251
|
Abstract
PURPOSE OF REVIEW Growing evidence show the importance of gut/kidney axis in renal diseases. Advances in gut microbiome sequencing, associated metabolites, detection of gut permeability and inflammation provide new therapeutic strategies targeting gut for kidney diseases and particularly for Immunoglobulin A (IgA) nephropathy (IgAN). RECENT FINDINGS The diversity and composition of gut flora have been recently deeply explored in kidney diseases. Modulation and depletion of microbiota in animal models allowed the understanding of molecular mechanisms involved in the crosstalk between gut, immune system and kidney. New clinical trials in order to positively modulate microbiota result in improvement of gastrointestinal disorders and inflammation in patients suffering with kidney diseases. SUMMARY The investigation of gut alterations in kidney diseases open new therapeutic strategies. In IgAN, targeted treatments for intestinal inflammation and modifications of gut microbiota seem promising.
Collapse
Affiliation(s)
- Renato C Monteiro
- INSERM UMR1149, Center of Research on Inflammation CRI, CNRS ERL8252
- Inflamex Laboratory of Excellence, Paris University
- Immunology Department, Bichat Hospital, AP-HP, DHU Apollo, Paris
| | - Laureline Berthelot
- Center of Research in Transplantation and Immunology CRTI, UMR1064, INSERM, Nantes University, Nantes, France
| |
Collapse
|
252
|
Melekoglu E, Samur FG. Dietary strategies for gut-derived protein-bound uremic toxins and cardio-metabolic risk factors in chronic kidney disease: A focus on dietary fibers. Crit Rev Food Sci Nutr 2021:1-15. [PMID: 34704501 DOI: 10.1080/10408398.2021.1996331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Chronic kidney disease (CKD) is associated with altered composition and function of gut microbiota. The cause of gut dysbiosis in CKD is multifactorial and encompasses the following: uremic state, metabolic acidosis, slow colonic transit, dietary restrictions of plant-based fiber-rich foods, and pharmacological therapies. Dietary restriction of potassium-rich fruits and vegetables, which are common sources of fermentable dietary fibers, inhibits the conversion of dietary fibers to short-chain fatty acids (SCFA), which are the primary nutrient source for the symbiotic gut microbiota. Reduced consumption of fermentable dietary fibers limits the population of SCFA-forming bacteria and causes dysbiosis of gut microbiota. Gut dysbiosis induces colonic fermentation of protein and formation of gut-derived uremic toxins. In this review, we discuss the roles and benefits of dietary fiber on gut-derived protein-bound uremic toxins and plant-based dietary patterns that could be recommended to decrease uremic toxin formation in CKD patients. Recent studies have indicated that dietary fiber supplementation may be useful to decrease gut-derived uremic toxin formation and slow CKD progression. However, research on associations between adherence of healthy dietary patterns and gut-derived uremic toxins formation in patients with CKD is lacking.
Collapse
Affiliation(s)
- Ebru Melekoglu
- Faculty of Health Sciences, Nutrition and Dietetics Department, Hacettepe University, Ankara, Turkey.,Faculty of Health Sciences, Nutrition and Dietetics Department, Cukurova University, Adana, Turkey
| | - F Gulhan Samur
- Faculty of Health Sciences, Nutrition and Dietetics Department, Hacettepe University, Ankara, Turkey
| |
Collapse
|
253
|
Deng M, Li X, Li W, Gong J, Zhang X, Ge S, Zhao L. Short-Chain Fatty Acids Alleviate Hepatocyte Apoptosis Induced by Gut-Derived Protein-Bound Uremic Toxins. Front Nutr 2021; 8:756730. [PMID: 34712690 PMCID: PMC8545797 DOI: 10.3389/fnut.2021.756730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/07/2021] [Indexed: 01/03/2023] Open
Abstract
Chronic kidney disease (CKD) is characterized with the influx of uremic toxins, which impairs the gut microbiome by decreasing beneficial bacteria that produce short-chain fatty acids (SCFAs) and increasing harmful bacteria that produce gut-derived protein-bound uremic toxins (PBUTs). This study aimed to assess the proapoptotic effects of three major gut-derived PBUTs in hepatocytes, and the effects of SCFAs on apoptosis phenotype in vitro. HepG2 (human liver carcinoma cells) and THLE-2 (immortalized human normal liver cells) cell line were incubated with 0, 2, 20, 200, 2000 μM p-cresol sulfate (PCS), indoxyl sulfate (IS), and hippuric acid (HA), respectively, for 24 h. Flow cytometry analysis indicated that three uremic toxins induced varying degrees of apoptosis in hepatocytes and HA represented the highest efficacy. These phenotypes were further confirmed by western blot of apoptosis protein expression [Caspase-3, Caspase-9, B-cell lymphoma 2 (Bcl-2), and Bcl-2-associated X protein (Bax)]. Human normal hepatocytes (THLE-2) are more sensitive to PBUTs-induced apoptosis compared with human hepatoma cells (HepG2). Mechanistically, extracellular HA could enter hepatocytes, increase reactive oxygen species (ROS) generation, and decrease mitochondrial membrane potential dose-dependently in THLE-2 cells. Notably, coculture with SCFAs (acetate, propionate, butyrate) for 24 h significantly improved HA-induced apoptosis in THLE-2 cells, and propionate (500 μM) represented the highest efficacy. Propionate reduction of apoptosis was associated with improving mitochondria dysfunction and oxidative stress in a manner involving reducing Caspase-3 expression, ROS production, and increasing the Bcl-2/Bax level. As such, our studies validated PBUTs accumulation might be an important cause of liver dysfunction in patients with CKD, and supplementation of SCFAs might be a viable way to protect the liver for patients with CKD.
Collapse
Affiliation(s)
- Mingjuan Deng
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xingqi Li
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Weiwei Li
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jiahui Gong
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaoying Zhang
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
| | - Shaoyang Ge
- Hebei Engineering Research Center of Animal Product, Sanhe, China
| | - Liang Zhao
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| |
Collapse
|
254
|
Zhu H, Cao C, Wu Z, Zhang H, Sun Z, Wang M, Xu H, Zhao Z, Wang Y, Pei G, Yang Q, Zhu F, Yang J, Deng X, Hong Y, Li Y, Sun J, Zhu F, Shi M, Qian K, Ye T, Zuo X, Zhao F, Guo J, Xu G, Yao Y, Zeng R. The probiotic L. casei Zhang slows the progression of acute and chronic kidney disease. Cell Metab 2021; 33:1926-1942.e8. [PMID: 34270930 DOI: 10.1016/j.cmet.2021.06.014] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
The relationship between gut microbial dysbiosis and acute or chronic kidney disease (CKD) is still unclear. Here, we show that oral administration of the probiotic Lactobacillus casei Zhang (L. casei Zhang) corrected bilateral renal ischemia-reperfusion (I/R)-induced gut microbial dysbiosis, alleviated kidney injury, and delayed its progression to CKD in mice. L. casei Zhang elevated the levels of short-chain fatty acids (SCFAs) and nicotinamide in the serum and kidney, resulting in reduced renal inflammation and damage to renal tubular epithelial cells. We also performed a 1-year phase 1 placebo-controlled study of oral L. casei Zhang use (Chinese clinical trial registry, ChiCTR-INR-17013952), which was well tolerated and slowed the decline of kidney function in individuals with stage 3-5 CKD. These results show that oral administration of L. casei Zhang, by altering SCFAs and nicotinamide metabolism, is a potential therapy to mitigate kidney injury and slow the progression of renal decline.
Collapse
Affiliation(s)
- Han Zhu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Chujin Cao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Zhongcai Wu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Meng Wang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Huzi Xu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Zhi Zhao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yuxi Wang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Guangchang Pei
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Qian Yang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Fengming Zhu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Juan Yang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Xuan Deng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yu Hong
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yinzheng Li
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jie Sun
- Department of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Fan Zhu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Mengxia Shi
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Kun Qian
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Ting Ye
- Department of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Xuezhi Zuo
- Department of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Fenfei Zhao
- Wuhan Institute of Biotechnology, Wuhan 430000, China; Wuhan Biobank, Wuhan 430000, China
| | - Jing Guo
- Wuhan Institute of Biotechnology, Wuhan 430000, China; Wuhan Biobank, Wuhan 430000, China
| | - Gang Xu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Ying Yao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Department of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
255
|
Torreggiani M, Fois A, Njandjo L, Longhitano E, Chatrenet A, Esposito C, Fessi H, Piccoli GB. Toward an individualized determination of dialysis adequacy: a narrative review with special emphasis on incremental hemodialysis. Expert Rev Mol Diagn 2021; 21:1119-1137. [PMID: 34595991 DOI: 10.1080/14737159.2021.1987216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The search for the 'perfect' renal replacement therapy has been paralleled by the search for the perfect biomarkers for assessing dialysis adequacy. Three main families of markers have been assessed: small molecules (prototype: urea); middle molecules (prototype β2-microglobulin); comprehensive and nutritional markers (prototype of the simplified assessment, albumin levels; composite indexes as malnutrition-inflammation score). After an era of standardization of dialysis treatment, personalized dialysis schedules are increasingly proposed, challenging the dogma of thrice-weekly hemodialysis. AREAS COVERED In this review, we describe the advantages and limitations of the approaches mentioned above, focusing on the open questions regarding personalized schedules and incremental hemodialysis. EXPERT OPINION In the era of personalized dialysis, the assessment of dialysis adequacy should be likewise personalized, due to the limits of 'one size fits all' approaches. We have tried to summarize some of the relevant issues regarding the determination of dialysis adequacy, attempting to adapt them to an elderly, highly comorbidity population, which would probably benefit from tailor-made dialysis prescriptions. While no single biomarker allows precisely tailoring the dialysis dose, we suggest using a combination of clinical and biological markers to prescribe dialysis according to comorbidity, life expectancy, residual kidney function, and small and medium-size molecule depuration.
Collapse
Affiliation(s)
| | - Antioco Fois
- Nèphrologie et Dialyse, Centre Hospitalier Le Mans, Le Mans, France
| | - Linda Njandjo
- Nèphrologie et Dialyse, Centre Hospitalier Le Mans, Le Mans, France
| | - Elisa Longhitano
- Department of Clinical and Experimental Medicine, Unit of Nephrology and Dialysis, A.o.u. "G. Martino," University of Messina, Messina, Italy
| | - Antoine Chatrenet
- Nèphrologie et Dialyse, Centre Hospitalier Le Mans, Le Mans, France.,Laboratory "Movement, Interactions, Performance" (EA 4334), Le Mans University, Le Mans, France
| | - Ciro Esposito
- Nephrology and Dialysis, ICS Maugeri S.p.A. Sb, Pavia, Italy.,Department of Internal Medicine, University of Pavia, Pavia, Italy
| | - Hafedh Fessi
- Department of Nephrology, Hospital Tenon, Paris, France
| | | |
Collapse
|
256
|
Ren Q, Cheng L, Guo F, Tao S, Zhang C, Ma L, Fu P. Fisetin Improves Hyperuricemia-Induced Chronic Kidney Disease via Regulating Gut Microbiota-Mediated Tryptophan Metabolism and Aryl Hydrocarbon Receptor Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10932-10942. [PMID: 34505780 DOI: 10.1021/acs.jafc.1c03449] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The intestinal flora serves a critical role in the development of hyperuricemia-induced chronic kidney disease (CKD). We previously found that natural flavonol fisetin exhibited nephroprotective effects in hyperuricemic mice. However, the mechanism remains largely unknown. To investigate the underlying mechanism of fisetin, mice were fed with potassium oxonate and adenine to introduce hyperuricemia-induced CKD. Fisetin improved kidney function, ameliorated renal fibrosis, and restored enteric dysbacteriosis in hyperuricemia-induced CKD mice. Meanwhile, gut microbiota-derived tryptophan metabolites, especially l-kynurenine, showed correlations with nephroprotective profiles of fisetin. Additionally, the kidney expression of the aryl hydrocarbon receptor (AHR), an endogenous receptor of l-kynurenine, was enhanced in hyperuricemic mice and further reduced in fisetin-treated mice. Finally, in vitro results showed that inhibition of AHR activation attenuated l-kynurenine-induced fibrosis. These results highlighted that fisetin protected against hyperuricemia-induced CKD via modulating gut microbiota-mediated tryptophan metabolism and AHR activation.
Collapse
Affiliation(s)
- Qian Ren
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lu Cheng
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Fan Guo
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Sibei Tao
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Chunle Zhang
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Liang Ma
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ping Fu
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
257
|
Yu B, Jin L, Chen Z, Nie W, Chen L, Ma Y, Chen H, Wu Y, Ma Y, Chen J, Han F. The gut microbiome in microscopic polyangiitis with kidney involvement: common and unique alterations, clinical association and values for disease diagnosis and outcome prediction. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1286. [PMID: 34532423 PMCID: PMC8422107 DOI: 10.21037/atm-21-1315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022]
Abstract
Background Microscopic polyangiitis (MPA) is an autoimmune disease characterized by frequent kidney involvement. Imbalance of intestinal flora has been found implicated in multiple immune-mediated disorders. However, the profiling and the role of the gut microbiome in MPA remains unclear. Methods We performed 16S rRNA amplicon sequencing on fecal samples from 71 MPA patients with kidney involvement (35 at incipient active stage, 36 at remissive stage) and 34 healthy controls (HCs). Microbial diversity and abundance were compared among the three cohorts. The correlation between altered microbes and clinical indices were investigated. Two random forest models based on the profiling of the gut microbiome were constructed for the diagnosis of MPA. Results Two α-diversity indices, including Simpson and Shannon index, were decreased in MPA patients (P<0.001), especially in those with active disease (P=0.001). β-diversity analysis showed biased microbial composition among the three groups. Genus Actinomyces and Streptococcus were more abundant in both MPA cohorts than those in HCs, while genus Subdoligranulum, Eubacterium hallii, Ruminococcaceae UCG013, Eubacterium ventriosum, Dorea and Butyricicoccus were more abundant in HCs than those in both MPA cohorts. All the 6 genera with decreased abundance belong to short-chain fatty acids (SCFA)-producing taxons. Besides, 1 and 2 operational taxonomic units (OTUs) were enriched in patients with active MPA who needed dialysis at sampling and in patients who progressed to end-stage renal disease during follow up, respectively. Furthermore, the model for diagnosis of MPA incorporated 6 OTU markers and achieved an AUC of 93.45% (95% CI, 88.15–98.74%). Similarly, the model for predicting disease activity incorporated 11 OTU markers and achieved an AUC of 90.71% (95% CI, 82.49–98.94%). Conclusions Alteration of intestinal flora existed in MPA patients with kidney involvement and was characterized by increased abundance of genus Actinomyces and Streptococcus and decreased abundance of 6 SCFA-producing genera. Gut microbial profiling combined with machining-learning methods showed potentials for diagnosing MPA and predicting disease activity.
Collapse
Affiliation(s)
- Binfeng Yu
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University; Institute of Nephrology, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
| | - Lini Jin
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University; Institute of Nephrology, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
| | - Zhouwei Chen
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, China
| | - Wanyun Nie
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University; Institute of Nephrology, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
| | - Liangliang Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University; Institute of Nephrology, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
| | - Yanhong Ma
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University; Institute of Nephrology, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
| | - Huan Chen
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, China
| | - Yawen Wu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, China
| | - Yunting Ma
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University; Institute of Nephrology, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
| | - Fei Han
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University; Institute of Nephrology, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
| |
Collapse
|
258
|
Zhao J, Ning X, Liu B, Dong R, Bai M, Sun S. Specific alterations in gut microbiota in patients with chronic kidney disease: an updated systematic review. Ren Fail 2021; 43:102-112. [PMID: 33406960 PMCID: PMC7808321 DOI: 10.1080/0886022x.2020.1864404] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Emerging evidence demonstrates that gut dysbiosis is implicated in the pathogenesis of chronic kidney disease (CKD) with underlying mechanisms involving mucosal and/or systematic immunity or metabolic disorders. However, the profile of gut microbiota in patients with CKD has not been completely explored. METHODS Databases from their date of inception to 31 March 2020 were systematically searched for case-control or cross-sectional studies comparing the gut microbial profiles in adult patients with CKD or end-stage renal disease (ESRD) with those in healthy controls. Quantitative analysis of alterations in gut microbial profiles was conducted. RESULTS Twenty-five studies with a total of 1436 CKD patients and 918 healthy controls were included. The present study supports the increased abundance of, phylum Proteobacteria and Fusobacteria, genus Escherichia_Shigella, Desulfovibrio, and Streptococcus, while lower abundance of genus Roseburia, Faecalibacterium, Pyramidobacter, Prevotellaceae_UCG-001, and Prevotella_9 in patients with CKD; and increased abundance of phylum Proteobacteria, and genus Streptococcus and Fusobacterium, while lower abundance of Prevotella, Coprococcus, Megamonas, and Faecalibacterium in patients with ESRD. Moreover, higher concentrations of trimethylamine-N-oxide and p-cresyl sulfate and lower concentrations of short-chain fatty acids were observed. Gut permeability in patients with CKD was not determined due to the heterogeneity of selected parameters. CONCLUSIONS Specific alterations of gut microbial parameters in patients with CKD were identified. However, a full picture of the gut microbiota could not be drawn from the data due to the differences in methodology, and qualitative and incomplete reporting of different studies.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaoxuan Ning
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Baojian Liu
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ruijuan Dong
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ming Bai
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
259
|
Shamsaddini A, Gillevet PM, Acharya C, Fagan A, Gavis E, Sikaroodi M, McGeorge S, Khoruts A, Albhaisi S, Fuchs M, Sterling RK, Bajaj JS. Impact of Antibiotic Resistance Genes in Gut Microbiome of Patients With Cirrhosis. Gastroenterology 2021; 161:508-521.e7. [PMID: 33857456 PMCID: PMC9069394 DOI: 10.1053/j.gastro.2021.04.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Cirrhosis is associated with changes in intestinal microbiota that can lead to hepatic encephalopathy (HE) and infections, especially with antibiotic-resistant organisms. However, the impact of gut microbial antibiotic resistance gene (ARG) burden on clinical outcomes is unclear. The aims of the study were to determine the impact of ARGs in cirrhosis-related gut metagenome on outcomes and disease progression, study the effect of rifaximin on ARG burden, and compare ARGs in cirrhosis with chronic kidney disease (CKD) and diabetes. METHODS In outpatients with cirrhosis who underwent metagenomics, we evaluated change in ARG abundances with progression and their multivariable impact on 90-day hospitalizations and deaths over 1 year. We also studied ARGs pre- and 8 weeks post-rifaximin in patients with compensated cirrhosis in an open-label trial. Finally, ARGs from CKD and diabetes studies were compared with cirrhosis on machine learning. RESULTS A total of 163 patients with cirrhosis (43 compensated, 20 ascites-only, 30 HE-only, 70 both) and 40 controls were included. ARG abundances were higher in cirrhosis versus controls and worsened with advancing cirrhosis severity; 44 patients were hospitalized and 14 died. ARG abundances were associated with hospitalizations and mortality while controlling for cirrhosis complications, medications, and demographics. Rifaximin trial: ARG abundance patterns were minimally affected in 19 patients post-rifaximin. CKD/diabetes comparison: ARG abundance patterns in cirrhosis are distinguishable on machine learning and include more gram-positive ARGs. CONCLUSIONS Cirrhosis is associated with high gut microbial ARG gene burden compared with controls, which worsens with disease progression and may be different from CKD and diabetes. ARGs are not affected by rifaximin and are associated with hospitalizations and death.
Collapse
Affiliation(s)
| | | | - Chathur Acharya
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia
| | - Andrew Fagan
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia
| | - Edith Gavis
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia
| | | | - Sara McGeorge
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia
| | - Alexander Khoruts
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Somaya Albhaisi
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia
| | - Michael Fuchs
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia
| | - Richard K. Sterling
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia
| | - Jasmohan S. Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia
| |
Collapse
|
260
|
Han H, Yi B, Zhong R, Wang M, Zhang S, Ma J, Yin Y, Yin J, Chen L, Zhang H. From gut microbiota to host appetite: gut microbiota-derived metabolites as key regulators. MICROBIOME 2021; 9:162. [PMID: 34284827 PMCID: PMC8293578 DOI: 10.1186/s40168-021-01093-y] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/11/2021] [Indexed: 05/25/2023]
Abstract
Feelings of hunger and satiety are the key determinants for maintaining the life of humans and animals. Disturbed appetite control may disrupt the metabolic health of the host and cause various metabolic disorders. A variety of factors have been implicated in appetite control, including gut microbiota, which develop the intricate interactions to manipulate the metabolic requirements and hedonic feelings. Gut microbial metabolites and components act as appetite-related signaling molecules to regulate appetite-related hormone secretion and the immune system, or act directly on hypothalamic neurons. Herein, we summarize the effects of gut microbiota on host appetite and consider the potential molecular mechanisms. Furthermore, we propose that the manipulation of gut microbiota represents a clinical therapeutic potential for lessening the development and consequence of appetite-related disorders. Video abstract.
Collapse
Affiliation(s)
- Hui Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Passage de Déportés 2, 5030, Gembloux, Belgium
| | - Bao Yi
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mengyu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shunfen Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jie Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
261
|
Asahina Y, Sakaguchi Y, Kajimoto S, Hattori K, Doi Y, Oka T, Kaimori JY, Isaka Y. Association of Time-Updated Anion Gap With Risk of Kidney Failure in Advanced CKD: A Cohort Study. Am J Kidney Dis 2021; 79:374-382. [PMID: 34280508 DOI: 10.1053/j.ajkd.2021.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/29/2021] [Indexed: 11/11/2022]
Abstract
RATIONALE AND OBJECTIVE High anion gap acidosis frequently develops in patients with advanced chronic kidney disease (CKD) and might be involved in kidney injury. Its impact on kidney outcomes, however, has not been well studied. We sought to examine the association between time-updated anion gap and the risk of kidney failure with replacement therapy (KFRT) among patients with advanced CKD. STUDY DESIGN Retrospective cohort study. SETTING AND PARTICIPANTS 1,168 patients with CKD stages G3b-G5 who had available data on anion gap. EXPOSURE High time-updated anion gap defined as values ≥9.2 (top 25th percentile). OUTCOMES KFRT and death. ANALYTICAL APPROACH Marginal structural models (MSM) were fit to characterize the association between anion gap and study outcomes while accounting for potential time-dependent confounding. RESULTS The mean baseline eGFR of the study participants was 28 mL/min/1.73m2. Over a median follow-up of 3.1 years, 317 patients progressed to KFRT (7.5/100 patient-years) and 146 died (3.5/100 patient-years). In the MSM, a high anion gap was associated with a higher rate of KFRT (hazard ratio [HR], 3.04; 95% confidence interval [CI], 1.94-4.75; P<0.001). This association was stronger in patients with baseline eGFR of <30 mL/min/1.73m2 (P for interaction=0.05). High anion gap was also associated with a higher mortality rate (HR, 5.56; 95% CI, 2.95-10.5; P<0.001). Sensitivity analyses with different definitions of high anion gap showed similar results. LIMITATIONS Observational study design; selection bias due clinical indications for measuring anion gap. CONCLUSION Among patients with advanced CKD, high anion gap was associated with an increased risk of progression to KFRT and death.
Collapse
Affiliation(s)
- Yuta Asahina
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yusuke Sakaguchi
- Department of Inter-Organ Communication Research in Kidney Diseases, Osaka University Graduate School of Medicine, Suita, Japan
| | - Sachio Kajimoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kohki Hattori
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yohei Doi
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tatsufumi Oka
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Jun-Ya Kaimori
- Department of Inter-Organ Communication Research in Kidney Diseases, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
262
|
Zhang F, Guo R, Cui W, Wang L, Xiao J, Shang J, Zhao Z. Untargeted serum metabolomics and tryptophan metabolism profiling in type 2 diabetic patients with diabetic glomerulopathy. Ren Fail 2021; 43:980-992. [PMID: 34157945 PMCID: PMC8231361 DOI: 10.1080/0886022x.2021.1937219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Diabetic glomerulopathy (DG) remains the prevalent microvascular complication and leading cause of shortened lifespan in type-2 diabetes mellitus (T2DM) despite improvement in hyperglycemia control. Considering the pivotal role of kidney in metabolism, using untargeted metabolomic techniques to globally delineate the serum metabolite profiles will help advance understanding pathogenetic underpinnings of renal biopsy-confirmed DG from the perspective of metabolism specifically. Fourteen pathologically diagnosed DG patients secondary to T2DM and 14 age- and gender-matched healthy controls (HCs) were recruited for study. We employed mass spectrometry-based untargeted metabolomic methods to reveal the metabolite profiles of serum samples collected from all included subjects. We identified a total of 334 and 397 metabolites in positive and negative ion mode respectively. One hundred and eighty-two important differential metabolites whose variable importance in projection (VIP) > 1 and p value <0.05 were selected and annotated to metabolic pathways. KEGG pathway enrichment analysis revealed tryptophan metabolism enriched most significantly. Among the tryptophan derivatives, L-tryptophan (L-Trp) and serotonin were relatively accumulated in DGs compared with HCs, while 5-hydroxyindoleacetic acid (5-HIAA) and indole-3-acetamide were depleted. Correlation analysis showed serotonin and L-Trp are negatively correlated with 24 h urine protein and glycosylated hemoglobin (Ghb). To exclude the interference of preexisting T2DM on DG exacerbation, we selected 5-HIAA and 3-(3-hydroxyphenyl) propionic acid (3-OHPPA) which are not correlated with Ghb and analyzed their correlation relationship with crucial renal indices. We found 3-OHPPA is positively correlated with urine total protein and creatinine ratio (T/Cr) and 24 h urine protein, 5-HIAA is positively correlated with serum creatinine and urea.
Collapse
Affiliation(s)
- Fanliang Zhang
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Ruixue Guo
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Wen Cui
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Li Wang
- Biobank of, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Jing Xiao
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Jin Shang
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Zhanzheng Zhao
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| |
Collapse
|
263
|
Colonic dialysis can influence gut flora to protect renal function in patients with pre-dialysis chronic kidney disease. Sci Rep 2021; 11:12773. [PMID: 34140540 PMCID: PMC8211730 DOI: 10.1038/s41598-021-91722-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/12/2021] [Indexed: 12/28/2022] Open
Abstract
Chronic kidney disease (CKD) is a major public health burden around the world. The gut microbiome may contribute to CKD progression and serve as a promising therapeutic target. Colonic dialysis has long been used in China to help remove gut-derived toxins to delay CKD progression. Since disturbances in the gut biome may influence disease progression, we wondered whether colonic dialysis may mitigate the condition by influencing the biome. We compared the gut microbiota, based on 16S rRNA gene sequencing, in fecal samples of 25 patients with CKD (stages 3–5) who were receiving colonic dialysis(group CD), 25 outpatients with CKD not receiving colonic dialysis(group OP), and 34 healthy subjects(group HS). Richness of gut microbiota was similar between patients on colonic dialysis and healthy subjects, and richness in these two groups was significantly higher than that in patients not on colonic dialysis. Colonic dialysis also altered the profile of microbes in the gut of CKD patients, bringing it closer to the profile in healthy subjects. Colonic dialysis may protect renal function in pre-dialysis CKD by mitigating dysbiosis of gut microbiota.
Collapse
|
264
|
Taguchi K, Fukami K, Elias BC, Brooks CR. Dysbiosis-Related Advanced Glycation Endproducts and Trimethylamine N-Oxide in Chronic Kidney Disease. Toxins (Basel) 2021; 13:361. [PMID: 34069405 PMCID: PMC8158751 DOI: 10.3390/toxins13050361] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) is a public health concern that affects approximately 10% of the global population. CKD is associated with poor outcomes due to high frequencies of comorbidities such as heart failure and cardiovascular disease. Uremic toxins are compounds that are usually filtered and excreted by the kidneys. With the decline of renal function, uremic toxins are accumulated in the systemic circulation and tissues, which hastens the progression of CKD and concomitant comorbidities. Gut microbial dysbiosis, defined as an imbalance of the gut microbial community, is one of the comorbidities of CKD. Meanwhile, gut dysbiosis plays a pathological role in accelerating CKD progression through the production of further uremic toxins in the gastrointestinal tracts. Therefore, the gut-kidney axis has been attracting attention in recent years as a potential therapeutic target for stopping CKD. Trimethylamine N-oxide (TMAO) generated by gut microbiota is linked to the progression of cardiovascular disease and CKD. Also, advanced glycation endproducts (AGEs) not only promote CKD but also cause gut dysbiosis with disruption of the intestinal barrier. This review summarizes the underlying mechanism for how gut microbial dysbiosis promotes kidney injury and highlights the wide-ranging interventions to counter dysbiosis for CKD patients from the view of uremic toxins such as TMAO and AGEs.
Collapse
Affiliation(s)
- Kensei Taguchi
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (B.C.E.); (C.R.B.)
| | - Kei Fukami
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan;
| | - Bertha C. Elias
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (B.C.E.); (C.R.B.)
| | - Craig R. Brooks
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (B.C.E.); (C.R.B.)
| |
Collapse
|
265
|
Mo Y, Sun H, Zhang L, Geng W, Wang L, Zou C, Wu Y, Ji C, Liu X, Lu Z. Microbiome-Metabolomics Analysis Reveals the Protection Mechanism of α-Ketoacid on Adenine-Induced Chronic Kidney Disease in Rats. Front Pharmacol 2021; 12:657827. [PMID: 34045965 PMCID: PMC8144710 DOI: 10.3389/fphar.2021.657827] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/26/2021] [Indexed: 01/14/2023] Open
Abstract
Objectives: As nitrogen-free precursors of corresponding essential amino, α-ketoacid have been widely prescribed to end-stage renal disease patients together with a low protein diet However, the impact of α-ketoacid on intestinal microbiota in chronic kidney disease (CKD) individuals is unknown. The study aims at investigating the variation in the intestinal microbiota and metabolic profile in response to α-ketoacid treatment in an adenine-induced CKD rat model. Design: Rats in the treatment groups were given solution of compound α-ketoacid tablets. At the end of the study, blood, feces, colon tissues and kidney tissues were collected and processed for biochemical analyses, histological and western blot analyses, 16S rRNA sequence and untargeted metabolomic analyses. Results: α-Ketoacid treatment reduced serum creatinine, blood urea nitrogen and 24 h urine protein, and alleviated tubular atrophy, glomerulosclerosis and interstitial fibrosis in adenine-induced CKD rats. Moreover, α-ketoacid significantly improved intestinal barrier and increased the abundance of Methanobrevibacter, Akkermansia, Blautia and Anaerositipes while reduced the abundance of Anaerovorax and Coprococcus_3 at the genus level. In addition, our results also demonstrated that α-ketoacid significantly reduced the concentrations of indoxyl sulfate, betaine, choline and cholesterol. Spearman's correlation analysis revealed that the abundance of Coprococcus_3 was positively correlated with serum level of betaine, trimethylamine N-oxide, indoxyl sulfate, cholic acid and deoxycholic acid. Conclusion: α-Ketoacid has a reno-protective effect against adenine-induced CKD, which may be mediated regulation of serum metabolic profiles via affecting intestinal microbial community.
Collapse
Affiliation(s)
- Yenan Mo
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huang Sun
- Department of Emergency, TCM-Integrated Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zhang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjia Geng
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lixin Wang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuan Zou
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuchi Wu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunlan Ji
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xusheng Liu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhaoyu Lu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
266
|
Mosterd CM, Kanbay M, van den Born BJH, van Raalte DH, Rampanelli E. Intestinal microbiota and diabetic kidney diseases: the Role of microbiota and derived metabolites inmodulation of renal inflammation and disease progression. Best Pract Res Clin Endocrinol Metab 2021; 35:101484. [PMID: 33546983 DOI: 10.1016/j.beem.2021.101484] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diabetic kidney disease (DKD) represents a growing public health burden and is the leading cause of end-stage kidney diseases. In recent years, host-gut microbiota interactions have emerged as an integral part for host homeostasis. In the context of nephropathies, mounting evidence supports a bidirectional microbiota-kidney crosstalk, which becomes particularly manifest during progressive kidney dysfunction. Indeed, in chronic kidney disease (CKD), the "healthy" microbiota structure is disrupted and intestinal microbes produce large quantities of uremic solutes responsible for renal damage; on the other hand, the uremic state, fueled by reduced renal clearance, causes shifts in microbial metabolism and composition, hence creating a vicious cycle in which dysbiosis and renal dysfunction are progressively worsened. In this review, we will summarize the evidence from clinical/experimental studies concerning the occurrence of gut dysbiosis in diabetic and non-diabetic CKD, discuss the functional consequences of dysbiosis for CKD progression and debate putative therapeutic interventions targeting the intestinal microbiome.
Collapse
Affiliation(s)
- C M Mosterd
- Department of Internal and Vascular Medicine, Amsterdam UMC, Location VUmc, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands.
| | - M Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| | - B J H van den Born
- Department of Nephrology and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands
| | - D H van Raalte
- Diabetes Center, Department of Internal Medicine, Amsterdam UMC, Location VUmc, Diabetes Center, Amsterdam, the Netherlands
| | - E Rampanelli
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands.
| |
Collapse
|
267
|
Liu S, Fang S, Xiang Z, Chen X, Song Y, Chen C, Ouyang G. Combined effect of microplastics and DDT on microbial growth: A bacteriological and metabolomics investigation in Escherichia coli. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124849. [PMID: 33360188 DOI: 10.1016/j.jhazmat.2020.124849] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) can adsorb toxic chemicals in biological or environmental matrixes and thus influence their behavior and availability. In order to investigate how the combined pollution of MPs and toxic organic chemical influence microbial growth and metabolism, Escherichia coli (E. coli) was grown in a complex, well-defined media and treated with polystyrene microplastics (PS MPs) and dichloro-diphenyl-tricgloroethane (DDT) at human relevant concentration levels. In vivo metabolites captured by a novel solid phase microextraction (SPME) probe, were used to reflect the metabolic dysregulation of E. coli under different pollution stresses. Results showed that the toxic effect of DDT displayed a distinct dose-dependent phenomenon while the existence of PS decreased the growth and metabolic interference effect of DDT on E. coli. Adsorption results revealed a mechanism that PS weakened the adverse impact of DDT by decreasing its free concentration in the treated culture media. Tricarboxylic acid (TCA) cycle related enzymes activities and antioxidant defense related substances of E. coli also proved the mechanism. The current study is believed to broaden our understanding of the ecotoxicity of MPs with toxic organic chemicals on microorganism.
Collapse
Affiliation(s)
- Shuqin Liu
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Shuting Fang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Zhangmin Xiang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Xiaotian Chen
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Yumei Song
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Chao Chen
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou 510070, China.
| | - Gangfeng Ouyang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
268
|
Liu F, Xu X, Chao L, Chen K, Shao A, Sun D, Hong Y, Hu R, Jiang P, Zhang N, Xiao Y, Yan F, Feng N. Alteration of the Gut Microbiome in Chronic Kidney Disease Patients and Its Association With Serum Free Immunoglobulin Light Chains. Front Immunol 2021; 12:609700. [PMID: 33868230 PMCID: PMC8047322 DOI: 10.3389/fimmu.2021.609700] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/18/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives Gut dysbiosis is associated with chronic kidney disease (CKD), and serum free immunoglobulin light chains (FLCs) are biomarkers for CKD. This study aims to assess the CKD gut microbiome and to determine its impact on serum FLC levels. Methods To control for confounders, 100 patients and sex- and age-matched healthy controls (HCs) were recruited. The gut microbiome was assessed by sequencing 16S rRNA gene V3-V4 hypervariable regions. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States was applied to infer functional metabolic pathways. When observing group differences in the microbiome and predicted metabolic pathways, demographic confounders were adjusted using binary logistic regression; when examining impacts of the gut microbiome and metabolic pathways on serum FLCs, factors influencing FLC levels were adjusted using multiple regression. Results Principal coordinate analysis revealed a significantly different bacterial community between the CKD and HC groups (P < 0.05). After adjusting for confounders, lower Chao 1, observed species and Shannon indices based on binary logistic regression predicted CKD prevalence. Actinobacteria, Alistipes, Bifidobacterium and Bifidobacterium longum enrichment, upregulation of metabolic pathways of bacterial toxin, chloroalkane and chloroalkene degradation, and Staphylococcus aureus infection also predicted CKD prevalence (P < 0.05). Furthermore, depletion of Actinobacteria and Bifidobacterium and reduced chloroalkane and chloroalkene degradation predicted high levels of FLC λ (P < 0.05). Conclusions Gut dysbiosis in CKD patients was confirmed by controlling for confounders in the present study. Additionally, the association between gut dysbiosis and FLC λ levels demonstrates the existence of crosstalk between the microbiome and immune response in CKD.
Collapse
Affiliation(s)
- Fengping Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, China
| | - Xuefang Xu
- Department of Nephrology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, China
| | - Lin Chao
- Department of Thyroid and Breast, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, China
| | - Ke Chen
- Department of Nephrology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, China
| | - Amo Shao
- Wuxi Higher Health School, Wuxi, China
| | - Danqin Sun
- Department of Nephrology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, China
| | - Yan Hong
- Department of Nephrology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, China
| | - Renjing Hu
- Department of Laboratory Medicine, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, China
| | - Peng Jiang
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, China
| | - Nan Zhang
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, China
| | - Yonghong Xiao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Yan
- Department of Nephrology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, China
| | - Ninghan Feng
- Department of Urology, Affiliated Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, China
| |
Collapse
|
269
|
Yang G, Wei J, Liu P, Zhang Q, Tian Y, Hou G, Meng L, Xin Y, Jiang X. Role of the gut microbiota in type 2 diabetes and related diseases. Metabolism 2021; 117:154712. [PMID: 33497712 DOI: 10.1016/j.metabol.2021.154712] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 12/27/2020] [Accepted: 01/20/2021] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes is the fastest-growing metabolic disease in the world. Many clinical studies have found that type 2 diabetes patients have metabolic disorders and chronic inflammatory states accompanied by disturbances in the gut microbiota. The gut microbiota plays an important role in body metabolism and immune regulation, and disturbances in the gut microbiota in conjunction with destruction of the intestinal barrier in type 2 diabetes patients causes damage to multiple organs. Therefore, the gut microbiota may be a new therapeutic target for treating type 2 diabetes and related diseases. In this review, we introduce the characteristics of the gut microbiota in type 2 diabetes and related diseases, as well as highlight the potential molecular mechanisms of their effects on intestinal barrier disruption, metabolic disorders, and chronic inflammation. Finally, we summarize an intestinal microecological therapeutic strategy, with a focus on shaping the intestinal bacteria, to improve the malignant progress of type 2 diabetes and related diseases. AUTHOR SUMMARY: Type 2 diabetes (T2D) is the fastest-growing metabolic disease in the world. Many clinical studies have found that T2D patients have metabolic disorders and chronic inflammatory states, accompanied by disturbances of the gut microbiota and increased intestinal permeability. The number of human gut microbiota is more than 10 times of human cells, and they play an important role in the body's metabolism and immune regulation. The abnormal intestinal metabolites and intestinal barrier disruption caused by the gut microbiota dysbiosis in the T2D facilitate intestinal bacteria and their harmful metabolites entering the circulatory system. The abnormal entering will cause the damage to multiple organs through disturbing insulin sensitivity, glucose metabolism, and immune homeostasis. Therefore, the gut microbiota may be a new therapeutic target for improving T2D and its related diseases. In this review, we introduce the compositional characteristics of the gut microbiota in T2D, and highlight some new molecular mechanisms of their effects on intestinal barrier disruption, metabolic disorders and chronic inflammation in T2D and its related diseases. Finally, we summarize an intestinal microecological therapeutic strategy, with a focus on shaping the intestinal bacteria, to improve the malignant progress of T2D and related diseases.
Collapse
Affiliation(s)
- Ge Yang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Jinlong Wei
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Pinyi Liu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Qihe Zhang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuan Tian
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China; Department of Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Guowen Hou
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
270
|
Rysz J, Franczyk B, Ławiński J, Olszewski R, Ciałkowska-Rysz A, Gluba-Brzózka A. The Impact of CKD on Uremic Toxins and Gut Microbiota. Toxins (Basel) 2021; 13:toxins13040252. [PMID: 33807343 PMCID: PMC8067083 DOI: 10.3390/toxins13040252] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 12/11/2022] Open
Abstract
Numerous studies have indicated that the progression of chronic kidney disease (CKD) to end-stage renal disease (ESRD) is strictly associated with the accumulation of toxic metabolites in blood and other metabolic compartments. This accumulation was suggested to be related to enhanced generation of toxins from the dysbiotic microbiome accompanied by their reduced elimination by impaired kidneys. Intestinal microbiota play a key role in the accumulation of uremic toxins due to the fact that numerous uremic solutes are generated in the process of protein fermentation by colonic microbiota. Some disease states, including CKD, are associated with the presence of dysbiosis, which can be defined as an "imbalanced intestinal microbial community with quantitative and qualitative changes in the composition and metabolic activities of the gut microbiota". The results of studies have confirmed the altered composition and functions of gut microbial community in chronic kidney disease. In the course of CKD protein-bound uremic toxins, including indoxyl sulfate, p-cresyl glucuronide, p-cresyl sulfate and indole-3-acetic acid are progressively accumulated. The presence of chronic kidney disease may be accompanied by the development of intestinal inflammation and epithelial barrier impairment leading to hastened systemic translocation of bacterial-derived uremic toxins and consequent oxidative stress injury to the kidney, cardiovascular and endocrine systems. These findings offer new therapeutic possibilities for the management of uremia, inflammation and kidney disease progression and the prevention of adverse outcomes in CKD patients. It seems that dietary interventions comprising prebiotics, probiotics, and synbiotics could pose a promising strategy in the management of uremic toxins in CKD.
Collapse
Affiliation(s)
- Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (J.R.); (B.F.)
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (J.R.); (B.F.)
| | - Janusz Ławiński
- Department of Urology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszow, Poland;
| | - Robert Olszewski
- Department of Gerontology, Public Health and Didactics, Rheumatology and Rehabilitation, National Institute of Geriatrics, 02-637 Warsaw, Poland;
- Department of Ultrasound, Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-637 Warsaw, Poland
| | | | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (J.R.); (B.F.)
- Correspondence: ; Tel.: +48-42-6393750
| |
Collapse
|
271
|
Li Y, Yang X, Zhang J, Jiang T, Zhang Z, Wang Z, Gong M, Zhao L, Zhang C. Ketogenic Diets Induced Glucose Intolerance and Lipid Accumulation in Mice with Alterations in Gut Microbiota and Metabolites. mBio 2021; 12:e03601-20. [PMID: 33785628 PMCID: PMC8092315 DOI: 10.1128/mbio.03601-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/25/2021] [Indexed: 12/20/2022] Open
Abstract
The ketogenic diet (KD), which can induce changes in gut microbiota, has shown benefits for epilepsy and several neurodegenerative diseases. However, the effects of a KD on glucose and lipid metabolism remain inconclusive. Using two formulas of ketogenic diets (KDR with 89.5% fat and KDH with 91.3% fat), which are commonly used in mouse trials, we found that KDR but not KDH induced insulin resistance and damaged glucose homeostasis, while KDH induced more fat accumulation in mice. Further study showed that KD impacted glucose metabolism, which was related to the sources of fat, while both the sources and proportions of fat affected lipid metabolism. And the KD widely used in human studies still induced insulin resistance and fat accumulation in mice. Moreover, KDs changed the gut microbiota and metabolites in mice, and the sources and proportions of fat in the diets respectively changed the abundance of specific bacteria and metabolites which were correlated with parameters related to glucose intolerance and lipid accumulation. Overall, our study demonstrated that the metabolic disorders induced by KDs are closely related to the source and proportion of fat in the diet, which may be associated with the changes of the gut microbiota and metabolites.IMPORTANCE The ketogenic diet with extremely high fat and very low carbohydrate levels is very popular in society today. Although it has beneficial effects on epilepsy and neurodegenerative diseases, how ketogenic diets impact host glucose and lipid metabolism and gut microbiota still needs further investigation. Here, we surveyed the effects of two ketogenic diets which are commonly used in mouse trials on metabolic phenotypes, gut microbiota, and metabolites in mice. We found that both ketogenic diets impaired glucose and lipid metabolism in mice, and this may be due to the sources and proportions of fat in the diets. This work highlights the potential risk of glucose and lipid metabolism disorders and the importance of evaluating the sources and proportions of fat in the diets, when using ketogenic diets for weight loss and the treatment of diseases.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tianyi Jiang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ziyi Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiyi Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mengxue Gong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Biochemistry and Microbiology and New Jersey Institute for Food, Nutrition and Health, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
272
|
Xie XQ, Geng Y, Guan Q, Ren Y, Guo L, Lv Q, Lu ZM, Shi JS, Xu ZH. Influence of Short-Term Consumption of Hericium erinaceus on Serum Biochemical Markers and the Changes of the Gut Microbiota: A Pilot Study. Nutrients 2021; 13:1008. [PMID: 33800983 PMCID: PMC8004025 DOI: 10.3390/nu13031008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
Hericium erinaceus (H. erinaceus) is widely studied as a medicinal and edible fungus. Recent studies have shown that H. erinaceus has protective effects for diseases, such as inflammatory bowel disease and cancer, which are related to gut microbiota. To investigate the benefits of H. erinaceus intake on gut microbiota and blood indices in adulthood, we recruited 13 healthy adults to consume H. erinaceus powder as a dietary supplement. Blood changes due to H. erinaceus consumption were determined by routine hematological examination and characterized by serum biochemical markers. Microbiota composition was profiled by 16S ribosomal RNA gene sequencing. Results showed that daily H. erinaceus supplementation increased the alpha diversity within the gut microbiota community, upregulated the relative abundance of some short-chain fatty acid (SCFA) producing bacteria (Kineothrix alysoides, Gemmiger formicilis, Fusicatenibacter saccharivorans, Eubacterium rectale, Faecalibacterium prausnitzii), and downregulated some pathobionts (Streptococcus thermophilus, Bacteroides caccae, Romboutsia timonensis). Changes within the gut microbiota were correlated with blood chemical indices including alkaline phosphatase (ALP), low-density lipoprotein (LDL), uric acid (UA), and creatinine (CREA). Thus, we found that the gut microbiota alterations may be part of physiological adaptations to a seven-day H. erinaceus supplementation, potentially influencing beneficial health effects.
Collapse
Affiliation(s)
- Xiao-Qian Xie
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China; (X.-Q.X.); (Y.R.); (Q.L.); (J.-S.S.)
| | - Yan Geng
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China; (X.-Q.X.); (Y.R.); (Q.L.); (J.-S.S.)
| | - Qijie Guan
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; (Q.G.); (L.G.); (Z.-M.L.); (Z.-H.X.)
- Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Yilin Ren
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China; (X.-Q.X.); (Y.R.); (Q.L.); (J.-S.S.)
| | - Lin Guo
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; (Q.G.); (L.G.); (Z.-M.L.); (Z.-H.X.)
- Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Qiqi Lv
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China; (X.-Q.X.); (Y.R.); (Q.L.); (J.-S.S.)
| | - Zhen-Ming Lu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; (Q.G.); (L.G.); (Z.-M.L.); (Z.-H.X.)
- Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Jin-Song Shi
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China; (X.-Q.X.); (Y.R.); (Q.L.); (J.-S.S.)
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; (Q.G.); (L.G.); (Z.-M.L.); (Z.-H.X.)
- Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
273
|
Wang YN, Hu HH, Zhang DD, Wu XQ, Liu JL, Guo Y, Miao H, Zhao YY. The Dysregulation of Eicosanoids and Bile Acids Correlates with Impaired Kidney Function and Renal Fibrosis in Chronic Renal Failure. Metabolites 2021; 11:127. [PMID: 33672315 PMCID: PMC7926759 DOI: 10.3390/metabo11020127] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 02/08/2023] Open
Abstract
Chronic renal failure (CRF) is an irreversible deterioration of the renal functions that characterized by fluid electrolyte unbalance and metabolic-endocrine dysfunctions. Increasing evidence demonstrated that metabolic disturbances, especially dyslipidemia and profound changes in lipid and lipoprotein metabolism were involved in CRF. Identification of lipids associated with impaired kidney functions may play important roles in the understanding of biochemical mechanism and CRF treatment. Ultra-performance liquid chromatography coupled with high-definition mass spectrometry-based lipidomics was performed to identify important differential lipids in adenine-induced CRF rats and investigate the undergoing anti-fibrotic mechanism of Polyporus umbellatus (PPU) and ergone (ERG). Linear correlation analysis was performed between lipid species intensities and creatinine levels in serum. Adenine-induced rats exhibited declining kidney function and renal fibrosis. Compared with control rats, a panel of lipid species was identified in the serum of CRF rats. Our further study demonstrated that eight lipids, including leukotrienes and bile acids, presented a strong linear correlation with serum creatinine levels. In addition, receiver operating characteristics analysis showed that eight lipids exhibited excellent area under the curve for differentiating CRF from control rats, with high sensitivity and specificity. The aberrant changes of clinical biochemistry data and dysregulation of eight lipids could be significantly improved by the administration of PPU and ergone. In conclusion, CRF might be associated with the disturbance of leukotriene metabolism, bile acid metabolism and lysophospholipid metabolism. The levels of eicosanoids and bile acids could be used for indicating kidney function impairment in CRF. PPU could improve renal functions and either fully or partially reversed the levels of eicosanoids and bile acids.
Collapse
Affiliation(s)
- Yan-Ni Wang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi’an 710069, China; (Y.-N.W.); (H.-H.H.); (D.-D.Z.); (X.-Q.W.); (J.-L.L.)
| | - He-He Hu
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi’an 710069, China; (Y.-N.W.); (H.-H.H.); (D.-D.Z.); (X.-Q.W.); (J.-L.L.)
| | - Dan-Dan Zhang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi’an 710069, China; (Y.-N.W.); (H.-H.H.); (D.-D.Z.); (X.-Q.W.); (J.-L.L.)
| | - Xia-Qing Wu
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi’an 710069, China; (Y.-N.W.); (H.-H.H.); (D.-D.Z.); (X.-Q.W.); (J.-L.L.)
| | - Jian-Ling Liu
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi’an 710069, China; (Y.-N.W.); (H.-H.H.); (D.-D.Z.); (X.-Q.W.); (J.-L.L.)
| | - Yan Guo
- Department of Internal Medicine, University of New Mexico, 1700 Lomas Blvd NE, Albuquerque, NM 87131, USA;
| | - Hua Miao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi’an 710069, China; (Y.-N.W.); (H.-H.H.); (D.-D.Z.); (X.-Q.W.); (J.-L.L.)
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi’an 710069, China; (Y.-N.W.); (H.-H.H.); (D.-D.Z.); (X.-Q.W.); (J.-L.L.)
| |
Collapse
|
274
|
Koppe L, Beddhu S, Chauveau P, Kovesdy CP, Mafra D, Joshi S, Kalantar-Zadeh K, Fouque D. A call for a better understanding of the role of dietary amino acids and post-translational protein modifications of the microbiome in the progression of CKD. Nephrol Dial Transplant 2021; 36:1357-1360. [DOI: 10.1093/ndt/gfab033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 12/17/2022] Open
Affiliation(s)
- Laetitia Koppe
- Department of Nephrology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, F-69495, France
- University of Lyon, CarMeN lab, INSA-Lyon, INSERM U1060, INRA, Université Claude Bernard Lyon 1, F-69621 Villeurbanne, France
| | - Srinivasan Beddhu
- Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Philippe Chauveau
- Association Pour l’Utilisation Du Rein Artificiel A Domicile, F-33110 Gradignan, France
| | - Csaba P Kovesdy
- Division of Nephrology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Denise Mafra
- Federal University Fluminense, Niteroi, Rio de Janeiro, Brazil
| | - Shivam Joshi
- Department of Medicine, New York University School of Medicine, New York, NY, USA
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California, Irvine, School of Medicine, Orange, CA, USA
| | - Kamyar Kalantar-Zadeh
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California, Irvine, School of Medicine, Orange, CA, USA
| | - Denis Fouque
- Department of Nephrology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, F-69495, France
- University of Lyon, CarMeN lab, INSA-Lyon, INSERM U1060, INRA, Université Claude Bernard Lyon 1, F-69621 Villeurbanne, France
| |
Collapse
|
275
|
Li J, Cao Y, Lu R, Li H, Pang Y, Fu H, Fang G, Chen Q, Liu B, Wu J, Zhou Y, Zhou J. Integrated Fecal Microbiome and Serum Metabolomics Analysis Reveals Abnormal Changes in Rats with Immunoglobulin A Nephropathy and the Intervention Effect of Zhen Wu Tang. Front Pharmacol 2021; 11:606689. [PMID: 33584283 PMCID: PMC7872959 DOI: 10.3389/fphar.2020.606689] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/08/2020] [Indexed: 01/16/2023] Open
Abstract
Immunoglobulin A nephropathy (IgAN), an autoimmune renal disease with complicated pathogenesis, is one of the principal reasons for end-stage renal disease in the clinic. Evidence has linked apparent alterations in the components of the microbiome and metabolome to renal disease in rats. However, thus far, there is insufficient evidence that supports the potential relationship between gut microbiome, circulating metabolites, and IgAN. This study was designed to probe the effects of IgAN on intestinal microecology and metabolic phenotypes and to understand the possible underlying mechanisms. Fecal and serum samples were collected from IgAN rats. Composition of the gut microbiota and biochemical changes in the metabolites was analyzed using 16S rDNA sequencing and untargeted metabolomics. The IgAN rats exhibited renal insufficiency and increased concentration of 24-h urine protein, in addition to deposition of IgA and IgG immune complexes in the kidney tissues. There was a disturbance in the balance of gut microbiota in IgAN rats, which was remarkably associated with renal damage. Marked changes in microbial structure and function were accompanied by apparent alterations in 1,403 serum metabolites, associated with the disorder of energy, carbohydrate, and nucleotide metabolisms. Administration of Zhen Wu Tang ameliorated microbial dysbiosis and attenuated the renal damage. Besides, treatment with Zhen Wu Tang modulated the metabolic phenotype perturbation in case of gut microbiota dysbiosis in IgAN rats. In conclusion, these findings provided a comprehensive understanding of the potential relationship between the intestinal microbiota and metabolic phenotypes in rats with IgAN. Elucidation of the intestinal microbiota composition and metabolic signature alterations could identify predictive biomarkers for disease diagnosis and progression, which might contribute to providing therapeutic strategies for IgAN.
Collapse
Affiliation(s)
- Jicheng Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiwen Cao
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruirui Lu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglian Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Pang
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongxin Fu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guoxing Fang
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiuhe Chen
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bihao Liu
- Department of Urology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangdong, China.,Guangdong Institute of Gastroenterology, Sun Yat-Sen University, Guangzhou, China
| | - Junbiao Wu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuan Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiuyao Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
276
|
Yan Q, Wang Y, Chen X, Jin H, Wang G, Guan K, Zhang Y, Zhang P, Ayaz T, Liang Y, Wang J, Cui G, Sun Y, Xiao M, Kang J, Zhang W, Zhang A, Li P, Liu X, Ulllah H, Ma Y, Li S, Ma T. Characterization of the gut DNA and RNA Viromes in a Cohort of Chinese Residents and Visiting Pakistanis. Virus Evol 2021; 7:veab022. [PMID: 33959381 PMCID: PMC8087960 DOI: 10.1093/ve/veab022] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Trillions of viruses inhabit the gastrointestinal tract. Some of them have been well-studied on their roles in infection and human health, but the majority remains unsurveyed. It has been established that the composition of the gut virome is highly variable based on the changes of diet, physical state, and environmental factors. However, the effect of host genetic factors, for example ethnic origin, on the gut virome is rarely investigated. Here, we characterized and compared the gut virome in a cohort of local Chinese residents and visiting Pakistani individuals, each group containing twenty-four healthy adults and six children. Using metagenomic shotgun sequencing and assembly of fecal samples, a huge number of viral operational taxonomic units (vOTUs) were identified for profiling the DNA and RNA viromes. National background contributed a primary variation to individuals' gut virome. Compared with the Chinese adults, the Pakistan adults showed higher macrodiversity and different compositional and functional structures in their DNA virome and lower diversity and altered composition in their RNA virome. The virome variations of Pakistan children were not only inherited from that of the adults but also tended to share similar characteristics with the Chinese cohort. We also analyzed and compared the bacterial microbiome between two cohorts and further revealed numerous connections between viruses and bacterial host. Statistically, the gut DNA and RNA viromes were covariant to some extent (P < 0.001), and they both correlated the holistic bacterial composition and vice versa. This study provides an overview of the gut viral community in Chinese and visiting Pakistanis and proposes a considerable role of ethnic origin in shaping the virome.
Collapse
Affiliation(s)
- Qiulong Yan
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing 210029, China
- College of Basic Medical Sciences, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| | - Yu Wang
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing 210029, China
- Institute of Translational Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 210029, China
| | - Xiuli Chen
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing 210029, China
| | - Hao Jin
- Shenzhen Puensum Genetech Institute, 345 Dongbin Road, Nanshan District, Shenzhen 518052, China
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Saihan District, Hohhot 010018, China
| | - Guangyang Wang
- College of Basic Medical Sciences, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| | - Kuiqing Guan
- Shenzhen Puensum Genetech Institute, 345 Dongbin Road, Nanshan District, Shenzhen 518052, China
| | - Yue Zhang
- Shenzhen Puensum Genetech Institute, 345 Dongbin Road, Nanshan District, Shenzhen 518052, China
| | - Pan Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, 220 Handan Road, Shanghai 200032, China
| | - Taj Ayaz
- College of Basic Medical Sciences, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| | - Yanshan Liang
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing 210029, China
| | - Junyi Wang
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing 210029, China
| | - Guangyi Cui
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing 210029, China
| | - Yuanyuan Sun
- College of Basic Medical Sciences, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| | - Manchun Xiao
- College of Basic Medical Sciences, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| | - Jian Kang
- College of Basic Medical Sciences, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| | - Wei Zhang
- College of Basic Medical Sciences, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| | - Aiqin Zhang
- Shenzhen Puensum Genetech Institute, 345 Dongbin Road, Nanshan District, Shenzhen 518052, China
| | - Peng Li
- Shenzhen Puensum Genetech Institute, 345 Dongbin Road, Nanshan District, Shenzhen 518052, China
| | - Xueyang Liu
- College of Basic Medical Sciences, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| | - Hayan Ulllah
- College of Basic Medical Sciences, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| | - Yufang Ma
- College of Basic Medical Sciences, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| | - Shenghui Li
- Shenzhen Puensum Genetech Institute, 345 Dongbin Road, Nanshan District, Shenzhen 518052, China
| | - Tonghui Ma
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing 210029, China
- College of Basic Medical Sciences, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| |
Collapse
|
277
|
Jiang L, Fei H, Tong J, Zhou J, Zhu J, Jin X, Shi Z, Zhou Y, Ma X, Yu H, Yang J, Zhang S. Hormone Replacement Therapy Reverses Gut Microbiome and Serum Metabolome Alterations in Premature Ovarian Insufficiency. Front Endocrinol (Lausanne) 2021; 12:794496. [PMID: 35002971 PMCID: PMC8733385 DOI: 10.3389/fendo.2021.794496] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE We explored the gut microbiome and serum metabolome alterations in patients with premature ovarian insufficiency (POI) and the effects of hormone replacement therapy (HRT) with the aim to unravel the pathological mechanism underlying POI. METHODS Fecal and serum samples obtained from healthy females (HC, n = 10) and patients with POI treated with (n = 10) or without (n = 10) HRT were analyzed using 16S rRNA gene sequencing and untargeted metabolomics analysis, respectively. Peripheral blood samples were collected to detect serum hormone and cytokine levels. Spearman's rank correlation was used to evaluate correlations between sex hormones and cytokines and between the gut microbiota and serum metabolites. To further confirm the correlation between Eggerthella and ovarian fibrosis, the mice were inoculated with Eggerthella lenta (E. lenta) through oral gavage. RESULTS The abundance of genus Eggerthella significantly increased in the fecal samples of patients with POI compared to that observed in the samples of HCs. This increase was reversed in patients with POI treated with HRT. Patients with POI showed significantly altered serum metabolic signatures and increased serum TGF-β1 levels; this increase was reversed by HRT. The abundance of Eggerthella was positively correlated with altered metabolic signatures, which were, in turn, positively correlated with serum TGF-β1 levels in all subjects. Estrogen ameliorated ovarian fibrosis induced by E. lenta in mice. CONCLUSIONS The interactions between the gut microbiota, serum metabolites, and serum TGF-β1 in patients with POI may play a critical role in the development of POI. HRT not only closely mimicked normal ovarian hormone production in patients with POI but also attenuated gut microbiota dysbiosis and imbalance in the levels of serum metabolites and TGF-β1, which are reportedly associated with fibrosis. The findings of this study may pave the way for the development of preventive and curative therapies for patients with POI.
Collapse
Affiliation(s)
- Lingling Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Hangzhou, China
- *Correspondence: Songying Zhang, ; Lingling Jiang, ; Jianhua Yang,
| | - Haiyi Fei
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Hangzhou, China
| | - Jinfei Tong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Hangzhou, China
| | - Jiena Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Yaojiang Township Central Hospital, Zhuji City, China
| | - Jiajuan Zhu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Medical, Jiaxing University Affiliated Women and Children Hospital, Jiaxing, China
| | - Xiaoying Jin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Hangzhou, China
| | - Zhan Shi
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Hangzhou, China
| | - Yan Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Hangzhou, China
| | - Xudong Ma
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Hangzhou, China
| | - Hailan Yu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Hangzhou, China
| | - Jianhua Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Hangzhou, China
- *Correspondence: Songying Zhang, ; Lingling Jiang, ; Jianhua Yang,
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Hangzhou, China
- *Correspondence: Songying Zhang, ; Lingling Jiang, ; Jianhua Yang,
| |
Collapse
|
278
|
Severity of Experimental Autoimmune Uveitis Is Reduced by Pretreatment with Live Probiotic Escherichia coli Nissle 1917. Cells 2020; 10:cells10010023. [PMID: 33375578 PMCID: PMC7823395 DOI: 10.3390/cells10010023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Non-infectious uveitis is considered an autoimmune disease responsible for a significant burden of blindness in developed countries and recent studies have linked its pathogenesis to dysregulation of the gut microbiota. We tested the immunomodulatory properties of two probiotics, Escherichia coli Nissle 1917 (EcN) and E. coli O83:K24:H31 (EcO), in a model of experimental autoimmune uveitis (EAU). To determine the importance of bacterial viability and treatment timing, mice were orally treated with live or autoclaved bacteria in both preventive and therapeutic schedules. Disease severity was assessed by ophthalmoscopy and histology, immune phenotypes in mesenteric and cervical lymph nodes were analyzed by flow cytometry and the gut immune environment was analyzed by RT-PCR and/or gut tissue culture. EcN, but not EcO, protected against EAU but only as a live organism and only when administered before or at the time of disease induction. Successful prevention of EAU was accompanied by a decrease in IRBP-specific T cell response in the lymph nodes draining the site of immunization as early as 7 days after the immunization and eye-draining cervical lymph nodes when the eye inflammation became apparent. Furthermore, EcN promoted an anti-inflammatory response in Peyer’s patches, increased gut antimicrobial peptide expression and decreased production of inducible nitric oxide synthase in macrophages. In summary, we show here that EcN controls inflammation in EAU and suggest that probiotics may have a role in regulating the gut–eye axis.
Collapse
|
279
|
Letourneau P, Bataille S, Chauveau P, Fouque D, Koppe L. Source and Composition in Amino Acid of Dietary Proteins in the Primary Prevention and Treatment of CKD. Nutrients 2020; 12:E3892. [PMID: 33352729 PMCID: PMC7766732 DOI: 10.3390/nu12123892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Nutrition is a cornerstone in the management of chronic kidney disease (CKD). To limit urea generation and accumulation, a global reduction in protein intake is routinely proposed. However, recent evidence has accumulated on the benefits of plant-based diets and plant-derived proteins without a clear understanding of underlying mechanisms. Particularly the roles of some amino acids (AAs) appear to be either deleterious or beneficial on the progression of CKD and its complications. This review outlines recent data on the role of a low protein intake, the plant nature of proteins, and some specific AAs actions on kidney function and metabolic disorders. We will focus on renal hemodynamics, intestinal microbiota, and the production of uremic toxins. Overall, these mechanistic effects are still poorly understood but deserve special attention to understand why low-protein diets provide clinical benefits and to find potential new therapeutic targets in CKD.
Collapse
Affiliation(s)
- Pierre Letourneau
- Departement of Nephrology, Hospices Civils de Lyon, Lyon Sud Hospital, 69495 Pierre Bénite, France; (P.L.); (D.F.)
| | - Stanislas Bataille
- Phocean Nephrology Institute, Clinique Bouchard, ELSAN, 13000 Marseille, France;
- INSERM, INRA, C2VN, Aix Marseille University, 13000 Marseille, France
| | - Philippe Chauveau
- Association Pour l’Utilisation Du Rein Artificiel A Domicile, 33110 Gradignan, France;
| | - Denis Fouque
- Departement of Nephrology, Hospices Civils de Lyon, Lyon Sud Hospital, 69495 Pierre Bénite, France; (P.L.); (D.F.)
- University Lyon, CarMeN Laboratory, INSA-Lyon, INSERM U1060, INRA, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Laetitia Koppe
- Departement of Nephrology, Hospices Civils de Lyon, Lyon Sud Hospital, 69495 Pierre Bénite, France; (P.L.); (D.F.)
- University Lyon, CarMeN Laboratory, INSA-Lyon, INSERM U1060, INRA, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| |
Collapse
|
280
|
Jiang N, Zhang C, Feng H, Yuan J, Ding L, Fang W, Gu A, Huang J, Li N, Gu L, Ni Z, Mou S. Clinical characteristics associated with the properties of gut microbiota in peritoneal dialysis patients. Perit Dial Int 2020; 41:298-306. [PMID: 33272119 DOI: 10.1177/0896860820976983] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Gut microbiota alters in patients with end-stage renal disease, which contributes to inflammation, atherosclerosis, and results in increased incidence of cardiovascular diseases. The present study investigated the potential clinical factors, which influence the gut microbial structure and function in patients undergoing peritoneal dialysis (PD). METHODS This is a cross-sectional study performed in 81 prevalent PD patients. Gut microbiota was assessed by high throughput sequencing of 16S ribosomal ribonucleic acid gene in fecal samples. Gas chromatography was conducted to measure stool short-chain fat acid (SCFA) concentrations. Demographic parameters and clinical characteristics, including dialysis regimen, residual renal function, nutrition, and inflammation, were retrieved and related to the properties of gut microbiota. RESULTS PD duration, peritoneal glucose exposure, and estimated glomerulus filtration rate (eGFR) were identified to be associated with microbial variations. Significant separation of microbial composition was shown between patients with short or long PD duration (p = 0.015) and marginal differences were found between patients grouped by different levels of peritoneal glucose exposure (p = 0.056) or residual renal function (p = 0.063). A couple of gut bacteria showed different abundance at amplicon sequencing variant level between these patient groups (p < 0.05). In addition, stool isobutyric and isovaleric acid concentrations were significantly reduced in patients with longer dialysis duration, higher peritoneal glucose exposure, or declined eGFR (p < 0.05). CONCLUSIONS This pilot study demonstrated that long dialysis duration, high peritoneal glucose exposure, and loss of residual renal function were associated with gut microbiota alteration and reduced branched-chain SCFA production in PD patients.
Collapse
Affiliation(s)
- Na Jiang
- Department of Nephrology, 71140Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hao Feng
- Department of Nephrology, 71140Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Jiangzi Yuan
- Department of Nephrology, 71140Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Li Ding
- Department of Nephrology, 71140Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Wei Fang
- Department of Nephrology, 71140Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Aiping Gu
- Department of Nephrology, 71140Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Jiaying Huang
- Department of Nephrology, 71140Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Na Li
- Department of Nephrology, 71140Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Leyi Gu
- Department of Nephrology, 71140Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Zhaohui Ni
- Department of Nephrology, 71140Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Shan Mou
- Department of Nephrology, 71140Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| |
Collapse
|
281
|
Wang N, Guo Z, Zhang Y, Zhang P, Liu J, Cheng Y, Zhang L, Li Y. Effect on intestinal microbiota, bioaccumulation, and oxidative stress of Carassius auratus gibelio under waterborne cadmium exposure. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2299-2309. [PMID: 32986141 DOI: 10.1007/s10695-020-00870-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) is a hazardous pollutant known to exert various toxic effects and other sublethal effects on aquatic organisms, and induce a variety of adverse effects on human health, and can be commonly found in environment. The aim of this study was to explore the effects of waterborne Cd exposure on the intestinal microbiota, and Cd accumulation and oxidative response in Carassius auratus gibelio (C. gibelio). The fish were exposed to waterborne Cd at 0, 1, 2, and 4 mg/L for 30 days. Waterborne Cd exposure resulted marked alterations in the composition of microbiota. At the genus level, Bacteroides, Aeromonas, Akkermansia, Acinetobacter, Chryseobacterium, Shinella, Cetobacterium and Bacillus were significantly changed in Cd groups. The results obtained indicate that Cd exposure significantly increased the bioaccumulation level of Cd and profoundly affected antioxidant enzyme including superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), total antioxidant (T-AOC), malonaldehyde (MDA), and glutathione-S-transferase (GST). The present findings may provide a new framework for the role of gut microbiota in the response to environmental chemical contamination and in the pathogenesis of body disorders.
Collapse
Affiliation(s)
- Nan Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Ministry of education laboratory of animal production and quality security, Jilin Agricultural University, Changchun, 130118, China
| | - Zhengyao Guo
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Ministry of education laboratory of animal production and quality security, Jilin Agricultural University, Changchun, 130118, China
| | - Yilin Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Ministry of education laboratory of animal production and quality security, Jilin Agricultural University, Changchun, 130118, China
| | - Peijun Zhang
- Health Monitoring and Inspection Center of Jilin Province, Changchun, 130062, China
| | - Jia Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Ministry of education laboratory of animal production and quality security, Jilin Agricultural University, Changchun, 130118, China
| | - Yi Cheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Ministry of education laboratory of animal production and quality security, Jilin Agricultural University, Changchun, 130118, China
| | - Lei Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Ministry of education laboratory of animal production and quality security, Jilin Agricultural University, Changchun, 130118, China
| | - Yuehong Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
- Ministry of education laboratory of animal production and quality security, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
282
|
Massy ZA, Drueke TB. Diet-microbiota interaction and kidney disease progression. Kidney Int 2020; 99:797-800. [PMID: 33245991 DOI: 10.1016/j.kint.2020.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/27/2020] [Accepted: 11/11/2020] [Indexed: 11/24/2022]
Affiliation(s)
- Ziad A Massy
- Inserm Unit 1018, Team 5, CESP, Paul Brousse University Hospital, Paris-Sud University (UPS) and Versailles Saint-Quentin-en-Yvelines University (Paris-Ile-de-France-Ouest University, UVSQ), Villejuif, France; Department of Nephrology, Ambroise Paré University Hospital, APHP, Boulogne-Billancourt/Paris, France
| | - Tilman B Drueke
- Inserm Unit 1018, Team 5, CESP, Paul Brousse University Hospital, Paris-Sud University (UPS) and Versailles Saint-Quentin-en-Yvelines University (Paris-Ile-de-France-Ouest University, UVSQ), Villejuif, France.
| |
Collapse
|
283
|
Barba C, Soulage CO, Caggiano G, Glorieux G, Fouque D, Koppe L. Effects of Fecal Microbiota Transplantation on Composition in Mice with CKD. Toxins (Basel) 2020; 12:toxins12120741. [PMID: 33255454 PMCID: PMC7761367 DOI: 10.3390/toxins12120741] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Chronic kidney disease (CKD) is a renal disorder characterized by the accumulation of uremic toxins with limited strategies to reduce their concentrations. A large amount of data supports the pivotal role of intestinal microbiota in CKD complications and as a major source of uremic toxins production. Here, we explored whether fecal microbiota transplantation (FMT) could be attenuated in metabolic complication and uremic toxin accumulation in mice with CKD. Methods: Kidney failure was chemically induced by a diet containing 0.25% (w/w) of adenine for four weeks. Mice were randomized into three groups: control, CKD and CKD + FMT groups. After four weeks, CKD mice underwent fecal microbiota transplantation (FMT) from healthy mice or phosphate buffered saline as control. The gut microbiota structure, uremic toxins plasmatic concentrations, and metabolic profiles were explored three weeks after transplantation. Results: Associated with the increase of alpha diversity, we observed a noticeable improvement of gut microbiota disturbance, after FMT treatment. FMT further decreased p-cresyl sulfate accumulation and improved glucose tolerance. There was no change in kidney function. Conclusions: These data indicate that FMT limited the accumulation of uremic toxins issued from intestinal cresol pathway by a beneficial effect on gut microbiota diversity. Further studies are needed to investigate the FMT efficiency, the timing and feces amount for the transplantation before, to become a therapeutic option in CKD patients.
Collapse
Affiliation(s)
- Christophe Barba
- CarMeN Lab, INSA-Lyon, INSERM U1060, INRA, University Claude Bernard Lyon 1, 69100 Villeurbanne, France; (C.B.); (C.O.S.); (D.F.)
- Department of Nephrology, Hospices Civils de Lyon, Lyon Sud Hospital, 69310 Pierre Bénite, France
| | - Christophe O. Soulage
- CarMeN Lab, INSA-Lyon, INSERM U1060, INRA, University Claude Bernard Lyon 1, 69100 Villeurbanne, France; (C.B.); (C.O.S.); (D.F.)
| | - Gianvito Caggiano
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Griet Glorieux
- Nephrology Section, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Gent, Belgium;
| | - Denis Fouque
- CarMeN Lab, INSA-Lyon, INSERM U1060, INRA, University Claude Bernard Lyon 1, 69100 Villeurbanne, France; (C.B.); (C.O.S.); (D.F.)
- Department of Nephrology, Hospices Civils de Lyon, Lyon Sud Hospital, 69310 Pierre Bénite, France
| | - Laetitia Koppe
- CarMeN Lab, INSA-Lyon, INSERM U1060, INRA, University Claude Bernard Lyon 1, 69100 Villeurbanne, France; (C.B.); (C.O.S.); (D.F.)
- Department of Nephrology, Hospices Civils de Lyon, Lyon Sud Hospital, 69310 Pierre Bénite, France
- Correspondence:
| |
Collapse
|
284
|
Livanos AE, Jha D, Cossarini F, Gonzalez-Reiche AS, Tokuyama M, Aydillo T, Parigi TL, Ramos I, Dunleavy K, Lee B, Dixon R, Chen ST, Martinez-Delgado G, Nagula S, Ko HM, Glicksberg BS, Nadkarni G, Pujadas E, Reidy J, Naymagon S, Grinspan A, Ahmad J, Tankelevich M, Gordon R, Sharma K, Houldsworth J, Britton GJ, Chen-Liaw A, Spindler MP, Plitt T, Wang P, Cerutti A, Faith JJ, Colombel JF, Kenigsberg E, Argmann C, Merad M, Gnjatic S, Harpaz N, Danese S, Cordon-Cardo C, Rahman A, Kumta NA, Aghemo A, Petralia F, van Bakel H, Garcia-Sastre A, Mehandru S. Gastrointestinal involvement attenuates COVID-19 severity and mortality. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.09.07.20187666. [PMID: 32935117 PMCID: PMC7491532 DOI: 10.1101/2020.09.07.20187666] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Given that gastrointestinal (GI) symptoms are a prominent extrapulmonary manifestation of coronavirus disease 2019 (COVID-19), we investigated intestinal infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its effect on disease pathogenesis. SARS-CoV-2 was detected in small intestinal enterocytes by immunofluorescence staining or electron microscopy, in 13 of 15 patients studied. High dimensional analyses of GI tissues revealed low levels of inflammation in general, including active downregulation of key inflammatory genes such as IFNG, CXCL8, CXCL2 and IL1B and reduced frequencies of proinflammatory dendritic cell subsets. To evaluate the clinical significance of these findings, examination of two large, independent cohorts of hospitalized patients in the United States and Europe revealed a significant reduction in disease severity and mortality that was independent of gender, age, and examined co-morbid illnesses. The observed mortality reduction in COVID-19 patients with GI symptoms was associated with reduced levels of key inflammatory proteins including IL-6, CXCL8, IL-17A and CCL28 in circulation but was not associated with significant differences in nasopharyngeal viral loads. These data draw attention to organ-level heterogeneity in disease pathogenesis and highlight the role of the GI tract in attenuating SARS-CoV-2-associated inflammation with related mortality benefit. ONE SENTENCE SUMMARY Intestinal infection with SARS-CoV-2 is associated with a mild inflammatory response and improved clinical outcomes.
Collapse
|
285
|
Tu Y, Fang QJ, Sun W, Liu BH, Liu YL, Wu W, Yee HY, Yuan CC, Wang MZ, Wan ZY, Tang RM, Wan YG, Tang HT. Total Flavones of Abelmoschus manihot Remodels Gut Microbiota and Inhibits Microinflammation in Chronic Renal Failure Progression by Targeting Autophagy-Mediated Macrophage Polarization. Front Pharmacol 2020; 11:566611. [PMID: 33101025 PMCID: PMC7554637 DOI: 10.3389/fphar.2020.566611] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022] Open
Abstract
Background Recently, progression of chronic renal failure (CRF) has been closely associated with gut microbiota dysbiosis and intestinal metabolite-derived microinflammation. In China, total flavones of Abelmoschus manihot (TFA), a component of Abelmoschus manihot, has been widely used to delay CRF progression in clinics for the past two decades. However, the overall therapeutic mechanisms remain obscure. In this study, we designed experiments to investigate the renoprotective effects of TFA in CRF progression and its underlying mechanisms involved in gut microbiota and microinflammation, compared with febuxostat (FEB), a potent non-purine selective inhibitor of xanthine oxidase. Methods In vivo, the CRF rat models were induced by uninephrectomy, potassium oxonate, and proinflammatory diet, and received either TFA suspension, FEB, or vehicle after modeling for 28 days. In vitro, the RAW 264.7 cells were exposed to lipopolysaccharide (LPS) with or without TFA or FEB. Changes in parameters related to renal injury, gut microbiota dysbiosis, gut-derived metabolites, and microinflammation were analyzed in vivo. Changes in macrophage polarization and autophagy and its related signaling were analyzed both in vivo and in vitro. Results For the modified CRF model rats, the administration of TFA and FEB improved renal injury, including renal dysfunction and renal tubulointerstitial lesions; remodeled gut microbiota dysbiosis, including decreased Bacteroidales and Lactobacillales and increased Erysipelotrichales; regulated gut-derived metabolites, including d-amino acid oxidase, serine racemase, d-serine, and l-serine; inhibited microinflammation, including interleukin 1β (IL1β), tumor necrosis factor-α, and nuclear factor-κB; and modulated macrophage polarization, including markers of M1/M2 macrophages. More importantly, TFA and FEB reversed the expression of beclin1 (BECN1) and phosphorylation of p62 protein and light chain 3 (LC3) conversion in the kidneys by activating the adenosine monophosphate-activated protein kinase-sirtuin 1 (AMPK-SIRT1) signaling. Further, TFA and FEB have similar effects on macrophage polarization and autophagy and its related signaling in vitro. Conclusion In this study, we demonstrated that TFA, similar to FEB, exerts its renoprotective effects partially by therapeutically remodeling gut microbiota dysbiosis and inhibiting intestinal metabolite-derived microinflammation. This is achieved by adjusting autophagy-mediated macrophage polarization through AMPK-SIRT1 signaling. These findings provide more accurate information on the role of TFA in delaying CRF progression.
Collapse
Affiliation(s)
- Yue Tu
- Department of Traditional Chinese Medicine Health Preservation, Acupuncture, Moxibustion and Massage College, Health Preservation and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qi-Jun Fang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Sun
- Nephrology Division, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bu-Hui Liu
- Nephrology Division, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying-Lu Liu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Wu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hong-Yun Yee
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Can-Can Yuan
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mei-Zi Wang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zi-Yue Wan
- Department of Social Work, Meiji Gakuin University, Tokyo, Japan
| | - Ren-Mao Tang
- Institute of Huangkui, Suzhong Pharmaceutical Group Co., Ltd., Taizhou, China
| | - Yi-Gang Wan
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hai-Tao Tang
- Institute of Huangkui, Suzhong Pharmaceutical Group Co., Ltd., Taizhou, China
| |
Collapse
|
286
|
Graboski AL, Redinbo MR. Gut-Derived Protein-Bound Uremic Toxins. Toxins (Basel) 2020; 12:toxins12090590. [PMID: 32932981 PMCID: PMC7551879 DOI: 10.3390/toxins12090590] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/17/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) afflicts more than 500 million people worldwide and is one of the fastest growing global causes of mortality. When glomerular filtration rate begins to fall, uremic toxins accumulate in the serum and significantly increase the risk of death from cardiovascular disease and other causes. Several of the most harmful uremic toxins are produced by the gut microbiota. Furthermore, many such toxins are protein-bound and are therefore recalcitrant to removal by dialysis. We review the derivation and pathological mechanisms of gut-derived, protein-bound uremic toxins (PBUTs). We further outline the emerging relationship between kidney disease and gut dysbiosis, including the bacterial taxa altered, the regulation of microbial uremic toxin-producing genes, and their downstream physiological and neurological consequences. Finally, we discuss gut-targeted therapeutic strategies employed to reduce PBUTs. We conclude that targeting the gut microbiota is a promising approach for the treatment of CKD by blocking the serum accumulation of PBUTs that cannot be eliminated by dialysis.
Collapse
Affiliation(s)
- Amanda L. Graboski
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599-7365, USA;
| | - Matthew R. Redinbo
- Departments of Chemistry, Biochemistry, Microbiology and Genomics, University of North Carolina, Chapel Hill, NC 27599-3290, USA
- Correspondence:
| |
Collapse
|
287
|
Sun B, Wang X, Liu X, Wang L, Ren F, Wang X, Leng X. Hippuric Acid Promotes Renal Fibrosis by Disrupting Redox Homeostasis via Facilitation of NRF2-KEAP1-CUL3 Interactions in Chronic Kidney Disease. Antioxidants (Basel) 2020; 9:antiox9090783. [PMID: 32854194 PMCID: PMC7555723 DOI: 10.3390/antiox9090783] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/16/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022] Open
Abstract
Chronic kidney disease (CKD) is characterized by the accumulation of protein-bound uremic toxins (PBUTs), which play a pathophysiological role in renal fibrosis (a common pathological process resulting in CKD progression). Accumulation of the PBUT hippuric acid (HA) is positively correlated with disease progression in CKD patients, suggesting that HA may promote renal fibrosis. Oxidative stress is the most important factor affecting PBUTs nephrotoxicity. Herein, we assessed the ability of HA to promote kidney fibrosis by disrupting redox homeostasis. In HK-2 cells, HA increased fibrosis-related gene expression, extracellular matrix imbalance, and oxidative stress. Additionally, reactive oxygen species (ROS)-mediated TGFβ/SMAD signaling contributed to HA-induced fibrotic responses. HA disrupted antioxidant networks by decreasing the levels of nuclear factor erythroid 2-related factor 2 (NRF2), leading to ROS accumulation and fibrotic responses, as evidenced by NRF2 activation and knockdown. Moreover, NRF2 levels were reduced by NRF2 ubiquitination, which was regulated via increased interactions of Kelch-like ECH-associated protein 1 with Cullin 3 and NRF2. Finally, renal fibrosis and redox imbalance promoted by HA were confirmed in rats. Importantly, sulforaphane (NRF2 activator) reversed HA-promoted renal fibrosis. Thus, HA promotes renal fibrosis in CKD by disrupting NRF2-driven antioxidant system, indicating that NRF2 is a potential therapeutic target for CKD.
Collapse
Affiliation(s)
- Bowen Sun
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (B.S.); (X.W.); (X.L.); (L.W.); (F.R.)
| | - Xifan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (B.S.); (X.W.); (X.L.); (L.W.); (F.R.)
| | - Xiaoxue Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (B.S.); (X.W.); (X.L.); (L.W.); (F.R.)
| | - Longjiao Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (B.S.); (X.W.); (X.L.); (L.W.); (F.R.)
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (B.S.); (X.W.); (X.L.); (L.W.); (F.R.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoyu Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (B.S.); (X.W.); (X.L.); (L.W.); (F.R.)
- Correspondence: (X.W.); (X.L.); Tel.: +86-10-6273-8589 (X.W.); +86-10-6273-7761 (X.L.)
| | - Xiaojing Leng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (B.S.); (X.W.); (X.L.); (L.W.); (F.R.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Correspondence: (X.W.); (X.L.); Tel.: +86-10-6273-8589 (X.W.); +86-10-6273-7761 (X.L.)
| |
Collapse
|
288
|
Spot urine versus 24-hour urine collection for estimation of the generation of uremic toxins originating from gut microbial metabolism. Kidney Int 2020; 98:782-784. [PMID: 32828238 DOI: 10.1016/j.kint.2020.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/24/2020] [Accepted: 05/07/2020] [Indexed: 11/23/2022]
|
289
|
Liu S, Gao J, Zhu M, Liu K, Zhang HL. Gut Microbiota and Dysbiosis in Alzheimer's Disease: Implications for Pathogenesis and Treatment. Mol Neurobiol 2020; 57:5026-5043. [PMID: 32829453 PMCID: PMC7541367 DOI: 10.1007/s12035-020-02073-3] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Understanding how gut flora influences gut-brain communications has been the subject of significant research over the past decade. The broadening of the term “microbiota-gut-brain axis” from “gut-brain axis” underscores a bidirectional communication system between the gut and the brain. The microbiota-gut-brain axis involves metabolic, endocrine, neural, and immune pathways which are crucial for the maintenance of brain homeostasis. Alterations in the composition of gut microbiota are associated with multiple neuropsychiatric disorders. Although a causal relationship between gut dysbiosis and neural dysfunction remains elusive, emerging evidence indicates that gut dysbiosis may promote amyloid-beta aggregation, neuroinflammation, oxidative stress, and insulin resistance in the pathogenesis of Alzheimer’s disease (AD). Illustration of the mechanisms underlying the regulation by gut microbiota may pave the way for developing novel therapeutic strategies for AD. In this narrative review, we provide an overview of gut microbiota and their dysregulation in the pathogenesis of AD. Novel insights into the modification of gut microbiota composition as a preventive or therapeutic approach for AD are highlighted.
Collapse
Affiliation(s)
- Shan Liu
- Department of Neurology, First Hospital of Jilin University, Jilin University, Xinmin Street 71, Changchun, 130021, China
| | - Jiguo Gao
- Department of Neurology, First Hospital of Jilin University, Jilin University, Xinmin Street 71, Changchun, 130021, China
| | - Mingqin Zhu
- Department of Neurology, First Hospital of Jilin University, Jilin University, Xinmin Street 71, Changchun, 130021, China.,Departments of Laboratory Medicine and Pathology, Neurology and Immunology, Mayo Clinic, Rochester, MN, USA
| | - Kangding Liu
- Department of Neurology, First Hospital of Jilin University, Jilin University, Xinmin Street 71, Changchun, 130021, China.
| | - Hong-Liang Zhang
- Department of Life Sciences, National Natural Science Foundation of China, Shuangqing Road 83, Beijing, 100085, China.
| |
Collapse
|
290
|
Nagayama Y, Isoo N, Nakashima A, Suzuki K, Yamano M, Nariyama T, Yagame M, Matsui K. Renoprotective effects of paramylon, a β-1,3-D-Glucan isolated from Euglena gracilis Z in a rodent model of chronic kidney disease. PLoS One 2020; 15:e0237086. [PMID: 32764782 PMCID: PMC7413521 DOI: 10.1371/journal.pone.0237086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/20/2020] [Indexed: 12/25/2022] Open
Abstract
Paramylon is a novel β-glucan that is stored by Euglena gracilis Z, which is a unicellular photosynthesizing green alga with characteristics of both animals and plants. Recent studies have indicated that paramylon functions as an immunomodulator or a dietary fiber. Currently, chronic kidney disease (CKD) is a global health problem, and there is no effective preventive treatment for CKD progression. However, paramylon may suppress the progression of CKD via the elimination of uremic toxins or modulation of gut microbiota, leading to the alleviation of inflammation. The aim of this study was to evaluate the effect of paramylon in CKD rat model. Eight-week-old male Wistar rats with a 5/6 nephrectomy were given either a normal diet or a diet containing 5% paramylon for 8 weeks. Proteinuria was measured intermittently. Serum and kidney tissues were harvested after sacrifice. We performed a renal molecular and histopathological investigation, serum metabolome analysis, and gut microbiome analysis. The results showed that paramylon attenuated renal function, glomerulosclerosis, tubulointerstitial injury, and podocyte injury in the CKD rat model. Renal fibrosis, tubulointerstitial inflammatory cell infiltration, and proinflammatory cytokine gene expression levels tended to be suppressed with paramylon treatment. Further, paramylon inhibited the accumulation of uremic toxins, including tricarboxylic acid (TCA) cycle-related metabolites and modulated a part of CKD-related gut microbiota in the CKD rat model. In conclusion, we suggest that paramylon mainly inhibited the absorption of non-microbiota-derived uremic solutes, leading to protect renal injury via anti-inflammatory and anti-fibrotic effects. Paramylon may be a novel compound that can act against CKD progression.
Collapse
Affiliation(s)
- Yoshikuni Nagayama
- Department of Internal Medicine IV, Teikyo University School of Medicine, University Hospital, Mizonokuchi, Kawasaki, Japan
- * E-mail:
| | - Naoyuki Isoo
- Department of Internal Medicine IV, Teikyo University School of Medicine, University Hospital, Mizonokuchi, Kawasaki, Japan
| | | | | | - Mizuki Yamano
- Department of Internal Medicine IV, Teikyo University School of Medicine, University Hospital, Mizonokuchi, Kawasaki, Japan
| | - Tomoyuki Nariyama
- Department of Internal Medicine IV, Teikyo University School of Medicine, University Hospital, Mizonokuchi, Kawasaki, Japan
| | - Motoka Yagame
- Department of Internal Medicine IV, Teikyo University School of Medicine, University Hospital, Mizonokuchi, Kawasaki, Japan
| | - Katsuyuki Matsui
- Department of Internal Medicine IV, Teikyo University School of Medicine, University Hospital, Mizonokuchi, Kawasaki, Japan
| |
Collapse
|
291
|
Changes in the Fecal Metabolome Are Associated with Feeding Fiber Not Health Status in Cats with Chronic Kidney Disease. Metabolites 2020; 10:metabo10070281. [PMID: 32660033 PMCID: PMC7407581 DOI: 10.3390/metabo10070281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 11/25/2022] Open
Abstract
The objective was to determine the effects of feeding different fiber sources to cats with chronic kidney disease (CKD) compared with healthy cats (both n = 10) on fecal metabolites. A cross-over within split-plot study design was performed using healthy and CKD cats (IRIS stage 1, 2, and 3). After cats were fed a complete and balanced dry food designed to aid in the management of renal disease for 14 days during a pre-trial period, they were randomly assigned to two fiber treatments for 4 weeks each. The treatment foods were formulated similar to pre-trial food and contained 0.500% betaine, 0.586% oat beta glucan, and either 0.407% short chain fructooligosaccharides (scFOS) fiber or 3.44% apple pomace. Both treatment foods had similar crude fiber (2.0 and 2.1% for scFOS and apple pomace, respectively) whereas soluble fiber was 0.8 and 1.6%, respectively. At baseline, CKD had very little impact on the fecal metabolome. After feeding both fiber sources, some fecal metabolite concentrations were significantly different compared with baseline. Many fecal uremic toxins decreased, although in healthy cats some increased; and some more so when feeding apple pomace compared with scFOS, e.g., hippurate, 4-hydroxyhippurate, and 4-methylcatechol sulfate; the latter was also increased in CKD cats. Changes in secondary bile acid concentrations were more numerous in healthy compared with CKD cats, and cats in both groups had greater increases in some secondary bile acids after consuming apple pomace compared with scFOS, e.g., tauroursodeoxycholate and hyocholate. Although changes associated with feeding fiber were more significant than changes associated with disease status, differential modulation of the gut-kidney axis using dietary fiber may benefit cats.
Collapse
|
292
|
Abstract
Cardiovascular disease and infections are major causes for the high incidence of morbidity and mortality of patients with chronic kidney disease. Both complications are directly or indirectly associated with disturbed functions or altered apoptotic rates of polymorphonuclear leukocytes, monocytes, lymphocytes, and dendritic cells. Normal responses of immune cells can be reduced, leading to infectious diseases or pre-activated/primed, giving rise to inflammation and subsequently to cardiovascular disease. This review summarizes the impact of kidney dysfunction on the immune system. Renal failure results in disturbed renal metabolic activities with reduced renin, erythropoietin, and vitamin D production, which adversely affects the immune system. Decreased kidney function also leads to reduced glomerular filtration and the retention of uremic toxins. A large number of uremic toxins with detrimental effects on immune cells have been identified. Besides small water-soluble and protein-bound compounds originating from the intestinal microbiome, several molecules in the middle molecular range, e.g., immunoglobulin light chains, retinol-binding protein, the neuropeptides Met-enkephalin and neuropeptide Y, endothelin-1, and the adipokines leptin and resistin, adversely affect immune cells. Posttranslational modifications such as carbamoylation, advanced glycation products, and oxidative modifications contribute to uremic toxicity. Furthermore, high-density lipoprotein from uremic patients has an altered protein profile and thereby loses its anti-inflammatory properties.
Collapse
Affiliation(s)
- Gerald Cohen
- Department of Nephrology and Dialysis, Medical University of Vienna, Vienna A-1090, Austria
| |
Collapse
|
293
|
Glorieux G, Gryp T, Perna A. Gut-Derived Metabolites and Their Role in Immune Dysfunction in Chronic Kidney Disease. Toxins (Basel) 2020; 12:toxins12040245. [PMID: 32290429 PMCID: PMC7232434 DOI: 10.3390/toxins12040245] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023] Open
Abstract
Several of the uremic toxins, which are difficult to remove by dialysis, originate from the gut bacterial metabolism. This opens opportunities for novel targets trying to decrease circulating levels of these toxins and their pathophysiological effects. The current review focuses on immunomodulatory effects of these toxins both at their side of origin and in the circulation. In the gut end products of the bacterial metabolism such as p-cresol, trimethylamine and H2S affect the intestinal barrier structure and function while in the circulation the related uremic toxins stimulate cells of the immune system. Both conditions contribute to the pro-inflammatory status of patients with chronic kidney disease (CKD). Generation and/or absorption of these toxin precursors could be targeted to decrease plasma levels of their respective uremic toxins and to reduce micro-inflammation in CKD.
Collapse
Affiliation(s)
- Griet Glorieux
- Nephrology Division, Ghent University Hospital and Ghent University, 9000 Ghent, Belgium;
- Correspondence: ; Tel.: +32-9-3324511
| | - Tessa Gryp
- Nephrology Division, Ghent University Hospital and Ghent University, 9000 Ghent, Belgium;
| | - Alessandra Perna
- First Division of Nephrology, Department of Translational Medical Sciences, School of Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
| |
Collapse
|