251
|
Los FCO, Randis TM, Aroian RV, Ratner AJ. Role of pore-forming toxins in bacterial infectious diseases. Microbiol Mol Biol Rev 2013; 77:173-207. [PMID: 23699254 PMCID: PMC3668673 DOI: 10.1128/mmbr.00052-12] [Citation(s) in RCA: 308] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pore-forming toxins (PFTs) are the most common bacterial cytotoxic proteins and are required for virulence in a large number of important pathogens, including Streptococcus pneumoniae, group A and B streptococci, Staphylococcus aureus, Escherichia coli, and Mycobacterium tuberculosis. PFTs generally disrupt host cell membranes, but they can have additional effects independent of pore formation. Substantial effort has been devoted to understanding the molecular mechanisms underlying the functions of certain model PFTs. Likewise, specific host pathways mediating survival and immune responses in the face of toxin-mediated cellular damage have been delineated. However, less is known about the overall functions of PFTs during infection in vivo. This review focuses on common themes in the area of PFT biology, with an emphasis on studies addressing the roles of PFTs in in vivo and ex vivo models of colonization or infection. Common functions of PFTs include disruption of epithelial barrier function and evasion of host immune responses, which contribute to bacterial growth and spreading. The widespread nature of PFTs make this group of toxins an attractive target for the development of new virulence-targeted therapies that may have broad activity against human pathogens.
Collapse
Affiliation(s)
| | - Tara M. Randis
- Department of Pediatrics, Columbia University, New York, New York, USA
| | - Raffi V. Aroian
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
| | - Adam J. Ratner
- Department of Pediatrics, Columbia University, New York, New York, USA
| |
Collapse
|
252
|
Xu J, Tack D, Hughes RA, Ellington AD, Gray JJ. Structure-based non-canonical amino acid design to covalently crosslink an antibody-antigen complex. J Struct Biol 2013; 185:215-22. [PMID: 23680795 DOI: 10.1016/j.jsb.2013.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/04/2013] [Accepted: 05/02/2013] [Indexed: 10/26/2022]
Abstract
Engineering antibodies to utilize non-canonical amino acids (NCAA) should greatly expand the utility of an already important biological reagent. In particular, introducing crosslinking reagents into antibody complementarity determining regions (CDRs) should provide a means to covalently crosslink residues at the antibody-antigen interface. Unfortunately, finding the optimum position for crosslinking two proteins is often a matter of iterative guessing, even when the interface is known in atomic detail. Computer-aided antibody design can potentially greatly restrict the number of variants that must be explored in order to identify successful crosslinking sites. We have therefore used Rosetta to guide the introduction of an oxidizable crosslinking NCAA, l-3,4-dihydroxyphenylalanine (l-DOPA), into the CDRs of the anti-protective antigen scFv antibody M18, and have measured crosslinking to its cognate antigen, domain 4 of the anthrax protective antigen. Computed crosslinking distance, solvent accessibility, and interface energetics were three factors considered that could impact the efficiency of l-DOPA-mediated crosslinking. In the end, 10 variants were synthesized, and crosslinking efficiencies were generally 10% or higher, with the best variant crosslinking to 52% of the available antigen. The results suggest that computational analysis can be used in a pipeline for engineering crosslinking antibodies. The rules learned from l-DOPA crosslinking of antibodies may also be generalizable to the formation of other crosslinked interfaces and complexes.
Collapse
Affiliation(s)
- Jianqing Xu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Drew Tack
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Randall A Hughes
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA; Applied Research Laboratories, The University of Texas at Austin, Austin, TX 78758, USA
| | - Andrew D Ellington
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA; Applied Research Laboratories, The University of Texas at Austin, Austin, TX 78758, USA.
| | - Jeffrey J Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
253
|
Iqbal J, Rajani M, Siddiqui R, Khan NA. Neuropathogenic Escherichia coli K1 does not exhibit proteolytic activities to exert its pathogenicity. J Negat Results Biomed 2013; 12:8. [PMID: 23634997 PMCID: PMC3654900 DOI: 10.1186/1477-5751-12-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/11/2013] [Indexed: 12/03/2022] Open
Abstract
Background Proteases are well-known virulence factors that promote survival, pathogenesis and immune evasion of many pathogens. Several lines of evidence suggest that the blood–brain barrier permeability is a prerequisite in microbial invasion of the central nervous system. Because proteases are frequently associated with vascular permeability by targeting junctional proteins, here it is hypothesized that neuropathogenic Escherichia coli K1 exhibit proteolytic activities to exert its pathogenicity. Methods Zymographic assays were performed using collagen and gelatin as substrates. The lysates of whole E. coli K1 strain E44, or E. coli K-12 strain HB101 were tested for proteolytic activities. The conditioned media were prepared by incubating bacteria in RPMI-1640 in the presence or absence of serum. The cell-free supernatants were collected and tested for proteases in zymography as mentioned above. Additionally, proteolytic degradation of host immune factors was determined by co-incubating conditioned media with albumin/immunoglobulins using protease assays. Results When collagen or gelatin were used as substrates in zymographic assays, neither whole bacteria nor conditioned media exhibited proteolytic activities. The conditioned media of neuropathogenic E. coli K1 strain E44, or E. coli K-12 strain HB101 did not affect degradation of albumin and immunoglobulins using protease assays. Conclusions Neither zymographic assays nor protease assays detected proteolytic activities in either the whole bacteria or conditioned media of E. coli K1 strain E44 and E. coli K-12 strain HB101. These findings suggest that host cell monolayer disruptions and immune evasion strategies are likely independent of proteolytic activities of neuropathogenic E. coli K1.
Collapse
Affiliation(s)
- Junaid Iqbal
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | | | | | | |
Collapse
|
254
|
Diving through Membranes: Molecular Cunning to Enforce the Endosomal Escape of Antibody-Targeted Anti-Tumor Toxins. Antibodies (Basel) 2013. [DOI: 10.3390/antib2020209] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
255
|
He Y, Prieto L, Lazaridis T. Modeling peptide binding to anionic membrane pores. J Comput Chem 2013; 34:1463-75. [PMID: 23580260 DOI: 10.1002/jcc.23282] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/14/2013] [Accepted: 03/04/2013] [Indexed: 02/04/2023]
Abstract
Peptide-induced pore formation in membranes can be dissected into two steps: pore formation and peptide binding to the pore. A computational method is proposed to study the second step in anionic membranes. The electrostatic potential is obtained from numerical solutions to the Poisson-Boltzmann equation and is then used in conjunction with IMM1 (implicit membrane model 1). A double charge layer model is used to incorporate the effects of the membrane dipole potential. Inhomogeneity of the charge density in the pore, characterized by explicit membrane simulations of toroidal pores, is included in the model. This approach was applied to two extensively studied peptides, magainin and melittin. In agreement with previous work, binding to toroidal pores is more favorable than binding to the flat membrane. The dependence of binding energy on anionic content exhibits different patterns for the two peptides, in correlation with the different lipid selectivity that has been observed experimentally.
Collapse
Affiliation(s)
- Yi He
- Department of Chemistry, City College of New York, New York, New York 10031, USA
| | | | | |
Collapse
|
256
|
Mones L, Tang WJ, Florián J. Empirical valence bond simulations of the chemical mechanism of ATP to cAMP conversion by anthrax edema factor. Biochemistry 2013; 52:2672-82. [PMID: 23480863 DOI: 10.1021/bi400088y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The two-metal catalysis by the adenylyl cyclase domain of the anthrax edema factor toxin was simulated using the empirical valence bond (EVB) quantum mechanical/molecular mechanical approach. These calculations considered the energetics of the nucleophile deprotonation and the formation of a new P-O bond in aqueous solution and in the enzyme-substrate complex present in the crystal structure models of the reactant and product states of the reaction. Our calculations support a reaction pathway that involves metal-assisted transfer of a proton from the nucleophile to the bulk aqueous solution followed by subsequent formation of an unstable pentavalent intermediate that decomposes into cAMP and pyrophosphate (PPi). This pathway involves ligand exchange in the first solvation sphere of the catalytic metal. At 12.9 kcal/mol, the barrier for the last step of the reaction, the cleavage of the P-O bond to PPi, corresponds to the highest point on the free energy profile for this reaction pathway. However, this energy is too close to the value of 11.4 kcal/mol calculated for the barrier of the nucleophilic attack step to reach a definitive conclusion about the rate-limiting step. The calculated reaction mechanism is supported by reasonable agreement between the experimental and calculated catalytic rate constant decrease caused by the mutation of the active site lysine 346 to arginine.
Collapse
Affiliation(s)
- Letif Mones
- Department of Chemistry, Loyola University Chicago, Chicago, Illinois 60660, USA
| | | | | |
Collapse
|
257
|
A syringe-like injection mechanism in Photorhabdus luminescens toxins. Nature 2013; 495:520-3. [DOI: 10.1038/nature11987] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 02/05/2013] [Indexed: 01/30/2023]
|
258
|
Cryan LM, Bazinet L, Habeshian KA, Cao S, Clardy J, Christensen KA, Rogers MS. 1,2,3,4,6-Penta-O-galloyl-β-D-glucopyranose inhibits angiogenesis via inhibition of capillary morphogenesis gene 2. J Med Chem 2013; 56:1940-5. [PMID: 23394144 PMCID: PMC3600088 DOI: 10.1021/jm301558t] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Capillary morphogenesis gene 2 (CMG2) is a transmembrane extracellular matrix binding protein that is also an anthrax toxin receptor. We have shown that high-affinity CMG2 binders can inhibit angiogenesis and tumor growth. We recently described a high-throughput FRET assay to identify CMG2 inhibitors. We now report the serendipitous discovery that PGG (1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose) is a CMG2 inhibitor with antiangiogenic activity. PGG is a gallotannin produced by a variety of medicinal plants that exhibits a wide variety of antitumor and other activities. We find that PGG inhibits CMG2 with a submicromolar IC50 and it also inhibits the migration of human dermal microvascular endothelial cells at similar concentrations in vitro. Finally, oral or intraperitoneal administration of PGG inhibits angiogenesis in the mouse corneal micropocket assay in vivo. Together, these results suggest that a portion of the in vivo antitumor activity of PGG may be the result of antiangiogenic activity mediated by inhibition of CMG2.
Collapse
Affiliation(s)
- Lorna M. Cryan
- Vascular Biology Program, Department of Surgery, Children’s Hospital Boston, Harvard Medical School, Boston, MA 02115
| | - Lauren Bazinet
- Vascular Biology Program, Department of Surgery, Children’s Hospital Boston, Harvard Medical School, Boston, MA 02115
| | - Kaiane A. Habeshian
- Vascular Biology Program, Department of Surgery, Children’s Hospital Boston, Harvard Medical School, Boston, MA 02115
| | - Shugeng Cao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| | | | - Michael S. Rogers
- Vascular Biology Program, Department of Surgery, Children’s Hospital Boston, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
259
|
Chichester JA, Manceva SD, Rhee A, Coffin MV, Musiychuk K, Mett V, Shamloul M, Norikane J, Streatfield SJ, Yusibov V. A plant-produced protective antigen vaccine confers protection in rabbits against a lethal aerosolized challenge with Bacillus anthracis Ames spores. Hum Vaccin Immunother 2013; 9:544-52. [PMID: 23324615 PMCID: PMC3891710 DOI: 10.4161/hv.23233] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 11/21/2012] [Indexed: 11/19/2022] Open
Abstract
The potential use of Bacillus anthracis as a bioterrorism weapon threatens the security of populations globally, requiring the immediate availability of safe, efficient and easily delivered anthrax vaccine for mass vaccination. Extensive research efforts have been directed toward the development of recombinant subunit vaccines based on protective antigen (PA), the principal virulence factor of B. anthracis. Among the emerging technologies for the production of these vaccine antigens is our launch vector-based plant transient expression system. Using this system, we have successfully engineered, expressed, purified and characterized full-length PA (pp-PA83) in Nicotiana benthamiana plants using agroinfiltration. This plant-produced antigen elicited high toxin neutralizing antibody titers in mice and rabbits after two vaccine administrations with Alhydrogel. In addition, immunization with this vaccine candidate protected 100% of rabbits from a lethal aerosolized B. anthracis challenge. The vaccine effects were dose-dependent and required the presence of Alhydrogel adjuvant. In addition, the vaccine antigen formulated with Alhydrogel was stable and retained immunogenicity after two-week storage at 4°C, the conditions intended for clinical use. These results support the testing of this vaccine candidate in human volunteers and the utility of our plant expression system for the production of a recombinant anthrax vaccine.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Aerosols
- Aluminum Hydroxide/administration & dosage
- Animals
- Anthrax/immunology
- Anthrax/prevention & control
- Anthrax Vaccines/administration & dosage
- Anthrax Vaccines/immunology
- Antibodies, Bacterial/blood
- Antibodies, Neutralizing/blood
- Antigens, Bacterial/administration & dosage
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Bacterial/isolation & purification
- Bacterial Toxins/administration & dosage
- Bacterial Toxins/genetics
- Bacterial Toxins/immunology
- Bacterial Toxins/isolation & purification
- Disease Models, Animal
- Inhalation Exposure
- Mice, Inbred BALB C
- Plants, Genetically Modified/genetics
- Rabbits
- Survival Analysis
- Nicotiana/genetics
- Treatment Outcome
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
| | | | - Amy Rhee
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Megan V. Coffin
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | | | - Vadim Mett
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Moneim Shamloul
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Joey Norikane
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | | | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| |
Collapse
|
260
|
Ability of ELISA and a toxin neutralization assay to detect changes in immunogenicity of a recombinant Bacillus anthracis protective antigen vaccine upon storage. Biologicals 2013; 41:111-4. [DOI: 10.1016/j.biologicals.2012.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 11/18/2022] Open
|
261
|
Schönichen A, Webb BA, Jacobson MP, Barber DL. Considering protonation as a posttranslational modification regulating protein structure and function. Annu Rev Biophys 2013; 42:289-314. [PMID: 23451893 DOI: 10.1146/annurev-biophys-050511-102349] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Posttranslational modification is an evolutionarily conserved mechanism for regulating protein activity, binding affinity, and stability. Compared with established posttranslational modifications such as phosphorylation or ubiquitination, posttranslational modification by protons within physiological pH ranges is a less recognized mechanism for regulating protein function. By changing the charge of amino acid side chains, posttranslational modification by protons can drive dynamic changes in protein conformation and function. Addition and removal of a proton is rapid and reversible and, in contrast to most other posttranslational modifications, does not require an enzyme. Signaling specificity is achieved by only a minority of sites in proteins titrating within the physiological pH range. Here, we examine the structural mechanisms and functional consequences of proton posttranslational modification of pH-sensing proteins regulating different cellular processes.
Collapse
Affiliation(s)
- André Schönichen
- Department of Cell and Tissue Biology, University of California, San Francisco, USA
| | | | | | | |
Collapse
|
262
|
Phillips DD, Fattah RJ, Crown D, Zhang Y, Liu S, Moayeri M, Fischer ER, Hansen BT, Ghirlando R, Nestorovich EM, Wein AN, Simons L, Leppla SH, Leysath CE. Engineering anthrax toxin variants that exclusively form octamers and their application to targeting tumors. J Biol Chem 2013; 288:9058-65. [PMID: 23393143 DOI: 10.1074/jbc.m113.452110] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anthrax toxin protective antigen (PA) delivers its effector proteins into the host cell cytosol through formation of an oligomeric pore, which can assume heptameric or octameric states. By screening a highly directed library of PA mutants, we identified variants that complement each other to exclusively form octamers. These PA variants were individually nontoxic and demonstrated toxicity only when combined with their complementary partner. We then engineered requirements for activation by matrix metalloproteases and urokinase plasminogen activator into two of these variants. The resulting therapeutic toxin specifically targeted cells expressing both tumor associated proteases and completely stopped tumor growth in mice when used at a dose far below that which caused toxicity. This scheme for obtaining intercomplementing subunits can be employed with other oligomeric proteins and potentially has wide application.
Collapse
Affiliation(s)
- Damilola D Phillips
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
263
|
Studies in mice reveal a role for anthrax toxin receptors in matrix metalloproteinase function and extracellular matrix homeostasis. Toxins (Basel) 2013; 5:315-26. [PMID: 23389402 PMCID: PMC3640537 DOI: 10.3390/toxins5020315] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/31/2013] [Indexed: 02/07/2023] Open
Abstract
The genes encoding Anthrax Toxin Receptors (ANTXRs) were originally identified based on expression in endothelial cells suggesting a role in angiogenesis. The focus of this review is to discuss what has been learned about the physiological roles of these receptors through evaluation of the Antxr knockout mouse phenotypes. Mice mutant in Antxr genes have defects in extracellular matrix homeostasis. We discuss how knowledge of physiological ANTXR function relates to what is already known about anthrax intoxication.
Collapse
|
264
|
Vaccine protection against Bacillus cereus-mediated respiratory anthrax-like disease in mice. Infect Immun 2013; 81:1008-17. [PMID: 23319564 DOI: 10.1128/iai.01346-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus cereus strains harboring a pXO1-like virulence plasmid cause respiratory anthrax-like disease in humans, particularly in welders. We developed mouse models for intraperitoneal as well as aerosol challenge with spores of B. cereus G9241, harboring pBCXO1 and pBC218 virulence plasmids. Compared to wild-type B. cereus G9241, spores with a deletion of the pBCXO1-carried protective antigen gene (pagA1) were severely attenuated, whereas spores with a deletion of the pBC218-carried protective antigen homologue (pagA2) were not. Anthrax vaccine adsorbed (AVA) immunization raised antibodies that bound and neutralized the pagA1-encoded protective antigen (PA1) but not the PA2 orthologue encoded by pagA2. AVA immunization protected mice against a lethal challenge with spores from B. cereus G9241 or B. cereus Elc4, a strain that had been isolated from a fatal case of anthrax-like disease. As the pathogenesis of B. cereus anthrax-like disease in mice is dependent on pagA1 and PA-neutralizing antibodies provide protection, AVA immunization may also protect humans from respiratory anthrax-like death.
Collapse
|
265
|
Abstract
The PC (proprotein convertase) furin cleaves a large variety of proproteins and hence plays a major role in many pathologies. Therefore furin inhibition might be a good strategy for therapeutic intervention, and several furin inhibitors have been generated, although none are entirely furin-specific. To reduce potential side effects caused by cross-reactivity with other proteases, dromedary heavy-chain-derived nanobodies against catalytically active furin were developed as specific furin inhibitors. The nanobodies bound only to furin but not to other PCs. Upon overexpression in cell lines, they inhibited the cleavage of two different furin substrates, TGFβ (transforming growth factor β) and GPC3 (glypican 3). Purified nanobodies could inhibit the cleavage of diphtheria toxin into its enzymatically active A fragment, but did not inhibit cleavage of a small synthetic peptide-based substrate, suggesting a mode-of-action based on steric hindrance. The dissociation constant of purified nanobody 14 is in the nanomolar range. The nanobodies were non-competitive inhibitors with an inhibitory constant in the micromolar range as demonstrated by Dixon plot. Furthermore, anti-furin nanobodies could protect HEK (human embryonic kidney)-293T cells from diphtheria-toxin-induced cytotoxicity as efficiently as the PC inhibitor nona-D-arginine. In conclusion, these antibody-based single-domain nanobodies represent the first generation of highly specific non-competitive furin inhibitors.
Collapse
|
266
|
Montpellier LH, Siemann S. Effect of pH on the catalytic function and zinc content of native and immobilized anthrax lethal factor. FEBS Lett 2013; 587:317-21. [DOI: 10.1016/j.febslet.2012.11.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 11/22/2012] [Accepted: 11/30/2012] [Indexed: 10/27/2022]
|
267
|
Singh NK, Pakkkianathan BC, Kumar M, Daddam JR, Jayavel S, Kannan M, Pillai GG, Krishnan M. Computational studies on molecular interactions of 6-thioguanosine analogs with anthrax toxin receptor 1. Interdiscip Sci 2013; 4:183-9. [PMID: 23292691 DOI: 10.1007/s12539-012-0126-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 01/27/2012] [Accepted: 04/06/2012] [Indexed: 02/06/2023]
Abstract
Dormant endospores of Bacillus anthracis are the causative agent of anthrax, which is an acute disease for both human and animals. Anthrax has been practised as biological weapon because of two attributes: i) short duration of spore germination, and ii) lethal toxaemia of the vegetative stage. Pathogenesis is caused by the activity of edema toxin and lethal toxin. Protective antigen (PA), is an essential component of both complexes, binds to Anthrax Toxin Receptor (ATR) and mediates the lethality in mammals. The combination of vaccine and antibiotics are preferred to be effective treatment for destruction of the vegetative cell wall but could not be a successive destructor for endospores. So the present study is intended to identify the small molecules as a potential inhibitor for ATR1. 3D structure of Anthrax Toxin Receptor 1 (ATR1) was built by using the crystal structure of Anthrax Toxin Receptor 2 (ATR2) from Homo sapiens as template. Molecular docking of 6-thiogunaosine (6-TG) analogs was performed on the ATR1 model and effective inhibitor was selected based on the docking results. The docking results showed that the three residues in the ATR1 binding pocket (Phe162, Asp160, and Phe22) were essential for making hydrogen bond with the 2-(2-bromo-6-chloro-4H-purin-9(5H)-yl)- 5-(hydroxymethyl) tetrahydrofuran-3,4-diol (C(11)H(13)N(3)O(5)). The data presented here strongly indicate that the interactions of these four residues are necessary for a stronger binding of the ATR1 with C(11)H(13)N(3)O(5). Also, the study proposed C(11)H(13)N(3)O(5) as an effective inhibitor by the comparison of docking energy.
Collapse
Affiliation(s)
- Nitin K Singh
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, 620024, India
| | | | | | | | | | | | | | | |
Collapse
|
268
|
Seuring C, Greenwald J, Wasmer C, Wepf R, Saupe SJ, Meier BH, Riek R. The mechanism of toxicity in HET-S/HET-s prion incompatibility. PLoS Biol 2012; 10:e1001451. [PMID: 23300377 PMCID: PMC3531502 DOI: 10.1371/journal.pbio.1001451] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 11/05/2012] [Indexed: 12/20/2022] Open
Abstract
The HET-s protein from the filamentous fungus Podospora anserina is a prion involved in a cell death reaction termed heterokaryon incompatibility. This reaction is observed at the point of contact between two genetically distinct strains when one harbors a HET-s prion (in the form of amyloid aggregates) and the other expresses a soluble HET-S protein (96% identical to HET-s). How the HET-s prion interaction with HET-S brings about cell death remains unknown; however, it was recently shown that this interaction leads to a relocalization of HET-S from the cytoplasm to the cell periphery and that this change is associated with cell death. Here, we present detailed insights into this mechanism in which a non-toxic HET-s prion converts a soluble HET-S protein into an integral membrane protein that destabilizes membranes. We observed liposomal membrane defects of approximately 10 up to 60 nm in size in transmission electron microscopy images of freeze-fractured proteoliposomes that were formed in mixtures of HET-S and HET-s amyloids. In liposome leakage assays, HET-S has an innate ability to associate with and disrupt lipid membranes and that this activity is greatly enhanced when HET-S is exposed to HET-s amyloids. Solid-state nuclear magnetic resonance (NMR) analyses revealed that HET-s induces the prion-forming domain of HET-S to adopt the β-solenoid fold (previously observed in HET-s) and this change disrupts the globular HeLo domain. These data indicate that upon interaction with a HET-s prion, the HET-S HeLo domain partially unfolds, thereby exposing a previously buried ∼34-residue N-terminal transmembrane segment. The liberation of this segment targets HET-S to the membrane where it further oligomerizes, leading to a loss of membrane integrity. HET-S thus appears to display features that are reminiscent of pore-forming toxins.
Collapse
Affiliation(s)
- Carolin Seuring
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Jason Greenwald
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Christian Wasmer
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Roger Wepf
- Electron Microscopy ETH Zurich (EMEZ), Zürich, Switzerland
| | - Sven J. Saupe
- Laboratoire de Génétique Moléculaire des Champignons, Institut de Biochimie et Génétique Cellulaires, UMR-5095 CNRS/Université de Bordeaux 2, Bordeaux, France
| | - Beat H. Meier
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Roland Riek
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
269
|
McCluskey AJ, Olive AJ, Starnbach MN, Collier RJ. Targeting HER2-positive cancer cells with receptor-redirected anthrax protective antigen. Mol Oncol 2012; 7:440-51. [PMID: 23290417 DOI: 10.1016/j.molonc.2012.12.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/29/2012] [Accepted: 12/03/2012] [Indexed: 02/07/2023] Open
Abstract
Targeted therapeutics have emerged in recent years as an attractive approach to treating various types of cancer. One approach is to modify a cytocidal protein toxin to direct its action to a specific population of cancer cells. We created a targeted toxin in which the receptor-binding and pore-forming moiety of anthrax toxin, termed Protective Antigen (PA), was modified to redirect its receptor specificity to HER2, a marker expressed at the surface of a significant fraction of breast and ovarian tumors. The resulting fusion protein (mPA-ZHER2) delivered cytocidal effectors specifically into HER2-positive tumor cells, including a trastuzumab-resistant line, causing death of the cells. No off-target killing of HER2-negative cells was observed, either with homogeneous populations or with mixtures of HER2-positive and HER2-negative cells. A mixture of mPA variants targeting different receptors mediated killing of cells bearing either receptor, without affecting cells devoid of these receptors. Anthrax toxin may serve as an effective platform for developing therapeutics to ablate cells bearing HER2 or other tumor-specific cell-surface markers.
Collapse
Affiliation(s)
- Andrew J McCluskey
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
270
|
Grunow R, Verbeek L, Jacob D, Holzmann T, Birkenfeld G, Wiens D, von Eichel-Streiber L, Grass G, Reischl U. Injection anthrax--a new outbreak in heroin users. DEUTSCHES ARZTEBLATT INTERNATIONAL 2012; 109:843-8. [PMID: 23267409 DOI: 10.3238/arztebl.2012.0843] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/24/2012] [Indexed: 11/27/2022]
Abstract
BACKGROUND Injection anthrax is a rare disease that affects heroin users and is caused by Bacillus anthracis. In 2012, there were four cases in Germany, one of which was fatal, as well as a small number of cases in other European countries, including Denmark, France, and the United Kingdom. Three cases among drug users occurred in Germany in 2009/2010, in the setting of a larger outbreak centered on Scotland, where there were 119 cases. CASE PRESENTATION AND CLINICAL COURSE: We present three cases of injection anthrax, two of which were treated in Regensburg and one in Berlin. One patient died of multi-organ-system failure on the day of admission to the hospital. The others were treated with antibiotics, one of them also with surgical wound debridement. The laboratory diagnosis of injection anthrax is based on the demonstration of the pathogen, generally by culture and/or by polymerase chain reaction, in material removed directly from the patient's wound. The diagnosis is additionally supported by the detection of specific antibodies. CONCLUSION Injection anthrax may be viewed either as an independent disease entity or as a special type of cutaneous anthrax with massive edema, necrotizing fasciitis in many cases, and about 30% mortality. It has appeared in recent years among heroin users in various European countries. In patients with suggestive clinical presentation and a history of heroin use, anthrax infection must be suspected early, so that the appropriate diagnostic tests can be performed without delay. Timely treatment can be life-saving. It is therefore important that physicians--and the individuals at risk--should be well-informed about this disease.
Collapse
|
271
|
Reiner JE, Balijepalli A, Robertson JWF, Campbell J, Suehle J, Kasianowicz JJ. Disease Detection and Management via Single Nanopore-Based Sensors. Chem Rev 2012; 112:6431-51. [DOI: 10.1021/cr300381m] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Joseph E. Reiner
- Department of Physics, Virginia
Commonwealth University, 701 W. Grace Street, Richmond, Virginia 23284,
United States
| | - Arvind Balijepalli
- Physical
Measurement Laboratory,
National Institute of Standards and Technology, Gaithersburg, Maryland
20899-8120, United States
- Laboratory of Computational Biology,
National Heart Lung and Blood Institute, Rockville, Maryland 20852,
United States
| | - Joseph W. F. Robertson
- Physical
Measurement Laboratory,
National Institute of Standards and Technology, Gaithersburg, Maryland
20899-8120, United States
| | - Jason Campbell
- Physical
Measurement Laboratory,
National Institute of Standards and Technology, Gaithersburg, Maryland
20899-8120, United States
| | - John Suehle
- Physical
Measurement Laboratory,
National Institute of Standards and Technology, Gaithersburg, Maryland
20899-8120, United States
| | - John J. Kasianowicz
- Physical
Measurement Laboratory,
National Institute of Standards and Technology, Gaithersburg, Maryland
20899-8120, United States
| |
Collapse
|
272
|
Robertson JWF, Kasianowicz JJ, Banerjee S. Analytical Approaches for Studying Transporters, Channels and Porins. Chem Rev 2012; 112:6227-49. [DOI: 10.1021/cr300317z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Joseph W. F. Robertson
- Physical Measurement Laboratory,
National Institute of Standards and Technology, Gaithersburg, Maryland
20899, United States
| | - John J. Kasianowicz
- Physical Measurement Laboratory,
National Institute of Standards and Technology, Gaithersburg, Maryland
20899, United States
| | - Soojay Banerjee
- National
Institute of Neurological
Disorders and Stroke, Bethesda, Maryland 20824, United States
| |
Collapse
|
273
|
Lauridsen LH, Veedu RN. Nucleic acid aptamers against biotoxins: a new paradigm toward the treatment and diagnostic approach. Nucleic Acid Ther 2012; 22:371-9. [PMID: 23113767 DOI: 10.1089/nat.2012.0377] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nucleic acid aptamers are short single-stranded DNA or RNA oligonucleotides that can bind to their targets with very high affinity and specificity, and are generally selected by a process referred to as systematic evolution of ligands by exponential enrichment. Conventional antibody-based therapeutic and diagnostic approach currently employed against biotoxins pose major limitations such as the requirement of a live animal for the in vivo enrichment of the antibody species, decreased stability, high production cost, and side effects. Aptamer technology is a viable alternative that can be used to combat these problems. Fully sequestered in vitro, aptamers eliminate the need for a living host. Furthermore, one of the key advantages of using aptamers instead of antibodies is that they can be selected against very weakly immunogenic and cytotoxic substances. In this review, we focus on nucleic acid aptamers developed against various biotoxins of plant, microorganism, or animal origin and show how these can be used in diagnostics (e.g., biosensors) and therapy.
Collapse
Affiliation(s)
- Lasse Holm Lauridsen
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | | |
Collapse
|
274
|
Beitzinger C, Stefani C, Kronhardt A, Rolando M, Flatau G, Lemichez E, Benz R. Role of N-terminal His6-Tags in binding and efficient translocation of polypeptides into cells using anthrax protective antigen (PA). PLoS One 2012; 7:e46964. [PMID: 23056543 PMCID: PMC3466187 DOI: 10.1371/journal.pone.0046964] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 09/06/2012] [Indexed: 12/21/2022] Open
Abstract
It is of interest to define bacterial toxin biochemical properties to use them as molecular-syringe devices in order to deliver enzymatic activities into host cells. Binary toxins of the AB7/8-type are among the most potent and specialized bacterial protein toxins. The B subunits oligomerize to form a pore that binds with high affinity host cell receptors and the enzymatic A subunit. This allows the endocytosis of the complex and subsequent injection of the A subunit into the cytosol of the host cells. Here we report that the addition of an N-terminal His6-tag to different proteins increased their binding affinity to the protective antigen (PA) PA63-channels, irrespective if they are related (C2I) or unrelated (gpJ, EDIN) to the AB7/8-family of toxins. His6-EDIN exhibited voltage-dependent increase of the stability constant for binding by a factor of about 25 when the trans-side corresponding to the cell interior was set to −70 mV. Surprisingly, the C. botulinum toxin C2II-channel did not share this feature of PA63. Cell-based experiments demonstrated that addition of an N-terminal His6-tag promoted also intoxication of endothelial cells by C2I or EDIN via PA63. Our results revealed that addition of His6-tags to several factors increase their binding properties to PA63 and enhance the property to intoxicate cells.
Collapse
Affiliation(s)
- Christoph Beitzinger
- Rudolf-Virchow-Center, DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Caroline Stefani
- Toxines microbiennes dans la relation hôte-pathogènes, C3M, U1065, Inserm, Nice, France
- UFR Médecine, IFR50, Université de Nice-Sophia Antipolis, Nice, France
| | - Angelika Kronhardt
- Rudolf-Virchow-Center, DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Monica Rolando
- Toxines microbiennes dans la relation hôte-pathogènes, C3M, U1065, Inserm, Nice, France
- UFR Médecine, IFR50, Université de Nice-Sophia Antipolis, Nice, France
| | - Gilles Flatau
- Toxines microbiennes dans la relation hôte-pathogènes, C3M, U1065, Inserm, Nice, France
| | - Emmanuel Lemichez
- Toxines microbiennes dans la relation hôte-pathogènes, C3M, U1065, Inserm, Nice, France
- UFR Médecine, IFR50, Université de Nice-Sophia Antipolis, Nice, France
- * E-mail: (EL); (RB)
| | - Roland Benz
- Rudolf-Virchow-Center, DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
- * E-mail: (EL); (RB)
| |
Collapse
|
275
|
Neutralization of B. anthracis toxins during ex vivo phagocytosis. Glycoconj J 2012; 30:473-84. [PMID: 22983705 DOI: 10.1007/s10719-012-9446-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 08/26/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
Abstract
Glycoconjugates (GCs) are recognized as stimulation and signaling agents, affecting cell adhesion, activation, and growth of living organisms. Among GC targets, macrophages are considered ideal since they play a central role in inflammation and immune responses against foreign agents. In this context, we studied the effects of highly selective GCs in neutralizing toxin factors produced by B. anthracis during phagocytosis using murine macrophages. The effects of GCs were studied under three conditions: A) prior to, B) during, and C) following exposure of macrophages to B. anthracis individual toxin (protective antigen [PA], edema factor [EF], lethal factor [LF] or toxin complexes (PA-EF-LF, PA-EF, and PA-LF). We employed ex vivo phagocytosis and post-phagocytosis analysis including direct microscopic observation of macrophage viability, and macrophage activation. Our results demonstrated that macrophages are more prone to adhere to GC-altered PA-EF-LF, PA-EF, and PA-LF toxin complexes. This adhesion results in a higher phagocytosis rate and toxin complex neutralization during phagocytosis. In addition, GCs enhance macrophage viability, activate macrophages, and stimulate nitric oxide (NO) production. The present study may be helpful in identifying GC ligands with toxin-neutralizing and/or immunomodulating properties. In addition, our study could suggest GCs as new targets for existing vaccines and the prospective development of vaccines and immunomodulators used to combat the effects of B. anthracis.
Collapse
|
276
|
Aktories K, Schwan C, Papatheodorou P, Lang AE. Bidirectional attack on the actin cytoskeleton. Bacterial protein toxins causing polymerization or depolymerization of actin. Toxicon 2012; 60:572-81. [DOI: 10.1016/j.toxicon.2012.04.338] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
|
277
|
Cleret-Buhot A, Mathieu J, Tournier JN, Quesnel-Hellmann A. Both lethal and edema toxins of Bacillus anthracis disrupt the human dendritic cell chemokine network. PLoS One 2012; 7:e43266. [PMID: 22937027 PMCID: PMC3427382 DOI: 10.1371/journal.pone.0043266] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 07/18/2012] [Indexed: 11/19/2022] Open
Abstract
Bacillus anthracis, the agent of anthrax, produces two main virulence factors: a capsule and two toxins. Both lethal toxin (LT) and edema toxin (ET) paralyze the immune defense system. Here, we analyze the effects of LT and ET on the capacity of human monocyte-derived dendritic cells (MoDC) to produce proinflammatory chemokines. We show that both toxins disrupt proinflammatory chemokine production. LT has more pronounced effects than ET on CXCL8 production, which is correlated with impaired recruitment of neutrophils in vitro. Finally, we show that both toxins also differentially disrupt IL-12p70, IL-10, and TNF-α production. Taken together, these results demonstrate that both B. anthracis toxins alter MoDC functions and the activation of the innate immune system.
Collapse
Affiliation(s)
| | | | | | - Anne Quesnel-Hellmann
- Unité Interactions Hôte-Agents Pathogènes, Département de Microbiologie, Institut de Recherche Biomédicale des Armées, La Tronche, France
- * E-mail:
| |
Collapse
|
278
|
Vargas M, Karamsetty R, Leppla SH, Chaudry GJ. Broad expression analysis of human ANTXR1/TEM8 transcripts reveals differential expression and novel splizce variants. PLoS One 2012; 7:e43174. [PMID: 22912819 PMCID: PMC3422265 DOI: 10.1371/journal.pone.0043174] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 07/20/2012] [Indexed: 01/25/2023] Open
Abstract
Tumor endothelial marker 8 (TEM8; ANTXR1) is one of two anthrax toxin receptors; the other is capillary morphogenesis gene 2 protein (CMG2; ANTXR2). TEM8 shows enhanced expression in certain tumor endothelia, and is thought to be a player in tumor vasculature formation. However, a comprehensive expression profile of individual TEM8 variants in normal or cancerous tissues is lacking. In this work we carried out an extensive analysis of all splice variants of human TEM8 in 12 digestive tissues, and 8 each fetal and adult tissues, 6 of them cognate pairs. Using variant-specific primers, we first ascertained the status of full-length transcripts by nested PCR. We then carried out quantitative analysis of each transcript by real-time PCR. Three splice variants of TEM8 were reported before, two single-pass integral membrane forms (V1 and V2) and one secreted (V3). Our analysis has revealed two new variants, one encoding a membrane-bound form of the receptor and the other secreted, which we have designated V4 and V5, respectively. All tissues had V1, V2, V3, and V4, but only prostate had V5. Real-time PCR revealed that all variants are present at different levels in various tissues. V3 appeared the most abundant of all. To ascertain its functionality for anthrax toxin, we expressed the newly identified form V4 in a receptor-negative host cell, and included V1 and V2 for comparison. Cytotoxicity, toxin binding, and internalization assays showed V4 to be as efficient a receptor as V1 and V2.
Collapse
Affiliation(s)
- Micaela Vargas
- Cell and Molecular Biology Program, Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Raghavendra Karamsetty
- Cell and Molecular Biology Program, Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Stephen H. Leppla
- Microbial Pathogenesis Section, The Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - G. Jilani Chaudry
- Cell and Molecular Biology Program, Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
279
|
Mechaly A, Levy H, Epstein E, Rosenfeld R, Marcus H, Ben-Arie E, Shafferman A, Ordentlich A, Mazor O. A novel mechanism for antibody-based anthrax toxin neutralization: inhibition of prepore-to-pore conversion. J Biol Chem 2012; 287:32665-73. [PMID: 22869370 DOI: 10.1074/jbc.m112.400473] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Protective antigen (PA), a key component of anthrax toxin, mediates the entry of lethal factor (LF) or edema factor (EF) through a membranal pore into target cells. We have previously reported the isolation and chimerization of cAb29, an anti-PA monoclonal antibody that effectively neutralizes anthrax toxin in an unknown mechanism. The aim of this study was to elucidate the neutralizing mechanism of this antibody in vitro and to test its ability to confer post-exposure protection against anthrax in vivo. By systematic evaluation of the steps taking place during the PA-based intoxication process, we found that cAb29 did not interfere with the initial steps of intoxication, namely its ability to bind to the anthrax receptor, the consecutive proteolytic cleavage to PA(63), oligomerization, prepore formation, or LF binding. However, the binding of cAb29 to the prepore prevented its pH-triggered transition to the transmembranal pore, thus preventing the last step of intoxication, i.e. the translocation of LF/EF into the cell. Epitope mapping, using a phage display peptide library, revealed that cAb29 binds the 2α(1) loop in domain 2 of PA, a loop that undergoes major conformational changes during pore formation. In vivo, we found that 100% of anthrax-infected rabbits survived when treated with cAb29 12 h after exposure. In conclusion, these experiments demonstrate that cAb29 exerts its potent neutralizing activity in a unique manner by blocking the prepore-to-pore conversion process.
Collapse
Affiliation(s)
- Adva Mechaly
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
280
|
Artenstein AW, Opal SM. Novel approaches to the treatment of systemic anthrax. Clin Infect Dis 2012; 54:1148-61. [PMID: 22438345 DOI: 10.1093/cid/cis017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Anthrax continues to generate concern as an agent of bioterrorism and as a natural cause of sporadic disease outbreaks. Despite the use of appropriate antimicrobial agents and advanced supportive care, the mortality associated with the systemic disease remains high. This is primarily due to the pathogenic exotoxins produced by Bacillus anthracis as well as other virulence factors of the organism. For this reason, new therapeutic strategies that target events in the pathogenesis of anthrax and may potentially augment antimicrobials are being investigated. These include anti-toxin approaches, such as passive immune-based therapies; non-antimicrobial drugs with activity against anthrax toxin components; and agents that inhibit binding, processing, or assembly of toxins. Adjunct therapies that target spore germination or downstream events in anthrax intoxication are also under investigation. In combination, these modalities may enhance the management of systemic anthrax.
Collapse
Affiliation(s)
- Andrew W Artenstein
- Center for Biodefense and Emerging Pathogens, Department of Medicine, Memorial Hospital of Rhode Island, Pawtucket, and The Warren Alpert Medical School of Brown University, Providence, RI 02860, USA
| | | |
Collapse
|
281
|
Göttle M, Dove S, Seifert R. Bacillus anthracis edema factor substrate specificity: evidence for new modes of action. Toxins (Basel) 2012; 4:505-35. [PMID: 22852066 PMCID: PMC3407890 DOI: 10.3390/toxins4070505] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/15/2012] [Accepted: 06/27/2012] [Indexed: 12/20/2022] Open
Abstract
Since the isolation of Bacillus anthracis exotoxins in the 1960s, the detrimental activity of edema factor (EF) was considered as adenylyl cyclase activity only. Yet the catalytic site of EF was recently shown to accomplish cyclization of cytidine 5'-triphosphate, uridine 5'-triphosphate and inosine 5'-triphosphate, in addition to adenosine 5'-triphosphate. This review discusses the broad EF substrate specificity and possible implications of intracellular accumulation of cyclic cytidine 3':5'-monophosphate, cyclic uridine 3':5'-monophosphate and cyclic inosine 3':5'-monophosphate on cellular functions vital for host defense. In particular, cAMP-independent mechanisms of action of EF on host cell signaling via protein kinase A, protein kinase G, phosphodiesterases and CNG channels are discussed.
Collapse
Affiliation(s)
- Martin Göttle
- Department of Neurology, Emory University School of Medicine, 6302 Woodruff Memorial Research Building, 101 Woodruff Circle, Atlanta, GA 30322, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-404-727-1678; Fax: +1-404-727-3157
| | - Stefan Dove
- Department of Medicinal/Pharmaceutical Chemistry II, University of Regensburg, D-93040 Regensburg, Germany;
| | - Roland Seifert
- Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany;
| |
Collapse
|
282
|
Cote CK, Kaatz L, Reinhardt J, Bozue J, Tobery SA, Bassett AD, Sanz P, Darnell SC, Alem F, O'Brien AD, Welkos SL. Characterization of a multi-component anthrax vaccine designed to target the initial stages of infection as well as toxaemia. J Med Microbiol 2012; 61:1380-1392. [PMID: 22767539 DOI: 10.1099/jmm.0.045393-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Current vaccine approaches to combat anthrax are effective; however, they target only a single protein [the protective antigen (PA) toxin component] that is produced after spore germination. PA production is subsequently increased during later vegetative cell proliferation. Accordingly, several aspects of the vaccine strategy could be improved. The inclusion of spore-specific antigens with PA could potentially induce protection to initial stages of the disease. Moreover, adding other epitopes to the current vaccine strategy will decrease the likelihood of encountering a strain of Bacillus anthracis (emerging or engineered) that is refractory to the vaccine. Adding recombinant spore-surface antigens (e.g. BclA, ExsFA/BxpB and p5303) to PA has been shown to augment protection afforded by the latter using a challenge model employing immunosuppressed mice challenged with spores derived from the attenuated Sterne strain of B. anthracis. This report demonstrated similar augmentation utilizing guinea pigs or mice challenged with spores of the fully virulent Ames strain or a non-toxigenic but encapsulated ΔAmes strain of B. anthracis, respectively. Additionally, it was shown that immune interference did not occur if optimal amounts of antigen were administered. By administering the toxin and spore-based immunogens simultaneously, a significant adjuvant effect was also observed in some cases. Thus, these data further support the inclusion of recombinant spore antigens in next-generation anthrax vaccine strategies.
Collapse
Affiliation(s)
- C K Cote
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - L Kaatz
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - J Reinhardt
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - J Bozue
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - S A Tobery
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - A D Bassett
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - P Sanz
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - S C Darnell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - F Alem
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - A D O'Brien
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - S L Welkos
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| |
Collapse
|
283
|
Ling J, Policarpo RL, Rabideau AE, Liao X, Pentelute BL. Protein thioester synthesis enabled by sortase. J Am Chem Soc 2012; 134:10749-52. [PMID: 22686546 PMCID: PMC3465687 DOI: 10.1021/ja302354v] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Proteins containing a C-terminal thioester are important intermediates in semisynthesis. Currently there is one main method for the synthesis of protein thioesters that relies upon the use of engineered inteins. Here we report a simple strategy, utilizing sortase A, for routine preparation of recombinant proteins containing a C-terminal (α)thioester. We used our method to prepare two different anthrax toxin cargo proteins: one containing an (α)thioester and another containing a D-polypeptide segment situated between two protein domains. We show that both variants can translocate through protective antigen pore. This new method to synthesize a protein thioester allows for interfacing of sortase-mediated ligation and native chemical ligation.
Collapse
Affiliation(s)
- Jingjing Ling
- Department of Chemistry, Massachusetts Institute of Technology, 16-573a, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| | - Rocco L. Policarpo
- Department of Chemistry, Massachusetts Institute of Technology, 16-573a, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| | - Amy E. Rabideau
- Department of Chemistry, Massachusetts Institute of Technology, 16-573a, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| | - Xiaoli Liao
- Department of Chemistry, Massachusetts Institute of Technology, 16-573a, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| | - Bradley L. Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 16-573a, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| |
Collapse
|
284
|
Sun S, Tepp WH, Johnson EA, Chapman ER. Botulinum neurotoxins B and E translocate at different rates and exhibit divergent responses to GT1b and low pH. Biochemistry 2012; 51:5655-62. [PMID: 22720883 PMCID: PMC3398548 DOI: 10.1021/bi3004928] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
![]()
Botulinum neurotoxins (BoNTs, serotypes A–G) are
the most
deadly substances known. Here, we investigated how BoNT/E, a serotype
that causes human botulism, translocates into the cytosol of neurons.
Analogous to BoNT/B, BoNT/E required binding of the coreceptor, GT1b,
to undergo significant secondary structural changes and transform
into a hydrophobic protein at low pH. These data indicate that both
serotypes act as coincidence detectors for both GT1b and low pH, to
undergo translocation. However, BoNT/E translocated much more rapidly
than BoNT/B. Also, BoNT/E required only GT1b, and not low pH, to oligomerize,
whereas BoNT/B required both. In further contrast to the case of BoNT/B,
low pH alone altered the secondary structure of BoNT/E to some degree
and resulted in its premature inactivation. Hence, comparison of two
BoNT serotypes revealed that these agents exhibit both convergent
and divergent responses to receptor interactions, and pH, in the translocation
pathway.
Collapse
|
285
|
Seidah NG, Prat A. The biology and therapeutic targeting of the proprotein convertases. Nat Rev Drug Discov 2012; 11:367-83. [PMID: 22679642 DOI: 10.1038/nrd3699] [Citation(s) in RCA: 619] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mammalian proprotein convertases constitute a family of nine secretory serine proteases that are related to bacterial subtilisin and yeast kexin. Seven of these (proprotein convertase 1 (PC1), PC2, furin, PC4, PC5, paired basic amino acid cleaving enzyme 4 (PACE4) and PC7) activate cellular and pathogenic precursor proteins by cleavage at single or paired basic residues, whereas subtilisin kexin isozyme 1 (SKI-1) and proprotein convertase subtilisin kexin 9 (PCSK9) regulate cholesterol and/or lipid homeostasis via cleavage at non-basic residues or through induced degradation of receptors. Proprotein convertases are now considered to be attractive targets for the development of powerful novel therapeutics. In this Review, we summarize the physiological functions and pathological implications of the proprotein convertases, and discuss proposed strategies to control some of their activities, including their therapeutic application and validation in selected disease states.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal (affiliated to University of Montreal), 110 Pine Ave West, Montreal, Quebec H2W 1R7, Canada.
| | | |
Collapse
|
286
|
Lowe DE, Glomski IJ. Cellular and physiological effects of anthrax exotoxin and its relevance to disease. Front Cell Infect Microbiol 2012; 2:76. [PMID: 22919667 PMCID: PMC3417473 DOI: 10.3389/fcimb.2012.00076] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/16/2012] [Indexed: 12/26/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax, secretes a tri-partite exotoxin that exerts pleiotropic effects on the host. The purification of the exotoxin components, protective antigen, lethal factor, and edema factor allowed the rapid characterization of their physiologic effects on the host. As molecular biology matured, interest focused on the molecular mechanisms and cellular alterations induced by intoxication. Only recently have researchers begun to connect molecular and cellular knowledge back to the broader physiological effects of the exotoxin. This review focuses on the progress that has been made bridging molecular knowledge back to the exotoxin’s physiological effects on the host.
Collapse
Affiliation(s)
- David E Lowe
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville VA, USA
| | | |
Collapse
|
287
|
Abstract
Bacillus anthracis grows in chains of rod-shaped cells, a trait that contributes to its escape from phagocytic clearance in host tissues. Using a genetic approach to search for determinants of B. anthracis chain length, we identified mutants with insertional lesions in secA2. All isolated secA2 mutants exhibited an exaggerated chain length, whereas the dimensions of individual cells were not changed. Complementation studies revealed that slaP (S-layer assembly protein), a gene immediately downstream of secA2 on the B. anthracis chromosome, is also a determinant of chain length. Both secA2 and slaP are required for the efficient secretion of Sap and EA1 (Eag), the two S-layer proteins of B. anthracis, but not for the secretion of S-layer-associated proteins or of other secreted products. S-layer assembly via secA2 and slaP contributes to the proper positioning of BslO, the S-layer-associated protein, and murein hydrolase, which cleaves septal peptidoglycan to separate chains of bacilli. SlaP was found to be both soluble in the bacterial cytoplasm and associated with the membrane. The purification of soluble SlaP from B. anthracis-cleared lysates did not reveal a specific ligand, and the membrane association of SlaP was not dependent on SecA2, Sap, or EA1. We propose that SecA2 and SlaP promote the efficient secretion of S-layer proteins by modifying the general secretory pathway of B. anthracis to transport large amounts of Sap and EA1.
Collapse
|
288
|
Abstract
The actions of many bacterial toxins depend on their ability to bind to one or more cell-surface receptors. Anthrax toxin acts by a sequence of events that begins when the protective-antigen (PA) moiety of the toxin binds to either one of two cell-surface proteins, ANTXR1 and ANTXR2, and is proteolytically activated. The activated PA self-associates to form oligomeric pore precursors, which, in turn, bind the enzymatic moieties of the toxin and transport them to the cytosol. We introduced a double mutation into domain 4 of PA to ablate its native receptor-binding function and fused epidermal growth factor (EGF) to the C terminus of the mutated protein. The resulting fusion protein transported enzymatic effector proteins into a cell line that expressed the EGF receptor (A431 cells), but not into a line lacking this receptor (CHO-K1 cells). Addition of excess free EGF blocked transport of effector proteins into A431 cells via the fusion protein, but not via native PA. We also showed that fusing the diphtheria toxin receptor-binding domain to the C terminus of the mutated PA channeled effector-protein transport through the diphtheria toxin receptor. PA fusion proteins with altered receptor specificity may be useful in biological research and could have practical applications, including ablation or perturbation of selected populations of cells in vivo. Bacterial toxins that act within mammalian cells have receptor-dependent mechanisms to transport their enzymatic components to the cytoplasmic compartment. By inactivating or otherwise modifying their respective intracellular targets, these intracellular effectors disrupt metabolic pathways and in some cases cause death of the cell. Our results show that the receptor specificity of the transport protein of anthrax toxin may be readily changed, raising the possibility that receptor-redirected forms of protective antigen (PA) and PA homologs may be useful for research and medical applications requiring modification or ablation of designated populations of cells.
Collapse
|
289
|
Uchida M, Harada T, Enkhtuya J, Kusumoto A, Kobayashi Y, Chiba S, Shyaka A, Kawamoto K. Protective effect of Bacillus anthracis surface protein EA1 against anthrax in mice. Biochem Biophys Res Commun 2012; 421:323-8. [DOI: 10.1016/j.bbrc.2012.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 04/02/2012] [Indexed: 12/31/2022]
|
290
|
Park HC, Sung SR, Lim SM, Lee JS, Kim SK, Yoon MY. Proteolytic assay-based screening identifies a potent inhibitor of anthrax lethal factor. Microb Pathog 2012; 53:109-12. [PMID: 22561400 DOI: 10.1016/j.micpath.2012.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 04/09/2012] [Accepted: 04/18/2012] [Indexed: 10/28/2022]
Abstract
Anthrax lethal factor (LF), a Zn(2+)-dependent metalloprotease, is a key virulence component of anthrax toxin. Here, we used proteolytic assay-based screening to identify novel LF inhibitors from a naturally extracted chemical library. The screening identified four compounds that inhibited in vitro proteolytic activity of LF with an IC(50) of low micromolar range (11-20 μM). Three of these compounds were toxic to the mouse macrophage-like cell line, RAW 264.7. Compound 200 was non-toxic, however, and successfully protected Raw 264.7 cells from a lethal toxin challenge with an IC(50) of 39.2 μM. We also identified possible binding modes of compound 200 by molecular docking.
Collapse
Affiliation(s)
- Hae-Chul Park
- Department of Chemistry and Research Institute of Natural Sciences, Hanyang University, Seoul 133-761, Republic of Korea
| | | | | | | | | | | |
Collapse
|
291
|
Expression of either lethal toxin or edema toxin by Bacillus anthracis is sufficient for virulence in a rabbit model of inhalational anthrax. Infect Immun 2012; 80:2414-25. [PMID: 22526673 DOI: 10.1128/iai.06340-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The development of therapeutics against biothreats requires that we understand the pathogenesis of the disease in relevant animal models. The rabbit model of inhalational anthrax is an important tool in the assessment of potential therapeutics against Bacillus anthracis. We investigated the roles of B. anthracis capsule and toxins in the pathogenesis of inhalational anthrax in rabbits by comparing infection with the Ames strain versus isogenic mutants with deletions of the genes for the capsule operon (capBCADE), lethal factor (lef), edema factor (cya), or protective antigen (pagA). The absence of capsule or protective antigen (PA) resulted in complete avirulence, while the presence of either edema toxin or lethal toxin plus capsule resulted in lethality. The absence of toxin did not influence the ability of B. anthracis to traffic to draining lymph nodes, but systemic dissemination required the presence of at least one of the toxins. Histopathology studies demonstrated minimal differences among lethal wild-type and single toxin mutant strains. When rabbits were coinfected with the Ames strain and the PA- mutant strain, the toxin produced by the Ames strain was not able to promote dissemination of the PA- mutant, suggesting that toxigenic action occurs in close proximity to secreting bacteria. Taken together, these findings suggest that a major role for toxins in the pathogenesis of anthrax is to enable the organism to overcome innate host effector mechanisms locally and that much of the damage during the later stages of infection is due to the interactions of the host with the massive bacterial burden.
Collapse
|
292
|
Proteolytic processing of Nlrp1b is required for inflammasome activity. PLoS Pathog 2012; 8:e1002659. [PMID: 22536155 PMCID: PMC3334886 DOI: 10.1371/journal.ppat.1002659] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 03/06/2012] [Indexed: 12/18/2022] Open
Abstract
Nlrp1b is a NOD-like receptor that detects the catalytic activity of anthrax lethal toxin and subsequently co-oligomerizes into a pro-caspase-1 activation platform known as an inflammasome. Nlrp1b has two domains that promote oligomerization: a NACHT domain, which is a member of the AAA+ ATPase family, and a poorly characterized Function to Find Domain (FIIND). Here we demonstrate that proteolytic processing within the FIIND generates N-terminal and C-terminal cleavage products of Nlrp1b that remain associated in both the auto-inhibited state and in the activated state after cells have been treated with lethal toxin. Functional significance of cleavage was suggested by the finding that mutations that block processing of Nlrp1b also prevent the ability of Nlrp1b to activate pro-caspase-1. By using an uncleaved mutant of Nlrp1b, we established the importance of cleavage by inserting a heterologous TEV protease site into the FIIND and demonstrating that TEV protease processed this site and induced inflammasome activity. Proteolysis of Nlrp1b was shown to be required for the assembly of a functional inflammasome: a mutation within the FIIND that abolished cleavage had no effect on self-association of a FIIND-CARD fragment, but did reduce the recruitment of pro-caspase-1. Our work indicates that a post-translational modification enables Nlrp1b to function. Inflammasomes are multi-protein complexes that respond to signals derived from microbial pathogens or damaged tissue. The function of an inflammasome is to activate pro-caspase-1, a protease that contributes to the inflammatory response by generating the cytokines IL-1β and IL-18. A common feature of inflammasomes is their ability to cluster multiple copies of pro-caspase-1 in a manner that allows inter-molecular auto-proteolysis. The Nlrp1b inflammasome assembles in response to anthrax lethal toxin by using two oligomerization regions: the NACHT domain and the FIIND-CARD region. Here, we demonstrate that the FIIND is proteolytically cleaved, but that the two fragments of Nlrp1b generated from the cleavage remain associated with one another. Cleavage within the FIIND is functionally important, however, because mutants of Nlrp1b that are not cleaved are not able to activate pro-caspase-1. Furthermore, we were able to control cleavage by inserting a heterologous protease site into Nlrp1b, which allowed us to establish that processing of Nlrp1b is required for its activity. Finally, we provide evidence that processing of Nlrp1b facilitates the recruitment of pro-caspase-1. Our work identifies a novel mechanism by which the Nlrp1b inflammasome may be regulated.
Collapse
|
293
|
Reeves CV, Wang X, Charles-Horvath PC, Vink JY, Borisenko VY, Young JAT, Kitajewski JK. Anthrax toxin receptor 2 functions in ECM homeostasis of the murine reproductive tract and promotes MMP activity. PLoS One 2012; 7:e34862. [PMID: 22529944 PMCID: PMC3328497 DOI: 10.1371/journal.pone.0034862] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 03/08/2012] [Indexed: 11/19/2022] Open
Abstract
Anthrax Toxin Receptor proteins function as receptors for anthrax toxin, however physiological activity remains unclear. To evaluate the biological role of Antxr2, we generated Antxr2-/- mice. Antxr2-/- mice were viable, however Antxr2 is required for parturition in young females and for preserving fertility in older female mice. Histological analysis of the uterus and cervix revealed aberrant deposition of extracellular matrix proteins such as type I collagen, type VI collagen and fibronectin. A marked disruption of both the circular and longitudinal myometrial cell layers was evident in Antxr2-/- mice. These changes progressed as the mice aged, resulting in a thickened, collagen dense, acellular stroma and the disappearance of normal uterine architecture. To investigate the molecular mechanism underlying the uterine fibrosis we performed immunoblotting for MMP2 using uterine lysates and zymography using conditioned medium from Antxr2-/- mouse embryonic fibroblasts and found reduced levels of activated MMP2 in both. This prompted us to investigate MT1-MMP status, as MMP2 processing is regulated by MT1-MMP. We found MT1-MMP activity, as measured by MMP2 processing and activation, was enhanced by expression of either ANTXR1 or ANTXR2. We identified an ANTXR2/MT1-MMP complex and demonstrated that MT1-MMP activity is dependent on ANTXR2 expression levels in cells. Thus, we have discovered that ANTXR1 and ANTXR2 function as positive regulators of MT1-MMP activity.
Collapse
Affiliation(s)
- Claire V. Reeves
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, New York, United States of America
| | - Xing Wang
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, New York, United States of America
| | - Pelisa C. Charles-Horvath
- Department of Pharmacology, Columbia University Medical Center, New York, New York, United States of America
| | - Joy Y. Vink
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, New York, United States of America
| | - Valeriya Y. Borisenko
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, New York, United States of America
| | - John A. T. Young
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Jan K. Kitajewski
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, New York, United States of America
- Department of Pathology, Columbia University Medical Center, New York, New York, United States of America
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, United States of America
| |
Collapse
|
294
|
Thomas D, Naughton J, Cote C, Welkos S, Manchester M, Young JAT. Delayed toxicity associated with soluble anthrax toxin receptor decoy-Ig fusion protein treatment. PLoS One 2012; 7:e34611. [PMID: 22511955 PMCID: PMC3325282 DOI: 10.1371/journal.pone.0034611] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/05/2012] [Indexed: 11/21/2022] Open
Abstract
Soluble receptor decoy inhibitors, including receptor-immunogloubulin (Ig) fusion proteins, have shown promise as candidate anthrax toxin therapeutics. These agents act by binding to the receptor-interaction site on the protective antigen (PA) toxin subunit, thereby blocking toxin binding to cell surface receptors. Here we have made the surprising observation that co-administration of receptor decoy-Ig fusion proteins significantly delayed, but did not protect, rats challenged with anthrax lethal toxin. The delayed toxicity was associated with the in vivo assembly of a long-lived complex comprised of anthrax lethal toxin and the receptor decoy-Ig inhibitor. Intoxication in this system presumably results from the slow dissociation of the toxin complex from the inhibitor following their prolonged circulation. We conclude that while receptor decoy-Ig proteins represent promising candidates for the early treatment of B. anthracis infection, they may not be suitable for therapeutic use at later stages when fatal levels of toxin have already accumulated in the bloodstream.
Collapse
Affiliation(s)
- Diane Thomas
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - John Naughton
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Christopher Cote
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Susan Welkos
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Marianne Manchester
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (MM); (JATY)
| | - John A. T. Young
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- * E-mail: (MM); (JATY)
| |
Collapse
|
295
|
Ahn HC, Kim NY, Hur GH, Yang JM, Shin S. Role of chondroitin sulfate C in the action of anthrax toxin. Toxicology 2012; 297:10-6. [PMID: 22503668 DOI: 10.1016/j.tox.2012.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 03/26/2012] [Accepted: 03/28/2012] [Indexed: 11/30/2022]
Abstract
Anthrax toxin is produced by Bacillus anthracis, the causative agent of anthrax, and is responsible for the majority of disease symptoms. The toxin consists of 3 proteins, protective antigen (PA), lethal factor (LF), and edema factor (EF), which combine to form lethal and edema toxin. Glycosaminoglycans, which are present on the surface of cells, were investigated with regard to their role in toxicity resulting from anthrax toxin exposure. Lethal toxin-induced cytotoxicity of the RAW 264.7 cells was significantly inhibited by the addition of chondroitin sulfate C as determined by the MTT assay. By contrast, several other glycosaminoglycans, including heparin, heparan sulfate, and dermatan sulfate did not show significant levels of inhibition. Studies utilizing fluorescence-labeled PA demonstrated decreased PA binding to RAW 264.7 cells with the addition of chondroitin sulfate C. Formation of PA oligomers at the surface of cells after binding was also inhibited by chondroitin sulfate C. Interestingly, enzymatic degradation of endogenous chondroitin sulfate C from the cell surface with chondroitinase ABC was accompanied by increased sensitivity to the toxin. These findings were further confirmed by pretreating cells with sodium chlorate to reduce the degree of cell surface glycosaminoglycans sulfation. In addition, chondroitin sulfate C effectively inhibits edema toxin-induced cAMP accumulation in cells. Our results indicate that chondroitin sulfate C may play an important role in the toxicity of anthrax toxin.
Collapse
Affiliation(s)
- Hyun Chan Ahn
- Department of Life Science, Sogang University, Shinsu-Dong, Mapo, Seoul 121-742, Republic of Korea
| | | | | | | | | |
Collapse
|
296
|
Bricarello DA, Patel MA, Parikh AN. Inhibiting host-pathogen interactions using membrane-based nanostructures. Trends Biotechnol 2012; 30:323-30. [PMID: 22464596 DOI: 10.1016/j.tibtech.2012.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/28/2012] [Accepted: 03/02/2012] [Indexed: 12/24/2022]
Abstract
Virulent strains of bacteria and viruses recognize host cells by their plasma membrane receptors and often exploit the native translocation machinery to invade the cell. A promising therapeutic concept for early interruption of pathogen infection is to subvert this pathogenic trickery using exogenously introduced decoys that present high-affinity mimics of cellular receptors. This review highlights emerging applications of molecularly engineered lipid-bilayer-based nanostructures, namely (i) functionalized liposomes, (ii) supported colloidal bilayers or protocells and (iii) reconstituted lipoproteins, which display functional cellular receptors in optimized conformational and aggregative states. These decoys outcompete host cell receptors by preferentially binding to and neutralizing virulence factors of both bacteria and viruses, thereby promising a new approach to antipathogenic therapy.
Collapse
Affiliation(s)
- Daniel A Bricarello
- Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | |
Collapse
|
297
|
Feld GK, Brown MJ, Krantz BA. Ratcheting up protein translocation with anthrax toxin. Protein Sci 2012; 21:606-24. [PMID: 22374876 DOI: 10.1002/pro.2052] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 01/09/2023]
Abstract
Energy-consuming nanomachines catalyze the directed movement of biopolymers in the cell. They are found both dissolved in the aqueous cytosol as well as embedded in lipid bilayers. Inquiries into the molecular mechanism of nanomachine-catalyzed biopolymer transport have revealed that these machines are equipped with molecular parts, including adjustable clamps, levers, and adaptors, which interact favorably with substrate polypeptides. Biological nanomachines that catalyze protein transport, known as translocases, often require that their substrate proteins unfold before translocation. An unstructured protein chain is likely entropically challenging to bind, push, or pull in a directional manner, especially in a way that produces an unfolding force. A number of ingenious solutions to this problem are now evident in the anthrax toxin system, a model used to study protein translocation. Here we highlight molecular ratchets and current research on anthrax toxin translocation. A picture is emerging of proton-gradient-driven anthrax toxin translocation, and its associated ratchet mechanism likely applies broadly to other systems. We suggest a cyclical thermodynamic order-to-disorder mechanism (akin to a heat-engine cycle) is central to underlying protein translocation: peptide substrates nonspecifically bind to molecular clamps, which possess adjustable affinities; polypeptide substrates compress into helical structures; these clamps undergo proton-gated switching; and the substrate subsequently expands regaining its unfolded state conformational entropy upon translocation.
Collapse
Affiliation(s)
- Geoffrey K Feld
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
298
|
Ivarsson ME, Leroux JC, Castagner B. Targeting bacterial toxins. Angew Chem Int Ed Engl 2012; 51:4024-45. [PMID: 22441768 DOI: 10.1002/anie.201104384] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/21/2011] [Indexed: 12/18/2022]
Abstract
Protein toxins constitute the main virulence factors of several species of bacteria and have proven to be attractive targets for drug development. Lead candidates that target bacterial toxins range from small molecules to polymeric binders, and act at each of the multiple steps in the process of toxin-mediated pathogenicity. Despite recent and significant advances in the field, a rationally designed drug that targets toxins has yet to reach the market. This Review presents the state of the art in bacterial toxin targeted drug development with a critical consideration of achieved breakthroughs and withstanding challenges. The discussion focuses on A-B-type protein toxins secreted by four species of bacteria, namely Clostridium difficile (toxins A and B), Vibrio cholerae (cholera toxin), enterohemorrhagic Escherichia coli (Shiga toxin), and Bacillus anthracis (anthrax toxin), which are the causative agents of diseases for which treatments need to be improved.
Collapse
Affiliation(s)
- Mattias E Ivarsson
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich, Wolfgang-Pauli-Strasse 10, Zurich, Switzerland
| | | | | |
Collapse
|
299
|
|
300
|
Sun C, Fang H, Xie T, Auth RD, Patel N, Murray PR, Snoy PJ, Frucht DM. Anthrax lethal toxin disrupts intestinal barrier function and causes systemic infections with enteric bacteria. PLoS One 2012; 7:e33583. [PMID: 22438953 PMCID: PMC3306423 DOI: 10.1371/journal.pone.0033583] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 02/16/2012] [Indexed: 11/17/2022] Open
Abstract
A variety of intestinal pathogens have virulence factors that target mitogen activated protein kinase (MAPK) signaling pathways, including Bacillus anthracis. Anthrax lethal toxin (LT) has specific proteolytic activity against the upstream regulators of MAPKs, the MAPK kinases (MKKs). Using a murine model of intoxication, we show that LT causes the dose-dependent disruption of intestinal epithelial integrity, characterized by mucosal erosion, ulceration, and bleeding. This pathology correlates with an LT-dependent blockade of intestinal crypt cell proliferation, accompanied by marked apoptosis in the villus tips. C57BL/6J mice treated with intravenous LT nearly uniformly develop systemic infections with commensal enteric organisms within 72 hours of administration. LT-dependent intestinal pathology depends upon its proteolytic activity and is partially attenuated by co-administration of broad spectrum antibiotics, indicating that it is both a cause and an effect of infection. These findings indicate that targeting of MAPK signaling pathways by anthrax LT compromises the structural integrity of the mucosal layer, serving to undermine the effectiveness of the intestinal barrier. Combined with the well-described immunosuppressive effects of LT, this disruption of the intestinal barrier provides a potential mechanism for host invasion via the enteric route, a common portal of entry during the natural infection cycle of Bacillus anthracis.
Collapse
Affiliation(s)
- Chen Sun
- Laboratory of Cell Biology, Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, United States Food and Drug Administration, Bethesda, Maryland, United States of America
| | | | | | | | | | | | | | | |
Collapse
|