251
|
Matsuba Y, Zi J, Jones AD, Peters RJ, Pichersky E. Biosynthesis of the diterpenoid lycosantalonol via nerylneryl diphosphate in Solanum lycopersicum. PLoS One 2015; 10:e0119302. [PMID: 25786135 PMCID: PMC4364678 DOI: 10.1371/journal.pone.0119302] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/29/2015] [Indexed: 12/17/2022] Open
Abstract
We recently reported that three genes involved in the biosynthesis of monoterpenes in trichomes, a cis-prenyltransferase named neryl diphosphate synthase 1 (NDPS1) and two terpene synthases (TPS19 and TPS20), are present in close proximity to each other at the tip of chromosome 8 in the genome of the cultivated tomato (Solanum lycopersicum). This terpene gene “cluster” also contains a second cis-prenyltransferase gene (CPT2), three other TPS genes, including TPS21, and the cytochrome P450-oxidoreductase gene CYP71BN1. CPT2 encodes a neryneryl diphosphate synthase. Co-expression in E. coli of CPT2 and TPS21 led to the formation of the diterpene lycosantalene, and co-expression in E. coli of CPT2, TPS21 and CYP71BN1 led to the formation of lycosantalonol, an oxidation product of lycosantalene. Here we show that maximal expression of all three genes occurs in the petiolule part of the leaf, but little expression of these genes occurs in the trichomes present on the petiolules. While lycosantalene or lycosantalonol cannot be detected in the petiolules of wild-type plants (or anywhere else in the plant), lycosantalene and lycosantalonol are detected in petiolules of transgenic tomato plants expressing CPT2 under the control of the 35S CaMV promoter. These results suggest that lycosantalene and lycosantalonol are produced in the petiolules and perhaps in other tissues of wild-type plants, but that low rate of synthesis, controlled by the rate-limiting enzyme CPT2, results in product levels that are too low for detection under our current methodology. It is also possible that these compounds are further modified in the plant. The involvement of CPT2, TPS21 and CYP71BN1 in a diterpenoid biosynthetic pathway outside the trichomes, together with the involvement of other genes in the cluster in the synthesis of monoterpenes in trichomes, indicates that this cluster is further evolving into “sub-clusters” with unique biochemical, and likely physiological, roles.
Collapse
Affiliation(s)
- Yuki Matsuba
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jiachen Zi
- Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - A. Daniel Jones
- Department of Biochemistry, Michigan State University, East Lansing, Michigan, United States of America
| | - Reuben J. Peters
- Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Eran Pichersky
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
252
|
Freilich S, Lev S, Gonda I, Reuveni E, Portnoy V, Oren E, Lohse M, Galpaz N, Bar E, Tzuri G, Wissotsky G, Meir A, Burger J, Tadmor Y, Schaffer A, Fei Z, Giovannoni J, Lewinsohn E, Katzir N. Systems approach for exploring the intricate associations between sweetness, color and aroma in melon fruits. BMC PLANT BIOLOGY 2015; 15:71. [PMID: 25887588 PMCID: PMC4448286 DOI: 10.1186/s12870-015-0449-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/04/2015] [Indexed: 05/02/2023]
Abstract
BACKGROUND Melon (Cucumis melo) fruits exhibit phenotypic diversity in several key quality determinants such as taste, color and aroma. Sucrose, carotenoids and volatiles are recognized as the key compounds shaping the above corresponding traits yet the full network of biochemical events underlying their synthesis have not been comprehensively described. To delineate the cellular processes shaping fruit quality phenotypes, a population of recombinant inbred lines (RIL) was used as a source of phenotypic and genotypic variations. In parallel, ripe fruits were analyzed for both the quantified level of 77 metabolic traits directly associated with fruit quality and for RNA-seq based expression profiles generated for 27,000 unigenes. First, we explored inter-metabolite association patterns; then, we described metabolites versus gene association patterns; finally, we used the correlation-based associations for predicting uncharacterized synthesis pathways. RESULTS Based on metabolite versus metabolite and metabolite versus gene association patterns, we divided metabolites into two key groups: a group including ethylene and aroma determining volatiles whose accumulation patterns are correlated with the expression of genes involved in the glycolysis and TCA cycle pathways; and a group including sucrose and color determining carotenoids whose accumulation levels are correlated with the expression of genes associated with plastid formation. CONCLUSIONS The study integrates multiple processes into a genome scale perspective of cellular activity. This lays a foundation for deciphering the role of gene markers associated with the determination of fruit quality traits.
Collapse
Affiliation(s)
- Shiri Freilich
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Shery Lev
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Itay Gonda
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Eli Reuveni
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Vitaly Portnoy
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Elad Oren
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | | | - Navot Galpaz
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
- Migal Research Institute, Kiryat Shmona, 11016, Israel.
| | - Einat Bar
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Galil Tzuri
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Guy Wissotsky
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Ayala Meir
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Joseph Burger
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Yaakov Tadmor
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Arthur Schaffer
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Zhangjun Fei
- USDA-ARS and Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA.
| | - James Giovannoni
- USDA-ARS and Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA.
| | - Efraim Lewinsohn
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| | - Nurit Katzir
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel.
| |
Collapse
|
253
|
Amarasinghe R, Poldy J, Matsuba Y, Barrow RA, Hemmi JM, Pichersky E, Peakall R. UV-B light contributes directly to the synthesis of chiloglottone floral volatiles. ANNALS OF BOTANY 2015; 115:693-703. [PMID: 25649114 PMCID: PMC4343295 DOI: 10.1093/aob/mcu262] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 10/27/2014] [Accepted: 12/09/2014] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Australian sexually deceptive Chiloglottis orchids attract their specific male wasp pollinators by means of 2,5-dialkylcyclohexane-1,3-diones or 'chiloglottones', representing a newly discovered class of volatiles with unique structures. This study investigated the hypothesis that UV-B light at low intensities is directly required for chiloglottone biosynthesis in Chiloglottis trapeziformis. METHODS Chiloglottone production occurs only in specific tissue (the callus) of the labellum. Cut buds and flowers, and whole plants with buds and flowers, sourced from the field, were kept in a growth chamber and interactions between growth stage of the flowers and duration and intensity of UV-B exposure on chiloglottone production were studied. The effects of the protein synthesis inhibitor cycloheximide were also examined. KEY RESULTS Chiloglottone was not present in buds, but was detected in buds that were manually opened and then exposed to sunlight, or artificial UV-B light for ≥5 min. Spectrophotometry revealed that the sepals and petals blocked UV-B light from reaching the labellum inside the bud. Rates of chiloglottone production increased with developmental stage, increasing exposure time and increasing UV-B irradiance intensity. Cycloheximide did not inhibit the initial production of chiloglottone within 5 min of UV-B exposure. However, inhibition of chiloglottone production by cycloheximide occurred over 2 h of UV-B exposure, indicating a requirement for de novo protein synthesis to sustain chiloglottone production under UV-B. CONCLUSIONS The sepals and petals of Chiloglottis orchids strongly block UV-B wavelengths of light, preventing chiloglottone production inside the bud. While initiation of chiloglottone biosynthesis requires only UV-B light, sustained chiloglottone biosynthesis requires both UV-B and de novo protein biosynthesis. The internal amounts of chiloglottone in a flower reflect the interplay between developmental stage, duration and intensity of UV-B exposure, de novo protein synthesis, and feedback loops linked to the starting amount of chiloglottone. It is concluded that UV-B light contributes directly to chiloglottone biosynthesis. These findings suggest an entirely new and unexpected biochemical reaction that might also occur in taxa other than these orchids.
Collapse
Affiliation(s)
- Ranamalie Amarasinghe
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia, Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA and School of Animal Biology & Oceans Institute, University of Western Australia, Perth, WA 6009, Australia
| | - Jacqueline Poldy
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia, Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA and School of Animal Biology & Oceans Institute, University of Western Australia, Perth, WA 6009, Australia
| | - Yuki Matsuba
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia, Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA and School of Animal Biology & Oceans Institute, University of Western Australia, Perth, WA 6009, Australia
| | - Russell A Barrow
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia, Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA and School of Animal Biology & Oceans Institute, University of Western Australia, Perth, WA 6009, Australia
| | - Jan M Hemmi
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia, Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA and School of Animal Biology & Oceans Institute, University of Western Australia, Perth, WA 6009, Australia
| | - Eran Pichersky
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia, Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA and School of Animal Biology & Oceans Institute, University of Western Australia, Perth, WA 6009, Australia
| | - Rod Peakall
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia, Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA and School of Animal Biology & Oceans Institute, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
254
|
Schenck CA, Chen S, Siehl DL, Maeda HA. Non-plastidic, tyrosine-insensitive prephenate dehydrogenases from legumes. Nat Chem Biol 2015; 11:52-7. [PMID: 25402771 DOI: 10.1038/nchembio.1693] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/19/2014] [Indexed: 11/09/2022]
Abstract
L-Tyrosine (Tyr) and its plant-derived natural products are essential in both plants and humans. In plants, Tyr is generally assumed to be synthesized in the plastids via arogenate dehydrogenase (TyrA(a), also known also ADH), which is strictly inhibited by L-Tyr. Using phylogenetic and expression analyses, together with recombinant enzyme and endogenous activity assays, we identified prephenate dehydrogenases (TyrA(p)s, also known as PDHs) from two legumes, Glycine max (soybean) and Medicago truncatula. The identified PDHs were phylogenetically distinct from canonical plant ADH enzymes, preferred prephenate to arogenate substrate, localized outside of the plastids and were not inhibited by L-Tyr. The results provide molecular evidence for the diversification of primary metabolic Tyr pathway via an alternative cytosolic PDH pathway in plants.
Collapse
Affiliation(s)
- Craig A Schenck
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Siyu Chen
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
255
|
Dong X, Gao Y, Chen W, Wang W, Gong L, Liu X, Luo J. Spatiotemporal distribution of phenolamides and the genetics of natural variation of hydroxycinnamoyl spermidine in rice. MOLECULAR PLANT 2015; 8:111-21. [PMID: 25578276 DOI: 10.1016/j.molp.2014.11.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/02/2014] [Indexed: 05/03/2023]
Abstract
Phenolamides constitute a diverse class of secondary metabolites that are found ubiquitously in plants and have been implicated to play an important role in a wide range of biological processes, such as plant development and defense. However, spatiotemporal accumulation patterns of phenolamides in rice, one of the most important crops, are not available, and no gene responsible for phenolamide biosynthesis has been identified in this species. In this study, we report the comprehensive metabolic profiling and natural variation analysis of phenolamides in a collection of rice germplasm using a liquid chromatography-mass spectrometry-based targeted metabolomics method. Spatiotemporal controlled accumulations were observed for most phenolamides, together with their differential accumulations between the two major subspecies of rice. Further metabolic genome-wide association study (mGWAS) in rice leaf and in vivo metabolic analysis of the transgenic plants identified Os12g27220 and Os12g27254 as two spermidine hydroxycinnamoyl transferases that might underlie the natural variation of levels of spermidine conjugates in rice. Our work demonstrates that gene-to-metabolite analysis by mGWAS provides a useful tool for functional gene identification and omics-based crop genetic improvement.
Collapse
Affiliation(s)
- Xuekui Dong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yanqiang Gao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Wensheng Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Gong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xianqing Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
256
|
Matsuda F, Nakabayashi R, Yang Z, Okazaki Y, Yonemaru JI, Ebana K, Yano M, Saito K. Metabolome-genome-wide association study dissects genetic architecture for generating natural variation in rice secondary metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:13-23. [PMID: 25267402 PMCID: PMC4309412 DOI: 10.1111/tpj.12681] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 09/19/2014] [Accepted: 09/19/2014] [Indexed: 05/18/2023]
Abstract
Plants produce structurally diverse secondary (specialized) metabolites to increase their fitness for survival under adverse environments. Several bioactive compounds for new drugs have been identified through screening of plant extracts. In this study, genome-wide association studies (GWAS) were conducted to investigate the genetic architecture behind the natural variation of rice secondary metabolites. GWAS using the metabolome data of 175 rice accessions successfully identified 323 associations among 143 single nucleotide polymorphisms (SNPs) and 89 metabolites. The data analysis highlighted that levels of many metabolites are tightly associated with a small number of strong quantitative trait loci (QTLs). The tight association may be a mechanism generating strains with distinct metabolic composition through the crossing of two different strains. The results indicate that one plant species produces more diverse phytochemicals than previously expected, and plants still contain many useful compounds for human applications.
Collapse
Affiliation(s)
- Fumio Matsuda
- RIKEN Center for Sustainable Resource Science1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Japan
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University1-5 Yamadaoka, Suita, Osaka, Japan
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Japan
| | - Zhigang Yang
- RIKEN Center for Sustainable Resource Science1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Japan
| | - Yozo Okazaki
- RIKEN Center for Sustainable Resource Science1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Japan
| | - Jun-ichi Yonemaru
- National Institute of Agrobiological Sciences2-1-2 Kannondai, Tsukuba, Ibaraki, Japan
| | - Kaworu Ebana
- National Institute of Agrobiological Sciences2-1-2 Kannondai, Tsukuba, Ibaraki, Japan
| | - Masahiro Yano
- National Institute of Agrobiological Sciences2-1-2 Kannondai, Tsukuba, Ibaraki, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Japan
- Graduate School of Pharmaceutical Sciences, Chiba UniversityInohana 1-8-1, Chuo-ku, Chiba, Japan
- *For correspondence (e-mail )
| |
Collapse
|
257
|
Berim A, Park JJ, Gang DR. Unexpected roles for ancient proteins: flavone 8-hydroxylase in sweet basil trichomes is a Rieske-type, PAO-family oxygenase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:385-395. [PMID: 25139498 DOI: 10.1111/tpj.12642] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/27/2014] [Accepted: 08/12/2014] [Indexed: 06/03/2023]
Abstract
Most elucidated hydroxylations in plant secondary metabolism are catalyzed by oxoglutarate- or cytochrome P450-dependent oxygenases. Numerous hydroxylations still evade clarification, suggesting that they might be performed by alternative enzyme types. Here, we report the identification of the flavone 8-hydroxylase (F8H) in sweet basil (Ocimum basilicum L.) trichomes as a Rieske-type oxygenase. Several features of the F8H activity in trichome protein extracts helped to differentiate it from a cytochrome P450-catalyzed reaction and identify candidate genes in the basil trichome EST database. The encoded ObF8H proteins share approximately 50% identity with Rieske-type protochlorophyllide a oxygenases (PTC52) from higher plants. Homology cloning and DNA blotting revealed the presence of several PTC52-like genes in the basil genome. The transcripts of the candidate gene designated ObF8H-1 are strongly enriched in trichomes compared to whole young leaves, indicating trichome-specific expression. The full-length ObF8H-1 protein possesses a predicted N-terminal transit peptide, which directs green fluorescent protein at least in part to chloroplasts. The F8H activity in crude trichome protein extracts correlates well with the abundance of ObF8H peptides. The purified recombinant ObF8H-1 displays high affinity for salvigenin and is inactive with other tested flavones except cirsimaritin, which is 8-hydroxylated with less than 0.2% relative activity. The efficiency of in vivo 8-hydroxylation by engineered yeast was improved by manipulation of protein subcellular targeting. blast searches showed that occurrence of several PTC52-like genes is rather common in sequenced plant genomes. The discovery of ObF8H suggests that Rieske-type oxygenases may represent overlooked candidate catalysts for oxygenations in specialized plant metabolism.
Collapse
Affiliation(s)
- Anna Berim
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | | | | |
Collapse
|
258
|
Wang R, Chen R, Li J, Liu X, Xie K, Chen D, Yin Y, Tao X, Xie D, Zou J, Yang L, Dai J. Molecular characterization and phylogenetic analysis of two novel regio-specific flavonoid prenyltransferases from Morus alba and Cudrania tricuspidata. J Biol Chem 2014; 289:35815-25. [PMID: 25361766 DOI: 10.1074/jbc.m114.608265] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prenylated flavonoids are attractive specialized metabolites with a wide range of biological activities and are distributed in several plant families. The prenylation catalyzed by prenyltransferases represents a Friedel-Crafts alkylation of the flavonoid skeleton in the biosynthesis of natural prenylated flavonoids and contributes to the structural diversity and biological activities of these compounds. To date, all identified plant flavonoid prenyltransferases (FPTs) have been identified in Leguminosae. In the present study two new FPTs, Morus alba isoliquiritigenin 3'-dimethylallyltransferase (MaIDT) and Cudrania tricuspidata isoliquiritigenin 3'-dimethylallyltransferase (CtIDT), were identified from moraceous plants M. alba and C. tricuspidata, respectively. MaIDT and CtIDT shared low levels of homology with the leguminous FPTs. MaIDT and CtIDT are predicted to be membrane-bound proteins with predicted transit peptides, seven transmembrane regions, and conserved functional domains that are similar to other homogentisate prenyltransferases. Recombinant MaIDT and CtIDT were able to regioselectively introduce dimethylallyl diphosphate into the A ring of three flavonoids with different skeleton types (chalcones, isoflavones, and flavones). Phylogenetic analysis revealed that MaIDT and CtIDT are distantly related to their homologs in Leguminosae, which suggests that FPTs in Moraceae and Leguminosae might have evolved independently. MaIDT and CtIDT represent the first two non-Leguminosae FPTs to be identified in plants and could thus lead to the identification of additional evolutionarily varied FPTs in other non-Leguminosae plants and could elucidate the biosyntheses of prenylated flavonoids in various plants. Furthermore, MaIDT and CtIDT might be used for regiospecific prenylation of flavonoids to produce bioactive compounds for potential therapeutic applications due to their high efficiency and catalytic promiscuity.
Collapse
Affiliation(s)
- Ruishan Wang
- From the State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Ridao Chen
- From the State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Jianhua Li
- From the State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Xiao Liu
- From the State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Kebo Xie
- From the State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Dawei Chen
- From the State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Yunze Yin
- From the State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Xiaoyu Tao
- From the State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Dan Xie
- From the State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Jianhua Zou
- From the State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Lin Yang
- From the State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Jungui Dai
- From the State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| |
Collapse
|
259
|
Denoeud F, Carretero-Paulet L, Dereeper A, Droc G, Guyot R, Pietrella M, Zheng C, Alberti A, Anthony F, Aprea G, Aury JM, Bento P, Bernard M, Bocs S, Campa C, Cenci A, Combes MC, Crouzillat D, Da Silva C, Daddiego L, De Bellis F, Dussert S, Garsmeur O, Gayraud T, Guignon V, Jahn K, Jamilloux V, Joët T, Labadie K, Lan T, Leclercq J, Lepelley M, Leroy T, Li LT, Librado P, Lopez L, Muñoz A, Noel B, Pallavicini A, Perrotta G, Poncet V, Pot D, Priyono, Rigoreau M, Rouard M, Rozas J, Tranchant-Dubreuil C, VanBuren R, Zhang Q, Andrade AC, Argout X, Bertrand B, de Kochko A, Graziosi G, Henry RJ, Jayarama, Ming R, Nagai C, Rounsley S, Sankoff D, Giuliano G, Albert VA, Wincker P, Lashermes P. The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 2014; 345:1181-4. [PMID: 25190796 DOI: 10.1126/science.1255274] [Citation(s) in RCA: 358] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Coffee is a valuable beverage crop due to its characteristic flavor, aroma, and the stimulating effects of caffeine. We generated a high-quality draft genome of the species Coffea canephora, which displays a conserved chromosomal gene order among asterid angiosperms. Although it shows no sign of the whole-genome triplication identified in Solanaceae species such as tomato, the genome includes several species-specific gene family expansions, among them N-methyltransferases (NMTs) involved in caffeine production, defense-related genes, and alkaloid and flavonoid enzymes involved in secondary compound synthesis. Comparative analyses of caffeine NMTs demonstrate that these genes expanded through sequential tandem duplications independently of genes from cacao and tea, suggesting that caffeine in eudicots is of polyphyletic origin.
Collapse
Affiliation(s)
- France Denoeud
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France. CNRS, UMR 8030, CP5706, Evry, France. Université d'Evry, UMR 8030, CP5706, Evry, France
| | - Lorenzo Carretero-Paulet
- Department of Biological Sciences, 109 Cooke Hall, University at Buffalo (State University of New York), Buffalo, NY 14260, USA
| | - Alexis Dereeper
- Institut de Recherche pour le Développement (IRD), UMR Résistance des Plantes aux Bioagresseurs (RPB) [Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), IRD, UM2)], BP 64501, 34394 Montpellier Cedex 5, France
| | - Gaëtan Droc
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Romain Guyot
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Marco Pietrella
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA) Casaccia Research Center, Via Anguillarese 301, 00123 Roma, Italy
| | - Chunfang Zheng
- Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada
| | - Adriana Alberti
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France
| | - François Anthony
- Institut de Recherche pour le Développement (IRD), UMR Résistance des Plantes aux Bioagresseurs (RPB) [Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), IRD, UM2)], BP 64501, 34394 Montpellier Cedex 5, France
| | - Giuseppe Aprea
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA) Casaccia Research Center, Via Anguillarese 301, 00123 Roma, Italy
| | - Jean-Marc Aury
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France
| | - Pascal Bento
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France
| | - Maria Bernard
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France
| | - Stéphanie Bocs
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Claudine Campa
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Alberto Cenci
- Institut de Recherche pour le Développement (IRD), UMR Résistance des Plantes aux Bioagresseurs (RPB) [Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), IRD, UM2)], BP 64501, 34394 Montpellier Cedex 5, France. Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier Cedex 5, France
| | - Marie-Christine Combes
- Institut de Recherche pour le Développement (IRD), UMR Résistance des Plantes aux Bioagresseurs (RPB) [Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), IRD, UM2)], BP 64501, 34394 Montpellier Cedex 5, France
| | - Dominique Crouzillat
- Nestlé Research and Development Centre, 101 Avenue Gustave Eiffel, Notre-Dame-d'Oé, BP 49716, 37097 Tours Cedex 2, France
| | - Corinne Da Silva
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France
| | | | - Fabien De Bellis
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Stéphane Dussert
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Olivier Garsmeur
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Thomas Gayraud
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Valentin Guignon
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier Cedex 5, France
| | - Katharina Jahn
- Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada. Center for Biotechnology, Universität Bielefeld, Universitätsstraße 27, D-33615 Bielefeld, Germany. AG Genominformatik, Technische Fakultät, Universität Bielefeld, 33594 Bielefeld, Germany
| | - Véronique Jamilloux
- Institut National de la Recherche Agronomique (INRA), Unité de Recherches en Génomique-Info (UR INRA 1164), Centre de Recherche de Versailles, 78026 Versailles Cedex, France
| | - Thierry Joët
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Karine Labadie
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France
| | - Tianying Lan
- Department of Biological Sciences, 109 Cooke Hall, University at Buffalo (State University of New York), Buffalo, NY 14260, USA. Department of Biology, Chongqing University of Science and Technology, 4000042 Chongqing, China
| | - Julie Leclercq
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Maud Lepelley
- Nestlé Research and Development Centre, 101 Avenue Gustave Eiffel, Notre-Dame-d'Oé, BP 49716, 37097 Tours Cedex 2, France
| | - Thierry Leroy
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Lei-Ting Li
- Department of Plant Biology, 148 Edward R. Madigan Laboratory, MC-051, 1201 West Gregory Drive, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Pablo Librado
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Diagonal 643, Barcelona 08028, Spain
| | | | - Adriana Muñoz
- Department of Mathematics, University of Maryland, Mathematics Building 084, University of Maryland, College Park, MD 20742, USA. School of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada
| | - Benjamin Noel
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | | | - Valérie Poncet
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - David Pot
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Priyono
- Indonesian Coffee and Cocoa Institute, Jember, East Java, Indonesia
| | - Michel Rigoreau
- Nestlé Research and Development Centre, 101 Avenue Gustave Eiffel, Notre-Dame-d'Oé, BP 49716, 37097 Tours Cedex 2, France
| | - Mathieu Rouard
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier Cedex 5, France
| | - Julio Rozas
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Diagonal 643, Barcelona 08028, Spain
| | - Christine Tranchant-Dubreuil
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Robert VanBuren
- Department of Plant Biology, 148 Edward R. Madigan Laboratory, MC-051, 1201 West Gregory Drive, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Qiong Zhang
- Department of Plant Biology, 148 Edward R. Madigan Laboratory, MC-051, 1201 West Gregory Drive, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Alan C Andrade
- Laboratório de Genética Molecular, Núcleo de Biotecnologia (NTBio), Embrapa Recursos Genéticos e Biotecnologia, Final Av. W/5 Norte, Parque Estação Biológia, Brasília-DF 70770-917, Brazil
| | - Xavier Argout
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Benoît Bertrand
- CIRAD, UMR RPB (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Alexandre de Kochko
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Giorgio Graziosi
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy. DNA Analytica Srl, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia 4072, Australia
| | - Jayarama
- Central Coffee Research Institute, Coffee Board, Coffee Research Station (Post) - 577 117 Chikmagalur District, Karnataka State, India
| | - Ray Ming
- Department of Plant Biology, 148 Edward R. Madigan Laboratory, MC-051, 1201 West Gregory Drive, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chifumi Nagai
- Hawaii Agriculture Research Center, Post Office Box 100, Kunia, HI 96759-0100, USA
| | - Steve Rounsley
- BIO5 Institute, University of Arizona, 1657 Helen Street, Tucson, AZ 85721, USA
| | - David Sankoff
- Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA) Casaccia Research Center, Via Anguillarese 301, 00123 Roma, Italy
| | - Victor A Albert
- Department of Biological Sciences, 109 Cooke Hall, University at Buffalo (State University of New York), Buffalo, NY 14260, USA.
| | - Patrick Wincker
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France. CNRS, UMR 8030, CP5706, Evry, France. Université d'Evry, UMR 8030, CP5706, Evry, France.
| | - Philippe Lashermes
- Institut de Recherche pour le Développement (IRD), UMR Résistance des Plantes aux Bioagresseurs (RPB) [Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), IRD, UM2)], BP 64501, 34394 Montpellier Cedex 5, France.
| |
Collapse
|
260
|
Bedewitz MA, Góngora-Castillo E, Uebler JB, Gonzales-Vigil E, Wiegert-Rininger KE, Childs KL, Hamilton JP, Vaillancourt B, Yeo YS, Chappell J, DellaPenna D, Jones AD, Buell CR, Barry CS. A root-expressed L-phenylalanine:4-hydroxyphenylpyruvate aminotransferase is required for tropane alkaloid biosynthesis in Atropa belladonna. THE PLANT CELL 2014; 26:3745-62. [PMID: 25228340 PMCID: PMC4213168 DOI: 10.1105/tpc.114.130534] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The tropane alkaloids, hyoscyamine and scopolamine, are medicinal compounds that are the active components of several therapeutics. Hyoscyamine and scopolamine are synthesized in the roots of specific genera of the Solanaceae in a multistep pathway that is only partially elucidated. To facilitate greater understanding of tropane alkaloid biosynthesis, a de novo transcriptome assembly was developed for Deadly Nightshade (Atropa belladonna). Littorine is a key intermediate in hyoscyamine and scopolamine biosynthesis that is produced by the condensation of tropine and phenyllactic acid. Phenyllactic acid is derived from phenylalanine via its transamination to phenylpyruvate, and mining of the transcriptome identified a phylogenetically distinct aromatic amino acid aminotransferase (ArAT), designated Ab-ArAT4, that is coexpressed with known tropane alkaloid biosynthesis genes in the roots of A. belladonna. Silencing of Ab-ArAT4 disrupted synthesis of hyoscyamine and scopolamine through reduction of phenyllactic acid levels. Recombinant Ab-ArAT4 preferentially catalyzes the first step in phenyllactic acid synthesis, the transamination of phenylalanine to phenylpyruvate. However, rather than utilizing the typical keto-acid cosubstrates, 2-oxoglutarate, pyruvate, and oxaloacetate, Ab-ArAT4 possesses strong substrate preference and highest activity with the aromatic keto-acid, 4-hydroxyphenylpyruvate. Thus, Ab-ArAT4 operates at the interface between primary and specialized metabolism, contributing to both tropane alkaloid biosynthesis and the direct conversion of phenylalanine to tyrosine.
Collapse
Affiliation(s)
- Matthew A Bedewitz
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824
| | - Elsa Góngora-Castillo
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Joseph B Uebler
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824
| | | | | | - Kevin L Childs
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - John P Hamilton
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Brieanne Vaillancourt
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Yun-Soo Yeo
- Plant Biology Program and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40546
| | - Joseph Chappell
- Plant Biology Program and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40546
| | - Dean DellaPenna
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - A Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Cornelius S Barry
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
261
|
Villari C, Faccoli M, Battisti A, Bonello P, Marini L. Testing phenotypic trade-offs in the chemical defence strategy of Scots pine under growth-limiting field conditions. TREE PHYSIOLOGY 2014; 34:919-30. [PMID: 25194142 DOI: 10.1093/treephys/tpu063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plants protect themselves from pathogens and herbivores through fine-tuned resource allocation, including trade-offs among resource investments to support constitutive and inducible defences. However, empirical research, especially concerning conifers growing under natural conditions, is still scarce. We investigated the complexity of constitutive and induced defences in a natural Scots pine (Pinus sylvestris L.) stand under growth-limiting conditions typical of alpine environments. Phenotypic trade-offs at three hierarchical levels were tested by investigating the behaviour of phenolic compounds and terpenoids of outer bark and phloem. We tested resource-derived phenotypic correlations between (i) constitutive and inducible defences vs tree ring growth, (ii) different constitutive defence metabolites and (iii) constitutive concentration and inducible variation of individual metabolites. Tree ring growth was positively correlated only with constitutive concentration of total terpenoids, and no overall phenotypic trade-offs between different constitutive defensive metabolites were found. At the lowest hierarchical level tested, i.e., at the level of relationship between constitutive and inducible variation of individual metabolites, we found that different compounds displayed different behaviours; we identified five different defensive metabolite response types, based on direction and strength of the response, regardless of tree age and growth rate. Therefore, under growth-limiting field conditions, Scots pine appears to utilize varied and complex outer bark and phloem defence chemistry, in which only part of the constitutive specialized metabolism is influenced by tree growth, and individual components do not appear to be expressed in a mutually exclusive manner in either constitutive or inducible metabolism.
Collapse
Affiliation(s)
- Caterina Villari
- Department of Plant Pathology, The Ohio State University, 201 Kottman Hall, 2021 Coffey Rd, Columbus, OH 43210, USA Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente, Università di Padova, Agripolis, Legnaro, Padova 35020, Italy
| | - Massimo Faccoli
- Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente, Università di Padova, Agripolis, Legnaro, Padova 35020, Italy
| | - Andrea Battisti
- Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente, Università di Padova, Agripolis, Legnaro, Padova 35020, Italy
| | - Pierluigi Bonello
- Department of Plant Pathology, The Ohio State University, 201 Kottman Hall, 2021 Coffey Rd, Columbus, OH 43210, USA
| | - Lorenzo Marini
- Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente, Università di Padova, Agripolis, Legnaro, Padova 35020, Italy
| |
Collapse
|
262
|
Molecular evolution of the substrate specificity of ent-kaurene synthases to adapt to gibberellin biosynthesis in land plants. Biochem J 2014; 462:539-46. [DOI: 10.1042/bj20140134] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We analysed the function of monofunctional diterpene cyclases in Selaginella moellendorffii. Investigation of the substrate specificity of ent-kaurene synthases of non-flowering and flowering plants suggests that monofunctional diterpene cyclases involved in ent-kaurene biosynthesis may have co-evolved with gibberellin biosynthesis.
Collapse
|
263
|
Yessoufou K, Daru BH, Muasya AM. Phylogenetic exploration of commonly used medicinal plants in South Africa. Mol Ecol Resour 2014; 15:405-13. [DOI: 10.1111/1755-0998.12310] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 07/04/2014] [Accepted: 07/16/2014] [Indexed: 01/28/2023]
Affiliation(s)
- Kowiyou Yessoufou
- Department of Environmental Sciences; University of South Africa; Florida Campus Florida 1710 South Africa
| | - Barnabas H. Daru
- Department of Zoology; University of Jos; P.M.B. 2084 Jos Nigeria
| | - Abraham Muthama Muasya
- Department of Biological Sciences; University of Cape Town; Private Bag X3 Rondebosch 7701 South Africa
| |
Collapse
|
264
|
Gaquerel E, Gulati J, Baldwin IT. Revealing insect herbivory-induced phenolamide metabolism: from single genes to metabolic network plasticity analysis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:679-92. [PMID: 24617849 PMCID: PMC5140026 DOI: 10.1111/tpj.12503] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/20/2014] [Accepted: 03/03/2014] [Indexed: 05/18/2023]
Abstract
The phenylpropanoid metabolic space comprises a network of interconnected metabolic branches that contribute to the biosynthesis of a large array of compounds with functions in plant development and stress adaptation. During biotic challenges, such as insect attack, a major rewiring of gene networks associated with phenylpropanoid metabolism is observed. This rapid reconfiguration of gene expression allows prioritized production of metabolites that help the plant solve ecological problems. Phenolamides are a group of phenolic derivatives that originate from diversion of hydroxycinnamoyl acids from the main phenylpropanoid pathway after N-acyltransferase-dependent conjugation to polyamines or aryl monoamines. These structurally diverse metabolites are abundant in the reproductive organs of many plants, and have recently been shown to play roles as induced defenses in vegetative tissues. In the wild tobacco, Nicotiana attenuata, in which herbivory-induced regulation of these metabolites has been studied, rapid elevations of the levels of phenolamides that function as induced defenses result from a multi-hormonal signaling network that re-shapes connected metabolic pathways. In this review, we summarize recent findings in the regulation of phenolamides obtained by mass spectrometry-based metabolomics profiling, and outline a conceptual framework for gene discovery in this pathway. We also introduce a multifactorial approach that is useful in deciphering metabolic pathway reorganizations among tissues in response to stress.
Collapse
Affiliation(s)
- Emmanuel Gaquerel
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
- Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 360,69120 Heidelberg, Germany
| | - Jyotasana Gulati
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
| |
Collapse
|
265
|
Gols R. Direct and indirect chemical defences against insects in a multitrophic framework. PLANT, CELL & ENVIRONMENT 2014; 37:1741-52. [PMID: 24588731 DOI: 10.1111/pce.12318] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/26/2014] [Indexed: 05/20/2023]
Abstract
Plant secondary metabolites play an important role in mediating interactions with insect herbivores and their natural enemies. Metabolites stored in plant tissues are usually investigated in relation to herbivore behaviour and performance (direct defence), whereas volatile metabolites are often studied in relation to natural enemy attraction (indirect defence). However, so-called direct and indirect defences may also affect the behaviour and performance of the herbivore's natural enemies and the natural enemy's prey or hosts, respectively. This suggests that the distinction between these defence strategies may not be as black and white as is often portrayed in the literature. The ecological costs associated with direct and indirect chemical defence are often poorly understood. Chemical defence traits are often studied in two-species interactions in highly simplified experiments. However, in nature, plants and insects are often engaged in mutualistic interactions with microbes that may also affect plant secondary chemistry. Moreover, plants are challenged by threats above- and belowground and herbivory may have consequences for plant-insect multitrophic interactions in the alternative compartment mediated by changes in plant secondary chemistry. These additional associations further increase the complexity of interaction networks. Consequently, the effect of a putative defence trait may be under- or overestimated when other interactions are not considered.
Collapse
Affiliation(s)
- Rieta Gols
- Laboratory of Entomology, Department of Plant Sciences, Wageningen University, Wageningen, 6708 PB, The Netherlands
| |
Collapse
|
266
|
Deborde C, Jacob D. MeRy-B, a metabolomic database and knowledge base for exploring plant primary metabolism. Methods Mol Biol 2014; 1083:3-16. [PMID: 24218206 DOI: 10.1007/978-1-62703-661-0_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Plant primary metabolites are organic compounds that are common to all or most plant species and are essential for plant growth, development, and reproduction. They are intermediates and products of metabolism involved in photosynthesis and other biosynthetic processes. Primary metabolites belong to different compound families, mainly carbohydrates, organic acids, amino acids, nucleotides, fatty acids, steroids, or lipids. Until recently, unlike the Human Metabolome Database ( http://www.hmdb.ca ) dedicated to human metabolism, there was no centralized database or repository dedicated exclusively to the plant kingdom that contained information on metabolites and their concentrations in a detailed experimental context. MeRy-B is the first platform for plant (1)H-NMR metabolomic profiles (MeRy-B, http://bit.ly/meryb ), designed to provide a knowledge base of curated plant profiles and metabolites obtained by NMR, together with the corresponding experimental and analytical metadata. MeRy-B contains lists of plant metabolites, mostly primary metabolites and unknown compounds, with information about experimental conditions, the factors studied, and metabolite concentrations for 19 different plant species (Arabidopsis, broccoli, daphne, grape, maize, barrel clover, melon, Ostreococcus tauri, palm date, palm tree, peach, pine tree, eucalyptus, plantain rice, strawberry, sugar beet, tomato, vanilla), compiled from more than 2,300 annotated NMR profiles for various organs or tissues deposited by 30 different private or public contributors in September 2013. Currently, about half of the data deposited in MeRy-B is publicly available. In this chapter, readers will be shown how to (1) navigate through and retrieve data of publicly available projects on MeRy-B website; (2) visualize lists of experimentally identified metabolites and their concentrations in all plant species present in MeRy-B; (3) get primary metabolite list for a particular plant species in MeRy-B; and for a particular tissue (4) find information on a primary metabolite regardless of the species.
Collapse
Affiliation(s)
- Catherine Deborde
- Bordeaux Metabolome Facility, UMR1332 Fruit Biology and Facility, INRA-University of Bordeaux, Villenave d'Ornon, France
| | | |
Collapse
|
267
|
Weng JK. The evolutionary paths towards complexity: a metabolic perspective. THE NEW PHYTOLOGIST 2014; 201:1141-9. [PMID: 23889087 DOI: 10.1111/nph.12416] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/20/2013] [Indexed: 05/22/2023]
Abstract
As sessile organisms, land plants have exploited their metabolic systems to produce a panoply of structurally and functionally diverse natural chemicals and polymers to adapt to challenging ecosystems. Many of these core and specialized metabolites confer chemical shields against a multitude of abiotic stresses, while others play important roles in plants' interactions with their biotic environments. Plant specialized metabolites can be viewed as complex traits in the sense that the biosynthesis of these molecules typically requires multistep metabolic pathways comprising numerous specific enzymes belonging to diverse protein fold families. Resolving the evolutionary trajectories underlying the emergence of these specialized metabolic pathways will impact a fundamental question in biology – how do complex traits evolve in a Darwinian fashion? Here, I discuss several general patterns observed in rapidly evolving specialized metabolic systems in plants, and surmise mechanistic features at enzyme, pathway and organismal levels that rationalize the remarkable malleability of these systems through stepwise evolution. Future studies, focused on fine sampling of metabolic enzymes and pathways in phylogenetically related plant species, or employing directed evolution strategies in synthetic systems, will significantly broaden our perspective on how biological complexity arises at the metabolic level.
Collapse
|
268
|
Lassen LM, Nielsen AZ, Ziersen B, Gnanasekaran T, Møller BL, Jensen PE. Redirecting photosynthetic electron flow into light-driven synthesis of alternative products including high-value bioactive natural compounds. ACS Synth Biol 2014; 3:1-12. [PMID: 24328185 DOI: 10.1021/sb400136f] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Photosynthesis in plants, green algae, and cyanobacteria converts solar energy into chemical energy in the form of ATP and NADPH, both of which are used in primary metabolism. However, often more reducing power is generated by the photosystems than what is needed for primary metabolism. In this review, we discuss the development in the research field, focusing on how the photosystems can be used as synthetic biology building blocks to channel excess reducing power into light-driven production of alternative products. Plants synthesize a large number of high-value bioactive natural compounds. Some of the key enzymes catalyzing their biosynthesis are the cytochrome P450s situated in the endoplasmic reticulum. However, bioactive compounds are often synthesized in low quantities in the plants and are difficult to produce by chemical synthesis due to their often complex structures. Through a synthetic biology approach, enzymes with a requirement for reducing equivalents as cofactors, such as the cytochrome P450s, can be coupled directly to the photosynthetic energy output to obtain environmentally friendly production of complex chemical compounds. By relocating cytochrome P450s to the chloroplasts, reducing power can be diverted toward the reactions catalyzed by the cytochrome P450s. This provides a sustainable production method for high-value compounds that potentially can solve the problem of NADPH regeneration, which currently limits the biotechnological uses of cytochrome P450s. We describe the approaches that have been taken to couple enzymes to photosynthesis in vivo and to photosystem I in vitro and the challenges associated with this approach to develop new green production platforms.
Collapse
Affiliation(s)
- Lærke Münter Lassen
- UNIK Center
for Synthetic
Biology, Interdisciplinary Research Center “bioSYNergy”,
the VILLUM Research Center “Plant Plasticity”, Copenhagen
Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Agnieszka Zygadlo Nielsen
- UNIK Center
for Synthetic
Biology, Interdisciplinary Research Center “bioSYNergy”,
the VILLUM Research Center “Plant Plasticity”, Copenhagen
Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Bibi Ziersen
- UNIK Center
for Synthetic
Biology, Interdisciplinary Research Center “bioSYNergy”,
the VILLUM Research Center “Plant Plasticity”, Copenhagen
Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Thiyagarajan Gnanasekaran
- UNIK Center
for Synthetic
Biology, Interdisciplinary Research Center “bioSYNergy”,
the VILLUM Research Center “Plant Plasticity”, Copenhagen
Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Birger Lindberg Møller
- UNIK Center
for Synthetic
Biology, Interdisciplinary Research Center “bioSYNergy”,
the VILLUM Research Center “Plant Plasticity”, Copenhagen
Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Poul Erik Jensen
- UNIK Center
for Synthetic
Biology, Interdisciplinary Research Center “bioSYNergy”,
the VILLUM Research Center “Plant Plasticity”, Copenhagen
Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| |
Collapse
|
269
|
Yang Z, Nakabayashi R, Okazaki Y, Mori T, Takamatsu S, Kitanaka S, Kikuchi J, Saito K. Toward better annotation in plant metabolomics: isolation and structure elucidation of 36 specialized metabolites from Oryza sativa (rice) by using MS/MS and NMR analyses. Metabolomics 2014; 10:543-555. [PMID: 25057267 PMCID: PMC4097337 DOI: 10.1007/s11306-013-0619-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 12/18/2013] [Indexed: 01/05/2023]
Abstract
Metabolomics plays an important role in phytochemical genomics and crop breeding; however, metabolite annotation is a significant bottleneck in metabolomic studies. In particular, in liquid chromatography-mass spectrometry (MS)-based metabolomics, which has become a routine technology for the profiling of plant-specialized metabolites, a substantial number of metabolites detected as MS peaks are still not assigned properly to a single metabolite. Oryza sativa (rice) is one of the most important staple crops in the world. In the present study, we isolated and elucidated the structures of specialized metabolites from rice by using MS/MS and NMR. Thirty-six compounds, including five new flavonoids and eight rare flavonolignan isomers, were isolated from the rice leaves. The MS/MS spectral data of the isolated compounds, with a detailed interpretation of MS fragmentation data, will facilitate metabolite annotation of the related phytochemicals by enriching the public mass spectral data depositories, including the plant-specific MS/MS-based database, ReSpect.
Collapse
Affiliation(s)
- Zhigang Yang
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045 Japan
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045 Japan
| | - Yozo Okazaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045 Japan
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045 Japan
| | - Satoshi Takamatsu
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555 Japan
- Present Address: School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 Japan
| | - Susumu Kitanaka
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555 Japan
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045 Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045 Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chiba, 260-8675 Japan
| |
Collapse
|
270
|
Kamphuis LG, Zulak K, Gao LL, Anderson J, Singh KB. Plant-aphid interactions with a focus on legumes. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:1271-1284. [PMID: 32481194 DOI: 10.1071/fp13090] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/29/2013] [Indexed: 06/11/2023]
Abstract
Sap-sucking insects such as aphids cause substantial yield losses in agriculture by draining plant nutrients as well as vectoring viruses. The main method of control in agriculture is through the application of insecticides. However, aphids rapidly evolve mechanisms to detoxify these, so there is a need to develop durable plant resistance to these damaging insect pests. The focus of this review is on aphid interactions with legumes, but work on aphid interactions with other plants, particularly Arabidopsis and tomato is also discussed. This review covers advances on the plant side of the interaction, including the identification of major resistance genes and quantitative trait loci conferring aphid resistance in legumes, basal and resistance gene mediated defence signalling following aphid infestation and the role of specialised metabolites. On the aphid side of the interaction, this review covers what is known about aphid effector proteins and aphid detoxification enzymes. Recent advances in these areas have provided insight into mechanisms underlying resistance to aphids and the strategies used by aphids for successful infestations and have significant impacts for the delivery of durable resistance to aphids in legume crops.
Collapse
Affiliation(s)
- Lars G Kamphuis
- CSIRO Plant Industry, Private Bag 5, Wembley, WA 6913, Australia
| | - Katherine Zulak
- CSIRO Plant Industry, Private Bag 5, Wembley, WA 6913, Australia
| | - Ling-Ling Gao
- CSIRO Plant Industry, Private Bag 5, Wembley, WA 6913, Australia
| | | | - Karam B Singh
- CSIRO Plant Industry, Private Bag 5, Wembley, WA 6913, Australia
| |
Collapse
|
271
|
Zhao N, Wang G, Norris A, Chen X, Chen F. Studying Plant Secondary Metabolism in the Age of Genomics. CRITICAL REVIEWS IN PLANT SCIENCES 2013; 32:369-382. [PMID: 0 DOI: 10.1080/07352689.2013.789648] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
|
272
|
Kassim MA, Rumbold K. HCN production and hydroxynitrile lyase: a natural activity in plants and a renewed biotechnological interest. Biotechnol Lett 2013; 36:223-8. [DOI: 10.1007/s10529-013-1353-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/06/2013] [Indexed: 11/28/2022]
|
273
|
Lim EK, Mitchell PJ, Brown N, Drummond RA, Brown GD, Kaye PM, Bowles DJ. Regiospecific methylation of a dietary flavonoid scaffold selectively enhances IL-1β production following Toll-like receptor 2 stimulation in THP-1 monocytes. J Biol Chem 2013; 288:21126-21135. [PMID: 23760261 PMCID: PMC3774379 DOI: 10.1074/jbc.m113.453514] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 05/31/2013] [Indexed: 01/01/2023] Open
Abstract
It is now recognized that innate immunity to intestinal microflora plays a significant role in mediating immune health, and modulation of microbial sensing may underpin the impact of plant natural products in the diet or when used as nutraceuticals. In this context, we have examined five classes of plant-derived flavonoids (flavonols, flavones, flavanones, catechins, and cyanidin) for their ability to regulate cytokine release induced by the Toll-like receptor 2 (TLR2) agonist Pam3CSK4. We found that the flavonols selectively co-stimulated IL-1β secretion but had no impact on the secretion of IL-6. Importantly, this costimulation of TLR2-induced cytokine secretion was dependent on regiospecific methylation of the flavonol scaffold with a rank order of quercetin-3,4'-dimethylether > quercetin-3-methylether > casticin. The mechanism underpinning this costimulation did not involve enhanced inflammasome activation. In contrast, the methylated flavonols enhanced IL-1β gene expression through transcriptional regulation, involving mechanisms that operate downstream of the initial NF-κB and STAT1 activation events. These studies demonstrate an exquisite level of control of scaffold bioactivity by regiospecific methylation, with important implications for understanding how natural products affect innate immunity and for their development as novel immunomodulators for clinical use.
Collapse
Affiliation(s)
- Eng-Kiat Lim
- From the Centre for Immunology and Infection, Hull York Medical School and Department of Biology and
| | - Paul J Mitchell
- From the Centre for Immunology and Infection, Hull York Medical School and Department of Biology and
| | - Najmeeyah Brown
- From the Centre for Immunology and Infection, Hull York Medical School and Department of Biology and
| | - Rebecca A Drummond
- the Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Gordon D Brown
- the Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Paul M Kaye
- From the Centre for Immunology and Infection, Hull York Medical School and Department of Biology and.
| | - Dianna J Bowles
- Department of Biology, University of York, York YO10 5DD, United Kingdom and.
| |
Collapse
|
274
|
Zerbe P, Hamberger B, Yuen MM, Chiang A, Sandhu HK, Madilao LL, Nguyen A, Hamberger B, Bach SS, Bohlmann J. Gene discovery of modular diterpene metabolism in nonmodel systems. PLANT PHYSIOLOGY 2013; 162:1073-91. [PMID: 23613273 PMCID: PMC3668041 DOI: 10.1104/pp.113.218347] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 04/21/2013] [Indexed: 05/18/2023]
Abstract
Plants produce over 10,000 different diterpenes of specialized (secondary) metabolism, and fewer diterpenes of general (primary) metabolism. Specialized diterpenes may have functions in ecological interactions of plants with other organisms and also benefit humanity as pharmaceuticals, fragrances, resins, and other industrial bioproducts. Examples of high-value diterpenes are taxol and forskolin pharmaceuticals or ambroxide fragrances. Yields and purity of diterpenes obtained from natural sources or by chemical synthesis are often insufficient for large-volume or high-end applications. Improvement of agricultural or biotechnological diterpene production requires knowledge of biosynthetic genes and enzymes. However, specialized diterpene pathways are extremely diverse across the plant kingdom, and most specialized diterpenes are taxonomically restricted to a few plant species, genera, or families. Consequently, there is no single reference system to guide gene discovery and rapid annotation of specialized diterpene pathways. Functional diversification of genes and plasticity of enzyme functions of these pathways further complicate correct annotation. To address this challenge, we used a set of 10 different plant species to develop a general strategy for diterpene gene discovery in nonmodel systems. The approach combines metabolite-guided transcriptome resources, custom diterpene synthase (diTPS) and cytochrome P450 reference gene databases, phylogenies, and, as shown for select diTPSs, single and coupled enzyme assays using microbial and plant expression systems. In the 10 species, we identified 46 new diTPS candidates and over 400 putatively terpenoid-related P450s in a resource of nearly 1 million predicted transcripts of diterpene-accumulating tissues. Phylogenetic patterns of lineage-specific blooms of genes guided functional characterization.
Collapse
|
275
|
Towards a molecular understanding of the biosynthesis of amaryllidaceae alkaloids in support of their expanding medical use. Int J Mol Sci 2013; 14:11713-41. [PMID: 23727937 PMCID: PMC3709753 DOI: 10.3390/ijms140611713] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 05/26/2013] [Accepted: 05/27/2013] [Indexed: 12/28/2022] Open
Abstract
The alkaloids characteristically produced by the subfamily Amaryllidoideae of the Amaryllidaceae, bulbous plant species that include well know genera such as Narcissus (daffodils) and Galanthus (snowdrops), are a source of new pharmaceutical compounds. Presently, only the Amaryllidaceae alkaloid galanthamine, an acetylcholinesterase inhibitor used to treat symptoms of Alzheimer's disease, is produced commercially as a drug from cultivated plants. However, several Amaryllidaceae alkaloids have shown great promise as anti-cancer drugs, but their further clinical development is restricted by their limited commercial availability. Amaryllidaceae species have a long history of cultivation and breeding as ornamental bulbs, and phytochemical research has focussed on the diversity in alkaloid content and composition. In contrast to the available pharmacological and phytochemical data, ecological, physiological and molecular aspects of the Amaryllidaceae and their alkaloids are much less explored and the identity of the alkaloid biosynthetic genes is presently unknown. An improved molecular understanding of Amaryllidaceae alkaloid biosynthesis would greatly benefit the rational design of breeding programs to produce cultivars optimised for the production of pharmaceutical compounds and enable biotechnology based approaches.
Collapse
|
276
|
Gaquerel E, Kotkar H, Onkokesung N, Galis I, Baldwin IT. Silencing an N-acyltransferase-like involved in lignin biosynthesis in Nicotiana attenuata dramatically alters herbivory-induced phenolamide metabolism. PLoS One 2013; 8:e62336. [PMID: 23704878 PMCID: PMC3660383 DOI: 10.1371/journal.pone.0062336] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/20/2013] [Indexed: 11/19/2022] Open
Abstract
In a transcriptomic screen of Manduca sexta-induced N-acyltransferases in leaves of Nicotiana attenuata, we identified an N-acyltransferase gene sharing a high similarity with the tobacco lignin-biosynthetic hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyl transferase (HCT) gene whose expression is controlled by MYB8, a transcription factor that regulates the production of phenylpropanoid polyamine conjugates (phenolamides, PAs). To evaluate the involvement of this HCT-like gene in lignin production as well as the resulting crosstalk with PA metabolism during insect herbivory, we transiently silenced (by VIGs) the expression of this gene and performed non-targeted (UHPLC-ESI/TOF-MS) metabolomics analyses. In agreement with a conserved function of N. attenuata HCT-like in lignin biogenesis, HCT-silenced plants developed weak, soft stems with greatly reduced lignin contents. Metabolic profiling demonstrated large shifts (up to 12% deregulation in total extracted ions in insect-attacked leaves) due to a large diversion of activated coumaric acid units into the production of developmentally and herbivory-induced coumaroyl-containing PAs (N',N''-dicoumaroylspermidine, N',N''-coumaroylputrescine, etc) and to minor increases in the most abundant free phenolics (chlorogenic and cryptochlorogenic acids), all without altering the production of well characterized herbivory-responsive caffeoyl- and feruloyl-based putrescine and spermidine PAs. These data are consistent with a strong metabolic tension, exacerbated during herbivory, over the allocation of coumaroyl-CoA units among lignin and unusual coumaroyl-containing PAs, and rule out a role for HCT-LIKE in tuning the herbivory-induced accumulation of other PAs. Additionally, these results are consistent with a role for lignification as an induced anti-herbivore defense.
Collapse
Affiliation(s)
- Emmanuel Gaquerel
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Hemlata Kotkar
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory (CSIR), Pune, India
| | - Nawaporn Onkokesung
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ivan Galis
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
277
|
Castillo DA, Kolesnikova MD, Matsuda SPT. An Effective Strategy for Exploring Unknown Metabolic Pathways by Genome Mining. J Am Chem Soc 2013; 135:5885-94. [DOI: 10.1021/ja401535g] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Dorianne A. Castillo
- Department
of Chemistry and ‡Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, United States
| | - Mariya D. Kolesnikova
- Department
of Chemistry and ‡Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, United States
| | - Seiichi P. T. Matsuda
- Department
of Chemistry and ‡Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
278
|
Lussier FX, Colatriano D, Wiltshire Z, Page JE, Martin VJJ. Engineering microbes for plant polyketide biosynthesis. Comput Struct Biotechnol J 2013; 3:e201210020. [PMID: 24688680 PMCID: PMC3962132 DOI: 10.5936/csbj.201210020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/28/2013] [Accepted: 01/31/2013] [Indexed: 01/01/2023] Open
Abstract
Polyketides are an important group of secondary metabolites, many of which have important industrial applications in the food and pharmaceutical industries. Polyketides are synthesized from one of three classes of enzymes differentiated by their biochemical features and product structure: type I, type II or type III polyketide synthases (PKSs). Plant type III PKS enzymes, which will be the main focus of this review, are relatively small homodimeric proteins that catalyze iterative decarboxylative condensations of malonyl units with a CoA-linked starter molecule. This review will describe the plant type III polyketide synthetic pathway, including the synthesis of chalcones, stilbenes and curcuminoids, as well as recent work on the synthesis of these polyketides in heterologous organisms. The limitations and bottlenecks of heterologous expression as well as attempts at creating diversity through the synthesis of novel “unnatural” polyketides using type III PKSs will also be discussed. Although synthetic production of plant polyketides is still in its infancy, their potential as useful bioactive compounds makes them an extremely interesting area of study.
Collapse
Affiliation(s)
- François-Xavier Lussier
- Department of Biology, Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, Canada, H4B 1R6
| | - David Colatriano
- Department of Biology, Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, Canada, H4B 1R6
| | - Zach Wiltshire
- Department of Biology, Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, Canada, H4B 1R6
| | - Jonathan E Page
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan, Canada, S7N 0W9
| | - Vincent J J Martin
- Department of Biology, Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, Canada, H4B 1R6
| |
Collapse
|
279
|
Berim A, Gang DR. The roles of a flavone-6-hydroxylase and 7-O-demethylation in the flavone biosynthetic network of sweet basil. J Biol Chem 2013; 288:1795-805. [PMID: 23184958 PMCID: PMC3548489 DOI: 10.1074/jbc.m112.420448] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/14/2012] [Indexed: 12/22/2022] Open
Abstract
Lipophilic flavonoids found in the Lamiaceae exhibit unusual 6- and 8-hydroxylations whose enzymatic basis is unknown. We show that crude protein extracts from peltate trichomes of sweet basil (Ocimum basilicum L.) cultivars readily hydroxylate position 6 of 7-O-methylated apigenin but not apigenin itself. The responsible protein was identified as a P450 monooxygenase from the CYP82 family, a family not previously reported to be involved in flavonoid metabolism. This enzyme prefers flavones but also accepts flavanones in vitro and requires a 5-hydroxyl in addition to a 7-methoxyl residue on the substrate. A peppermint (Mentha × piperita L.) homolog displayed identical substrate requirements, suggesting that early 7-O-methylation of flavones might be common in the Lamiaceae. This hypothesis is further substantiated by the pioneering discovery of 2-oxoglutarate-dependent flavone demethylase activity in basil, which explains the accumulation of 7-O-demethylated flavone nevadensin.
Collapse
Affiliation(s)
- Anna Berim
- From the Institute of Biological Chemistry Washington State University, Pullman, Washington 99164-6340
| | - David R. Gang
- From the Institute of Biological Chemistry Washington State University, Pullman, Washington 99164-6340
| |
Collapse
|
280
|
VanDoorn A, de Vos M. Resistance to sap-sucking insects in modern-day agriculture. FRONTIERS IN PLANT SCIENCE 2013; 4:222. [PMID: 23818892 PMCID: PMC3694213 DOI: 10.3389/fpls.2013.00222] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/08/2013] [Indexed: 05/18/2023]
Abstract
Plants and herbivores have co-evolved in their natural habitats for about 350 million years, but since the domestication of crops, plant resistance against insects has taken a different turn. With the onset of monoculture-driven modern agriculture, selective pressure on insects to overcome resistances has dramatically increased. Therefore plant breeders have resorted to high-tech tools to continuously create new insect-resistant crops. Efforts in the past 30 years have resulted in elucidation of mechanisms of many effective plant defenses against insect herbivores. Here, we critically appraise these efforts and - with a focus on sap-sucking insects - discuss how these findings have contributed to herbivore-resistant crops. Moreover, in this review we try to assess where future challenges and opportunities lay ahead. Of particular importance will be a mandatory reduction in systemic pesticide usage and thus a greater reliance on alternative methods, such as improved plant genetics for plant resistance to insect herbivores.
Collapse
Affiliation(s)
- Arjen VanDoorn
- Keygene NV, WageningenNetherlands
- Department of Plant Physiology, Swammerdam Institute of Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Martin de Vos
- Keygene NV, WageningenNetherlands
- *Correspondence: Martin de Vos, Keygene NV, Agro Business Park 90, 6708 PW Wageningen, Netherlands e-mail:
| |
Collapse
|
281
|
Gaquerel E, Stitz M, Kallenbach M, Baldwin IT. Jasmonate signaling in the field, part II: insect-guided characterization of genetic variations in jasmonate-dependent defenses of transgenic and natural Nicotiana attenuata populations. Methods Mol Biol 2013; 1011:97-109. [PMID: 23615990 DOI: 10.1007/978-1-62703-414-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The introduction of genetically modified plants into natural habitats represents a valuable means to determine organismic level functions of a gene and its effects on a plant's interaction with other organisms. Nicotiana attenuata, a wild tobacco species native of the southwestern USA that grows in the immediate postfire environment, is one of the important host plants for herbivore populations recolonizing recently burned habitats in the Great Basin Desert. Here, we provide detailed guidelines for the analysis, under field conditions, of jasmonate-dependent defense and its impact on the plant's native herbivore community. The procedures are based on the field release of transgenic lines silenced for jasmonate biogenesis, metabolism, or perception to conduct association studies between defense trait expression (secondary metabolite and trypsin proteinase inhibitor accumulation) and insect infestations. Additionally, because some insects have evolved mechanisms to "eavesdrop" on jasmonate signaling when selecting their host plants, we describe how leafhoppers of the species Empoasca, which selectively colonize jasmonate-deficient plants, can be used as "bloodhounds" for identifying natural variations in jasmonate signaling among natural N. attenuata populations.
Collapse
Affiliation(s)
- Emmanuel Gaquerel
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | | | | |
Collapse
|
282
|
Meldau S, Erb M, Baldwin IT. Defence on demand: mechanisms behind optimal defence patterns. ANNALS OF BOTANY 2012; 110:1503-14. [PMID: 23022676 PMCID: PMC3503495 DOI: 10.1093/aob/mcs212] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/22/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND The optimal defence hypothesis (ODH) predicts that tissues that contribute most to a plant's fitness and have the highest probability of being attacked will be the parts best defended against biotic threats, including herbivores. In general, young sink tissues and reproductive structures show stronger induced defence responses after attack from pathogens and herbivores and contain higher basal levels of specialized defensive metabolites than other plant parts. However, the underlying physiological mechanisms responsible for these developmentally regulated defence patterns remain unknown. SCOPE This review summarizes current knowledge about optimal defence patterns in above- and below-ground plant tissues, including information on basal and induced defence metabolite accumulation, defensive structures and their regulation by jasmonic acid (JA). Physiological regulations underlying developmental differences of tissues with contrasting defence patterns are highlighted, with a special focus on the role of classical plant growth hormones, including auxins, cytokinins, gibberellins and brassinosteroids, and their interactions with the JA pathway. By synthesizing recent findings about the dual roles of these growth hormones in plant development and defence responses, this review aims to provide a framework for new discoveries on the molecular basis of patterns predicted by the ODH. CONCLUSIONS Almost four decades after its formulation, we are just beginning to understand the underlying molecular mechanisms responsible for the patterns of defence allocation predicted by the ODH. A requirement for future advances will be to understand how developmental and defence processes are integrated.
Collapse
Affiliation(s)
- Stefan Meldau
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Jena, Germany.
| | | | | |
Collapse
|
283
|
Spitzer-Rimon B, Farhi M, Albo B, Cna’ani A, Ben Zvi MM, Masci T, Edelbaum O, Yu Y, Shklarman E, Ovadis M, Vainstein A. The R2R3-MYB-like regulatory factor EOBI, acting downstream of EOBII, regulates scent production by activating ODO1 and structural scent-related genes in petunia. THE PLANT CELL 2012; 24:5089-105. [PMID: 23275577 PMCID: PMC3556977 DOI: 10.1105/tpc.112.105247] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 11/26/2012] [Accepted: 12/10/2012] [Indexed: 05/19/2023]
Abstract
Flower scent is a highly dynamic trait, under developmental, spatial, and diurnal regulation. The mechanism governing scent production is only beginning to be unraveled. In petunia (Petunia hybrida), EMISSION OF BENZENOIDS II (EOBII) controls transcription of both the shikimate pathway-regulating MYB factor ODORANT1 (ODO1) and phenylpropanoid scent-related structural genes. A promoter-activation screen identified an R2R3-MYB-like regulatory factor of phenylpropanoid volatile biosynthesis acting downstream of EOBII, designated EOBI. EOBI silencing led to downregulation of ODO1 and numerous structural scent-related genes from both the shikimate and phenylpropanoid pathways. The ability of EOBI to directly activate ODO1, as revealed by electrophoretic mobility shift assay and yeast one-hybrid analysis, place EOBI upstream of ODO1 in regulating substrate availability for volatile biosynthesis. Interestingly, ODO1-silenced transgenic petunia flowers accumulated higher EOBI transcript levels than controls, suggesting a complex feedback loop between these regulatory factors. The accumulation pattern of EOBI transcript relative to EOBII and ODO1, and the effect of up/downregulation of EOBII on transcript levels of EOBI and ODO1, further support these factors' hierarchical relationships. The dependence of scent production on EOBI expression and its direct interaction with both regulatory and structural genes provide evidence for EOBI's wide-ranging involvement in the production of floral volatiles.
Collapse
Affiliation(s)
- Ben Spitzer-Rimon
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Moran Farhi
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Boaz Albo
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Alon Cna’ani
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Michal Moyal Ben Zvi
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Tania Masci
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Orit Edelbaum
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Yixun Yu
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Elena Shklarman
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Marianna Ovadis
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Alexander Vainstein
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
284
|
Berim A, Hyatt DC, Gang DR. A set of regioselective O-methyltransferases gives rise to the complex pattern of methoxylated flavones in sweet basil. PLANT PHYSIOLOGY 2012; 160:1052-69. [PMID: 22923679 PMCID: PMC3461529 DOI: 10.1104/pp.112.204164] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 08/23/2012] [Indexed: 05/02/2023]
Abstract
Polymethoxylated flavonoids occur in a number of plant families, including the Lamiaceae. To date, the metabolic pathways giving rise to the diversity of these compounds have not been studied. Analysis of our expressed sequence tag database for four sweet basil (Ocimum basilicum) lines afforded identification of candidate flavonoid O-methyltransferase genes. Recombinant proteins displayed distinct substrate preferences and product specificities that can account for all detected 7-/6-/4'-methylated, 8-unsubstituted flavones. Their biochemical specialization revealed only certain metabolic routes to be highly favorable and therefore likely in vivo. Flavonoid O-methyltransferases catalyzing 4'- and 6-O-methylations shared high identity (approximately 90%), indicating that subtle sequence changes led to functional differentiation. Structure homology modeling suggested the involvement of several amino acid residues in defining the proteins' stringent regioselectivities. The roles of these individual residues were confirmed by site-directed mutagenesis, revealing two discrete mechanisms as a basis for the switch between 6- and 4'-O-methylation of two different substrates. These findings delineate major pathways in a large segment of the flavone metabolic network and provide a foundation for its further elucidation.
Collapse
Affiliation(s)
- Anna Berim
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164
| | - David C. Hyatt
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164
| | - David R. Gang
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164
| |
Collapse
|
285
|
Abstract
Metabolic engineering of plants can reduce the cost and environmental impact of agriculture while providing for the needs of a growing population. Although our understanding of plant metabolism continues to increase at a rapid pace, relatively few plant metabolic engineering projects with commercial potential have emerged, in part because of a lack of principles for the rational manipulation of plant phenotype. One underexplored approach to identifying such design principles derives from analysis of the dominant constraints on plant fitness, and the evolutionary innovations in response to those constraints, that gave rise to the enormous diversity of natural plant metabolic pathways.
Collapse
Affiliation(s)
- Ron Milo
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
286
|
Rønsted N, Symonds MRE, Birkholm T, Christensen SB, Meerow AW, Molander M, Mølgaard P, Petersen G, Rasmussen N, van Staden J, Stafford GI, Jäger AK. Can phylogeny predict chemical diversity and potential medicinal activity of plants? A case study of Amaryllidaceae. BMC Evol Biol 2012; 12:182. [PMID: 22978363 PMCID: PMC3499480 DOI: 10.1186/1471-2148-12-182] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 09/07/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During evolution, plants and other organisms have developed a diversity of chemical defences, leading to the evolution of various groups of specialized metabolites selected for their endogenous biological function. A correlation between phylogeny and biosynthetic pathways could offer a predictive approach enabling more efficient selection of plants for the development of traditional medicine and lead discovery. However, this relationship has rarely been rigorously tested and the potential predictive power is consequently unknown. RESULTS We produced a phylogenetic hypothesis for the medicinally important plant subfamily Amaryllidoideae (Amaryllidaceae) based on parsimony and Bayesian analysis of nuclear, plastid, and mitochondrial DNA sequences of over 100 species. We tested if alkaloid diversity and activity in bioassays related to the central nervous system are significantly correlated with phylogeny and found evidence for a significant phylogenetic signal in these traits, although the effect is not strong. CONCLUSIONS Several genera are non-monophyletic emphasizing the importance of using phylogeny for interpretation of character distribution. Alkaloid diversity and in vitro inhibition of acetylcholinesterase (AChE) and binding to the serotonin reuptake transporter (SERT) are significantly correlated with phylogeny. This has implications for the use of phylogenies to interpret chemical evolution and biosynthetic pathways, to select candidate taxa for lead discovery, and to make recommendations for policies regarding traditional use and conservation priorities.
Collapse
Affiliation(s)
- Nina Rønsted
- Botanic Garden, Natural History Museum of Denmark, Sølvgade 83, Opg. S, Copenhagen, DK-1307, Denmark
| | - Matthew R E Symonds
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria, 3125, Australia
| | - Trine Birkholm
- Natural Products Research, Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen, DK-2100, Denmark
| | - Søren Brøgger Christensen
- Natural Products Research, Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen, DK-2100, Denmark
| | - Alan W Meerow
- USDA-ARS-SHRS, National Germplasm Repository, 13601 Old Cutler Road, Miami, Florida, USA
- Fairchild Tropical Garden, Miami, Florida, USA
| | - Marianne Molander
- Natural Products Research, Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen, DK-2100, Denmark
| | - Per Mølgaard
- Natural Products Research, Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen, DK-2100, Denmark
| | - Gitte Petersen
- Botanic Garden, Natural History Museum of Denmark, Sølvgade 83, Opg. S, Copenhagen, DK-1307, Denmark
| | - Nina Rasmussen
- Natural Products Research, Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen, DK-2100, Denmark
| | - Johannes van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville, 3201, South Africa
| | - Gary I Stafford
- Botanic Garden, Natural History Museum of Denmark, Sølvgade 83, Opg. S, Copenhagen, DK-1307, Denmark
| | - Anna K Jäger
- Natural Products Research, Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen, DK-2100, Denmark
| |
Collapse
|
287
|
Krizevski R, Bar E, Shalit OR, Levy A, Hagel JM, Kilpatrick K, Marsolais F, Facchini PJ, Ben-Shabat S, Sitrit Y, Lewinsohn E. Benzaldehyde is a precursor of phenylpropylamino alkaloids as revealed by targeted metabolic profiling and comparative biochemical analyses in Ephedra spp. PHYTOCHEMISTRY 2012; 81:71-9. [PMID: 22727117 DOI: 10.1016/j.phytochem.2012.05.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 05/13/2012] [Accepted: 05/14/2012] [Indexed: 05/13/2023]
Abstract
Ephedrine and pseudoephedrine are phenylpropylamino alkaloids widely used in modern medicine. Some Ephedra species such as E. sinica Stapf (Ephedraceae), a widely used Chinese medicinal plant (Chinese name: Ma Huang), accumulate ephedrine alkaloids as active constituents. Other Ephedra species, such as E. foeminea Forssk. (syn. E. campylopoda C.A. Mey) lack ephedrine alkaloids and their postulated metabolic precursors 1-phenylpropane-1,2-dione and (S)-cathinone. Solid-phase microextraction analysis of freshly picked young E. sinica and E. foeminea stems revealed the presence of increased benzaldehyde levels in E. foeminea, whereas 1-phenylpropane-1,2-dione was detected only in E. sinica. Soluble protein preparations from E. sinica and E. foeminea stems catalyzed the conversion of benzaldehyde and pyruvate to (R)-phenylacetylcarbinol, (S)-phenylacetylcarbinol, (R)-2-hydroxypropiophenone (S)-2-hydroxypropiophenone and 1-phenylpropane-1,2-dione. The activity, termed benzaldehyde carboxyligase (BCL) required the presence of magnesium and thiamine pyrophosphate and was 40 times higher in E. sinica as compared to E. foeminea. The distribution patterns of BCL activity in E. sinica tissues correlates well with the distribution pattern of the ephedrine alkaloids. (S)-Cathinone reductase enzymatic activities generating (1R,2S)-norephedrine and (1S,1R)-norephedrine were significantly higher in E. sinica relative to the levels displayed by E. foeminea. Surprisingly, (1R,2S)-norephedrine N-methyltransferase activity which is a downstream enzyme in ephedrine biosynthesis was significantly higher in E. foeminea than in E. sinica. Our studies further support that benzaldehyde is the metabolic precursor to phenylpropylamino alkaloids in E. sinica.
Collapse
Affiliation(s)
- Raz Krizevski
- Department of Aromatic, Medicinal and Spice Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay 30095, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
288
|
Zhao N, Ferrer JL, Moon HS, Kapteyn J, Zhuang X, Hasebe M, Stewart CN, Gang DR, Chen F. A SABATH Methyltransferase from the moss Physcomitrella patens catalyzes S-methylation of thiols and has a role in detoxification. PHYTOCHEMISTRY 2012; 81:31-41. [PMID: 22795762 DOI: 10.1016/j.phytochem.2012.06.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/20/2012] [Accepted: 06/18/2012] [Indexed: 05/13/2023]
Abstract
Known SABATH methyltransferases, all of which were identified from seed plants, catalyze methylation of either the carboxyl group of a variety of low molecular weight metabolites or the nitrogen moiety of precursors of caffeine. In this study, the SABATH family from the bryophyte Physcomitrella patens was identified and characterized. Four SABATH-like sequences (PpSABATH1, PpSABATH2, PpSABATH3, and PpSABATH4) were identified from the P. patens genome. Only PpSABATH1 and PpSABATH2 showed expression in the leafy gametophyte of P. patens. Full-length cDNAs of PpSABATH1 and PpSABATH2 were cloned and expressed in soluble form in Escherichia coli. Recombinant PpSABATH1 and PpSABATH2 were tested for methyltransferase activity with a total of 75 compounds. While showing no activity with carboxylic acids or nitrogen-containing compounds, PpSABATH1 displayed methyltransferase activity with a number of thiols. PpSABATH2 did not show activity with any of the compounds tested. Among the thiols analyzed, PpSABATH1 showed the highest level of activity with thiobenzoic acid with an apparent Km value of 95.5μM, which is comparable to those of known SABATHs. Using thiobenzoic acid as substrate, GC-MS analysis indicated that the methylation catalyzed by PpSABATH1 is on the sulfur atom. The mechanism for S-methylation of thiols catalyzed by PpSABATH1 was partially revealed by homology-based structural modeling. The expression of PpSABATH1 was induced by the treatment of thiobenzoic acid. Further transgenic studies showed that tobacco plants overexpressing PpSABATH1 exhibited enhanced tolerance to thiobenzoic acid, suggesting that PpSABATH1 have a role in the detoxification of xenobiotic thiols.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
289
|
Schmidt A, Li C, Jones AD, Pichersky E. Characterization of a flavonol 3-O-methyltransferase in the trichomes of the wild tomato species Solanum habrochaites. PLANTA 2012; 236:839-849. [PMID: 22711283 DOI: 10.1007/s00425-012-1676-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/25/2012] [Indexed: 06/01/2023]
Abstract
The glandular trichomes of the wild tomato species Solanum habrochaites accumulate the polymethylated flavonol aglycones, 3,7,3'-O-methyl myricetin, 3,7,3',5'-O-methyl myricetin, and 3,7,3',4',5'-O-methyl myricetin. Partially methylated flavonol aglycones and partially methylated flavonol glycones containing a methyl group at the 3 position have been previously reported from a variety of plants. The 3-O-methyltransferase (3-OMT) activity has been previously partially purified from plants, but a gene transcript encoding an enzyme capable of methylating flavonols at the 3 position has not yet been identified, nor have been such proteins purified and characterized. We previously identified two gene transcripts expressed in the glandular trichomes of S. habrochaites and showed that they encode enzymes capable of methylating myricetin at the 3' and 5' and the 7 and 4' positions, respectively. Here we report the identification of gene transcripts expressed in S. lycopersicum (cultivated tomato) and in S. habrochaites glandular trichomes that encode enzymes capable of methylating myricetin, and its partially methylated derivatives exclusively at the 3 position. The S. habrochaites gene transcript is preferentially expressed in the glandular trichomes and it encodes a protein with high similarity to the S. habrochaites, 3'/5' O-methyltransferase which is also present in glandular trichomes. Phylogenic analysis suggests that the 3-OMT activity has probably evolved from an ancestral 3'/5' methyltransferase activity. The discovery and characterization of 3-OMT provides a more complete picture of the series of reactions leading to highly methylated myricetin compounds in S. habrochaites glandular trichomes.
Collapse
Affiliation(s)
- Adam Schmidt
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA.
| | | | | | | |
Collapse
|
290
|
Distribution of primary and specialized metabolites in Nigella sativa seeds, a spice with vast traditional and historical uses. Molecules 2012; 17:10159-77. [PMID: 22922285 PMCID: PMC6268483 DOI: 10.3390/molecules170910159] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 07/29/2012] [Accepted: 07/31/2012] [Indexed: 11/17/2022] Open
Abstract
Black cumin (Nigella sativa L., Ranunculaceae) is an annual herb commonly used in the Middle East, India and nowadays gaining worldwide acceptance. Historical and traditional uses are extensively documented in ancient texts and historical documents. Black cumin seeds and oil are commonly used as a traditional tonic and remedy for many ailments as well as in confectionery and bakery. Little is known however about the mechanisms that allow the accumulation and localization of its active components in the seed. Chemical and anatomical evidence indicates the presence of active compounds in seed coats. Seed volatiles consist largely of olefinic and oxygenated monoterpenes, mainly p-cymene, thymohydroquinone, thymoquinone, γ-terpinene and α-thujene, with lower levels of sesquiterpenes, mainly longifolene. Monoterpene composition changes during seed maturation. γ-Terpinene and α-thujene are the major monoterpenes accumulated in immature seeds, and the former is gradually replaced by p-cymene, carvacrol, thymo-hydroquinone and thymoquinone upon seed development. These compounds, as well as the indazole alkaloids nigellidine and nigellicine, are almost exclusively accumulated in the seed coat. In contrast, organic and amino acids are primarily accumulated in the inner seed tissues. Sugars and sugar alcohols, as well as the amino alkaloid dopamine and the saponin α-hederin accumulate both in the seed coats and the inner seed tissues at different ratios. Chemical analyses shed light to the ample traditional and historical uses of this plant.
Collapse
|
291
|
The key role of 4-methyl-5-vinylthiazole in the attraction of scarab beetle pollinators: a unique olfactory floral signal shared by Annonaceae and Araceae. J Chem Ecol 2012; 38:1072-80. [PMID: 22918609 DOI: 10.1007/s10886-012-0173-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 06/10/2012] [Accepted: 06/26/2012] [Indexed: 10/28/2022]
Abstract
Cyclocephaline scarabs are specialised scent-driven pollinators, implicated with the reproductive success of several Neotropical plant taxa. Night-blooming flowers pollinated by these beetles are thermogenic and release intense fragrances synchronized to pollinator activity. However, data on floral scent composition within such mutualistic interactions are scarce, and the identity of behaviorally active compounds involved is largely unknown. We performed GC-MS analyses of floral scents of four species of Annona (magnoliids, Annonaceae) and Caladium bicolor (monocots, Araceae), and demonstrated the chemical basis for the attraction of their effective pollinators. 4-Methyl-5-vinylthiazole, a nitrogen and sulphur-containing heterocyclic compound previously unreported in flowers, was found as a prominent constituent in all studied species. Field biotests confirmed that it is highly attractive to both male and female beetles of three species of the genus Cyclocephala, pollinators of the studied plant taxa. The origin of 4-methyl-5-vinylthiazole in plants might be associated with the metabolism of thiamine (vitamin B1), and we hypothesize that the presence of this compound in unrelated lineages of angiosperms is either linked to selective expression of a plesiomorphic biosynthetic pathway or to parallel evolution.
Collapse
|
292
|
Hagel JM, Krizevski R, Marsolais F, Lewinsohn E, Facchini PJ. Biosynthesis of amphetamine analogs in plants. TRENDS IN PLANT SCIENCE 2012; 17:404-412. [PMID: 22502775 DOI: 10.1016/j.tplants.2012.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/05/2012] [Accepted: 03/05/2012] [Indexed: 05/31/2023]
Abstract
Amphetamine analogs are produced by plants in the genus Ephedra and by Catha edulis, and include the widely used decongestants and appetite suppressants pseudoephedrine and ephedrine. A combination of yeast (Candida utilis or Saccharomyces cerevisiae) fermentation and subsequent chemical modification is used for the commercial production of these compounds. The availability of certain plant biosynthetic genes would facilitate the engineering of yeast strains capable of de novo pseudoephedrine and ephedrine biosynthesis. Chemical synthesis has yielded amphetamine analogs with myriad functional group substitutions and diverse pharmacological properties. The isolation of enzymes with the serendipitous capacity to accept novel substrates could allow the production of substituted amphetamines in synthetic biosystems. Here, we review the biology, biochemistry and biotechnological potential of amphetamine analogs in plants.
Collapse
Affiliation(s)
- Jillian M Hagel
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | | | | | | | | |
Collapse
|
293
|
Schilmiller AL, Pichersky E, Last RL. Taming the hydra of specialized metabolism: how systems biology and comparative approaches are revolutionizing plant biochemistry. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:338-344. [PMID: 22244679 DOI: 10.1016/j.pbi.2011.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 12/24/2011] [Indexed: 05/31/2023]
Abstract
Specialized (traditionally called 'secondary') metabolism can be thought of as a hydra with hundreds of thousands of compounds produced by thousands of enzymes across the entire plant kingdom. Until recently, plants that produce the most interesting and valuable metabolites were recalcitrant to modern molecular biology approaches for gene and pathway discovery. Recent advances in technologies for genomic, transcriptomic, proteomic, and metabolomic methods now allow for deployment of 'systems biology' approaches to help elucidate unknown steps in specialized metabolite pathways, for example through co-expression analyses. Inexpensive transcriptome and whole genome sequencing (WGS) promises to provide direct access to metabolic pathways in plants not currently used as reference organisms. For example, WGS has uncovered cases of physical proximity of genes of specialized metabolism. Further integration of multiple 'omics' datasets through advances in bioinformatics tools will increase our knowledge of pathway architecture and regulation at an ever-increasing rate. As such the era of systems biology is rapidly providing a broader and deeper understanding of plant specialized metabolism.
Collapse
Affiliation(s)
- Anthony L Schilmiller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| | | | | |
Collapse
|
294
|
Agerbirk N, Olsen CE. Glucosinolate structures in evolution. PHYTOCHEMISTRY 2012; 77:16-45. [PMID: 22405332 DOI: 10.1016/j.phytochem.2012.02.005] [Citation(s) in RCA: 298] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/03/2012] [Accepted: 02/06/2012] [Indexed: 05/19/2023]
Abstract
By 2000, around 106 natural glucosinolates (GSLs) were probably documented. In the past decade, 26 additional natural GSL structures have been elucidated and documented. Hence, the total number of documented GSLs from nature by 2011 can be estimated to around 132. A considerable number of additional suggested structures are concluded not to be sufficiently documented. In many cases, NMR spectroscopy would have provided the missing structural information. Of the GSLs documented in the past decade, several are of previously unexpected structures and occur at considerable levels. Most originate from just four species: Barbarea vulgaris, Arabidopsis thaliana, Eruca sativa and Isatis tinctoria. Acyl derivatives of known GSLs comprised 15 of the 26 newly documented structures, while the remaining exhibited new substitution patterns or chain length, or contained a mercapto group or related thio-functionality. GSL identification methods are reviewed, and the importance of using authentic references and structure-sensitive detection methods such as MS and NMR is stressed, especially when species with relatively unknown chemistry are analyzed. An example of qualitative GSL analysis is presented with experimental details (group separation and HPLC of both intact and desulfated GSLs, detection and structure determination by UV, MS, NMR and susceptibility to myrosinase) with emphasis on the use of NMR for structure elucidation of even minor GSLs and GSL hydrolysis products. The example includes identification of a novel GSL, (R)-2-hydroxy-2-(3-hydroxyphenyl)ethylglucosinolate. Recent investigations of GSL evolution, based on investigations of species with well established phylogeny, are reviewed. From the relatively few such investigations, it is already clear that GSL profiles are regularly subject to evolution. This result is compatible with natural selection for specific GSL side chains. The probable existence of structure-specific GSL catabolism in intact plants suggests that biochemical evolution of GSLs has more complex implications than the mere liberation of a different hydrolysis product upon tissue disruption.
Collapse
Affiliation(s)
- Niels Agerbirk
- Section for Plant Biochemistry, Department of Plant Biology and Biotechnology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark.
| | | |
Collapse
|
295
|
Onkokesung N, Gaquerel E, Kotkar H, Kaur H, Baldwin IT, Galis I. MYB8 controls inducible phenolamide levels by activating three novel hydroxycinnamoyl-coenzyme A:polyamine transferases in Nicotiana attenuata. PLANT PHYSIOLOGY 2012; 158:389-407. [PMID: 22082505 PMCID: PMC3252090 DOI: 10.1104/pp.111.187229] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/09/2011] [Indexed: 05/18/2023]
Abstract
A large number of plants accumulate N-acylated polyamines (phenolamides [PAs]) in response to biotic and/or abiotic stress conditions. In the native tobacco (Nicotiana attenuata), the accumulation of two major PAs, caffeoylputrescine and dicaffeoylspermidine (DCS), after herbivore attack is known to be controlled by a key transcription factor, MYB8. Using a broadly targeted metabolomics approach, we show that a much larger spectrum of PAs composed of hydroxycinnamic acids and two polyamines, putrescine and spermidine, is regulated by this transcription factor. We cloned several novel MYB8-regulated genes, annotated as putative acyltransferases, and analyzed their function. One of the novel acyltransferases (AT1) is shown to encode a hydroxycinnamoyl-coenzyme A:putrescine acyltransferase responsible for caffeoylputrescine biosynthesis in tobacco. Another gene (acyltransferase DH29), specific for spermidine conjugation, mediates the initial acylation step in DCS formation. Although this enzyme was not able to perform the second acylation toward DCS biosynthesis, another acyltransferase gene, CV86, proposed to act on monoacylated spermidines, was isolated and partially characterized. The activation of MYB8 in response to herbivore attack and associated signals required the activity of LIPOXYGENASE3, a gene involved in jasmonic acid (JA) biosynthesis in N. attenuata. These new results allow us to reconstruct a complete branch in JA signaling that defends N. attenuata plants against herbivores: JA via MYB8's transcriptional control of AT1 and DH29 genes controls the entire branch of PA biosynthesis, which allows N. attenuata to mount a chemically diverse (and likely efficient) defense shield against herbivores.
Collapse
|
296
|
Abstract
Plant type III polyketide synthases (PKSs) form a superfamily of biosynthetic enzymes involved in the production of a plethora of polyketide-derived natural products important for ecological adaptations and the fitness of land plants. Moreover, tremendous interest in bioengineering of type III PKSs to produce high-value compounds is increasing. Compared to type I and type II PKSs, which form either large modular protein complexes or dissociable molecular assemblies, type III PKSs exist as smaller homodimeric proteins, technically more amenable for detailed quantitative biochemical and phylogenetic analyses. In this chapter, we summarize a collection of approaches, including bioinformatics, genetics, protein crystallography, in vitro biochemistry, and mutagenesis, together affording a comprehensive interrogation of the structure-function-evolutionary relationships in the plant type III PKS family.
Collapse
|
297
|
Abstract
Plants have evolved a plethora of different chemical defenses covering nearly all classes of (secondary) metabolites that represent a major barrier to herbivory: Some are constitutive; others are induced after attack. Many compounds act directly on the herbivore, whereas others act indirectly via the attraction of organisms from other trophic levels that, in turn, protect the plant. An enormous diversity of plant (bio)chemicals are toxic, repellent, or antinutritive for herbivores of all types. Examples include cyanogenic glycosides, glucosinolates, alkaloids, and terpenoids; others are macromolecules and comprise latex or proteinase inhibitors. Their modes of action include membrane disruption, inhibition of nutrient and ion transport, inhibition of signal transduction processes, inhibition of metabolism, or disruption of the hormonal control of physiological processes. Recognizing the herbivore challenge and precise timing of plant activities as well as the adaptive modulation of the plants' metabolism is important so that metabolites and energy may be efficiently allocated to defensive activities.
Collapse
Affiliation(s)
- Axel Mithöfer
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany.
| | | |
Collapse
|
298
|
Takos AM, Knudsen C, Lai D, Kannangara R, Mikkelsen L, Motawia MS, Olsen CE, Sato S, Tabata S, Jørgensen K, Møller BL, Rook F. Genomic clustering of cyanogenic glucoside biosynthetic genes aids their identification in Lotus japonicus and suggests the repeated evolution of this chemical defence pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:273-86. [PMID: 21707799 DOI: 10.1111/j.1365-313x.2011.04685.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cyanogenic glucosides are amino acid-derived defence compounds found in a large number of vascular plants. Their hydrolysis by specific β-glucosidases following tissue damage results in the release of hydrogen cyanide. The cyanogenesis deficient1 (cyd1) mutant of Lotus japonicus carries a partial deletion of the CYP79D3 gene, which encodes a cytochrome P450 enzyme that is responsible for the first step in cyanogenic glucoside biosynthesis. The genomic region surrounding CYP79D3 contains genes encoding the CYP736A2 protein and the UDP-glycosyltransferase UGT85K3. In combination with CYP79D3, these genes encode the enzymes that constitute the entire pathway for cyanogenic glucoside biosynthesis. The biosynthetic genes for cyanogenic glucoside biosynthesis are also co-localized in cassava (Manihot esculenta) and sorghum (Sorghum bicolor), but the three gene clusters show no other similarities. Although the individual enzymes encoded by the biosynthetic genes in these three plant species are related, they are not necessarily orthologous. The independent evolution of cyanogenic glucoside biosynthesis in several higher plant lineages by the repeated recruitment of members from similar gene families, such as the CYP79s, is a likely scenario.
Collapse
Affiliation(s)
- Adam M Takos
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|