251
|
Kilic G, Angleson JK, Cochilla AJ, Nussinovitch I, Betz WJ. Sustained stimulation of exocytosis triggers continuous membrane retrieval in rat pituitary somatotrophs. J Physiol 2001; 532:771-83. [PMID: 11313445 PMCID: PMC2278588 DOI: 10.1111/j.1469-7793.2001.0771e.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We studied the relationship between exocytosis and endocytosis in rat pituitary somatotrophs using patch-clamp capacitance, FM1-43 fluorescence imaging and amperometry. Stimulation of exocytosis through voltage-dependent Ca2+ channels by depolarizations (1-5 s) increased the capacitance by 4.3 +/- 0.9 % and the fluorescence by 6.6 +/- 1.1 % (10 cells). The correlation between the capacitance and fluorescence changes indicated that the cell membrane and granule membrane added via exocytosis were stained with the membrane-bound fluorescent dye FM1-43 in a quantitatively similar manner. Intracellular dialysis (0.5-4.5 min) with elevated Ca2+ (1.5-100 microM) evoked continuous exocytosis that was detected with a carbon fibre electrode from dopamine-loaded cells (10 cells) or as an increase in FM1-43 fluorescence (56 +/- 10 %; 21 cells). Interestingly during Ca2+ dialysis the capacitance did not significantly change (2 +/- 1 %; 31 cells), indicating that endocytosis efficiently retrieved increased cell membrane. Sustained endocytosis was not blocked when the intracellular GTP (300 microM) was replaced with GTP[gamma]S. Replacing intracellular Ca2+ (100 microM) with Ba2+ (300 microM) or Sr2+ (200 microM), or reducing the pH of the intracellular solution from 7.2 to 6.2 did not block sustained endocytosis. Our results suggest that pituitary somatotrophs have the ability to undergo continuous exocytosis and membrane retrieval that persist in whole-cell recordings.
Collapse
Affiliation(s)
- G Kilic
- Department of Physiology and Biophysics, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | | | | | | | |
Collapse
|
252
|
Schikorski T, Stevens CF. Morphological correlates of functionally defined synaptic vesicle populations. Nat Neurosci 2001; 4:391-5. [PMID: 11276229 DOI: 10.1038/86042] [Citation(s) in RCA: 393] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
By combining photoconversion of FM1-43-stained vesicles and electron microscopy of hippocampal synapses, we find evidence that the population of morphologically docked synaptic vesicles corresponds to the release-ready neurotransmitter quanta. Furthermore, those synaptic vesicles that are participating in cycles of exo- and endocytosis tend to be closer to the active zone than vesicles that are being held in reserve.
Collapse
Affiliation(s)
- T Schikorski
- Howard Hughes Medical Institute and Molecular Neurobiology Lab, The Salk Institute, 10010 N. Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
253
|
Collin C, Vicario-Abejon C, Rubio ME, Wenthold RJ, McKay RD, Segal M. Neurotrophins act at presynaptic terminals to activate synapses among cultured hippocampal neurons. Eur J Neurosci 2001; 13:1273-82. [PMID: 11298787 DOI: 10.1046/j.0953-816x.2001.01500.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have recently demonstrated that embryonic E16 hippocampal neurons grown in cultures are unable to form fast synaptic connections unless treated with BDNF or NT-3. This experimental system offers an opportunity to define the roles of neurotrophins in processes leading to formation of functional synaptic connections. We have used ultrastructural and electrophysiological methods to explore the cellular locations underlying neurotrophin action on synaptic maturation. The rate of spontaneous miniature excitatory postsynaptic currents (mEPSCs) evoked by hyperosmotic stimulation was 7-16-fold higher in neurotrophin-treated cells than in controls. In addition, the potent neurotransmitter-releasing drug alpha-latrotoxin was virtually ineffective in the control cells while it stimulated synaptic events in neurotrophin-treated cells. Likewise, the membrane-bound dye FM1-43 was taken up by terminals in neurotrophin-treated cultures five-fold more than in controls. Both the total number and the number of docked synaptic vesicles were increased by neurotrophin treatment. Activation of synaptic responses by neurotrophins occurred even when postsynaptic glutamate receptors and action potential discharges were pharmacologically blocked. These results are consistent with a presynaptic locus of action of neurotrophins to increase synaptic vesicle density which is critical for rapid synaptic transmission. They also suggest that neurotrophins can activate synapses in the absence of pre- and postsynaptic neuronal activity.
Collapse
Affiliation(s)
- C Collin
- Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland 20892-4092, USA
| | | | | | | | | | | |
Collapse
|
254
|
Yuste R, Miller RB, Holthoff K, Zhang S, Miesenböck G. Synapto-pHluorins: chimeras between pH-sensitive mutants of green fluorescent protein and synaptic vesicle membrane proteins as reporters of neurotransmitter release. Methods Enzymol 2001; 327:522-46. [PMID: 11045007 DOI: 10.1016/s0076-6879(00)27300-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- R Yuste
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | | | |
Collapse
|
255
|
Abstract
alpha-Latrotoxin (alpha-LTX) is a neurotoxin that accelerates spontaneous exocytosis independently of extracellular Ca(2+). Although alpha-LTX increases spontaneous transmitter release at synapses, the mechanism is unknown. We tested the hypothesis that alpha-LTX causes transmitter release by mobilizing intracellular Ca(2+) in frog motor nerve terminals. Transmitter release was measured electrophysiologically and with the vesicle marker FM1-43; presynaptic ion concentration dynamics were measured with fluorescent ion-imaging techniques. We report that alpha-LTX increases transmitter release after release of a physiologically relevant concentration of intracellular Ca(2+). Neither the blockade of Ca(2+) release nor the depletion of Ca(2+) from endoplasmic reticulum affected Ca(2+) signals produced by alpha-LTX. The Ca(2+) source is likely to be mitochondria, because the effects on Ca(2+) mobilization of CCCP (which depletes mitochondrial Ca(2+)) and of alpha-LTX are mutually occlusive. The release of mitochondrial Ca(2+) is partially attributable to an increase in intracellular Na(+), suggesting that the mitochondrial Na(+)/Ca(2+) exchanger is activated. Effects of alpha-LTX were not blocked when Ca(2+) increases were reduced greatly in saline lacking both Na(+) and Ca(2+) and by application of intracellular Ca(2+) chelators. Therefore, although increases in intracellular Ca(2+) may facilitate the effects of alpha-LTX on transmitter release, these increases do not appear to be necessary. The results show that investigations of Ca(2+)-independent alpha-LTX mechanisms or uses of alpha-LTX to probe exocytosis mechanisms would be complicated by the release of intracellular Ca(2+), which itself can trigger exocytosis.
Collapse
|
256
|
Ryan TA, Reuter H. Measurements of vesicle recycling in central neurons. NEWS IN PHYSIOLOGICAL SCIENCES : AN INTERNATIONAL JOURNAL OF PHYSIOLOGY PRODUCED JOINTLY BY THE INTERNATIONAL UNION OF PHYSIOLOGICAL SCIENCES AND THE AMERICAN PHYSIOLOGICAL SOCIETY 2001; 16:10-4. [PMID: 11390939 DOI: 10.1152/physiologyonline.2001.16.1.10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurotransmitter-containing vesicles in presynaptic nerve terminals are essential for synaptic transmission. The vesicles undergo a cycle that leads to transmitter release by exocytosis followed by endocytosis and refilling of the vesicles. Here we discuss new optical methods that have helped researchers study this cycle at functional and molecular levels, which is essential for our understanding of the regulation of synaptic transmission.
Collapse
Affiliation(s)
- T A Ryan
- Department of Biochemistry, The Weill Medical College of Cornell University, 1300 York Ave., New York, NY 10021, USA
| | | |
Collapse
|
257
|
Dalva MB, Takasu MA, Lin MZ, Shamah SM, Hu L, Gale NW, Greenberg ME. EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell 2000; 103:945-56. [PMID: 11136979 DOI: 10.1016/s0092-8674(00)00197-5] [Citation(s) in RCA: 540] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
EphB receptor tyrosine kinases are enriched at synapses, suggesting that these receptors play a role in synapse formation or function. We find that EphrinB binding to EphB induces a direct interaction of EphB with NMDA-type glutamate receptors. This interaction occurs at the cell surface and is mediated by the extracellular regions of the two receptors, but does not require the kinase activity of EphB. The kinase activity of EphB may be important for subsequent steps in synapse formation, as perturbation of EphB tyrosine kinase activity affects the number of synaptic specializations that form in cultured neurons. These findings indicate that EphrinB activation of EphB promotes an association of EphB with NMDA receptors that may be critical for synapse development or function.
Collapse
Affiliation(s)
- M B Dalva
- Division of Neuroscience, Children's Hospital, and the Department of Neurobiology Harvard Medical School 02115, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
258
|
Togo T, Krasieva TB, Steinhardt RA. A decrease in membrane tension precedes successful cell-membrane repair. Mol Biol Cell 2000; 11:4339-46. [PMID: 11102527 PMCID: PMC15076 DOI: 10.1091/mbc.11.12.4339] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We hypothesized that the requirement for Ca(2+)-dependent exocytosis in cell-membrane repair is to provide an adequate lowering of membrane tension to permit membrane resealing. We used laser tweezers to form membrane tethers and measured the force of those tethers to estimate the membrane tension of Swiss 3T3 fibroblasts after membrane disruption and during resealing. These measurements show that, for fibroblasts wounded in normal Ca(2+) Ringer's solution, the membrane tension decreased dramatically after the wounding and resealing coincided with a decrease of approximately 60% of control tether force values. However, the tension did not decrease if cells were wounded in a low Ca(2+) Ringer's solution that inhibited both membrane resealing and exocytosis. When cells were wounded twice in normal Ca(2+) Ringer's solution, decreases in tension at the second wound were 2.3 times faster than at the first wound, correlating well with twofold faster resealing rates for repeated wounds. The facilitated resealing to a second wound requires a new vesicle pool, which is generated via a protein kinase C (PKC)-dependent and brefeldin A (BFA)-sensitive process. Tension decrease at the second wound was slowed or inhibited by PKC inhibitor or BFA. Lowering membrane tension by cytochalasin D treatment could substitute for exocytosis and could restore membrane resealing in low Ca(2+) Ringer's solution.
Collapse
Affiliation(s)
- T Togo
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA
| | | | | |
Collapse
|
259
|
Slepnev VI, De Camilli P. Accessory factors in clathrin-dependent synaptic vesicle endocytosis. Nat Rev Neurosci 2000; 1:161-72. [PMID: 11257904 DOI: 10.1038/35044540] [Citation(s) in RCA: 399] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Clathrin-mediated endocytosis is a special form of vesicle budding important for the internalization of receptors and extracellular ligands, for the recycling of plasma membrane components, and for the retrieval of surface proteins destined for degradation. In nerve terminals, clathrin-mediated endocytosis is crucial for synaptic vesicle recycling. Recent structural studies have provided molecular details of coat assembly. In addition, biochemical and genetic studies have identified numerous accessory proteins that assist the clathrin coat in its function at synapses and in other systems. This review summarizes these advances with a special focus on accessory factors and highlights new aspects of clathrin-mediated endocytosis revealed by the study of these factors.
Collapse
Affiliation(s)
- V I Slepnev
- Howard Hughes Medical Institute and Department of Cell Biology, Yale University School of Medicine, 295 Congress Avenue, New Haven, Connecticut 06510, USA.
| | | |
Collapse
|
260
|
El-Husseini AED, Schnell E, Chetkovich DM, Nicoll RA, Bredt DS. PSD-95 Involvement in Maturation of Excitatory Synapses. Science 2000. [DOI: 10.1126/science.290.5495.1364] [Citation(s) in RCA: 588] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | - Eric Schnell
- Department of Cellular and Molecular Pharmacology, and
| | - Dane M. Chetkovich
- Department of Physiology,
- Department of Neurology, University of California, San Francisco 94143, USA
| | | | | |
Collapse
|
261
|
Abstract
We have combined electrophysiology and imaging to measure the release of neurotransmitter and fluorescent dye at synapses of cultured hippocampal neurons. These experiments have revealed a "kiss and run" mode of exocytosis in which synaptic vesicles release glutamate normally but do not permit dye to enter or escape from the vesicle. During "kiss and run," the vesicle interior may be exposed very transiently (<6 ms), or a special configuration of the fusion pore may prevent dye exchange. We estimate that about 20% of the vesicles normally use this "kiss and run" pathway, and that the fraction of "kiss and run" events can be increased to over 80% by superfusing the synapses with hypertonic solution.
Collapse
Affiliation(s)
- C F Stevens
- Howard Hughes Medical Institute, and Molecular Neurobiology Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
262
|
Affiliation(s)
- T C Südhof
- Howard Hughes Medical Institute, The Center for Basic Neuroscience and Department of Molecular Genetics, The University of Texas Southwestern Medical School, Dallas 75390, USA.
| |
Collapse
|
263
|
Abstract
Here, we review progress in our understanding of neuronal and glial cell biology during the past ten years, with an emphasis on glial cell fate specification, apoptosis, the cytoskeleton, neuronal polarity, synaptic vesicle recycling and targeting, regulation of the cytoskeleton by extracellular signals, and neuron-glia interactions.
Collapse
Affiliation(s)
- B A Barres
- Stanford University School of Medicine, Department of Neurobiology, Sherman Fairchild Science Building, Stanford, CA 94305-5125, USA.
| | | |
Collapse
|
264
|
Abstract
We have found using imaging techniques that stimulating Jurkat human leukaemic T-cells with ionomycin in the presence of FM1-43, a dye used to monitor exocytosis and endocytosis, causes large (6--10-fold) increases in FM1-43 fluorescence. These responses are too large to be caused by exocytosis. Instead, three lines of evidence suggest that FM1-43 is responding to phospholipid scrambling. First, ionomycin also stimulates increases in the fluorescence of annexin V, a phosphatidylserine-specific probe, while thapsigargin does not stimulate fluorescence increases of either probe. Secondly, cells that exhibit FM1-43 fluorescence increases after ionomycin stimulation stain with annexin V once FM1-43 is washed out. Thirdly, ionomycin stimulates uptake of 7-nitrobenz-2-oxa-1,3-diazole-labelled phosphatidylcholine, a specific assay for scramblase activity, whereas thapsigargin does not. We find that FM1-43 reports phospholipid scrambling with 'better' kinetics than annexin V, and does require extracellular Ca(2+) to report phospholipid scrambling. We suggest that FM1-43 may be a useful probe to study the dynamics of phospholipid scrambling. The results are the first demonstration that FM1-43 can respond significantly to a biological process other than vesicular trafficking.
Collapse
Affiliation(s)
- A Zweifach
- Department of Physiology and Biophysics, University of Colorado Health Sciences Center, 4200 E. 9th Ave., Denver, CO 80262, USA.
| |
Collapse
|
265
|
Friedman HV, Bresler T, Garner CC, Ziv NE. Assembly of new individual excitatory synapses: time course and temporal order of synaptic molecule recruitment. Neuron 2000; 27:57-69. [PMID: 10939331 DOI: 10.1016/s0896-6273(00)00009-x] [Citation(s) in RCA: 373] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Time-lapse microscopy, retrospective immunohistochemistry, and cultured hippocampal neurons were used to determine the time frame of individual glutamatergic synapse assembly and the temporal order in which specific molecules accumulate at new synaptic junctions. New presynaptic boutons capable of activity-evoked vesicle recycling were observed to form within 30 min of initial axodendritic contact. Clusters of the presynaptic active zone protein Bassoon were present in all new boutons. Conversely, clusters of the postsynaptic molecule SAP90/PSD-95 and glutamate receptors were found on average only approximately 45 min after such boutons were first detected. AMPA- and NMDA-type glutamate receptors displayed similar clustering kinetics. These findings suggest that glutamatergic synapse assembly can occur within 1-2 hr after initial contact and that presynaptic differentiation may precede postsynaptic differentiation.
Collapse
Affiliation(s)
- H V Friedman
- Rappaport Institute and Department of Anatomy and Cell Biology, Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | | | | | |
Collapse
|
266
|
McNeil PL, Vogel SS, Miyake K, Terasaki M. Patching plasma membrane disruptions with cytoplasmic membrane. J Cell Sci 2000; 113 ( Pt 11):1891-902. [PMID: 10806100 DOI: 10.1242/jcs.113.11.1891] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vesicle-vesicle fusion initiated in cell cytoplasm by high Ca(2+) can rapidly erect large membrane boundaries. These might be used as a ‘patch’ for resealing plasma membrane disruptions. Three central predictions of this ‘patch’ hypothesis are here established in sea urchin eggs. First, we show that surface markers for plasma membrane protein and lipid are initially absent over disruption sites after resealing is complete. Second, we demonstrate that resealing capacity is strongly dependent upon local availability of fusion competent cytoplasmic organelles, specifically the reserve or yolk granule. Lastly, we demonstrate that the reserve granule is capable of rapid (t(1/2) <1 second), Ca(2+)-regulated (high threshold) fusion capable of erecting large (>1000 μm(2)), continuous membrane boundaries. Production of patch vesicles for resealing may proceed by an ‘emergency’ fusion mechanism distinct from that utilized for the much slower, highly regulated, cytosol-requiring organelle-organelle fusion events typical of constitutive membrane trafficking pathways.
Collapse
Affiliation(s)
- P L McNeil
- Department of Cellular Biology and Anatomy, and Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA.
| | | | | | | |
Collapse
|
267
|
Reid JM, O'Neil RG. Osmomechanical regulation of membrane trafficking in polarized cells. Biochem Biophys Res Commun 2000; 271:429-34. [PMID: 10799314 DOI: 10.1006/bbrc.2000.2638] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The regulation of membrane trafficking is thought to be predominantly under the control of agonist-receptor transduction pathways. In the present study, osmomechanical stress due to swelling, a condition often accompanying cell activation, was shown to induce multiple membrane trafficking pathways in polarized absorptive epithelial cells in the absence of agonists. Osmomechanical stress activated rapidly (seconds) pathways of calcium-dependent membrane insertion into the basolateral domain, pathways of calcium-independent membrane retrieval from the basolateral domain, and a novel pathway of transcytosis (transcellular) between basolateral and apical cell domains. These pathways appear to underlie the transfer and regulation of transport proteins amongst cell compartments. This broad affect of osmomechanical stress on trafficking pathways may reflect a global mechanism for redistribution of transport proteins and other membrane components amongst cell compartments during states of mechanical stress.
Collapse
Affiliation(s)
- J M Reid
- Department of Integrative Biology and Pharmacology, The University of Texas-Houston Health Science Center, Houston, Texas, 77030, USA
| | | |
Collapse
|
268
|
Kuhn TB, Meberg PJ, Brown MD, Bernstein BW, Minamide LS, Jensen JR, Okada K, Soda EA, Bamburg JR. Regulating actin dynamics in neuronal growth cones by ADF/cofilin and Rho family GTPases. ACTA ACUST UNITED AC 2000. [DOI: 10.1002/1097-4695(200008)44:2<126::aid-neu4>3.0.co;2-z] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
269
|
Pyle JL, Kavalali ET, Choi S, Tsien RW. Visualization of synaptic activity in hippocampal slices with FM1-43 enabled by fluorescence quenching. Neuron 1999; 24:803-8. [PMID: 10624944 DOI: 10.1016/s0896-6273(00)81028-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fluorescence imaging of presynaptic uptake and release of styryl dyes such as FM1-43 has provided valuable insights into synaptic function. However, in studies of CNS neurons, the utility of these dyes has been severely limited by nonsynaptic background fluorescence. This has thwarted the use of FM dyes in systems more intact than dissociated neuronal cultures. Here, we describe an approach to selectively reduce undesired fluorescence through quenching of the surface-bound FM1-43 signal. The introduction of sulforhodamine, a fluorophore that is not taken up by synaptic vesicles, selectively reduced the nonsynaptic fluorescence in FM1-43-labeled hippocampal cultures. When applied to rat hippocampal slices, this procedure allowed us to observe activity-dependent staining and destaining of functional synapses. Extending the usefulness of styryl dyes to slice preparations may help make functional synaptic networks amenable to optical measurements.
Collapse
Affiliation(s)
- J L Pyle
- Department of Molecular and Cellular Physiology, Beckman Center, Stanford University School of Medicine, California 94305, USA
| | | | | | | |
Collapse
|
270
|
Kay AR, Alfonso A, Alford S, Cline HT, Holgado AM, Sakmann B, Snitsarev VA, Stricker TP, Takahashi M, Wu LG. Imaging synaptic activity in intact brain and slices with FM1-43 in C. elegans, lamprey, and rat. Neuron 1999; 24:809-17. [PMID: 10624945 DOI: 10.1016/s0896-6273(00)81029-6] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The fluorescent probe FM1-43 has been used extensively for imaging vesicle recycling; however, high nonspecific adsorption resulting in elevated background levels has precluded its use in certain tissues, notably brain slices. We have found that a sulfobutylated derivative of beta-cyclodextrin (ADVASEP-7) has a higher affinity for FM1-43 than the plasma membrane. ADVASEP-7 was used as a carrier to remove FM1-43 nonspecifically bound to the outer leaflet of the plasma membrane or extracellular molecules, significantly reducing background staining. This has enabled us to visualize synaptic vesicle recycling in the nematode C. elegans, intact lamprey spinal cord, and rat brain slices.
Collapse
Affiliation(s)
- A R Kay
- Department of Biological Sciences, University of Iowa, Iowa City 52242, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
271
|
Self T, Sobe T, Copeland NG, Jenkins NA, Avraham KB, Steel KP. Role of myosin VI in the differentiation of cochlear hair cells. Dev Biol 1999; 214:331-41. [PMID: 10525338 DOI: 10.1006/dbio.1999.9424] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mouse mutant Snell's waltzer (sv) has an intragenic deletion of the Myo6 gene, which encodes the unconventional myosin molecule myosin VI (K. B. Avraham et al., 1995, Nat. Genet. 11, 369-375). Snell's waltzer mutants exhibit behavioural abnormalities suggestive of an inner ear defect, including lack of responsiveness to sound, hyperactivity, head tossing, and circling. We have investigated the effects of a lack of myosin VI on the development of the sensory hair cells of the cochlea in these mutants. In normal mice, the hair cells sprout microvilli on their upper surface, and some of these grow to form a crescent or V-shaped array of modified microvilli, the stereocilia. In the mutants, early stages of stereocilia development appear to proceed normally because at birth many stereocilia bundles have a normal appearance, but in places there are signs of disorganisation of the bundles. Over the next few days, the stereocilia become progressively more disorganised and fuse together. Practically all hair cells show fused stereocilia by 3 days after birth, and there is extensive stereocilia fusion by 7 days. By 20 days, giant stereocilia are observed on top of the hair cells. At 1 and 3 days after birth, hair cells of mutants and controls take up the membrane dye FM1-43, suggesting that endocytosis occurs in mutant hair cells. One possible model for the fusion is that myosin VI may be involved in anchoring the apical hair cell membrane to the underlying actin-rich cuticular plate, and in the absence of normal myosin VI this apical membrane will tend to pull up between stereocilia, leading to fusion.
Collapse
Affiliation(s)
- T Self
- MRC Institute of Hearing Research, University Park, Nottingham, NG7 2RD, United Kingdom
| | | | | | | | | | | |
Collapse
|
272
|
Angleson JK, Cochilla AJ, Kilic G, Nussinovitch I, Betz WJ. Regulation of dense core release from neuroendocrine cells revealed by imaging single exocytic events. Nat Neurosci 1999; 2:440-6. [PMID: 10321248 DOI: 10.1038/8107] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Using FM1-43 fluorescence, we have optically detected single exocytic and endocytic events in rat pituitary lactotrophs. About fifty discrete fluorescent spots abruptly appear around the entire surface of a cell bathed in FM1-43 and high-potassium saline. The spots, which also immunostain for prolactin, reflect the labeling of dense cores as well as membranes of exocytosed secretory granules. Stained cores are not released, but remain attached to the cell and are eventually endocytosed. However, in cells exposed to dopamine (or an analog, bromocriptine), the cores dissolve and are secreted after several seconds. Solubilization of dense cores is mediated through a reduction in cytoplasmic cyclic AMP. Thus, the composition of secretions from individual secretory granules is regulated.
Collapse
Affiliation(s)
- J K Angleson
- Department of Physiology and Biophysics, University of Colorado Medical School, Denver 80262, USA
| | | | | | | | | |
Collapse
|