251
|
Wei SJ, Chee S, Yurlova L, Lane D, Verma C, Brown C, Ghadessy F. Avoiding drug resistance through extended drug target interfaces: a case for stapled peptides. Oncotarget 2016; 7:32232-46. [PMID: 27057630 PMCID: PMC5078010 DOI: 10.18632/oncotarget.8572] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/18/2016] [Indexed: 11/25/2022] Open
Abstract
Cancer drugs often fail due to the emergence of clinical resistance. This can manifest through mutations in target proteins that selectively exclude drug binding whilst retaining aberrant function. A priori knowledge of resistance-inducing mutations is therefore important for both drug design and clinical surveillance. Stapled peptides represent a novel class of antagonists capable of inhibiting therapeutically relevant protein-protein interactions. Here, we address the important question of potential resistance to stapled peptide inhibitors. HDM2 is the critical negative regulator of p53, and is often overexpressed in cancers that retain wild-type p53 function. Interrogation of a large collection of randomly mutated HDM2 proteins failed to identify point mutations that could selectively abrogate binding by a stapled peptide inhibitor (PM2). In contrast, the same interrogation methodology has previously uncovered point mutations that selectively inhibit binding by Nutlin, the prototypical small molecule inhibitor of HDM2. Our results demonstrate both the high level of structural p53 mimicry employed by PM2 to engage HDM2, and the potential resilience of stapled peptide antagonists to mutations in target proteins. This inherent feature could reduce clinical resistance should this class of drugs enter the clinic.
Collapse
Affiliation(s)
- Siau Jia Wei
- P53 Laboratory (A*STAR), #06-04/05 Neuros, 138648, Singapore
| | - Sharon Chee
- P53 Laboratory (A*STAR), #06-04/05 Neuros, 138648, Singapore
| | | | - David Lane
- P53 Laboratory (A*STAR), #06-04/05 Neuros, 138648, Singapore
| | - Chandra Verma
- Bioinformatics Institute (A*STAR), 07-01 Matrix, 138671, Singapore
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | | | - Farid Ghadessy
- P53 Laboratory (A*STAR), #06-04/05 Neuros, 138648, Singapore
| |
Collapse
|
252
|
Montero J, Letai A. Dynamic BH3 profiling-poking cancer cells with a stick. Mol Cell Oncol 2016; 3:e1040144. [PMID: 27314085 PMCID: PMC4909438 DOI: 10.1080/23723556.2015.1040144] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 06/06/2023]
Abstract
The vast majority of efforts in precision medicine for cancer try to link static genetic information to tumor biology and from there predict clinical response. Dynamic BH3 profiling offers an alternative functional approach by measuring death signaling induced by specific drugs in tumors from patients ex vivo to predict clinical response.
Collapse
Affiliation(s)
- Joan Montero
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Anthony Letai
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
253
|
Abstract
Metastasis is the underlying cause of death for the majority of breast cancer patients. Despite significant advances in recent years in basic research and clinical development, therapies that specifically target metastatic breast cancer remain inadequate, and represents the single greatest obstacle to reducing mortality of late-stage breast cancer. Recent efforts have leveraged genomic analysis of breast cancer and molecular dissection of tumor-stromal cross-talk to uncover a number of promising candidates for targeted treatment of metastatic breast cancer. Rational combinations of therapeutic agents targeting tumor-intrinsic properties and microenvironmental components provide a promising strategy to develop precision treatments with higher specificity and less toxicity. In this review, we discuss the emerging therapeutic targets in breast cancer metastasis, from tumor-intrinsic pathways to those that involve the host tissue components, including the immune system.
Collapse
Affiliation(s)
- Zhuo Li
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, United States
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, United States.
| |
Collapse
|
254
|
Abstract
The movement toward precision medicine with targeted therapeutics for cancer treatment has been hindered by both innate and acquired resistance. Understanding the molecular wiring and plasticity of oncogenic signaling networks is essential to the development of therapeutic strategies to avoid or overcome resistance. The mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) represents a highly integrated signaling node that is dysregulated in the majority of human cancers. Several studies have revealed that sustained mTORC1 inhibition is essential to avoid resistance to targeted therapeutics against the driving oncogenic pathway in a given cancer. Here we discuss the role of mTORC1 in dictating the response of tumors to targeted therapeutics and review recent examples from lung cancer, breast cancer, and melanoma.
Collapse
Affiliation(s)
- Erika Ilagan
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Brendan D Manning
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
255
|
Selwan EM, Finicle BT, Kim SM, Edinger AL. Attacking the supply wagons to starve cancer cells to death. FEBS Lett 2016; 590:885-907. [PMID: 26938658 DOI: 10.1002/1873-3468.12121] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/10/2016] [Accepted: 02/29/2016] [Indexed: 12/14/2022]
Abstract
The constitutive anabolism of cancer cells not only supports proliferation but also addicts tumor cells to a steady influx of exogenous nutrients. Limiting access to metabolic substrates could be an effective and selective means to block cancer growth. In this review, we define the pathways by which cancer cells acquire the raw materials for anabolism, highlight the actionable proteins in each pathway, and discuss the status of therapeutic interventions that disrupt nutrient acquisition. Critical open questions to be answered before apical metabolic inhibitors can be successfully and safely deployed in the clinic are also outlined. In summary, recent studies provide strong support that substrate limitation is a powerful therapeutic strategy to effectively, and safely, starve cancer cells to death.
Collapse
Affiliation(s)
- Elizabeth M Selwan
- Department of Developmental and Cell Biology, University of California Irvine, CA, USA
| | - Brendan T Finicle
- Department of Developmental and Cell Biology, University of California Irvine, CA, USA
| | - Seong M Kim
- Department of Developmental and Cell Biology, University of California Irvine, CA, USA
| | - Aimee L Edinger
- Department of Developmental and Cell Biology, University of California Irvine, CA, USA
| |
Collapse
|
256
|
Chang HR, Park HS, Ahn YZ, Nam S, Jung HR, Park S, Lee SJ, Balch C, Powis G, Ku JL, Kim YH. Improving gastric cancer preclinical studies using diverse in vitro and in vivo model systems. BMC Cancer 2016; 16:200. [PMID: 26955870 PMCID: PMC4784390 DOI: 10.1186/s12885-016-2232-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/29/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND "Biomarker-driven targeted therapy," the practice of tailoring patients' treatment to the expression/activity levels of disease-specific genes/proteins, remains challenging. For example, while the anti-ERBB2 monoclonal antibody, trastuzumab, was first developed using well-characterized, diverse in vitro breast cancer models (and is now a standard adjuvant therapy for ERBB2-positive breast cancer patients), trastuzumab approval for ERBB2-positive gastric cancer was largely based on preclinical studies of a single cell line, NCI-N87. Ensuing clinical trials revealed only modest patient efficacy, and many ERBB2-positive gastric cancer (GC) patients failed to respond at all (i.e., were inherently recalcitrant), or succumbed to acquired resistance. METHOD To assess mechanisms underlying GC insensitivity to ERBB2 therapies, we established a diverse panel of GC cells, differing in ERBB2 expression levels, for comprehensive in vitro and in vivo characterization. For higher throughput assays of ERBB2 DNA and protein levels, we compared the concordance of various laboratory quantification methods, including those of in vitro and in vivo genetic anomalies (FISH and SISH) and xenograft protein expression (Western blot vs. IHC), of both cell and xenograft (tissue-sectioned) microarrays. RESULTS The biomarker assessment methods strongly agreed, as did correlation between RNA and protein expression. However, although ERBB2 genomic anomalies showed good in vitro vs. in vivo correlation, we observed striking differences in protein expression between cultured cells and mouse xenografts (even within the same GC cell type). Via our unique pathway analysis, we delineated a signaling network, in addition to specific pathways/biological processes, emanating from the ERBB2 signaling cascade, as a potential useful target of clinical treatment. Integrated analysis of public data from gastric tumors revealed frequent (10 - 20 %) amplification of the genes NFKBIE, PTK2, and PIK3CA, each of which resides in an ERBB2-derived subpathway network. CONCLUSION Our comprehensive bioinformatics analyses of highly heterogeneous cancer cells, combined with tumor "omics" profiles, can optimally characterize the expression patterns and activity of specific tumor biomarkers. Subsequent in vitro and in vivo validation, of specific disease biomarkers (using multiple methodologies), can improve prediction of patient stratification according to drug response or nonresponse.
Collapse
Affiliation(s)
- Hae Ryung Chang
- New Experimental Therapeutics Branch, National Cancer Center of Korea, Ilsan, Goyang-si, Gyeonggi-do, Republic of Korea. .,Cancer Biology Research Laboratory, Institut Pasteur Korea, Bundang, Seongnam-si, Gyeonggi-do, Republic of Korea.
| | - Hee Seo Park
- Animal Sciences Branch, National Cancer Center of Korea, Ilsan, Goyang-si, Gyeonggi-do, Republic of Korea.
| | - Young Zoo Ahn
- New Experimental Therapeutics Branch, National Cancer Center of Korea, Ilsan, Goyang-si, Gyeonggi-do, Republic of Korea.
| | - Seungyoon Nam
- New Experimental Therapeutics Branch, National Cancer Center of Korea, Ilsan, Goyang-si, Gyeonggi-do, Republic of Korea. .,Department of Life Sciences, College of BioNano Technology, Gachon University, Sungnam, South Korea. .,College of Medicine, Gachon University, Incheon, South Korea.
| | - Hae Rim Jung
- New Experimental Therapeutics Branch, National Cancer Center of Korea, Ilsan, Goyang-si, Gyeonggi-do, Republic of Korea.
| | - Sungjin Park
- New Experimental Therapeutics Branch, National Cancer Center of Korea, Ilsan, Goyang-si, Gyeonggi-do, Republic of Korea. .,Department of Life Sciences, College of BioNano Technology, Gachon University, Sungnam, South Korea. .,College of Medicine, Gachon University, Incheon, South Korea.
| | - Sang Jin Lee
- Animal Sciences Branch, National Cancer Center of Korea, Ilsan, Goyang-si, Gyeonggi-do, Republic of Korea.
| | - Curt Balch
- Department of Pharmacology and Experimental Therapeutics, University of Toledo College of Pharmacy, Toledo, OH, USA.
| | - Garth Powis
- Cancer Center, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA.
| | - Ja-Lok Ku
- SNU Korean Cell Line Bank, Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.
| | - Yon Hui Kim
- New Experimental Therapeutics Branch, National Cancer Center of Korea, Ilsan, Goyang-si, Gyeonggi-do, Republic of Korea. .,Cancer Biology Research Laboratory, Institut Pasteur Korea, Bundang, Seongnam-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
257
|
Staedtke V, Bai RY, Sun W, Huang J, Kibler KK, Tyler BM, Gallia GL, Kinzler K, Vogelstein B, Zhou S, Riggins GJ. Clostridium novyi-NT can cause regression of orthotopically implanted glioblastomas in rats. Oncotarget 2016; 6:5536-46. [PMID: 25849940 PMCID: PMC4467385 DOI: 10.18632/oncotarget.3627] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 01/21/2023] Open
Abstract
Glioblastoma (GBM) is a highly aggressive primary brain tumor that is especially difficult to treat. The tumor's ability to withstand hypoxia leads to enhanced cancer cell survival and therapy resistance, but also yields a microenvironment that is in many aspects unique within the human body, thus offering potential therapeutic opportunities. The spore-forming anaerobic bacterium Clostridium novyi-NT(C. novyi-NT) has the ability to propagate in tumor-generated hypoxia, leading to oncolysis. Here, we show that intravenously injected spores of C. novyi-NT led to dramatic tumor destructions and significant survival increases in implanted, intracranial syngeneic F98 and human xenograft 060919 rat GBM models. C. novyi-NT germination was specific and confined to the neoplasm, with sparing of the normal brain parenchyma. All animals tolerated the bacteriolytic treatment, but edema and increased intracranial pressure could quickly be lethal if not monitored and medically managed with hydration and antibiotics. These results provide pre-clinical data supporting the development of this therapeutic approach for the treatment of patients with GBM.
Collapse
Affiliation(s)
- Verena Staedtke
- Department of Neurology & Neurosurgery, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ren-Yuan Bai
- Department of Neurology & Neurosurgery, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Weiyun Sun
- Department of Neurology & Neurosurgery, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Judy Huang
- Department of Neurology & Neurosurgery, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Betty M Tyler
- Department of Neurology & Neurosurgery, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gary L Gallia
- Department of Neurology & Neurosurgery, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth Kinzler
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bert Vogelstein
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shibin Zhou
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gregory J Riggins
- Department of Neurology & Neurosurgery, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
258
|
Abstract
The success of ALK targeted therapy is blunted by resistance. To identify rational polytherapy strategies to improve clinical outcomes, we studied the molecular basis of ALK oncogene dependence in ALK gene rearrangement positive (ALK+) lung adenocarcinoma. We discovered that RAS-RAF-MEK-ERK signaling is the crucial downstream pathway that is required for ALK+ tumor cell survival. Upfront co-inhibition of ALK and MEK improved response and blocked resistance in preclinical ALK+ lung cancer models, providing rationale for a new treatment paradigm for ALK+ patients.
Collapse
Affiliation(s)
- Gorjan Hrustanovic
- a Department of Medicine , University of California at San Francisco , San Francisco , CA , USA.,b Helen Diller Family Comprehensive Cancer Center , University of California at San Francisco , San Francisco , CA , USA
| | - Trever G Bivona
- a Department of Medicine , University of California at San Francisco , San Francisco , CA , USA.,b Helen Diller Family Comprehensive Cancer Center , University of California at San Francisco , San Francisco , CA , USA
| |
Collapse
|
259
|
Wang M, Shen A, Zhang C, Song Z, Ai J, Liu H, Sun L, Ding J, Geng M, Zhang A. Development of Heat Shock Protein (Hsp90) Inhibitors To Combat Resistance to Tyrosine Kinase Inhibitors through Hsp90-Kinase Interactions. J Med Chem 2016; 59:5563-86. [PMID: 26844689 DOI: 10.1021/acs.jmedchem.5b01106] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Heat shock protein 90 (Hsp90) is a ubiquitous chaperone of all of the oncogenic tyrosine kinases. Many Hsp90 inhibitors, alone or in combination, have shown significant antitumor efficacy against the kinase-positive naïve and mutant models. However, clinical trials of these inhibitors are unsuccessful due to insufficient clinical benefits and nonoptimal safety profiles. Recently, much progress has been reported on the Hsp90-cochaperone-client complex, which will undoubtedly assist in the understanding of the interactions between Hsp90 and its clients. Meanwhile, Hsp90 inhibitors have shown promise against patients' resistance caused by early generation tyrosine kinase inhibitors (TKIs), and at least 13 Hsp90 inhibitors are being reevaluated in the clinic. In this regard, the objectives of the current perspective are to summarize the structure and function of the Hsp90-cochaperone-client complex, to analyze the structural and functional insights into the Hsp90-client interactions to address several existing unresolved problems with Hsp90 inhibitors, and to highlight the preclinical and clinical studies of Hsp90 inhibitors as an effective treatment against resistance to tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Meining Wang
- CAS Key Laboratory of Receptor Research, Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences , 555 Zuchongzhi Lu, Building 3, Room 426, Pudong, Shanghai 201203, China
| | - Aijun Shen
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences , Shanghai 201203, China
| | - Chi Zhang
- Department of Medicinal Chemistry, China Pharmaceutical University , Nanjing 210009, China
| | - Zilan Song
- CAS Key Laboratory of Receptor Research, Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences , 555 Zuchongzhi Lu, Building 3, Room 426, Pudong, Shanghai 201203, China
| | - Jing Ai
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences , Shanghai 201203, China
| | - Hongchun Liu
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences , Shanghai 201203, China
| | - Liping Sun
- Department of Medicinal Chemistry, China Pharmaceutical University , Nanjing 210009, China
| | - Jian Ding
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences , Shanghai 201203, China
| | - Meiyu Geng
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences , Shanghai 201203, China
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences , 555 Zuchongzhi Lu, Building 3, Room 426, Pudong, Shanghai 201203, China
| |
Collapse
|
260
|
Mutational and network level mechanisms underlying resistance to anti-cancer kinase inhibitors. Semin Cell Dev Biol 2016; 50:164-76. [DOI: 10.1016/j.semcdb.2015.09.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 09/23/2015] [Indexed: 12/21/2022]
|
261
|
Jones S, Anagnostou V, Lytle K, Parpart-Li S, Nesselbush M, Riley DR, Shukla M, Chesnick B, Kadan M, Papp E, Galens KG, Murphy D, Zhang T, Kann L, Sausen M, Angiuoli SV, Diaz LA, Velculescu VE. Personalized genomic analyses for cancer mutation discovery and interpretation. Sci Transl Med 2016; 7:283ra53. [PMID: 25877891 DOI: 10.1126/scitranslmed.aaa7161] [Citation(s) in RCA: 312] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Massively parallel sequencing approaches are beginning to be used clinically to characterize individual patient tumors and to select therapies based on the identified mutations. A major question in these analyses is the extent to which these methods identify clinically actionable alterations and whether the examination of the tumor tissue alone is sufficient or whether matched normal DNA should also be analyzed to accurately identify tumor-specific (somatic) alterations. To address these issues, we comprehensively evaluated 815 tumor-normal paired samples from patients of 15 tumor types. We identified genomic alterations using next-generation sequencing of whole exomes or 111 targeted genes that were validated with sensitivities >95% and >99%, respectively, and specificities >99.99%. These analyses revealed an average of 140 and 4.3 somatic mutations per exome and targeted analysis, respectively. More than 75% of cases had somatic alterations in genes associated with known therapies or current clinical trials. Analyses of matched normal DNA identified germline alterations in cancer-predisposing genes in 3% of patients with apparently sporadic cancers. In contrast, a tumor-only sequencing approach could not definitively identify germline changes in cancer-predisposing genes and led to additional false-positive findings comprising 31% and 65% of alterations identified in targeted and exome analyses, respectively, including in potentially actionable genes. These data suggest that matched tumor-normal sequencing analyses are essential for precise identification and interpretation of somatic and germline alterations and have important implications for the diagnostic and therapeutic management of cancer patients.
Collapse
Affiliation(s)
- Siân Jones
- Personal Genome Diagnostics, Baltimore, MD 21224, USA
| | - Valsamo Anagnostou
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Karli Lytle
- Personal Genome Diagnostics, Baltimore, MD 21224, USA
| | | | | | - David R Riley
- Personal Genome Diagnostics, Baltimore, MD 21224, USA
| | - Manish Shukla
- Personal Genome Diagnostics, Baltimore, MD 21224, USA
| | | | - Maura Kadan
- Personal Genome Diagnostics, Baltimore, MD 21224, USA
| | - Eniko Papp
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | - Derek Murphy
- Personal Genome Diagnostics, Baltimore, MD 21224, USA
| | - Theresa Zhang
- Personal Genome Diagnostics, Baltimore, MD 21224, USA
| | - Lisa Kann
- Personal Genome Diagnostics, Baltimore, MD 21224, USA
| | - Mark Sausen
- Personal Genome Diagnostics, Baltimore, MD 21224, USA
| | | | - Luis A Diaz
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Victor E Velculescu
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
262
|
Wu CF, Bohnert S, Thines E, Efferth T. Cytotoxicity of Salvia miltiorrhizaAgainst Multidrug-Resistant Cancer Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:871-894. [DOI: 10.1142/s0192415x16500488] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Salvia miltiorrhiza Bunge (Lamiaceae) is a well-known Chinese herb that possesses numerous therapeutic activities, including anticancer effects. In this study, the cytotoxicity and the biological mechanisms of S. miltiorrhiza (SM) root extract on diverse resistant and sensitive cancer cell lines were investigated. CEM/ADR5000 cells were 1.68-fold resistant to CCRF-CEM cells, while HCT116 (p53[Formula: see text] and U87.MG[Formula: see text]EGFR cells were hypersensitive (collateral sensitive) compared to their parental cells. SM root extract stimulated ROS generation, cell cycle S phase arrest and apoptosis. The induction of the intrinsic apoptotic pathway was validated by increased cleavage of caspase 3, 7, 9 and poly ADP-ribose polymerase (PARP). MAP kinases including JNK, ERK1/2 and p38 were obviously phosphorylated and nuclear P65 was downregulated upon SM treatment. Transcriptome-wide COMPARE analysis revealed that the expression of encoding genes with diverse functions were associated with the cellular response to cryptotanshinone, one of the main constituents of SM root extract. In conclusion, SM root extract exerted profound cytotoxicity towards various sensitive and resistant cancer cells and induced the intrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Ching-Fen Wu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Stefan Bohnert
- Institute of Biotechnology and Drug Research, Kaiserslautern, Germany
| | - Eckhard Thines
- Institute of Biotechnology and Drug Research, Kaiserslautern, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
263
|
Askarian-Amiri ME, Leung E, Finlay G, Baguley BC. The Regulatory Role of Long Noncoding RNAs in Cancer Drug Resistance. Methods Mol Biol 2016; 1395:207-27. [PMID: 26910076 DOI: 10.1007/978-1-4939-3347-1_12] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent genomic and transcriptomic analysis has revealed that the majority of the human genome is transcribed as nonprotein-coding RNA. These transcripts, known as long noncoding RNA, have structures similar to those of mRNA. Many of these transcripts are now thought to have regulatory roles in different biological pathways which provide cells with an additional layer of regulatory complexity in gene expression and proteome function in response to stimuli. A wide variety of cellular functions may thus depend on the fine-tuning of interactions between noncoding RNAs and other key molecules in cell signaling networks. Deregulation of many noncoding RNAs is thought to occur in a variety of human diseases, including neoplasia and cancer drug resistance. Here we discuss recent findings on the molecular functions of long noncoding RNAs in cellular pathways mediating resistance to anticancer drugs.
Collapse
Affiliation(s)
- Marjan E Askarian-Amiri
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand. .,Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand.,Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Graeme Finlay
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand.,Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Bruce C Baguley
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| |
Collapse
|
264
|
Abstract
Cancer is a wound that never heals. This is suggested by the data produced after several years of cancer research and therapeutic interventions done worldwide. There is a strong similarity between Newton's third law and therapeutic behavior of tumor. According to Newton's third law "for every action, there is an equal and opposite reaction". In cancer therapeutics, tumor exerts strong pro-tumor response against applied treatment and imposes therapeutic resistance, one of the major problems seen in preclinical and clinical studies. There is an urgent need to understand the tumor biology of therapy resistant tumors following the therapy. Here, we have discussed the problem and provided possible path for future studies to treat cancer.
Collapse
Affiliation(s)
- Ali S Arbab
- Tumor Angiogenesis Lab, Cancer Center, Augusta University, Augusta 30907, GA, USA
| | - Meenu Jain
- Tumor Angiogenesis Lab, Cancer Center, Augusta University, Augusta 30907, GA, USA
| | - Bhagelu R Achyut
- Tumor Angiogenesis Lab, Cancer Center, Augusta University, Augusta 30907, GA, USA
| |
Collapse
|
265
|
Nitroreductase gene-directed enzyme prodrug therapy: insights and advances toward clinical utility. Biochem J 2015; 471:131-53. [PMID: 26431849 DOI: 10.1042/bj20150650] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review examines the vast catalytic and therapeutic potential offered by type I (i.e. oxygen-insensitive) nitroreductase enzymes in partnership with nitroaromatic prodrugs, with particular focus on gene-directed enzyme prodrug therapy (GDEPT; a form of cancer gene therapy). Important first indications of this potential were demonstrated over 20 years ago, for the enzyme-prodrug pairing of Escherichia coli NfsB and CB1954 [5-(aziridin-1-yl)-2,4-dinitrobenzamide]. However, it has become apparent that both the enzyme and the prodrug in this prototypical pairing have limitations that have impeded their clinical progression. Recently, substantial advances have been made in the biodiscovery and engineering of superior nitroreductase variants, in particular development of elegant high-throughput screening capabilities to enable optimization of desirable activities via directed evolution. These advances in enzymology have been paralleled by advances in medicinal chemistry, leading to the development of second- and third-generation nitroaromatic prodrugs that offer substantial advantages over CB1954 for nitroreductase GDEPT, including greater dose-potency and enhanced ability of the activated metabolite(s) to exhibit a local bystander effect. In addition to forging substantial progress towards future clinical trials, this research is supporting other fields, most notably the development and improvement of targeted cellular ablation capabilities in small animal models, such as zebrafish, to enable cell-specific physiology or regeneration studies.
Collapse
|
266
|
Day CP, Merlino G, Van Dyke T. Preclinical mouse cancer models: a maze of opportunities and challenges. Cell 2015; 163:39-53. [PMID: 26406370 DOI: 10.1016/j.cell.2015.08.068] [Citation(s) in RCA: 453] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Indexed: 12/20/2022]
Abstract
Significant advances have been made in developing novel therapeutics for cancer treatment, and targeted therapies have revolutionized the treatment of some cancers. Despite the promise, only about five percent of new cancer drugs are approved, and most fail due to lack of efficacy. The indication is that current preclinical methods are limited in predicting successful outcomes. Such failure exacts enormous cost, both financial and in the quality of human life. This Primer explores the current status, promise, and challenges of preclinical evaluation in advanced mouse cancer models and briefly addresses emerging models for early-stage preclinical development.
Collapse
Affiliation(s)
- Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
| | - Terry Van Dyke
- Center for Advanced Preclinical Research, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
267
|
Arya RK, Singh A, Yadav NK, Cheruvu SH, Hossain Z, Meena S, Maheshwari S, Singh AK, Shahab U, Sharma C, Singh K, Narender T, Mitra K, Arya KR, Singh RK, Gayen JR, Datta D. Anti-breast tumor activity of Eclipta extract in-vitro and in-vivo: novel evidence of endoplasmic reticulum specific localization of Hsp60 during apoptosis. Sci Rep 2015; 5:18457. [PMID: 26672742 PMCID: PMC4682077 DOI: 10.1038/srep18457] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 11/18/2015] [Indexed: 12/12/2022] Open
Abstract
Major challenges for current therapeutic strategies against breast cancer are associated with drug-induced toxicities. Considering the immense potential of bioactive phytochemicals to deliver non-toxic, efficient anti-cancer therapeutics, we performed bio-guided fractionation of Eclipta alba extract and discovered that particularly the chloroform fraction of Eclipta alba (CFEA) is selectively inducing cytotoxicity to breast cancer cells over non-tumorigenic breast epithelial cells. Our unbiased mechanistic hunt revealed that CFEA specifically activates the intrinsic apoptotic pathway by disrupting the mitochondrial membrane potential, upregulating Hsp60 and downregulating the expression of anti-apoptotic protein XIAP. By utilizing Hsp60 specific siRNA, we identified a novel pro-apoptotic role of Hsp60 and uncovered that following CFEA treatment, upregulated Hsp60 is localized in the endoplasmic reticulum (ER). To our knowledge, this is the first evidence of ER specific localization of Hsp60 during cancer cell apoptosis. Further, our LC-MS approach identified that luteolin is mainly attributed for its anti-cancer activities. Moreover, oral administration of CFEA not only offers potential anti-breast cancer effects in-vivo but also mitigates tumor induced hepato-renal toxicity. Together, our studies offer novel mechanistic insight into the CFEA mediated inhibition of breast cancer and may potentially open up new avenues for further translational research.
Collapse
Affiliation(s)
- Rakesh K Arya
- Biochemistry Division, CSIR-Central Drug Research Institute (CDRI), Lucknow-226031, India
| | - Akhilesh Singh
- Biochemistry Division, CSIR-Central Drug Research Institute (CDRI), Lucknow-226031, India
| | | | - Srikanth H Cheruvu
- Pharmacokinetics and Metabolism Division, CSIR-CDRI, Lucknow-226031, India
| | - Zakir Hossain
- Pharmacokinetics and Metabolism Division, CSIR-CDRI, Lucknow-226031, India
| | - Sanjeev Meena
- Biochemistry Division, CSIR-Central Drug Research Institute (CDRI), Lucknow-226031, India
| | - Shrankhla Maheshwari
- Biochemistry Division, CSIR-Central Drug Research Institute (CDRI), Lucknow-226031, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Anup K Singh
- Biochemistry Division, CSIR-Central Drug Research Institute (CDRI), Lucknow-226031, India
| | - Uzma Shahab
- Biochemistry Division, CSIR-Central Drug Research Institute (CDRI), Lucknow-226031, India
| | | | - Kavita Singh
- Electron Microscopy Unit, CSIR-CDRI, Lucknow-226031, India
| | | | - Kalyan Mitra
- Electron Microscopy Unit, CSIR-CDRI, Lucknow-226031, India
| | - Kamal R Arya
- Botany Division, CSIR-CDRI, Lucknow-226031, India
| | - Rama K Singh
- Toxicology Division, CSIR-CDRI, Lucknow-226031, India
| | - Jiaur R Gayen
- Pharmacokinetics and Metabolism Division, CSIR-CDRI, Lucknow-226031, India
| | - Dipak Datta
- Biochemistry Division, CSIR-Central Drug Research Institute (CDRI), Lucknow-226031, India.,Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
268
|
Russo M, Siravegna G, Blaszkowsky LS, Corti G, Crisafulli G, Ahronian LG, Mussolin B, Kwak EL, Buscarino M, Lazzari L, Valtorta E, Truini M, Jessop NA, Robinson HE, Hong TS, Mino-Kenudson M, Di Nicolantonio F, Thabet A, Sartore-Bianchi A, Siena S, Iafrate AJ, Bardelli A, Corcoran RB. Tumor Heterogeneity and Lesion-Specific Response to Targeted Therapy in Colorectal Cancer. Cancer Discov 2015; 6:147-153. [PMID: 26644315 DOI: 10.1158/2159-8290.cd-15-1283] [Citation(s) in RCA: 327] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/03/2015] [Indexed: 12/12/2022]
Abstract
UNLABELLED How genomic heterogeneity associated with acquired resistance to targeted agents affects response to subsequent therapy is unknown. We studied EGFR blockade in colorectal cancer to assess whether tissue and liquid biopsies can be integrated with radiologic imaging to monitor the impact of individual oncogenic alterations on lesion-specific responses. Biopsy of a patient's progressing liver metastasis following prolonged response to cetuximab revealed a MEK1(K57T) mutation as a novel mechanism of acquired resistance. This lesion regressed upon treatment with panitumumab and the MEK inhibitor trametinib. In circulating tumor DNA (ctDNA), mutant MEK1 levels declined with treatment, but a previously unrecognized KRAS(Q61H) mutation was also identified that increased despite therapy. This same KRAS mutation was later found in a separate nonresponding metastasis. In summary, parallel analyses of tumor biopsies and serial ctDNA monitoring show that lesion-specific radiographic responses to subsequent targeted therapies can be driven by distinct resistance mechanisms arising within separate tumor lesions in the same patient. SIGNIFICANCE Molecular heterogeneity ensuing from acquired resistance drives lesion-specific responses to subsequent targeted therapies. Analysis of a single-lesion biopsy is inadequate to guide selection of subsequent targeted therapies. ctDNA profiles allow the detection of concomitant resistance mechanisms residing in separate metastases and assessment of the effect of therapies designed to overcome resistance.
Collapse
Affiliation(s)
- Mariangela Russo
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Torino, Italy.,Department of Oncology, University of Torino, Torino, Italy
| | - Giulia Siravegna
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Torino, Italy.,Department of Oncology, University of Torino, Torino, Italy
| | - Lawrence S Blaszkowsky
- Massachusetts General Hospital Cancer Center, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Giorgio Corti
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Torino, Italy
| | | | - Leanne G Ahronian
- Massachusetts General Hospital Cancer Center, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | - Eunice L Kwak
- Massachusetts General Hospital Cancer Center, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | - Luca Lazzari
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Torino, Italy
| | | | - Mauro Truini
- Niguarda Cancer Center, Ospedale Niguarda Ca' Granda, Milan, Italy
| | - Nicholas A Jessop
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Hayley E Robinson
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Theodore S Hong
- Massachusetts General Hospital Cancer Center, Boston, MA, USA.,Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Federica Di Nicolantonio
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Torino, Italy.,Department of Oncology, University of Torino, Torino, Italy
| | - Ashraf Thabet
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Salvatore Siena
- Niguarda Cancer Center, Ospedale Niguarda Ca' Granda, Milan, Italy
| | - A John Iafrate
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Alberto Bardelli
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Torino, Italy.,Department of Oncology, University of Torino, Torino, Italy
| | - Ryan B Corcoran
- Massachusetts General Hospital Cancer Center, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
269
|
Abstract
Cancer drugs are broadly classified into two categories: cytotoxic chemotherapies and targeted therapies that specifically modulate the activity of one or more proteins involved in cancer. Major advances have been achieved in targeted cancer therapies in the past few decades, which is ascribed to the increasing understanding of molecular mechanisms for cancer initiation and progression. Consequently, monoclonal antibodies and small molecules have been developed to interfere with a specific molecular oncogenic target. Targeting gain-of-function mutations, in general, has been productive. However, it has been a major challenge to use standard pharmacologic approaches to target loss-of-function mutations of tumor suppressor genes. Novel approaches, including synthetic lethality and collateral vulnerability screens, are now being developed to target gene defects in p53, PTEN, and BRCA1/2. Here, we review and summarize the recent findings in cancer genomics, drug development, and molecular cancer biology, which show promise in targeting tumor suppressors in cancer therapeutics.
Collapse
Affiliation(s)
- Yunhua Liu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoxiao Hu
- State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Biology, Hunan University, Changsha, China
| | - Cecil Han
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Liana Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xinna Zhang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoming He
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Xiongbin Lu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
270
|
Au KK, Josahkian JA, Francis JA, Squire JA, Koti M. Current state of biomarkers in ovarian cancer prognosis. Future Oncol 2015; 11:3187-95. [DOI: 10.2217/fon.15.251] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
High-grade serous ovarian cancer remains one of the most lethal malignancies in women. Despite recent advances in surgical and pharmaceutical therapies, survival rates remain poor. A major impediment in management of this disease, that continues to contribute to poor overall survival rates, is resistance to standard carboplatin-paclitaxel combination chemotherapies. In addition to tumor cell intrinsic mechanisms leading to drug resistance, there is increasing awareness of the crucial role of the tumor microenvironment in mediating natural immune defense mechanisms and selective pressures that appear to facilitate chemotherapy sensitivity. We provide an overview of some of the promising new genetic and immunological biomarkers in ovarian cancer and discuss their biology and their likely clinical utility in future ovarian cancer management.
Collapse
Affiliation(s)
- Katrina K Au
- Department of Biomedical & Molecular Sciences, Queen's University, 99 University Ave., Kingston, ON, K7L 3N6, Canada
| | - Juliana A Josahkian
- Departments of Genetics & Pathology, Faculdade de Medicina de Ribeirão Preto, São Paulo, Brazil
| | - Julie-Ann Francis
- Department of Obstetrics & Gynecology, Kingston General Hospital, 76 Stuart St, Kingston, ON, K7L 2V7, Canada
| | - Jeremy A Squire
- Departments of Genetics & Pathology, Faculdade de Medicina de Ribeirão Preto, São Paulo, Brazil
| | - Madhuri Koti
- Department of Biomedical & Molecular Sciences, Queen's University, 99 University Ave., Kingston, ON, K7L 3N6, Canada
- Department of Obstetrics & Gynecology, Kingston General Hospital, 76 Stuart St, Kingston, ON, K7L 2V7, Canada
| |
Collapse
|
271
|
FGFR1 activation is an escape mechanism in human lung cancer cells resistant to afatinib, a pan-EGFR family kinase inhibitor. Oncotarget 2015; 5:5908-19. [PMID: 25115383 PMCID: PMC4171601 DOI: 10.18632/oncotarget.1866] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Most NSCLC patients with EGFR mutations benefit from treatment with EGFR-TKIs, but the clinical efficacy of EGFR-TKIs is limited by the appearance of drug resistance. Multiple kinase inhibitors of EGFR family proteins such as afatinib have been newly developed to overcome such drug resistance. We established afatinib-resistant cell lines after chronic exposure of activating EGFR mutation-positive PC9 cells to afatinib. Afatinib-resistant cells showed following specific characteristics as compared to PC9: [1] Expression of EGFR family proteins and their phosphorylated molecules was markedly downregulated by selection of afatinib resistance; [2] Expression of FGFR1 and its ligand FGF2 was alternatively upregulated; [3] Treatment with anti-FGF2 neutralizing antibody blocked enhanced phosphorylation of FGFR in resistant clone; [4] Both resistant clones showed collateral sensitivity to PD173074, a small-molecule FGFR-TKIs, and treatment with either PD173074 or FGFR siRNA exacerbated suppression of both afatinib-resistant Akt and Erk phosphorylation when combined with afatinib; [5] Expression of twist was markedly augmented in resistant sublines, and twist knockdown specifically suppressed FGFR expression and cell survival. Together, enhanced expression of FGFR1 and FGF2 thus plays as an escape mechanism for cell survival of afatinib-resistant cancer cells, that may compensate the loss of EGFR-driven signaling pathway.
Collapse
|
272
|
A significant response to sorafenib in a woman with advanced lung adenocarcinoma and a BRAF non-V600 mutation. Anticancer Drugs 2015; 26:1004-7. [PMID: 26237499 DOI: 10.1097/cad.0000000000000277] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lung adenocarcinoma includes recurrent activating oncogenic mutations (EGFR, EML4-ALK, ROS1) that have been associated with response to EGFR and ALK inhibitors. Platinum-based chemotherapy is the standard therapy for non-oncodrivers population. Sorafenib is a small molecule that blocks the activation of C-RAF, B-RAF, c-KIT, FLT-3, RET, VEGFR-2, VEGFR-3 and PDGFR approved for advanced renal cell and hepatocellular carcinoma (b, c). Many studies have evaluated sorafenib in advanced non-small-cell lung cancer (NSCLC), with different results. We present a case report of a patient with NSCLC and the BRAF G469R mutation who showed a dramatic response to sorafenib.
Collapse
|
273
|
Affiliation(s)
- Yunhua Liu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Liana Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiongbin Lu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
274
|
Gough A, Shun TY, Lansing Taylor D, Schurdak M. A metric and workflow for quality control in the analysis of heterogeneity in phenotypic profiles and screens. Methods 2015; 96:12-26. [PMID: 26476369 DOI: 10.1016/j.ymeth.2015.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 12/14/2022] Open
Abstract
Heterogeneity is well recognized as a common property of cellular systems that impacts biomedical research and the development of therapeutics and diagnostics. Several studies have shown that analysis of heterogeneity: gives insight into mechanisms of action of perturbagens; can be used to predict optimal combination therapies; and can be applied to tumors where heterogeneity is believed to be associated with adaptation and resistance. Cytometry methods including high content screening (HCS), high throughput microscopy, flow cytometry, mass spec imaging and digital pathology capture cell level data for populations of cells. However it is often assumed that the population response is normally distributed and therefore that the average adequately describes the results. A deeper understanding of the results of the measurements and more effective comparison of perturbagen effects requires analysis that takes into account the distribution of the measurements, i.e. the heterogeneity. However, the reproducibility of heterogeneous data collected on different days, and in different plates/slides has not previously been evaluated. Here we show that conventional assay quality metrics alone are not adequate for quality control of the heterogeneity in the data. To address this need, we demonstrate the use of the Kolmogorov-Smirnov statistic as a metric for monitoring the reproducibility of heterogeneity in an SAR screen, describe a workflow for quality control in heterogeneity analysis. One major challenge in high throughput biology is the evaluation and interpretation of heterogeneity in thousands of samples, such as compounds in a cell-based screen. In this study we also demonstrate that three heterogeneity indices previously reported, capture the shapes of the distributions and provide a means to filter and browse big data sets of cellular distributions in order to compare and identify distributions of interest. These metrics and methods are presented as a workflow for analysis of heterogeneity in large scale biology projects.
Collapse
Affiliation(s)
- Albert Gough
- University of Pittsburgh Drug Discovery Institute, 3501 Fifth Avenue, Pittsburgh, PA, USA; Dept. of Computational and Systems Biology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, USA.
| | - Tong Ying Shun
- University of Pittsburgh Drug Discovery Institute, 3501 Fifth Avenue, Pittsburgh, PA, USA
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, 3501 Fifth Avenue, Pittsburgh, PA, USA; Dept. of Computational and Systems Biology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, USA
| | - Mark Schurdak
- University of Pittsburgh Drug Discovery Institute, 3501 Fifth Avenue, Pittsburgh, PA, USA; Dept. of Computational and Systems Biology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, USA
| |
Collapse
|
275
|
Gemcitabine resistance in pancreatic ductal adenocarcinoma. Drug Resist Updat 2015; 23:55-68. [PMID: 26690340 DOI: 10.1016/j.drup.2015.10.002] [Citation(s) in RCA: 292] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 09/15/2015] [Accepted: 10/23/2015] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) ranks fourth among cancer related deaths. The disappointing 5-year survival rate of below 5% stems from drug resistance to all known therapies, as well as from disease presentation at a late stage when PDA is already metastatic. Gemcitabine has been the cornerstone of PDA treatment in all stages of the disease for the last two decades, but gemcitabine resistance develops within weeks of chemotherapy initiation. From a mechanistic perspective, gemcitabine resistance may result from alterations in drug metabolism until the point that the cytidine analog is incorporated into the DNA, or from mitigation of gemcitabine-induced apoptosis. Both of these drug resistance modalities can be either intrinsic to the cancer cell, or influenced by the cancer microenvironment. Mechanisms of intrinsic gemcitabine resistance are difficult to tackle, as many of the genes that drive the carcinogenic process itself also interfere with gemcitabine-induced apoptosis. In this regard, recent understanding of the involvement of microRNAs in gemcitabine resistance may offer new opportunities to overcome intrinsic gemcitabine resistance. The characteristically fibrotic and immune infiltrated stroma of PDA that accompanies tumor inception and expansion is a lush ground for treatments aimed at targeting tumor microenvironment-mediated drug resistance. In the last couple of years, drugs interfering with tumor microenvironment have matured to clinical trials. Although drugs inducing 'stromal depletion' have yet failed to improve survival, they have greatly increased our understanding of tumor microenvironment-mediated drug resistance. In this review we summarize the current knowledge on intrinsic and environment-mediated gemcitabine resistance, and discuss the impact of these pathways on patient screening, and on future treatments aimed to potentiate gemcitabine activity.
Collapse
|
276
|
Hrustanovic G, Bivona TG. RAS-MAPK signaling influences the efficacy of ALK-targeting agents in lung cancer. Mol Cell Oncol 2015; 3:e1091061. [PMID: 27308613 DOI: 10.1080/23723556.2015.1091061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 08/31/2015] [Accepted: 08/31/2015] [Indexed: 10/22/2022]
Abstract
ALK (anaplastic lymphoma kinase) inhibitors are approved in for ALK gene rearrangement positive (ALK+) lung cancer, but resistance remains a challenge. We discovered that RAS-RAF-MEK-ERK signaling controls the ALK inhibitor response in ALK+ lung cancer and is critical for ALK inhibitor resistance. Upfront ALK-MEK inhibitor polytherapy may enhance response and forestall resistance.
Collapse
Affiliation(s)
- Gorjan Hrustanovic
- Division of Hematology and Medical Oncology, University of California San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Trever G Bivona
- Division of Hematology and Medical Oncology, University of California San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
277
|
Identification of the specific epigenetic alterations associated with chemo-resistance via reprogramming of cancer cells. Med Hypotheses 2015; 85:710-4. [PMID: 26527497 DOI: 10.1016/j.mehy.2015.10.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/11/2015] [Accepted: 10/23/2015] [Indexed: 11/21/2022]
Abstract
BACKGROUND Chemo-resistance is the main obstacle in cancer therapy, limiting the effectiveness of drug treatment. Epigenetics-mediated changes are suggested as a critical factor paying the chemo-resistance phenotype. Since epigenetic modulations are a reversible phenomenon, reversion of epigenetic changes represents a promising therapeutic approach for cancer. However, heterogeneity in epigenetic marks in tumor cells makes it difficult to identify the specific epigenetic aberrations contributing to chemo-resistance. Our hypothesis aimed to explore this issue to add therapeutic options for cancer. PRESENTATION OF THE HYPOTHESIS Epigenetic alterations, the main mediator of cellular reprogramming, occur rapidly upon exposure to chemotherapy. Recent studies have demonstrated that reprogramming resets/erases the epigenetic marks established during differentiation to specific somatic cell types. To overcome the heterogeneous nature of cancer cells, we will attempt to make homogenous cancer cell colonies by reprogramming. Comparison of the drug-resistant cancer cells obtained from these colonies to parent cancer cells and reprogrammed cancer cells is an effective way to determine the precise epigenetic alterations underlying specific chemo-resistance. TESTING THE HYPOTHESIS Cellular reprogramming of cancer cells led to generation of homogenous colonies. Following lineage specification and long term drug treatment, the obtained drug resistance cells will be compared with parent cancer cells for whole genome epigenetic signature. IMPLICATIONS OF THE HYPOTHESIS A key implication of this hypothesis is that determination of the usefulness of cellular reprogramming of cancer cells enabling the identification of specific epigenetic modulation associated with particular drug resistance will enable exploration of new research avenues for cancer treatment.
Collapse
|
278
|
Lantermann AB, Chen D, McCutcheon K, Hoffman G, Frias E, Ruddy D, Rakiec D, Korn J, McAllister G, Stegmeier F, Meyer MJ, Sharma SV. Inhibition of Casein Kinase 1 Alpha Prevents Acquired Drug Resistance to Erlotinib in EGFR-Mutant Non-Small Cell Lung Cancer. Cancer Res 2015; 75:4937-48. [PMID: 26490646 DOI: 10.1158/0008-5472.can-15-1113] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/07/2015] [Indexed: 11/16/2022]
Abstract
Patients with lung tumors harboring activating mutations in the EGF receptor (EGFR) show good initial treatment responses to the EGFR tyrosine kinase inhibitors (TKI) erlotinib or gefitinib. However, acquired resistance invariably develops. Applying a focused shRNA screening approach to identify genes whose knockdown can prevent and/or overcome acquired resistance to erlotinib in several EGFR-mutant non-small cell lung cancer (NSCLC) cell lines, we identified casein kinase 1 α (CSNK1A1, CK1α). We found that CK1α suppression inhibits the NF-κB prosurvival signaling pathway. Furthermore, downregulation of NF-κB signaling by approaches independent of CK1α knockdown can also attenuate acquired erlotinib resistance, supporting a role for activated NF-κB signaling in conferring acquired drug resistance. Importantly, CK1α suppression prevented erlotinib resistance in an HCC827 xenograft model in vivo. Our findings suggest that patients with EGFR-mutant NSCLC might benefit from a combination of EGFR TKIs and CK1α inhibition to prevent acquired drug resistance and to prolong disease-free survival.
Collapse
Affiliation(s)
- Alexandra B Lantermann
- Oncology Drug Discovery, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts.
| | - Dongshu Chen
- Oncology Drug Discovery, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Kaitlin McCutcheon
- Oncology Drug Discovery, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Greg Hoffman
- Oncology Drug Discovery, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Elizabeth Frias
- Oncology Drug Discovery, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - David Ruddy
- Oncology Drug Discovery, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Daniel Rakiec
- Oncology Drug Discovery, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Joshua Korn
- Oncology Drug Discovery, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Gregory McAllister
- Oncology Drug Discovery, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Frank Stegmeier
- Oncology Drug Discovery, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Matthew J Meyer
- Oncology Drug Discovery, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Sreenath V Sharma
- Oncology Drug Discovery, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts.
| |
Collapse
|
279
|
Shen A, Wang L, Huang M, Sun J, Chen Y, Shen YY, Yang X, Wang X, Ding J, Geng M. c-Myc alterations confer therapeutic response and acquired resistance to c-Met inhibitors in MET-addicted cancers. Cancer Res 2015; 75:4548-59. [PMID: 26483207 DOI: 10.1158/0008-5472.can-14-2743] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 07/23/2015] [Indexed: 11/16/2022]
Abstract
Use of kinase inhibitors in cancer therapy leads invariably to acquired resistance stemming from kinase reprogramming. To overcome the dynamic nature of kinase adaptation, we asked whether a signal-integrating downstream effector might exist that provides a more applicable therapeutic target. In this study, we reported that the transcriptional factor c-Myc functions as a downstream effector to dictate the therapeutic response to c-Met inhibitors in c-Met-addicted cancer and derived resistance. Dissociation of c-Myc from c-Met control, likely overtaken by a variety of reprogrammed kinases, led to acquisition of drug resistance. Notably, c-Myc blockade by RNA interference or pharmacologic inhibition circumvented the acquired resistance to c-Met inhibition. Combining c-Myc blockade and c-Met inhibition in MET-amplified patient-derived xenograft mouse models heightened therapeutic activity. Our findings offer a preclinical proof of concept for the application of c-Myc-blocking agents as a tactic to thwart resistance to kinase inhibitors.
Collapse
Affiliation(s)
- Aijun Shen
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai China
| | - Lu Wang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai China
| | - Min Huang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai China
| | - Jingya Sun
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai China
| | - Yi Chen
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai China
| | - Yan-Yan Shen
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai China
| | - Xinying Yang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai China
| | - Xin Wang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai China
| | - Jian Ding
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai China.
| | - Meiyu Geng
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai China.
| |
Collapse
|
280
|
Seashore-Ludlow B, Rees MG, Cheah JH, Cokol M, Price EV, Coletti ME, Jones V, Bodycombe NE, Soule CK, Gould J, Alexander B, Li A, Montgomery P, Wawer MJ, Kuru N, Kotz JD, Hon CSY, Munoz B, Liefeld T, Dančík V, Bittker JA, Palmer M, Bradner JE, Shamji AF, Clemons PA, Schreiber SL. Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset. Cancer Discov 2015; 5:1210-23. [PMID: 26482930 DOI: 10.1158/2159-8290.cd-15-0235] [Citation(s) in RCA: 517] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 07/21/2015] [Indexed: 12/15/2022]
Abstract
UNLABELLED Identifying genetic alterations that prime a cancer cell to respond to a particular therapeutic agent can facilitate the development of precision cancer medicines. Cancer cell-line (CCL) profiling of small-molecule sensitivity has emerged as an unbiased method to assess the relationships between genetic or cellular features of CCLs and small-molecule response. Here, we developed annotated cluster multidimensional enrichment analysis to explore the associations between groups of small molecules and groups of CCLs in a new, quantitative sensitivity dataset. This analysis reveals insights into small-molecule mechanisms of action, and genomic features that associate with CCL response to small-molecule treatment. We are able to recapitulate known relationships between FDA-approved therapies and cancer dependencies and to uncover new relationships, including for KRAS-mutant cancers and neuroblastoma. To enable the cancer community to explore these data, and to generate novel hypotheses, we created an updated version of the Cancer Therapeutic Response Portal (CTRP v2). SIGNIFICANCE We present the largest CCL sensitivity dataset yet available, and an analysis method integrating information from multiple CCLs and multiple small molecules to identify CCL response predictors robustly. We updated the CTRP to enable the cancer research community to leverage these data and analyses.
Collapse
Affiliation(s)
| | - Matthew G Rees
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Jaime H Cheah
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Murat Cokol
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Edmund V Price
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Matthew E Coletti
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Victor Jones
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Nicole E Bodycombe
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Christian K Soule
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Joshua Gould
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Benjamin Alexander
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Ava Li
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Philip Montgomery
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Mathias J Wawer
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Nurdan Kuru
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Joanne D Kotz
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - C Suk-Yee Hon
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Benito Munoz
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Ted Liefeld
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Vlado Dančík
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Joshua A Bittker
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Michelle Palmer
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - James E Bradner
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts. Cancer Biology and Medical Oncology, Harvard Medical School, Boston, Massachusetts
| | - Alykhan F Shamji
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts.
| | - Paul A Clemons
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts.
| | - Stuart L Schreiber
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| |
Collapse
|
281
|
Singleton KR, Hinz TK, Kleczko EK, Marek LA, Kwak J, Harp T, Kim J, Tan AC, Heasley LE. Kinome RNAi Screens Reveal Synergistic Targeting of MTOR and FGFR1 Pathways for Treatment of Lung Cancer and HNSCC. Cancer Res 2015; 75:4398-406. [PMID: 26359452 PMCID: PMC4609283 DOI: 10.1158/0008-5472.can-15-0509] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 07/20/2015] [Indexed: 12/13/2022]
Abstract
The FGFR1 is a therapeutic target under investigation in multiple solid tumors and clinical trials of selective tyrosine kinase inhibitors (TKI) are underway. Treatment with a single TKI represents a logical step toward personalized cancer therapy, but intrinsic and acquired resistance mechanisms limit their long-term benefit. In this study, we deployed RNAi-based functional genomic screens to identify protein kinases controlling the intrinsic sensitivity of FGFR1-dependent lung cancer and head and neck squamous cell cancer (HNSCC) cells to ponatinib, a multikinase FGFR-active inhibitor. We identified and validated a synthetic lethal interaction between MTOR and ponatinib in non-small cell lung carcinoma cells. In addition, treatment with MTOR-targeting shRNAs and pharmacologic inhibitors revealed that MTOR is an essential protein kinase in other FGFR1-expressing cancer cells. The combination of FGFR inhibitors and MTOR or AKT inhibitors resulted in synergistic growth suppression in vitro. Notably, tumor xenografts generated from FGFR1-dependent lung cancer cells exhibited only modest sensitivity to monotherapy with the FGFR-specific TKI, AZD4547, but when combined with the MTOR inhibitor, AZD2014, significantly attenuated tumor growth and prolonged survival. Our findings support the existence of a signaling network wherein FGFR1-driven ERK and activated MTOR/AKT represent distinct arms required to induce full transformation. Furthermore, they suggest that clinical efficacy of treatments for FGFR1-driven lung cancers and HNSCC may be achieved by combining MTOR inhibitors and FGFR-specific TKIs.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Benzamides/pharmacology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Disease Models, Animal
- Drug Resistance, Neoplasm
- Drug Synergism
- Gene Library
- Genes, Essential
- Genomics/methods
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Morpholines/pharmacology
- Piperazines/pharmacology
- Protein Binding
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Pyrazoles/pharmacology
- Pyrimidines
- RNA Interference
- RNA, Small Interfering/genetics
- Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Signal Transduction/drug effects
- TOR Serine-Threonine Kinases/antagonists & inhibitors
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Katherine R Singleton
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Trista K Hinz
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Emily K Kleczko
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lindsay A Marek
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jeff Kwak
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Taylor Harp
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jihye Kim
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Aik Choon Tan
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lynn E Heasley
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
282
|
Abstract
There is now compelling evidence that the molecular heterogeneity of cancer is associated with disparate phenotypes with variable outcomes and therapeutic responsiveness to therapy in histologically indistinguishable cancers. This diversity may explain why conventional clinical trial designs have mostly failed to show efficacy when patients are enrolled in an unselected fashion. Knowledge of the molecular phenotype has the potential to improve therapeutic selection and hence the early delivery of the optimal therapeutic regimen. Resolution of the challenges associated with a more stratified approach to health care will ensure more precise diagnostics and enhance therapeutic selection, which will improve overall outcomes.
Collapse
Affiliation(s)
- Nigel B Jamieson
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK; Academic Unit of Surgery, School of Medicine, College of Medical, Veterinary and Life Sciences, Glasgow Royal Infirmary, University of Glasgow, Alexandra Parade, Glasgow G31 2ER, UK; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Alexandra Parade, Glasgow G31 2ER, UK
| | - David K Chang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK; The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 370 Victoria Street, Darlinghurst, New South Wales 2010, Australia; Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia; Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia; Faculty of Medicine, South Western Sydney Clinical School, University of NSW, Goulburn St, Liverpool, New South Wales 2170, Australia
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK; The Kinghorn Cancer Centre, Garvan Institute of Medical Research, 370 Victoria Street, Darlinghurst, New South Wales 2010, Australia; Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia; Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia; Faculty of Medicine, South Western Sydney Clinical School, University of NSW, Goulburn St, Liverpool, New South Wales 2170, Australia.
| |
Collapse
|
283
|
Holtermann N, Kiupel M, Kessler M, Teske E, Betz D, Hirschberger J. Masitinib monotherapy in canine epitheliotropic lymphoma. Vet Comp Oncol 2015; 14 Suppl 1:127-35. [DOI: 10.1111/vco.12157] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 04/19/2015] [Accepted: 05/04/2015] [Indexed: 12/18/2022]
Affiliation(s)
- N. Holtermann
- Medizinische Kleintierklinik; Ludwig Maximilians University Munich; Munich Germany
| | - M. Kiupel
- Department of Pathology and Diagnostic Investigations, College of Veterinary Medicine, Michigan State University; Diagnostic Center for Population and Animal Health; Lansing MI USA
| | - M. Kessler
- Tierklinik Hofheim; Im Langgewann 9; 65719 Hofheim/Taunus Germany
| | - E. Teske
- Department of Clinical Sciences of Companion Animals, Veterinary Faculty; Utrecht University; Utrecht The Netherlands
| | - D. Betz
- Klinik für Kleintiere; Tierärztliche Hochschule Hannover; Hannover Germany
| | - J. Hirschberger
- Medizinische Kleintierklinik; Ludwig Maximilians University Munich; Munich Germany
| |
Collapse
|
284
|
Schwartz H, Scroggins B, Zuehlke A, Kijima T, Beebe K, Mishra A, Neckers L, Prince T. Combined HSP90 and kinase inhibitor therapy: Insights from The Cancer Genome Atlas. Cell Stress Chaperones 2015; 20:729-41. [PMID: 26070366 PMCID: PMC4529871 DOI: 10.1007/s12192-015-0604-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/06/2015] [Accepted: 05/08/2015] [Indexed: 12/13/2022] Open
Abstract
The merging of knowledge from genomics, cellular signal transduction and molecular evolution is producing new paradigms of cancer analysis. Protein kinases have long been understood to initiate and promote malignant cell growth and targeting kinases to fight cancer has been a major strategy within the pharmaceutical industry for over two decades. Despite the initial success of kinase inhibitors (KIs), the ability of cancer to evolve resistance and reprogram oncogenic signaling networks has reduced the efficacy of kinase targeting. The molecular chaperone HSP90 physically supports global kinase function while also acting as an evolutionary capacitor. The Cancer Genome Atlas (TCGA) has compiled a trove of data indicating that a large percentage of tumors overexpress or possess mutant kinases that depend on the HSP90 molecular chaperone complex. Moreover, the overexpression or mutation of parallel activators of kinase activity (PAKA) increases the number of components that promote malignancy and indirectly associate with HSP90. Therefore, targeting HSP90 is predicted to complement kinase inhibitors by inhibiting oncogenic reprogramming and cancer evolution. Based on this hypothesis, consideration should be given by both the research and clinical communities towards combining kinase inhibitors and HSP90 inhibitors (H90Ins) in combating cancer. The purpose of this perspective is to reflect on the current understanding of HSP90 and kinase biology as well as promote the exploration of potential synergistic molecular therapy combinations through the utilization of The Cancer Genome Atlas.
Collapse
Affiliation(s)
- Harvey Schwartz
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Brad Scroggins
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Abbey Zuehlke
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Toshiki Kijima
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Kristin Beebe
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Alok Mishra
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Thomas Prince
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| |
Collapse
|
285
|
Korkut A, Wang W, Demir E, Aksoy BA, Jing X, Molinelli EJ, Babur Ö, Bemis DL, Onur Sumer S, Solit DB, Pratilas CA, Sander C. Perturbation biology nominates upstream-downstream drug combinations in RAF inhibitor resistant melanoma cells. eLife 2015; 4:e04640. [PMID: 26284497 PMCID: PMC4539601 DOI: 10.7554/elife.04640] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 07/07/2015] [Indexed: 01/16/2023] Open
Abstract
Resistance to targeted cancer therapies is an important clinical problem. The discovery of anti-resistance drug combinations is challenging as resistance can arise by diverse escape mechanisms. To address this challenge, we improved and applied the experimental-computational perturbation biology method. Using statistical inference, we build network models from high-throughput measurements of molecular and phenotypic responses to combinatorial targeted perturbations. The models are computationally executed to predict the effects of thousands of untested perturbations. In RAF-inhibitor resistant melanoma cells, we measured 143 proteomic/phenotypic entities under 89 perturbation conditions and predicted c-Myc as an effective therapeutic co-target with BRAF or MEK. Experiments using the BET bromodomain inhibitor JQ1 affecting the level of c-Myc protein and protein kinase inhibitors targeting the ERK pathway confirmed the prediction. In conclusion, we propose an anti-cancer strategy of co-targeting a specific upstream alteration and a general downstream point of vulnerability to prevent or overcome resistance to targeted drugs.
Collapse
Affiliation(s)
- Anil Korkut
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Weiqing Wang
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Emek Demir
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Bülent Arman Aksoy
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, United States
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, United States
| | - Xiaohong Jing
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Evan J Molinelli
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Özgün Babur
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Debra L Bemis
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Selcuk Onur Sumer
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, United States
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, United States
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Christine A Pratilas
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, United States
| | - Chris Sander
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, United States
| |
Collapse
|
286
|
Roemen GM, zur Hausen A, Speel EJM. Adequate tissue for adequate diagnosis: what do we really need? Lung Cancer 2015. [DOI: 10.1183/2312508x.10010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
287
|
Jokinen E, Laurila N, Koivunen P, Koivunen JP. Combining targeted drugs to overcome and prevent resistance of solid cancers with some stem-like cell features. Oncotarget 2015; 5:9295-307. [PMID: 25238228 PMCID: PMC4253435 DOI: 10.18632/oncotarget.2424] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Treatment resistance significantly inhibits the efficiency of targeted cancer therapies in drug-sensitive genotypes. In the current work, we studied mechanisms for rapidly occurring, adaptive resistance in targeted therapy-sensitive lung, breast, and melanoma cancer cell lines. The results show that in ALK translocated lung cancer lines H3122 and H2228, cells with cancer stem-like cell features characterized by high expression of cancer stem cell markers and/or in vivo tumorigenesis can mediate adaptive resistance to oncogene ablative therapy. When pharmacological ablation of ALK oncogene was accompanied with PI3K inhibitor or salinomycin therapy, cancer stem-like cell features were reversed which was accompanied with decreased colony formation. Furthermore, co-targeting was able to block the formation of acquired resistance in H3122 line. The results suggest that cells with cancer stem-like cell features can mediate adaptive resistance to targeted therapies. Since these cells follow the stochastic model, concurrent therapy with an oncogene ablating agent and a stem-like cell-targeting drug is needed for maximal therapeutic efficiency.
Collapse
Affiliation(s)
- Elina Jokinen
- Department of Medical Oncology and Radiotherapy, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Niina Laurila
- Department of Medical Oncology and Radiotherapy, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Peppi Koivunen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine and Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Jussi P Koivunen
- Department of Medical Oncology and Radiotherapy, Oulu University Hospital, University of Oulu, Oulu, Finland
| |
Collapse
|
288
|
McIntyre RE, Buczacki SJ, Arends MJ, Adams DJ. Mouse models of colorectal cancer as preclinical models. Bioessays 2015; 37:909-920. [PMID: 26115037 PMCID: PMC4755199 DOI: 10.1002/bies.201500032] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 12/15/2022]
Abstract
In this review, we discuss the application of mouse models to the identification and pre-clinical validation of novel therapeutic targets in colorectal cancer, and to the search for early disease biomarkers. Large-scale genomic, transcriptomic and epigenomic profiling of colorectal carcinomas has led to the identification of many candidate genes whose direct contribution to tumourigenesis is yet to be defined; we discuss the utility of cross-species comparative 'omics-based approaches to this problem. We highlight recent progress in modelling late-stage disease using mice, and discuss ways in which mouse models could better recapitulate the complexity of human cancers to tackle the problem of therapeutic resistance and recurrence after surgical resection.
Collapse
Affiliation(s)
- Rebecca E. McIntyre
- Experimental Cancer GeneticsWellcome Trust Sanger InstituteHinxtonCambridgeUK
| | | | - Mark J. Arends
- Edinburgh Cancer Research UK CentreUniversity of EdinburghEdinburghUK
| | - David J. Adams
- Experimental Cancer GeneticsWellcome Trust Sanger InstituteHinxtonCambridgeUK
| |
Collapse
|
289
|
Kim J, Tanner K. Recapitulating the Tumor Ecosystem Along the Metastatic Cascade Using 3D Culture Models. Front Oncol 2015; 5:170. [PMID: 26284194 PMCID: PMC4518327 DOI: 10.3389/fonc.2015.00170] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/08/2015] [Indexed: 12/26/2022] Open
Abstract
Advances in cancer research have shown that a tumor can be likened to a foreign species that disrupts delicately balanced ecological interactions, compromising the survival of normal tissue ecosystems. In efforts to mitigate tumor expansion and metastasis, experimental approaches from ecology are becoming more frequently and successfully applied by researchers from diverse disciplines to reverse engineer and re-engineer biological systems in order to normalize the tumor ecosystem. We present a review on the use of 3D biomimetic platforms to recapitulate biotic and abiotic components of the tumor ecosystem, in efforts to delineate the underlying mechanisms that drive evolution of tumor heterogeneity, tumor dissemination, and acquisition of drug resistance.
Collapse
Affiliation(s)
- Jiyun Kim
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Nano System Institute, Seoul National University, Seoul, South Korea
| | - Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
290
|
Abstract
Within a large clonal population, such as cancerous tumor entities, cells are not identical, and the differences between intracellular pH levels of individual cells may be important indicators of heterogeneity that could be relevant in clinical practice, especially in personalized medicine. Therefore, the detection of the intracellular pH at the single-cell level is of great importance to identify and study outlier cells. However, quantitative and real-time measurements of the intracellular pH of individual cells within a cell population is challenging with existing technologies, and there is a need to engineer new methodologies. In this paper, we discuss the use of nanopipette technology to overcome the limitations of intracellular pH measurements at the single-cell level. We have developed a nano-pH probe through physisorption of chitosan onto hydroxylated quartz nanopipettes with extremely small pore sizes (~100 nm). The dynamic pH range of the nano-pH probe was from 2.6 to 10.7 with a sensitivity of 0.09 units. We have performed single-cell intracellular pH measurements using non-cancerous and cancerous cell lines, including human fibroblasts, HeLa, MDA-MB-231 and MCF-7, with the pH nanoprobe. We have further demonstrated the real-time continuous single-cell pH measurement capability of the sensor, showing the cellular pH response to pharmaceutical manipulations. These findings suggest that the chitosan-functionalized nanopore is a powerful nano-tool for pH sensing at the single-cell level with high temporal and spatial resolution.
Collapse
Affiliation(s)
- Rıfat Emrah Özel
- Biomolecular Engineering Department, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Akshar Lohith
- Biomolecular Engineering Department, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Wai Han Mak
- Biomolecular Engineering Department, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Nader Pourmand
- Biomolecular Engineering Department, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
291
|
Poli V, Camporeale A. STAT3-Mediated Metabolic Reprograming in Cellular Transformation and Implications for Drug Resistance. Front Oncol 2015; 5:121. [PMID: 26106584 PMCID: PMC4459099 DOI: 10.3389/fonc.2015.00121] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/15/2015] [Indexed: 12/20/2022] Open
Abstract
Signal transducer and activator of transcription (STAT)3 mediates the signaling downstream of cytokine and growth factor receptors, regulating the expression of target genes. It is constitutively phosphorylated on tyrosine (Y-P) in many tumors, where its transcriptional activity can induce a metabolic switch toward aerobic glycolysis and down-regulate mitochondrial activity, a prominent metabolic feature of most cancer cells, correlating with reduced production of ROS, delayed senescence, and protection from apoptosis. STAT3 can, however, also localize to mitochondria, where its serine-phosphorylated (S-P) form preserves mitochondrial oxidative phosphorylation and controls the opening of the mitochondrial permeability transition pore, also promoting survival and resistance to apoptosis in response to specific signals/oncogenes such as RAS. Thus, downstream of different signals, both nuclear, Y-P STAT3, and mitochondrial, S-P STAT3, can act by promoting cell survival and reducing ROS production. Here, we discuss these properties in the light of potential connections between STAT3-driven alterations of mitochondrial metabolism and the development of drug resistance in cancer patients.
Collapse
Affiliation(s)
- Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino , Torino , Italy
| | - Annalisa Camporeale
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino , Torino , Italy
| |
Collapse
|
292
|
Drug-induced death signaling strategy rapidly predicts cancer response to chemotherapy. Cell 2015; 160:977-989. [PMID: 25723171 DOI: 10.1016/j.cell.2015.01.042] [Citation(s) in RCA: 283] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/03/2014] [Accepted: 01/12/2015] [Indexed: 02/06/2023]
Abstract
There is a lack of effective predictive biomarkers to precisely assign optimal therapy to cancer patients. While most efforts are directed at inferring drug response phenotype based on genotype, there is very focused and useful phenotypic information to be gained from directly perturbing the patient's living cancer cell with the drug(s) in question. To satisfy this unmet need, we developed the Dynamic BH3 Profiling technique to measure early changes in net pro-apoptotic signaling at the mitochondrion ("priming") induced by chemotherapeutic agents in cancer cells, not requiring prolonged ex vivo culture. We find in cell line and clinical experiments that early drug-induced death signaling measured by Dynamic BH3 Profiling predicts chemotherapy response across many cancer types and many agents, including combinations of chemotherapies. We propose that Dynamic BH3 Profiling can be used as a broadly applicable predictive biomarker to predict cytotoxic response of cancers to chemotherapeutics in vivo.
Collapse
|
293
|
Lin L, Bivona TG. The Hippo effector YAP regulates the response of cancer cells to MAPK pathway inhibitors. Mol Cell Oncol 2015; 3:e1021441. [PMID: 27308535 DOI: 10.1080/23723556.2015.1021441] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 02/17/2015] [Accepted: 02/17/2015] [Indexed: 12/27/2022]
Abstract
RAF- and MEK-targeted therapies are approved for patients with BRAF(V600E) melanoma and under investigation in a several other tumor types, but resistance remains a major challenge. We uncovered yes-associated protein 1 (YAP1) as a mechanism of resistance to RAF-MEK inhibition in BRAF- and RAS-mutant cancers, providing a rationale for co-targeting YAP and RAF-MEK to enhance patient outcomes.
Collapse
Affiliation(s)
- Luping Lin
- Division of Hematology and Medical Oncology; University of California San Francisco; San Francisco, CA USA; Helen Diller Family Comprehensive Cancer Center; University of California San Francisco; San Francisco, CA USA
| | - Trever G Bivona
- Division of Hematology and Medical Oncology; University of California San Francisco; San Francisco, CA USA; Helen Diller Family Comprehensive Cancer Center; University of California San Francisco; San Francisco, CA USA
| |
Collapse
|
294
|
Zhang L, Shen A, Wang L, Liu H, Chen D, Xiong B, Shen J, Geng M. FS-93, an Hsp90 inhibitor, induces G2/M arrest and apoptosis via the degradation of client proteins in oncogene addicted and derived resistant cancer cells. Oncoscience 2015; 2:419-427. [PMID: 26097875 PMCID: PMC4468327 DOI: 10.18632/oncoscience.156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/08/2015] [Indexed: 12/26/2022] Open
Abstract
Inhibition of heat shock protein 90 (Hsp90) abrogates signaling of multiple aberrantly activated oncogenic proteins simultaneously, particularly mutated or amplified kinases, which provides an attractive approach for cancer treatment. Here, we described that FS-93, a potent Hsp90 inhibitor, impacted the survival of several types of oncogene addicted cancer cells through inducing G2/M arrest and apoptosis. Mechanistically, FS-93 treatment triggered the degradation of key client proteins such as HER2, EML4-ALK and c-Met and thereby abolished their downstream signaling pathways. Importantly, FS-93 alone circumvented MET amplification contributed acquired resistance to EGFR inhibition. Our study implicates that targeting Hsp90 is a promising alternative therapeutic tactic in oncogene addicted and derived resistant cancer cells.
Collapse
Affiliation(s)
- Liping Zhang
- School of Medicine and Pharmacy, Ocean University of China, Shandong, China
| | - Aijun Shen
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lu Wang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hongchun Liu
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Danqi Chen
- Synthetic Organic and Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bing Xiong
- Synthetic Organic and Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jingkang Shen
- Synthetic Organic and Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Meiyu Geng
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
295
|
Abstract
INTRODUCTION Urothelial cancer (UC) remains a significant public health problem, with no new second-line agents FDA-approved in the US. Next-generation sequencing technologies are starting to generate a molecular landscape of UC thus revealing novel molecular targets. AREAS COVERED In this review, the authors provide a detailed review of novel molecular targets in UC based on published genomic analyses of urothelial tumors. We provide an overview of each molecular target with a brief discussion of therapeutic strategies and clinical trials targeting each pathway. EXPERT OPINION UC continues to be a lethal disease with no FDA-approved effective second-line therapies. Platinum resistance continues to be a daunting clinical problem. Next-generation sequencing methods have led to the elucidation of numerous molecular targets in UC, including PI3K, to the elucidation of numerous molecular targets in UC, including PI3K, ERBB2 and FGFR3, among many others. These molecular perturbations can be exploited therapeutically with targeted therapies in patient populations enriched for these molecular alterations, thus paving the way for precision medicine in UC management.
Collapse
Affiliation(s)
- Bishoy M Faltas
- Weill Cornell Medical College, Division of Hematology and Medical Oncology, Department of Medicine , New York, NY , USA
| | | | | | | |
Collapse
|
296
|
Bagai R, Ma PC. Combined treatment with MET inhibitors and other therapies in lung cancer. Transl Lung Cancer Res 2015; 1:214-8. [PMID: 25806183 DOI: 10.3978/j.issn.2218-6751.2012.09.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 09/18/2012] [Indexed: 01/03/2023]
Affiliation(s)
- Rakesh Bagai
- Translational Hematology and Oncology Research, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA ; ; Solid Tumor Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | - Patrick C Ma
- Translational Hematology and Oncology Research, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA ; ; Solid Tumor Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA ; ; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
297
|
Antibody and lectin target podoplanin to inhibit oral squamous carcinoma cell migration and viability by distinct mechanisms. Oncotarget 2015; 6:9045-60. [PMID: 25826087 PMCID: PMC4496201 DOI: 10.18632/oncotarget.3515] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/04/2015] [Indexed: 11/25/2022] Open
Abstract
Podoplanin (PDPN) is a unique transmembrane receptor that promotes tumor cell motility. Indeed, PDPN may serve as a chemotherapeutic target for primary and metastatic cancer cells, particularly oral squamous cell carcinoma (OSCC) cells that cause most oral cancers. Here, we studied how a monoclonal antibody (NZ-1) and lectin (MASL) that target PDPN affect human OSCC cell motility and viability. Both reagents inhibited the migration of PDPN expressing OSCC cells at nanomolar concentrations before inhibiting cell viability at micromolar concentrations. In addition, both reagents induced mitochondrial membrane permeability transition to kill OSCC cells that express PDPN by caspase independent nonapoptotic necrosis. Furthermore, MASL displayed a surprisingly robust ability to target PDPN on OSCC cells within minutes of exposure, and significantly inhibited human OSCC dissemination in zebrafish embryos. Moreover, we report that human OSCC cells formed tumors that expressed PDPN in mice, and induced PDPN expression in infiltrating host murine cancer associated fibroblasts. Taken together, these data suggest that antibodies and lectins may be utilized to combat OSCC and other cancers that express PDPN.
Collapse
|
298
|
Wilson FH, Johannessen CM, Piccioni F, Tamayo P, Kim JW, Van Allen EM, Corsello SM, Capelletti M, Calles A, Butaney M, Sharifnia T, Gabriel SB, Mesirov JP, Hahn WC, Engelman JA, Meyerson M, Root DE, Jänne PA, Garraway LA. A functional landscape of resistance to ALK inhibition in lung cancer. Cancer Cell 2015; 27:397-408. [PMID: 25759024 PMCID: PMC4398996 DOI: 10.1016/j.ccell.2015.02.005] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/15/2014] [Accepted: 02/10/2015] [Indexed: 01/17/2023]
Abstract
We conducted a large-scale functional genetic study to characterize mechanisms of resistance to ALK inhibition in ALK-dependent lung cancer cells. We identify members of known resistance pathways and additional putative resistance drivers. Among the latter were members of the P2Y purinergic receptor family of G-protein-coupled receptors (P2Y1, P2Y2, and P2Y6). P2Y receptors mediated resistance in part through a protein-kinase-C (PKC)-dependent mechanism. Moreover, PKC activation alone was sufficient to confer resistance to ALK inhibitors, whereas combined ALK and PKC inhibition restored sensitivity. We observed enrichment of gene signatures associated with several resistance drivers (including P2Y receptors) in crizotinib-resistant ALK-rearranged lung tumors compared to treatment-naive controls, supporting a role for these identified mechanisms in clinical ALK inhibitor resistance.
Collapse
Affiliation(s)
- Frederick H Wilson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | | | - Pablo Tamayo
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jong Wook Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven M Corsello
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marzia Capelletti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Antonio Calles
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Mohit Butaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Tanaz Sharifnia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Stacey B Gabriel
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jill P Mesirov
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jeffrey A Engelman
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David E Root
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Levi A Garraway
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
299
|
Zhao X, Bodo J, Sun D, Durkin L, Lin J, Smith MR, Hsi ED. Combination of ibrutinib with ABT-199: synergistic effects on proliferation inhibition and apoptosis in mantle cell lymphoma cells through perturbation of BTK, AKT and BCL2 pathways. Br J Haematol 2015; 168:765-8. [PMID: 25284608 DOI: 10.1111/bjh.13149] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoxian Zhao
- Department of Laboratory Medicine, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | | | | | | |
Collapse
|
300
|
CpG hypermethylation contributes to decreased expression of PTEN during acquired resistance to gefitinib in human lung cancer cell lines. Lung Cancer 2015; 87:265-71. [DOI: 10.1016/j.lungcan.2015.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/29/2014] [Accepted: 01/13/2015] [Indexed: 11/20/2022]
|