251
|
Tóth KF, Ádám D, Bíró T, Oláh A. Cannabinoid Signaling in the Skin: Therapeutic Potential of the "C(ut)annabinoid" System. Molecules 2019; 24:E918. [PMID: 30845666 PMCID: PMC6429381 DOI: 10.3390/molecules24050918] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023] Open
Abstract
The endocannabinoid system (ECS) has lately been proven to be an important, multifaceted homeostatic regulator, which influences a wide-variety of physiological processes all over the body. Its members, the endocannabinoids (eCBs; e.g., anandamide), the eCB-responsive receptors (e.g., CB₁, CB₂), as well as the complex enzyme and transporter apparatus involved in the metabolism of the ligands were shown to be expressed in several tissues, including the skin. Although the best studied functions over the ECS are related to the central nervous system and to immune processes, experimental efforts over the last two decades have unambiguously confirmed that cutaneous cannabinoid ("c[ut]annabinoid") signaling is deeply involved in the maintenance of skin homeostasis, barrier formation and regeneration, and its dysregulation was implicated to contribute to several highly prevalent diseases and disorders, e.g., atopic dermatitis, psoriasis, scleroderma, acne, hair growth and pigmentation disorders, keratin diseases, various tumors, and itch. The current review aims to give an overview of the available skin-relevant endo- and phytocannabinoid literature with a special emphasis on the putative translational potential, and to highlight promising future research directions as well as existing challenges.
Collapse
Affiliation(s)
- Kinga Fanni Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Dorottya Ádám
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Tamás Bíró
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
- HCEMM Nonprofit Ltd., 6720 Szeged, Hungary.
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| |
Collapse
|
252
|
Rajanahally S, Raheem O, Rogers M, Brisbane W, Ostrowski K, Lendvay T, Walsh T. The relationship between cannabis and male infertility, sexual health, and neoplasm: a systematic review. Andrology 2019; 7:139-147. [DOI: 10.1111/andr.12585] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 12/15/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022]
Affiliation(s)
- S. Rajanahally
- Department of Urology University of Washington Medical Center Seattle WA USA
| | - O. Raheem
- Department of Urology Tulane University New Orleans LA USA
| | - M. Rogers
- Department of Urology Medical University of South Carolina Charleston SC USA
| | - W. Brisbane
- Department of Urology University of Washington Medical Center Seattle WA USA
| | - K. Ostrowski
- Department of Urology University of Washington Medical Center Seattle WA USA
| | - T. Lendvay
- Department of Urology Seattle Children's Hospital Seattle WA USA
| | - T. Walsh
- Department of Urology University of Washington Medical Center Seattle WA USA
| |
Collapse
|
253
|
Khoury JM, Neves MDCLD, Roque MAV, Queiroz DADB, Corrêa de Freitas AA, de Fátima Â, Moreira FA, Garcia FD. Is there a role for cannabidiol in psychiatry? World J Biol Psychiatry 2019; 20:101-116. [PMID: 28112021 DOI: 10.1080/15622975.2017.1285049] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Understanding whether cannabidiol (CBD) is useful and safe for the treatment of psychiatric disorders is essential to empower psychiatrists and patients to take good clinical decisions. Our aim was to conduct a systematic review regarding the benefits and adverse events (AEs) of CBD in the treatment of schizophrenia, psychotic disorders, anxiety disorders, depression, bipolar disorder and substance-use disorders. METHODS We conducted a literature search in PubMed, Scielo, and Clinicaltrials.gov databases. Evidence was classified according to the WFSBP task forces standards. RESULTS Bibliographic research yielded 692 records. After analysis, we included six case reports and seven trials, comprising 201 subjects. Most the studies published presented several drawbacks and did not reach statistical significance. We have not found evidence regarding major depressive and bipolar disorders. The level of evidence for cannabis withdrawal is B; cannabis addiction is C2; treatment of positive symptoms in schizophrenia and anxiety in social anxiety disorder is C1. Discrete or no AEs were reported. The most frequently reported AEs are sedation and dizziness. CONCLUSIONS The evidence regarding efficacy and safety of CBD in psychiatry is still scarce. Further larger well-designed randomised controlled trials are required to assess the effects of CBD in psychiatric disorders.
Collapse
Affiliation(s)
- Julia Machado Khoury
- a Department of Mental Health , Federal University of Minas Gerais (UFMG) , Belo Horizonte , MG , Brazil.,b Postgraduation Program in Molecular Medicine , School of Medicine, Universidade Federal de Minas Gerais (UFMG) , Belo Horizonte , MG , Brazil
| | | | | | | | | | - Ângelo de Fátima
- c Department of Chemistry , Universidade Federal de Minas Gerais (UFMG) , Belo Horizonte , MG , Brazil
| | - Fabrício A Moreira
- d Department of Pharmacology, Institute of Biological Sciences , Universidade Federal de Minas Gerais (UFMG) , Belo Horizonte , MG , Brazil
| | - Frederico Duarte Garcia
- a Department of Mental Health , Federal University of Minas Gerais (UFMG) , Belo Horizonte , MG , Brazil.,b Postgraduation Program in Molecular Medicine , School of Medicine, Universidade Federal de Minas Gerais (UFMG) , Belo Horizonte , MG , Brazil.,e INCT de Medicina Molecular, Universidade Federal de Minas Gerais (UFMG) , Belo Horizonte , MG , Brazil.,f Unité Inserm U1073 , Rouen , France
| |
Collapse
|
254
|
Abstract
PURPOSE OF REVIEW Anxiety- and trauma-related disorders are prevalent and debilitating mental illnesses associated with a significant socioeconomic burden. Current treatment approaches often have inadequate therapeutic responses, leading to symptom relapse. Here we review recent preclinical and clinical findings on the potential of cannabinoids as novel therapeutics for regulating fear and anxiety. RECENT FINDINGS Evidence from preclinical studies has shown that the non-psychotropic phytocannabinoid cannabidiol and the endocannabinoid anandamide have acute anxiolytic effects and also regulate learned fear by dampening its expression, enhancing its extinction and disrupting its reconsolidation. The findings from the relevant clinical literature are still very preliminary but are nonetheless encouraging. Based on this preclinical evidence, larger-scale placebo-controlled clinical studies are warranted to investigate the effects of cannabidiol in particular as an adjunct to psychological therapy or medication to determine its potential utility for treating anxiety-related disorders in the future.
Collapse
Affiliation(s)
- Eleni P. Papagianni
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Carl W. Stevenson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| |
Collapse
|
255
|
Gorbunov AS, Maslov LN, Jaggi AS, Singh N, De Petrocellis L, Boshchenko AA, Roohbakhsh A, Bezuglov VV, Oeltgen PR. Physiological and Pathological Role of TRPV1, TRPV2 and TRPV4 Channels in Heart. Curr Cardiol Rev 2019; 15:244-251. [PMID: 30848206 PMCID: PMC8142357 DOI: 10.2174/1573403x15666190307112326] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/15/2019] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
Transient receptor potential vanilloid channel 2 (TRPV2) is required for normal cardiac contractility. The stimulation of TRPV1 in isolated cardiomyocytes can aggravate the effect of hypoxia/ reoxygenation (H/R) on H9C2 cells. The knockout of the TRPV1 gene promotes increased tolerance of the isolated perfused heart to the impact of ischemia/reperfusion (I/R). However, activation of TRPV1 increases the resistance of the heart to I/R due to calcitonin gene-related peptide (CGRP) release from afferent nerve endings. It has been established that TRPV1 and TRPV2 are involved in the pathogenesis of myocardial infarction and, in all likelihood, ensure the cardiac tolerance to the ischemia/reperfusion. It has also been documented that the activation of TRPV4 negatively affects the stability of cardiomyocytes to the H/R. The blockade of TRPV4 can be considered as a new approach to the prevention of I/R injury of the heart. Studies also indicate that TRPV1 is involved in the pathogenesis of cardiac hypertrophy and that TRPV2 channels participate in the pathogenesis of dilated cardiomyopathy. Excessive expression of TRPV2 leads to chronic Ca2+- overload of cardiomyocytes, which may contribute to the development of cardiomyopathy.
Collapse
Affiliation(s)
| | - Leonid N. Maslov
- Address correspondence to this author at the Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Kyevskaya 111A, 634012 Tomsk, Russia; Tel. +7 3822 262174; E-mail:
| | | | | | | | | | | | | | | |
Collapse
|
256
|
Falcão MAP, de Souza LS, Dolabella SS, Guimarães AG, Walker CIB. Zebrafish as an alternative method for determining the embryo toxicity of plant products: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35015-35026. [PMID: 30357668 DOI: 10.1007/s11356-018-3399-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
The toxicological assessment of plant products and pharmaceutical chemicals is a necessary requirement to ensure that all compounds are safe to be exposed to humans. Many countries are trying to reduce the use of animals; thus, alternative techniques, such as ex vivo tests, in vitro assays, and ex uteri embryos, are used. Toxicological assays using zebrafish embryos are an advantageous technique because they are transparent, have rapid embryonic development, and do not require invasive techniques. This paper comprehensively reviews how toxicity testing with plant products is conducted in zebrafish embryos. The search terms zebra fish, Danio rerio, zebrafish, zebra danio, Brachydanio rerio, zebrafish, and embryos were used to search for English-language articles in PUBMED, SCOPUS, and WEB OF SCIENCE. Twelve articles on plant product toxicity studies using zebrafish were selected for reading and analysis. After analyzing the articles and comparing with results in mammals, it was possible to prove the similarity among the results and thus corroborate the further development of zebrafish as a valid tool in toxicity tests.
Collapse
Affiliation(s)
- Maria Alice Pimentel Falcão
- Laboratory of Neuropharmacological Studies, Department of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, s/n - Jardim Rosa Elze, São Cristóvão, SE, 49100-000, Brazil
| | - Lucas Santos de Souza
- Laboratory of Neuropharmacological Studies, Department of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, s/n - Jardim Rosa Elze, São Cristóvão, SE, 49100-000, Brazil
| | - Silvio Santana Dolabella
- Laboratory of Parasitology and Tropical Entomology, Department of Morphology, Federal University of Sergipe, Sâo Cristóvão, SE, Brazil
| | - Adriana Gibara Guimarães
- Laboratory of Neuroscience and Pharmacological Assays, Department of Health Education, Federal University of Sergipe, Lagarto, SE, Brazil
| | - Cristiani Isabel Banderó Walker
- Laboratory of Neuropharmacological Studies, Department of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, s/n - Jardim Rosa Elze, São Cristóvão, SE, 49100-000, Brazil.
| |
Collapse
|
257
|
The role of fatty acids and their endocannabinoid-like derivatives in the molecular regulation of appetite. Mol Aspects Med 2018; 64:45-67. [DOI: 10.1016/j.mam.2018.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/05/2018] [Accepted: 01/07/2018] [Indexed: 02/07/2023]
|
258
|
Tonelli M, Cichero E, Mahmoud AM, Rabbito A, Tasso B, Fossa P, Ligresti A. Exploring the effectiveness of novel benzimidazoles as CB2 ligands: synthesis, biological evaluation, molecular docking studies and ADMET prediction. MEDCHEMCOMM 2018; 9:2045-2054. [PMID: 30647880 DOI: 10.1039/c8md00461g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/07/2018] [Indexed: 12/27/2022]
Abstract
Herein we continued our previous work on the development of CB2 ligands, reporting the design and synthesis of a series of benzimidazole-containing derivatives that were explored as selective CB2 ligands with binding affinity towards both CB1 and CB2 receptors. Seven out of eighteen compounds exhibited preferential binding ability to CB2 over CB1 receptors with potencies in the sub-micromolar or low micromolar range. In particular, we identified two promising hit compounds, the agonist 1-[2-(N,N-diethylamino)ethyl]-2-(4-ethoxybenzyl)-5-trifluoromethylbenzimidazole (3) (CB2: K i = 0.42 μM) and the inverse agonist/antagonist 1-butyl-2-(3,4-dichlorobenzyl)-5-trifluoromethylbenzimidazole (11) (CB2: K i = 0.37 μM). Docking studies also performed on other benzimidazoles reported in the literature supported the structure-activity relationship observed in this series of compounds and allowed the key contacts involved in the agonist and/or inverse agonist behaviour displayed by these derivatives to be determined. The in silico evaluation of ADMET properties suggested a favorable pharmacokinetic and safety profile, promoting the drug-likeness of these compounds towards a further optimization process.
Collapse
Affiliation(s)
- Michele Tonelli
- Dipartimento di Farmacia , Università degli Studi di Genova , V.le Benedetto XV, 3 , 16132 Genova , Italy .
| | - Elena Cichero
- Dipartimento di Farmacia , Università degli Studi di Genova , V.le Benedetto XV, 3 , 16132 Genova , Italy .
| | - Alì Mokhtar Mahmoud
- National Research Council of Italy , Institute of Biomolecular Chemistry , Endocannabinoid Research Group , Via Campi Flegrei 34 , 80078 Pozzuoli , (Na) , Italy
| | - Alessandro Rabbito
- National Research Council of Italy , Institute of Biomolecular Chemistry , Endocannabinoid Research Group , Via Campi Flegrei 34 , 80078 Pozzuoli , (Na) , Italy
| | - Bruno Tasso
- Dipartimento di Farmacia , Università degli Studi di Genova , V.le Benedetto XV, 3 , 16132 Genova , Italy .
| | - Paola Fossa
- Dipartimento di Farmacia , Università degli Studi di Genova , V.le Benedetto XV, 3 , 16132 Genova , Italy .
| | - Alessia Ligresti
- National Research Council of Italy , Institute of Biomolecular Chemistry , Endocannabinoid Research Group , Via Campi Flegrei 34 , 80078 Pozzuoli , (Na) , Italy
| |
Collapse
|
259
|
Witkamp RF, van Norren K. Let thy food be thy medicine….when possible. Eur J Pharmacol 2018; 836:102-114. [DOI: 10.1016/j.ejphar.2018.06.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 06/06/2018] [Accepted: 06/19/2018] [Indexed: 02/09/2023]
|
260
|
Storozhuk MV, Zholos AV. TRP Channels as Novel Targets for Endogenous Ligands: Focus on Endocannabinoids and Nociceptive Signalling. Curr Neuropharmacol 2018; 16:137-150. [PMID: 28440188 PMCID: PMC5883376 DOI: 10.2174/1570159x15666170424120802] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/04/2017] [Accepted: 04/14/2017] [Indexed: 12/19/2022] Open
Abstract
Background: Chronic pain is a significant clinical problem and a very complex pathophysiological phenomenon. There is growing evidence that targeting the endocannabinoid system may be a useful approach to pain alleviation. Classically, the system includes G protein-coupled receptors of the CB1 and CB2 subtypes and their endogenous ligands. More recently, several subtypes of the large superfamily of cation TRP channels have been coined as “ionotropic cannabinoid receptors”, thus highlighting their role in cannabinoid signalling. Thus, the aim of this review was to explore the intimate connection between several “painful” TRP channels, endocannabinoids and nociceptive signalling. Methods: Research literature on this topic was critically reviewed allowing us not only summarize the existing evidence in this area of research, but also propose several possible cellular mechanisms linking nociceptive and cannabinoid signaling with TRP channels. Results: We begin with an overview of physiology of the endocannabinoid system and its major components, namely CB1 and CB2 G protein-coupled receptors, their two most studied endogenous ligands, anandamide and 2-AG, and several enzymes involved in endocannabinoid biosynthesis and degradation. The role of different endocannabinoids in the regulation of synaptic transmission is then discussed in detail. The connection between the endocannabinoid system and several TRP channels, especially TRPV1-4, TRPA1 and TRPM8, is then explored, while highlighting the role of these same channels in pain signalling. Conclusion: There is increasing evidence implicating several TRP subtypes not only as an integral part of the endocannabinoid system, but also as promising molecular targets for pain alleviation with the use of endo- and phytocannabinoids, especially when the function of these channels is upregulated under inflammatory conditions.
Collapse
Affiliation(s)
- Maksim V Storozhuk
- A.A. Bogomoletz Institute of Physiology, National Academy of Science of Ukraine, 4 Bogomoletz Street, Kiev 01024, Ukraine
| | - Alexander V Zholos
- A.A. Bogomoletz Institute of Physiology, National Academy of Science of Ukraine, 4 Bogomoletz Street, Kiev 01024, Ukraine.,Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko Kiev National University, 2 Academician Glushkov Avenue, Kiev 03022, Ukraine
| |
Collapse
|
261
|
Tsuboi K, Uyama T, Okamoto Y, Ueda N. Endocannabinoids and related N-acylethanolamines: biological activities and metabolism. Inflamm Regen 2018; 38:28. [PMID: 30288203 PMCID: PMC6166290 DOI: 10.1186/s41232-018-0086-5] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/05/2018] [Indexed: 12/24/2022] Open
Abstract
The plant Cannabis sativa contains cannabinoids represented by Δ9-tetrahydrocannabinol, which exert psychoactivity and immunomodulation through cannabinoid CB1 and CB2 receptors, respectively, in animal tissues. Arachidonoylethanolamide (also referred to as anandamide) and 2-arachidonoylglycerol (2-AG) are well known as two major endogenous agonists of these receptors (termed "endocannabinoids") and show various cannabimimetic bioactivities. However, only 2-AG is a full agonist for CB1 and CB2 and mediates retrograde signals at the synapse, strongly suggesting that 2-AG is physiologically more important than anandamide. The metabolic pathways of these two endocannabinoids are completely different. 2-AG is mostly produced from inositol phospholipids via diacylglycerol by phospholipase C and diacylglycerol lipase and then degraded by monoacylglycerol lipase. On the other hand, anandamide is concomitantly produced with larger amounts of other N-acylethanolamines via N-acyl-phosphatidylethanolamines (NAPEs). Although this pathway consists of calcium-dependent N-acyltransferase and NAPE-hydrolyzing phospholipase D, recent studies revealed the involvement of several new enzymes. Quantitatively major N-acylethanolamines include palmitoylethanolamide and oleoylethanolamide, which do not bind to cannabinoid receptors but exert anti-inflammatory, analgesic, and anorexic effects through receptors such as peroxisome proliferator-activated receptor α. The biosynthesis of these non-endocannabinoid N-acylethanolamines rather than anandamide may be the primary significance of this pathway. Here, we provide an overview of the biological activities and metabolisms of endocannabinoids (2-AG and anandamide) and non-endocannabinoid N-acylethanolamines.
Collapse
Affiliation(s)
- Kazuhito Tsuboi
- 1Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793 Japan.,2Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192 Japan
| | - Toru Uyama
- 1Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793 Japan
| | - Yasuo Okamoto
- 2Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192 Japan
| | - Natsuo Ueda
- 1Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793 Japan
| |
Collapse
|
262
|
Bruni N, Della Pepa C, Oliaro-Bosso S, Pessione E, Gastaldi D, Dosio F. Cannabinoid Delivery Systems for Pain and Inflammation Treatment. Molecules 2018; 23:molecules23102478. [PMID: 30262735 PMCID: PMC6222489 DOI: 10.3390/molecules23102478] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 01/15/2023] Open
Abstract
There is a growing body of evidence to suggest that cannabinoids are beneficial for a range of clinical conditions, including pain, inflammation, epilepsy, sleep disorders, the symptoms of multiple sclerosis, anorexia, schizophrenia and other conditions. The transformation of cannabinoids from herbal preparations into highly regulated prescription drugs is therefore progressing rapidly. The development of such drugs requires well-controlled clinical trials to be carried out in order to objectively establish therapeutic efficacy, dose ranges and safety. The low oral bioavailability of cannabinoids has led to feasible methods of administration, such as the transdermal route, intranasal administration and transmucosal adsorption, being proposed. The highly lipophilic nature of cannabinoids means that they are seen as suitable candidates for advanced nanosized drug delivery systems, which can be applied via a range of routes. Nanotechnology-based drug delivery strategies have flourished in several therapeutic fields in recent years and numerous drugs have reached the market. This review explores the most recent developments, from preclinical to advanced clinical trials, in the cannabinoid delivery field, and focuses particularly on pain and inflammation treatment. Likely future directions are also considered and reported.
Collapse
Affiliation(s)
| | - Carlo Della Pepa
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
| | | | - Enrica Pessione
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy.
| | - Daniela Gastaldi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10125 Turin, Italy.
| | - Franco Dosio
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
| |
Collapse
|
263
|
Sales AJ, Crestani CC, Guimarães FS, Joca SRL. Antidepressant-like effect induced by Cannabidiol is dependent on brain serotonin levels. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:255-261. [PMID: 29885468 DOI: 10.1016/j.pnpbp.2018.06.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/19/2018] [Accepted: 06/05/2018] [Indexed: 11/26/2022]
Abstract
Cannabidiol (CBD) is a compound of Cannabis sativa with relevant therapeutic potential in several neuropsychiatric disorders including depression. CBD treatment has shown significant antidepressant-like effects in different rodent preclinical models. However, the mechanisms involved in CBD-induced antidepressant effects are still poorly understood. Therefore, this work aimed at investigating the participation of serotonin (5-HT) and/or noradrenaline (NA) in CBD-induced antidepressant-like effects in the forced swimming test (FST) by: 1) testing if CBD co-administration with serotonergic (fluoxetine, FLX) or noradrenergic (desipramine, DES) antidepressants would have synergistic effects; and 2) investigating if 5-HT or NA depletion would impair CBD-induced behavioral effects. Results showed that CBD (10 mg/kg), FLX (10 mg/kg) and DES (5 mg/kg) induced antidepressant-like effects in mice submitted to FST. Ineffective doses of CBD (7 mg/kg), when co-administered with ineffective doses of FLX (5 mg/kg) or DES (2.5 mg/kg) resulted in significant antidepressant-like effects, thus implicating synergistic and/or additive mechanisms. Pretreatment with PCPA (an inhibitor of serotonin synthesis: 150 mg/kg, i.p., once per day for 4 days), but not DSP-4 (a noradrenergic neurotoxin: 1 μg/μl, i.c.v., 24 h before the test), reduced monoamine levels in the brain. However, only PCPA treatment abolished CBD-induced behavioral effects in FST, indicating the participation of serotonergic mechanisms. None of the treatments induced locomotor effects. Our results suggest that the antidepressant-like effect induced by CBD in the FST is dependent on serotonin levels in the central nervous system (CNS).
Collapse
Affiliation(s)
- Amanda J Sales
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, School of Pharmaceutical Sciences of Araraquara, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil
| | - Sâmia R L Joca
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil; Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark.
| |
Collapse
|
264
|
Janssens A, Silvestri C, Martella A, Vanoevelen JM, Di Marzo V, Voets T. Δ 9-tetrahydrocannabivarin impairs epithelial calcium transport through inhibition of TRPV5 and TRPV6. Pharmacol Res 2018; 136:83-89. [PMID: 30170189 DOI: 10.1016/j.phrs.2018.08.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 11/17/2022]
Abstract
Compounds extracted from the cannabis plant, including the psychoactive Δ9-tetrahydrocannabinol (THC) and related phytocannabinoids, evoke multiple diverse biological actions as ligands of the G protein-coupled cannabinoid receptors CB1 and CB2. In addition, there is increasing evidence that phytocannabinoids also have non-CB targets, including several ion channels of the transient receptor potential superfamily. We investigated the effects of six non-THC phytocannabinoids on the epithelial calcium channels TRPV5 and TRPV6, and found that one of them, Δ9-tetrahydrocannabivarin (THCV), exerted a strong and concentration-dependent inhibitory effect on mammalian TRPV5 and TRPV6 and on the single zebrafish orthologue drTRPV5/6. Moreover, THCV attenuated the drTRPV5/6-dependent ossification in zebrafish embryos in vivo. Oppositely, 11-hydroxy-THCV (THCV-OH), a product of THCV metabolism in mammals, stimulated drTRPV5/6-mediated Ca2+ uptake and ossification. These results identify the epithelial calcium channels TRPV5 and TRPV6 as novel targets of phytocannabinoids, and suggest that THCV-containing products may modulate TRPV5- and TRPV6-dependent epithelial calcium transport.
Collapse
Affiliation(s)
- Annelies Janssens
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Cristoforo Silvestri
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, C.N.R., Pozzuoli, Italy
| | - Andrea Martella
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, C.N.R., Pozzuoli, Italy
| | - Jo M Vanoevelen
- Department of Genetics & Cell Biology, Section Clinical Genetics & GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, C.N.R., Pozzuoli, Italy; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis, Université Laval, Québec, Canada
| | - Thomas Voets
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
265
|
Di Marzo V. New approaches and challenges to targeting the endocannabinoid system. Nat Rev Drug Discov 2018; 17:623-639. [DOI: 10.1038/nrd.2018.115] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
266
|
Gil-Ordóñez A, Martín-Fontecha M, Ortega-Gutiérrez S, López-Rodríguez ML. Monoacylglycerol lipase (MAGL) as a promising therapeutic target. Biochem Pharmacol 2018; 157:18-32. [PMID: 30059673 DOI: 10.1016/j.bcp.2018.07.036] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022]
Abstract
Monoacylglycerol lipase (MAGL) has been characterized as the main enzyme responsible for the inactivation of the most abundant brain endocannabinoid, 2-arachidonoylglycerol (2-AG). Besides this role, MAGL has progressively acquired a growing importance as an integrative metabolic hub that controls not only the in vivo levels of 2-AG but also of other monoacylglycerides and, indirectly, the levels of free fatty acids derived from their hydrolysis as well as other lipids with pro-inflammatory or pro-tumorigenic effects, coming from the further metabolism of fatty acids. All these functions have only started to be elucidated in the last years due to the progress made in the knowledge of the structure of MAGL and in the development of genetic and chemical tools. In this review we report the advances made in the field with a special focus on the last decade and how MAGL has become a promising therapeutic target for the treatment of several diseases that currently lack appropriate therapies.
Collapse
Affiliation(s)
- Ana Gil-Ordóñez
- Department of Organic Chemistry, School of Chemistry, Universidad Complutense de Madrid, Av. Complutense s/n, E-28040 Madrid, Spain
| | - Mar Martín-Fontecha
- Department of Organic Chemistry, School of Chemistry, Universidad Complutense de Madrid, Av. Complutense s/n, E-28040 Madrid, Spain
| | - Silvia Ortega-Gutiérrez
- Department of Organic Chemistry, School of Chemistry, Universidad Complutense de Madrid, Av. Complutense s/n, E-28040 Madrid, Spain
| | - María L López-Rodríguez
- Department of Organic Chemistry, School of Chemistry, Universidad Complutense de Madrid, Av. Complutense s/n, E-28040 Madrid, Spain.
| |
Collapse
|
267
|
Paloczi J, Varga ZV, Hasko G, Pacher P. Neuroprotection in Oxidative Stress-Related Neurodegenerative Diseases: Role of Endocannabinoid System Modulation. Antioxid Redox Signal 2018; 29:75-108. [PMID: 28497982 PMCID: PMC5984569 DOI: 10.1089/ars.2017.7144] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Redox imbalance may lead to overproduction of reactive oxygen and nitrogen species (ROS/RNS) and subsequent oxidative tissue damage, which is a critical event in the course of neurodegenerative diseases. It is still not fully elucidated, however, whether oxidative stress is the primary trigger or a consequence in the process of neurodegeneration. Recent Advances: Increasing evidence suggests that oxidative stress is involved in the propagation of neuronal injury and consequent inflammatory response, which in concert promote development of pathological alterations characteristic of most common neurodegenerative diseases. CRITICAL ISSUES Accumulating recent evidence also suggests that there is an important interplay between the lipid endocannabinoid system [ECS; comprising the main cannabinoid 1 and 2 receptors (CB1 and CB2), endocannabinoids, and their synthetic and metabolizing enzymes] and various key inflammatory and redox-dependent processes. FUTURE DIRECTIONS Targeting the ECS to modulate redox state-dependent cell death and to decrease consequent or preceding inflammatory response holds therapeutic potential in a multitude of oxidative stress-related acute or chronic neurodegenerative disorders from stroke and traumatic brain injury to Alzheimer's and Parkinson's diseases and multiple sclerosis, just to name a few, which will be discussed in this overview. Antioxid. Redox Signal. 29, 75-108.
Collapse
Affiliation(s)
- Janos Paloczi
- 1 Laboratory of Cardiovascular Physiology and Tissue Injury (LCPTI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH) , Bethesda, Maryland
| | - Zoltan V Varga
- 1 Laboratory of Cardiovascular Physiology and Tissue Injury (LCPTI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH) , Bethesda, Maryland
| | - George Hasko
- 2 Department of Surgery, Rutgers New Jersey Medical School , Newark, New Jersey
| | - Pal Pacher
- 1 Laboratory of Cardiovascular Physiology and Tissue Injury (LCPTI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH) , Bethesda, Maryland
| |
Collapse
|
268
|
Fraguas‐Sánchez AI, Martín‐Sabroso C, Torres‐Suárez AI. Insights into the effects of the endocannabinoid system in cancer: a review. Br J Pharmacol 2018; 175:2566-2580. [PMID: 29663308 PMCID: PMC6003657 DOI: 10.1111/bph.14331] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/15/2018] [Accepted: 03/26/2018] [Indexed: 01/03/2023] Open
Abstract
In the last few decades, the endocannabinoid system has attracted a great deal of interest in terms of its applications to clinical medicine. In particular, its applications in cancer probably represent one of the therapeutic areas with most promise. On the one hand, expression of the endocannabinoid system is altered in numerous types of tumours, compared to healthy tissue, and this aberrant expression has been related to cancer prognosis and disease outcome, suggesting a role of this system in tumour growth and progression that depends on cancer type. On the other hand, cannabinoids exert an anticancer activity by inhibiting the proliferation, migration and/or invasion of cancer cells and also tumour angiogenesis. However, some cannabinoids, at lower concentrations, may increase tumour proliferation, inducing cancer growth. Enough data has been provided to consider the endocannabinoid system as a new therapeutic target in cancer, although further studies to fully establish the effect of cannabinoids on tumour progression are still needed.
Collapse
Affiliation(s)
- Ana Isabel Fraguas‐Sánchez
- Department of Pharmaceutical Technology, Faculty of PharmacyComplutense University of MadridMadrid28040Spain
| | - Cristina Martín‐Sabroso
- Department of Pharmaceutical Technology, Faculty of PharmacyComplutense University of MadridMadrid28040Spain
| | - Ana Isabel Torres‐Suárez
- Department of Pharmaceutical Technology, Faculty of PharmacyComplutense University of MadridMadrid28040Spain
- Institute of Industrial PharmacyComplutense University of MadridMadrid28040Spain
| |
Collapse
|
269
|
Blasco-Benito S, Seijo-Vila M, Caro-Villalobos M, Tundidor I, Andradas C, García-Taboada E, Wade J, Smith S, Guzmán M, Pérez-Gómez E, Gordon M, Sánchez C. Appraising the "entourage effect": Antitumor action of a pure cannabinoid versus a botanical drug preparation in preclinical models of breast cancer. Biochem Pharmacol 2018; 157:285-293. [PMID: 29940172 DOI: 10.1016/j.bcp.2018.06.025] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/21/2018] [Indexed: 01/01/2023]
Abstract
Breast cancer is the second leading cause of death among women. Although early diagnosis and development of new treatments have improved their prognosis, many patients present innate or acquired resistance to current therapies. New therapeutic approaches are therefore warranted for the management of this disease. Extensive preclinical research has demonstrated that cannabinoids, the active ingredients of Cannabis sativa, trigger antitumor responses in different models of cancer. Most of these studies have been conducted with pure compounds, mainly Δ9-tetrahydrocannabinol (THC). The cannabis plant, however, produces hundreds of other compounds with their own therapeutic potential and the capability to induce synergic responses when combined, the so-called "entourage effect". Here, we compared the antitumor efficacy of pure THC with that of a botanical drug preparation (BDP). The BDP was more potent than pure THC in producing antitumor responses in cell culture and animal models of ER+/PR+, HER2+ and triple-negative breast cancer. This increased potency was not due to the presence of the 5 most abundant terpenes in the preparation. While pure THC acted by activating cannabinoid CB2 receptors and generating reactive oxygen species, the BDP modulated different targets and mechanisms of action. The combination of cannabinoids with estrogen receptor- or HER2-targeted therapies (tamoxifen and lapatinib, respectively) or with cisplatin, produced additive antiproliferative responses in cell cultures. Combinations of these treatments in vivo showed no interactions, either positive or negative. Together, our results suggest that standardized cannabis drug preparations, rather than pure cannabinoids, could be considered as part of the therapeutic armamentarium to manage breast cancer.
Collapse
Affiliation(s)
- Sandra Blasco-Benito
- Complutense University, Madrid, Spain; Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain.
| | - Marta Seijo-Vila
- Complutense University, Madrid, Spain; Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Miriam Caro-Villalobos
- Complutense University, Madrid, Spain; Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Isabel Tundidor
- Complutense University, Madrid, Spain; Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | | | | | | | | | - Manuel Guzmán
- Complutense University, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, CIBERNED and IUIN, Madrid, Spain
| | - Eduardo Pérez-Gómez
- Complutense University, Madrid, Spain; Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | | | - Cristina Sánchez
- Complutense University, Madrid, Spain; Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain.
| |
Collapse
|
270
|
Mouhamed Y, Vishnyakov A, Qorri B, Sambi M, Frank SMS, Nowierski C, Lamba A, Bhatti U, Szewczuk MR. Therapeutic potential of medicinal marijuana: an educational primer for health care professionals. Drug Healthc Patient Saf 2018; 10:45-66. [PMID: 29928146 PMCID: PMC6001746 DOI: 10.2147/dhps.s158592] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
With the proposed Canadian July 2018 legalization of marijuana through the Cannabis Act, a thorough critical analysis of the current trials on the efficacy of medicinal marijuana (MM) as a treatment option is necessary. This review is particularly important for primary care physicians whose patients may be interested in using MM as an alternative therapy. In response to increased interest in MM, Health Canada released a document in 2013 for general practitioners (GPs) as an educational tool on the efficacy of MM in treating some chronic and acute conditions. Although additional studies have filled in some of the gaps since the release of the Health Canada document, conflicting and inconclusive results continue to pose a challenge for physicians. This review aims to supplement the Health Canada document by providing physicians with a critical yet concise update on the recent advancements made regarding the efficacy of MM as a potential therapeutic option. An update to the literature of 2013 is important given the upcoming changes in legislation on the use of marijuana. Also, we briefly highlight the current recommendations provided by Canadian medical colleges on the parameters that need to be considered prior to authorizing MM use, routes of administration as well as a general overview of the endocannabinoid system as it pertains to cannabis. Lastly, we outline the appropriate medical conditions for which the authorization of MM may present as a practical alternative option in improving patient outcomes as well as individual considerations of which GPs should be mindful. The purpose of this paper is to offer physicians an educational tool that provides a necessary, evidence-based analysis of the therapeutic potential of MM and to ensure physicians are making decisions on the therapeutic use of MM in good faith.
Collapse
Affiliation(s)
- Yara Mouhamed
- Graduate Diploma & Professional Master in Medical Sciences, School of Medicine, Queen’s University, Kingston, ON, Canada
| | - Andrey Vishnyakov
- Graduate Diploma & Professional Master in Medical Sciences, School of Medicine, Queen’s University, Kingston, ON, Canada
| | - Bessi Qorri
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Manpreet Sambi
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - SM Signy Frank
- Graduate Diploma & Professional Master in Medical Sciences, School of Medicine, Queen’s University, Kingston, ON, Canada
| | - Catherine Nowierski
- Graduate Diploma & Professional Master in Medical Sciences, School of Medicine, Queen’s University, Kingston, ON, Canada
| | - Anmol Lamba
- Graduate Diploma & Professional Master in Medical Sciences, School of Medicine, Queen’s University, Kingston, ON, Canada
| | - Umrao Bhatti
- Graduate Diploma & Professional Master in Medical Sciences, School of Medicine, Queen’s University, Kingston, ON, Canada
| | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
271
|
Localization of cannabinoid receptors CB1, CB2, GPR55, and PPARα in the canine gastrointestinal tract. Histochem Cell Biol 2018; 150:187-205. [DOI: 10.1007/s00418-018-1684-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2018] [Indexed: 12/26/2022]
|
272
|
Structure-kinetic relationship studies of cannabinoid CB 2 receptor agonists reveal substituent-specific lipophilic effects on residence time. Biochem Pharmacol 2018; 152:129-142. [DOI: 10.1016/j.bcp.2018.03.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/16/2018] [Indexed: 02/05/2023]
|
273
|
Reynoso-Moreno I, Chicca A, Flores-Soto ME, Viveros-Paredes JM, Gertsch J. The Endocannabinoid Reuptake Inhibitor WOBE437 Is Orally Bioavailable and Exerts Indirect Polypharmacological Effects via Different Endocannabinoid Receptors. Front Mol Neurosci 2018; 11:180. [PMID: 29910713 PMCID: PMC5992379 DOI: 10.3389/fnmol.2018.00180] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/09/2018] [Indexed: 12/22/2022] Open
Abstract
Different anandamide (AEA) transport inhibitors show antinociceptive and antiinflammatory effects in vivo, but due to their concomitant inhibition of fatty acid amide hydrolase (FAAH) and overall poor bioavailability, they cannot be used unequivocally to study the particular role of endocannabinoid (EC) transport in pathophysiological conditions in vivo. Here, the potent and selective endocannabinoid reuptake inhibitor WOBE437, which inhibits AEA and 2-arachidonoylglycerol (2-AG) transport, was tested for its oral bioavailability to the brain. WOBE437 is assumed to locally increase EC levels in tissues in which facilitated EC reuptake intermediates subsequent hydrolysis. Given the marked polypharmacology of ECs, we hypothesized to see differential effects on distinct EC receptors in animal models of acute and chronic pain/inflammation. In C57BL6/J male mice, WOBE437 was orally bioavailable with an estimated tmax value of ≤20 min in plasma (Cmax ∼ 2000 pmol/mL after 50 mg/kg, p.o.) and brain (Cmax ∼ 500 pmol/g after 50 mg/kg, p.o.). WOBE437 was cleared from the brain after approximately 180 min. In addition, in BALB/c male mice, acute oral administration of WOBE437 (50 mg/kg) exhibited similar brain concentrations after 60 min and inhibited analgesia in the hot plate test in a cannabinoid CB1 receptor-dependent manner, without inducing catalepsy or affecting locomotion. WOBE437 significantly elevated AEA in the somatosensory cortex, while showing dose-dependent biphasic effects on 2-AG levels in plasma but no significant changes in N-acylethanolamines other than AEA in any of the tissues. In order to explore the presumed polypharmacology mediated via elevated EC levels, we tested this EC reuptake inhibitor in complete Freud's adjuvant induced monoarthritis in BALB/c mice as a model of chronic inflammation. Repetitive doses of WOBE437 (10 mg/kg, i.p.) attenuated allodynia and edema via cannabinoid CB2, CB1, and PPARγ receptors. The allodynia inhibition of WOBE437 treatment for 3 days was fully reversed by antagonists of any of the receptors. In the single dose treatment the CB2 and TRPV1 antagonists significantly blocked the effect of WOBE437. Overall, our results show the broad utility of WOBE437 for animal experimentation for both p.o. and i.p. administrations. Furthermore, the data indicate the possible involvement of EC reuptake/transport in pathophysiological processes related to pain and inflammation.
Collapse
Affiliation(s)
- Inés Reynoso-Moreno
- Institute of Biochemistry and Molecular Medicine, National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland.,Laboratorio de Investigación y Desarrollo Farmacéutico, Departamento de Farmacología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Mexico
| | - Andrea Chicca
- Institute of Biochemistry and Molecular Medicine, National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| | - Mario E Flores-Soto
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Segura Social, Guadalajara, Mexico
| | - Juan M Viveros-Paredes
- Laboratorio de Investigación y Desarrollo Farmacéutico, Departamento de Farmacología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Mexico
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| |
Collapse
|
274
|
Enhanced endocannabinoid tone as a potential target of pharmacotherapy. Life Sci 2018; 204:20-45. [PMID: 29729263 DOI: 10.1016/j.lfs.2018.04.054] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/19/2018] [Accepted: 04/28/2018] [Indexed: 12/21/2022]
Abstract
The endocannabinoid system is up-regulated in numerous pathophysiological states such as inflammatory, neurodegenerative, gastrointestinal, metabolic and cardiovascular diseases, pain, and cancer. It has been suggested that this phenomenon primarily serves an autoprotective role in inhibiting disease progression and/or diminishing signs and symptoms. Accordingly, enhancement of endogenous endocannabinoid tone by inhibition of endocannabinoid degradation represents a promising therapeutic approach for the treatment of many diseases. Importantly, this allows for the avoidance of unwanted psychotropic side effects that accompany exogenously administered cannabinoids. The effects of endocannabinoid metabolic pathway modulation are complex, as endocannabinoids can exert their actions directly or via numerous metabolites. The two main strategies for blocking endocannabinoid degradation are inhibition of endocannabinoid-degrading enzymes and inhibition of endocannabinoid cellular uptake. To date, the most investigated compounds are inhibitors of fatty acid amide hydrolase (FAAH), an enzyme that degrades the endocannabinoid anandamide. However, application of FAAH inhibitors (and consequently other endocannabinoid degradation inhibitors) in medicine became questionable due to a lack of therapeutic efficacy in clinical trials and serious adverse effects evoked by one specific compound. In this paper, we discuss multiple pathways of endocannabinoid metabolism, changes in endocannabinoid levels across numerous human diseases and corresponding experimental models, pharmacological strategies for enhancing endocannabinoid tone and potential therapeutic applications including multi-target drugs with additional targets outside of the endocannabinoid system (cyclooxygenase-2, cholinesterase, TRPV1, and PGF2α-EA receptors), and currently used medicines or medicinal herbs that additionally enhance endocannabinoid levels. Ultimately, further clinical and preclinical studies are warranted to develop medicines for enhancing endocannabinoid tone.
Collapse
|
275
|
Maroon J, Bost J. Review of the neurological benefits of phytocannabinoids. Surg Neurol Int 2018; 9:91. [PMID: 29770251 PMCID: PMC5938896 DOI: 10.4103/sni.sni_45_18] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 02/19/2018] [Indexed: 12/31/2022] Open
Abstract
Background: Numerous physical, psychological, and emotional benefits have been attributed to marijuana since its first reported use in 2,600 BC in a Chinese pharmacopoeia. The phytocannabinoids, cannabidiol (CBD), and delta-9-tetrahydrocannabinol (Δ9-THC) are the most studied extracts from cannabis sativa subspecies hemp and marijuana. CBD and Δ9-THC interact uniquely with the endocannabinoid system (ECS). Through direct and indirect actions, intrinsic endocannabinoids and plant-based phytocannabinoids modulate and influence a variety of physiological systems influenced by the ECS. Methods: In 1980, Cunha et al. reported anticonvulsant benefits in 7/8 subjects with medically uncontrolled epilepsy using marijuana extracts in a phase I clinical trial. Since then neurological applications have been the major focus of renewed research using medical marijuana and phytocannabinoid extracts. Results: Recent neurological uses include adjunctive treatment for malignant brain tumors, Parkinson's disease, Alzheimer's disease, multiple sclerosis, neuropathic pain, and the childhood seizure disorders Lennox-Gastaut and Dravet syndromes. In addition, psychiatric and mood disorders, such as schizophrenia, anxiety, depression, addiction, postconcussion syndrome, and posttraumatic stress disorders are being studied using phytocannabinoids. Conclusions: In this review we will provide animal and human research data on the current clinical neurological uses for CBD individually and in combination with Δ9-THC. We will emphasize the neuroprotective, antiinflammatory, and immunomodulatory benefits of phytocannabinoids and their applications in various clinical syndromes.
Collapse
Affiliation(s)
- Joseph Maroon
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jeff Bost
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
276
|
Alhouayek M, Buisseret B, Paquot A, Guillemot-Legris O, Muccioli GG. The endogenous bioactive lipid prostaglandin D
2
‐glycerol ester reduces murine colitis
via
DP1 and PPARγ receptors. FASEB J 2018; 32:5000-5011. [DOI: 10.1096/fj.201701205r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research GroupLouvain Drug Research InstituteUniversité Catholique de LouvainBrusselsBelgium
| | - Baptiste Buisseret
- Bioanalysis and Pharmacology of Bioactive Lipids Research GroupLouvain Drug Research InstituteUniversité Catholique de LouvainBrusselsBelgium
| | - Adrien Paquot
- Bioanalysis and Pharmacology of Bioactive Lipids Research GroupLouvain Drug Research InstituteUniversité Catholique de LouvainBrusselsBelgium
| | - Owein Guillemot-Legris
- Bioanalysis and Pharmacology of Bioactive Lipids Research GroupLouvain Drug Research InstituteUniversité Catholique de LouvainBrusselsBelgium
| | - Giulio G. Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research GroupLouvain Drug Research InstituteUniversité Catholique de LouvainBrusselsBelgium
| |
Collapse
|
277
|
Ruz-Maldonado I, Pingitore A, Liu B, Atanes P, Huang GC, Baker D, Alonso FJ, Bermúdez-Silva FJ, Persaud SJ. LH-21 and abnormal cannabidiol improve β-cell function in isolated human and mouse islets through GPR55-dependent and -independent signalling. Diabetes Obes Metab 2018; 20:930-942. [PMID: 29205751 DOI: 10.1111/dom.13180] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/15/2017] [Accepted: 11/30/2017] [Indexed: 12/20/2022]
Abstract
AIMS To examine the effects of Abn-CBD (GPR55 agonist) and LH-21 (CB1 antagonist) on human and mouse islet function, and to determine signalling via GPR55 using islets from GPR55-/- mice. MATERIALS AND METHODS Islets isolated from human organ donors and mice were incubated in the absence or presence of Abn-CBD or LH-21, and insulin secretion, [Ca2+ ]i, cAMP, apoptosis, β-cell proliferation and CREB and AKT phosphorylation were examined using standard techniques. RESULTS Abn-CBD potentiated glucose-stimulated insulin secretion and elevated [Ca2+ ]i in human islets and islets from both GPR55+/+ and GPR55-/- mice. LH-21 also increased insulin secretion and [Ca2+ ]i in human islets and GPR55+/+ mouse islets, but concentrations of LH-21 up to 0.1 μM were ineffective in islets from GPR55-/- mice. Neither ligand affected basal insulin secretion or islet cAMP levels. Abn-CBD and LH-21 reduced cytokine-induced apoptosis in human islets and GPR55+/+ mouse islets, and these effects were suppressed after GPR55 deletion. They also increased β-cell proliferation: the effects of Abn-CBD were preserved in islets from GPR55-/- mice, while those of LH-21 were abolished. Abn-CBD and LH-21 increased AKT phosphorylation in mouse and human islets. CONCLUSIONS This study showed that Abn-CBD and LH-21 improve human and mouse islet β-cell function and viability. Use of islets from GPR55-/- mice suggests that designation of Abn-CBD and LH-21 as a GPR55 agonist and a CB1 antagonist, should be revised.
Collapse
Affiliation(s)
- Inmaculada Ruz-Maldonado
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Attilio Pingitore
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Bo Liu
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Patricio Atanes
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Guo Cai Huang
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - David Baker
- Blizard Institute, Barts and The London School of Medicine and Dentistry, London, UK
| | - Francisco José Alonso
- Canceromics Laboratory, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Instituto de Biomedicina de Málaga (IBIMA), Universidad de Málaga, Malaga, Spain
| | - Francisco Javier Bermúdez-Silva
- Unidad de Gestión Clínica Intercentros de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Malaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Malaga, Spain
| | - Shanta J Persaud
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
278
|
Zákány N, Oláh A, Markovics A, Takács E, Aranyász A, Nicolussi S, Piscitelli F, Allarà M, Pór Á, Kovács I, Zouboulis CC, Gertsch J, Di Marzo V, Bíró T, Szabó T. Endocannabinoid Tone Regulates Human Sebocyte Biology. J Invest Dermatol 2018; 138:1699-1706. [PMID: 29501385 DOI: 10.1016/j.jid.2018.02.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 02/19/2018] [Accepted: 02/19/2018] [Indexed: 12/20/2022]
Abstract
We have previously shown that endocannabinoids (eCBs) (e.g., anandamide) are involved in the maintenance of homeostatic sebaceous lipid production in human sebaceous glands and that eCB treatment dramatically increases sebaceous lipid production. Here, we aimed to investigate the expression of the major eCB synthesizing and degrading enzymes and to study the effects of eCB uptake inhibitors on human SZ95 sebocytes, thus exploring the role of the putative eCB membrane transporter, which has been hypothesized to facilitate the cellular uptake and subsequent degradation of eCBs. We found that the major eCB synthesizing (N-acyl phosphatidylethanolamine-specific phospholipase D, and diacylglycerol lipase-α and -β) and degrading (fatty acid amide hydrolase, monoacylglycerol lipase) enzymes are expressed in SZ95 sebocytes and also in sebaceous glands (except for diacylglycerol lipase-α, the staining of which was dubious in histological preparations). eCB uptake-inhibition with VDM11 induced a moderate increase in sebaceous lipid production and also elevated the levels of various eCBs and related acylethanolamides. Finally, we found that VDM11 was able to interfere with the proinflammatory action of the TLR4 activator lipopolysaccharide. Collectively, our data suggest that inhibition of eCB uptake exerts anti-inflammatory actions and elevates both sebaceous lipid production and eCB levels; thus, these inhibitors might be beneficial in cutaneous inflammatory conditions accompanied by dry skin.
Collapse
Affiliation(s)
- Nóra Zákány
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Arnold Markovics
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Erika Takács
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Aranyász
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Simon Nicolussi
- Institute of Biochemistry and Molecular Medicine, National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Marco Allarà
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Ágnes Pór
- Department of Pathology, Gyula Kenézy University Hospital, University of Debrecen, Debrecen, Hungary
| | - Ilona Kovács
- Department of Pathology, Gyula Kenézy University Hospital, University of Debrecen, Debrecen, Hungary
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodore Fontane, Dessau, Germany
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, National Centre of Competence in Research TransCure, University of Bern, Bern, Switzerland
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Tamás Bíró
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Tamás Szabó
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
279
|
Mazzoccanti G, Ismail OH, D'Acquarica I, Villani C, Manzo C, Wilcox M, Cavazzini A, Gasparrini F. Cannabis through the looking glass: chemo- and enantio-selective separation of phytocannabinoids by enantioselective ultra high performance supercritical fluid chromatography. Chem Commun (Camb) 2018; 53:12262-12265. [PMID: 29072720 DOI: 10.1039/c7cc06999e] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By using the Inverted Chirality Columns Approach (ICCA) we have developed an enantioselective UHPSFC method to determine the enantiomeric excess (ee) of (-)-Δ9-THC in medicinal marijuana (Bedrocan®). The ee was high (99.73%), but the concentration of the (+)-enantiomer (0.135%) was not negligible, and it is worth a systematic evaluation of bioactivity.
Collapse
Affiliation(s)
- G Mazzoccanti
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, p.le A. Moro 5, 00185 Roma, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
280
|
Alhouayek M, Rankin L, Gouveia-Figueira S, Fowler CJ. Interferon γ treatment increases endocannabinoid and related N-acylethanolamine levels in T84 human colon carcinoma cells. Br J Pharmacol 2018; 176:1470-1480. [PMID: 29313885 DOI: 10.1111/bph.14135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/17/2017] [Accepted: 12/11/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Endocannabinoids and related N-acylethanolamines (NAEs) are involved in regulation of gut function, but relatively little is known as to whether inflammatory cytokines such as IFNγ affect their levels. We have investigated this in vitro using cultures of T84 colon cancer cells. EXPERIMENTAL APPROACH T84 cells, when cultured in monolayers, differentiate to form adult colonic crypt-like cells with excellent permeability barrier properties. The integrity of the permeability barrier in these monolayers was measured using transepithelial electrical resistance (TEER). NAE levels were determined by ultra-performance liquid chromatography-tandem mass spectrometric analysis. Expression of the enzymes involved in NAE and 2-arachidonoylglycerol (2-AG) turnover were assessed with qPCR. KEY RESULTS IFNγ treatment for 8 or 24 h increased levels of both endocannabinoids (anandamide and 2-AG) and the related NAEs. The treatment did not affect the rate of hydrolysis of either anandamide or palmitoylethanolamide by intact cells, and in both cases, fatty acid amide hydrolase (FAAH) rather than NAE-hydrolysing acid amidase (NAAA) was mainly responsible for the hydrolysis of these NAEs. IFNγ treatment reduced the TEER of the cells in a manner that was not prevented by inhibition of either FAAH or NAAA but was partially reversed by apical administration of the NAE palmitoylethanolamide. CONCLUSION AND IMPLICATIONS IFNγ treatment mobilized endocannabinoid and related NAE levels in T84 cells. However, blockade of anandamide or NAE hydrolysis was insufficient to negate the deleterious effects of this cytokine upon the permeability barrier of the cell monolayers. LINKED ARTICLES This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.
Collapse
Affiliation(s)
- Mireille Alhouayek
- Department of Pharmacology and Clinical Neuroscience, Pharmacology Unit, Umeå University, Umeå, Sweden
| | - Linda Rankin
- Department of Pharmacology and Clinical Neuroscience, Pharmacology Unit, Umeå University, Umeå, Sweden
| | | | - Christopher J Fowler
- Department of Pharmacology and Clinical Neuroscience, Pharmacology Unit, Umeå University, Umeå, Sweden
| |
Collapse
|
281
|
Rein JL, Wyatt CM. Marijuana and Cannabinoids in ESRD and Earlier Stages of CKD. Am J Kidney Dis 2018; 71:267-274. [DOI: 10.1053/j.ajkd.2017.06.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/19/2017] [Indexed: 12/15/2022]
|
282
|
Stern CA, de Carvalho CR, Bertoglio LJ, Takahashi RN. Effects of Cannabinoid Drugs on Aversive or Rewarding Drug-Associated Memory Extinction and Reconsolidation. Neuroscience 2018; 370:62-80. [DOI: 10.1016/j.neuroscience.2017.07.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/23/2017] [Accepted: 07/09/2017] [Indexed: 12/22/2022]
|
283
|
Wang J, Xu Y, Zhu L, Zou Y, Kong W, Dong B, Huang J, Chen Y, Xue W, Huang Y, Zhang J. Cannabinoid receptor 2 as a novel target for promotion of renal cell carcinoma prognosis and progression. J Cancer Res Clin Oncol 2018; 144:39-52. [PMID: 28993942 DOI: 10.1007/s00432-017-2527-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/26/2017] [Indexed: 12/23/2022]
Abstract
PURPOSE Renal cell carcinoma (RCC) is the most common malignancy of urogenital system, and patients with RCC may face a poor prognosis. However, limited curable therapeutic options are currently available. The aim of this study is to investigate the role of Cannabinoid receptor 2 (CB2) in RCC progression. METHODS Immunohistochemistry was to investigate the expression pattern of CB2 in 418 RCC tissues and explore its prognostic function in RCC patients. Furthermore, the role of used CB2 si-RNA knockdown and inhibited by AM630, a CB2 inverse agonist, on cell proliferation, migration, and cell cycle of RCC cell lines in vitro was also investigated. RESULTS We observed that CB2 was up-regulated in RCC tissues, and presented as an independent prognostic factor for overall survival of RCC patients and higher CB2 expression tends to have poor clinical outcomes in survival analyses. Moreover, we also observed that CB2, incorporated with pN stage, pathological grade, and recurrence or distant metastasis after surgery, could obviously enhance their prognostic accuracy in a predictive nomogram analysis. In addition, knockdown or inhibition by AM630 for the expression of CB2 in vitro could significantly decreased cell proliferation and migration, and obviously induced cell cycle arrest in G2/M of RCC cells. CONCLUSIONS CB2 expression is functionally related to cellular proliferation, migration, and cell cycle of RCC cells. Our data suggest that CB2 might be a potential therapeutic target for RCC.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Blotting, Western
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/therapy
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Movement/physiology
- Cell Proliferation/drug effects
- Cell Proliferation/physiology
- Disease Progression
- Female
- G2 Phase Cell Cycle Checkpoints/drug effects
- Gene Knockdown Techniques
- Humans
- Immunohistochemistry
- Indoles/pharmacology
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Kidney Neoplasms/therapy
- M Phase Cell Cycle Checkpoints/drug effects
- Male
- Middle Aged
- Molecular Targeted Therapy
- Neoplasm Staging
- Prognosis
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/biosynthesis
- Receptor, Cannabinoid, CB2/deficiency
- Receptor, Cannabinoid, CB2/genetics
- Young Adult
Collapse
Affiliation(s)
- Jianfeng Wang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yunze Xu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Liangsong Zhu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yun Zou
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wen Kong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jiwei Huang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yonghui Chen
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yiran Huang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Jin Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
284
|
Garami A, Steiner AA, Romanovsky AA. Fever and hypothermia in systemic inflammation. HANDBOOK OF CLINICAL NEUROLOGY 2018; 157:565-597. [PMID: 30459026 DOI: 10.1016/b978-0-444-64074-1.00034-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Systemic inflammation-associated syndromes (e.g., sepsis and septic shock) often have high mortality and remain a challenge in emergency medicine. Systemic inflammation is usually accompanied by changes in body temperature: fever or hypothermia. In animal studies, systemic inflammation is often modeled by administering bacterial lipopolysaccharide, which triggers autonomic and behavioral thermoeffector responses and causes either fever or hypothermia, depending on the dose and ambient temperature. Fever and hypothermia are regulated changes of body temperature, which correspond to mild and severe forms of systemic inflammation, respectively. Mediators of fever and hypothermia are called endogenous pyrogens and cryogens; they are produced when the innate immune system recognizes an infectious pathogen. Upon an inflammatory challenge, hepatic and pulmonary macrophages (and later brain endothelial cells) start to release lipid mediators, of which prostaglandin (PG) E2 plays the key role, and cytokines. Blood PGE2 enters the brain and triggers fever. At later stages of fever, PGE2 synthesized within the blood-brain barrier maintains fever. In both cases, PGE2 is synthesized by cyclooxygenase-2 and microsomal PGE2synthase-1. Mediators of hypothermia are not well established. Both fever and hypothermia are beneficial host defense responses. Based on evidence from studies in laboratory animals and clinical trials in humans, fever is beneficial for fighting mild infection. Based mainly on animal studies, hypothermia is beneficial in severe systemic inflammation and infection.
Collapse
Affiliation(s)
- Andras Garami
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary.
| | - Alexandre A Steiner
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Andrej A Romanovsky
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), Trauma Research, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| |
Collapse
|
285
|
Regulation of noradrenergic and serotonergic systems by cannabinoids: relevance to cannabinoid-induced effects. Life Sci 2018; 192:115-127. [DOI: 10.1016/j.lfs.2017.11.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/29/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022]
|
286
|
Carletti F, Gambino G, Rizzo V, Ferraro G, Sardo P. Neuronal nitric oxide synthase is involved in CB/TRPV1 signalling: Focus on control of hippocampal hyperexcitability. Epilepsy Res 2017; 138:18-25. [DOI: 10.1016/j.eplepsyres.2017.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/15/2017] [Accepted: 09/29/2017] [Indexed: 12/29/2022]
|
287
|
Karpińska O, Baranowska-Kuczko M, Kloza M, Kozłowska H. Endocannabinoids modulate G q/11 protein-coupled receptor agonist-induced vasoconstriction via a negative feedback mechanism. ACTA ACUST UNITED AC 2017; 70:214-222. [PMID: 29148061 DOI: 10.1111/jphp.12854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The endocannabinoid (eCB) system centrally and peripherally regulates cardiovascular parameters, including blood pressure, in health and disease. The relationship between Gq/11 protein-coupled receptor activation, regulation of eCBs release (mainly 2-arachidonoylglycerol) and subsequent CB1 receptor activation was initially observed in the central nervous system. Here, we review the latest findings from systemic physiological studies which include for the first time data from pulmonary arteries. We present evidence for direct CB1 -dependent cannabinoid ligand-induced vasorelaxation, vascular expression of eCBs along with their degradation enzymes, and indicate the location of the described interaction. KEY FINDINGS Endocannabinoids (mainly 2-arachidonoylglycerol), acting via CB1 receptors, evoke vasodilatory effects and may modulate responses of vasoconstrictors for Gq/11 protein-coupled receptors including angiotensin II, thromboxane A2 , phenylephrine, noradrenaline in systemic or pulmonary arteries. However, the role of the endothelium in this interaction is not well-established, and the precise vascular location of eCB system components remains unclear, which contributes to discrepancies in the interpretation of results when describing the above-mentioned relationship. SUMMARY Endocannabinoid's negative feedback is responsible for diminishing agonist-induced vasoconstriction, which may be clinically important in the treatment of arterial and pulmonary hypertension. Further research is required to establish the importance of the eCB system and its downstream signalling pathways.
Collapse
Affiliation(s)
- Olga Karpińska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| | - Marta Baranowska-Kuczko
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| | - Monika Kloza
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| | - Hanna Kozłowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
288
|
Oláh A, Szekanecz Z, Bíró T. Targeting Cannabinoid Signaling in the Immune System: "High"-ly Exciting Questions, Possibilities, and Challenges. Front Immunol 2017; 8:1487. [PMID: 29176975 PMCID: PMC5686045 DOI: 10.3389/fimmu.2017.01487] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/23/2017] [Indexed: 12/21/2022] Open
Abstract
It is well known that certain active ingredients of the plants of Cannabis genus, i.e., the "phytocannabinoids" [pCBs; e.g., (-)-trans-Δ9-tetrahydrocannabinol (THC), (-)-cannabidiol, etc.] can influence a wide array of biological processes, and the human body is able to produce endogenous analogs of these substances ["endocannabinoids" (eCB), e.g., arachidonoylethanolamine (anandamide, AEA), 2-arachidonoylglycerol (2-AG), etc.]. These ligands, together with multiple receptors (e.g., CB1 and CB2 cannabinoid receptors, etc.), and a complex enzyme and transporter apparatus involved in the synthesis and degradation of the ligands constitute the endocannabinoid system (ECS), a recently emerging regulator of several physiological processes. The ECS is widely expressed in the human body, including several members of the innate and adaptive immune system, where eCBs, as well as several pCBs were shown to deeply influence immune functions thereby regulating inflammation, autoimmunity, antitumor, as well as antipathogen immune responses, etc. Based on this knowledge, many in vitro and in vivo studies aimed at exploiting the putative therapeutic potential of cannabinoid signaling in inflammation-accompanied diseases (e.g., multiple sclerosis) or in organ transplantation, and to dissect the complex immunological effects of medical and "recreational" marijuana consumption. Thus, the objective of the current article is (i) to summarize the most recent findings of the field; (ii) to highlight the putative therapeutic potential of targeting cannabinoid signaling; (iii) to identify open questions and key challenges; and (iv) to suggest promising future directions for cannabinoid-based drug development.
Collapse
Affiliation(s)
- Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Szekanecz
- Department of Internal Medicine, Division of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Bíró
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
289
|
Cairns EA, Kelly MEM. Why support a separate medical access framework for cannabis? CMAJ 2017; 189:E927-E928. [PMID: 28716846 DOI: 10.1503/cmaj.170427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Elizabeth A Cairns
- Department of Pharmacology (Cairns, Kelly); Department of Anesthesia, Pain Management, and Perioperative Medicine (Kelly), Dalhousie University, Halifax, NS
| | - Melanie E M Kelly
- Department of Pharmacology (Cairns, Kelly); Department of Anesthesia, Pain Management, and Perioperative Medicine (Kelly), Dalhousie University, Halifax, NS
| |
Collapse
|
290
|
Silva NR, Gomes FV, Fonseca MD, Mechoulam R, Breuer A, Cunha TM, Guimarães FS. Antinociceptive effects of HUF-101, a fluorinated cannabidiol derivative. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:369-377. [PMID: 28720466 DOI: 10.1016/j.pnpbp.2017.07.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 06/12/2017] [Accepted: 07/13/2017] [Indexed: 12/19/2022]
Abstract
Cannabidiol (CBD) is a phytocannabinoid with multiple pharmacological effects and several potential therapeutic properties. Its low oral bioavailability, however, can limit its clinical use. Preliminary results indicate that fluorination of the CBD molecule increases its pharmacological potency. Here, we investigated whether HUF-101 (3, 10, and 30mg/kg), a fluorinated CBD analogue, would induce antinociceptive effects. HUF-101 effects were compared to those induced by CBD (10, 30, and 90mg/kg) and the cannabinoid CB1/2 receptor agonist WIN55,212-2 (1, 3, and 5mg/kg). These drugs were tested in male Swiss mice submitted to the following models predictive to antinociceptive drugs: hot plate, acetic acid-induced writhing, and carrageenan-induced inflammatory hyperalgesia. To evaluate the involvement of CB1 and CB2 receptors in HUF-101 and CBD effects, mice received the CB1 receptor antagonist AM251 (1 or 3mg/kg) or the CB2 receptor antagonist AM630 (1 or 3mg/kg) 30min before HUF-101, CBD, or WIN55,212-2. In the hot plate test, HUF-101 (30mg/kg) and WIN55,212-2 (5mg/kg) induced antinociceptive effects, which were attenuated by the pretreatment with AM251 and AM630. In the abdominal writhing test, CBD (30 and 90mg/kg), HUF-101 (30mg/kg), and WIN55,212-2 (3 and 5mg/kg) induced antinociceptive effects indicated by a reduction in the number of writhing. Whereas the pretreatment with AM630 did not mitigate the effects induced by any drug in this test, the pretreatment with AM251 attenuated the effect caused by WIN55,212-2. In the carrageenan-induced hyperalgesia test, CBD (30 and 90mg/kg), HUF-101 (3, 10 and 30mg/kg) and WIN55,212-2 (1mg/kg) decreased the intensity of mechanical hyperalgesia measured by the electronic von Frey method. The effects of all compounds were attenuated by the pretreatment with AM251 and AM630. Additionally, we evaluated whether HUF-101 would induce the classic cannabinoid CB1 receptor-mediated tetrad (hypolocomotion, catalepsy, hypothermia, and antinociception). Unlike WIN55,212-2, CBD and HUF-101 did not induce the cannabinoid tetrad. These findings show that HUF-101 produced antinociceptive effects at lower doses than CBD, indicating that the addition of fluoride improved its pharmacological profile. Furthermore, some of the antinociceptive effects of CBD and HUF-101 effects seem to involve the activation of CB1 and CB2 receptors.
Collapse
Affiliation(s)
- Nicole R Silva
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Brazil.
| | - Felipe V Gomes
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Miriam D Fonseca
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Raphael Mechoulam
- Department of Medicinal Chemistry and Natural Products, Medical Faculty, Hebrew University of Jerusalem, Israel
| | - Aviva Breuer
- Department of Medicinal Chemistry and Natural Products, Medical Faculty, Hebrew University of Jerusalem, Israel
| | - Thiago M Cunha
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Brazil
| |
Collapse
|
291
|
Pagano E, Borrelli F. Targeting cannabinoid receptors in gastrointestinal cancers for therapeutic uses: current status and future perspectives. Expert Rev Gastroenterol Hepatol 2017; 11:871-873. [PMID: 28817987 DOI: 10.1080/17474124.2017.1367663] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ester Pagano
- a Department of Pharmacy, School of Medicine and Surgery , University of Naples Federico II , Naples , Italy.,b Endocannabinoid Research Group
| | - Francesca Borrelli
- a Department of Pharmacy, School of Medicine and Surgery , University of Naples Federico II , Naples , Italy.,b Endocannabinoid Research Group
| |
Collapse
|
292
|
Martella A, Sijben H, Rufer AC, Grether U, Fingerle J, Ullmer C, Hartung T, IJzerman AP, van der Stelt M, Heitman LH. A Novel Selective Inverse Agonist of the CB 2 Receptor as a Radiolabeled Tool Compound for Kinetic Binding Studies. Mol Pharmacol 2017; 92:389-400. [PMID: 28747489 DOI: 10.1124/mol.117.108605] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/21/2017] [Indexed: 02/14/2025] Open
Abstract
The endocannabinoid system, and in particular the cannabinoid type 2 receptor (CB2R), raised the interest of many medicinal chemistry programs for its therapeutic relevance in several (patho)physiologic processes. However, the physico-chemical properties of tool compounds for CB2R (e.g., the radioligand [3H]CP55,940) are not optimal, despite the research efforts in developing effective drugs to target this system. At the same time, the importance of drug-target binding kinetics is growing since the kinetic binding profile of a ligand may provide important insights for the resulting in vivo efficacy. In this context we synthesized and characterized [3H]RO6957022, a highly selective CB2R inverse agonist, as a radiolabeled tool compound. In equilibrium and kinetic binding experiments [3H]RO6957022 showed high affinity for human CB2R with fast association (kon) and moderate dissociation (koff) kinetics. To demonstrate the robustness of [3H]RO6957022 binding, affinity studies were carried out for a wide range of CB2R reference ligands, spanning the range of full, partial, and inverse agonists. Finally, we used [3H]RO6957022 to study the kinetic binding profiles (i.e., kon and koff values) of selected synthetic and endogenous (i.e., 2-arachidonoylglycerol, anandamide, and noladin ether) CB2R ligands by competition association experiments. All tested ligands, and in particular the endocannabinoids, displayed distinct kinetic profiles, shedding more light on their mechanism of action and the importance of association rates in the determination of CB2R affinity. Altogether, this study shows that the use of a novel tool compound, i.e., [3H]RO6957022, can support the development of novel ligands with a repertoire of kinetic binding profiles for CB2R.
Collapse
Affiliation(s)
- Andrea Martella
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (A.M., H.S., A.P.I., L.H.H.), and Department of Molecular Physiology, Leiden Institute of Chemistry (A.M., M.S.), Leiden University, Leiden, The Netherlands; Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (A.M., A.C.R., U.G., C.U., T.H.); and Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany (J.F.)
| | - Huub Sijben
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (A.M., H.S., A.P.I., L.H.H.), and Department of Molecular Physiology, Leiden Institute of Chemistry (A.M., M.S.), Leiden University, Leiden, The Netherlands; Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (A.M., A.C.R., U.G., C.U., T.H.); and Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany (J.F.)
| | - Arne C Rufer
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (A.M., H.S., A.P.I., L.H.H.), and Department of Molecular Physiology, Leiden Institute of Chemistry (A.M., M.S.), Leiden University, Leiden, The Netherlands; Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (A.M., A.C.R., U.G., C.U., T.H.); and Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany (J.F.)
| | - Uwe Grether
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (A.M., H.S., A.P.I., L.H.H.), and Department of Molecular Physiology, Leiden Institute of Chemistry (A.M., M.S.), Leiden University, Leiden, The Netherlands; Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (A.M., A.C.R., U.G., C.U., T.H.); and Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany (J.F.)
| | - Juergen Fingerle
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (A.M., H.S., A.P.I., L.H.H.), and Department of Molecular Physiology, Leiden Institute of Chemistry (A.M., M.S.), Leiden University, Leiden, The Netherlands; Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (A.M., A.C.R., U.G., C.U., T.H.); and Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany (J.F.)
| | - Christoph Ullmer
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (A.M., H.S., A.P.I., L.H.H.), and Department of Molecular Physiology, Leiden Institute of Chemistry (A.M., M.S.), Leiden University, Leiden, The Netherlands; Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (A.M., A.C.R., U.G., C.U., T.H.); and Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany (J.F.)
| | - Thomas Hartung
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (A.M., H.S., A.P.I., L.H.H.), and Department of Molecular Physiology, Leiden Institute of Chemistry (A.M., M.S.), Leiden University, Leiden, The Netherlands; Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (A.M., A.C.R., U.G., C.U., T.H.); and Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany (J.F.)
| | - Adriaan P IJzerman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (A.M., H.S., A.P.I., L.H.H.), and Department of Molecular Physiology, Leiden Institute of Chemistry (A.M., M.S.), Leiden University, Leiden, The Netherlands; Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (A.M., A.C.R., U.G., C.U., T.H.); and Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany (J.F.)
| | - Mario van der Stelt
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (A.M., H.S., A.P.I., L.H.H.), and Department of Molecular Physiology, Leiden Institute of Chemistry (A.M., M.S.), Leiden University, Leiden, The Netherlands; Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (A.M., A.C.R., U.G., C.U., T.H.); and Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany (J.F.)
| | - Laura H Heitman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (A.M., H.S., A.P.I., L.H.H.), and Department of Molecular Physiology, Leiden Institute of Chemistry (A.M., M.S.), Leiden University, Leiden, The Netherlands; Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (A.M., A.C.R., U.G., C.U., T.H.); and Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany (J.F.)
| |
Collapse
|
293
|
Singh P, Ganjiwale A, Howlett AC, Cowsik SM. In silico interaction analysis of cannabinoid receptor interacting protein 1b (CRIP1b) - CB1 cannabinoid receptor. J Mol Graph Model 2017; 77:311-321. [PMID: 28918320 PMCID: PMC5816684 DOI: 10.1016/j.jmgm.2017.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 01/16/2023]
Abstract
Cannabinoid Receptor Interacting Protein isoform 1b (CRIP1b) is known to interact with the CB1 receptor. Alternative splicing of the CNRIP1 gene produces CRIP1a and CRIP1b with a difference in the third exon only. Exons 1 and 2 encode for a functional domain in both proteins. CRIP1a is involved in regulating CB1 receptor internalization, but the function of CRIP1b is not very well characterized. Since there are significant identities in functional domains of these proteins, CRIP1b is a potential target for drug discovery. We report here predicted structure of CRIP1b followed by its interaction analysis with CB1 receptor by in-silico methods A number of complementary computational techniques, including, homology modeling, ab-initio and protein threading, were applied to generate three-dimensional molecular models for CRIP1b. The computed model of CRIP1b was refined, followed by docking with C terminus of CB1 receptor to generate a model for the CRIP1b- CB1 receptor interaction. The structure of CRIP1b obtained by homology modelling using RHO_GDI-2 as template is a sandwich fold structure having beta sheets connected by loops, similar to predicted CRIP1a structure. The best scoring refined model of CRIP1b in complex with the CB1 receptor C terminus peptide showed favourable polar interactions. The overall binding pocket of CRIP1b was found to be overlapping to that of CRIP1a. The Arg82 and Cys126 of CRIP1b are involved in the majority of hydrogen bond interactions with the CB1 receptor and are possible key residues required for interactions between the CB1 receptor and CRIP1b.
Collapse
Affiliation(s)
- Pratishtha Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anjali Ganjiwale
- Department of Life Sciences, Bangalore University, Bangalore 560056, India
| | - Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Sudha M Cowsik
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
294
|
Karlsson J, Gouveia-Figueira S, Alhouayek M, Fowler CJ. Effects of tumour necrosis factor α upon the metabolism of the endocannabinoid anandamide in prostate cancer cells. PLoS One 2017; 12:e0185011. [PMID: 28910408 PMCID: PMC5599064 DOI: 10.1371/journal.pone.0185011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/04/2017] [Indexed: 11/19/2022] Open
Abstract
Tumour necrosis factor α (TNFα) is involved in the pathogenesis of prostate cancer, a disease where disturbances in the endocannabinoid system are seen. In the present study we have investigated whether treatment of DU145 human prostate cancer cells affects anandamide (AEA) catabolic pathways. Additionally, we have investigated whether cyclooxygenase-2 (COX-2) can regulate the uptake of AEA into cells. Levels of AEA synthetic and catabolic enzymes were determined by qPCR. AEA uptake and hydrolysis in DU145 and RAW264.7 macrophage cells were assayed using AEA labeled in the arachidonic and ethanolamine portions of the molecule, respectively. Levels of AEA, related N-acylethanolamines (NAEs), prostaglandins (PG) and PG-ethanolamines (PG-EA) in DU145 cells and medium were quantitated by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis. TNFα treatment of DU145 cells increased mRNA levels of PTSG2 (gene of COX-2) and decreased the mRNA of the AEA synthetic enzyme N-acyl-phosphatidylethanolamine selective phospholipase D. mRNA levels of the AEA hydrolytic enzymes fatty acid amide hydrolase (FAAH) and N-acylethanolamine-hydrolyzing acid amidase were not changed. AEA uptake in both DU145 and RAW264.7 cells was inhibited by FAAH inhibition, but not by COX-2 inhibition, even in RAW264.7 cells where the expression of this enzyme had greatly been induced by lipopolysaccharide + interferon γ treatment. AEA and related NAEs were detected in DU145 cells, but PGs and PGE2-EA were only detected when the cells had been preincubated with 100 nM AEA. The data demonstrate that in DU145 cells, TNFα treatment changes the relative expression of the enzymes involved in the hydrolytic and oxygenation catabolic pathways for AEA. In RAW264.7 cells, COX-2, in contrast to FAAH, does not regulate the cellular accumulation of AEA. Further studies are necessary to determine the extent to which inflammatory mediators are involved in the abnormal endocannabinoid signalling system in prostate cancer.
Collapse
Affiliation(s)
- Jessica Karlsson
- Department of Pharmacology and Clinical Neuroscience, Pharmacology Unit, Umeå University, Umeå, Sweden
| | | | - Mireille Alhouayek
- Department of Pharmacology and Clinical Neuroscience, Pharmacology Unit, Umeå University, Umeå, Sweden
| | - Christopher J. Fowler
- Department of Pharmacology and Clinical Neuroscience, Pharmacology Unit, Umeå University, Umeå, Sweden
| |
Collapse
|
295
|
Poursharifi P, Madiraju SRM, Prentki M. Monoacylglycerol signalling and ABHD6 in health and disease. Diabetes Obes Metab 2017; 19 Suppl 1:76-89. [PMID: 28880480 DOI: 10.1111/dom.13008] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/24/2017] [Accepted: 05/11/2017] [Indexed: 12/14/2022]
Abstract
Lipid metabolism dysregulation underlies chronic pathologies such as obesity, diabetes and cancer. Besides their role in structure and energy storage, lipids are also important signalling molecules regulating multiple biological functions. Thus, understanding the precise lipid metabolism enzymatic steps that are altered in some pathological conditions is helpful for designing better treatment strategies. Several monoacylglycerol (MAG) species are only recently being recognized as signalling lipid molecules in different tissues. Recent studies indicated the importance of the ubiquitously expressed serine hydrolase α/β-hydrolase domain 6 (ABHD6), which is a MAG hydrolase, in regulating signalling competent MAG in both central and peripheral tissues. The central and peripheral function of the endocannabinoid 2-arachidonoylglycerol, which is a 2-MAG, and its breakdown by both ABHD6 and classical MAG lipase has been well documented. ABHD6 and its substrate MAG appear to be involved in the regulation of various physiological and pathological processes including insulin secretion, adipose browning, food intake, neurotransmission, autoimmune disorders, neurological and metabolic diseases as well as cancer. Diverse cellular targets such as mammalian unc13-1 (Munc13-1), PPARs, GPR119 and CB1/2 receptors, for MAG-mediated signalling processes have been proposed in different cell types. The purpose of this review is to provide a comprehensive summary of the current state of knowledge regarding ABHD6/MAG signalling and its possible therapeutic implications.
Collapse
Affiliation(s)
- Pegah Poursharifi
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| | - Sri Ramachandra Murthy Madiraju
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| | - Marc Prentki
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| |
Collapse
|
296
|
Cairns EA, Szczesniak AM, Straiker AJ, Kulkarni PM, Pertwee RG, Thakur GA, Baldridge WH, Kelly MEM. The In Vivo Effects of the CB 1-Positive Allosteric Modulator GAT229 on Intraocular Pressure in Ocular Normotensive and Hypertensive Mice. J Ocul Pharmacol Ther 2017; 33:582-590. [PMID: 28719234 DOI: 10.1089/jop.2017.0037] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Orthosteric cannabinoid receptor 1 (CB1) activation leads to decreases in intraocular pressure (IOP). However, use of orthosteric CB1 agonists chronically has several disadvantages, limiting their usefulness as clinically relevant drugs. Allosteric modulators interact with topographically distinct sites to orthosteric ligands and may be useful to circumvent some of these disadvantages. The purpose of this study was to investigate the effects of the novel CB1-positive allosteric modulator (PAM) GAT229 on IOP. METHODS IOP was measured using rebound tonometry in anesthetized normotensive C57Bl/6 mice and in a genetic model of ocular hypertension [nose, eyes, ears (nee) mice] before drug administration, and at 1, 6, and 12 h thereafter. RESULTS In normotensive mice, topical administration of 5 μL GAT229 alone at either 0.2% or 2% did not reduce IOP. However, a subthreshold dose (0.25%) of the nonselective orthosteric CB1 agonist WIN 55,212-2, when combined with 0.2% GAT229, significantly reduced IOP compared with vehicle at 6 and 12 h. Similarly, combination of subthreshold Δ9-tetrahydrocannabinol (a nonselective orthosteric CB1 agonist; 1 mg/kg) with topical 0.2% GAT229 produced IOP lowering at 6 h. In nee mice, administration of topical 0.2% GAT229 or 10 mg/kg GAT229 alone was sufficient to lower IOP at 6 and 12 h, and 12 h, respectively. CONCLUSIONS The CB1 PAM GAT229 reduces IOP in ocular hypertensive mice and enhanced CB1-mediated IOP reduction when combined with subthreshold CB1 orthosteric ligands in normotensive mice. Administration of CB1 PAMs may provide a novel approach to reduce IOP with fewer of the disadvantages associated with orthosteric CB1 activation.
Collapse
Affiliation(s)
- Elizabeth A Cairns
- 1 Department of Pharmacology, Dalhousie University , Halifax, Nova Scotia, Canada
| | | | - Alex J Straiker
- 2 Department of Psychological and Brain Sciences, Indiana University , Bloomington, Indiana
| | - Pushkar M Kulkarni
- 3 Department of Pharmaceutical Sciences School of Pharmacy, Bouvé College of Health Sciences, Northeastern University , Boston, Massachusetts
| | - Roger G Pertwee
- 4 School of Medicine, Medical Sciences, and Nutrition, Institute of Medical Sciences, University of Aberdeen , Aberdeen, Scotland
| | - Ganesh A Thakur
- 3 Department of Pharmaceutical Sciences School of Pharmacy, Bouvé College of Health Sciences, Northeastern University , Boston, Massachusetts
| | - William H Baldridge
- 5 Department of Medical Neuroscience, Dalhousie University , Halifax, Nova Scotia, Canada .,6 Department of Ophthalmology and Visual Sciences, Dalhousie University , Halifax, Nova Scotia, Canada
| | - Melanie E M Kelly
- 1 Department of Pharmacology, Dalhousie University , Halifax, Nova Scotia, Canada .,6 Department of Ophthalmology and Visual Sciences, Dalhousie University , Halifax, Nova Scotia, Canada
| |
Collapse
|
297
|
Ruggiero RN, Rossignoli MT, De Ross JB, Hallak JEC, Leite JP, Bueno-Junior LS. Cannabinoids and Vanilloids in Schizophrenia: Neurophysiological Evidence and Directions for Basic Research. Front Pharmacol 2017; 8:399. [PMID: 28680405 PMCID: PMC5478733 DOI: 10.3389/fphar.2017.00399] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/06/2017] [Indexed: 01/14/2023] Open
Abstract
Much of our knowledge of the endocannabinoid system in schizophrenia comes from behavioral measures in rodents, like prepulse inhibition of the acoustic startle and open-field locomotion, which are commonly used along with neurochemical approaches or drug challenge designs. Such methods continue to map fundamental mechanisms of sensorimotor gating, hyperlocomotion, social interaction, and underlying monoaminergic, glutamatergic, and GABAergic disturbances. These strategies will require, however, a greater use of neurophysiological tools to better inform clinical research. In this sense, electrophysiology and viral vector-based circuit dissection, like optogenetics, can further elucidate how exogenous cannabinoids worsen (e.g., tetrahydrocannabinol, THC) or ameliorate (e.g., cannabidiol, CBD) schizophrenia symptoms, like hallucinations, delusions, and cognitive deficits. Also, recent studies point to a complex endocannabinoid-endovanilloid interplay, including the influence of anandamide (endogenous CB1 and TRPV1 agonist) on cognitive variables, such as aversive memory extinction. In fact, growing interest has been devoted to TRPV1 receptors as promising therapeutic targets. Here, these issues are reviewed with an emphasis on the neurophysiological evidence. First, we contextualize imaging and electrographic findings in humans. Then, we present a comprehensive review on rodent electrophysiology. Finally, we discuss how basic research will benefit from further combining psychopharmacological and neurophysiological tools.
Collapse
Affiliation(s)
- Rafael N Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Matheus T Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Jana B De Ross
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Jaime E C Hallak
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil.,National Institute for Science and Technology-Translational Medicine, National Council for Scientific and Technological Development (CNPq)Ribeirão Preto, Brazil
| | - Joao P Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Lezio S Bueno-Junior
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| |
Collapse
|
298
|
Zhou H, Peng Y, Halikhedkar A, Fan P, Janero DR, Thakur GA, Mercier RW, Sun X, Ma X, Makriyannis A. Human Cannabinoid Receptor 2 Ligand-Interaction Motif: Transmembrane Helix 2 Cysteine, C2.59(89), as Determinant of Classical Cannabinoid Agonist Activity and Binding Pose. ACS Chem Neurosci 2017; 8:1338-1347. [PMID: 28220706 DOI: 10.1021/acschemneuro.7b00003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cannabinoid receptor 2 (CB2R)-dependent signaling is implicated in neuronal physiology and immune surveillance by brain microglia. Selective CB2R agonists hold therapeutic promise for inflammatory and other neurological disorders. Information on human CB2R (hCB2R) ligand-binding and functional domains is needed to inform the rational design and optimization of candidate druglike hCB2R agonists. Prior demonstration that hCB2R transmembrane helix 2 (TMH2) cysteine C2.59(89) reacts with small-molecule methanethiosulfonates showed that this cysteine residue is accessible to sulfhydryl derivatization reagents. We now report the design and application of two novel, pharmacologically active, high-affinity molecular probes, AM4073 and AM4099, as chemical reporters to interrogate directly the interaction of classical cannabinoid agonists with hCB2R cysteine residues. AM4073 has one electrophilic isothiocyanate (NCS) functionality at the C9 position of its cyclohexenyl C-ring, whereas AM4099 has NCS groups at that position and at the terminus of its aromatic A-ring C3 side chain. Pretreatment of wild-type hCB2R with either probe reduced subsequent [3H]CP55,940 specific binding by ∼60%. Conservative serine substitution of any hCB2R TMH cysteine residue except C2.59(89) did not affect the reduction of [3H]CP55,940 specific binding by either probe, suggesting that AM4073 and AM4099 interact irreversibly with this TMH2 cysteine. In contrast, AM841, an exceptionally potent hCB2R megagonist and direct AM4073/4099 congener bearing a single electrophilic NCS group at the terminus of its C3 side chain, had been demonstrated to bind covalently to TMH6 cysteine C6.47(257) and not C2.59(89). Molecular modeling indicates that the AM4073-hCB2R* interaction at C2.59(89) orients this classical cannabinoid away from TMH6 and toward the TMH2-TMH3 interface in the receptor's hydrophobic binding pocket, whereas the AM841-hCB2R* interaction at C6.47(257) favors agonist orientation toward TMH6/7. These data constitute initial evidence that TMH2 cysteine C2.59(89) is a component of the hCB2R binding pocket for classical cannabinoids. The results further demonstrate how interactions between classical cannabinoids and specific amino acids within the hCB2R* ligand-binding domain act as determinants of agonist pharmacological properties and the architecture of the agonist-hCB2R* conformational ensemble, allowing the receptor to adopt distinct activity states, such that interaction of classical cannabinoids with TMH6 cysteine C6.47(257) favors a binding pose more advantageous for agonist potency than does their interaction with TMH2 cysteine C2.59(89).
Collapse
Affiliation(s)
- Han Zhou
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology, Pharmaceutical Sciences, and Bioengineering; College of Science, Bouvé College of Health Sciences, and College of Engineering, Northeastern University, Boston, Massachusetts 02115-5000, United States
| | - Yan Peng
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology, Pharmaceutical Sciences, and Bioengineering; College of Science, Bouvé College of Health Sciences, and College of Engineering, Northeastern University, Boston, Massachusetts 02115-5000, United States
| | - Aneetha Halikhedkar
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology, Pharmaceutical Sciences, and Bioengineering; College of Science, Bouvé College of Health Sciences, and College of Engineering, Northeastern University, Boston, Massachusetts 02115-5000, United States
| | - Pusheng Fan
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology, Pharmaceutical Sciences, and Bioengineering; College of Science, Bouvé College of Health Sciences, and College of Engineering, Northeastern University, Boston, Massachusetts 02115-5000, United States
| | - David R. Janero
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology, Pharmaceutical Sciences, and Bioengineering; College of Science, Bouvé College of Health Sciences, and College of Engineering, Northeastern University, Boston, Massachusetts 02115-5000, United States
| | - Ganesh A. Thakur
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology, Pharmaceutical Sciences, and Bioengineering; College of Science, Bouvé College of Health Sciences, and College of Engineering, Northeastern University, Boston, Massachusetts 02115-5000, United States
| | - Richard W. Mercier
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology, Pharmaceutical Sciences, and Bioengineering; College of Science, Bouvé College of Health Sciences, and College of Engineering, Northeastern University, Boston, Massachusetts 02115-5000, United States
| | - Xin Sun
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology, Pharmaceutical Sciences, and Bioengineering; College of Science, Bouvé College of Health Sciences, and College of Engineering, Northeastern University, Boston, Massachusetts 02115-5000, United States
| | - Xiaoyu Ma
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology, Pharmaceutical Sciences, and Bioengineering; College of Science, Bouvé College of Health Sciences, and College of Engineering, Northeastern University, Boston, Massachusetts 02115-5000, United States
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology, Pharmaceutical Sciences, and Bioengineering; College of Science, Bouvé College of Health Sciences, and College of Engineering, Northeastern University, Boston, Massachusetts 02115-5000, United States
| |
Collapse
|
299
|
Thomas BF. Interactions of Cannabinoids With Biochemical Substrates. SUBSTANCE ABUSE-RESEARCH AND TREATMENT 2017; 11:1178221817711418. [PMID: 28607542 PMCID: PMC5457144 DOI: 10.1177/1178221817711418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/13/2017] [Indexed: 01/02/2023]
Abstract
Recent decades have seen much progress in the identification and characterization of cannabinoid receptors and the elucidation of the mechanisms by which derivatives of the Cannabis sativa plant bind to receptors and produce their physiological and psychological effects. The information generated in this process has enabled better understanding of the fundamental physiological and psychological processes controlled by the central and peripheral nervous systems and has fostered the development of natural and synthetic cannabinoids as therapeutic agents. A negative aspect of this decades-long effort is the proliferation of clandestinely synthesized analogs as recreational street drugs with dangerous effects. Currently, the interactions of cannabinoids with their biochemical substrates are extensively but inadequately understood, and the clinical application of derived and synthetic receptor ligands remains quite limited. The wide anatomical distribution and functional complexity of the cannabinoid system continue to indicate potential for both therapeutic and side effects, which offers challenges and opportunities for medicinal chemists involved in drug discovery and development.
Collapse
Affiliation(s)
- Brian F Thomas
- Analytical Chemistry and Pharmaceutics, RTI International, Research Triangle Park, NC, USA
| |
Collapse
|
300
|
de Bruijn SEM, de Graaf C, Witkamp RF, Jager G. Explorative Placebo-Controlled Double-Blind Intervention Study with Low Doses of Inhaled Δ9-Tetrahydrocannabinol and Cannabidiol Reveals No Effect on Sweet Taste Intensity Perception and Liking in Humans. Cannabis Cannabinoid Res 2017; 2:114-122. [PMID: 28861511 PMCID: PMC5569584 DOI: 10.1089/can.2017.0018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Introduction: The endocannabinoid system (ECS) plays an important role in food reward. For example, in humans, liking of palatable foods is assumed to be modulated by endocannabinoid activity. Studies in rodents suggest that the ECS also plays a role in sweet taste intensity perception, but it is unknown to what extent this can be extrapolated to humans. Therefore, this study aimed at elucidating whether Δ9-tetrahydrocannabinol (THC) or cannabidiol (CBD) affects sweet taste intensity perception and liking in humans, potentially resulting in alterations in food preferences. Materials and Methods: In a randomized placebo-controlled, double-blind crossover study, 10 healthy males participated in three test sessions that were 2 weeks apart. During the test sessions, participants received THC-rich, CBD-rich, or placebo Cannabis by inhalation divided over two doses (4 + 1 mg THC; 25 + 10 mg CBD). Participants tasted seven chocolate milk-like drinks that differed in sugar concentration and they rated sweet taste intensity and liking of the drinks. They were then asked to rank the seven drinks according to how much they liked the drinks and were offered ad libitum access to their favorite drink. In addition, they completed a computerized food preference task and completed an appetite questionnaire at the start, midway, and end of the test sessions. Results: Inhalation of the Cannabis preparations did not affect sweet taste intensity perception and liking, ranking order, or ad libitum consumption of the favorite drink. In addition, food preferences were not influenced by the interventions. Reported fullness was lower, whereas desire to eat was higher throughout the THC compared to the CBD condition. Conclusions: These results suggest that administration of Cannabis preparations at the low doses tested does not affect sweet taste intensity perception and liking, nor does it influence food preferences in humans.
Collapse
Affiliation(s)
| | - Cees de Graaf
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Renger F Witkamp
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Gerry Jager
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|