251
|
Li YS, Ou SL, Yang CY. The Seedlings of Different Japonica Rice Varieties Exhibit Differ Physiological Properties to Modulate Plant Survival Rates under Submergence Stress. PLANTS 2020; 9:plants9080982. [PMID: 32756426 PMCID: PMC7465654 DOI: 10.3390/plants9080982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 01/30/2023]
Abstract
Oryza sativa is a major food crop in Asia. In recent years, typhoons and sudden downpours have caused field flooding, which has resulted in serious harm to the production of rice. In this study, our data revealed that the plant heights of the five Japonica varieties increased during submergence. The elongation rates of TN14, KH139, and TK9 increased significantly during submergence. Chlorophyll contents of the five varieties significantly decreased after submergence and increased after recovery. Moreover, the chlorophyll content of KH139 was significantly higher than those of the other four varieties after recovery. The plant survival rates of the five varieties were higher than 50% after four-day submergence. After eight-day submergence, the survival rate of KH139 remained at 90%, which was the highest among the different varieties. The KH139 presented lower accumulation of hydrogen peroxide and the catalase activity than those of the other four varieties under submergence. The sucrose synthase 1 and alcohol dehydrogenase 1 were induced in KH139 under submergence. The results presented that different varieties of japonica rice have different flood tolerances, especially KH139 under submergence was superior to that of the other four varieties. These results can provide crucial information for future research on japonica rice under flooding stress.
Collapse
Affiliation(s)
| | | | - Chin-Ying Yang
- Correspondence: ; Tel.: +886-4-22840777 (ext. 608); Fax: +886-4-22877054
| |
Collapse
|
252
|
Oram NJ, De Deyn GB, Bodelier PLE, Cornelissen JHC, Groenigen JW, Abalos D. Plant community flood resilience in intensively managed grasslands and the role of the plant economic spectrum. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Natalie J. Oram
- Soil Biology Group Wageningen University & Research Wageningen The Netherlands
| | - Gerlinde B. De Deyn
- Soil Biology Group Wageningen University & Research Wageningen The Netherlands
| | | | - Johannes H. C. Cornelissen
- Systems Ecology Department of Ecological Science Faculty of Science Vrije Universiteit Amsterdam Amsterdam The Netherlands
| | | | - Diego Abalos
- Soil Biology Group Wageningen University & Research Wageningen The Netherlands
- Department of Agroecology – Soil Fertility Aarhus University Tjele Denmark
| |
Collapse
|
253
|
Su W, Ren Y, Wang D, Su Y, Feng J, Zhang C, Tang H, Xu L, Muhammad K, Que Y. The alcohol dehydrogenase gene family in sugarcane and its involvement in cold stress regulation. BMC Genomics 2020; 21:521. [PMID: 32727370 PMCID: PMC7392720 DOI: 10.1186/s12864-020-06929-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alcohol dehydrogenases (ADHs) in plants are encoded by a multigene family. ADHs participate in growth, development, and adaptation in many plant species, but the evolution and function of the ADH gene family in sugarcane is still unclear. RESULTS In the present study, 151 ADH genes from 17 species including 32 ADH genes in Saccharum spontaneum and 6 ADH genes in modern sugarcane cultivar R570 were identified. Phylogenetic analysis demonstrated two groups of ADH genes and suggested that these genes underwent duplication during angiosperm evolution. Whole-genome duplication (WGD)/segmental and dispersed duplications played critical roles in the expansion of ADH family in S. spontaneum and R570, respectively. ScADH3 was cloned and preferentially expressed in response to cold stress. ScADH3 conferred improved cold tolerance in E. coli cells. Ectopic expression showed that ScADH3 can also enhance cold tolerance in transgenic tobacco. The accumulation of reactive oxygen species (ROS) in leaves of transgenic tobacco was significantly lower than in wild-type tobacco. The transcript levels of ROS-related genes in transgenic tobacco increased significantly. ScADH3 seems to affect cold tolerance by regulating the ROS-related genes to maintain the ROS homeostasis. CONCLUSIONS This study depicted the size and composition of the ADH gene family in 17 species, and investigated their evolution pattern. Comparative genomics analysis among the ADH gene families of S. bicolor, R570 and S. spontaneum revealed their close evolutionary relationship. Functional analysis suggested that ScADH3, which maintained the steady state of ROS by regulating ROS-related genes, was related to cold tolerance. These findings will facilitate research on evolutionary and functional aspects of the ADH genes in sugarcane, especially for the understanding of ScADH3 under cold stress.
Collapse
Affiliation(s)
- Weihua Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yongjuan Ren
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Dongjiao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jingfang Feng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Chang Zhang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Hanchen Tang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Khushi Muhammad
- Department of Genetics, Hazara University, Mansehra, Pakistan
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China. .,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
254
|
Sustainability Outcomes of Green Processes in Relation to Industry 4.0 in Manufacturing: Systematic Review. SUSTAINABILITY 2020. [DOI: 10.3390/su12155968] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Green processes are very important for the implementation of green technologies in production to achieve positive sustainability outcomes in the Industry 4.0 era. The scope of the paper is to review how conventional green processes as a part of Industry 4.0 provide sustainability outcomes in manufacturing. The paper is based on the methodology of systematic literature review through the content analysis of literary resources. Twenty-nine studies were included in our content analysis. The results show the main focus of current literature related to Industry 4.0, sustainability outcomes and green processes. The authors present a conceptual Sustainability Green Industry 4.0 (SGI 4.0) framework that helps to structure and evaluate conventional green processes in relation to Industry 4.0 and sustainability. The study summarizes which technologies (big data, cyber-physical systems, Industrial Internet of Things and smart systems) and green processes (logistics, manufacturing and product design) are important for achieving a higher level of sustainability. The authors found that the most often common sustainability outcomes are energy saving, emission reduction, resource optimalization, cost reduction, productivity and efficiency and higher economic performance, human resources development, social welfare and workplace safety. The study suggests implications for practice, knowledge and future research.
Collapse
|
255
|
Sidhu GK, Tuan PA, Renault S, Daayf F, Ayele BT. Polyamine-Mediated Transcriptional Regulation of Enzymatic Antioxidative Response to Excess Soil Moisture during Early Seedling Growth in Soybean. BIOLOGY 2020; 9:biology9080185. [PMID: 32708038 PMCID: PMC7465689 DOI: 10.3390/biology9080185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/02/2020] [Accepted: 07/20/2020] [Indexed: 01/24/2023]
Abstract
This study examined the expression patterns of antioxidative genes and the activity of the corresponding enzymes in the excess moisture-stressed seedlings of soybean in response to seed treatment with polyamines, spermine (Spm) and spermidine (Spd). At the 4 day after planting (DAP) stage, the excess moisture impaired the embryo axis growth, and this effect is associated with the downregulation of superoxide dismutase (GmSOD1) expression and SOD activity in the cotyledon. Seed treatment with Spm reversed the effects of excess moisture on embryo axis growth partly through enhancing glutathione reductase (GR) activity, in both the cotyledon and embryo axis, although no effect on the GmGR expression level was evident. Excess moisture inhibited the shoot and root growth in 7 DAP seedlings, and this is associated with decreased activities of GR in the shoot and SOD in the root. The effect of excess moisture on shoot and root growth was reversed by seed treatment with Spd, and this was mediated by the increased activities of ascorbate peroxidase (APX), catalase (CAT) and GR in the shoot, and APX in the root, however, only GR in the shoot appears to be regulated transcriptionally. Root growth was also reversed by seed treatment with Spm with no positive effect on gene expression and enzyme activity.
Collapse
Affiliation(s)
- Gagandip K. Sidhu
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (G.K.S.); (P.A.T.); (F.D.)
| | - Pham Anh Tuan
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (G.K.S.); (P.A.T.); (F.D.)
| | - Sylvie Renault
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Fouad Daayf
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (G.K.S.); (P.A.T.); (F.D.)
| | - Belay T. Ayele
- Department of Plant Science, 222 Agriculture Building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (G.K.S.); (P.A.T.); (F.D.)
- Correspondence: ; Tel.: +1-204-474-8227; Fax: +1-204-474-7528
| |
Collapse
|
256
|
Aridhi F, Sghaier H, Gaitanaros A, Khadri A, Aschi-Smiti S, Brouquisse R. Nitric oxide production is involved in maintaining energy state in Alfalfa (Medicago sativa L.) nodulated roots under both salinity and flooding. PLANTA 2020; 252:22. [PMID: 32676756 DOI: 10.1007/s00425-020-03422-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
In Medicago sativa nodulated roots, NR-dependent NO production is involved in maintaining energy state, presumably through phytoglobin NO respiration, under both salinity and hypoxia stress. The response to low and average salinity stress and to a 5 day-long flooding period was analyzed in M. sativa nodulated roots. The two treatments result in a decrease in the biological nitrogen fixation capacity and the energy state (evaluated by the ATP/ADP ratio), and conversely in an increase nitric oxide (NO) production. Under salinity and hypoxia treatments, the use of either sodium tungstate, an inhibitor of nitrate reductase (NR), or carboxy-PTIO, a NO scavenger, results in a decrease in NO production and ATP/ADP ratio, meaning that NR-dependent NO production participates to the maintenance of the nodulated roots energy state.
Collapse
Affiliation(s)
- Fatma Aridhi
- Unité de Recherche d'Ecologie Végétale, Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire Farhat Hached, Tunis, Tunisia
- UMR INRAE 1355, CNRS 7254, Université Côte d'Azur, Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Hajer Sghaier
- Unité de Recherche d'Ecologie Végétale, Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire Farhat Hached, Tunis, Tunisia
| | - Allyzée Gaitanaros
- UMR INRAE 1355, CNRS 7254, Université Côte d'Azur, Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Ayda Khadri
- Unité de Recherche d'Ecologie Végétale, Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire Farhat Hached, Tunis, Tunisia
| | - Samira Aschi-Smiti
- Unité de Recherche d'Ecologie Végétale, Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire Farhat Hached, Tunis, Tunisia
| | - Renaud Brouquisse
- UMR INRAE 1355, CNRS 7254, Université Côte d'Azur, Institut Sophia Agrobiotech, Sophia Antipolis, France.
| |
Collapse
|
257
|
Berger A, Guinand S, Boscari A, Puppo A, Brouquisse R. Medicago truncatula Phytoglobin 1.1 controls symbiotic nodulation and nitrogen fixation via the regulation of nitric oxide concentration. THE NEW PHYTOLOGIST 2020; 227:84-98. [PMID: 32003030 PMCID: PMC7317445 DOI: 10.1111/nph.16462] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/19/2020] [Indexed: 05/04/2023]
Abstract
In legumes, phytoglobins (Phytogbs) are known to regulate nitric oxide (NO) during early phase of the nitrogen-fixing symbiosis and to buffer oxygen in functioning nodules. However, their expression profile and respective role in NO control at each stage of the symbiosis remain little-known. We first surveyed the Phytogb genes occurring in Medicago truncatula genome. We analyzed their expression pattern and NO production from inoculation with Sinorhizobium meliloti up to 8 wk post-inoculation. Finally, using overexpression and silencing strategy, we addressed the role of the Phytogb1.1-NO couple in the symbiosis. Three peaks of Phytogb expression and NO production were detected during the symbiotic process. NO upregulates Phytogbs1 expression and downregulates Lbs and Phytogbs3 ones. Phytogb1.1 silencing and overexpression experiments reveal that Phytogb1.1-NO couple controls the progression of the symbiosis: high NO concentration promotes defense responses and nodular organogenesis, whereas low NO promotes the infection process and nodular development. Both NO excess and deficiency provoke a 30% inhibition of nodule establishment. In mature nodules, Phytogb1.1 regulates NO to limit its toxic effects while allowing the functioning of Phytogb-NO respiration to maintain the energetic state. This work highlights the regulatory role played by Phytogb1.1-NO couple in the successive stages of symbiosis.
Collapse
Affiliation(s)
- Antoine Berger
- Institut Sophia AgrobiotechUMR INRAE 1355CNRS 7254Université Côte d'Azur400 route des Chappes, BP 16706903Sophia AntipolisFrance
| | - Sophie Guinand
- Institut Sophia AgrobiotechUMR INRAE 1355CNRS 7254Université Côte d'Azur400 route des Chappes, BP 16706903Sophia AntipolisFrance
| | - Alexandre Boscari
- Institut Sophia AgrobiotechUMR INRAE 1355CNRS 7254Université Côte d'Azur400 route des Chappes, BP 16706903Sophia AntipolisFrance
| | - Alain Puppo
- Institut Sophia AgrobiotechUMR INRAE 1355CNRS 7254Université Côte d'Azur400 route des Chappes, BP 16706903Sophia AntipolisFrance
| | - Renaud Brouquisse
- Institut Sophia AgrobiotechUMR INRAE 1355CNRS 7254Université Côte d'Azur400 route des Chappes, BP 16706903Sophia AntipolisFrance
| |
Collapse
|
258
|
Iturralde Elortegui MDRM, Berone GD, Striker GG, Martinefsky MJ, Monterubbianesi MG, Assuero SG. Anatomical, morphological and growth responses of Thinopyrum ponticum plants subjected to partial and complete submergence during early stages of development. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:757-768. [PMID: 32464086 DOI: 10.1071/fp19170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Seedling recruitment and growth of forage grasses in flood-prone grasslands is often impaired by submergence. We evaluate the responses of Thinopyrum ponticum (Podp.) Barkw. & Dewey to partial and complete submergence at two early stages of development. Two greenhouse experiments were carried out with plants at three expanded leaves (Experiment 1) or five expanded leaves stage (Experiment 2). In each case, three treatments were applied for 14 days: control (C), partial submergence (PS; water level to half plant height), and complete submergence (CS; water level to 1.5 times plant height). Submergence was followed by a recovery period of 14 days at well drained conditions. Assessments included plant survival, height, leaf blade and pseudostem length, soluble carbohydrates in pseudostem, and shoot and root dry mass accumulation at the beginning and end of the submergence, and at the end of the recovery period. Root aerenchyma formation was determined on day 14 in both experiments. Under PS all plants survived, and the impact of the stress was related to the plants' developmental stage. However, plants with five expanded leaves increased total plant biomass with respect to control by 48%, plants with three expanded leaves reduced it by the same percentage. This response could be related to a higher ability to form root aerenchyma (17 vs 10%), and an enhanced leaf de-submergence capacity due to promoted leaf blade and pseudostem lengthening. Complete submergence treatment compromised the survival of 70% of the individuals with three expanded leaves but did not affect the survival at the five expanded leaves stage. In any developmental stage (three or five expanded leaves) plants fail to promote enough elongation of leaf blades or pseudostems to emerge from the water, so that always remained below the water surface. Root aerenchyma was not increased by CS at either of these two plant developmental stages. The high amount and concentration of pseudostem total soluble carbohydrates of the larger (five expanded leaves) plants facilitated their recovery growth after submergence. Our results predict the successful introduction of this species in areas where water excesses can cause soil waterlogging or shallow-partial plant submergence, but suggest avoidance of areas prone to suffer high-intensity flooding that lead to full plant submergence as this would highly constrain plant recruitment.
Collapse
Affiliation(s)
| | - Germán D Berone
- Instituto Nacional de Tecnología Agropecuaria (INTA), EEA Balcarce, Ruta Nacional 226 km 73.5, C.C. 276, B7620BKL Balcarce, Buenos Aires, Argentina; and Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Ruta Nacional 226 km 73.5, C.C. 276, B7620BKL Balcarce, Buenos Aires, Argentina
| | - Gustavo G Striker
- IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Buenos Aires, Argentina, Av. San Martín 4453, CPA 1417, DSE Buenos Aires, Argentina; and UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - María J Martinefsky
- Instituto Nacional de Tecnología Agropecuaria (INTA), AER Olavarría, Alsina 2642, B7400COJ Olavarría, Buenos Aires, Argentina
| | - María G Monterubbianesi
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Ruta Nacional 226 km 73.5, C.C. 276, B7620BKL Balcarce, Buenos Aires, Argentina
| | - Silvia G Assuero
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Ruta Nacional 226 km 73.5, C.C. 276, B7620BKL Balcarce, Buenos Aires, Argentina
| |
Collapse
|
259
|
Zeng B, Zhang Y, Zhang A, Qiao D, Ren J, Li M, Cai K, Zhang J, Huang L. Transcriptome profiling of two Dactylis glomerata L. cultivars with different tolerance in response to submergence stress. PHYTOCHEMISTRY 2020; 175:112378. [PMID: 32315838 DOI: 10.1016/j.phytochem.2020.112378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Submergence is one of the environmental stresses that limit plant growth and development. Dactylis glomerata L. is an important cool-season forage grass globally. To investigate the genes related to submergence response and the molecular mechanism associated with submergence tolerance, the transcriptome of D. glomerata in response to waterlogging treatment was analyzed. RNA-sequencing was performed in two D. glomerata cultivars, submergence tolerant 'Dianbei' and submergence sensitive 'Anba'. A total of 50,045 unique genes matched the known proteins in the NCBI nr database by BLAST searches and 60.8% (30,418) of these genes were annotated with GO terms. Among these, 1395 genes only differentially expressed in 'Dianbei' and 18 genes shown different expression all the time were detected between the submergence tolerant 'Dianbei' and sensitive 'Anba'. Gene ontology (GO) and KEGG pathway enrichment analyses demonstrated that the DEGs were mainly implicated in oxidation-reduction system, nucleic acid binding transcription factor activity, and glycerol kinase activity. The D. glomerata assembled transcriptome provided substantial molecular resource for further genomic analysis of forage grasses in response to submergence stress. The significant difference in expression of specific unigenes may account for waterlogging tolerance or acclimation in the two different D. glomerata cultivars. This study provided new insights into the molecular basis of submergence tolerance in D. glomerata.
Collapse
Affiliation(s)
- Bing Zeng
- College of Animal Science, Rongchang Campus, Southwest University, Chongqing, 402460, China
| | - Yajie Zhang
- College of Animal Science, Rongchang Campus, Southwest University, Chongqing, 402460, China
| | - Ailing Zhang
- Department of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dandan Qiao
- College of Animal Science, Rongchang Campus, Southwest University, Chongqing, 402460, China
| | - Juncai Ren
- College of Animal Science, Rongchang Campus, Southwest University, Chongqing, 402460, China
| | - Mingyang Li
- College of Animal Science, Rongchang Campus, Southwest University, Chongqing, 402460, China
| | - Kai Cai
- College of Animal Science, Rongchang Campus, Southwest University, Chongqing, 402460, China
| | - Jinhua Zhang
- Guizhou animal Husbandry and Veterinary Institute, Guiyang, 550005, China.
| | - Linkai Huang
- Department of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
260
|
Alam R, Hummel M, Yeung E, Locke AM, Ignacio JCI, Baltazar MD, Jia Z, Ismail AM, Septiningsih EM, Bailey‐Serres J. Flood resilience loci SUBMERGENCE 1 and ANAEROBIC GERMINATION 1 interact in seedlings established underwater. PLANT DIRECT 2020; 4:e00240. [PMID: 32775950 PMCID: PMC7403837 DOI: 10.1002/pld3.240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/25/2020] [Accepted: 06/17/2020] [Indexed: 05/11/2023]
Abstract
Crops with resilience to multiple climatic stresses are essential for increased yield stability. Here, we evaluate the interaction between two loci associated with flooding survival in rice (Oryza sativa L.). ANAEROBIC GERMINATION 1 (AG1), encoding trehalose 6-phosphate phosphatase 7 (TPP7), promotes mobilization of endosperm reserves to enhance the elongation of a hollow coleoptile in seeds that are seeded directly into shallow paddies. SUBMERGENCE 1 (SUB1), encoding the ethylene-responsive transcription factor SUB1A-1, confers tolerance to complete submergence by dampening carbohydrate catabolism, to enhance recovery upon desubmergence. Interactions between AG1/TPP7 and SUB1/SUB1A-1 were investigated under three flooding scenarios using four near-isogenic lines by surveying growth and survival. Pyramiding of the two loci does not negatively affect anaerobic germination or vegetative-stage submergence tolerance. However, the pyramided AG1 SUB1 genotype displays reduced survival when seeds are planted underwater and maintained under submergence for 16 d. To better understand the roles of TPP7 and SUB1A-1 and their interaction, temporal changes in carbohydrates and shoot transcriptomes were monitored in the four genotypes varying at the two loci at four developmental timeponts, from day 2 after seeding through day 14 of complete submergence. TPP7 enhances early coleoptile elongation, whereas SUB1A-1 promotes precocious photoautotrophy and then restricts underwater elongation. By contrast, pyramiding of the AG1 and SUB1 slows elongation growth, the transition to photoautotrophy, and survival. mRNA-sequencing highlights time-dependent and genotype-specific regulation of mRNAs associated with DNA repair, cell cycle, chromatin modification, plastid biogenesis, carbohydrate catabolism and transport, elongation growth, and other processes. These results suggest that interactions between AG1/TPP7 and SUB1/SUB1A-1 could impact seedling establishment if paddy depth is not effectively managed after direct seeding.
Collapse
Affiliation(s)
- Rejbana Alam
- Department of Botany and Plant SciencesCenter for Plant Cell BiologyUniversity of California RiversideRiversideCAUSA
| | - Maureen Hummel
- Department of Botany and Plant SciencesCenter for Plant Cell BiologyUniversity of California RiversideRiversideCAUSA
| | - Elaine Yeung
- Department of Botany and Plant SciencesCenter for Plant Cell BiologyUniversity of California RiversideRiversideCAUSA
| | - Anna M. Locke
- Department of Botany and Plant SciencesCenter for Plant Cell BiologyUniversity of California RiversideRiversideCAUSA
- Present address:
Soybean and Nitrogen Fixation Research UnitUSDA‐ARSRaleighNCUSA
| | | | - Miriam D. Baltazar
- Department of Biological SciencesCavite State UniversityIndangPhilippines
| | - Zhenyu Jia
- Department of Botany and Plant SciencesCenter for Plant Cell BiologyUniversity of California RiversideRiversideCAUSA
| | | | - Endang M. Septiningsih
- International Rice Research InstituteMetro ManilaPhilippines
- Present address:
Department of Soil and Crop SciencesTexas A&M UniversityCollege StationTXUSA
| | - Julia Bailey‐Serres
- Department of Botany and Plant SciencesCenter for Plant Cell BiologyUniversity of California RiversideRiversideCAUSA
| |
Collapse
|
261
|
Dacosta-Aguayo R, Wylie G, DeLuca J, Genova H. Changes in plant function and root mycobiome caused by flood and drought in a riparian tree. Behav Neurol 2020; 40:886-903. [PMID: 32175581 PMCID: PMC7775148 DOI: 10.1093/treephys/tpaa031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023] Open
Abstract
Under increasingly harsh climatic conditions, conservation of threatened species requires integrative studies to understand stress tolerance. Riparian Ulmus minor Mill. populations have been massively reduced by Dutch Elm disease (DED). However, resistant genotypes were selected to restore lost populations. To understand the acclimation mechanisms to the succession of abiotic stresses, ramets of five DED-tolerant U. minor genotypes were subjected to flood and subsequently to drought. Physiological and biochemical responses were evaluated together with shifts in root-fungal assemblages. During both stresses, plants exhibited a decline in leaf net photosynthesis and an increase in percentage loss of stem hydraulic conductivity and in leaf and root proline content. Stomatal closure was produced by chemical signals during flood and hydraulic signals during drought. Despite broad similarities in plant response to both stresses, root-mycobiome shifts were markedly different. The five genotypes were similarly tolerant to moderate drought, however, flood tolerance varied between genotypes. In general, flood did not enhance drought susceptibility due to fast flood recovery, nevertheless, different responses to drought after flood were observed between genotypes. Associations were found between some fungal taxonomic groups and plant functional traits varying with flood and drought (e.g. proline, chlorophyll and starch content) indicating that the thriving of certain taxa depends on host responses to abiotic stress.
Collapse
Affiliation(s)
- Rosalia Dacosta-Aguayo
- Neuropsychology and Neuroscience, Kessler Foundation, 120 Eagle Rock Avenue, Suite 100, East Hanover, New Jersey 07936, USA
- Department of Physical Medicine and Rehabilitation, Rutgers University, New Jersey Medical School, Newark, NJ 07101, USA
| | - Glenn Wylie
- Department of Physical Medicine and Rehabilitation, Rutgers University, New Jersey Medical School, Newark, NJ 07101, USA
- Rocco Ortenzio Neuroimaging Center, Kessler Foundation, West Orange, NJ, USA
| | - John DeLuca
- Neuropsychology and Neuroscience, Kessler Foundation, 120 Eagle Rock Avenue, Suite 100, East Hanover, New Jersey 07936, USA
- Department of Physical Medicine and Rehabilitation, Rutgers University, New Jersey Medical School, Newark, NJ 07101, USA
- Rocco Ortenzio Neuroimaging Center, Kessler Foundation, West Orange, NJ, USA
| | - Helen Genova
- Neuropsychology and Neuroscience, Kessler Foundation, 120 Eagle Rock Avenue, Suite 100, East Hanover, New Jersey 07936, USA
- Department of Physical Medicine and Rehabilitation, Rutgers University, New Jersey Medical School, Newark, NJ 07101, USA
| |
Collapse
|
262
|
Effects of supplemental nitrogen application on physiological characteristics, dry matter and nitrogen accumulation of winter rapeseed (Brassica napus L.) under waterlogging stress. Sci Rep 2020; 10:10201. [PMID: 32576948 PMCID: PMC7311487 DOI: 10.1038/s41598-020-67260-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
Waterlogging stress is a common limiting factor for winter rapeseed, which greatly affects the growth and potential production. The present study was conducted to investigate the effects of waterlogging with different durations (0day (D0), 6days (D6) and 9days (D9)) and supplemental nitrogen fertilization (N1, 0 kg ha-1; N2, 30 kg ha-1; N3, 60 kg ha-1 and N4, 90 kg ha-1) on the physiological characteristics, dry matter and nitrogen accumulation in winter rapeseed (Chuanyou36). The results showed that the supplementary application of nitrogen fertilizer could effectively improve the physiological indexes of winter rapeseed in both pot and field experiments. The supplemental nitrogen increased the chlorophyll content in leaves, enhanced the activities of SOD, CAT, and POD, and decreased the MDA content in leaves and roots of rapeseed. The chlorophyll contents, the antioxidant enzyme activity of leaves and roots significantly increased under D6N3 and D9N4 conditions in both (pot and field) experiments. However, MDA contents significantly decreased compared with waterlogging without nitrogen application. Moreover, the application of nitrogen fertilizer after waterlogging increased the accumulation of dry matter and nitrogen in rapeseed at different growth stages. Therefore, waterlogging stress significantly inhibited the growth and development of rapeseed, but the application of nitrogen fertilizer could effectively reduce the damage of waterlogging. The N-induced increase in waterlogging tolerance of rapeseed might be attributed to the strong antioxidant defense system, maintenance of photosynthetic pigments and the nutrient balance.
Collapse
|
263
|
Zeng W, Qiao X, Li Q, Liu C, Wu J, Yin H, Zhang S. Genome-wide identification and comparative analysis of the ADH gene family in Chinese white pear (Pyrus bretschneideri) and other Rosaceae species. Genomics 2020; 112:3484-3496. [PMID: 32585175 DOI: 10.1016/j.ygeno.2020.06.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/27/2020] [Accepted: 06/19/2020] [Indexed: 01/26/2023]
Abstract
Alcohol dehydrogenase (ADH) is essential to the formation of aromatic compounds in fruits. However, the evolutionary history and characteristics of ADH gene expression remain largely unclear in Rosaceae fruit species. In this study, 464 ADH genes were identified in eight Rosaceae fruit species, 68 of the genes were from pear and which were classified into four subgroups. Frequent single gene duplication events were found to have contributed to the formation of ADH gene clusters and the expansion of the ADH gene family in these eight Rosaceae species. Purifying selection was the major force in ADH gene evolution. The younger genes derived from tandem and proximal duplications had evolved faster than those derived from other types of duplication. RNA-Seq and qRT-PCR analysis revealed that the expression levels of three ADH genes were closely correlated with the content of aromatic compounds detected during fruit development.
Collapse
Affiliation(s)
- Weiwei Zeng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Qiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Qionghou Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chunxin Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jun Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China.
| | - Hao Yin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
264
|
Loreti E, Perata P. The Many Facets of Hypoxia in Plants. PLANTS 2020; 9:plants9060745. [PMID: 32545707 PMCID: PMC7356549 DOI: 10.3390/plants9060745] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
Plants are aerobic organisms that require oxygen for their respiration. Hypoxia arises due to the insufficient availability of oxygen, and is sensed by plants, which adapt their growth and metabolism accordingly. Plant hypoxia can occur as a result of excessive rain and soil waterlogging, thus constraining plant growth. Increasing research on hypoxia has led to the discovery of the mechanisms that enable rice to be productive even when partly submerged. The identification of Ethylene Response Factors (ERFs) as the transcription factors that enable rice to survive submergence has paved the way to the discovery of oxygen sensing in plants. This, in turn has extended the study of hypoxia to plant development and plant–microbe interaction. In this review, we highlight the many facets of plant hypoxia, encompassing stress physiology, developmental biology and plant pathology.
Collapse
Affiliation(s)
- Elena Loreti
- Institute of Agricultural Biology and Biotechnology, CNR, National Research Council, Via Moruzzi, 56124 Pisa, Italy
- Correspondence: (E.L.); (P.P.)
| | - Pierdomenico Perata
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Via Giudiccioni 10, 56010 San Giuliano Terme, 56124 Pisa, Italy
- Correspondence: (E.L.); (P.P.)
| |
Collapse
|
265
|
Di Bella CE, Kotula L, Striker GG, Colmer TD. Submergence tolerance and recovery in Lotus: Variation among fifteen accessions in response to partial and complete submergence. JOURNAL OF PLANT PHYSIOLOGY 2020; 249:153180. [PMID: 32422486 DOI: 10.1016/j.jplph.2020.153180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/11/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
Several Lotus species are perennial forage legumes which tolerate waterlogging, but knowledge of responses to partial or complete shoot submergence is scant. We evaluated the responses of 15 Lotus accessions to partial and complete shoot submergence and variations in traits associated with tolerance and recovery after de-submergence. Accessions of Lotus tenuis, L. corniculatus, L. pedunculatus and L. japonicus were raised for 43 d and then subjected to aerated root zone (control), deoxygenated stagnant root zone with shoots in air (stagnant), stagnant root zone with partial (75 %) and complete submergence of shoots, for 7 d. The recovery ability from complete submergence was also assessed. We found inter- and intra-specific variations in the stem extension responses (i.e. promoted or restricted compared to controls) depending on water depth. Eight of 15 accessions promoted the stem extension when in partial submergence, while three of those eight (all L. tenuis accessions) had a restricted stem extension when under complete submergence. Two accessions (belonging to L. corniculatus and L. penduculatus species) also promoted the stem extension under complete submergence. The accessions that attained better recovery in terms of leaves produced after de-submergence, were those that had high leaf and root sugar concentration at de-submergence, and high thickness and persistence of gas films on leaves during submergence (all L. tenuis accessions). We conclude that all Lotus accessions were able to tolerate 7 d of partial and complete shoot submergence, despite adopting different stem extension responses.
Collapse
Affiliation(s)
- Carla E Di Bella
- IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina.
| | - Lukasz Kotula
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley WA 6009, Australia; ARC Industrial Transformation Research Hub on Legumes for Sustainable Agriculture, Faculty of Science, The University of Western Australia, Crawley WA 6009, Australia
| | - Gustavo G Striker
- IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina; UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley WA 6009, Australia
| | - Timothy D Colmer
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley WA 6009, Australia; ARC Industrial Transformation Research Hub on Legumes for Sustainable Agriculture, Faculty of Science, The University of Western Australia, Crawley WA 6009, Australia
| |
Collapse
|
266
|
Cao X, Wu L, Wu M, Zhu C, Jin Q, Zhang J. Abscisic acid mediated proline biosynthesis and antioxidant ability in roots of two different rice genotypes under hypoxic stress. BMC PLANT BIOLOGY 2020; 20:198. [PMID: 32384870 PMCID: PMC7206686 DOI: 10.1186/s12870-020-02414-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/29/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Abscisic acid (ABA) and proline play important roles in rice acclimation to different stress conditions. To study whether cross-talk exists between ABA and proline, their roles in rice acclimation to hypoxia, rice growth, root oxidative damage and endogenous ABA and proline accumulation were investigated in two different rice genotypes ('Nipponbare' (Nip) and 'Upland 502' (U502)). RESULTS Compared with U502 seedlings, Nip seedlings were highly tolerant to hypoxic stress, with increased plant biomass and leaf photosynthesis and decreased root oxidative damage. Hypoxia significantly stimulated the accumulation of proline and ABA in the roots of both cultivars, with a higher ABA level observed in Nip than in U502, whereas the proline levels showed no significant difference in the two cultivars. The time course variation showed that the root ABA and proline contents under hypoxia increased 1.5- and 1.2-fold in Nip, and 2.2- and 0.7-fold in U502, respectively, within the 1 d of hypoxic stress, but peak ABA production (1 d) occurred before proline accumulation (5 d) in both cultivars. Treatment with an ABA synthesis inhibitor (norflurazon, Norf) inhibited proline synthesis and simultaneously aggravated hypoxia-induced oxidative damage in the roots of both cultivars, but these effects were reversed by exogenous ABA application. Hypoxia plus Norf treatment also induced an increase in glutamate (the main precursor of proline). This indicates that proline accumulation is regulated by ABA-dependent signals under hypoxic stress. Moreover, genes involved in proline metabolism were differentially expressed between the two genotypes, with expression mediated by ABA under hypoxic stress. In Nip, hypoxia-induced proline accumulation in roots was attributed to the upregulation of OsP5CS2 and downregulation of OsProDH, whereas upregulation of OsP5CS1 combined with downregulation of OsProDH enhanced the proline level in U502. CONCLUSION These results suggest that the high tolerance of the Nip cultivar is related to the high ABA level and ABA-mediated antioxidant capacity in roots. ABA acts upstream of proline accumulation by regulating the expression of genes encoding the key enzymes in proline biosynthesis, which also partly improves rice acclimation to hypoxic stress. However, other signaling pathways enhancing tolerance to hypoxia in the Nip cultivar still need to be elucidated.
Collapse
Affiliation(s)
- Xiaochuang Cao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, No. 359 Tiyuchang Road, Hangzhou, 310006 People’s Republic of China
| | - Longlong Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, No. 359 Tiyuchang Road, Hangzhou, 310006 People’s Republic of China
| | - Meiyan Wu
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434025 Hubei China
| | - Chunquan Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, No. 359 Tiyuchang Road, Hangzhou, 310006 People’s Republic of China
| | - Qianyu Jin
- State Key Laboratory of Rice Biology, China National Rice Research Institute, No. 359 Tiyuchang Road, Hangzhou, 310006 People’s Republic of China
| | - Junhua Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, No. 359 Tiyuchang Road, Hangzhou, 310006 People’s Republic of China
| |
Collapse
|
267
|
Nakamura M, Noguchi K. Tolerant mechanisms to O 2 deficiency under submergence conditions in plants. JOURNAL OF PLANT RESEARCH 2020; 133:343-371. [PMID: 32185673 PMCID: PMC7214491 DOI: 10.1007/s10265-020-01176-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/06/2020] [Indexed: 05/02/2023]
Abstract
Wetland plants can tolerate long-term strict hypoxia and anoxic conditions and the subsequent re-oxidative stress compared to terrestrial plants. During O2 deficiency, both wetland and terrestrial plants use NAD(P)+ and ATP that are produced during ethanol fermentation, sucrose degradation, and major amino acid metabolisms. The oxidation of NADH by non-phosphorylating pathways in the mitochondrial respiratory chain is common in both terrestrial and wetland plants. As the wetland plants enhance and combine these traits especially in their roots, they can survive under long-term hypoxic and anoxic stresses. Wetland plants show two contrasting strategies, low O2 escape and low O2 quiescence strategies (LOES and LOQS, respectively). Differences between two strategies are ascribed to the different signaling networks related to phytohormones. During O2 deficiency, LOES-type plants show several unique traits such as shoot elongation, aerenchyma formation and leaf acclimation, whereas the LOQS-type plants cease their growth and save carbohydrate reserves. Many wetland plants utilize NH4+ as the nitrogen (N) source without NH4+-dependent respiratory increase, leading to efficient respiratory O2 consumption in roots. In contrast, some wetland plants with high O2 supply system efficiently use NO3- from the soil where nitrification occurs. The differences in the N utilization strategies relate to the different systems of anaerobic ATP production, the NO2--driven ATP production and fermentation. The different N utilization strategies are functionally related to the hypoxia or anoxia tolerance in the wetland plants.
Collapse
Affiliation(s)
- Motoka Nakamura
- Department of Bio-Production, Faculty of Bio-Industry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido, 099-2493, Japan.
| | - Ko Noguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
268
|
Buraschi FB, Mollard FP, Grimoldi AA, Striker GG. Eco-Physiological Traits Related to Recovery from Complete Submergence in the Model Legume Lotus japonicus. PLANTS (BASEL, SWITZERLAND) 2020; 9:E538. [PMID: 32326202 PMCID: PMC7238009 DOI: 10.3390/plants9040538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 01/22/2023]
Abstract
Submergence is a severe form of stress for most plants. Lotus japonicus is a model legume with potential use in assisting breeding programs of closely related forage Lotus species. Twelve L. japonicus genotypes (10 recombinant inbred lines (RILs) and 2 parental accessions) with different constitutive shoot to root dry mass ratios (S:R) were subjected to 7 days of submergence in clear water and allowed to recover for two weeks post-submergence; a set of non-submerged plants served as controls. Relative growth rate (RGR) was used to indicate the recovery ability of the plants. Leaf relative water content (RWC), stomatal conductance (gs), greenness of basal and apical leaves, and chlorophyll fluorescence (Fv/Fm, as a measure of photoinhibition) were monitored during recovery, and relationships among these variables and RGR were explored across genotypes. The main results showed (i) variation in recovery ability (RGR) from short-term complete submergence among genotypes, (ii) a trade-off between growth during vs. after the stress indicated by a negative correlation between RGR during submergence and RGR post-submergence, (iii) an inverse relationship between RGR during recovery and S:R upon de-submergence, (iv) positive relationships between RGR at early recovery and RWC and gs, which were negatively related to S:R, suggesting this parameter as a good estimator of plant water balance post-submergence, (v) chlorophyll retention allowed fast recovery as revealed by the positive relationship between greenness of basal and apical leaves and RGR during the first recovery week, and (vi) full repair of the submergence-damaged photosynthetic apparatus occurred more slowly (second recovery week) than full recovery of plant water relations. The inclusion of these traits contributing to submergence recovery in L. japonicus should be considered to speed up the breeding process of the closely related forage Lotus spp. used in current agriculture.
Collapse
Affiliation(s)
- Florencia B. Buraschi
- IFEVA, CONICET, Cátedra de Fisiología Vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina; (F.B.B.); (F.P.O.M.)
| | - Federico P.O. Mollard
- IFEVA, CONICET, Cátedra de Fisiología Vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina; (F.B.B.); (F.P.O.M.)
| | - Agustín A. Grimoldi
- IFEVA, CONICET, Cátedra de Forrajicultura, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina;
| | - Gustavo G. Striker
- IFEVA, CONICET, Cátedra de Fisiología Vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina; (F.B.B.); (F.P.O.M.)
- UWA, School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| |
Collapse
|
269
|
Colmer TD, Winkel A, Kotula L, Armstrong W, Revsbech NP, Pedersen O. Root O 2 consumption, CO 2 production and tissue concentration profiles in chickpea, as influenced by environmental hypoxia. THE NEW PHYTOLOGIST 2020; 226:373-384. [PMID: 31838743 DOI: 10.1111/nph.16368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Roots in flooded soils experience hypoxia, with the least O2 in the vascular cylinder. Gradients in CO2 across roots had not previously been measured. The respiratory quotient (RQ; CO2 produced : O2 consumed) is expected to increase as O2 availability declines. A new CO2 microsensor and an O2 microsensor were used to measure profiles across roots of chickpea seedlings in aerated or hypoxic conditions. Simultaneous, nondestructive flux measurements of O2 consumption, CO2 production, and thus RQ, were taken for roots with declining O2 . Radial profiling revealed severe hypoxia and c. 0.8 kPa CO2 within the root vascular cylinder. The distance penetrated by O2 into the roots was shorter at lower O2 . The gradient in CO2 was in the opposite direction to that of O2 , across the roots and diffusive boundary layer. RQ increased as external O2 was lowered. For chickpea roots in solution at air equilibrium, O2 was very low and CO2 was elevated within the vascular cylinder; the extent of the severely hypoxic core increased as external O2 was reduced. The increased RQ in roots in response to declining external O2 highlighted the shift from respiration to ethanolic fermentation as the severely hypoxic/anoxic core became a progressively greater proportion of the root tissues.
Collapse
Affiliation(s)
- Timothy David Colmer
- The UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, 6009, Australia
- ARC Industrial Transformation Research Hub on Legumes for Sustainable Agriculture, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Anders Winkel
- Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, 3rd floor, 2100, Copenhagen, Denmark
| | - Lukasz Kotula
- The UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, 6009, Australia
- ARC Industrial Transformation Research Hub on Legumes for Sustainable Agriculture, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - William Armstrong
- The UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, 6009, Australia
- Department of Biological Sciences, University of Hull, Kingston upon Hull, Yorkshire, HU6 7RX, UK
| | - Niels Peter Revsbech
- Department of Bioscience, Aarhus University Centre for Water Technology, Ny Munkegade 114-116, 8000, Aarhus C, Denmark
| | - Ole Pedersen
- The UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, 6009, Australia
- Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, 3rd floor, 2100, Copenhagen, Denmark
| |
Collapse
|
270
|
Wang P, Yamaji N, Inoue K, Mochida K, Ma JF. Plastic transport systems of rice for mineral elements in response to diverse soil environmental changes. THE NEW PHYTOLOGIST 2020; 226:156-169. [PMID: 31758804 DOI: 10.1111/nph.16335] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Climate change will increase frequency of drought and flooding, which threaten global crop productivity and food security. Rice (Oryza sativa) is unique in that it is able to grow in both flooded and upland conditions, which have large differences in the concentrations and chemical forms of mineral elements available to plants. To comprehensively understand the mechanisms of rice for coping with different water status, we performed ionomics and transcriptomics analysis of the roots, nodes and leaves of rice grown in flooded and upland conditions. Focusing the analysis on genes encoding proteins involved in transport functions for mineral elements, it was found that, although rice plants maintained similar levels of each element in the shoots for optimal growth, different transporters for mineral elements were utilised for nitrogen, iron, copper and zinc to deal with different soil water conditions. For example, under flooded conditions, rice roots take up nitrogen using transporters for both ammonium (OsAMT1/2) and nitrate (OsNPF2.4, OsNRT1.1A and OsNRT2.3), whereas under upland conditions, nitrogen uptake is mediated by different nitrate transporters (OsNRT1.1B and OsNRT1.5A). This study shows that rice possesses plastic transport systems for mineral elements in response to different water conditions (upland and flooding).
Collapse
Affiliation(s)
- Peitong Wang
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Komaki Inoue
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Keiich Mochida
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| |
Collapse
|
271
|
Male and Female Plants of Salix viminalis Perform Similarly to Flooding in Morphology, Anatomy, and Physiology. FORESTS 2020. [DOI: 10.3390/f11030321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Salix viminalis L., a dioecious species, is widely distributed in riparian zones, and flooding is one of the most common abiotic stresses that this species suffers. In this study, we investigated the morphological, anatomical, and physiological responses of male vs. female plants of S. viminalis to flooding. The results showed that the plant height and root collar diameter were stimulated by flooding treatment, which corresponded with higher dry weight of the stem and leaf. However, the dry weight of the underground part decreased, which might be due to the primary root having stopped growing. The little-influenced net photosynthesis rate (Pn) under flooding treatment could guarantee rapid growth of the aboveground part, while the unaffected leaf anatomical structure and photosynthetic pigment contents could ensure the normal operation of photosynthetic apparatus. Under a flooding environment, the production ratio of superoxide free radical (O2∙-) and malondialdehyde (MDA) contents increased, indicating that the cell membrane was damaged and oxidative stress was induced. At the same time, the antioxidant enzyme system, including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), and osmotic adjustment substances, involving proline (Pro) and solute protein (SP), began to play a positive role in resisting flooding stress. Different from our expectation, the male and female plants of S. viminalis performed similarly under flooding, and no significant differences were discovered. The results indicate that both male and female plants of S. viminalis are tolerant to flooding. Thus, both male and female plants of S. viminalis could be planted in frequent flooding zones.
Collapse
|
272
|
Hwang JH, Yu SI, Lee BH, Lee DH. Modulation of Energy Metabolism Is Important for Low-Oxygen Stress Adaptation in Brassicaceae Species. Int J Mol Sci 2020; 21:E1787. [PMID: 32150906 PMCID: PMC7084654 DOI: 10.3390/ijms21051787] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 01/16/2023] Open
Abstract
Low-oxygen stress, mainly caused by soil flooding, is a serious abiotic stress affecting crop productivity worldwide. To understand the mechanisms of low-oxygen stress responses and adaptation of plants, we characterized and compared low-oxygen responses in six species with different accessions of the Brassicaceae family. Based on the growth and survival responses to submergence or low-oxygen condition, these accessions could be divided into three groups: (i) Highly tolerant species (Rorippa islandica and Arabis stelleri); (ii) moderately tolerant species (Arabidopsis thaliana [esk-1, Ler, Ws and Col-0 ecotype]); and (iii) intolerant species (Thlaspi arvense, Thellungiella salsuginea [Shandong and Yukon ecotype], and Thellungiella parvula). Gene expression profiling using Operon Arabidopsis microarray was carried out with RNA from roots of A. thaliana (Col-0), A. stelleri, R. islandica, and T. salsuginea (Shandong) treated with low-oxygen stress (0.1% O2/99.9% N2) for 0, 1, 3, 8, 24, and 72 h. We performed a comparative analysis of the gene expression profiles using the gene set enrichment analysis (GSEA) method. Our comparative analysis suggested that under low-oxygen stress each species distinctively reconfigures the energy metabolic pathways including sucrose-starch metabolism, glycolysis, fermentation and nitrogen metabolism, tricarboxylic acid flow, and fatty acid degradation via beta oxidation and glyoxylate cycle. In A. thaliana, a moderately tolerant species, the dynamical reconfiguration of energy metabolisms occurred in the early time points of low-oxygen treatment, but the energy reconfiguration in the late time points was not as dynamic as in the early time points. Highly tolerant A. stelleri appeared to have high photosynthesis capacity that could produce more O2 and in turn additional ATP energy to cope with energy depletion caused by low-oxygen stress. R. islandica seemed to retain some ATP energy produced by anaerobic energy metabolism during a prolonged period of low-oxygen conditions. Intolerant T. salsuginea did not show significant changes in the expression of genes involved in anaerobic energy metabolisms. These results indicate that plants developed different energy metabolisms to cope with the energy crisis caused by low-oxygen stress.
Collapse
Affiliation(s)
- Ji-Hye Hwang
- Graduate Department of Life and Pharmaceutical Sciences and the Center for Cell Signaling & Drug Discovery Research, Ewha Womans University, Seoul 03760, Korea;
| | - Si-in Yu
- Department of Life Science, Sogang University, Seoul 04107, Korea;
| | - Byeong-ha Lee
- Department of Life Science, Sogang University, Seoul 04107, Korea;
| | - Dong-Hee Lee
- Graduate Department of Life and Pharmaceutical Sciences and the Center for Cell Signaling & Drug Discovery Research, Ewha Womans University, Seoul 03760, Korea;
| |
Collapse
|
273
|
Xiaochuang C, Meiyan W, Chunquan Z, Chu Z, Junhua Z, Lianfeng Z, Lianghuan W, Qianyu J. Glutamate dehydrogenase mediated amino acid metabolism after ammonium uptake enhances rice growth under aeration condition. PLANT CELL REPORTS 2020; 39:363-379. [PMID: 31820143 DOI: 10.1007/s00299-019-02496-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 12/02/2019] [Indexed: 05/24/2023]
Abstract
Aeration stimulates the rice growth and nitrogen (N) metabolism; in which, the glutamate accumulation limited by the glutamate dehydrogenase pathway after ammonia uptake may control root N metabolism during aeration. Increasing rhizosphere oxygen content greatly improves rice growth and biomass. To study the intrinsic mechanism involved in nitrogen (N) metabolism, a hydroponic experiment was conducted by supplying two different oxygen levels to two different rice genotypes. Compared to the hypoxia-resistant cultivar (Nip; japonica rice 'Nipponbare'), the hypoxia-sensitive cultivar (U502; upland rice 'Upland 502') presented with severe oxidative damage under the lack of aeration. However, aeration significantly reduced root oxidative damage by enhancing root antioxidant capacity and leaf photosynthesis especially in U502, and significantly increased nitrate (NO3-) and ammonia (NH4+) uptake and upregulated the expression of the genes controlling these processes. Additional NO3- was mainly incorporated into amino acids in the leaves whereas NH4+ assimilation occurred mostly in the roots. The 15N gas chromatography-mass spectrometry analysis demonstrated that aeration had no influence on the compositions of the individual amino acids derived from 15NO3- in the roots, but increased labeled glutamic acid (Glu), asparagine, γ-aminobutyric acid, and alanine in 15NH4+-treated roots. Aeration inhibited root glutamate synthetase activity but this did not inhibit 15N-Glu production from 15NH4+. In contrast, aeration upregulated isocitrate dehydrogenase and glutamate dehydrogenase. These mechanisms and soluble carbohydrates may constitute an alternative pathway for Glu production in which amino acid metabolism is enhanced after NH4+ uptake during aeration. Therefore, the rice growth-enhancing effect of aeration is closely correlated with root redox equilibrium, N uptake, and amino acid metabolism. Glutamic acid accumulation is limited by the glutamate dehydrogenase pathway after NH4+ uptake and may control root N metabolism during aeration.
Collapse
Affiliation(s)
- Cao Xiaochuang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, No. 359 Tiyuchang Road, Hangzhou, 310006, Zhejiang, People's Republic of China.
| | - Wu Meiyan
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434025, Hubei, People's Republic of China
| | - Zhu Chunquan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, No. 359 Tiyuchang Road, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Zhong Chu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, No. 359 Tiyuchang Road, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Zhang Junhua
- State Key Laboratory of Rice Biology, China National Rice Research Institute, No. 359 Tiyuchang Road, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Zhu Lianfeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, No. 359 Tiyuchang Road, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Wu Lianghuan
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jin Qianyu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, No. 359 Tiyuchang Road, Hangzhou, 310006, Zhejiang, People's Republic of China.
| |
Collapse
|
274
|
Zhou W, Chen F, Meng Y, Chandrasekaran U, Luo X, Yang W, Shu K. Plant waterlogging/flooding stress responses: From seed germination to maturation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:228-236. [PMID: 31981875 DOI: 10.1016/j.plaphy.2020.01.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 05/27/2023]
Abstract
Global climate change is strongly associated with variations in precipitation and flooding events. Flooding usually causes submergence- or partial submergence stress in plants, which significantly has a negative influence on agricultural production, from seed germination to vegetative and reproductive growth. Flooding stress results in crop growth under low oxygen conditions and thus, negatively affects the developmental periods of plant lifecycle. The survival strategies of different plant species under this stressful condition are distinct, whereas the perception pathways associated with flooding stress are similar at the molecular level. Plants respond to flooding stress by mediating changes in their architecture, energy metabolism, photosynthesis, respiration and endogenous phytohormone biosynthesis/signaling, because aerobic respiration is inhibited under flooding stress, the decrease of energy metabolism further constrains plant development. Consequently, to acclimate under these unfavorable conditions, the anaerobic respiration cascade must be promoted. In this updated review, we primarily focus on recent advances in our understanding of the mechanisms underlying plant responses to flooding stress. We summarize the functions of the flooding response factors involved in energy metabolism and phytohormone biosynthesis/signaling cascades. Finally, the current understanding of how plants circumvent flooding stress, and the potential challenges for future research, are discussed.
Collapse
Affiliation(s)
- Wenguan Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China; Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Feng Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China; Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yongjie Meng
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | | | - Xiaofeng Luo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China; Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenyu Yang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai Shu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China.
| |
Collapse
|
275
|
Submergence Tolerance in Rice: Review of Mechanism, Breeding and, Future Prospects. SUSTAINABILITY 2020. [DOI: 10.3390/su12041632] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Flooding or submergence is one of the major environmental stressors affecting many man-made and natural ecosystems worldwide. The increase in the frequency and duration of heavy rainfall due to climate change has negatively affected plant growth and development, which eventually causes the death of plants if it persists for days. Most crops, especially rice, being a semi-aquatic plant, are greatly affected by flooding, leading to yield losses each year. Genetic variability in the plant response to flooding includes the quiescence scheme, which allows underwater endurance of a prolonged period, escape strategy through stem elongation, and alterations in plant architecture and metabolism. Investigating the mechanism for flooding survival in wild species and modern rice has yielded significant insight into developmental, physiological, and molecular strategies for submergence and waterlogging survival. Significant progress in the breeding of submergence tolerant rice varieties has been made during the last decade following the successful identification and mapping of a quantitative trait locus for submergence tolerance, designated as SUBMERGENCE 1 (SUB1) from the FR13A landrace. Using marker-assisted backcrossing, the SUB1 QTL (quantitative trait locus) has been incorporated into many elite varieties within a short time and with high precision as compared with conventional breeding methods. Despite the advancement in submergence tolerance, for future studies, there is a need for practical approaches exploring genome-wide association studies (GWA) and QTL in combination with specific tolerance traits, such as drought, salinity, disease and insect resistance.
Collapse
|
276
|
Pan Y, Cieraad E, Clarkson BR, Colmer TD, Pedersen O, Visser EJW, Voesenek LACJ, Bodegom PM. Drivers of plant traits that allow survival in wetlands. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13541] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yingji Pan
- Institute of Environmental Sciences (CML) Leiden University Leiden The Netherlands
| | - Ellen Cieraad
- Institute of Environmental Sciences (CML) Leiden University Leiden The Netherlands
| | | | - Timothy D. Colmer
- School of Agriculture and Environment The University of Western Australia Perth WA Australia
| | - Ole Pedersen
- School of Agriculture and Environment The University of Western Australia Perth WA Australia
- Freshwater Biological Laboratory University of Copenhagen Copenhagen Denmark
| | - Eric J. W. Visser
- Experimental Plant Ecology Institute for Water and Wetland Research Radboud University Nijmegen The Netherlands
| | | | - Peter M. Bodegom
- Institute of Environmental Sciences (CML) Leiden University Leiden The Netherlands
| |
Collapse
|
277
|
Mira MM, El-Khateeb EA, Gaafar RM, Igamberdiev AU, Hill RD, Stasolla C. Stem cell fate in hypoxic root apical meristems is influenced by phytoglobin expression. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1350-1362. [PMID: 31541257 DOI: 10.1093/jxb/erz410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/12/2019] [Indexed: 05/27/2023]
Abstract
Root survival to flooding-induced hypoxic stress is dependent upon maintaining the functionality of the root apical meristem quiescent center (QC), a process that is governed by the basipetal flow of auxin leading to the formation of an auxin maximum, which is needed for the establishment of a highly oxidized environment specifying the QC niche. Perturbations in auxin flow and distribution along the root profile occurring during hypoxia can shift the redox state of the QC towards a more reduced environment, leading to the activation of the QC, degradation of the meristem, and root abortion. The maize phytoglobin gene ZmPgb1.1 is involved in minimizing these damaging effects during hypoxia in processes that result in sustaining the PIN-mediated auxin maximum and an oxidized environment in the QC. The oxidized environment is accomplished by maintaining the activity of redox enzymes oxidizing ascorbate and glutathione. These events, compromised in QCs suppressing ZmPgb1.1, ensure the functionality of the QC and root meristems under conditions of low oxygen, resulting in stable root performance.
Collapse
Affiliation(s)
- Mohammed M Mira
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Eman A El-Khateeb
- Department of Botany, Faculty of Science, Tanta University, Tanta, Egypt
| | - Reda M Gaafar
- Department of Botany, Faculty of Science, Tanta University, Tanta, Egypt
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
278
|
Xie LJ, Tan WJ, Yang YC, Tan YF, Zhou Y, Zhou DM, Xiao S, Chen QF. Long-Chain acyl-CoA Synthetase LACS2 Contributes to Submergence Tolerance by Modulating Cuticle Permeability in Arabidopsis. PLANTS 2020; 9:plants9020262. [PMID: 32085442 PMCID: PMC7076686 DOI: 10.3390/plants9020262] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/29/2022]
Abstract
In Arabidopsis thaliana, LONG-CHAIN ACYL-COA SYNTHETASEs (LACSs) catalyze the synthesis of long-chain acyl-CoAs and function in diverse biological processes. We have recently revealed that LACS2 is primarily involved in the production of polyunsaturated linolenoyl-CoA, essential for the activation of ethylene response transcription factors-mediated hypoxia signaling. Here, we further reported the dual role of LACS2 in the regulation of submergence tolerance by modulating cuticle permeability in Arabidopsis cells. LACS2-overexpressors (LACS2-OEs) showed improved tolerance to submergence, with higher accumulation of cuticular wax and cutin in their rosettes. In contrast, knockout of LACS2 in the lacs2-3 mutant resulted in hypersensitivity to submergence with reduced wax crystals and thinner cutin layer. By analyses of plant surface permeability, we observed that the hypoxic sensitivities in the LACS2-OEs and lacs2-3 mutant were physiologically correlated with chlorophyll leaching, water loss rates, ionic leakage, and gas exchange. Thus, our findings suggest the role of LACS2 in plant response to submergence by modulating cuticle permeability in plant cells.
Collapse
|
279
|
Wu YS, Yang CY. Comprehensive Transcriptomic Analysis of Auxin Responses in Submerged Rice Coleoptile Growth. Int J Mol Sci 2020; 21:E1292. [PMID: 32075118 PMCID: PMC7072898 DOI: 10.3390/ijms21041292] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 11/16/2022] Open
Abstract
Cultivating rice in wet or water direct seeding systems is simple and time and labor efficient. Rice (Oryza sativa) seeds are a unique cereal that can germinate not only when submerged, but also in anoxic conditions. Many complicated hormone signals interact in submerged seed germination. Ethylene is involved in rice coleoptile elongation, but little is known regarding the role of auxin signaling under submergence. This study demonstrated that the coleoptile is shorter and curlier when submerged with 2,3,5-triiodobenzoic acid (TIBA). In transcriptomic analysis, 3448 of the 31,860 genes were upregulated, and 4360 genes were downregulated with submergence and TIBA treatment. The Gene Ontology function classification results demonstrated that upregulated differentially expressed genes (DEGs) were mainly involved in redox, stress, and signal transduction, whereas the down-regulated DEGs were mainly involved in RNA transcription, stress, and development. Furthermore, auxin signaling involved in the carbohydrate metabolism pathway was demonstrated while using transcriptomic analysis and confirmed in a quantitative real-time polymerase chain reaction. In addition, the transcript levels of development-related genes and mitochondria-electron- transport-related genes were regulated by auxin signaling under submergence. Auxin signaling was not only involved in regulating rice coleoptile elongation and development, but also regulated secondary metabolism, carbohydrate metabolism, and mitochondria electron transport under submergence. Our results presented that auxin signaling plays an important role during rice coleoptile elongation upon the submergence condition and improving the advance of research of direct rice seeding system.
Collapse
Affiliation(s)
- Yu-Sian Wu
- Department of Agronomy, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Chin-Ying Yang
- Department of Agronomy, National Chung Hsing University, Taichung 40227, Taiwan;
- Pervasive AI Research (PAIR) Labs, Hsinchu 30010, Taiwan
| |
Collapse
|
280
|
Fukushima A, Kuroha T, Nagai K, Hattori Y, Kobayashi M, Nishizawa T, Kojima M, Utsumi Y, Oikawa A, Seki M, Sakakibara H, Saito K, Ashikari M, Kusano M. Metabolite and Phytohormone Profiling Illustrates Metabolic Reprogramming as an Escape Strategy of Deepwater Rice during Partially Submerged Stress. Metabolites 2020; 10:metabo10020068. [PMID: 32075002 PMCID: PMC7074043 DOI: 10.3390/metabo10020068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 02/02/2023] Open
Abstract
Rice varieties that can survive under submergence conditions respond to flooding either by enhancing internode elongation or by quiescence of shoot elongation. Despite extensive efforts to identify key metabolites triggered by complete submergence of rice possessing SUBMERGENCE 1 (SUB1) locus, metabolic responses of internode elongation of deepwater rice governed by the SNORKEL 1 and 2 genes remain elusive. This study investigated specific metabolomic responses under partial submergence (PS) to deepwater- (C9285) and non-deepwater rice cultivars (Taichung 65 (T65)). In addition, we examined the response in a near-isogenic line (NIL-12) that has a C9285 genomic fragment on chromosome 12 introgressed into the genetic background of T65. Under short-term submergence (0-24 h), metabolite profiles of C9285, NIL-12, and T65 were compared to extract significantly changed metabolites in deepwater rice under PS conditions. Comprehensive metabolite and phytohormone profiling revealed increases in metabolite levels in the glycolysis pathway in NIL-12 plants. Under long-term submergence (0-288 h), we found decreased amino acid levels. These metabolomic changes were opposite when compared to those in flood-tolerant rice with SUB1 locus. Auxin conjugate levels related to stress response decreased in NIL-12 lines relative to T65. Our analysis helped clarify the complex metabolic reprogramming in deepwater rice as an escape strategy.
Collapse
Affiliation(s)
- Atsushi Fukushima
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; (A.F.); (M.K.); (T.N.); (M.K.); (Y.U.); (A.O.); (M.S.); (H.S.); (K.S.)
| | - Takeshi Kuroha
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan; (T.K.); (K.N.); (Y.H.); (M.A.)
| | - Keisuke Nagai
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan; (T.K.); (K.N.); (Y.H.); (M.A.)
| | - Yoko Hattori
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan; (T.K.); (K.N.); (Y.H.); (M.A.)
| | - Makoto Kobayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; (A.F.); (M.K.); (T.N.); (M.K.); (Y.U.); (A.O.); (M.S.); (H.S.); (K.S.)
| | - Tomoko Nishizawa
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; (A.F.); (M.K.); (T.N.); (M.K.); (Y.U.); (A.O.); (M.S.); (H.S.); (K.S.)
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; (A.F.); (M.K.); (T.N.); (M.K.); (Y.U.); (A.O.); (M.S.); (H.S.); (K.S.)
| | - Yoshinori Utsumi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; (A.F.); (M.K.); (T.N.); (M.K.); (Y.U.); (A.O.); (M.S.); (H.S.); (K.S.)
| | - Akira Oikawa
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; (A.F.); (M.K.); (T.N.); (M.K.); (Y.U.); (A.O.); (M.S.); (H.S.); (K.S.)
- Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata 997-8555, Japan
| | - Motoaki Seki
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; (A.F.); (M.K.); (T.N.); (M.K.); (Y.U.); (A.O.); (M.S.); (H.S.); (K.S.)
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; (A.F.); (M.K.); (T.N.); (M.K.); (Y.U.); (A.O.); (M.S.); (H.S.); (K.S.)
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; (A.F.); (M.K.); (T.N.); (M.K.); (Y.U.); (A.O.); (M.S.); (H.S.); (K.S.)
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 263-8522, Japan
| | - Motoyuki Ashikari
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan; (T.K.); (K.N.); (Y.H.); (M.A.)
| | - Miyako Kusano
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; (A.F.); (M.K.); (T.N.); (M.K.); (Y.U.); (A.O.); (M.S.); (H.S.); (K.S.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Correspondence:
| |
Collapse
|
281
|
Yemelyanov VV, Lastochkin VV, Chirkova TV, Lindberg SM, Shishova MF. Indoleacetic Acid Levels in Wheat and Rice Seedlings under Oxygen Deficiency and Subsequent Reoxygenation. Biomolecules 2020; 10:E276. [PMID: 32054127 PMCID: PMC7072260 DOI: 10.3390/biom10020276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 01/02/2023] Open
Abstract
The lack of oxygen and post-anoxic reactions cause significant alterations of plant growth and metabolism. Plant hormones are active participants in these alterations. This study focuses on auxin-a phytohormone with a wide spectrum of effects on plant growth and stress tolerance. The indoleacetic acid (IAA) content in plants was measured by ELISA. The obtained data revealed anoxia-induced accumulation of IAA in wheat and rice seedlings related to their tolerance of oxygen deprivation. The highest IAA accumulation was detected in rice roots. Subsequent reoxygenation was accompanied with a fast auxin reduction to the control level. A major difference was reported for shoots: wheat seedlings contained less than one-third of normoxic level of auxin during post-anoxia, while IAA level in rice seedlings rapidly recovered to normoxic level. It is likely that the mechanisms of auxin dynamics resulted from oxygen-induced shift in auxin degradation and transport. Exogenous IAA treatment enhanced plant survival under anoxia by decreased electrolyte leakage, production of hydrogen peroxide and lipid peroxidation. The positive effect of external IAA application coincided with improvement of tolerance to oxygen deprivation in the 35S:iaaM × 35S:iaaH lines of transgene tobacco due to its IAA overproduction.
Collapse
Affiliation(s)
- Vladislav V. Yemelyanov
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Universitetskaya em., 7/9, 199034 Saint-Petersburg, Russia
- Department of Plant Physiology and Biochemistry, Saint-Petersburg State University, Universitetskaya em., 7/9, 199034 Saint-Petersburg, Russia
| | - Victor V. Lastochkin
- Department of Plant Physiology and Biochemistry, Saint-Petersburg State University, Universitetskaya em., 7/9, 199034 Saint-Petersburg, Russia
| | - Tamara V. Chirkova
- Department of Plant Physiology and Biochemistry, Saint-Petersburg State University, Universitetskaya em., 7/9, 199034 Saint-Petersburg, Russia
| | - Sylvia M. Lindberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Maria F. Shishova
- Department of Plant Physiology and Biochemistry, Saint-Petersburg State University, Universitetskaya em., 7/9, 199034 Saint-Petersburg, Russia
| |
Collapse
|
282
|
Safavi-Rizi V, Herde M, Stöhr C. RNA-Seq reveals novel genes and pathways associated with hypoxia duration and tolerance in tomato root. Sci Rep 2020; 10:1692. [PMID: 32015352 PMCID: PMC6997459 DOI: 10.1038/s41598-020-57884-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/03/2020] [Indexed: 11/09/2022] Open
Abstract
Due to climate change, economically important crop plants will encounter flooding periods causing hypoxic stress more frequently. This may lead to reduced yields and endanger food security. As roots are the first organ to be affected by hypoxia, the ability to sense and respond to hypoxic stress is crucial. At the molecular level, therefore, fine-tuning the regulation of gene expression in the root is essential for hypoxia tolerance. Using an RNA-Seq approach, we investigated transcriptome modulation in tomato roots of the cultivar 'Moneymaker', in response to short- (6 h) and long-term (48 h) hypoxia. Hypoxia duration appeared to have a significant impact on gene expression such that the roots of five weeks old tomato plants showed a distinct time-dependent transcriptome response. We observed expression changes in 267 and 1421 genes under short- and long-term hypoxia, respectively. Among these, 243 genes experienced changed expression at both time points. We identified tomato genes with a potential role in aerenchyma formation which facilitates oxygen transport and may act as an escape mechanism enabling hypoxia tolerance. Moreover, we identified differentially regulated genes related to carbon and amino acid metabolism and redox homeostasis. Of particular interest were the differentially regulated transcription factors, which act as master regulators of downstream target genes involved in responses to short and/or long-term hypoxia. Our data suggest a temporal metabolic and anatomic adjustment to hypoxia in tomato root which requires further investigation. We propose that the regulated genes identified in this study are good candidates for further studies regarding hypoxia tolerance in tomato or other crops.
Collapse
Affiliation(s)
- Vajiheh Safavi-Rizi
- Department of Plant physiology, Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Soldmannstrasse 15, D-17487, Greifswald, Germany.
| | - Marco Herde
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Herrenhäuser Strasse 2, 30419, Hannover, Germany
| | - Christine Stöhr
- Department of Plant physiology, Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Soldmannstrasse 15, D-17487, Greifswald, Germany
| |
Collapse
|
283
|
Timilsina A, Bizimana F, Pandey B, Yadav RKP, Dong W, Hu C. Nitrous Oxide Emissions from Paddies: Understanding the Role of Rice Plants. PLANTS (BASEL, SWITZERLAND) 2020; 9:E180. [PMID: 32024218 PMCID: PMC7076488 DOI: 10.3390/plants9020180] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/26/2020] [Accepted: 01/29/2020] [Indexed: 11/16/2022]
Abstract
: Paddies are a potential source of anthropogenic nitrous oxide (N2O) emission. In paddies, both the soil and the rice plants emit N2O into the atmosphere. The rice plant in the paddy is considered to act as a channel between the soil and the atmosphere for N2O emission. However, recent studies suggest that plants can also produce N2O, while the mechanism of N2O formation in plants is unknown. Consequently, the rice plant is only regarded as a channel for N2O produced by soil microorganisms. The emission of N2O by aseptically grown plants and the distinct dual isotopocule fingerprint of plant-emitted N2O, as reported by various studies, support the production of N2O in plants. Herein, we propose a potential pathway of N2O formation in the rice plant. In rice plants, N2O might be formed in the mitochondria via the nitrate-nitrite-nitric oxide (NO3-NO2-NO) pathway when the cells experience hypoxic or anoxic stress. The pathway is catalyzed by various enzymes, which have been described. So, N2O emitted from paddies might have two origins, namely soil microorganisms and rice plants. So, regarding rice plants only as a medium to transport the microorganism-produced N2O might be misleading in understanding the role of rice plants in the paddy. As rice cultivation is a major agricultural activity worldwide, not understanding the pathway of N2O formation in rice plants would create more uncertainties in the N2O budget.
Collapse
Affiliation(s)
- Arbindra Timilsina
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China; (F.B.); (W.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Fiston Bizimana
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China; (F.B.); (W.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Bikram Pandey
- University of Chinese Academy of Sciences, Beijing 100049, China;
- Key Laboratory of Mountain Ecological Restoration and Bio-resource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
| | | | - Wenxu Dong
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China; (F.B.); (W.D.)
| | - Chunsheng Hu
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China; (F.B.); (W.D.)
| |
Collapse
|
284
|
Perata P. Ethylene Signaling Controls Fast Oxygen Sensing in Plants. TRENDS IN PLANT SCIENCE 2020; 25:3-6. [PMID: 31734094 DOI: 10.1016/j.tplants.2019.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 05/21/2023]
Abstract
When plants are submerged by water they suffer from hypoxia. Although it has long been known that ethylene accumulates in submerged plants, its role in plant tolerance to hypoxia remained elusive. Recently, Hartman et al. described a mechanism that explains the role of ethylene in oxygen sensing and signaling.
Collapse
Affiliation(s)
- Pierdomenico Perata
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via Giudiccioni 10, San Giuliano Terme, Pisa, Italy.
| |
Collapse
|
285
|
Sun J, Javed Q, Azeem A, Ullah I, Saifullah M, Kama R, Du D. Fluctuated water depth with high nutrient concentrations promote the invasiveness of Wedelia trilobata in Wetland. Ecol Evol 2020; 10:832-842. [PMID: 32015847 PMCID: PMC6988542 DOI: 10.1002/ece3.5941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/21/2019] [Accepted: 11/27/2019] [Indexed: 11/06/2022] Open
Abstract
The distribution of invasive and native species in wetlands is determined by hydrological conditions; whereas conditions such as water depth fluctuations, variations in the nutrient concentrations are expected to affect the growth and physiological traits of plants. For the assessment of such effects, we conduct greenhouse experiment with three factors; 1) water depth of 5 cm and 15 cm (static and fluctuated); 2) three levels of nutrient concentrations (i) full-strength Hoagland solution (N1), (ii) ¼-strength Hoagland solution (N2), and (iii) 1/8-strength Hoagland solution (N3); and 3) species, invasive Wedelia trilobata (L.) and its congener, native Wedelia chinensis (Osbeck.) under mono and mixed culture. Water depth of 5 cm combined with any of the nutrient treatments significantly restrained the photosynthesis, intracellular CO2 concentration and leaf chlorophyll of both W. trilobata and W. chinensis. Increase in the water depth to 15 cm with low-nutrient treatment N3 did not sustain the physiological traits of W. chinensis under mono and mixed planting. A great loss was noted in the growth of W. chinensis at 15 cm static and fluctuated water depth with low-nutrient treatment (N3) and under mixed culture. In addition, water depth fluctuations with both low- and high-nutrient treatments significantly affected the root-shoot ratio, relative growth rate, and interspecific interaction among these two species. W. trilobata benefited more from competitive interaction index (CII) under fluctuated water depth at 15 cm with high nutrients, and the value of CII was clearly positive. Therefore, higher competitive ability may contribute to the invasiveness of W. trilobata in wetlands.
Collapse
Affiliation(s)
- Jianfan Sun
- School of the Environment and Safety EngineeringJiangsu UniversityZhenjiangChina
| | - Qaiser Javed
- School of the Environment and Safety EngineeringJiangsu UniversityZhenjiangChina
| | - Ahmad Azeem
- School of the Environment and Safety EngineeringJiangsu UniversityZhenjiangChina
| | - Ikram Ullah
- Key Laboratory of Modern Agricultural Equipment and TechnologyMinistry of EducationInstitute of Agricultural EngineeringJiangsu UniversityZhenjiangChina
| | - Muhammad Saifullah
- School of the Environment and Safety EngineeringJiangsu UniversityZhenjiangChina
| | - Rakhwe Kama
- School of the Environment and Safety EngineeringJiangsu UniversityZhenjiangChina
| | - Daolin Du
- School of the Environment and Safety EngineeringJiangsu UniversityZhenjiangChina
- Key Laboratory of Modern Agricultural Equipment and TechnologyMinistry of EducationInstitute of Agricultural EngineeringJiangsu UniversityZhenjiangChina
| |
Collapse
|
286
|
Berger A, Boscari A, Horta Araújo N, Maucourt M, Hanchi M, Bernillon S, Rolin D, Puppo A, Brouquisse R. Plant Nitrate Reductases Regulate Nitric Oxide Production and Nitrogen-Fixing Metabolism During the Medicago truncatula-Sinorhizobium meliloti Symbiosis. FRONTIERS IN PLANT SCIENCE 2020; 11:1313. [PMID: 33013954 PMCID: PMC7500168 DOI: 10.3389/fpls.2020.01313] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/11/2020] [Indexed: 05/08/2023]
Abstract
Nitrate reductase (NR) is the first enzyme of the nitrogen reduction pathway in plants, leading to the production of ammonia. However, in the nitrogen-fixing symbiosis between legumes and rhizobia, atmospheric nitrogen (N2) is directly reduced to ammonia by the bacterial nitrogenase, which questions the role of NR in symbiosis. Next to that, NR is the best-characterized source of nitric oxide (NO) in plants, and NO is known to be produced during the symbiosis. In the present study, we first surveyed the three NR genes (MtNR1, MtNR2, and MtNR3) present in the Medicago truncatula genome and addressed their expression, activity, and potential involvement in NO production during the symbiosis between M. truncatula and Sinorhizobium meliloti. Our results show that MtNR1 and MtNR2 gene expression and activity are correlated with NO production throughout the symbiotic process and that MtNR1 is particularly involved in NO production in mature nodules. Moreover, NRs are involved together with the mitochondrial electron transfer chain in NO production throughout the symbiotic process and energy regeneration in N2-fixing nodules. Using an in vivo NMR spectrometric approach, we show that, in mature nodules, NRs participate also in the regulation of energy state, cytosolic pH, carbon and nitrogen metabolism under both normoxia and hypoxia. These data point to the importance of NR activity for the N2-fixing symbiosis and provide a first explanation of its role in this process.
Collapse
Affiliation(s)
- Antoine Berger
- Institut Sophia Agrobiotech, UMR INRAE 1355, Université Côte d’Azur, CNRS, Sophia Antipolis, France
- Department of Horticultural Science, University of Florida, Gainesville, FL, United States
| | - Alexandre Boscari
- Institut Sophia Agrobiotech, UMR INRAE 1355, Université Côte d’Azur, CNRS, Sophia Antipolis, France
| | - Natasha Horta Araújo
- Institut Sophia Agrobiotech, UMR INRAE 1355, Université Côte d’Azur, CNRS, Sophia Antipolis, France
| | - Mickaël Maucourt
- Univ. Bordeaux INRAE, UMR Biologie du Fruit et Pathologie, Villenave d’Ornon, France
| | - Mohamed Hanchi
- Institut Sophia Agrobiotech, UMR INRAE 1355, Université Côte d’Azur, CNRS, Sophia Antipolis, France
| | - Stéphane Bernillon
- PMB-Metabolome, INRAE, Bordeaux Metabolome Facility, Villenave d’Ornon, France
| | - Dominique Rolin
- Univ. Bordeaux INRAE, UMR Biologie du Fruit et Pathologie, Villenave d’Ornon, France
- PMB-Metabolome, INRAE, Bordeaux Metabolome Facility, Villenave d’Ornon, France
| | - Alain Puppo
- Institut Sophia Agrobiotech, UMR INRAE 1355, Université Côte d’Azur, CNRS, Sophia Antipolis, France
| | - Renaud Brouquisse
- Institut Sophia Agrobiotech, UMR INRAE 1355, Université Côte d’Azur, CNRS, Sophia Antipolis, France
- *Correspondence: Renaud Brouquisse,
| |
Collapse
|
287
|
Pan J, Sharif R, Xu X, Chen X. Mechanisms of Waterlogging Tolerance in Plants: Research Progress and Prospects. FRONTIERS IN PLANT SCIENCE 2020; 11:627331. [PMID: 33643336 PMCID: PMC7902513 DOI: 10.3389/fpls.2020.627331] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/30/2020] [Indexed: 05/19/2023]
Abstract
Waterlogging is one of the main abiotic stresses suffered by plants. Inhibition of aerobic respiration during waterlogging limits energy metabolism and restricts growth and a wide range of developmental processes, from seed germination to vegetative growth and further reproductive growth. Plants respond to waterlogging stress by regulating their morphological structure, energy metabolism, endogenous hormone biosynthesis, and signaling processes. In this updated review, we systematically summarize the changes in morphological structure, photosynthesis, respiration, reactive oxygen species damage, plant hormone synthesis, and signaling cascades after plants were subjected to waterlogging stress. Finally, we propose future challenges and research directions in this field.
Collapse
Affiliation(s)
- Jiawei Pan
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Rahat Sharif
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xuewen Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Xuehao Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- *Correspondence: Xuehao Chen,
| |
Collapse
|
288
|
Yu F, Liang K, Fang T, Zhao H, Han X, Cai M, Qiu F. A group VII ethylene response factor gene, ZmEREB180, coordinates waterlogging tolerance in maize seedlings. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2286-2298. [PMID: 31033158 PMCID: PMC6835127 DOI: 10.1111/pbi.13140] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/01/2019] [Accepted: 04/25/2019] [Indexed: 05/24/2023]
Abstract
Group VII ethylene response factors (ERFVIIs) play important roles in ethylene signalling and plant responses to flooding. However, natural ERFVII variations in maize (ZmERFVIIs) that are directly associated with waterlogging tolerance have not been reported. Here, a candidate gene association analysis of the ZmERFVII gene family showed that a waterlogging-responsive gene, ZmEREB180, was tightly associated with waterlogging tolerance. ZmEREB180 expression specifically responded to waterlogging and was up-regulated by ethylene; in addition, its gene product localized to the nucleus. Variations in the 5'-untranslated region (5'-UTR) and mRNA abundance of this gene under waterlogging conditions were significantly associated with survival rate (SR). Ectopic expression of ZmEREB180 in Arabidopsis increased the SR after submergence stress, and overexpression of ZmEREB180 in maize also enhanced the SR after long-term waterlogging stress, apparently through enhanced formation of adventitious roots (ARs) and regulation of antioxidant levels. Transcriptomic assays of the transgenic maize line under normal and waterlogged conditions further provided evidence that ZmEREB180 regulated AR development and reactive oxygen species homeostasis. Our study provides direct evidence that a ZmERFVII gene is involved in waterlogging tolerance. These findings could be applied directly to breed waterlogging-tolerant maize cultivars and improve our understanding of waterlogging stress.
Collapse
Affiliation(s)
- Feng Yu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Kun Liang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Tian Fang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Hailiang Zhao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Xuesong Han
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Manjun Cai
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Fazhan Qiu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
289
|
Bäumler J, Riber W, Klecker M, Müller L, Dissmeyer N, Weig AR, Mustroph A. AtERF#111/ABR1 is a transcriptional activator involved in the wounding response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:969-990. [PMID: 31385625 DOI: 10.1111/tpj.14490] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
AtERF#111/ABR1 belongs to the group X of the ERF/AP2 transcription factor family (GXERFs) and is shoot specifically induced under submergence and hypoxia. It was described to be an ABA-response repressor, but our data reveal a completely different function. Surprisingly, AtERF#111 expression is strongly responsive to wounding stress. Expression profiling of ERF#111-overexpressing (OE) plants, which show morphological phenotypes like increased root hair length and number, strengthens the hypothesis of AtERF#111 being involved in the wounding response, thereby acting as a transcriptional activator of gene expression. Consistent with a potential function outside of oxygen signalling, we could not assign AtERF#111 as a target of the PRT6 N-degron pathway, even though it starts with a highly conserved N-terminal Met-Cys (MC) motif. However, the protein is unstable as it is degraded in an ubiquitin-dependent manner. Finally, direct target genes of AtERF#111 were identified by microarray analyses and subsequently confirmed by protoplast transactivation assays. The special roles of diverse members of the plant-specific GXERFs in coordinating stress signalling and wound repair mechanisms have been recently hypothesized, and our data suggest that AtERF#111 is indeed involved in these processes.
Collapse
Affiliation(s)
- Judith Bäumler
- Plant Physiology, University Bayreuth, Universitaetsstr. 30, 95440, Bayreuth, Germany
| | - Willi Riber
- Plant Physiology, University Bayreuth, Universitaetsstr. 30, 95440, Bayreuth, Germany
| | - Maria Klecker
- Plant Physiology, University Bayreuth, Universitaetsstr. 30, 95440, Bayreuth, Germany
- Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
- Science Campus Halle - Plant-Based Bioeconomy, Betty-Heimann-Str. 3, 06120, Halle (Saale), Germany
| | - Leon Müller
- Plant Physiology, University Bayreuth, Universitaetsstr. 30, 95440, Bayreuth, Germany
| | - Nico Dissmeyer
- Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
- Science Campus Halle - Plant-Based Bioeconomy, Betty-Heimann-Str. 3, 06120, Halle (Saale), Germany
| | - Alfons R Weig
- Genomics & Bioinformatics, University Bayreuth, Universitaetsstr. 30, 95440, Bayreuth, Germany
| | - Angelika Mustroph
- Plant Physiology, University Bayreuth, Universitaetsstr. 30, 95440, Bayreuth, Germany
| |
Collapse
|
290
|
Wang J, Sun H, Sheng J, Jin S, Zhou F, Hu Z, Diao Y. Transcriptome, physiological and biochemical analysis of Triarrhena sacchariflora in response to flooding stress. BMC Genet 2019; 20:88. [PMID: 31783726 PMCID: PMC6884903 DOI: 10.1186/s12863-019-0790-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 11/18/2019] [Indexed: 01/17/2023] Open
Abstract
Background In recent decades, the frequency of flooding is increasing with the change of global climate. Flooding has become one of the major abiotic stresses that seriously affect growth and development of plants. Triarrhena sacchariflora Nakai has been considered a promising energy crop for utilization in ethanol production. Flooding stress is among the most severe abiotic stressors in the production of Nakai. However, the physiological and molecular biological mechanisms of Nakai response to flooding is still unclear. In the present study, in order to understand the molecular mechanisms of Nakai in response to flooding stress, the transcriptome, physiological and biochemical were investigated. Results The results demonstrated that significant physiological changes were observed in photosynthetic system, antioxidative enzyme activity, chlorophyll, carotenoid, proline, lipid peroxidation and soluble sugar content under normal and flooding treatments. Such as, the chlorophyll, carotenoid contents and photosynthetic system were significantly decreased. Whereas, the antioxidative enzyme activity, proline, lipid peroxidation and soluble sugar has increased first and then decreased under treatments compared with the normal plants. Additionally, a total of 8832, 6608 and 3649 unigenes were validated to be differentially expressed under different treatments, respectively. Besides, gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of the different expression levels of genes also presented processes, which involved in photosynthesis, sucrose catabolism, glycolysis, stress response and defense, phytohormone biosynthesis and signal transduction. Conclusions The results provide a comprehensive view of the complex molecular events involved in the response to flooding stress of Nakai leaves, which also will promote the research in the development of flood-resistant crops and provide new tools for Nakai breeders.
Collapse
Affiliation(s)
- Jia Wang
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Han Sun
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Jiajin Sheng
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.,College of Life Sciences, Nantong University, Nantong, 226019, People's Republic of China
| | - Surong Jin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Fasong Zhou
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Zhongli Hu
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Ying Diao
- College of Forestry and Life Sciences, Chongqing University of Arts and Sciences, Chongqing, 402160, People's Republic of China.
| |
Collapse
|
291
|
Yang C, Zhang X, Wang T, Hu S, Zhou C, Zhang J, Wang Q. Phenotypic Plasticity in the Structure of Fine Adventitious Metasequoia glyptostroboides Roots Allows Adaptation to Aquatic and Terrestrial Environments. PLANTS (BASEL, SWITZERLAND) 2019; 8:E501. [PMID: 31739463 PMCID: PMC6918158 DOI: 10.3390/plants8110501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 02/04/2023]
Abstract
Metasequoia glyptostroboides (Cupressaceae) is a rare deciduous conifer which grows successfully in both aquatic and terrestrial environments. This tree has a narrow natural distribution in central China but is cultivated worldwide. Using histochemical staining and microscopy (both brightfield and epifluorescent), we investigated whether the phenotypic anatomical and histochemical plasticity in the fine adventitious roots of M. glyptostroboides has promoted the adaptation of this plant to aquatic and terrestrial environments. The fine root development and cortex sloughing of M. glyptostroboides occurs later in aquatic habitats than in terrestrial habitats. Anatomical and histochemical analyses have revealed that the apoplastic barriers in the primary growth of the fine roots consist of the endodermis and exodermis with Casparian bands, suberin lamellae, and secondarily lignified cell walls. There were also lignified phi (Φ) thickenings in the cortex. In both aquatic and terrestrial roots, secondary growth was observed in the vascular cambium, which produced secondary xylem and phloem, as well as in the phellogen, which produced cork. As compared to terrestrial adventitious roots, aquatic adventitious roots had multiple lignified Φ thickenings throughout the cortex, larger air spaces, dilated parenchyma, and dense suberin and lignin depositions in the exodermis. Our results thus indicate that phenotypic plasticity in the anatomical features of the fine adventitious roots, including apoplastic barriers, air spaces, and lignified Φ thickenings, might support the adaptation of M. glyptostroboides to both aquatic and terrestrial environments.
Collapse
Affiliation(s)
- Chaodong Yang
- The College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China; (C.Y.); (X.Z.); (T.W.); (S.H.); (C.Z.); (J.Z.)
| | - Xia Zhang
- The College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China; (C.Y.); (X.Z.); (T.W.); (S.H.); (C.Z.); (J.Z.)
| | - Ting Wang
- The College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China; (C.Y.); (X.Z.); (T.W.); (S.H.); (C.Z.); (J.Z.)
| | - Shuangshuang Hu
- The College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China; (C.Y.); (X.Z.); (T.W.); (S.H.); (C.Z.); (J.Z.)
| | - Cunyu Zhou
- The College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China; (C.Y.); (X.Z.); (T.W.); (S.H.); (C.Z.); (J.Z.)
| | - Jian Zhang
- The College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China; (C.Y.); (X.Z.); (T.W.); (S.H.); (C.Z.); (J.Z.)
| | - Qingfeng Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan 430074, Hubei, China
| |
Collapse
|
292
|
Sano N, Takebayashi Y, To A, Mhiri C, Rajjou LC, Nakagami H, Kanekatsu M. Shotgun Proteomic Analysis Highlights the Roles of Long-Lived mRNAs and De Novo Transcribed mRNAs in Rice Seeds upon Imbibition. PLANT & CELL PHYSIOLOGY 2019; 60:2584-2596. [PMID: 31373371 DOI: 10.1093/pcp/pcz152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 07/27/2019] [Indexed: 05/22/2023]
Abstract
During seed germination, proteins are translated not only from mRNAs newly transcribed upon imbibition but also from long-lived mRNAs that are synthesized during seed maturation and stored in the mature dry seeds. To clarify the distinct roles of proteins translated from long-lived mRNAs and de novo transcribed mRNAs in germinating rice embryos, proteome analysis based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) combining the use of a transcriptional inhibitor was performed. We observed that α-amanitin significantly represses transcription in germinating embryos; nevertheless, the embryos could germinate, albeit slowly. The proteomic analysis revealed that a total of 109 proteins were translated from long-lived mRNAs associated with germination as well as 222 proteins whose expression were dependent on de novo transcription upon imbibition. Transcriptomic datasets available in public databases demonstrated that mRNAs of the 222 proteins notably increased during germination while those of the 109 proteins highly accumulated in dry embryos and constitutively expressed upon imbibition. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that many of the 109 proteins from long-lived mRNAs are implicated in energy production such as glycolysis or annotated as nucleotide binding proteins, while the 222 proteins are involved in pathways such as pyruvate metabolism and TCA cycle following glycolysis, and momilactones biosynthesis. We propose that long-lived mRNAs support initial energy production and activation of translational machinery upon imbibition whereas de novo transcription accelerates the energy production after glycolysis, which enables rice seeds to germinate vigorously.
Collapse
Affiliation(s)
- Naoto Sano
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Universit� Paris-Saclay, Versailles, France
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Alexandra To
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Universit� Paris-Saclay, Versailles, France
| | - Corinne Mhiri
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Universit� Paris-Saclay, Versailles, France
| | - Loï C Rajjou
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Universit� Paris-Saclay, Versailles, France
| | - Hirofumi Nakagami
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, Cologne, Germany
| | - Motoki Kanekatsu
- Department of Plant Production, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| |
Collapse
|
293
|
Mehdi R, Lamm CE, Bodampalli Anjanappa R, Müdsam C, Saeed M, Klima J, Kraner ME, Ludewig F, Knoblauch M, Gruissem W, Sonnewald U, Zierer W. Symplasmic phloem unloading and radial post-phloem transport via vascular rays in tuberous roots of Manihot esculenta. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5559-5573. [PMID: 31232453 PMCID: PMC6812707 DOI: 10.1093/jxb/erz297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/15/2019] [Indexed: 05/04/2023]
Abstract
Cassava (Manihot esculenta) is one of the most important staple food crops worldwide. Its starchy tuberous roots supply over 800 million people with carbohydrates. Yet, surprisingly little is known about the processes involved in filling of those vital storage organs. A better understanding of cassava carbohydrate allocation and starch storage is key to improving storage root yield. Here, we studied cassava morphology and phloem sap flow from source to sink using transgenic pAtSUC2::GFP plants, the phloem tracers esculin and 5(6)-carboxyfluorescein diacetate, as well as several staining techniques. We show that cassava performs apoplasmic phloem loading in source leaves and symplasmic unloading into phloem parenchyma cells of tuberous roots. We demonstrate that vascular rays play an important role in radial transport from the phloem to xylem parenchyma cells in tuberous roots. Furthermore, enzymatic and proteomic measurements of storage root tissues confirmed high abundance and activity of enzymes involved in the sucrose synthase-mediated pathway and indicated that starch is stored most efficiently in the outer xylem layers of tuberous roots. Our findings form the basis for biotechnological approaches aimed at improved phloem loading and enhanced carbohydrate allocation and storage in order to increase tuberous root yield of cassava.
Collapse
Affiliation(s)
- Rabih Mehdi
- Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Christian E Lamm
- Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | | | - Christina Müdsam
- Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Muhammad Saeed
- Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Janine Klima
- Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Max E Kraner
- Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Frank Ludewig
- Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Michael Knoblauch
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Wilhelm Gruissem
- Plant Biotechnology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung City, Taiwan
| | - Uwe Sonnewald
- Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Wolfgang Zierer
- Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
294
|
Soil Organic Carbon Shapes AMF Communities in Soils and Roots of Cynodon dactylon under Anti-Seasonal Drying-Wetting Cycles. DIVERSITY-BASEL 2019. [DOI: 10.3390/d11100197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Anti-seasonal drying-wetting cycles since 2010 have substantially altered its soil and vegetation status in the drawdown zone of China’s Three Gorges Reservoir (TGR). Such alternations may thus affect the composition and functioning of soil microbial communities, including the beneficial arbuscular mycorrhizal fungi (AMF), which enhance plant performance. Moreover, limited information is available if AMF communities are different in soils and roots, particularly under contrasting land-use changes. By combining the Illumina Miseq sequencing with bioinformatics analyses, AMF communities in both rhizosphere soils and roots of a stoloniferous and rhizomatous C4 perennial of Cynodon dactylon were characterized under three land-use types: (1) crop cultivated, (2) non-cultivated non-disturbed, and (3) disturbed non-cultivated land. A total of 35 and 26 AMF taxa were respectively detected from C. dactylon rhizosphere soils and roots from these three land-use types, which had endured four anti-seasonal drying/summer-wetting/winter cycles. Contrasting differentiations in the AMF community composition and structure were displayed in the C. dactylon rhizosphere soils and roots, and between land-use types. Nonmetric multidimensional scaling analyses revealed that AMF communities significantly correlated to soil organic carbon in the rhizosphere soils and roots of C. dactylon, to land-use types only in rhizosphere soils, whereas to soil moisture only in roots. Our results highlight the effects of soil nutrients and land-use changes on AMF community composition and diversity under the canopy of C. dactylon in TGR. The identified dominant AMF taxa can be employed to vegetation restoration in such degraded habitats globally.
Collapse
|
295
|
Khan MA, Khan AL, Imran QM, Asaf S, Lee SU, Yun BW, Hamayun M, Kim TH, Lee IJ. Exogenous application of nitric oxide donors regulates short-term flooding stress in soybean. PeerJ 2019; 7:e7741. [PMID: 31608169 PMCID: PMC6788439 DOI: 10.7717/peerj.7741] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 08/25/2019] [Indexed: 12/20/2022] Open
Abstract
Short-term water submergence to soybean (Glycine max L.) create hypoxic conditions hindering plant growth and productivity. Nitric oxide (NO) is considered a stress-signalling and stress-evading molecule, however, little is known about its role during flooding stress. We elucidated the role of sodium nitroprusside (SNP) and S-nitroso L-cysteine (CySNO) as NO donor in modulation of flooding stress-related bio-chemicals and genetic determinants of associated nitrosative stress to Daewon and Pungsannamul soybean cultivars after 3 h and 6 h of flooding stress. The results showed that exogenous SNP and CysNO induced glutathione activity and reduced the resulting superoxide anion contents during short-term flooding in Pungsannamul soybean. The exo- SNP and CysNO triggered the endogenous S-nitrosothiols, and resulted in elevated abscisic acid (ABA) contents in both soybean cultivars overtime. To know the role of ABA and NO related genes in short-term flooding stress, the mRNA expression of S-nitrosoglutathione reductase (GSNOR1), NO overproducer1 (NOX1) and nitrate reductase (NR), Timing of CAB expression1 (TOC1), and ABA-receptor (ABAR) were assessed. The transcripts accumulation of GSNOR1, NOX1, and NR being responsible for NO homeostasis, were significantly high in response to early or later phases of flooding stress. ABAR and TOC1 showed a decrease in transcript accumulation in both soybean plants treated with exogenous SNP and CySNO. The exo- SNP and CySNO could impinge a variety of biochemical and transcriptional programs that can mitigate the negative effects of short-term flooding stress in soybean.
Collapse
Affiliation(s)
- Muhammad Aaqil Khan
- School of Applied Biosciences, Kyungpook National University, Degue, South Korea
| | - Abdul Latif Khan
- Natural and Medical Sciences Research Center University of Nizwa, Nizwa, Oman
| | - Qari Muhammad Imran
- School of Applied Biosciences, Kyungpook National University, Degue, South Korea
| | - Sajjad Asaf
- Natural and Medical Sciences Research Center University of Nizwa, Nizwa, Oman
| | - Sang-Uk Lee
- School of Applied Biosciences, Kyungpook National University, Degue, South Korea
| | - Byung-Wook Yun
- School of Applied Biosciences, Kyungpook National University, Degue, South Korea
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Tae-Han Kim
- School of Agricultural Civil & Bio-industrial Machinery Engineering, Kyungpook National University, Daegu, South Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Degue, South Korea
| |
Collapse
|
296
|
Sharma JK, Sihmar M, Santal AR, Singh NP. Impact assessment of major abiotic stresses on the proteome profiling of some important crop plants: a current update. Biotechnol Genet Eng Rev 2019; 35:126-160. [PMID: 31478455 DOI: 10.1080/02648725.2019.1657682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abiotic stresses adversely affect the plant's growth and development leading to loss of crop plants and plant products in terms of both the quality and quantity. Two main strategies are adopted by plants to acclimatize to stresses; avoidance and tolerance. These adaptive strategies of plants at the cellular and metabolic level enable them to withstand such detrimental conditions. Acclimatization is associated with intensive changes in the proteome of plants and these changes are directly involved in plants response to stress. Proteome studies can be used to screen for these proteins and their involvement in plants response to various abiotic stresses evaluated. In this review, proteomic studies of different plants species under different abiotic stresses, particularly drought, salinity, heat, cold, and waterlogging, are discussed. From different proteomic studies, the stress response can be determined by an interaction between proteomic and physiological changes which occur in plants during such stress conditions. These identified proteins from different processes under different abiotic stress conditions definitely add to our understanding for exploiting them in various biotechnological applications in crop improvement.
Collapse
Affiliation(s)
| | - Monika Sihmar
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Anita Rani Santal
- Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - N P Singh
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
297
|
Stasolla C, Huang S, Hill RD, Igamberdiev AU. Spatio-temporal expression of phytoglobin: a determining factor in the NO specification of cell fate. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4365-4377. [PMID: 30838401 DOI: 10.1093/jxb/erz084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/11/2019] [Indexed: 05/12/2023]
Abstract
Plant growth and development rely on the orchestration of cell proliferation, differentiation, and ultimately death. After varying rounds of divisions, cells respond to positional cues by acquiring a specific fate and embarking upon distinct developmental pathways which might differ significantly from those of adjacent cells exposed to diverse cues. Differential cell behavior is most apparent in response to stress, when some cells might be more vulnerable than others to the same stress condition. This appears to be the case for stem cells which show abnormal features of differentiation and ultimately signs of deterioration at the onset of specific types of stress such as hypoxia and water deficit. A determining factor influencing cell behavior during growth and development, and cell response during conditions of stress is nitric oxide (NO), the level of which can be regulated by phytoglobins (Pgbs), known scavengers of NO. The modulation of NO by Pgbs can be cell, tissue, and/or organ specific, as revealed by the expression patterns of Pgbs dictated by the presence of distinct cis-regulatory elements in their promoters. This review discusses how the temporal and spatial Pgb expression pattern influences NO-mediated responses and ultimately cell fate acquisition in plant developmental processes.
Collapse
Affiliation(s)
- Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shuanglong Huang
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
298
|
Howell T, Moriconi JI, Zhao X, Hegarty J, Fahima T, Santa-Maria GE, Dubcovsky J. A wheat/rye polymorphism affects seminal root length and yield across different irrigation regimes. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4027-4037. [PMID: 30976805 PMCID: PMC6685657 DOI: 10.1093/jxb/erz169] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/29/2019] [Indexed: 05/23/2023]
Abstract
The introgression of a small segment of wheat (Triticum aestivum L.) chromosome arm 1BS in the distal region of the rye (Secale cereale L.) 1RS.1BL arm translocation in wheat (henceforth 1RSRW) was previously associated with reduced grain yield, carbon isotope discrimination, and stomatal conductance, suggesting reduced access to soil moisture. Here we show that lines with the normal 1RS arm have longer roots than lines with the 1RSRW arm in both field and hydroponic experiments. In the 1RSRW lines, differences in seminal root length were associated with a developmentally regulated arrest of the root apical meristem (RAM). Approximately 10 d after germination, the seminal roots of the 1RSRW plants showed a gradual reduction in elongation rate, and stopped growing a week later. Seventeen days after germination, the roots of the 1RSRW plants showed altered gradients of reactive oxygen species and emergence of lateral roots close to the RAM, suggesting changes in the root meristem. The 1RSRW lines also showed reduced biomass (estimated by the normalized difference vegetation index) and grain yield relative to the 1RS lines, with larger differences under reduced or excessive irrigation than under normal irrigation. These results suggest that this genetic variation could be useful to modulate root architecture.
Collapse
Affiliation(s)
- Tyson Howell
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Jorge I Moriconi
- Instituto Tecnológico Chascomús (IIB-INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de San Martín (UNSAM), Chascomús, Buenos Aires, Argentina
| | - Xueqiang Zhao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Joshua Hegarty
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Tzion Fahima
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Guillermo E Santa-Maria
- Instituto Tecnológico Chascomús (IIB-INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de San Martín (UNSAM), Chascomús, Buenos Aires, Argentina
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD USA
| |
Collapse
|
299
|
Xiang J, Ming J, Yin H, Zhu Y, Li Y, Long L, Ye Z, Wang H, Wang X, Zhang F, Yang Y, Yang C. Anatomy and Histochemistry of the Roots and Shoots in the Aquatic Selenium Hyperaccumulator Cardamine Hupingshanensis (Brassicaceae). Open Life Sci 2019; 14:318-326. [PMID: 33817165 PMCID: PMC7874794 DOI: 10.1515/biol-2019-0035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/25/2019] [Indexed: 11/15/2022] Open
Abstract
The perennial selenium (Se) hyperaccumulator Cardamine hupingshanensis (Brassicaceae) thrives in aquatic and subaquatic Se-rich environments along the Wuling Mountains, China. Using bright-field and epifluorescence microscopy, the present study determined the anatomical structures and histochemical features that allow this species to survive in Se-rich aquatic environments. The roots of C. hupingshanensis have an endodermis with Casparian walls, suberin lamellae, and lignified secondary cell walls; the cortex and hypodermal walls have phi (Φ) thickenings; and the mature taproots have a secondary structure with a periderm. The stems possess a lignified sclerenchymal ring and an endodermis, and the pith and cortex walls have polysaccharide-rich collenchyma. Air spaces are present in the intercellular spaces and aerenchyma in the cortex and pith of the roots and shoots. The dense fine roots with lignified Φ thickenings and polysaccharide-rich collenchyma in the shoots may allow C. hupingshanensis to hyperaccumulate Se. Overall, our study elucidated the anatomical features that permit C. hupingshanensis to thrive in Se-rich aquatic environments.
Collapse
Affiliation(s)
- Jiqian Xiang
- Hubei Selenium Industry Technology Research Institute, Enshi 454000 China
| | - Jiajia Ming
- Hubei Selenium Industry Technology Research Institute, Enshi 454000 China
| | - Hongqing Yin
- Hubei Selenium Industry Technology Research Institute, Enshi 454000 China
| | - Yunfen Zhu
- Hubei Selenium Industry Technology Research Institute, Enshi 454000 China
| | - Yajie Li
- Hubei Selenium Industry Technology Research Institute, Enshi 454000 China
| | - Lan Long
- Hubei Selenium Industry Technology Research Institute, Enshi 454000 China
| | - Ziyun Ye
- Hubei Selenium Industry Technology Research Institute, Enshi 454000 China
| | - Haiying Wang
- Hubei Selenium Industry Technology Research Institute, Enshi 454000 China
| | - Xiaoe Wang
- Engineering Research Center of Ecology and Agriculture Use of Wetland, Ministry of Education, Yangtze University, Jingzhou,434025 China
| | - Fan Zhang
- Engineering Research Center of Ecology and Agriculture Use of Wetland, Ministry of Education, Yangtze University, Jingzhou,434025 China
| | - Yongkang Yang
- Hubei Selenium Industry Technology Research Institute, Enshi 454000 China
| | - Chaodong Yang
- Engineering Research Center of Ecology and Agriculture Use of Wetland, Ministry of Education, Yangtze University, Jingzhou,434025 China
| |
Collapse
|
300
|
de Oliveira Xavier R, Leite MB, Dexter K, da Silva Matos DM. Differential effects of soil waterlogging on herbaceous and woody plant communities in a Neotropical savanna. Oecologia 2019; 190:471-483. [PMID: 31129717 DOI: 10.1007/s00442-019-04423-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/22/2019] [Indexed: 11/29/2022]
Abstract
The impacts of soil properties and fire regime on Neotropical savannas are well-known, but the importance of hydrological regime for plant species assembly has received less attention. Here, we assessed changes in diversity patterns of herbaceous and woody communities along a water table gradient in a fire-excluded Neotropical savanna. We found that increased waterlogging of soils was associated with declines in both herbaceous and woody species richness. Woody species richness decreased once the water table depth is less than 4 m and no woody species occurred once water table depth was less than 23 cm. Herbaceous communities remained species rich until the shallowest water table depth, where there is flooding at some point in the year, and even there, over a dozen species occurred. Woody species that occurred in areas with shallower water tables were a nested subset of those in areas with deeper water tables. In contrast, herbaceous communities showed turnover over the hydrological gradient, with distinct species specialized for different water table levels. However, we found that those specialists are restricted to few evolutionary lineages, evidenced by increased phylogenetic clustering over the water table gradient in herbaceous communities. We suggest that evolutionarily conserved hydrological niches define the herbaceous layer over the hydrological gradient, whereas only generalist woody species persist under high water tables. Our findings show that the effect of soil waterlogging differs between the herbaceous and woody layer of savannas, indicating that these communities will respond differently to shifts in the hydrological regime under future environmental change.
Collapse
Affiliation(s)
- Rafael de Oliveira Xavier
- Department of Ecology, Biosciences Institute, University of São Paulo, Rua do matão 123, São Paulo, SP, 05508-090, Brazil. .,School of Geosciences, The University of Edinburgh, Edinburgh, EH9 3JN, UK.
| | - Marcelo Boccia Leite
- Ecology and Conservation Lab, Department of Hydrobiology, Federal University of São Carlos, Washington Luís highway, km 235, São Carlos, SP, 13565-905, Brazil
| | - Kyle Dexter
- School of Geosciences, The University of Edinburgh, Edinburgh, EH9 3JN, UK.,Royal Botanic Garden Edinburgh, 20a Inverleith Row, Edinburgh, EH3 5LR, UK
| | - Dalva Maria da Silva Matos
- Ecology and Conservation Lab, Department of Hydrobiology, Federal University of São Carlos, Washington Luís highway, km 235, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|