis with recombinant tissue plasminogen activator) has significant clinical limitations and does not consider the complex set of events taking place after the onset of ischemic stroke (ischemic cascade), which is characterized by significant pro-oxidative events. The transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates the expression of a great number of antioxidant and/or defense proteins, has been pointed as a potential pharmacological target involved in the mitigation of deleterious oxidative events taking place at the ischemic cascade. This review summarizes studies concerning the protective role of Nrf2 in experimental models of ischemic stroke, emphasizing molecular events resulting from ischemic stroke that are, in parallel, modulated by Nrf2. Considering the acute nature of ischemic stroke, we discuss the challenges in using a putative pharmacological strategy (Nrf2 activator) that relies upon transcription, translation and metabolically active cells in treating ischemic stroke patients.
Collapse
Affiliation(s)
- Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil;
| | - Leonardo Eugênio Vieira
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil;
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
266
|
Differential effects of the cell cycle inhibitor, olomoucine, on functional recovery and on responses of peri-infarct microglia and astrocytes following photothrombotic stroke in rats. J Neuroinflammation 2021; 18:168. [PMID: 34332596 PMCID: PMC8325288 DOI: 10.1186/s12974-021-02208-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/02/2021] [Indexed: 11/17/2022] Open
Abstract
Background Following stroke, changes in neuronal connectivity in tissue surrounding the infarct play an important role in both spontaneous recovery of neurological function and in treatment-induced improvements in function. Microglia and astrocytes influence this process through direct interactions with the neurons and as major determinants of the local tissue environment. Subpopulations of peri-infarct glia proliferate early after stroke providing a possible target to modify recovery. Treatment with cell cycle inhibitors can reduce infarct volume and improve functional recovery. However, it is not known whether these inhibitors can influence neurological function or alter the responses of peri-infarct glia without reducing infarction. The present study aimed to address these issues by testing the effects of the cell cycle inhibitor, olomoucine, on recovery and peri-infarct changes following photothrombotic stroke. Methods Stroke was induced by photothrombosis in the forelimb sensorimotor cortex in Sprague-Dawley rats. Olomoucine was administered at 1 h and 24 h after stroke induction. Forelimb function was monitored up to 29 days. The effects of olomoucine on glial cell responses in peri-infarct tissue were evaluated using immunohistochemistry and Western blotting. Results Olomoucine treatment did not significantly affect maximal infarct volume. Recovery of the affected forelimb on a placing test was impaired in olomoucine-treated rats, whereas recovery in a skilled reaching test was substantially improved. Olomoucine treatment produced small changes in aspects of Iba1 immunolabelling and in the number of CD68-positive cells in cerebral cortex but did not selectively modify responses in peri-infarct tissue. The content of the astrocytic protein, vimentin, was reduced by 30% in the region of the lesion in olomoucine-treated rats. Conclusions Olomoucine treatment modified functional recovery in the absence of significant changes in infarct volume. The effects on recovery were markedly test dependent, adding to evidence that skilled tasks requiring specific training and general measures of motor function can be differentially modified by some interventions. The altered recovery was not associated with specific changes in key responses of peri-infarct microglia, even though these cells were considered a likely target for early olomoucine treatment. Changes detected in peri-infarct reactive astrogliosis could contribute to the altered patterns of functional recovery. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02208-w.
Collapse
|
267
|
Nishigaki A, Ichikawa Y, Ezaki M, Yamamoto A, Suzuki K, Tachibana K, Kamon T, Horie S, Masuda J, Makino K, Shiraki K, Shimpo H, Shimaoka M, Suzuki-Inoue K, Wada H. Soluble C-Type Lectin-Like Receptor 2 Elevation in Patients with Acute Cerebral Infarction. J Clin Med 2021; 10:jcm10153408. [PMID: 34362190 PMCID: PMC8348423 DOI: 10.3390/jcm10153408] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 01/01/2023] Open
Abstract
Background: Acute cerebral infarction (ACI) includes cardiogenic ACI treated with anticoagulants and atherosclerotic ACI treated with antiplatelet agents. The differential diagnosis between cardiogenic and atherosclerotic ACI is still difficult. Materials and Methods: The plasma sCLEC-2 and D-dimer levels were measured using the STACIA system. Results: The plasma sCLEC-2 level was significantly high in patients with ACI, especially those in patients with atherosclerotic or lacunar ACI, and plasma D-dimer levels were significantly high in patients with cardioembolic ACI. The plasma levels of sCLEC-2 and the sCLEC-2/D-dimer ratios in patients with atherosclerotic or lacunar ACI were significantly higher than those in patients with cardioembolic ACI. The plasma D-dimer levels in patients with atherosclerotic or lacunar ACI were significantly lower than those in patients with cardioembolic ACI. The plasma levels of sCLEC-2 and the sCLEC-2/D-dimer ratios were significantly higher in patients with atherosclerotic or lacunar ACI or acute myocardial infarction in comparison to patients with cardioembolic ACI or those with deep vein thrombosis. Conclusion: Using both the plasma sCLEC-2 and D-dimer levels may be useful for the diagnosis of ACI, and differentiating between atherosclerotic and cardioembolic ACI.
Collapse
Affiliation(s)
- Akisato Nishigaki
- Department of Neurology, Mie Prefectural General Medical Center, Yokkaichi 510-8561, Japan; (A.N.); (K.S.); (K.T.); (T.K.); (S.H.)
| | - Yuhuko Ichikawa
- Department of Central Laboratory, Mie Prefectural General Medical Center, Yokkaichi 510-8561, Japan; (Y.I.); (M.E.)
| | - Minoru Ezaki
- Department of Central Laboratory, Mie Prefectural General Medical Center, Yokkaichi 510-8561, Japan; (Y.I.); (M.E.)
| | - Akitaka Yamamoto
- Department of Emergency and Critical Care Center, Mie Prefectural General Medical Center, Yokkaichi 510-8561, Japan;
| | - Kenji Suzuki
- Department of Neurology, Mie Prefectural General Medical Center, Yokkaichi 510-8561, Japan; (A.N.); (K.S.); (K.T.); (T.K.); (S.H.)
| | - Kei Tachibana
- Department of Neurology, Mie Prefectural General Medical Center, Yokkaichi 510-8561, Japan; (A.N.); (K.S.); (K.T.); (T.K.); (S.H.)
| | - Toshitaka Kamon
- Department of Neurology, Mie Prefectural General Medical Center, Yokkaichi 510-8561, Japan; (A.N.); (K.S.); (K.T.); (T.K.); (S.H.)
| | - Shotaro Horie
- Department of Neurology, Mie Prefectural General Medical Center, Yokkaichi 510-8561, Japan; (A.N.); (K.S.); (K.T.); (T.K.); (S.H.)
| | - Jun Masuda
- Department of Cardiovascular Medicine, Mie Prefectural General Medical Center, Yokkaichi 510-8561, Japan; (J.M.); (K.M.)
| | - Katsutoshi Makino
- Department of Cardiovascular Medicine, Mie Prefectural General Medical Center, Yokkaichi 510-8561, Japan; (J.M.); (K.M.)
| | - Katsuya Shiraki
- Department of Laboratory and General Medicine, Mie Prefectural General Medical Center, Yokkaichi 510-8561, Japan;
| | - Hideto Shimpo
- Mie Prefectural General Medical Center, Yokkaichi 510-8561, Japan;
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan;
| | - Katsue Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, University of Yamanashi, Yamanashi 409-3898, Japan;
| | - Hideo Wada
- Department of Laboratory and General Medicine, Mie Prefectural General Medical Center, Yokkaichi 510-8561, Japan;
- Correspondence: ; Tel.: +81-59-345-2321
| |
Collapse
|
268
|
Molecular Analysis of Prothrombotic Gene Variants in Patients with Acute Ischemic Stroke and with Transient Ischemic Attack. ACTA ACUST UNITED AC 2021; 57:medicina57070723. [PMID: 34357004 PMCID: PMC8306646 DOI: 10.3390/medicina57070723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/03/2021] [Accepted: 07/14/2021] [Indexed: 12/28/2022]
Abstract
Background and objectives: ischemic stroke (IS) is among the most frequent causes of death worldwide; thus, it is of paramount relevance to know predisposing factors that may help to identify and treat the high-risk subjects. Materials and Methods:we tested nine variants in genes involved in thrombotic pathway in 282 patients that experienced IS and 87 that had transient ischemic attacks (TIA) in comparison to 430 subjects from the general population (GP) of the same geographic area (southern Italy). We included cases of young and child IS to evaluate the eventual differences in the role of the analyzed variants. Results: we did not observe significant differences between TIA and the GP for any of the variants, while the allele frequencies of methylene-tetrahydrofolate reductase (MTHFR) C677T, beta-fibrinogen -455G>A and factor (FXIII) V34L were significantly higher in patients with IS than in the subjects from the GP. No significant interaction was observed with sex. Conclusions: the present data argue that some gene variants have a role in IS and this appears to be an interesting possibility to be pursued in large population studies to help design specific strategies for IS prevention.
Collapse
|
269
|
The Prognostic Determinant of Interleukin-10 in Patients with Acute Ischemic Stroke: An Analysis from the Perspective of Disease Management. DISEASE MARKERS 2021; 2021:6423244. [PMID: 34336007 PMCID: PMC8313368 DOI: 10.1155/2021/6423244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/02/2021] [Accepted: 07/10/2021] [Indexed: 11/18/2022]
Abstract
Background In patients with ischemic stroke, the role of anti-inflammatory cytokine Interleukin-10 (IL-10) in predicting risk and outcomes is not very clear. This study is aimed at prospectively assessing the prognostic determinant value of IL-10 in patients with acute ischemic stroke in a cohort of Chinese people. Methods In a prospective cohort study, consecutive first-ever patients with acute ischemic stroke admitted to our hospital were included from October 2019 to October 2020. The serum level of IL-10 was measured at baseline. A structured follow-up telephone interview was performed on day 90 after admission. Logistic regression analyses were used to assess the prognostic value of IL-10 to predict the poor functional outcome (defined as a modified Rankin Scale score of 3 to 6) and mortality. Results The median age of the 236 enrolled patients was 65 years (interquartile range (IQR), 56-76), and 57.6% were male. There was a negative correlation between the National Institutes of Health Stroke Scale (NIHSS) score and IL-10 serum levels (r (Spearman) = −0.221, P = 0.001). Patients with elevated IL-10 levels (> the highest quartile = 5.24 pg/mL; n = 79) were at significantly lower risk of poor functional outcomes (odds ratio (OR), 0.35; 95% confidence interval (CI), 0.19 to 0.63; P < 0.001) and mortality (OR = 0.24; 95% CI = 0.11–0.52; P < 0.001) compared with patients with IL-10 levels in the lowest three quartiles. Conclusions Reduced serum levels of IL-10 were independently associated with both the clinical severity at admission and a poor functional prognosis in ischemic stroke patients, suggesting that the anti-inflammatory cytokine IL-10 was an important prognostic determinant.
Collapse
|
270
|
Zhang D, Ren J, Luo Y, He Q, Zhao R, Chang J, Yang Y, Guo ZN. T Cell Response in Ischemic Stroke: From Mechanisms to Translational Insights. Front Immunol 2021; 12:707972. [PMID: 34335623 PMCID: PMC8320432 DOI: 10.3389/fimmu.2021.707972] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/01/2021] [Indexed: 01/01/2023] Open
Abstract
Ischemic stroke, caused by a sudden disruption of blood flow to the brain, is a leading cause of death and exerts a heavy burden on both patients and public health systems. Currently available treatments for ischemic stroke are very limited and are not feasible in many patients due to strict time windows required for their administration. Thus, novel treatment strategies are keenly required. T cells, which are part of the adaptive immune system, have gained more attention for its effects in ischemic stroke. Both preclinical and clinical studies have revealed the conflicting roles for T cells in post-stroke inflammation and as potential therapeutic targets. This review summarizes the mediators of T cell recruitment, as well as the temporal course of its infiltration through the blood-brain-barrier, choroid plexus, and meningeal pathways. Furthermore, we describe the mechanisms behind the deleterious and beneficial effects of T cells in the brain, in both antigen-dependent and antigen-independent manners, and finally we specifically focus on clinical and preclinical studies that have investigated T cells as potential therapeutic targets for ischemic stroke.
Collapse
Affiliation(s)
- Dianhui Zhang
- Stroke Center, Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| | - Jiaxin Ren
- Stroke Center, Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| | - Yun Luo
- Stroke Center, Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China.,Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qianyan He
- Stroke Center, Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| | - Ruoyu Zhao
- Stroke Center, Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| | - Junlei Chang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yi Yang
- Stroke Center, Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| | - Zhen-Ni Guo
- Neuroscience Center, Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
271
|
Cheng C, Chen X, Wang Y, Cheng W, Zuo X, Tang W, Huang W. MSCs‑derived exosomes attenuate ischemia-reperfusion brain injury and inhibit microglia apoptosis might via exosomal miR-26a-5p mediated suppression of CDK6. Mol Med 2021; 27:67. [PMID: 34215174 PMCID: PMC8254277 DOI: 10.1186/s10020-021-00324-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/01/2021] [Indexed: 01/01/2023] Open
Abstract
Background This study aimed to explore the role of mesenchymal stromal cells (MSCs)-derived exosomes (MSCs-Exo) in the cerebral ischemia–reperfusion (I/R) injury. Methods Exosomes were isolated from MSCs of adult C57BL/6J mice by the gradient centrifugation method. The expression of miR-26a-5p and CDK6 in MSCs-Exo and mice brain tissues were evaluated by qRT-PCR and western blot. miR-26a-5p mimics and miR-NC were transfected into MSCs, and exosomes were isolated from the MSCs stably expressing miR-26a-5p. Then MSCs-Exo-miR-26a-5p mimics or MSCs-Exo-miR-NC was injected into mice through the tail vein, or added into medium to stimulate BV-2 cells. Cell viability was evaluated by CCK-8 assay. Cell apoptosis was detected by flow cytometry. The apoptosis in brain tissues was evaluated by TUNEL staining assay. Bioinformatics analysis and luciferase reporter assay were performed to determine the binding relationship between miR-26a-5p and CDK6. Results miR-26a-5p was downregulated and CDK6 was upregulated in MSCs-Exo of MCAO-mice and OGD-induced MSCs. MSCs-Exo-miR-26a-5p mimics significantly reduced cell apoptosis of OGD-injured BV-2 cells. MSCs-Exo-miR-26a-5p mimics significantly reduced the infarct volume of MCAO-induced mice. Luciferase reporter assay revealed that CDK-6 was a target of miR-26a-5p. In addition, MSCs-Exo-miR-26a-5p mimics significantly decreased the expression of CDK6 in both OGD-induced BV-2 cells and the brain tissues of MCAO-treated mice. Conclusion Our results indicated that MSCs‑Exo attenuated I/R injury in mice by inhibiting microglia apoptosis might via exosomal miR-26a-5p mediated suppression of CDK6. Our study shed light on the application of MSC-Exo as a potential therapeutic tool for cerebral I/R injury.
Collapse
Affiliation(s)
- Chang Cheng
- Department of Neurology, Xinqiao Hospital, Third Military Medical University (Army Medical University), No. 188 Xinqiaozheng Street, Chongqing, 400038, People's Republic of China
| | - Xiuying Chen
- Department of Neurology, Xinqiao Hospital, Third Military Medical University (Army Medical University), No. 188 Xinqiaozheng Street, Chongqing, 400038, People's Republic of China
| | - Yuhan Wang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University (Army Medical University), No. 188 Xinqiaozheng Street, Chongqing, 400038, People's Republic of China
| | - Wenchao Cheng
- Department of Neurology, Xinqiao Hospital, Third Military Medical University (Army Medical University), No. 188 Xinqiaozheng Street, Chongqing, 400038, People's Republic of China
| | - Xuzheng Zuo
- Department of Neurology, Xinqiao Hospital, Third Military Medical University (Army Medical University), No. 188 Xinqiaozheng Street, Chongqing, 400038, People's Republic of China
| | - Weiju Tang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University (Army Medical University), No. 188 Xinqiaozheng Street, Chongqing, 400038, People's Republic of China
| | - Wen Huang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University (Army Medical University), No. 188 Xinqiaozheng Street, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
272
|
Chumachenko MS, Waseem TV, Fedorovich SV. Metabolomics and metabolites in ischemic stroke. Rev Neurosci 2021; 33:181-205. [PMID: 34213842 DOI: 10.1515/revneuro-2021-0048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/09/2021] [Indexed: 12/27/2022]
Abstract
Stroke is a major reason for disability and the second highest cause of death in the world. When a patient is admitted to a hospital, it is necessary to identify the type of stroke, and the likelihood for development of a recurrent stroke, vascular dementia, and depression. These factors could be determined using different biomarkers. Metabolomics is a very promising strategy for identification of biomarkers. The advantage of metabolomics, in contrast to other analytical techniques, resides in providing low molecular weight metabolite profiles, rather than individual molecule profiles. Technically, this approach is based on mass spectrometry and nuclear magnetic resonance. Furthermore, variations in metabolite concentrations during brain ischemia could alter the principal neuronal functions. Different markers associated with ischemic stroke in the brain have been identified including those contributing to risk, acute onset, and severity of this pathology. In the brain, experimental studies using the ischemia/reperfusion model (IRI) have shown an impaired energy and amino acid metabolism and confirmed their principal roles. Literature data provide a good basis for identifying markers of ischemic stroke and hemorrhagic stroke and understanding metabolic mechanisms of these diseases. This opens an avenue for the successful use of identified markers along with metabolomics technologies to develop fast and reliable diagnostic tools for ischemic and hemorrhagic stroke.
Collapse
Affiliation(s)
- Maria S Chumachenko
- Department of Biochemistry, Faculty of Biology, Belarusian State University, Kurchatova St., 10, Minsk220030, Belarus
| | | | - Sergei V Fedorovich
- Department of Biochemistry, Faculty of Biology, Belarusian State University, Kurchatova St., 10, Minsk220030, Belarus
| |
Collapse
|
273
|
Mitani H, Tatsugami F, Higaki T, Kaichi Y, Nakamura Y, Smit E, Prokop M, Ono C, Ono K, Korogi Y, Awai K. Accuracy of thin-slice model-based iterative reconstruction designed for brain CT to diagnose acute ischemic stroke in the middle cerebral artery territory: a multicenter study. Neuroradiology 2021; 63:2013-2021. [PMID: 34191098 DOI: 10.1007/s00234-021-02745-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/02/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE Model-based iterative reconstruction (MBIR) yields higher spatial resolution and a lower image noise than conventional reconstruction methods. We hypothesized that thin-slice MBIR designed for brain CT could improve the detectability of acute ischemic stroke in the middle cerebral artery (MCA) territory. METHODS Included were 41 patients with acute ischemic stroke in the MCA territory; they were seen at 4 medical centers. The controls were 39 subjects without acute stroke. Images were reconstructed with hybrid IR and with MBIR designed for brain CT at slice thickness of 2 mm. We measured the image noise in the ventricle and compared the contrast-to-noise ratio (CNR) in the ischemic lesion. We analyzed the ability of reconstructed images to detect ischemic lesions using receiver operating characteristics (ROC) analysis; 8 observers read the routine clinical hybrid IR with 5 mm-thick images, while referring to 2 mm-thick hybrid IR images or MBIR images. RESULTS The image noise was significantly lower on MBIR- than hybrid IR images (1.2 vs. 3.4, p < 0.001). The CNR was significantly higher with MBIR than hybrid IR (6.3 vs. 1.6, p < 0.001). The mean area under the ROC curve was also significantly higher on hybrid IR plus MBIR than hybrid IR (0.55 vs. 0.48, p < 0.036). Sensitivity, specificity, and accuracy were 41.2%, 88.8%, and 65.7%, respectively, for hybrid IR; they were 58.8%, 86.1%, and 72.9%, respectively, for hybrid IR plus MBIR. CONCLUSION The additional thin-slice MBIR designed for brain CT may improve the detection of acute MCA stroke.
Collapse
Affiliation(s)
- Hidenori Mitani
- Department of Diagnostic Radiology, Graduate School of Biomedical and Health Sciences, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Graduate School of Biomedical and Health Sciences, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Toru Higaki
- Department of Diagnostic Radiology, Graduate School of Biomedical and Health Sciences, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yoko Kaichi
- Department of Diagnostic Radiology, Graduate School of Biomedical and Health Sciences, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yuko Nakamura
- Department of Diagnostic Radiology, Graduate School of Biomedical and Health Sciences, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Ewoud Smit
- Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, Netherlands
| | - Mathias Prokop
- Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, Netherlands
| | - Chiaki Ono
- Department of Diagnostic Radiology, Hiroshima City Asa Citizens Hospital, 2-1-1, Kabeminami, Asakita-ku, Hiroshima, 731-0293, Japan
| | - Ken Ono
- Department of Radiology, Shin Koga Hospital, 120, Tenjinmachi, Kurume, Fukuoka, 830-8577, Japan
| | - Yukunori Korogi
- Department of Radiology, University of Occupational and Environmental Health School of Medicine, 1-1, Iseigaoka, Yahatanishi-ku, 807-8555, Kitakyushu-shi, Fukuoka, Japan
| | - Kazuo Awai
- Department of Diagnostic Radiology, Graduate School of Biomedical and Health Sciences, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
274
|
Chojnowski K, Opielka M, Nazar W, Kowianski P, Smolenski RT. Neuroprotective Effects of Guanosine in Ischemic Stroke-Small Steps towards Effective Therapy. Int J Mol Sci 2021; 22:6898. [PMID: 34199004 PMCID: PMC8268871 DOI: 10.3390/ijms22136898] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Guanosine (Guo) is a nucleotide metabolite that acts as a potent neuromodulator with neurotrophic and regenerative properties in neurological disorders. Under brain ischemia or trauma, Guo is released to the extracellular milieu and its concentration substantially raises. In vitro studies on brain tissue slices or cell lines subjected to ischemic conditions demonstrated that Guo counteracts destructive events that occur during ischemic conditions, e.g., glutaminergic excitotoxicity, reactive oxygen and nitrogen species production. Moreover, Guo mitigates neuroinflammation and regulates post-translational processing. Guo asserts its neuroprotective effects via interplay with adenosine receptors, potassium channels, and excitatory amino acid transporters. Subsequently, guanosine activates several prosurvival molecular pathways including PI3K/Akt (PI3K) and MEK/ERK. Due to systemic degradation, the half-life of exogenous Guo is relatively low, thus creating difficulty regarding adequate exogenous Guo distribution. Nevertheless, in vivo studies performed on ischemic stroke rodent models provide promising results presenting a sustained decrease in infarct volume, improved neurological outcome, decrease in proinflammatory events, and stimulation of neuroregeneration through the release of neurotrophic factors. In this comprehensive review, we discuss molecular signaling related to Guo protection against brain ischemia. We present recent advances, limitations, and prospects in exogenous guanosine therapy in the context of ischemic stroke.
Collapse
Affiliation(s)
- Karol Chojnowski
- Faculty of Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland; (K.C.); (W.N.)
| | - Mikolaj Opielka
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
- International Research Agenda 3P—Medicine Laboratory, Medical University of Gdańsk, 3A Sklodowskiej-Curie Street, 80-210 Gdansk, Poland
| | - Wojciech Nazar
- Faculty of Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland; (K.C.); (W.N.)
| | - Przemyslaw Kowianski
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki Street, 80-211 Gdańsk, Poland;
- Institute of Health Sciences, Pomeranian University of Słupsk, Bohaterów Westerplatte 64, 76-200 Słupsk, Poland
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| |
Collapse
|
275
|
Orbán-Kálmándi R, Szegedi I, Sarkady F, Fekete I, Fekete K, Vasas N, Berényi E, Csiba L, Bagoly Z. A modified in vitro clot lysis assay predicts outcomes and safety in acute ischemic stroke patients undergoing intravenous thrombolysis. Sci Rep 2021; 11:12713. [PMID: 34135389 PMCID: PMC8208992 DOI: 10.1038/s41598-021-92041-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/27/2021] [Indexed: 12/27/2022] Open
Abstract
The outcome of intravenous thrombolysis using recombinant tissue plasminogen activator (rt-PA) is only favorable in ≈ 40% of acute ischemic stroke (AIS) patients. Moreover, in ≈ 6-8% of cases, intracerebral hemorrhage (ICH) develops. We tested whether a modification of clot lysis assay (CLA), might predict therapy outcomes and safety. In this prospective observational study, blood samples of 231 AIS patients, all receiving intravenous rt-PA, were taken before thrombolysis. Cell-free DNA (cfDNA), CLA and CLA supplemented with cfDNA and histones (mCLA) were determined from the blood samples. Stroke severity was determined by NIHSS on admission. ICH was classified according to ECASSII. Short- and long-term outcomes were defined at 7 and 90 days post-event according to ΔNIHSS and by the modified Rankin Scale, respectively. Stroke severity demonstrated a step-wise positive association with cfDNA levels, while a negative association was found with the time to reach 50% lysis (50%CLT) parameter of CLA and mCLA. ROC analysis showed improved diagnostic performance of the mCLA. Logistic regression analysis proved that 50%CLT is a predictor of short-term therapy failure, while the AUC parameter predicts ICH occurrence. A modified CLA, supplemented with cfDNA and histones, might be a promising tool to predict short-term AIS outcomes and post-lysis ICH.
Collapse
Affiliation(s)
- Rita Orbán-Kálmándi
- Division of Clinical Laboratory Sciences, Department of Laboratory Medicine, Faculty of Medicine, Kálmán Laki Doctoral School, University of Debrecen, 98 Nagyerdei krt., Debrecen, 4032, Hungary
| | - István Szegedi
- Department of Neurology, Faculty of Medicine, University of Debrecen, 22 Móricz Zsigmond krt., Debrecen, 4032, Hungary
| | - Ferenc Sarkady
- Division of Clinical Laboratory Sciences, Department of Laboratory Medicine, Faculty of Medicine, Kálmán Laki Doctoral School, University of Debrecen, 98 Nagyerdei krt., Debrecen, 4032, Hungary
| | - István Fekete
- Department of Neurology, Faculty of Medicine, University of Debrecen, 22 Móricz Zsigmond krt., Debrecen, 4032, Hungary
| | - Klára Fekete
- Department of Neurology, Faculty of Medicine, University of Debrecen, 22 Móricz Zsigmond krt., Debrecen, 4032, Hungary
| | - Nikolett Vasas
- Department of Radiology, Faculty of Medicine, University of Debrecen, 98 Nagyerdei krt., Debrecen, 4032, Hungary
| | - Ervin Berényi
- Department of Radiology, Faculty of Medicine, University of Debrecen, 98 Nagyerdei krt., Debrecen, 4032, Hungary
| | - László Csiba
- Department of Neurology, Faculty of Medicine, University of Debrecen, 22 Móricz Zsigmond krt., Debrecen, 4032, Hungary.,ELKH-DE Cerebrovascular and Neurodegenerative Research Group, 22 Móricz Zsigmond krt., Debrecen, 4032, Hungary
| | - Zsuzsa Bagoly
- Division of Clinical Laboratory Sciences, Department of Laboratory Medicine, Faculty of Medicine, Kálmán Laki Doctoral School, University of Debrecen, 98 Nagyerdei krt., Debrecen, 4032, Hungary. .,ELKH-DE Cerebrovascular and Neurodegenerative Research Group, 22 Móricz Zsigmond krt., Debrecen, 4032, Hungary.
| |
Collapse
|
276
|
Georgakopoulou T, van der Wijk AE, Bakker ENTP, vanBavel E. Recovery of Hypoxic Regions in a Rat Model of Microembolism. J Stroke Cerebrovasc Dis 2021; 30:105739. [PMID: 33765634 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES Endovascular treatment (EVT) has become the standard of care for acute ischemic stroke. Despite successful recanalization, a limited subset of patients benefits from the new treatment. Human MRI studies have shown that during removal of the thrombus, a shower of microclots is released from the initial thrombus, possibly causing new ischemic lesions. The aim of the current study is to quantify tissue damage following microembolism. MATERIALS AND METHODS In a rat model, microembolism was generated by injection of a mixture of polystyrene fluorescent microspheres (15, 25 and 50 µm in diameter). The animals were killed at three time-points: day 1, 3 or 7. AMIRA and IMARIS software was used for 3D reconstruction of brain structure and damage, respectively. CONCLUSIONS Microembolism induces ischemia, hypoxia and infarction. Infarcted areas persist, but hypoxic regions recover over time suggesting that repair processes in the brain rescue the regions at risk.
Collapse
Affiliation(s)
- Theodosia Georgakopoulou
- Amsterdam UMC, University of Amsterdam, Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands.
| | - Anne-Eva van der Wijk
- Amsterdam UMC, University of Amsterdam, Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands.
| | - Erik N T P Bakker
- Amsterdam UMC, University of Amsterdam, Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands.
| | - Ed vanBavel
- Amsterdam UMC, University of Amsterdam, Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
277
|
Duan R, Gao Y, He R, Jing L, Li Y, Gong Z, Yao Y, Luan T, Zhang C, Li L, Jia Y. Induced Pluripotent Stem Cells for Ischemic Stroke Treatment. Front Neurosci 2021; 15:628663. [PMID: 34135724 PMCID: PMC8202685 DOI: 10.3389/fnins.2021.628663] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
Ischemic stroke is one of the main central nervous system diseases and is associated with high disability and mortality rates. Recombinant tissue plasminogen activator (rt-PA) and mechanical thrombectomy are the optimal therapies available currently to restore blood flow in patients with stroke; however, their limitations are well recognized. Therefore, new treatments are urgently required to overcome these shortcomings. Recently, stem cell transplantation technology, involving the transplantation of induced pluripotent stem cells (iPSCs), has drawn the interest of neuroscientists and is considered to be a promising alternative for ischemic stroke treatment. iPSCs are a class of cells produced by introducing specific transcription factors into somatic cells, and are similar to embryonic stem cells in biological function. Here, we have reviewed the current applications of stem cells with a focus on iPSC therapy in ischemic stroke, including the neuroprotective mechanisms, development constraints, major challenges to overcome, and clinical prospects. Based on the current state of research, we believe that stem cells, especially iPSCs, will pave the way for future stroke treatment.
Collapse
Affiliation(s)
- Ranran Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruya He
- The International Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lijun Jing
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanfei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhe Gong
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaobing Yao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tingting Luan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chaopeng Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Li
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yanjie Jia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
278
|
Xu X, Gao W, Li L, Hao J, Yang B, Wang T, Li L, Bai X, Li F, Ren H, Zhang M, Zhang L, Wang J, Wang D, Zhang J, Jiao L. Annexin A1 protects against cerebral ischemia-reperfusion injury by modulating microglia/macrophage polarization via FPR2/ALX-dependent AMPK-mTOR pathway. J Neuroinflammation 2021; 18:119. [PMID: 34022892 PMCID: PMC8140477 DOI: 10.1186/s12974-021-02174-3] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Background Cerebral ischemia–reperfusion (I/R) injury is a major cause of early complications and unfavorable outcomes after endovascular thrombectomy (EVT) therapy in patients with acute ischemic stroke (AIS). Recent studies indicate that modulating microglia/macrophage polarization and subsequent inflammatory response may be a potential adjunct therapy to recanalization. Annexin A1 (ANXA1) exerts potent anti-inflammatory and pro-resolving properties in models of cerebral I/R injury. However, whether ANXA1 modulates post-I/R-induced microglia/macrophage polarization has not yet been fully elucidated. Methods We retrospectively collected blood samples from AIS patients who underwent successful recanalization by EVT and analyzed ANXA1 levels longitudinally before and after EVT and correlation between ANXA1 levels and 3-month clinical outcomes. We also established a C57BL/6J mouse model of transient middle cerebral artery occlusion/reperfusion (tMCAO/R) and an in vitro model of oxygen–glucose deprivation and reoxygenation (OGD/R) in BV2 microglia and HT22 neurons to explore the role of Ac2-26, a pharmacophore N-terminal peptide of ANXA1, in regulating the I/R-induced microglia/macrophage activation and polarization. Results The baseline levels of ANXA1 pre-EVT were significantly lower in 23 AIS patients, as compared with those of healthy controls. They were significantly increased to the levels found in controls 2–3 days post-EVT. The increased post-EVT levels of ANXA1 were positively correlated with 3-month clinical outcomes. In the mouse model, we then found that Ac2-26 administered at the start of reperfusion shifted microglia/macrophage polarization toward anti-inflammatory M2-phenotype in ischemic penumbra, thus alleviating blood–brain barrier leakage and neuronal apoptosis and improving outcomes at 3 days post-tMCAO/R. The protection was abrogated when mice received Ac2-26 together with WRW4, which is a specific antagonist of formyl peptide receptor type 2/lipoxin A4 receptor (FPR2/ALX). Furthermore, the interaction between Ac2-26 and FPR2/ALX receptor activated the 5’ adenosine monophosphate-activated protein kinase (AMPK) and inhibited the downstream mammalian target of rapamycin (mTOR). These in vivo findings were validated through in vitro experiments. Conclusions Ac2-26 modulates microglial/macrophage polarization and alleviates subsequent cerebral inflammation by regulating the FPR2/ALX-dependent AMPK-mTOR pathway. It may be investigated as an adjunct strategy for clinical prevention and treatment of cerebral I/R injury after recanalization. Plasma ANXA1 may be a potential biomarker for outcomes of AIS patients receiving EVT. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02174-3.
Collapse
Affiliation(s)
- Xin Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China. .,China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China.
| | - Weiwei Gao
- Department of Neurology, Tianjin Huanhu Hospital, 6 Jizhao Road, Tianjin, 300350, China.
| | - Lei Li
- Department of Neurosurgery & Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
| | - Jiheng Hao
- Department of Neurosurgery, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, 252000, China
| | - Bin Yang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China
| | - Long Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China
| | - Xuesong Bai
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China
| | - Fanjian Li
- Department of Neurosurgery & Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
| | - Honglei Ren
- Department of Neurosurgery & Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
| | - Meng Zhang
- Department of Neurosurgery, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, 252000, China
| | - Liyong Zhang
- Department of Neurosurgery, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, 252000, China
| | - Jiyue Wang
- Department of Neurosurgery, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, 252000, China
| | - Dong Wang
- Department of Neurosurgery & Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
| | - Jianning Zhang
- Department of Neurosurgery & Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China. .,China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China. .,Department of Interventional Neuroradiology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
| |
Collapse
|
279
|
Chen Z, Gao M, Su Y, Liu P, Sun B. Running Promotes Transformation of Brain Astrocytes Into Neuroprotective Reactive Astrocytes and Synaptic Formation by Targeting Gpc6 Through the STAT3 Pathway. Front Physiol 2021; 12:633618. [PMID: 34122124 PMCID: PMC8189178 DOI: 10.3389/fphys.2021.633618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/23/2021] [Indexed: 11/25/2022] Open
Abstract
Ischemic stroke is caused by cerebral ischemia upon the blockage of an artery, which results in a high disability rate. Little is known regarding the mechanism of astrocyte function in cerebral ischemia. We aimed to determine the effects of running on the transformation of astrocytes, and subsequent synapse formation. A study of middle cerebral artery occlusion (MCAO) after running in vivo showed that running can promote the transformation of astrocytes toward the neuroprotective phenotype. Our findings of oxygen-glucose deprived astrocytes in vitro after running revealed that these astrocytes transformed into the neuroprotective phenotype, and that the expression of STAT3 and Gpc6 was increased. We confirmed that mechanistically, running can target Gpc6 through the STAT3 pathway and then regulate the number of synapses. We concluded that running promotes synapse proliferation by polarizing astrocytes toward the neuroprotective phenotype and ultimately leads to nerve regeneration.
Collapse
Affiliation(s)
- Zhe Chen
- School of Physical Education & Sports Science, South China Normal University, Guangzhou, China
| | - Meng Gao
- School of Physical Education & Sports Science, South China Normal University, Guangzhou, China
| | - Yanlin Su
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengran Liu
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binlei Sun
- Department of Cardiothoracic Surgery, Xiangya Changde Hospital, Changde, China
| |
Collapse
|
280
|
Weng Y, Zeng T, Huang H, Ren J, Wang J, Yang C, Pan W, Hu J, Sun F, Zhou X, Qiu H, Gao Y, Gao B, Chi L, Chen G. Systemic Immune-Inflammation Index Predicts 3-Month Functional Outcome in Acute Ischemic Stroke Patients Treated with Intravenous Thrombolysis. Clin Interv Aging 2021; 16:877-886. [PMID: 34040364 PMCID: PMC8143961 DOI: 10.2147/cia.s311047] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/29/2021] [Indexed: 12/16/2022] Open
Abstract
Background and Purpose Systemic immune-inflammation index (SII), a novel inflammation index derived from counts of circulating platelets, neutrophils and lymphocytes, has been studied in developing incident cancer. However, the clinical value of SII in acute ischemic stroke (AIS) patients had not been further investigated. Therefore, we aimed to explore the association between SII and severity of stroke as well as 3-month outcome of AIS patients. Methods A total of 216 AIS patients receiving intravenous thrombolysis (IVT) and 875 healthy controls (HCs) were retrospectively recruited. Blood samples were collected within 24h after admission. Severity of stroke was assessed by the National Institute of Health stroke scale (NIHSS) scores on admission and poor 3-month functional outcome was defined as Modified Rankin Scale (mRS) > 2. Results SII levels in AIS patients were higher than in HCs. The cut-off value of SII is 545.14×109/L. Patients with SII > 545.14×109/L had higher NIHSS scores (median: 5 vs 9, p < 0.001), a positive correlation between SII and NIHSS was observed (rs = 0.305, p < 0.001). Multivariate logistic regression analyses showed that high SII was one of the independent risk factors for poor prognosis at 3 months of AIS patients (OR = 3.953, 95% CI = 1.702-9.179, p = 0.001). The addition of SII to the conventional prognostic model improved the reclassification (but not discrimination) of the functional outcome (net reclassification index 39.3%, p = 0.007). Conclusion SII is correlated with stroke severity at admission and can be a novel prognostic biomarker for AIS patients treated with IVT.
Collapse
Affiliation(s)
- Yiyun Weng
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Tian Zeng
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China.,Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Honghao Huang
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China.,Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Junli Ren
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China.,Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jianing Wang
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China.,Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Chenguang Yang
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China.,Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Wenjing Pan
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China.,Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jingyu Hu
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China.,Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Fangyue Sun
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China.,Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xinbo Zhou
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China.,Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Haojie Qiu
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China.,Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yufan Gao
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China.,Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Beibei Gao
- Department of Internal Medicine, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Lifen Chi
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Guangyong Chen
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
281
|
Xiang Z, Jiang X, Ji R, Yuan H. Enhanced expression of P2X4 purinoceptors in pyramidal neurons of the rat hippocampal CA1 region may be involved ischemia-reperfusion injury. Purinergic Signal 2021; 17:425-438. [PMID: 33966147 DOI: 10.1007/s11302-021-09780-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 03/01/2021] [Indexed: 01/01/2023] Open
Abstract
Ischemic stroke is the most serious disease that harms human beings. In principle, its treatment is to restore blood flow supply as soon as possible. However, after the blood flow is restored, it will lead to secondary brain injury, that is, ischemia-reperfusion injury. The mechanism of ischemia-reperfusion injury is very complicated. This study showed that P2X4 receptors in the pyramidal neurons of rat hippocampus were significantly upregulated in the early stage of ischemia-reperfusion injury. Neurons with high expression of P2X4 receptors are neurons that are undergoing apoptosis. Intraventricular injection of the P2X4 receptor antagonist 5-(3-bromophenyl)-1,3-dihydro-2H-benzofuro[3,2-e]-1,4-diazepin-2-one (5-BDBD) and PSB-12062 can partially block neuronal apoptosis, to promote the survival of neurons, indicating that ATP through P2X4 receptors is involved in the process of cerebral ischemia-reperfusion injury. Therefore, identifying the mechanism of neuronal degeneration induced by extracellular ATP via P2X4 receptors after ischemia-reperfusion will likely find new targets for the treatment of ischemia-reperfusion injury, and will provide a useful theoretical basis for the treatment of ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Zhenghua Xiang
- Department of Neurobiology, MOE Key Laboratory of Molecular Neurobiology, Ministry of Education, Second Military Medical University, Shanghai, 200433, People's Republic of China.
| | - Xin Jiang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Rihui Ji
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| |
Collapse
|
282
|
Abstract
This article aims to provide a comprehensive overview of key advances on various aspects of hyper-acute management of acute ischaemic stroke. These include neuroimaging, acute stroke unit care, management of blood pressure, reperfusion therapy including intravenous thrombolysis, mechanical thrombectomy and decompressive hemicraniectomy for malignant stroke syndrome. The challenge ahead is to ensure these evidence-based treatments are now being delivered and implemented to maximise the benefits across the population.
Collapse
Affiliation(s)
| | | | - Jonathan Birns
- St Thomas' Hospital, London, UK and deputy head of School of Medicine, Health Education England, London, UK
| |
Collapse
|
283
|
Huang L, Lenahan C, Boling W, Tang J, Zhang JH. Molecular Hydrogen Application in Stroke: Bench to Bedside. Curr Pharm Des 2021; 27:703-712. [PMID: 32940172 DOI: 10.2174/1381612826666200917152316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022]
Abstract
Stroke is a major cause of mortality and morbidity worldwide. Effective treatments are limited. Molecular hydrogen is emerging as a novel medical gas with therapeutic potential for various neurological diseases, including stroke. We reviewed the experimental and clinical findings of the effects of molecular hydrogen therapy in stroke patients and models. The underlying neuroprotective mechanisms against stroke pathology were also discussed.
Collapse
Affiliation(s)
- Lei Huang
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA92354, United States
| | - Cameron Lenahan
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, 92324, United States
| | - Warren Boling
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA92354, United States
| | - Jiping Tang
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, 92324, United States
| | - John H Zhang
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA92354, United States
| |
Collapse
|
284
|
Chen J, Liu P, Dong X, Jin J, Xu Y. The role of lncRNAs in ischemic stroke. Neurochem Int 2021; 147:105019. [PMID: 33905763 DOI: 10.1016/j.neuint.2021.105019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Ischemic stroke is a leading cause of disability and mortality worldwide due to the narrow therapeutic time window of the only two approved therapies, intravenous thrombolysis and thrombectomy. The pathophysiological processes of ischemic stroke are driven by multiple complex molecular and cellular interactions that ultimately induce brain damage and neurobehavioral impairment. Long non-coding RNAs (LncRNAs) are significantly altered in the blood and brains of ischemic stroke patients and play a critical role in the pathogenesis of stroke, which serve as potential targets for stroke interventions. In this review, we provide an overview of the roles of lncRNAs in the pathophysiology of ischemic stroke and discuss the opportunities and challenges for the clinical application of lncRNAs in the diagnosis and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jian Chen
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Pinyi Liu
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Xiaohong Dong
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Jiali Jin
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.
| |
Collapse
|
285
|
Barkas F, Liberopoulos E, Milionis H. Authors' Reply to: Do All Gliflozins Reduce Stroke in Patients with Type 2 Diabetes Mellitus and Impaired Renal Function? J Stroke Cerebrovasc Dis 2021; 30:105810. [PMID: 33888433 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Fotios Barkas
- Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Ioannina, Stavrou Niarchou Avenue, Ioannina, Epirus, 45110 Ioannina, Greece
| | - Evangelos Liberopoulos
- Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Ioannina, Stavrou Niarchou Avenue, Ioannina, Epirus, 45110 Ioannina, Greece
| | - Haralampos Milionis
- Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Ioannina, Stavrou Niarchou Avenue, Ioannina, Epirus, 45110 Ioannina, Greece.
| |
Collapse
|
286
|
Shehata GA, Lord KC, Grudzinski MC, Elsayed M, Abdelnaby R, Elshabrawy HA. Neurological Complications of COVID-19: Underlying Mechanisms and Management. Int J Mol Sci 2021; 22:4081. [PMID: 33920904 PMCID: PMC8071289 DOI: 10.3390/ijms22084081] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
COVID-19 is a severe respiratory disease caused by the newly identified human coronavirus (HCoV) Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The virus was discovered in December 2019, and in March 2020, the disease was declared a global pandemic by the World Health Organization (WHO) due to a high number of cases. Although SARS-CoV-2 primarily affects the respiratory system, several studies have reported neurological complications in COVID-19 patients. Headache, dizziness, loss of taste and smell, encephalitis, encephalopathy, and cerebrovascular diseases are the most common neurological complications that are associated with COVID-19. In addition, seizures, neuromuscular junctions' disorders, and Guillain-Barré syndrome were reported as complications of COVID-19, as well as neurodegenerative and demyelinating disorders. However, the management of these conditions remains a challenge. In this review, we discuss the prevalence, pathogenesis, and mechanisms of these neurological sequelae that are secondary to SARS-CoV-2 infection. We aim to update neurologists and healthcare workers on the possible neurological complications associated with COVID-19 and the management of these disease conditions.
Collapse
Affiliation(s)
- Ghaydaa A. Shehata
- Department of Neurology and Psychiatry, Assiut University Hospitals, Assiut 71511, Egypt;
| | - Kevin C. Lord
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA;
| | | | - Mohamed Elsayed
- Department of Psychiatry and Psychotherapy III, University of Ulm, Leimgrubenweg 12-14, 89075 Ulm, Germany;
| | - Ramy Abdelnaby
- Department of Neurology, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany;
| | - Hatem A. Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| |
Collapse
|
287
|
Yin M, Chen WP, Yin XP, Tu JL, Hu N, Li ZY. LncRNA TUG1 Demethylated by TET2 Promotes NLRP3 Expression, Contributes to Cerebral Ischemia/Reperfusion Inflammatory Injury. ASN Neuro 2021; 13:17590914211003247. [PMID: 33853366 PMCID: PMC8058810 DOI: 10.1177/17590914211003247] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
LncRNA TUG1 has not yet been reported in cerebral ischemia/reperfusion (I/R) injury. Methylcytosine dioxygenase TET2 is involved in ischemic damage. This study aimed to investigate the effects of TUG1 demethylated by TET2 on I/R-induced inflammatory response and identified its possible mechanisms.We found that TUG1 expression was significantly upregulated in oxygen-glucose deprivation and reoxygenation (OGD/R)-induced SH-SY5Y and SK-N-SH cells. Using the middle cerebral artery occlusion (MCAO) mice, we observed a similar effect. We also found that I/R injury could downregulate miR-200a-3p and upregulate NLRP3 and TET2. The knockdown of TUG1 could alleviate OGD/R-induced inflammatory response through upregulating miR-200a-3p and downregulating NLRP3 and other pro-inflammatory molecules. miR-200a-3p inhibition can partially reverse the effects of TUG1 silencing. Further experiments confirmed that TUG1 sponged miR-200a-3p to diminish miR-200a-3p and promote NLRP3 dependent inflammatory responses. Mechanically, knockdown of TET2 induced low levels of TUG1 and high levels of miR-200a-3p in both SK-N-SH and SH-SY5Y cells. IL-18, IL-1β, NLRP3, Caspase-1, and GSDMD-N were highly downregulated in OGD/R-induced SK-N-SH and SH-SY5Y cells after TET2 knockdown. TUG1 overexpression could reverse this effect. All the data indicated that TET2 could demethylate TUG1 and contribute to the inflammatory response. In additional experiments using the MCAO mice model, we confirmed knockdown of TET2 attenuated I/R-induced inflammatory response and brain injuries via decreasing TUG1 and increasing miR-200a-3p to inhibit NLRP3 expression. The demethylation of TUG1 by TET2 might aggravate I/R-induced inflammatory injury via modulating NLRP3 by miR-200a-3p. Our data confirmed that TET2 contributed to I/R-induced inflammatory response via the demethylation of TUG1 and regulated TUG1/miR-200a-3p/NLRP3 pathway.
Collapse
Affiliation(s)
- Min Yin
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Wei-Ping Chen
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Xiao-Ping Yin
- Department of Neurology, The Affiliated Hospital of Jiujiang University, Jiujiang, P.R. China
| | - Jiang-Long Tu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Na Hu
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Zheng-Yu Li
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| |
Collapse
|
288
|
Li M, Liang W, Yue P, Jiang X, Zhao Z, Zhao B, Xu Z, Mang J. Does radiological conjugate eye deviation sign play a role in acute stroke imaging? A meta-analysis. J Neurol 2021; 269:1142-1153. [PMID: 33839904 DOI: 10.1007/s00415-021-10540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE The diagnostic value of non-contrast CT (NCCT) in acute stroke imaging remains indispensable, especially under emergency conditions with limited resources. The radiological conjugate eye deviation (RCED) has been demonstrated as a NCCT sign to predict acute ischemic stroke (AIS) or AIS secondary to large vessel occlusion (LVO) in recent studies. We performed a meta-analysis to gain a better understanding into the predictive role of RCED for AISs and LVO-AISs. METHODS We conducted a systematic literature search using PubMed, Embase, and Cochrane. The search focused on studies published between January 2000 and August 2020 that reported the predictive value of RCED for the diagnosis of AIS or LVO-AIS. Principal measurements of the meta-analysis were the overall sensitivity, specificity, the positive likelihood ratio (PLR), and the negative likelihood ratio (NLR) of RCED in predicting AIS and LVO-AIS. RESULTS We included 11 studies (n = 2304). For AIS, RCED had a sensitivity of 0.37 (95% CI 0.27-0.47), a specificity of 0.86 (95% CI 0.73-0.93), the area under the receiver operating characteristic curve (AUC) was 0.58 (95% CI 0.53-0.62), PLR was 2.5 (95% CI 1.5-4.4), and NLR was 0.74 (95% CI 0.65-0.84). For LVO-AIS, RCED had a sensitivity of 0.63 (95% CI 0.46-0.77), a specificity of 0.77 (95% CI 0.71-0.82), AUC was 0.63 (95% CI 0.46-0.77), PLR was 2.7 (95% CI 1.7-4.3), and NLR was 0.49 (95% CI 0.3-0.78). CONCLUSION RCED can be used to predict LVO-AIS. It is expected that this method will be extensively used and validated in acute stroke imaging, especially under emergency conditions with limited resources.
Collapse
Affiliation(s)
- Mengxue Li
- Department of Neurology, China-Japan Union Hospital of Jilin University, No.126 Xiantai Road, Nanguan District, Changchun, China
| | - Wenzhao Liang
- Department of Neurology, China-Japan Union Hospital of Jilin University, No.126 Xiantai Road, Nanguan District, Changchun, China
| | - Peng Yue
- Department of Emergency, The First Hospital of Zibo, Zibo, China
| | - Xinzhao Jiang
- Department of Neurology, China-Japan Union Hospital of Jilin University, No.126 Xiantai Road, Nanguan District, Changchun, China
| | - Zhongyu Zhao
- Department of Neurology, China-Japan Union Hospital of Jilin University, No.126 Xiantai Road, Nanguan District, Changchun, China
| | - Bingyang Zhao
- Department of Neurology, China-Japan Union Hospital of Jilin University, No.126 Xiantai Road, Nanguan District, Changchun, China
| | - Zhongxin Xu
- Department of Neurology, China-Japan Union Hospital of Jilin University, No.126 Xiantai Road, Nanguan District, Changchun, China.
| | - Jing Mang
- Department of Neurology, China-Japan Union Hospital of Jilin University, No.126 Xiantai Road, Nanguan District, Changchun, China.
| |
Collapse
|
289
|
Li G, Walter SD, Thabane L. Shifting the focus away from binary thinking of statistical significance and towards education for key stakeholders: revisiting the debate on whether it's time to de-emphasize or get rid of statistical significance. J Clin Epidemiol 2021; 137:104-112. [PMID: 33839240 DOI: 10.1016/j.jclinepi.2021.03.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/03/2021] [Accepted: 03/10/2021] [Indexed: 01/01/2023]
Abstract
There has been a long-standing controversy among scientists regarding the appropriate use of P-values and statistical significance in clinical research. This debate has resurfaced through recent calls to modify the threshold of P-value required to declare significance, or to retire statistical significance entirely. In this article, we revisit the issue by discussing: i) the connection between statistical thinking and evidence-based practice; ii) some history of statistical significance and P-values; iii) some practical challenges with statistical significance or P-value thresholds in clinical research; iv) the on-going debate on what to do with statistical significance; v) suggestions to shift the focus away from binary thinking of statistical significance and towards education for key stakeholders on research essentials including statistical thinking, critical thinking, good reporting, basic clinical research concepts and methods, and more. We then conclude with remarks and illustrations of the potential deleterious public health consequences of poor methods including selective choice of analysis approach and misguided reliance on binary use of P-values to report and interpret scientific findings.
Collapse
Affiliation(s)
- Guowei Li
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou City, Guangdong Province, China 510317; Department of Health research methods, Evidence, and Impact (HEI), McMaster University, Hamilton, Ontario, Canada
| | - Stephen D Walter
- Department of Health research methods, Evidence, and Impact (HEI), McMaster University, Hamilton, Ontario, Canada
| | - Lehana Thabane
- Department of Health research methods, Evidence, and Impact (HEI), McMaster University, Hamilton, Ontario, Canada; Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada; Father Sean O'Sullivan Research Centre, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada.
| |
Collapse
|
290
|
Hoque MM, Abdelazim H, Jenkins-Houk C, Wright D, Patel BM, Chappell JC. The cerebral microvasculature: Basic and clinical perspectives on stroke and glioma. Microcirculation 2021; 28:e12671. [PMID: 33171539 PMCID: PMC11064683 DOI: 10.1111/micc.12671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/13/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
Microvascular networks are vital components of the cardiovascular system, performing many key roles in maintaining the health and homeostasis of the tissues and organs in which they develop. As discussed in this review, the molecular and cellular components within the microcirculation orchestrate critical processes to establish functional capillary beds, including organization of endothelial cell (EC) polarity, guiding investment of vascular pericytes (PCs), and building the specialized extracellular matrix (ECM) that comprises the vascular basement membrane (vBM). Herein, we further discuss the unique features of the microvasculature in the central nervous system (CNS), focusing on the cells contributing to the neurovascular unit (NVU) that form and maintain the blood-brain barrier (BBB). With a focus on vascular PCs, we offer basic and clinical perspectives on neurovascular-related pathologies that involve defects within the cerebral microvasculature. Specifically, we present microvascular anomalies associated with glioblastoma multiforme (GBM) including defects in vascular-immune cell interactions and associated clinical therapies targeting microvessels (ie, vascular-disrupting/anti-angiogenic agents and focused ultrasound). We also discuss the involvement of the microcirculation in stroke responses and potential therapeutic approaches. Our goal was to compare the cellular and molecular changes that occur in the microvasculature and NVU, and to provide a commentary on factors driving disease progression in GBM and stroke. We conclude with a forward-looking perspective on the importance of microcirculation research in developing clinical treatments for these devastating conditions.
Collapse
Affiliation(s)
- Maruf M. Hoque
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA 24061, USA
| | - Hanaa Abdelazim
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA 24061, USA
| | | | - Dawn Wright
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
| | - Biraj M. Patel
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
- Department of Radiology, Carilion Clinic, Roanoke, VA, 24016, USA
| | - John C. Chappell
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
291
|
Wang Z, Chen W, Lin H, Luo S, Liu Y, Lin Y, Tao Y, Huang W. Early diagnosis and prediction of intracranial hemorrhage using dual-energy computed tomography after mechanical thrombectomy in patients with acute ischemic stroke. Clin Neurol Neurosurg 2021; 203:106551. [PMID: 33636506 DOI: 10.1016/j.clineuro.2021.106551] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE This study assesses the clinical value of dual-energy computed tomography (DECT) in the early diagnosis of intracranial hemorrhage and evaluates the risk of hemorrhagic transformation in patients with acute ischemic stroke (AIS) after mechanical thrombectomy. METHODS Patients with AIS who have undergone thrombectomy with Solitaire stent and DECT within one hour after surgery were prospectively enrolled. Linear mixed energy images, virtual non-contrast (VNC) image, and iodine overlay map (IOM) were obtained. Routine CT scan was performed 24 h postoperatively. The sensitivity, specificity, positive and negative predictive values, and accuracy of DECT in the early diagnosis of intracranial hemorrhage was evaluated. The iodine concentration of intracranial lesions was measured by IOM with the follow-up results taken as reference. Receiver operating characteristic (ROC) analysis was performed to obtain the threshold of hemorrhagic transformation and increased bleeding. RESULTS Among the 44 patients enrolled in this study, 25 (56.8 %) were diagnosed with simple extravasation of iodinated contrast agent, and 19 (43.2 %) showed intracranial hemorrhage in DECT. Compared with the follow-up CT 24 h after surgery, early diagnosis of postoperative intracranial hemorrhage using DECT demonstrated a sensitivity of 90.5 %, specificity of 100 %, positive predictive rate of 100 %, negative predictive rate of 92.0 %, and accuracy of 95.5 %. Among the 86 intracranial lesions that underwent iodine concentration measurement, 19 were diagnosed with hemorrhagic transformation or increased bleeding, and 67 were diagnosed without the aforementioned conditions. The sensitivity and specificity for differentiating the two groups were 73.7 % and 92.5 %, respectively, with a cut-off value of 2.7 mg/mL. CONCLUSION DECT is clinically valuable in early diagnosis and prediction of intracranial hemorrhage after mechanical thrombectomy in AIS patients.
Collapse
Affiliation(s)
- Zhenshan Wang
- Medical Imaging Center, Jieyang People's Hospital, Jieyang, Guangdong, China
| | - Wanqi Chen
- Medical Imaging Center, Jieyang People's Hospital, Jieyang, Guangdong, China
| | - Haitao Lin
- Medical Imaging Center, Jieyang People's Hospital, Jieyang, Guangdong, China
| | - Shiwei Luo
- Neurology, Jieyang People's Hospital, Jieyang, Guangdong, China
| | - Yuan Liu
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yang Lin
- Siemens Healthcare Ltd, Shanghai 201318, China
| | - Ying Tao
- Siemens Healthcare Ltd, Shanghai 201318, China
| | - Weipeng Huang
- Medical Imaging Center, Jieyang People's Hospital, Jieyang, Guangdong, China.
| |
Collapse
|
292
|
Reminiscence therapy serves as an optional nursing care strategy in attenuating cognitive impairment, anxiety, and depression in acute ischemic stroke patients. Ir J Med Sci 2021; 191:877-884. [PMID: 33755917 DOI: 10.1007/s11845-021-02600-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/11/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Reminiscence therapy is revealed to improve cognitive function and attenuate psychological disorders in neurological diseases such as Alzheimer's disease patients, while its application in acute ischemic stroke (AIS) is seldom reported. So, the current study aimed to explore the effect of reminiscence therapy on cognitive impairment, anxiety, depression, and disease recurrence in AIS patients. METHODS A total of 216 first-ever AIS patients were enrolled and randomized into reminiscence therapy group or control group in 1:1 ratio. MMSE, HADS, and Zung SAS/SDS scales were evaluated at the discharge from hospital (M0), 3 months (M3), 6 months (M6), 9 months (M9), and 12 months (M12), respectively. Besides, patients were further followed up to 36 months for recurrence-free survival (RFS) calculation. RESULTS Reminiscence therapy group showed higher MMSE score at M9 and M12, lower cognitive impairment rate by MMSE at M12 compared to control group. As to anxiety, HADS-anxiety score and anxiety rate by HADS were of no difference at each time point, while SAS score and anxiety rate by SAS were lower at M12 in reminiscence therapy group compared with control group. Regarding depression, HADS-depression score and depression rate by HADS at M12, SDS score at M9 and M12, and depression rate by SDS at M12 were all lower in reminiscence therapy group compared with control group. In terms of RFS, it was similar between reminiscence therapy group and control group. CONCLUSION Reminiscence therapy cripples cognitive impairment, anxiety, and depression, but does not affect RFS in AIS patients, indicating its potential for post-stroke management.
Collapse
|
293
|
Serum ICAM-1 as a Predictor of Prognosis in Patients with Acute Ischemic Stroke. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5539304. [PMID: 33791362 PMCID: PMC7997739 DOI: 10.1155/2021/5539304] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
Abstract
Objective Inflammation is one of the key mechanisms involved in functional impairment after stroke. Intercellular adhesion molecule-1 (ICAM-1) is an important inflammatory molecule in the body. The purpose of our study was to determine the correlation between ICAM-1 and the prognosis of acute ischemic stroke (AIS). Methods 286 AIS patients treated at Beijing Tiantan Hospital were continuously included in the study. The demographic data of the patients were collected, and the fasting blood within 24 hours of admission was collected to detect the clinical indicators. The functional prognosis was measured using the modified Rankin Scale (mRS) 3 months after stroke. The poor prognosis is defined as mRS ≥ 3. The enzyme-linked immunosorbent assay (ELISA) was used to determine the serum ICAM-1 levels. Results The serum ICAM-1 levels of patients with poor prognosis were significantly higher than that of patients with good prognosis (144.2 ± 14.8 vs 117.5 ± 12.1 pg/ml). Receiver operating characteristic curve (ROC) analysis showed that the sensitivity and specificity of serum ICAM-1 for predicting the prognosis of AIS were 74% and 76%, respectively. In logistic regression analysis, the serum ICAM-1 level is still an independent predictor of poor prognosis (odds ratio [OR]: 0.52; 95% confidence interval [CI]: 0.318-0.839). Conclusions Higher serum ICAM-1 levels on admission in AIS patients might increase the risk of poor prognosis.
Collapse
|
294
|
Ma R, Xie Q, Li H, Guo X, Wang J, Li Y, Ren M, Gong D, Gao T. l-Borneol Exerted the Neuroprotective Effect by Promoting Angiogenesis Coupled With Neurogenesis via Ang1-VEGF-BDNF Pathway. Front Pharmacol 2021; 12:641894. [PMID: 33746762 PMCID: PMC7973462 DOI: 10.3389/fphar.2021.641894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
At present, Stroke is still one of the leading causes of population death worldwide and leads to disability. Traditional Chinese medicine plays an important role in the prevention or treatment of stroke. l-borneol, a traditional Chinese medicine, has been used in China to treat stroke for thousands of years. However, its mechanism of action is unclear. After cerebral ischemia, promoting angiogenesis after cerebral ischemia and providing nutrition for the infarct area is an important strategy to improve the damage in the ischemic area, but it is also essential to promote neurogenesis and replenish new neurons. Here, our research shows that l-borneol can significantly improve the neurological deficits of pMCAO model rats, reduce cerebral infarction, and improve the pathological damage of cerebral ischemia. and significantly increase serum level of Ang-1 and VEGF, and significantly decrease level of ACE and Tie2 to promote angiogenesis. PCR and WB showed the same results. Immunohistochemistry also showed that l-borneol can increase the number of CD34 positive cells, further verifying that l-borneol can play a neuroprotective effect by promoting angiogenesis after cerebral ischemia injury. In addition, l-borneol can significantly promote the expression level of VEGF, BDNF and inhibit the expression levels of TGF-β1 and MMP9 to promote neurogenesis. The above suggests that l-borneol can promote angiogenesis coupled neurogenesis by regulating Ang1-VEGF-BDNF to play a neuroprotective effect. Molecular docking also shows that l-borneol has a very high binding rate with the above target, which further confirmed the target of l-borneol to improve cerebral ischemic injury. These results provide strong evidence for the treatment of cerebral ischemia with l-borneol and provide reference for future research.
Collapse
Affiliation(s)
- Rong Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqing Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mihong Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Daoyin Gong
- Department of Pathology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tian Gao
- Department of Pathology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Adverse Reaction Monitoring Center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
295
|
Li J, Bao J, Gao C, Wei Z, Tan L, Liu P, Wang Z, Tian S. Increased Serum E-Selectin Levels Were Associated with Cognitive Decline in Patients with Stroke. Int J Gen Med 2021; 14:733-739. [PMID: 33688244 PMCID: PMC7936714 DOI: 10.2147/ijgm.s292171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/22/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Previous studies have reported that patients with stroke have a high incidence of cognitive decline. The aim was to elucidate the association between serum E-selectin levels and cognitive function in stroke patients. MATERIALS AND METHODS Serum levels of E-selectin were measured in 322 patients with stroke at baseline. Cox proportional hazard analysis was used to evaluate the predictive value of serum E-selectin for predicting cognitive decline (end point) in patients with stroke. RESULTS Multivariate linear regression analysis revealed that serum E-selectin levels were independently associated with MOCA score after adjusting for age, gender, BMI, current smoker, current drinker, admission systolic and diastolic BP, CVD history and laboratory measurements in patients with stroke at baseline (Sβ= -0.156; 95% CI, - 0.170- - 0.074; P<0.001). The multivariate Cox proportional hazard analysis revealed that serum E-selectin (HR=2.481, 95% CI 1.533-4.327, P-trend <0.001) was an independent prognostic factor for cognitive decline in these patients with stroke during the follow-up period. CONCLUSION Our results showed that increased serum E-selectin levels were significantly and independently associated with cognitive decline and had independent predictive value for cognitive decline in patients with stroke. Serum E-selectin might enable early recognition of cognitive decline among stroke patients.
Collapse
Affiliation(s)
- Jin Li
- Department of Neurosurgery, The Affiliated Hospital of the Nco School, The Army Medical University, Shijiazhuang, 050041, Hebei, People’s Republic of China
| | - Junqiang Bao
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, 050030, Hebei, People’s Republic of China
| | - Chao Gao
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, 050030, Hebei, People’s Republic of China
| | - Zibin Wei
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, 050030, Hebei, People’s Republic of China
| | - Liguo Tan
- Department of Field Internal Medicine, The NCO School of The Army Medical University, Shijiazhuang, 050031 Hebei, China
| | - Ping Liu
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, 050030, Hebei, People’s Republic of China
| | - Zhiwei Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, 050030, Hebei, People’s Republic of China
| | - Shujuan Tian
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, 050030, Hebei, People’s Republic of China
| |
Collapse
|
296
|
Abstract
Thrombi retrieved from patients with acute ischemic stroke are highly heterogeneous. Recent data suggest that thrombus composition may impact on mechanical thrombectomy, the number of recanalization manoeuvres, resistance to retrieval, and on thrombolytic potential. Our aim was to summarize evidence describing the impact of thrombus composition on efficacy of mechanical thrombectomy and thrombolysis in patients with acute ischemic stroke. The scoping review methodology guided by the Joanna Briggs Institute, an adaption of the Arksey and O'Malley, was followed. Comprehensive searches were conducted in MEDLINE, EMBASE, SCOPUS, and Web of Science. Articles were classified into 4 key themes: (1) composition of stroke thrombi, (2) thrombus composition and mechanical thrombectomy, (3) thrombus composition and thrombolytic therapy, and (4) novel imaging and endovascular approaches. Our search identified 698 articles published from 1987 to June 2020. Additional articles were extracted from reference lists of the selected articles. Overall, 95 topic-specific articles identified for inclusion published in 40 different journals were included. Reports showed that thrombus composition in stroke was highly heterogeneous, containing fibrin, platelets, red blood cells, VWF (von Willebrand Factor), and neutrophil extracellular traps. Thrombi could roughly be divided into fibrin- and red blood cell-rich clots. Fibrin-rich clots were associated with increased recanalization manoeuvres, longer procedure time, and less favorable clinical outcomes compared with red blood cell-rich clots. Advances in detection or treatment of thrombi that take into account clot heterogeneity may be able to improve future endovascular and thrombolytic treatment of stroke.
Collapse
Affiliation(s)
- Precious Jolugbo
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom
| | - Robert A S Ariëns
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom
| |
Collapse
|
297
|
Targeting the Autonomic Nervous System for Risk Stratification, Outcome Prediction and Neuromodulation in Ischemic Stroke. Int J Mol Sci 2021; 22:ijms22052357. [PMID: 33652990 PMCID: PMC7956667 DOI: 10.3390/ijms22052357] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke is a worldwide major cause of mortality and disability and has high costs in terms of health-related quality of life and expectancy as well as of social healthcare resources. In recent years, starting from the bidirectional relationship between autonomic nervous system (ANS) dysfunction and acute ischemic stroke (AIS), researchers have identified prognostic factors for risk stratification, prognosis of mid-term outcomes and response to recanalization therapy. In particular, the evaluation of the ANS function through the analysis of heart rate variability (HRV) appears to be a promising non-invasive and reliable tool for the management of patients with AIS. Furthermore, preclinical molecular studies on the pathophysiological mechanisms underlying the onset and progression of stroke damage have shown an extensive overlap with the activity of the vagus nerve. Evidence from the application of vagus nerve stimulation (VNS) on animal models of AIS and on patients with chronic ischemic stroke has highlighted the surprising therapeutic possibilities of neuromodulation. Preclinical molecular studies highlighted that the neuroprotective action of VNS results from anti-inflammatory, antioxidant and antiapoptotic mechanisms mediated by α7 nicotinic acetylcholine receptor. Given the proven safety of non-invasive VNS in the subacute phase, the ease of its use and its possible beneficial effect in hemorrhagic stroke as well, human studies with transcutaneous VNS should be less challenging than protocols that involve invasive VNS and could be the proof of concept that neuromodulation represents the very first therapeutic approach in the ultra-early management of stroke.
Collapse
|
298
|
Wang Z, Jia S, Zhang Q, Wang Y, Huang B, Zheng L. LC-MS/MS assay for the determination of tat-K13, a novel interfering peptide for the treatment of ischemic stroke, in human plasma and its application to a pharmacokinetics study. Biomed Chromatogr 2021; 35:e5095. [PMID: 33607700 DOI: 10.1002/bmc.5095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 02/05/2023]
Abstract
A sensitive and robust method has been developed using an ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) assay to quantify Tat-K13, a novel interfering peptide for the treatment of ischemic stroke, in human plasma. Automated solid-phase extraction on a Waters Oasis WCX (30 μm, 10 mg) 96-well plate was used to extract Tat-K13 from human plasma and the extracts were separated on a Waters Acquity CSH column (2.1 × 50 mm i.d., 1.7 μm) with a gradient elution method by mobile phase A (nonafluoropentanoic acid-acetic acid-water, 1:2:1000, v/v/v) and B (nonafluoropentanoic acid-acetic acid-water-acetonitrile, 1:2:100:900, v/v/v/v). The method was fully validated following international bioanalytical guidelines and showed good linearity from 2.10 to 1,050 ng/ml. The method was successfully applied to investigate the clinical pharmacokinetics of Tat-K13 in health volunteers. Rapid elimination of Tat-K13 from the body was observed, with half-life ranging from 0.26 to 0.78 h across different dose levels. The exposure of Tat-K13 was approximately dose-dependent in terms of the area under the concentration-time curve and peak concentration.
Collapse
Affiliation(s)
- Zhenlei Wang
- GCP Center/Institute of Drug Clinical Trials, West China hospital of Sichuan University, Chengdu, China
| | - Shiling Jia
- Covance Pharmaceutical Research and Development Co. Ltd, Shanghai, China
| | - Quan Zhang
- Suzhou Yabao Pharmaceutical R&D Co. Ltd, Suzhou, China
| | - Yongsheng Wang
- GCP Center/Institute of Drug Clinical Trials, West China hospital of Sichuan University, Chengdu, China
| | - Biao Huang
- Covance Pharmaceutical Research and Development Co. Ltd, Shanghai, China
| | - Li Zheng
- GCP Center/Institute of Drug Clinical Trials, West China hospital of Sichuan University, Chengdu, China
| |
Collapse
|
299
|
Huang S, Cai J, Tian Y. The Prognostic Value of Homocysteine in Acute Ischemic Stroke Patients: A Systematic Review and Meta-Analysis. Front Syst Neurosci 2021; 14:600582. [PMID: 33643003 PMCID: PMC7907516 DOI: 10.3389/fnsys.2020.600582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/21/2020] [Indexed: 12/26/2022] Open
Abstract
Background: This comprehensive meta-analysis aimed to assess whether an increased homocysteine (Hcy) level is an independent predictor of unfavorable outcomes in acute ischemic stroke (AIS) patients. Methods: A comprehensive literature search was conducted up to August 1, 2020 to collect studies reporting Hcy levels in AIS patients. We analyzed all the data using Review Manager 5.3 software. Results: Seventeen studies with 15,636 AIS patients were selected for evaluation. A higher Hcy level was associated with a poorer survival outcome (OR 1.43, 95% CI: 1.25–1.63). Compared with the AIS group, Hcy levels were significantly lower in the healthy control patients, with an SMD of 5.11 and 95% CI (1.87–8.35). Analysis of the different subgroups of AIS demonstrated significant associations between high Hcy levels and survival outcomes only in Caucasian and Asian patients. Moreover, whereas high Hcy levels were closely associated with gender, B12 deficiency, smoking, and patients who received tissue plasminogen activator treatment, no significant difference was found between increased Hcy levels and age, drinking, hypertension, diabetes mellitus, and hyperlipidemia. In addition, the cut-off value (20.0 μmol/L) might be an optimum cut-off index for AIS patients in clinical practice. Conclusion: This meta-analysis reveals that the Hcy level may serve as an independent predictor for unfavorable survival outcomes in AIS patients, particularly in Caucasian and Asian AIS patients. Further studies can be conducted to clarify this relationship.
Collapse
Affiliation(s)
- Shengming Huang
- Department of Neurology, Luohe Central Hospital, The First Affiliated Hospital of Luohe Medical College, Luohe, China
| | - Jirui Cai
- Department of Cardiology, Luohe Central Hospital, The First Affiliated Hospital of Luohe Medical College, Luohe, China
| | - Yuejun Tian
- Department of Neurology, Luohe Central Hospital, The First Affiliated Hospital of Luohe Medical College, Luohe, China.,Institute of Urology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| |
Collapse
|
300
|
Gandhi D, Janowski M. Stretching the Spring of Endovascular Opportunity in Stroke. Stroke 2021; 52:850-851. [PMID: 33563010 DOI: 10.1161/strokeaha.120.033391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Dheeraj Gandhi
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore
| | - Miroslaw Janowski
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore
| |
Collapse
|